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Abstract. A universal method of dimension and sample size reduction, de-

signed for exploratory data analysis procedures, constitutes the subject of this 

paper. The dimension is reduced by applying linear transformation, with the re-

quirement that it has the least possible influence on the respective locations of 

sample elements. For this purpose an original version of the heuristic Parallel 

Fast Simulated Annealing method was used. In addition, those elements which 

change the location significantly as a result of the transformation, may be elim-

inated or assigned smaller weights for further analysis. As well as reducing the 

sample size, this also improves the quality of the applied methodology of 

knowledge extraction. Experimental research confirmed the usefulness of the 

procedure worked out in a broad range of problems of exploratory data analysis 

such as clustering, classification, identification of outliers and others.  

Keywords: dimension reduction, sample size reduction, linear transformation, 

simulated annealing, data analysis and mining.  

1 Introduction 

Contemporary data analysis avails of a broad and varied methodology, based on both 

traditional and modern – often specialized – statistical procedures, currently ever 

more supported by the significant possibilities of computational intelligence. Apart 

from the classical methods – fuzzy logic and neural networks, metaheuristics such as 

genetic algorithms, simulated annealing, particle swarm optimization, and ants algo-

rithms [1] are also being applied here more widely. The proper combination and ex-

ploitation of the advantages of these techniques allows in practice for the effective 

solution to fundamental problems in knowledge engineering, particularly those con-

nected with exploratory data analysis.  

More and more frequently the process of knowledge acquisition is realized using 

multidimensional data sets of large size. This stems from the dynamic growth in the 

amount of information collected in database systems requiring permanent processing. 

The extraction of knowledge from extensive data sets is a highly complex task. Here 

difficulties are mainly related to limits in efficiency of computer systems – for large-
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sized samples – and problems exclusively connected with the analysis of multidimen-

sional data. The latter arise mostly from a number of phenomena occurring in data 

sets of this type, known in literature as "the curse of multidimensionality". Above all, 

this includes the exponential growth in sample size necessary to achieve appropriate 

effectiveness of data analysis methods with increasing dimension (the empty space 

phenomenon), as well as the vanishing difference between near and far points (norm 

concentration) using standard Minkowski distances [2].  

As previously mentioned, the data set size can be reduced mainly to speed up or 

make at all possible calculations. In the classical approach, this is realized mostly with 

sampling methods or advanced data condensation techniques. Useful algorithms have 

also been worked out allowing the problem to be simplified by decreasing its dimen-

sionality. Therefore, let 𝑋 denote a data matrix of dimension × 𝑛 :  

 𝑋 = [𝑥1| 𝑥2 | ⋯ |𝑥𝑚]T  (1) 

with particular 𝑚 rows representing the realizations of an 𝑛-dimensional random vari-

able1. The aim of reducing a dimension is to transform the data matrix in order to 

obtain its new representation of the dimension 𝑚 × 𝑁, where 𝑁 is considerably – 

from the point of view of conditioning of a problem in question – smaller than 𝑛. This 

reduction can be achieved in two ways, either by choosing 𝑁 most significant coordi-

nates/features (feature selection) or through the construction of a reduced set, based 

on initial features (feature extraction) [3]. The latter can be treated as more general – 

the selection is a particularly simple case of extraction. Noteworthy among extraction 

procedures are linear methods, where the resulting data set 𝑌 is obtained through the 

linear transformation of initial data set (1), therefore using the formula  

 𝑌 = 𝑋 ∙ 𝐴  , (2) 

where 𝐴 is a matrix of dimension 𝑛 × 𝑁, as well as nonlinear methods for which the 

transformation can be described by the nonlinear function 𝑔 ∶ ℝ𝑛 → ℝ𝑁. This group 

also contains the methods for which such a functional dependence, expressed explicit-

ly, does not exist. Comparisons of effectiveness of extraction procedures carried out 

in subject literature show that nonlinear methods, despite having more general math-

ematical apparatus and higher efficiency in the case of artificially generated specific 

sets of data, for real samples frequently achieve significantly worse results [4]. 

The goal of this paper is to develop a universal method of reducing dimension and 

size of a sample designed for use in data exploration procedures. The reduction of the 

dimension will be implemented using a linear transformation on the condition that it 

affects as little as possible the mutual positions of original and resulting samples' 

elements. For this aim a novel version of the heuristic method of parallel fast simulat-

ed annealing will be researched. Moreover, those elements of a random sample which 

significantly change their position following transformation will be eliminated or 

assigned less weight for the purposes of further analysis. This concept achieves an 

                                                           
1  Particular coordinates of a random variable of course constitute one-dimensional random 

variables and if the probabilistic aspects are not the subject of research, then in data analysis 

these variables are given the terms "feature" or "attribute". 



 

improvement in quality of knowledge discovery and – possibly – a reduction in sam-

ple size. The effectiveness of the presented method will be verified for fundamental 

procedures in exploratory data analysis: clustering, classification and detection of 

atypical elements (outliers).  

2 Preliminaries  

2.1 Reduction in dimension and sample size  

The dimension can be reduced in many ways. Correctly sorting the procedures ap-

plied here requires, therefore, a wide range of criteria to be taken into account. Firstly 

the aforementioned systematic for linear and nonlinear methods is associated with 

character of dependence between initial and reduced data sets. Most important of 

these, a reference linear procedure for dimension reduction even, is the Principal 

Component Analysis (PCA). Among nonlinear methods the most often mentioned is 

Multidimensional Scaling (MDS). Reduction procedures are often considered with 

respect to facility of description of mapping between initial and reduced data sets. 

This can be defined as explicite (which allows to generalize the reduction procedure 

on points not belonging to initial data set), as well as given only implicite, i.e. through 

reduced representation of elements of an initial data set. The type of method chosen 

has particular significance in the cases of data analysis tasks, where a continuous 

influx of new information is present – in this form of problem, the reduction methods 

belonging to the first of the above groups are preferred. The third division of trans-

formation procedures is related to their level of relationship with the data analysis 

algorithms used in the next step. It is worth noting here universal techniques which, 

through analogy to machine learning methods, can be termed as unsupervised. These 

work autonomously, without using results of exploration procedures [5]. The second 

category concerns algorithms dedicated to particular techniques in data analysis, in 

particular considering class labels. Here are often used statistical methods [6] as well 

as heuristic procedures of optimization, e.g. evolutionary algorithms [7].  

A reduction in data set size can be realized with a wide range of sampling or 

grouping methods. The former most often uses random procedures or stratified sam-

pling [8]. The latter applies either classical clustering techniques or special procedures 

for data condensation problems. There exists also a significant number of methods for 

reducing size which take into account additional knowledge, for example concerning 

whether elements belong to particular classes [9, 10]. Moreover methods dedicated to 

particular analytical techniques, for example kernel estimators [11, 12], have been 

developed (see e.g. [13]).  

The method presented in this paper is based on a concept of dimension reduction 

which is linear, explicite defined and of universal purpose. Its closest equivalents can 

be seen to be the Principal Component Analysis method (due to its linear and unsu-

pervised nature), feature selection using evolutionary algorithms [14] and the projec-

tion method with preserved distances [15–17], with respect to the similar quality crite-

rion.  

A natural priority for the dimension reduction procedure is maintaining distances 



between particular data sets elements – a wide range of methods treat this as a quality 

indicator. Typical for this group of algorithms is the classic multidimensional scaling, 

also known as principal coordinates analysis. It is a linear method, which creates the 

analytical form of the transformation matrix 𝐴, minimizing the index  

 𝑆(𝐴) = ∑ ∑ (𝑑𝑖𝑗
2 − 𝛿𝑖𝑗(𝐴)2) ,𝑚

𝑗=𝑖+1
𝑚−1
𝑖=1  (3) 

where 𝑑𝑖𝑗  denotes the distance between the elements 𝑥𝑖 and 𝑥𝑗 of the initial data set, 

while 𝛿𝑖𝑗(𝐴) are respective distances in the reduced data set. A different strategy is 

required when searching for a solution with different structural characteristics or per-

formance indicator, or else a nonlinear relation between initial and reduced data sets. 

This type of procedure is termed multidimensional scaling (MDS), mentioned before. 

A model example of this is nonlinear Sammon mapping, which – thanks to the appli-

cation of a simple gradient algorithm – allows to find a reduced representation of the 

investigated data set, ensuring minimization of the so-called Sammon stress:  

 𝑆𝑆(𝐴) =
1

∑ ∑ 𝑑𝑖𝑗
𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1

∑ ∑
(𝑑𝑖𝑗−𝛿𝑖𝑗(𝐴))

2

𝑑𝑖𝑗

𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1 . (4) 

Such a defined criterion enables more homogenous treatment of small and large dis-

tances [18], while the value 𝑆𝑆(𝐴) is further normalized to the interval [0,1]. An al-

ternative index, also considered in the context of MDS is so-called raw stress, defined 

by  

 𝑆𝑅(𝐴) = ∑ ∑ (𝑑𝑖𝑗 − 𝛿𝑖𝑗(𝐴))
2

 .𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1  (5) 

The multidimensional scaling methods are mostly nonlinear procedures. However, the 

task was undertaken to formulate the problem of minimization of indexes (4) and (5) 

with assumed linear form of transformation. The first example of this technique is the 

algorithm for finding linear projection described in the paper [17]. Here an iterative 

method of greatest descent is applied, which gives in consequence better results than 

PCA in the sense of index (4). A similar procedure was investigated for function (5), 

with the additional possibility to successively supplement a data set [Strickert et al., 

2005]. In both cases the applied approach did not account for the multimodality of the 

stress function. To avoid becoming trapped in a local minimum one can use the ap-

propriate heuristic optimization strategy. In particular, for minimization of index (4), 

the paper [14] uses the evolutionary algorithm. The solution for this investigation is, 

however, only to choose the reduced features set. A more effective approach seems to 

be the concept of their extraction – being more general, it will be the subject of inves-

tigation in this paper.  

In the construction of the algorithm presented here, an auxiliary role is played by 

an unsupervised technique of feature selection using to this aim an appropriate meas-

ure of similarity – index of maximal compression of information [19]. It is based on 

the concept of dividing features into clusters, with the similarity criterion of features 

defined by the aforementioned index. This division is based on the algorithm of k-

nearest neighbors, where it is recommended that 𝑘 ≅ 𝑛 − 𝑁. The number of clusters 



 

achieved then approaches 𝑁, although it is not strictly fixed, but in a more natural 

manner is adapted to a real data structure.  

Another aspect of the procedure presented here is a reduction in size of sample (1). 

Conceptually, the closest technique is the condensation method [20]. It is unsuper-

vised and to establish the importance of elements takes into account their respective 

distances. In this case the algorithm of k-nearest neighbors is also applied, where the 

similarity measure between sample elements is Euclidean distance. Within this algo-

rithm, in the data set are iteratively found prototype points, or points for which the 

distance 𝑟 to the k-th nearest neighbor is the smallest. With every iteration, elements 

closer than 2𝑟 from the nearest prototype point, are eliminated.  

2.2 Simulated Annealing algorithm  

Simulated annealing (SA) is a heuristic optimization algorithm, based on the iterative 

technique of local search with appropriate criterion for accepting solutions. This al-

lows to establish a valid solution for every iteration, mostly using the quality index 

value for the previous and current iteration, and variable parameter called the anneal-

ing temperature, which decreases in time. In this way it becomes possible to accept a 

valid solution worse than the previous, thereby reducing the danger of the algorithm 

getting stuck at local minimums. In addition it is assumed that the probability of ac-

cepting a worse solution  should decrease over time. All of the above traits contain the 

so-called Metropolis rule, which is most often applied as acceptance criterion in simu-

lated annealing algorithms.  

Let therefore 𝑍 ⊂ ℝ𝑡 denote the set of admissible solutions to a certain optimiza-

tion problem, while the function ℎ ∶ 𝑍 → ℝ is its quality index, hereinafter referred to 

as cost. Furthermore, let 𝑘 = 0, 1, … mean the number of iteration, whereas  𝑇(𝑘) ∈

ℝ, 𝑧(𝑘) ∈ 𝑍, 𝑐(𝑘) = ℎ(𝑧(𝑘)) , 𝑧0(𝑘) ∈ 𝑍,   𝑐0(𝑘) = ℎ(𝑧0(𝑘)) – respectively – tem-

perature and solution valid for the iteration 𝑘 and its cost, and also the best solution 

found to date and its cost. Under the above assumptions the basic variant of the SA 

algorithm can be described thus:  

procedure Simulated_annealing 

 begin 

  Generate(T(1),z(0)) 

  c(0) = Evaluate_quality(z(0)) 

  z0(0) = z(0) 

  c0(0) = c(0) 

  k = 1 

  repeat 

   z(k) = Generate_neighbor(z(k-1)) 

   c(k) = Evaluate _quality(z(k)) 

   ∆c = c(k) – c(k-1) 

   z(k)= Metropolis_rule(∆c,z(k),z(k-1),T(k)) 

   if c(k) < c0(k-1) 

     z0(k) = z(k) 



     c0(k) = c(k) 

   else 

     z0(k) = z0(k-1) 

     c0(k) = c0(k-1) 

    Calculate(T(k+1)) 

   stop_condition = Check_stop_condition() 

   k=k+1  

  until stop_condition == FALSE 

return kstop=k-1, z0(kstop), c0(kstop) 

end 

where the procedure for the Metropolis rule is realized by  

procedure Metropolis_rule(∆c,z(k),z(k-1),T(k)) 

 if ∆c < 0 

  return z(k) 

 else 

  if Random_number_from_(0,1) < exp(-∆c/T(k)) 

   return z(k) 

  else 

   return z(k-1) 

end 

The SA algorithm requires in the general case the assumption of the appropriate initial 

temperature value, formula of its changes associated with an accepted method of gen-

erating a neighboring solution, as well as a condition for ending the procedure. How-

ever in particular applications one should also define other functional elements, such 

as method of generating the initial solution and form of the quality index. The first 

group of tasks will now be discussed, while the second – as specific for the applica-

tion of the SA algorithm investigated here – will be the subject of detailed analysis in 

Section 3.  

Numerous fundamental and applicational works have resulted in creation of many 

variants of the algorithm described here. Their main difference is the scheme for tem-

perature changes and method for obtaining a neighboring solution. The standard ap-

proach is the classical simulated annealing algorithm, also known as the Boltzmann 

annealing algorithm (BA). This assumes an iterative change in temperature according 

to a logarithmic schedule and generation of a subsequent solution by adding to the 

current one the value of step ∆𝑧 ∈ ℝ𝑡, which is the realization of t-dimensional pseu-

dorandom vector with normal distribution. The BA algorithm – although effective in 

the general case – has a large probability of acceptance of worse solutions, even in the 

final phase of the search process. This allows for the effective escape from local min-

imums of a cost function and guarantees asymptotic convergence to a global one [21], 

while also ensuring the procedure represents – in some sense – a random search of the 

space of admissible solutions. For the SA algorithm to be more deterministic in char-

acter, and at the same time keeping convergence to the optimal solution, the following 

scheme for temperature change can be applied:  



 

 𝑇(𝑘 + 1) =
𝑇(1)

k+1
 , (6) 

together with the generation of neighboring solution using a Cauchy distribu-

tion  

 𝑔(∆𝑧) =
𝑇(𝑘)

(∆𝑧2+𝑇(𝑘)2)(𝑡+1)/2 . (7) 

The procedure defined by the above elements is called Fast Simulated Annealing 

(FSA) [22]. It will be a base – in the framework of this paper – for the dimension 

reduction algorithm.  

The problem of practical implementation of FSA is the effective generation of ran-

dom numbers with multidimensional Cauchy distribution. The simplest solution is the 

application for each dimension of the vector, of a one-dimensional number generator 

with the same distribution. This strategy was used in the Very Fast Simulated Anneal-

ing algorithm (VFSA), expanded later within the framework of a complex procedure 

of Adaptive Simulated Annealing [23]. Such a concept has, however, a fundamental 

flaw: the step vectors generated here concentrate near the axes of the coordinate sys-

tem. An alternative could be to use a multidimensional generator based on the trans-

formation of the Cartesian coordinate system to a spherical one. It is suggested here 

that the step vector ∆𝑧 = [∆𝑧1, ∆𝑧2, … , ∆𝑧𝑡] be obtained by generating first the radius 

𝑟 of the hypersphere, using the method of inverting the Cauchy distribution function 

described with the spherical coordinates, and then selecting the appropriate point on 

the 𝑡-dimensional hypersphere. The second phase is realized by randomly generating 

the vector 𝑢 = [𝑢1, 𝑢2, … , 𝑢𝑡]T with coordinates originating from the one-dimensional 

normal distribution 𝑢𝑖~𝑁(0, 1), and then the step vector ∆𝑧 :  

 ∆𝑧𝑖 = 𝑟 
𝑢𝑖

|u|
,         𝑖 = 1, 2, … , 𝑡 . (8) 

The presented procedure ensure a symmetric and multidirectional generation scheme, 

with heavy tails of distribution, which in consequence causes effective exploration of 

a solution space [24]. Taking the above into account, it has been applied in the algo-

rithm investigated in this paper.  

Establishing an initial temperature is vital for the correct functioning of the simu-

lated annealing algorithm. It implies the probability of acceptance of a worse solution 

at subsequent stages of the search in the solutions space. Subject literature tends to 

suggest choosing the initial temperature so that the probability of acceptance of a 

worse solution at the first iteration, denoted hereinafter as 𝑃(1), is relatively large. 

These recommendations are not absolute, however, and different proposals can be 

found in literature, for example close to 1.0 [25], around 0.8 [26] or even only 0.5 

[27]. Often in practical applications of SA algorithms, the temperature value is fixed 

during numerical experiments [28]. An alternative is to choose a temperature accord-

ing to a calculational criterion which has the goal of obtaining the 𝑇(1) value on the 

basis of a set of pilot iterations, consisting of generating the neighbor solution 𝑧(1) so 

that the assumed 𝑃(1) value is ensured. For this purpose one can – analyzing the 

mean difference in cost between the solutions 𝑧(1) and 𝑧(0), denoted as ∆𝑐̅̅ ̅ in the 



following – calculate the temperature 𝑇(1) value by substituting ∆𝑐̅̅ ̅ to the right-side 

of the inequality in the Metropolis rule defining the probability of the worse solutions 

acceptance:  

 𝑃(1) = 𝑒
− 

∆𝑐̅̅̅̅

𝑇(1) , (9) 

thus in consequence  

 𝑇(1) = −
∆𝑐̅̅̅̅

ln 𝑃(1)
 . (10) 

The mean difference in cost can be replaced with e.g. the standard deviation of the 

cost function value, marked as 𝜎𝑐̅, also estimated on the basis of the set of pilot itera-

tions [29]. A problem which appears in the case of SA algorithms dedicated to mini-

mizing functions with real arguments (including the aforementioned BA, FSA, VFSA 

and ASA), is the dependence of the strategy for generating a neighbor solution on 

temperature. Therefore, both the standard deviation 𝜎𝑐̅ and the mean ∆𝑐̅̅ ̅ are directly 

dependent on it. The application of formula (10) is not possible here and in the case of 

these algorithms, the initial temperature value is usually arbitrary. This paper propos-

es a different strategy based on the generation of a set of pilot iterations, allowing the 

value 𝑇(1) to be obtained on the assumption of any value of initial probability of 

worse solutions acceptance.  

As equally important as the choice of initial temperature is the determination of the 

iteration at which the algorithm should be terminated. The simplest – although not 

flexible and often requiring too detailed knowledge of the investigated task – stop 

criterion is reaching a previously assumed number of iterations or a satisfactory cost 

function value. An alternative could be to finish the algorithm when following a cer-

tain number of iterations, the best obtained solution is not improved, or the use of an 

appropriate statistical method based on the analysis of cost function values as they are 

obtained. The last concept is universal and – desirable among heuristic algorithms 

stop criterions – related to the expected result of their works. This usually consists of 

calculating the estimator of expected value of the global minimum 𝑐̂𝑚𝑖𝑛 and finishing 

the algorithm in the iteration 𝑘, when the difference between it and the discovered 

smallest value 𝑐0(𝑘) is not greater than the assumed positive 𝜀, so if  

 |𝑐0(𝑘) − 𝑐̂𝑚𝑖𝑛| ≤ 𝜀 . (11) 

One the most recent techniques using this type of strategy is the algorithm proposed 

in the work [30]. In order to calculate the value 𝑐𝑚𝑖𝑛 an estimator is applied here 

based on order statistics [31]. This algorithm constitutes a universal and effective tool 

for a wide range of stochastic optimization techniques. Such a method, used as part of 

the FSA procedure, will now be described.  

Let therefore {𝑐0(𝑘), 𝑐1(𝑘), 𝑐2(𝑘), … , 𝑐𝑟(𝑘)} denote the ordered non-decreasing 

set of 𝑟 lowest cost function values, obtained during 𝑘 iterations of the algorithm. In 

the case of an algorithm convergent on a global minimum, the condition lim
k→∞

𝑐𝑗(𝑘) =

𝑐𝑚𝑖𝑛  is fulfilled for every 𝑗 ∈ ℕ , while the sequences 𝑐𝑗(𝑘) can be applied to con-

struct the aforementioned estimator value 𝑐𝑚𝑖𝑛 . This estimator makes use of the as-



 

sumption of asymptotic convergence of order statistic distribution to the Weibull dis-

tribution, and in the iteration 𝑘 takes the general form:  

 𝑐̂𝑚𝑖𝑛(𝑘) = 𝑐0(𝑘) −

2𝑡

𝛽
−1

𝑟
(𝑐𝑟(𝑘) − 𝑐0(𝑘)) . (12) 

The parameter 𝛽 occurring above is termed a homogenous coefficient of the cost 

function ℎ around its minimum. On additional assumptions, in calculational practice 

one can take 𝛽 = 2 [32]. The confidence interval for the cost function minimum, at 

the assumed significance level 𝛿 ∈ (0,1), is of the form  

 [𝑐0(𝑘) −
(1−(1−𝛿)1/𝑟)

𝛽/𝑡

1−(1−(1−𝛿)1/𝑟)
𝛽/𝑡 (𝑐𝑟(𝑘) − 𝑐0(𝑘)) , 𝑐0(𝑘)] . (13) 

The paper [30] suggests that point estimator (12) can be replaced by confidence inter-

val (13) with the algorithm being stopped when the confidence interval width is less 

than the aforementioned, assumed value 𝜀. Such an idea, modified for the specific 

problem under investigation, will be applied here.  

The simulated annealing procedure can be easily parallelized, whether for required 

calculations, or in the scheme of establishing subsequent solutions. While paralleliz-

ing the SA algorithm is not a new idea, and was already investigated a few years after 

its creation [33], it needs to be adapted for particular applicational tasks [34]. At pre-

sent the suitability of the Parallel Simulated Annealing (PSA) algorithm continuously 

increases with the common availability of multicore systems. In the algorithm worked 

out in this paper, a variant will be taken with parallel generation of neighbor solu-

tions, assuming that the number of SA threads equals the number of available pro-

cessing units.  

3 Procedure for reducing dimension and sample size  

The algorithm investigated in this paper consists of two functional components: a 

procedure for reducing the dimension and a way of allowing sample size to be de-

creased. They are implemented sequentially, with the second dependent on the results 

of the first. The reduction of sample size is optional here.  

3.1 Procedure for dimension reduction  

The aim of the algorithm under investigation is a decrease in the dimensionality of the 

data set elements, represented by the matrix 𝑋 with the form specified by formula (1), 

so of the dimension 𝑚 × 𝑛, where 𝑚 means the data set size, and 𝑛  –  the dimension 

of its elements. In consequence the reduced form of this data set is represented by the 

matrix 𝑌 of the dimension 𝑚 × 𝑁, while 𝑁 denotes the assumed reduced dimension 

of elements, appropriately less than 𝑛. The procedure for reducing the dimension is 

based on linear transformation (2), with the matrix 𝐴 given in form  



 𝐴 = [

𝑎11 𝑎12 … 𝑎1𝑁

𝑎21 𝑎22 … 𝑎2𝑁

⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑁

] , (14) 

although for the purposes of notation used in the simulated annealing algorithm, its 

elements are denoted as the row vector  

 [𝑎11 , 𝑎12, … , 𝑎1𝑁 , 𝑎21 , 𝑎22, … , 𝑎2𝑁 ,   …  , 𝑎𝑛1 , 𝑎𝑛2, … , 𝑎𝑛𝑁] , (15) 

which represents the current solution 𝑧(𝑘) ∈ ℝ 𝑛∙𝑁 in any iteration 𝑘. In order to gen-

erate neighbor solutions, a strategy was used based on the multidimensional generator 

of the Cauchy distribution (formulas (7) and (8)). The quality of the obtained solution 

can be evaluated with the application of the cost function ℎ, which is the function of 

the raw stress 𝑆𝑅 given by dependence (5), where the matrix 𝑌 elements are defined 

on the basis of equation (2). The alternative possibility of using Sammon stress (4) for 

this purpose was also examined.  

The developed procedure requires firstly that the basic parameters are specified: 

the dimension of the reduced space 𝑁, a coefficient defining directly the maximum 

allowed width of the confidence interval 𝜀𝑤 for the stop criterion based on the order 

statistics, the number of processing threads of the FSA procedure 𝑝𝑡ℎ𝑟𝑒𝑎𝑑, initial scal-

ing coefficient (length of step) for the multidimensional Cauchy generator 𝑇𝑠𝑐𝑎𝑙𝑒  , as 

well as the probability of acceptance of a worse solution 𝑃(1) in the first iteration of 

the FSA algorithm. 

Starting the algorithm requires moreover the generation of the initial solution 𝑧(0). 

To this aim the feature selection procedure of [19], described in the previous section, 

was realized. Here 𝑘 = 𝑛 − 𝑁 should be assumed, which in consequence usually 

results in obtaining approximately 𝑁 clusters. The aforementioned procedure de-

scribed leads to getting the auxiliary vector 𝑏 ∈ ℝ 𝑛, the particular coordinates of 

which characterize the number of cluster, to which the coordinate from the original 

space was mapped, as well as the vector 𝑏𝑟 ∈ ℝ 𝑛 of binary values 𝑏𝑟(𝑖) ∈ {0,1} for 

𝑖 = 1, 2, … , 𝑛, defining whether a given feature was chosen as a representative of the 

cluster to which it belongs, in which case 𝑏𝑟(𝑖) = 1, or not – then 𝑏𝑟(𝑖) = 0. The 

auxiliary vectors 𝑏 and 𝑏𝑟 can be used in the considered algorithm for generating the 

initial solution in two ways:  

   1. each of 𝑁 features of the initial solution is a linear combination of features 

mapped to one of 𝑁 clusters – to define the form of the matrix 𝐴 one can use  

 { 
𝑎𝑖𝑗 = 1,   if 𝑏(𝑖) = 𝑗

𝑎𝑖𝑗 = 0,   if 𝑏(𝑖) ≠ 𝑗
     for   𝑖 = 1, 2, … , 𝑛  and  𝑗 = 1, 2, … , 𝑁  ; (16) 

   2. each of 𝑁 features of the initial solution is given as representative for one of 𝑁 

clusters – the form of the matrix 𝐴 is then defined as  

 { 
𝑎𝑖𝑗 = 1,   if  𝑏𝑟(𝑖) = 1  and  𝑏(𝑖) = 𝑗

𝑎𝑖𝑗 = 0,   if  𝑏𝑟(𝑖) = 0
     for   𝑖 = 1, 2, … , 𝑛  and  𝑗 = 1, 2, … , 𝑁  . (17) 



 

The possibility of applying both the above ways of generating an initial solution – the 

first called a linear combination of features and the second, referred to as features 

selection – is a subject of detailed experimental analysis concerning dimensional re-

duction, described in Section 4.  

After generating the initial solution, in order to carry out the simulated annealing 

algorithm, the temperature 𝑇(1) should be fixed in the first iteration. To this aim the 

technique presented in the previous section can be followed, allowing at the start to 

obtain the assumed initial value of the probability of worse solution acceptance 𝑃(1). 
In the case of the algorithm for generating neighbor solutions, it is not recommended 

to use the relation resulting from equality (9). As mentioned in the previous section, 

this is implied by the dependence of a formula for generating a neighbor solution on 

the annealing temperature. In order to avoid this inconvenience, an additional coeffi-

cient 𝑇𝑠𝑐𝑎𝑙𝑒  was introduced, being the parameter of the Cauchy distribution in the first 

iteration of the FSA algorithm (also known as an initial step length), and furthermore 

the temperature occurring in the generating distribution was scaled. The coefficient 

𝑇𝑠𝑐𝑎𝑙𝑒  is thus used as a parameter of the random numbers generator, with the aim of 

calculating a set of pilot iterations (the size of this set is assumed to be 100). These 

iterations consist of the generation of an appropriate number of transitions from 

𝑧(0) worse in the sense of cost function used, to the neighbor solution 𝑧(1), and the 

establishment of the mean value of the cost difference ∆𝑐̅̅ ̅ between 𝑧(1) and 𝑧(0). 

This value is inserted to formula (10), through which the initial temperature can be 

obtained. Moreover, in order to find the assumed shape of the generated distribution, 

in the first iteration of the FSA algorithm, the additional scaling coefficient is calcu-

lated:  

 𝑐𝑡𝑒𝑚𝑝 = −
∆𝑐̅̅̅̅

ln 𝑃(1) 𝑇𝑠𝑐𝑎𝑙𝑒
  . (18) 

In consequence, in the first iteration of the actual algorithm, in order to generate a 

neighbor solution, the scaled temperature 𝑇(1)/𝑐𝑡𝑒𝑚𝑝  (therefore 𝑇𝑠𝑐𝑎𝑙𝑒) is used, and 

for the Metropolis rule – just the value 𝑇(1). Similar scaling takes place during the 

generation of neighbor solutions in each consecutive iteration of the FSA algorithm. 

Thanks to this kind of operation it becomes possible to fix the initial probability of 

acceptance of a worse solution, which determined by the coefficient 𝑃(1), while re-

taining the additional possibility of establishing – by assuming the value 𝑇𝑠𝑐𝑎𝑙𝑒  – the 

parameter of initial spread of values obtained from a pseudorandom numbers genera-

tor.  

All iterations of the FSA algorithm have been parallelized using a strategy with 

parallel generation of neighbor solutions. So each of 𝑝𝑡ℎ𝑟𝑒𝑎𝑑  threads creates a solution 

neighboring the one established in the previous iteration 𝑧(𝑘 − 1). This occurs with 

the application of a random generator with multidimensional Cauchy distribution. For 

all threads, the annealing temperature is identical and equals 𝑇(𝑘)/𝑐𝑡𝑒𝑚𝑝. Further-

more, every thread realizes the procedure for the Metropolis rule, accepting or reject-

ing its own obtained neighbor solutions.  

The next two steps of the algorithm are performed in sequence. So, first the current 

solution is fixed for the SA algorithm. The procedure for this is to choose as a current 



solution either the best from those better than that found in the previous iteration ob-

tained by different threads, or – if such a solution does not exist – random selection of 

one of the worse solutions. Calculated thus, the current solution, together with the 

temperature updated according to formula (6), is also used in the next iteration of the 

FSA algorithm as the current solution. This kind of strategy can be classified as a 

method of parallel processing based on speculative decomposition.  

The last step performed as part of single iteration is verifying the criterion for stop-

ping the SA procedure. To this aim the confidence interval for the minimum value of 

the cost function, given by formula (13), is calculated. The order statistics used for 

interval estimation have the order 𝑟 assumed as 20, in accordance with the proposals 

of the paper [30]. As a significance level 𝛿 for the confidence interval defined by 

formula (13), a typical value 0.99 [35] is assumed. The width of the confidence inter-

val is compared with the threshold value 𝜀 calculated at every iteration with  

 𝜀 = 10−𝜀𝑤𝑐0(𝑘) . (19) 

Finally, the simulated annealing procedure is terminated if  

 
(1−(1−𝛿)1/r)

𝛽/𝑡

1−(1−(1−𝛿)1/r)
𝛽/𝑡 (𝑐r(k) − 𝑐0(k)) > 𝜀 , (20) 

with notations introduced at the end of Section 2. Finding the threshold value 𝜀 based 

on formula (20) allows the adaptation of a such defined criterion to a structure of a 

specific data set under investigation. The sensitivity of the above procedure can be set 

by assuming the value of the exponent 𝜀𝑤 ∈ ℕ, one of the arbitrarily fixed parameters 

of the procedure worked out in this paper.  

It is worth noting that the nature of the method presented here for dimension reduc-

tion enables establishment of the "contribution" which particular elements of the data 

set 𝑌 make to the final value 𝑐0(𝑘𝑠𝑡𝑜𝑝). This fact will be used in the procedure for 

reducing the sample size, which will be presented in the next section. 

3.2 Procedure for sample size reduction  

In the case of the dimension reduction method presented above, some sample ele-

ments may be subject to an undesired shift with respect to the others and, as a result, 

may noticeably worsen the results of an exploratory data analysis procedure in the 

reduced space ℝ𝑁. A measure of the location deformation of the single sample ele-

ment 𝑥𝑖 compared to the others, resulting from transformation (2), is the correspond-

ing stress value 𝑐0(𝑘𝑠𝑡𝑜𝑝) calculated for this point (called stress per point) [36]. In the 

case of raw stress it is given by  

 𝑐0(𝑘𝑠𝑡𝑜𝑝)
𝑖

= 𝑆𝑅(𝐴)𝑖 = ∑ (𝑑𝑖𝑗 − 𝛿𝑖𝑗(𝐴))
2

 ,𝑚
𝑗=1
𝑗≠𝑖

   (21) 

whereas for the Sammon stress it takes the form  



 

 𝑐0(𝑘𝑠𝑡𝑜𝑝)
𝑖

= 𝑆𝑆(𝐴)𝑖 =
1

∑ ∑ 𝑑𝑖𝑗
𝑚
𝑗=𝑖+1

𝑚−1
𝑖=1

∑
(𝑑𝑖𝑗−𝛿𝑖𝑗(𝐴))

2

𝑑𝑖𝑗

𝑚
𝑗=𝑖
𝑗≠𝑖

 . (22) 

It is worth noticing that in both cases these values are nonzero, except for the case – 

unattainable in practice – of "perfect" matching of respective distances of elements in 

original and reduced spaces. The values 𝑐0(𝑘𝑠𝑡𝑜𝑝)
𝑖
 for particular elements can be 

used to construct a set of weights, defining the adequacy of their location in a reduced 

space.  

Let therefore 𝑤𝑖  represent nonnegative weight mapped with the element 𝑥𝑖. 

Taking the above into account, it is calculated according to the following formula:  

 𝑤𝑖 =

𝑚 
1

 𝑐0(𝑘𝑠𝑡𝑜𝑝)
𝑖
 

∑
1

 𝑐0(𝑘𝑠𝑡𝑜𝑝)
𝑖
 

𝑚
𝑖=1

  . (23) 

The normalization which occurs in the above dependence guarantees the condition  

 𝑚 = ∑ 𝑤𝑖
𝑚
𝑖=1   . (24) 

The weights in this form contain information as to the degree to which a given sample 

element changed its relative location compared to the rest, where the larger the 

weight, the more relatively adequate its location, and its significance should be great-

er for procedures of exploratory data analysis carried out in a space of reduced dimen-

sion.  

The weights' values which are calculated on the basis of the above formulas can be 

used for further procedures of data analysis. They also allow the following method of 

reducing sample size. Thus, from the reduced data set 𝑌 one can remove those 𝑚𝑒𝑙  

elements, for which their respective weights fulfill the condition 𝑤𝑖 < 𝑊 with as-

sumed 𝑊 > 0. Intuitively 𝑊 = 1 is justified – taking into account formula (24), this 

results in the elimination of elements corresponding to the values 𝑤𝑖  less than the 

mean.  

In conclusion, conjoining the methods from Sections 3.1 and 3.2 enables a data set 

with reduced dimension as well as size to be obtained, with the degree of compression 

implied by the parameters 𝑁 and 𝑊 values.  

3.3 Comments and Suggestions  

In the case of the procedure for reducing dimension and sample size presented here, 

efforts were made to limit the number of parameters, the arbitrary selection of which 

is always a significant practical problem for heuristic algorithms. At the same time, 

conditioning of data analysis tasks, in which the procedure investigated here will be 

applied, means that – from a practical point of view – it is useful to propose specific 

values of those parameters with an analysis of the influence of their potential changes.  

One of the most important arbitrarily assumed parameters is the reduced space di-

mension 𝑁. It can be fixed initially using one of the methods for estimating a hidden 

dimension [37], or by taking a value resulting from other requirements, for example 



𝑁 = 2 or 𝑁 = 3 to enable a suitable visualization of the investigated data set. It is 

worth remembering that the procedure applied earlier for generating an initial solution 

with the fixed parameter 𝑘 = 𝑛 − 𝑁, creates a solution which does not always have a 

dimensionality identical to the assumed (as mentioned in the previous section). If a 

strictly defined dimension of the reduced data set is required, one should adjust the 

parameter 𝑘 by repeating the feature selection algorithm with its correctly modified 

value, or use the initial solution, generated randomly, of assumed dimension of re-

duced space.  

It is also worth mentioning the problem of computational complexity of the proce-

dure worked out here, in particular regarding calculation of the cost function value. In 

practice, the calculational time for the PSA algorithm increases exponentially with an 

increase in sample size. So, despite the heuristic algorithm being the only method 

available in practice to minimize the stress function 𝑆𝑆 or 𝑆𝑅 for data sets of large 

dimensionality and size, its application must, however, be limited to those cases 

which are in fact feasible. Therefore, although the number of simulated annealing 

treads 𝑝𝑡ℎ𝑟𝑒𝑎𝑑 can be fixed at will, it should take the available number of processing 

units into account. This allows efficient parallel calculation of a cost function value 

by particular threads.  

It should also be noted that the subject algorithm, due to its universal character, can 

be applied to a broad range of problems in statistics and data analysis. An example, 

from the case of statistical kernel estimators [11, 12], is the introduction of generaliza-

tion of the basic definition of the estimator of probability distribution density to the 

following form:  

 𝑓(𝑦) =
1

ℎ𝑛 ∑ 𝑤𝑖
𝑚
𝑖=1

∑ 𝑤𝑖  𝐾 (
𝑦−𝑦𝑖

ℎ
) .𝑚

𝑖=1    (25) 

Such a concept allows not only a reduction of sample size (for removed elements 

𝑤𝑖 = 0 is assumed), but also alternatively – an improvement in quality of estimation 

in the reduced space without eliminating any elements from the initial data set. In the 

former case care should also be given to normalize the weights after eliminating parts 

of elements, to fulfill condition (24).  

Weights 𝑤𝑖  calculated in the above manner can also be introduced to modified 

classical methods of data analysis, such as a weighted k-means algorithm [39], or a 

weighted technique of k-nearest neighbors [40]. In the first case, the weights are acti-

vated in the procedure for determining centers of clusters. The location of the center 

of the cluster 𝐶𝑖, denoted by 𝑠𝑖 = [𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑁]T, is updated in every iteration if 

∑  𝑤𝑙𝑦𝑙∈𝐶𝑖
≠ 0, according to formula  

 𝑠𝑖𝑗 =
1

∑  𝑤𝑙𝑦𝑙∈𝐶𝑖

∑  𝑤𝑙  𝑦𝑙𝑗𝑦𝑙∈𝐶𝑖
     for   𝑗 = 1, 2, … , 𝑁  . (26) 

In the k-nearest neighbors procedure however, each distance from neighbors of any 

element from the learning set is scaled using the appropriate weight.  



 

4 Summary and finals remarks  

The subject of this paper was a complete algorithm for reducing dimension and sam-

ple size, ready to use in a wide range of exploratory data analysis problems. It consti-

tutes a universal, unsupervised linear transformation of a features space, with the aim 

of best maintaining distances between sample elements, additionally supplemented by 

a reduction in significance of those elements whose locations in relation to the rest 

have changed considerably. The foundation for this algorithm is an innovative version 

of the parallel fast simulated annealing procedure, with stop criterion based on order 

statistics, automatic generation of initial temperature and a multidimensional genera-

tor of pseudorandom numbers with Cauchy distribution. The sample size was reduced 

as a result of calculating weights for particular elements, with the possibility of con-

tinuous adjustment of this procedure's intensity, through establishing an appropriate – 

for an investigated problem – value for the compression coefficient.  

The presented methodology underwent detailed numerical testing. The basic re-

search was carried out on the functionality of the method worked out, in particular the 

sensitivity to its assumed version and parameters. In general one can note that the 

proposed algorithm is not particularly sensitive to the choice of these parameters, 

which may be said to be, in practice, its valuable property. Further testing compared 

results with selected reference methods, especially the classic PCA procedure and the 

aforementioned selection of features by evolutionary algorithms, in the range of re-

duction of sample size, joined with an algorithm for data compression as presented in 

the paper [20]. In general, the results achieved with the application of the procedures 

investigated in this paper were frequently better, often significantly, than the reference 

methods mentioned before.  

It should be also noted that the particular functional components of the procedure 

presented here can be applied in other tasks of information processing. Thus, the par-

allel fast simulated annealing algorithm may be used successfully in a wide range of 

optimization problems, thanks to its universal structure and relatively intuitive selec-

tion of arbitrarily assumed parameters. What is more, the proposed procedure for 

reducing the sample size can equally be applied together with other, also nonlinear, 

strategies for dimension reduction.  

Finally, it is worth stressing that, despite the calculational complexity of the pro-

posed algorithm, its execution – thanks to the possibility of creating highly efficient 

parallel implementation – is not very time-consuming. Even for the most complex of 

the tested data sets, it took only a few minutes while, thanks to the application of an 

adaptive stop criterion, this time is fitted to the difficulty of the problem under analy-

sis, thus eliminating the need to introduce arbitrary assumptions. And lastly, due to 

the use of linear transformation, which is easy to generalize, and the simple idea of a 

set of weights, it is possible to use the investigated method effectively in a wide range 

of contemporary data analysis problems, from the areas of engineering, medicine, 

economics and social sciences, to name a few.  

A detailed description of the methodology presented here can be found in the work 

[40] as well as in the paper [41] which will appear soon. 
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