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RÓWNOLEGŁE ALGORYTMY W PEŁNI 
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PARALLEL FULLY-INFORMED SWARM ALGORITHMS 

S t r e s z c z e n i e   

Artykuł przedstawia ideę implementacji dwóch popularnych metaheurystyk rojowych: 
optymalizacji w pełni doinformowanym rojem cząstek i algorytmu świetlika, z użyciem 
metod przetwarzania równoległego, a w szczególności procesorów graficznych. Poza samym 
zaprezentowaniem zasad działania obu algorytmów przedmiotem rozważań pracy są 
procedury wykorzystujące współbieżne przetwarzanie. Praca, poza zilustrowaniem 
oczywistych zalet takiego podejścia – zwłaszcza w aspekcie wydajnościowym – omawia 
również w skrócie ograniczenia i słabości algorytmów opartych o obliczenia równoległe.  
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A b s t r a c t   

This article discusses a possibility of implementing two popular swarm-based metaheuristics: 
Fully Informed Particle Swarm Optimization and Firefly Algorithm, with the use of parallel 
processing methods – by means of GPUs in particular. Alongside with a brief presentation of 
the workings of the two algorithms, ideas of employing concurrent processing are under 
consideration. Besides obvious advantages – in terms of performance – we also shortly 
discuss limitations and weaknesses of parallel processing approach.   
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1.  Introduction  

Particle Swarm Optimization introduced by Kennedy, Eberhart and Shi in 1995 [4] 
constitute nowadays one of the most important nature-inspired metaheuristics. An idea to 
represent each solution of the optimization problem at-hand as a member of the swarm – 
communicating with others and modifying its position under the influence of best 
individuals – proved to be extremely successful. The degree of this success can be 
represented by the significant amount of contributions employing PSO in real-world 
problems e.g. in data analysis [2], resource allocation [8] etc. It can be also quantified 
through a number of related algorithms, based on the idea of intelligent swarms. One of 
recent examples of such include: Quantum-behaved Particle Swarm Optimization [3] and 
multi-swarm PSO [9]. 

The general goal of unconstrained optimization that is to find *x  which satisfies:  

 
Sx

xfx


 )(min* , (1) 

where nS R , Initial PSO algorithm’s behavior was built on the assumption that each 
individual member of the swarm, i.e. solution mxxx ,...,, 21 of the optimization problem (1),  
changes its velocity vector in the consecutive algorithm’s iteration as a result of the 
influence of two specific solutions: the best one found so far by the swarm and the top 
solution identified by this individual. 

Fully Informed Particle Swarm Optimization (FIPSO) presented first by Mendes, 
Kennedy and Neves [7] constitute a modification of this approach. In the most general 
variant of FIPSO the velocity update is constructed using weighted average position of all 
swarm members. Creators of the algorithm considered alternative communication 
topologies e.g. ring or cluster as well as different schemes of assigning weights to prioritize 
individuals’ inputs. 

Firefly Algorithm (FA) created by Xin She Yang in 2008 is constructed on similar 
assumptions [11]. The position of swarm member ix  within feasible solution space S  is 
determined by other individuals’ fitness – better solutions will attract those which are 
worse, in the sense of selected cost function f  value [6]. That is why FA – seen as 
position-based PSO – like FIPSO can be perceived as a member of broader family of 
techniques named here Fully Informed Particle Swarm algorithms 

The goal of this contribution is to discuss a possibility of improving the performance of 
two aforementioned optimization strategies by employing parallel processing. We will 
discuss the possible schemes of parallelization and both advantages and weaknesses of 
proposed approach.  

2.  Implementing Parallel Fully-Informed Particle Swarms  

Swarm optimization techniques belong to population-based metaheuristics. Their 
parallelization can be achieved in two ways: parallelization of computations, in which the 
operations commonly applied to each of the individuals are performed in parallel and 



parallelization of population, in which the population is split into different parts that can be 
simply exchanged or evolved separately, and then joined later [1].  

The approach which is natural for Fully-Informed Particle Swarms is concurrent 
calculation of cost function values. The amount of processing units P  in that case should 
exceed population size m . It can be achieved by employing modern Graphical Processing 
Units (GPUs). The illustration of parallelization process used in this study is enclosed on 
Fig.1. 

 
Figure 1. Parallelization of Fully-Informed Particle Swarm algorithms. 

Rysunek 1. Zrównoleglenie algorytmów w pełni doinformowanych rojów cząstek. 

To evaluate the performance of implementation for both parallel algorithms we have 
performed extensive experimental studies using five commonly used benchmark functions 
(namely: sphere, Rosenbrock, Griewank, Rastrigin and Ackley) using NVIDIA CUDA-
enabled graphic card with 336 cores [12]. The actual speed improvement is obviously 
related to computational effort associated with given cost function. For optimization 
problems characterized by low dimensionality the benefit of parallelization was found to 
negligible. It is a direct consequence of additional time delays related to copying memory 
content, synchronization and data conversion. Nevertheless the improvement for other 
instances was observed for parallel variants of both – FIPSO and FA. 

When discussing parallelization of swarm-based metaheuristics one should also take 
into account limitations of tools at hand. In case of GPU computing by means of CUDA 
problems which may arise are relatively slow access to global memory, floating numbers 
precision and some deviations from programming standards [10]. Therefore special care 
needs to be taken when using those tools in practical problems of data analysis and 
optimization. 
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3.  Summary and concluding remarks  

The paper presents the possibility of implementing popular swarm-based 
metaheuristics: Fully Informed Particle Swarm Optimization and Firefly Algorithm in 
parallel processing environment provided by multiple core GPUs. Although the idea of 
concurrent of population-based techniques is not new, it is nowadays very hot research area 
– thanks to massive parallelization possibilities. Further studies in this area will concern 
supplementary experimental evaluation of created algorithms, as well as the 
implementation of another fully-informed particle swarm technique – Glowworm Swarm 
Optimization [5] – in parallel setting. 
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