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Abstract—Data-aware scheduling in today’s large-scale com-
puting systems has become a major complex research issue.
This problem becomes even more challenging when data is
stored and accessed from many highly distributed servers and
energy-efficiency is treated as a main scheduling objective. In
this paper we approach the independent batch scheduling in
grid environment as a bi-objective minimization problem with
makespan and energy consumption as the scheduling criteria.
We used the Dynamic Voltage and Frequency Scaling (DVFS)
model for reducing the cumulative power energy utilized by
the system resources for tasks executions. We developed for
data transmission a general logical network topology and policy
based on the sleep link-based Adaptive Link Rate (ALR) on/off
technique. Two developed energy-aware grid schedulers are based
on genetic algorithms (GAs) frameworks with elitist and struggle
replacement mechanisms and were empirically evaluated for four
grid size scenarios in static and dynamic modes. The simulation
results show that the proposed schedulers perform to a level that
is sufficient to maintain the desired quality levels.

Index Terms—Energy Utilization; Green Computing; Data
Grid; Scheduling; Data Center; Genetic Algorithm

I. Introduction

Today’s grid and cloud systems are growing global-scale
infrastructures enabling the remote access to the data and
applications for High Performance Computing (HPC) users
on demand from various locations. This growing demand
the energy consumed by the clouds’ and grids’ datacenters
that require high energy utilization to maintain data storage
and processing, various types of services and users’ com-
puting applications. Data- and computation-intensive schedul-
ing problems have been considered in a significant volume
of the research work [6], [11]. However, they are usually
addressed separately as different instances of a general grid
scheduling problem. Most of the existing grid and cloud
energy-aware scheduling methods target to save the energy
consumed by single server, small computing cluster or one
central datacenter. Dynamic Voltage and Frequency Scaling
(DVFS) [2] method is usually applied in such approaches
for the modulation of the power supply of the computing
and data servers [5]. The idea of distributed data servers,

or many distributed datacenters, which can be considered as
components of large-scale distributed systems, is quite new
but promising research direction is today’s cluster and cloud
computing [3], [15].

The main aim of this paper is to develop a scalable unified
scheduling model, which can combine in the intelligent way
two major system management and resource allocation mech-
anisms, namely computational-intensive and data-intensive
models. Fig. 1 illustrates the correlation between those two
models.
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Fig. 1. Commonality between data-aware and computational scheduling
models

We address a general problem of batch scheduling in
computational grids, where tasks are submitted to the system
independently by the grid end-users. We focus on the global
level of scheduling and propose a generic model of the
management of highly distributed grid applications, data and
resources. In this model, the grid computing nodes can be
defined as single CPU machines, parallel multiprocessors and
multicore machines or even small computing clusters. Data
nodes can be considered as single data servers or distributed
datacenters. The term ’task’ may refer to a simple monolithic
application or meta-task with several subtasks with some in-
ternal dependencies and relations, which require multiple data
sets from different heterogeneous data hosts. These data sets
may be replicated at various locations and can be transferred
to the computational grid through the networks of various
capabilities. A possible variant of this scenario is presented



in Fig. 2.
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Fig. 2. Data-aware meta-task grid scheduling problem

It is assumed that each computational node can work at
different ‘power supply levels’, which are defined by the im-
plementation of DVFS method. An energy utilized for the data
transmission from the data node to the computational node
is interpreted as energy consumed by the data receive node
(computational server) under the assumption that communica-
tion links between computing and data servers works in fully
active mode during the data transmission and are hibernated
into the sleep mode in the idle periods. This methodology is
very similar to the general concept of the sleep link-based
Adaptive Link Rate (ALR) on/off policy [4]. However, in our
approach we consider just the logical network topology, where
each computational node is connected to the data host by a
distinct network link without additional transmission nodes.

The generic scheduling model presented in this paper is
an extended version of our previously developed and pub-
lished models [9], [10] for energy-aware scheduling in very
simple grid architectures. This extension has been made by
the aggregation of the data transmission and energy criteria
with the conventional scheduling objective functions, and the
development of simple genetic-based data- and energy-aware
schedulers. These schedulers are integrated with Green Data-
Sim-G Batch grid toolkit. Differently to the most of the
approaches in batch scheduling, the required data is processed
during the execution of the grid applications, not before the
computation, and only small amount of data is delivered as a
prior load to start the calculation process.

The remainder of this paper is structured as follows. First
we define a modified Expected Time to Compute matrix model
for data-aware independent batch scheduling and energy con-
sumption model. A brief presentation of the genetic schedulers
and main concept of Green Data-Sim-G Batch grid simulator
is followed by a simple analysis of the experiments conducted
for two variants of the genetic schedulers. The paper ends with
simple conclusions and future research plan.

II. Scheduling problem, model and objectives

A. Notation

Let us introduce the following notation for the main system
and scheduling components ( [8]): (i) Nbatch = {t1, . . . , tn}
is a batch of n tasks by the grid end-users; (ii) Mbatch =

{m1, . . . ,mk}, is a set of k computational resources (machines)
available in the system; (iii) Fbatch = { f1, . . . , fr} is a set of f
data files needed for the completion of the tasks from Nbatch;
and (iv) DH = {dh1, . . . , dhs} is a set of s data hosts with the
necessary data service capabilities.

The batch of tasks is characterized by a batch workload
vector WLoadbatch = [wload1, . . . ,wloadn], where wload j de-
notes a computational load of the task t j expressed in Millions
of Instructions (MI). For meta-tasks (usually modelled by
Directed Acyclic Graphs) this parameter must by estimated by
using some local methods, in this paper we do not consider
particular meta-task structures. It means that each meta-tasks
is executed on single specified parallel machine or in single
cluster. This is more realistic in our opinion than a scenario, in
which the subtasks can be highly distributed among the global
grid, and required data files are also distributed, which may
increase significantly the time of finalizing the whole meta-
task. Each task t j requires a set of files F j = { f(1, j), . . . , f(r j, j)}

(F j ⊆ Fbatch) that are distributed on a subset DH j of the data
nodes extracted from DH. We assume that each data host can
serve multiple data files at a time and data replication is a
priori defined as a separate replication process [8].

A computing capacity vector CC = [cc1, . . . , cck], (cci

denotes the computing capacity of the node i) expresses
the ‘computational power’ of the whole system. Each cci

parameter (i = 1, . . . , k) can be expressed in MIPS (Mil-
lion Instructions Per Second) calculated for CPUs, or in
CPU clock frequencies. The prior loads of the computational
nodes are defined by a ready times vector ready times =

[ready1, . . . , readyk]. Gamma probability distribution is the
most popular methodology of estimation of the workload
and computing capacity parameters (see [7] , chapter 2 , for
details).

B. Estimation of task completion times

We estimate the times needed for the completion of the
tasks submitted to the grid system with the transmission of the
requested data files based on an Expected Time to Compute
(ETC) matrix model [1]. We keep the original concept of
ETC matrix ETC =

[
ETC[ j][i]

]
n×k (ETC[ j][i] denotes an

expected (estimated) time needed for the computing the task
t j at the resource mi) for calculation of task execution times.
In order to estimate the data transmission times, we defined
a Data Transmission Time matrix TT =

[
TT [ j][i]

]
n×m, where

TT [ j][i][ f(p, j)] denotes a time needed for the transfer of the
data file f(p, j) (p ∈ {1, . . . , r j}) from the data host dh(p, j) ∈ D j

to the computational node mi, and is calculated as follows [8]:

TT [ j][i][ f(p, j)] = responsetime(dh(p, j)) +
S ize

[
f(p, j)

]
B(dh(p, j), i)

. (1)

We denoted by responsetime(dh(p, j)) in Eq. 1 the time needed
for transferring the data file f(p, j) to the computational node mi

from the data host dh(p, j), and by B(dh(p, j), i) – a bandwidth
of the (logical) link between dh(p, j) and mi. In the presented
model we abstract the physical network between the data hosts
and computational and restrict our analysis just to a logical



network topology where each computational node is connected
to the data host by a distinct network link.

The estimated completion time for a given task on a speci-
fied machine can be defined as the wall-clock time taken for
the task from its submission till completion and is a function
of computing and transmission times specified in Eq. (1). The
impact of the data transfer time on the task completion time
depends on the mode, in which the data files are processed
by the task. There are two major scenarios of such data
processing: (i) the data files needed for the task execution are
transferred simultaneously before the task execution; and (ii)
some of the data files are transferred completely prior to the
task execution. We focus in this paper on the second scenario
(See [8], Sec. 3.2 and Fig. 4b).

C. Energy Model

The energy model for data-aware scheduling is mainly
based on DVFS technique [2]. In this paper, we restrict our
analysis just to the optimization of energy consumed during
the computation of the tasks and receiving the data from the
data hosts. It is assumed that the communication links between
computational and data nodes during the data transfer are fully
active (and open) and are switched into the sleep mode after
finishing the data download. We assume that the communica-
tion links between data and computational servers are direct
without any transitive nodes. So no extra transition delays as
well as request sending times are considered. Obviously, this
model cannot be directly implemented in the realistic grid, but
it was successfully implemented in backbone network-based
middle-size clusters.

DVFS model implemented in CPM module is based on
the power consumption model employed in complementary
metal-oxide semiconductor (CMOS) logic circuits [12]. In this
model, the capacitive power Pow ji = A ·C ·v2 · f utilized by the
machine mi for computing the task t j depends on the number
of switches per clock cycle voltage A, total capacitance load
C, supply voltage v and machine frequency f . The reduction
of the supply voltage and frequency is directly correlated to
the reduction of the energy utilization. Table I shows the
parameters for 16 DVFS levels and three main ‘power supply’
categories for machines defined for the grid system employed
in this study.

TABLE I
DVFS levels for three machine classes

Class I Class II Class III

Level Volt. Rel.Freq. Volt. Rel.Freq. Volt. Rel.Freq.

0 1.5 1.0 2.2 1.0 1.75 1.0
1 1.4 0.9 1.9 0.85 1.4 0.8
2 1.3 0.8 1.6 0.65 1.2 0.6
3 1.2 0.7 1.3 0.50 1.9 0.4
4 1.1 0.6 1.0 0.35
5 1.0 0.5
6 0.9 0.4

The reduction of the machine frequency and its supply
voltage can lead to the extension of the task execution and
completion times as well as for the extension of times needed
for downloading the data from the data servers. For a given

‘task-machine’ pair (t j,mi), the energy consumed for the
completion of the task t j on machine mi at the DVFS level
si can be calculated as follows:

E ji(si) = γ · ( fsi ) j · f · [(vsi ) j]2 · completion[ j][i][si], (2)

where γ = A · C is a constant parameter for a given ma-
chine’s class, (vsi ) j is a voltage supply for machine mi at
level si for computing task t j, and ( fsi ) j is a correspond-
ing relative frequency for machine i. The completion time
completion[ j][i][si] is calculated as in the following way:

completion[ j][i][si] = max f(p, j)∈F̂ j
TT [ j][i][ f(p, j)]

+

[∑
f(l, j)∈

[
F j\F̂ j

] TT [i][ j][ f(l, j)]
]

·
ETC[ j][i]

fsi ) j

(3)

The cumulative energy utilized by the machine mi working
at the power supply level si for the completion of all tasks
from the batch and downloading of all requested data files
this machine, is defined in the following way:

Ei(si) =
∑

j∈Tasks(i)
l∈L̂ j

E ji(si) + γ · f [vsmaxi
]2 · readyi+

γ · fsmini
· f · ·[vsmini

]2 · Idle[i][si]
(4)

where Tasks(i) is a set of tasks assigned to machine mi, readyi

is the ready time of machine mi, Idle[i][si] denotes an idle time
of mi, L̂i denotes a subset of DVFS levels used for the tasks
assigned to mi, and smini and smaxi denote the minimal and
maximal power supply levels specified for mi.

An average cumulative energy utilized by the grid system
for completion of all tasks in the batch is defined as follows:

Ebatch =

∑m
i=1 Ei(si)

m
(5)

D. Scheduling Scenarios and Objectives

Similar to our previous works (see e.g. [7]), we consider
two scheduling scenarios based on the power supply models:

1) I – Max-Min Mode, where all machines work with
maximal power supply when a computation is provided
and data is received from the data node, and are switched
into the sleep mode in the computational idle periods;

2) II – Modular Power Supply Mode, where each ma-
chine can work at different DVFS levels during the
calculations.

In each of those scenarios, we define the scheduling problem
as a bi-objective global optimization task, where two major
scheduling criteria, namely (i) makespan and (ii) cumulative
energy utilized by the system, are minimized. This minimiza-
tion is realized as two-step hierarchical procedure, in which
makespan is defined as a dominant criterion. Based on the
general ETC matrix model, makespan can be defined in terms
of the completion times of the machines as the finishing time
for the last task in the batch, which is specified as the maximal
completion time of all machines available in that batch, that
is to say:

makespan =
m

max
i=1

completion[i][si]. (6)



where completion[i][si] is the completion time of the machine
mi working at the level si, which is defined as follows:

completion[i][si] = readyi+∑
j∈Tasks(i)

1
fsi
· completion[ j][i][si]

(7)

The second step of the scheduling optimization procedure
is the minimization of the total energy consumed in the grid
for scheduling a given batch of tasks. In Modular Power
Supply mode, the average cumulative energy Ebatch is given
by Eq. (5). In Min-Max mode, the average cumulative energy
is denoted by EI and can be calculated by using Eq. (5), in
which si = smaxi .

In both cases EI and Ebatch are minimized and subject to
the following constraint:∑

l∈L̂i

[
1
fsi
· completion[ j][i][si]

]
≤ makespan; ∀i ∈ {1, . . . ,m},

(8)

where L̂i denotes a subset of DVFS levels specified for tasks
assigned to machine mi.

III. Empirical analysis
In this section we present the results of a simple empirical

analysis of the performance of two implementations of GA-
based energy and data-aware schedulers for static and dynamic
versions of the independent batch scheduling problem in grid.
We have developed a Green Data-Sim-G Batch simulator,
which is a modified version of our previous Green Sim-G
Batch grid simulation toolkit (see [7]) by the implementation
of a data processing module as it is presented in Fig. 3.

SCHEDULING
EVENT

 SCHEDULING PROBLEM
INSTANCE

 SELECTED SCHEDULING
METHOD

 PLANNING OF TASKS
TO MACHINES

SIMULATOR

SCHEDULER

ALLOCATION

 META-HEURISTIC
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Fig. 3. General concept of Green Data Sim-G Batch

This data processing module is responsible for generating
(i) a set of data files, (ii) a set of data hosts, (iii) data
transmission time matrix, (iv) response time vector, and (v)
bandwidth vector. All those data are considered as basic
characteristics of an instance of the problem and together with
(vi) workload vector of tasks, (vii) computing capacity vector,
(viii) prior load vector, and (ix) ETC matrix are passed on
to the selected scheduler, which computes the schedule of the
task assignments to the machines. Finally, the scheduler sends
the schedules to the simulator, which makes the allocation.

A. Genetic-based schedulers

For solving the batch scheduling problem addressed in this
paper, we used two implementations of simple genetic grid

schedulers, namely Plain Genetic Algorithm Scheduler (GA)
and Struggle Genetic Algorithm Scheduler (S tGA), both with
different replacement mechanisms. Genetic-based schedulers
can easily explore the robustness of the search space and they
can tackle various scheduling attributes [14]. We have already
used such methods in our previous works, for the big set of
benchmarks and instances of the problem has been defined [7].
The general frameworks of those schedulers are based on
classical (µ + λ) evolutionary strategy (see e.g. [13]), adapted
to the scheduling problem through the implementation of the
following genetic operators:
• Initialization method: Randomly generated initial pop-

ulation;
• Selection method: Linear Ranking Selection;
• Crossover operator: Partially Mapped Crossover

(PMX);
• Mutation operator: Move;
• Replacement operators: Elitist Generational (GA) and

Struggle (StGA).
The chromosomes in the populations are represented as

vectors S = [i1, . . . , in]T of machine labels (i j ∈ Ml is a
label of the machine in which the task j is executed). All the
above genetic operators are popular in grid scheduling and
their detailed definitions can be found in [7].

B. Input data and key parameters for simulator and schedulers

The performance of genetic-based schedulers analyzed in
two types of grid environment: (i) static and (ii) dynamic, and
four grid size scenarios: (i) small grid (32 hosts/512 tasks),
(ii) medium grid (64 hosts/1024 tasks), (iii) large grid (128
hosts/2048 tasks), and (iv) very large grid (256 hosts/4096
tasks). The schedulers’ key parameters, including mutation and
crossover probabilities, population size and stopping criteria
(can be the maximal number of evolution steps or termination
time criterion, are presented in Table II.

TABLE II
Shedulers’ key parameters for static and dynamic benchmarks.

Parameter GA StGA
evolution steps 20 ∗ m
pop. size (pop size) 4 ∗ (log2(m) − 1)
cross probab. 0.9 1.0
mutation probab. 0.2
termin. time crit. 40 secs (static) / 75 secs (dynamic)

The values of key parameters for the Green Data Sim-
G Batch simulator for static and dynamic grid scenarios are
presented in Table III (N(∗, ∗∗) denotes the Gaussian distri-
bution), and are similar to those used for Green Sim-G Batch
in our previous work (see [7] for the detailed interpretation
of all parameters, wide list of references and comprehensive
empirical analysis results for Green Sim-G Batch).

The performance of two genetic schedulers in two schedul-
ing scenarios was measured through the makespan criterion
and a relative energy consumption improvement rate expressed
as follows:

Im =
EI − Ebatch

Ebatch
· 100%, (9)



TABLE III
Parameter setting for the grid simulator static instances

Small Medium Large Very Large
Static Instances

Resource cap. N(1000, 175)
(in MIPS)
Workload of tasks N(25 · 107 , 4375 · 104)

Dynamic Instances
Total hosts 32 64 128 256
Init. hosts 27 58 121 248
Add host N(625000, 93750) N(562500, 84375) N(500000, 75000) N(437500, 65625)
Delete host N(625000, 93750)
Total tasks 512 1024 2048 4096
Init. tasks 384 768 1536 3072
Workload N(25 · 107 , 4375 · 104)

where Ebatch and EI are defined as in Sec. II-D.
Each experiment was repeated 30 times under the same

configuration of operators and parameters.

C. Results

We present in Fig. 4 and Fig. 5 the box-plots of the
makespan values (confidence level - 95 %) achieved in 30
runs of the experiments in Min-Max and Modular Power
Supply modes. The makespan is measured and expressed in
arbitrary time units specified for the simulator input data.

It can be observed that the implementation of struggle
replacement mechanism in the genetic scheme has a significant
impact on the minimization of the makespan values. The StGA
algorithm achieved better results than GA scheduler in all but
Large static and Small dynamic grids in Min-Max scheduling
scenario and all grid configurations in Modular Power Supply
scenario. Similar results has been achieved in our previous
work, when data transfer times have been ignored (see [7],
Chapter 4 for details). However, compare to those results,
the values of makespan achieved in the experiments provided
in this study have increased average by 10–25 %, which
confirms the importance of data transfer and access criteria
in the analysis of the whole scheduling process. The ranges in
the achieved makespan values for both genetic meta-heuristics
are not greater than 30-40 % of the mean makespan values,
which means that the stability of the schedulers in all cases
are acceptable. The distributions of the makespan results are
asymmetric: the skewness in the static case is positive in most
of the grid configurations and both scheduling scenarios, and
it is negative in the dynamic grids in all problem instances.
It means that the reduction of the average makespan in this
case is much harder than in static case (the mean values are
closer the third quantile, than the first one), which confirms
the complexity of the problem in the realistic dynamic grid
scenarios.

The box-plots for the energy saving rates Im(E) are pre-
sented in Fig. 6 and Fig. 7.

The results of the energy optimization are different compare
with the makespan results. In this case the struggle scheduler
outperforms the GA algorithm just in the dynamic instances.
It means that in static case it works quite good in Min-Max
scenario, so no additional DSV modules are necessary here.
The range of the average saving rate values is 16%–50% for
most of the considered scheduling and grid scenarios, which
is rather high, and higher than in similar test provided without

data processing module activated in the simulator, where it
was 10-35% [10]. It means that in the case of data-aware
scheduling the scaling of the power supply of the network
computational nodes may play a crucial role in the energy
saving. The skewness of the distribution of the results is
positive in most of the static instances and negative in all
dynamic ones.

IV. Conclusions and future work
In this paper we have addressed a general problem of

the optimization of cumulative energy consumption in data-
aware genetic-based scheduling problem of tasks submitted
independently by the grid end-users. The energy management
model is based on DVFS technique adapted to the dynamic
grid environment. We formalized the scheduling problem as a
bi-objective optimization task with makespan as a dominant
criterion.

Certainly, simulation is just the first step in comprehensive
empirical study of the problem and developed schedulers’
performance. However, our model can be easily adapted
to various realistic scheduling scenarios and realistic grid
infrastructures, such as the large-scale banking system or
highly distributed data system. First, we do not consider any
special architectures for grid resources, which means that
this characteristics can be specify separately and integrated
with the system simulator. The term “task” can be also used
for monolithic applications, metatasks or parallel applications
represented by Directed Acyclic Graphs. The schedulers are
integrated with the main grid simulator as separate modules,
and therefore they can be easily modified, extended and
hybridized with the other algorithms. Finally, we simulate the
dynamics of the realistic grid system, in which the availability
of the resources and the number of tasks may vary over
the time. The implementation and validation of the presented
model for the realistic grid testbeds, its application in cloud
and mobile cloud environments and a simple formal analysis
of this model are the main targets of our further research in
data and energy-aware scheduling.
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