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elasticity tensor

effective elasticity tensor
elastic—plastic tensor
elastic—plastic effective tensor
Young modulus

effective Young modulus
kinematic hardening parameter
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deviator of stress tensor
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Chapter 1

Introduction

1.1 Motivation and objectives of the research

Innovative materials are one of the major factors influencing technology development
observed in recent years. In this area metal matrix composites, made of two or more
different constituents, are ones of the most popular materials used by engineers e.g. in
automotive industry, aerospace, rail engineering, building industry, military, marine,
electronics, sports equipment, etc. However, application of new materials has to be
preceded by long and expensive experiments in laboratories. In order to reduce both
costs and time of experiments it is necessary to supplement them by computer modeling
that enables not only prediction of new material features, but also safety examination
of structures, in which they will be used.

Computer modeling always introduces certain simplifications, therefore it is a chal-
lenging task, especially when inelastic deformations occur. Thus, the idea is to use
a multiscale approach, where one can predict overall properties of a material by sys-
tematic reduction of huge, and in majority unneeded, amount of information from the
micro-level. Such a process is called homogenization. In particular its computational
version proved to be an efficient modeling tool.

Numerical techniques for multiscale modeling that allow obtaining reliable results
in a reasonable time, are now intensively developed. In this work structural compo-
nents made of heterogeneous material that globally possesses either elastic or inelastic
properties are modeled. hp-adaptive finite element method that enables effective com-
putation with reliable assessment of the solution quality is proposed for computation.
Thus, the main objective of this work is to combine computational homogenization
and adaptive FEM to obtain an effective method for efficient modeling of metal matrix
composites.

1.2 Scope of the work

The thesis is organized as follows. Chapter 1 contains state of the art of multiscale
modeling approaches and adaptation techniques in finite element analysis. Chapter 2
provides description of mathematical models, their formulations and general assump-
tions. Chapter 3 describes preliminary tests of computational homogenization, in-
cluding verification of the algorithm and details of finite element discretization. Next,
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two-scale computational homogenization for elastic-plastic composites is presented and
validated by solution of several numerical examples. Chapter 5 deals with homogeniza-
tion error estimation that is crucial for obtaining reliable results. Selected examples
illustrate the proposed approaches. Chapter 6 contains tests of possible modifications
of hp-adaptive algorithm for inelastic problems. In Chapter 7 possibilities of mixed
formulation in finite element method to multiscale modeling are presented. Chapter 8
summarizes the thesis.

1.3 Basis of multiscale modeling

All materials used in engineering have a heterogeneous physical structure, which may
be observed in the appropriate fine-scales. Various scales (levels) are defined by their
characteristic dimensions, which are usually related to the geometrical dimensions of
the basic elements of material structure, e.g. the nominal diameter of the aggregate in
concrete mixture, but it can be also size of the wavelength for acoustics problems.

One may distinguish certain space and corresponding time scales modeled by dif-
ferent laws of physics. They are schematically illustrated in Fig. 1.1.

Time
A
1s T Continuum mechanics
1075s —+ Micromechanics
107105 + Molecular dynamics
10~*°s + Quantum mechanics
| | | | -

A° 1nm lum 1m Space

quantum — Nano — Micro — Mmeso —» Macro

Figure 1.1: Scales of analysis.

In this work only principles of continuum mechanics are used, but at two different
space scales (called micro and macro).

The so-called brute force computation, which is one of the possible methods to
model heterogeneous materials with a periodic or random microstructure, takes into
account all heterogeneities without any simplification. One may use high performance
computers and advanced numerical techniques e.g. adaptive [6, 12, 29, 40| or extended
[69, 96| finite element methods, multigrid approaches [63, 108|, domain decomposition
[1] and parallel computation. However, the computational cost and time will still be
very huge, and usually such an elaborated modeling of structures is actually unneces-
sary.
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In the case of composites with linear constitutive behavior the simplest approaches
to modeling of heterogeneous materials are the direct and inverse mizture rules. These
methods take into account only material characteristics and proportions of components.
However, even if direction of e.g. fibers is also accounted for, their estimation is very
rough and may be used only for the initial elastic calculation.

The most commonly used theoretical methods are bound approaches. The upper
and lower bounds of effective moduli were first obtained by Voigt [107] and Reuss [8§]
approximation. These approximations, based on the rule of mixtures, are independent
of the size and shape of inclusions. Voigt assumed that the average strain of each
phase is equal to the applied strain, under uniform strain exterior loading. Later Reuss
assumed that the average stress of each phase is uniform (constant), under uniform
stress exterior loading. Both bounds provide a rough determination of aggregate res-
ponses for micro-heterogeneous materials. Those ideas are more precisely discussed in
e.g. [72|. Another, more accurate bound estimation, was derived from the variational
principle, known as the Hashin-Shtrikman bounds [42, 43]. However, all these bounds
are sensitive to sample size and are valid only when the body is assumed to be infinite,
the microstructure isotropic and the effective responses are isotropic [54].

Another possibility is the Eshelby effective eigenstrain approach for an isolated
ellipsoidal inclusion embedded in an infinite medium [32]. An extension of the Eshelby
method is the self-consistent approach |21, 47|, in which a single particle of one phase
is embedded in the effective material (equivalent medium) that represents influence of
all other microstructural elements on this single inclusion. The influences of the other
elements on this single particle are smeared over the equivalent medium.

Mori-Tanaka mean field theory |71] is based on concept of the average stress in the
matrix. Material properties are evaluated as an analytical solution of a boundary value
problem for a single inclusion in an infinite matrix made of another material.

Differential effective medium approzimation (DEM) [14, 89, 98] is another approach.
The process of DEM consists of iterative addition of inclusion volume to homogeneous
matrix. Thus, the new effective properties of the background material are re-calculated
until the final volume fraction is reached.

A different group of techniques is represented by asymptotic homogenization method
[13, 60, 86, 90, 97, 98|, where the displacement field (as well as the stress field) in a
heterogeneous domain is expanded asymptotically about its values at a macroscopic
point x = X/L, in terms of a microscopic coordinates y = X/[ as

u(z,y) = u Oz, y) +euV(z,y) + u® (2, y) +..., e= % = y= g
where: [ is the micro-size, L is the macro-size, x is a physical spatial variable at both
scales. In the asymptotic analysis the normalized cell of periodicity is mapped onto a
sequence of finer structures as ¢ tends to 0. Asymptotic homogenization theory explic-
itly uses periodic boundary conditions in modeling of linear and nonlinear composite
materials, and gives overall properties for strain and stress values. Other popular
possibilities of multiscale modeling are collected in [54].

One of the recently developed techniques is local numerical homogenization [49, 50].
This approach is based on two-scale analysis. In the macro-scale the coarse finite
element mesh is selected. Then, in each coarse element fine mesh is generated in order
to take into account heterogeneity (the micro-scale analysis). In this way, the coarse
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mesh and the fine-scale structure become naturally compatible. The homogenization,
consisting of calculation of the finite element stiffness matrix based on a fine-mesh
solution, is performed individually for each element. This method is very efficient when
the scale separation condition (characteristic inclusion size should be much smaller than
the matrix) is not satisfied, e.g. in asphalt pavement modeling [55].

The structure of a material on the microscopic level is often of a discrete character.
Thus, interactions between individual grains and inside grain interiors can be simulated
e.g. using cellular automata (CA) method. For two-scale analysis a specific coupling
of the CA with the finite element method is referred to as a CAFE approach that
combines cellular automata model of microstructure development and finite element
(FE) macroscopic simulation [22, 38, 64].

However, the most popular method in recent years for multiscale problems is com-
putational homogenization (also called global - local analysis) [13, 18, 31, 35, 36,
52, 56, 68, 78, 104, 113| that enables determination of material parameters of hetero-
geneous material on the basis of multiscale approach. This technique does not require
any constitutive assumption on the macro-level. The stress-strain relation is computed
at each point of interest at the macro-scale by detailed analysis of the microstructure
in so-called representative volume elements (RVE), attributed to those points. Since
RVE are typically analyzed by FEM, the method is sometimes called F'E?.

In this work such an approach is used. Two scales of analysis are considered and
they are referred to as micro and macro. In the macro-level material is considered
as homogeneous and the heterogeneity is taken into account in the micro-scale by
RVE analysis. RVE should be statistically representative for the microstructure and
also small enough to satisfy the scale separation condition [39, 46, 79|, which states
fundamental assumption of the homogenization theory:

d<l<<L (1.1)

where d is the inclusion size, [ and L are the characteristic scales of RVE and the
macro-domain, respectively. In practice, the maximum value of the ratio of dimensions
/L, for which the homogenization theory can be used, is assumed as 0.1.

The classical algorithm of computational homogenization for nonlinear problems
begins by discretization at the macro-level and association of the representative vo-
lume elements (RVE) to selected points (usually the Gauss integration points for finite
element analysis). At first in the macro-scale preliminary material parameters are as-
sumed (e.g. as the result of tension test performed over RVE) to compute the current
strains increment Ag, (or averaged stresses (o)) for the given load increment. Such
a strain state (or stress state) at a macro-point determines boundary conditions for
associated RVE. Afterward, in each time step the initial-boundary value problems de-
fined over RVE are solved by FEM to evaluate average plastic strain increment (Ae?)
or average stress increment (Ao, both for elastic and elastic-plastic materials. The
effective material parameters obtained this way are transfered to the Gauss integration
points. Error estimation is conducted and either mesh is refined or computation is
terminated at the current time step.
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The general algorithm looks as follows:
1. Discretization
— initial mesh generation at both macro and micro-scales

— selection of points (RVE) at which the effective properties are evaluated by ana-
lysis at the micro-scale

2. Initial determination of homogenized material parameters (e.g. by tension test
for RVE)

3. Macro-scale analysis

— determine the strain/stress state in the macro-body to impose appropriate bounda-~
ry conditions for RVE

4. Micro-scale analysis

— solution of the RVE problem for current Agy given from the macro-scale

— error estimation, reduction of the RVE solution error by adaptive mesh refinement
— (AgP) computation

5. Transfer of effective parameters to the Gauss points

6. Solution of the macro-scale problem with effective material parameters and ef-
fective plastic strains

7. Macro-scale error estimation and
— mesh refinement or

— load increment or

— end of the analysis

8. GOTO3

Computational homogenization algorithm presented above is schematically illus-
trated in Fig. 1.2. From numerical point of view such an algorithm is rather time-
consuming. The main drawback is a large number of RVE since they are associated to
each Gauss integration point. In this work various modifications are proposed to avoid
this problem.
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Figure 1.2: Computational homogenization algorithm.

1.4 Adaptive finite element methods

Adaptive mesh refinement strategies are very efficient techniques that enable users to
solve problems with good accuracy in a relatively short time. An a-posteriori error
estimate is its important component. Adaptive methods are very useful, especially
when the considered problem has an irregular solution or singularities appear. In such
cases regular finite element meshes are not optimal, because increase of the number of
degrees of freedom is not related to proportional improvement of the solution.

Generally, one may distinguish two main types of adaptation: h-adaptation [6,
40|, where the element size varies without changing the order of approximation; p-
adaptation [9, 10, 12|, where the element sizes are constant, but the orders of the shape
functions vary. In order to clarify these methods both mesh refinement strategies for
a cube domain that is initially discretized by 27 elements with second order shape
functions (Fig. 1.3), are presented in Fig. 1.4.

el
I

X P N WD Ul o~ 0O

&N

Figure 1.3: Initial mesh. The colors denote order of approximation p.
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Figure 1.4: h and p mesh refinement strategies.

The next possibility is an adaptive relocation of the existing nodes (r-adaptation)
[44, 103] in order to minimize a solution error. This method may be also combined
with the p-method, where the shape functions may be increased locally with additional
ability of nodes movement. Its application is presented e.g. in paper [73].

Another alternative of adaptation, known as the hp-method [28, 29, 40, 41|, com-
bines both A and p ones. Its main advantage is the exponential convergence, i.e.

| — upll0 < Ce (1.2)

superior to h and p adaptation techniques, where only algebraic convergence may be
obtained, e.g. for 3D problems one may expect that

[u — up||10 < CN7P/3 (1.3)

where: u and wu, denote exact and FE solutions, respectively; C, a > 0 are constants,
~ %, N denotes the number of degrees of freedom, p is the order of approximation.
The qualitative comparison of the error convergence for various, above mentioned,

adaptive mesh refinement strategies is illustrated in Fig. 1.5.

10° =

[IEN
© |
[iN
T
)

|
N
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Cerror norm
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---hor >p—adapt‘ation
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|
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10
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10 NDOF 10

Figure 1.5: Error convergence for various adaptation strategies.
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Goal-oriented algorithm [75, 84] is an efficient alternative of adaptation strategy for
approximation a specific feature of the solution. Refinement strategies of this type are
based on minimizing the error of a prescribed quantity of interest, e.g. displacement
at selected point, rather than the global error norm.

In this work the computations were performed by the automatic hp-adaptative FEM
proposed by Demkowicz et al. [26, 27, 29] that delivers error-controlled results with the
smallest possible number of degrees of freedom. This automatic mesh adaptation was
successfully used for various linear problems. Its key issue is an appropriate strategy of
anisotropic h, p or hp mesh refinement. The strategy proposed in [29] is based on the
interpolation error estimate, which is a good upper bound of the best approximation
error that in turn, for coercive problems by the Cea’s lemma, is the upper bound for
the actual approximation error. The aforementioned interpolation error is estimated
making use of a fine mesh solution (uh/lpﬂ, denoted here for the sake of brevity
by u) that serves as a substitute for the exact solution. Such an "exact” solution is
interpolated locally by the possible new hp-refined meshes. The difference between u
and its interpolant approximates the interpolation error and the optimal anisotropic
mesh refinement is determined in such a way that the reduction of the interpolation
error per number of additional degrees of freedom is maximal. It means that for the
coarse mesh the optimal (h, p or hp) refinement is determined by maximizing the
following expression

— ’u - thu‘%ll - ’u - thoptu‘%ll
Nog — N,

— max (1.4)

with additional assumption that the mesh is one-irregular, where I, 11,,, denote
H' projection-based interpolants [74| on the current and optimal meshes, respectively;
Ny, N, are the numbers of degrees of freedom in optimal and current meshes. The
maximization is performed by search over a suitable subset of all possible hp refine-
ments.

Thus, the algorithm of adaptation approach starts with the solution of the problem
on the current (coarse) mesh (wp,). Then, the refinement in both h and p is performed
and the optimal mesh is selected by maximization of the function w defined by Eq.
(1.4).

For large problems computation of the fine mesh solution may be time-consuming.
However, only partially convergent solution obtained by e.g. a fast two-grid solver may
be used to guide the optimal hp-refinement.

The single hp-adaptation step for finite element mesh is briefly presented below:
1. Solve the problem on the current (coarse) mesh —  wy ,
2. Solve the problem on the fine mesh — w2 541
3. If ||up o, pr1 — Un,p|| is acceptable then STOP

4. For the coarse mesh elements determine the optimal (h, p or hp) refinement
using objective function defined by Eq. (1.4) and assumption that the mesh is
one-irregular as a constraint.
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An example of finite element mesh generated during automatic hp-adaptation pro-
cess is shown in Fig. 1.6. This automatic hp method is a technique, which enables
application of significantly elongated or flattened elements without locking effect. This
is ensured by appropriate raising of the order of approximation along the larger di-
mensions, typically to order 4 or higher, demonstrated in [100, 102| for thin-walled
structures modeling.

Figure 1.6: Adaptive hp mesh refinement strategy (colors indicate order of approxima-
tion).

It can be also noticed the existence of one-irregular meshes with hanging nodes,
where the continuity of displacements is enforced by the constraint approximation.
This way number of unknowns is reduced.



Chapter 2

Problem formulations

This section summarizes the mathematical formulations, which were the basis of nu-
merical calculation.

2.1 Macro-scale problem for heterogeneous material

The macro-scale problem for heterogeneous domain €2 is formulated in the following
way: find fields of displacements u(x,t), stresses o(x,t), total strains e(x,t) and
plastic strains €P(x,t), such that at every time instant t and for every subdomain w
with smooth enough tensor of elastic material parameters C the following standard
system of equations is satisfied

(dive + X =0 Vi, £ €w; CQ
o =Cle(u) — &7 Vt, ¢ €w C
€ = 3[Vu+ (V)] Vi, x€w; CQ (2.1)
el = flo,x,...) Vt, € w; CN
+ initial and boundary conditions
[+ continuity conditions

where: X denotes body forces, f indicates the evaluation law of plastic strain rates.
Solution of this problem is very time-consuming and requires enormous computer cost.
Moreover, from engineering point of view, its solution is usually unnecessary. Determi-
nation of the critical state of material and the global behavior of the whole structure is
relevant, therefore, two-scale analysis is proposed to minimize computation cost with-
out losing reliability of the results.
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2.2 Macro-scale homogenized problem

Instead of original problem (2.1) the following, simplified due to homogenization, model
will be analyzed: find fields of displacements ug(x,t), stresses oo(x,t), total strains
eo(x,t) and plastic strains b(x,t), such that for every time instant t € [0,T] the
following relations hold:

dive,+ X =0 Vt, x €
d'o = Ceff[€0(uO) - 68] = C:?f(t)&fo Vt, x € () (2 2)
€y = %[VUO + (VU())T] Vt, x € ‘

+ initial & boundary conditions

where averaged values are denoted by subscript "0”, rates of stresses may be computed
using either tensor of elastic effective material parameters C.¢; and inelastic strain
rates & or elastic-plastic effective tensor Cz? s and total strain rates. These quantities
are evaluated only at selected points of the body by local analysis performed at the
micro-scale in RVE attributed to those points.

The weak formulation of the macro-scale problem may be stated in the form: find
field of displacements ug(x,t) € Vo + wg, such that for every t € [0,T]

Joeo(®) : Cuppéolie)d2 = [o, tovds+ f,eo(v) : Cupp€hdQ + [, XvdQ
Yv eV,
or
Jo€o(v) : CF () &oit) Q= [, tovds + [, XvdO Yo eV,
or
Jiyeov) : () A = [ bovds+ [,XvdQ Vv eV,
(2.3)

where T denotes the final time of the analysis, Vy = {v € [H'(2)]", v = 0 on 0Qp},
0Qp and 0NN are the pirichlet and Neumann parts of the boundary, 02, U0y = 092

and 9Qp NNy = 0. o, Uy are known rates of tractions and displacements along the
Neumann and Dirichlet parts of the boundary.

In this work weak formulation in form (2.3); was used.

2.3 Micro-scale problem for heterogeneous material

The micro-scale problem is defined over representative volume elements (RVE) as-
sociated with selected points of the macro-body. The problem consists of assuming
boundary conditions on the basis of strains in homogeneous macro-domain and solu-
tion of the initial-boundary value problem defined only in RVE. Body forces are not
considered in the equilibrium equations [72]. The micro-scale problem may be formu-
lated in the following form: find fields of displacements u(x,t), total strains e(x,t),
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stresses o (x,t) and plastic strains €P(x,t), such that

(

dive =0 vt € [tk, tk+1],$ € w;
U:C[E(U)—Ep] Vit e [tk, tk+1],a:€wi
e =3[Va+ (Va)'] Vit e [ty, ti], @ € w;

[ I
el = flo,x,...) Vit € [ty, tpi1], @ € w;
\ a=u Vt € [ty, tes1],x € Ip (2.4)
on=t Vt € [ty, tn], @ € Ty
U_ = U, Vit € [ty, tpsa], @ € T
\ t =t Vt € [ty, tir], @ € To
where w; denotes i-th homogeneous subdomain of heterogeneous RVE (i = 1,..., N),

I'p and I'y are the parts of Dirichlet and Neumann boupdary, I'pul'y =T and

I'pNI'y =0, Iy is the interface between various materials. ¢, w are the known rates of
tractions and displacements along the Neumann and Dirichlet parts of the boundary,
f denotes evolution law of inelastic strains. Periodic boundary conditions may be also
used and they are discussed in the next section.

The weak formulation, equivalent to (2.4), is as follows: find field of displacements
u(x,t) € Vo +u, such that for every t € [0,T]

[, e@):Cé(u)dQ = [ e(v): Ce"dQ+ [ tvds YveV,
or (2.5)
[, ev) : CP(t) () dQ = [, tvds  Ywe Vo
where Vg = {v € [H'(Q)]", v=0o0nI'p}.
In this work weak formulation in form (2.5); was used. The classical associative,

rate-independent, J, flow plasticity with linear kinematic hardening is used for plastic
behavior modeling. Thus, the admissible stresses are bounded by the Mises yield

surface
(o) = % (s - gHsp) : (s - %Hep) — k? (2.6)

where: s is the deviator of stress tensor, H denotes kinematic hardening parameter,
k = o¥/+/3 is the shear yield limit, 0¥ denotes yield strength.
Plastic strain rate is given by the associative plastic flow rule

X NN
e =5 (2.7)

where «y stands for the plastic multiplier. The following Kuhn-Tucker condition (load-
ing/unloading relation) should also be satisfied

720, ¢<0, 79=0 (2.8)



Problem formulations 13

Effective material properties are determined in such a way that the following relation

holds
(5) =€ (8) 29)
where < . > denotes the volume average of a quantity over the whole RVE, i.e.

1

(=3 [

Finally, the Hill-Mandel condition (macrohomogeneity condition) is postulated for
perfectly bonded microstructure 48]

(od:e)y={(o):(e) (2.10)

Integration in time of the problem (2.4) is usually performed by the backward
Euler scheme and the radial return algorithm (see e.g. [93]). After converting the
rate formulation into the incremental form, the total load history is represented by a
sequence of sub-loads. For each sub-load the solution increment is evaluated iteratively
by requiring at each Gauss integration point fulfillment of the yield condition and
overall momentum equations at the end of each load increment.

The well known algorithm makes use of the decomposition of the stress increment
into two parts: the elastic trial component (o) and the plastic corrector component
(Ao = —C Ae?P) evaluated by the return mapping method [94] (radial return algorithm
for the Mises yield function). The trial part is computed, for fixed plastic strain
increment Ae?, by the momentum Eq. (2.4); combined with Eqs. (2.4)s3. Then the
plastic flow rule and the yield condition constitute, in the case of constant hardening,
the following nonlinear system of equations that is used to define increments of the
corrector parts of stress (Ae) and the plastic multiplier (A7)

-1 99
C Aot irg, =0 (2.11)
¢(Utrial + AO’) = 0

The system of equations (2.11) is, in general, solved by the Newton-Raphson
method. Usually, in order to assure quadratic convergence of the iterative process,
the so-called algorithmic tangent modulus is suggested instead of tangent one.

2.4 Boundary conditions

One may use three kinds of boundary conditions applied to RVE: Dirichlet, Neumann
or periodicity. The latter one is the most appropriate for a periodic microstructure
[45, 66, 110] that is schematically presented in Fig. 2.1.
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Figure 2.1: Influence of boundary conditions and RVE size on accuracy of effective
parameters: A — uniform traction b.c., B — linear displacement b.c., C' — periodic b.c.

Periodicity conditions may be imposed either after discretization and assembling
the global system of algebraic equations or directly in formulation of the problem.
Let us first consider the global system of equations

Ku=P (2.12)

supplemented with N¢ constraints resulting e.g. from assuming periodicity conditions

for appropriate degrees of freedom
Au=1> (2.13)

These constraints may be accounted for either by static condensation [57, 67| or by
penalty function method [34], where the constraints are imposed by augmenting system
of equations (2.12) with penalty terms parameterized by numerical weights W; (i =
1,2,...,Ng).

(K+A"WAu=f+WA"b (2.14)

or by Lagrange multipliers adjunction, where for each constraint an additional unknown
A; is adjoined to the global system of equations

K AT u f
PRI 13
The next possibility is to introduce Lagrange multiplier function to the weak formu-

lation. This approach is preferred for the hp finite element method and it is described
briefly below.
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For plane stress state and RVE denoted by w, the periodic boundary conditions are
schematically presented in Fig. 2.2.

ry Tz

a | I w I's | J
el
Y
L.

Iy Ta v%
X a W

Figure 2.2: RVE. Periodicity conditions.
They may be specified as follows:
® Uyry = Ugr, + d1,  Ugr, = Ugr, + do
® Uy, = Uy, +d3, Uyr, = Uy, + d4
e tr, = —tr,, tr,=—to,

where t = on. Such displacements are called periodic and tractions — antiperiodic
[53, 67].

The problem may be formulated in the following weak form: find the displacement field
w and the traction components py, py, 7z, 7, € W = L*(T'), such that:

( fM 5ij(v) Cijkl 5k;l(’u,) dQ) = fwi €Z‘j(’U) Oijkl €£l dQ2 + fF V; Ty ds Yov € o
_fuac|F3Qxdy+fuac|F1Qxdy:_fodldy ancGW
0 0 0

— [y, Sz dy + [ ugr, spdy = — [ s, dady Vs, € W
0 0 0

(2.16)
— [ uyr, syde+ [uyr, syde =— [s,d3dz Vs, e W
0 0 0
— [ uyr, ¢y dz + [uyr, g,dz = — [ g, dsdx Vg, € W
\ 0 0 0
where:
/Ui tids = — /(U:vp:v + Uy Ty)\Fl ds — /(U;v Ty + pry)\FQ ds+
: 0 0
+ [tnne v e s+ [+ op)rds 2.17)
0 0

Lower order shape functions, at least by one, should be used for Lagrange multi-
pliers p,, py, 7o, 7, than for displacements w in order to obtain stable finite elements.
Presented formulation was verified on simple tests, but was not used in the general
code.



Chapter 3

Preliminary tests

1D problem was analyzed to use various approaches to homogenization, verify the algo-
rithm that will be used for 2D and 3D problems and examine influence of discretization,
especially compliance of the finite element mesh with material distribution on accuracy
of the results.

3.1 Examples of homogenization in 1D

The initial tests were performed for 1D bar benchmark (see Fig. 3.1) in the uniaxial
stress state. The bar comprised of two various materials distributed periodically. Both
components underwent elastic deformations.

The formulation of the benchmark problem in the macro-scale is stated in the
following form: find the displacement field u, as well as the resulting strain ¢ and stress
o, that satisfy simultaneously the following equations:

—% =q(x) Vi, €(0,L)

o —Ee Vi € (0,L)

c = qu Vi € (0,L

u(0) =0 (3.1)
oll) =74

ula;)  =u(q))

Ew/(a;) = Ex'(af)

\

where: a; denotes a point of materials interface i =1, ..., n,

. E1 (matl)
E= { E; (mat.2)
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Figure 3.1: Composite bar. Details of the model.

Because deformations of the bar were in the elastic range, the effective Young
modulus may be evaluated either by the solution of problem (2.4) and then as the
ratio of averaged stresses and total strains

Eepr = @ (3.2)

(e)
or analytically due to the known displacement at the right hand side bar end

AL — PL
AEEff

; _ EE

A PL PL Berr = Bl (3:3)
L — ni _|_ n2
AE, AE,

where: n; = lTl, ng = ZTQ, [ is the RVE size.

The bar benchmark problem was solved for the following data:
Ey; =150 GPa, Ey = 50 GPa, ny = 25%, ny = 75%, L = 1m,l = 0.04 m, P = —15 MN,
a =125 MN/m?, b = —50 MN /m.

The effective Young modulus was obtained using Eq. (3.3) (see Fig. 3.2). The results
were computed with two-scale approach. Solutions for heterogeneous and homogenized
material are compared in Figs. 3.3 and 3.4. In this 1D example numerical homogeniza-
tion in the elastic range gives the same results as the mathematical approach, where
one seeks the homogenized solution as the limit of solutions to problem (3.1) when the
ratio + approaches 0 [97).
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Figure 3.2: Composite bar. Young modulus (A - heterogeneous material {E1,E2},
B — homogenized material {E.;r}).
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Figure 3.3: Composite bar. Displacement (A — heterogeneous material, B — homo-
genized material).
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Figure 3.4: Composite bar. Strain and stress (A — heterogeneous material, B — homo-
genized material).
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3.2 Discretization for heterogeneous materials

Preliminary computations in 1D were also performed to determine the influence of
the mesh adjustment to material heterogeneity on reliability of the results. The so-
lutions were obtained using meshes, which either did or did not account for material
distribution.

Hierarchical error indicator, based on two approximate solutions [26], was used to
estimate the error of the solution approximation

M = \// (un — upye)? dz (3.4)

where u;, denotes coarse mesh solution and wy, /> denotes solution obtained by two times
smaller elements.

3.2.1 FE mesh adjusted to material distribution

The aforementioned bar with constant cross section, made of two materials in pro-
portions of 50%+50% and the Young moduli £ and 3E, respectively, was analyzed.
The bar was fixed on the left hand side, axially loaded by constant loading in interior
(0, L) and by concentrated force at the right end. Four finite elements of the same
size and linear shape functions were used for discretization. The FE mesh complied
with distribution of the material components. In order to estimate approximation error
each element was h-refined. Both meshes and material distribution (denoted by the
colors) are presented in Fig. 3.5. Computed results were compared with the exact
solution (Figs. 3.6 — 3.16), where || - ||o., denotes L, norm evaluated over domain w.
Distribution of hierarchical error indicators at each element for displacements, strains
and stresses presented in Figs. 3.17 — 3.19 shows that this error indicator is a good
estimate of the real error rate.

x [m]

0 02 04 06 08 1

Figure 3.5: TEST I. Material distribution and discretization of initial and refined
meshes (red & green colors correspond to various materials).
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Figure 3.6: TEST I. Exact and FE solutions (4 elements).
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Figure 3.9: TEST I. Strain for elements
of size h (the blue line) and exact strain
(the red line).
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Figure 3.10: TEST I. Strain for ele-
ments of size h/2 (the blue line) and
exact strain (the red line).
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Figure 3.11: TEST I. True strain rela-
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Figure 3.13: TEST I. Stress for ele-
ments of size h (the blue line) and exact
stress (the red line).
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Figure 3.15: TEST L. True stress rela-
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Figure 3.14: TEST I. Stress for ele-
ments of size h/2 (the blue line) and
exact stress (the red line).
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Figure 3.17: TEST I. Error indicator for displacements obtained by hierarchical method
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Figure 3.18: TEST 1. Error indicator for strains obtained by hierarchical method
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Figure 3.19: TEST I. Error indicator for stresses obtained by hierarchical method
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3.2.2 FE mesh unadjusted to material distribution

In the second test the same bar as previously was analyzed, but volume rates of material
components were 33% and 67%. The domain was initially discretized by four elements
with linear shape functions, thus the FE mesh did not comply with distribution of
material components (see Fig. 3.20). Obtained results are presented in Figs. 3.21
— 3.31. Figs. 3.32 — 3.34 show distribution of hierarchical error indicator. One may
observe that the largest error occurs for strains and stresses in the element, which
contains both materials. For solution u we may also notice propagation of the error
onto other elements, as a result of mismatch between mesh and material interface.

In 2D and 3D FE mesh, which matches with the distribution of material is often
difficult to be generated (especially when the inclusions have irregular shapes). These
simple tests confirm that FE mesh should be adjusted to the interface of materials to
reduce the error. The error indicator used in these tests gave reliable results.

x |m]

0 02 04 06 08 1

Figure 3.20: TEST II. Material distribution and discretization of initial and refined
meshes (red & green colors correspond to various materials).
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Figure 3.21: TEST II. Exact and FE solutions (4 elements).
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Figure 3.24: TEST II. Strain for ele-
ments of size h (the blue line) and exact
strain (the red line).
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Figure 3.23: TEST II. True relative
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Figure 3.25: TEST II. Strain for ele-
ments of size h/2 (the blue line) and
exact strain (the red line).
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Figure 3.28: TEST II. Stress for ele-
ments of size h (the blue line) and exact
stress (the red line).
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Figure 3.30: TEST II. True stress rela-
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Figure 3.29: TEST II. Stress for ele-
ments of size h/2 (the blue line) and
exact stress (the red line).
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Figure 3.33: TEST II. Error indicator for strains obtained by hierarchical method
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Chapter 4

Homogenization of elastic-plastic
composites

The objective of homogenization approach is to replace properties of the heterogeneous
body by a homogeneous one. For the sake of simplicity periodic distribution of ma-
terial components was assumed. However, it should be remembered that whenever
microstructure of real composite materials is random, RVE can be used only in a sta-
tistical sense |79, 86, 99| as the so-called statistical volume element (SVE). It can be
identified as the smallest volume element that satisfies certain requirement, e.g. inde-
pendence of the location in the local microstructure, as well as of the applied loading
direction, even for anisotropic material response.

In this section selected possibilities of material properties evaluation (effective
Young modulus, Poisson ratio, etc.) are presented.

4.1 Modeling of elastic deformations in micro-scale

If deformations of the material occur in the elastic range and heterogeneous material
components are distributed periodically, a single RVE analysis is sufficient to estimate
the effective elastic parameters in order to obtain global response of the macro-body.
Following [113] usually six independent load cases are enough to compute the tensor
relation between average stress and strain

B0 0 000 000
s=¢looo]|, |lopol|, |0o0o0], (4.1)

000 000 008

0 B8 0 000 00 B

300|, |loops]|, 000

000 08 0 B0 0

where S stands for average strain or stress tensors depending on the assumed boundary
conditions (pure displacements or pure tractions), S denotes load parameter. For
isotropic materials effective parameters may be obtained by one loading test and then
the following relations [113]
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def <tr0’
3I€eff = <é> (42)
3
def [ (o) : (o) , tro , tre
LN AR LY Sy 43
Leff & - (&) o =0 3 g€ =c¢ 3 (4.3)

where I stands for the identity matrix, xcs¢ and pess denote effective bulk and shear
moduli, respectively.

In this work initially orthotropic response of composite was assumed. Thus, to
determine the following compliance tensor of material parameters (special case)

r 1 _ Veff  _ Vefy .
Eeyy Eeyy Eeyy 0 0 0
_ Vesy 1 _ Vesy
Eeyy Eeyy Eeyy 0 0 0
_ Yerr  _ Peff 1 0 0 0
_ Eeyy Eeyy Eeyy
C.jp = ) (4.4)
0 0 0 0 0
Heff
0 0 0 0 L 0
Heff
I 0 0 0 0 0 - 1” |

two computer simulations on RVE were enough to obtain effective constants:

e uniaxial tension test that enables computation of Young modulus F.s; and Pois-
son ratio Vs

e shear test that leads to evolution of rigidity modulus .

The hp-adaptive finite element method with brick elements [27] was used for com-
putation. The first tests in 3D were performed in order to verify the convergence of
the solutions for adaptive FEM and heterogeneous material.

Let us consider a composite, in which metal matrix is reinforced by another metallic
material (examples of application may be found in [51]). In presented examples ball-
like inclusions are distributed periodically in equal distances measured between centers
in directions of coordinate system axis. The radii of the balls were r = 0.3a. In order
to verify how the orientation of RVE influences the effective material parameters, the
analysis for various RVE, schematically presented in Fig. 4.1, was performed. The
rotated one was also used for orthotropy verification. Properties of both materials (E,
v) are presented in Tab. 4.1.

Material parameters inclusion | matrix
Young modulus £ (GPa) 300 100
Poisson ratio v 0.3 0.3

Table 4.1: Material parameters.
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Figure 4.1: Periodic microstructure. A cross section of the body with traces of RVE.

Since these RVE are not at least ten times larger than inclusions the separation
scale condition (Eq. 1.1) does not hold. Therefore, the RVE size influence on the
results was verified. For two different RVE, schematically presented in Fig. 4.2, it
was observed that the size of RVE is irrelevant. Similar observations for materials
with particle inclusions are described in [95]. However, for composite material with
random microstructure more samples should be examined to select optimal size, which
guarantees appropriate statistical representation of material properties [39, 70, 80].
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Figure 4.2: Periodic microstructure. A cross section of the body with two RVE.

Cross sections of the first RVE, as well as the initial discretization with 27 node
brick elements (second order shape functions) are shown in Fig. 4.3. The initial mesh
was very coarse and did not account for material distribution. However, a few (4-5)
hp-adaptation steps were enough to obtain meshes that were sufficiently refined in the
neighborhood of the interface between these two materials.
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The mesh, which complies with the material heterogeneity and meshes after few
steps of adaptation are shown in Fig. 4.4. However, for various complicated shapes of
inclusions such a mesh fitting may be difficult to provide.

Figure 4.3: 3D RVE cross section. Initial mesh (A) that did not comply with material
distribution and adaptively refined mesh (Ay).

B

Figure 4.4: 3D RVE cross section. Initial mesh (B) that complied with material
distribution. Uniformly (B;) and adaptively (Bs) refined meshes.

The numerical simulation of the tension test was performed on presented RVE.
Convergence of the results is compared in Fig. 4.5. The observed difference that may
be treated as an error indicator of effective Young modulus computed by initial, not
complying with material distribution mesh, is approximately equal to 2%. A faster
reduction of approximation error for adaptively refined meshes may be also observed
in that figure.
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Figure 4.5: 3D test. Convergence of the effective Young modulus for various meshes.

It was also verified how the orientation of RVE (Fig. 4.1) influences the results. Fig.
4.6 presents different material distribution and contour maps of selected displacement
and stress components resulted from tension test. Convergence of the effective mate-
rial parameters obtained during simulation of tension test in = direction with assumed
orthotropic response of composite (RVE) for different refinement strategies (uniform
refinement, h and hp adaptation) is shown in Fig. 4.7 and compared in Tab. 4.2.

Emuaaae

Figure 4.6: 3D test. Material distribution and selected contour maps of the tensile test
solution (displacement and stress components — qualitative results).
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Figure 4.7: 3D test. Convergence of effective elasticity modulus.

Material parameters | RVE:1 | RVE:2
E.;; (GPa) 112.44 | 112.80
I/eff 0.3 0.3

Table 4.2: 3D test. Comparison of the results for RVE:1 with a ball-like inclusion
located centrally and RVE:2 with balls in the corners.

The RVE rotated by 45° was used to check whether homogenization of the consid-
ered composite results in an orthotropic body (Fig. 4.8).

Figure 4.8: 3D test. Material distribution and selected contour maps (displacement
and stress components — qualitative results) of the tension test.
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Using transformation formulas for orthotropic material

Bepy = Eil cos'(¢) + (i — 2%?) cos(¢) sin®(¢) + E%sin‘l(gzﬁ) (4.5)
s =2 (5, + — ) ost@)snE(0) 4 o (eosto) sin'(0) (49
“/f E, B Ey o 412 '

where: E; = 112.44 GPa, Ey; = Ey, v1o = 0.298, pu1o = 42.96 GPa, with different
angles changing from 0 to 90° one may obtain the effective Young modulus and the
shear modulus, presented in Fig. 4.9. The stars denote the same moduli computed
independently from tension and shear tests performed in x and y directions using the
rotated RVE. One may observe that a small change in the values of these parameters
when changing the angle proves that the material is almost isotropic. The difference
between these two results is an indicator of the error of our analysis. Since both results
for the angle of 45° are close one may also conclude that the modeling error is small.

112.6

angle

428 L L L L L L L L
0 10 20 30 40 50 60 70 80 90

angle

Figure 4.9: 3D test. Orthotropy verification.

The results obtained by computational homogenization were also compared with a
few recalled below direct formulas, which are used for two-phase elastic bodies with
isotropic effective response.

1. Mixture rule
Eeff = E1 “nq + E2 * N9 (47)

where: n; = v;/V, v; - material volume, V' - total volume, i = 1, 2.
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2. Inverse mixture rule

Ey - Ey
Eopr = 4.8
1 ny - By +ng - By (48)
3. Hashin - Shtrikman bounds [43, 113|
VU2 1 — v
Fit 30 ) = Heff S K2t — 303 (4.9)
Ko—K1 + 3Kk1+4u1 K1—kK2 3ko+4u2
25 < < 1— 1y
Mt sy S Herf St T et (4.10)
H2—H1 51 (3k1+4p1) H1— 2 52 (3ra+4u2)
Ky 2 K1, H2 2 [
where:
K1, K2, Kefs - bulk moduli for matrix, inclusion and effective, respectively
1, H2, plefs - shear moduli for matrix, inclusion and effective, respectively.
4. Maxwell formulas [58]
41 3v1 3vg
1 —EL =l 4 =2
R —— (4.11)
Ke V2 4 vy 3
If 4114 <K21 + K; + 4M1)
15(1 — v1)(p2 — pu)v2 }
eff = 1+ 4.12
et ’ul { 2(4 - 51/1)(?)1,u2 + UQ,LLl) + (7 — 5y1),u1 ( )

where: v - Poisson ratio of matrix.

The effective Young modulus for RVE with a ball-like inclusion, calculated by var-
ious methods, is summarized in Tab. 4.3.

| Method | E.s (GPa) |
Mixture method 122.62
Inverse mixture method 108.15
HASHIN - SHTRIKMAN lower/upper bound | 112.06/115.73
Maxwell method 112.06
Computational homogenization 112.44

Table 4.3: Effective Young modulus obtained by different methods.

This comparison shows that the result obtained by the hp-adaptive FEM dur-
ing numerical simulation of tensile test is reliable, because it is bounded by Hashin -
Shtrikman solutions. Maxwell method also enables obtaining reasonable solution. The
simplest methods (mixture rule and its inverse) gave rough estimation that may be
used to define the limits of solutions (min, max).
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The tests were also performed for metal matrix composites reinforced with ellip-
soidal (Fig. 4.10) or cylinder (fibers) (Fig. 4.14) metallic inclusions.

The exemplary FE meshes for ellipsoidal-shape inclusion obtained by h-adaptation
method are shown in Fig. 4.11. One may observe concentration of the smallest elements
near border of two materials. In this example material parameters are the same as in
the previous examples with a ball-like inclusion.

Figure 4.10: 3D test. RVE with ellipsoidal inclusion. Material distribution and initial
meshes.

Figure 4.11: 3D test. RVE with ellipsoidal inclusion. h-adaptively refined meshes.

Convergence of effective material parameters for uniformly and adaptively refined
meshes is presented in Figs. 4.12 and 4.13. In all presented graphs of convergence of
the effective Young modulus it can be observed that the most accurate results with
the smallest number of degrees of freedom were obtained for the hp-strategy of mesh
refinement.
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Figure 4.12: 3D test. Convergence of effective elasticity modulus for RVE with centrally
located ellipsoidal inclusion.
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Figure 4.13: 3D test. Convergence of effective elasticity modulus for RVE with vertex
located ellipsoidal inclusions.
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In another example reinforcement with cylindrical fibers was used. Material data
are collected in Tab. 4.4, on the basis of publication [110]. Material distribution and
adaptively refined meshes are shown in Figs. 4.14 and 4.15.

Material parameters fibers (boron) | matrix (aluminum)
Young modulus £ (GPa) 379.3 68.3
Poisson ratio v 0.1 0.3

Table 4.4: Material parameters.

Figure 4.14: 3D test. RVE with fiber inclusion. Material distribution and initial
meshes.

Figure 4.15: 3D test. RVE with fiber inclusion. h-adaptively refined meshes.

Computed results are summarized in Tab. 4.5 and compared with numerical, as well
as experimental tests for fiber volume fraction V; = 0.47 as in paper [110]. The results
of computer simulation coincide very well with the results known from the literature,
obtained both by calculation and experiment.
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| Material parameter | (min; max) | mean value | own result |

E, (GPa) (214;216) 215 215
E, (GPa) (123;156) 139 138
Giz (GPa) (51.1;62.6) 55 55
Goz (GPa) (43.6;52.3) 47 47
Vi (0.19;0.29) 0.2 0.195
Va3 (0.253;0.31) 0.29 0.27

Table 4.5: Comparison of the results published in [110] and computed by numerical
simulation of tensile test performed on RVE.

4.2 Single RVE analysis for inelastic deformations

Analysis of inelastic problems is very time-consuming, even if homogenization is used,
because the calculation at the micro-level must be performed repeatedly. In the classical
computational homogenization an RVE should correspond to each Gauss integration
point, but it is actually ineffective approach to practical problems, even for high-speed
computers. The first reason is that in 3D the FE model has a lot of Gauss integration
points. Another drawback of attributing RVE to every quadrature point has to be
overcome when adaptive FEM is used. Since the history of deformation is stored only at
integration points after mesh adaptation new Gauss points occur without information
of the history. Then necessary information may be transfered from surrounding points,
but only at the macro-scale. It is not possible to approximate e.g. distribution of
plastic strains in a new RVE. To avoid such problems other possibilities of the two-
scale homogenization are presented in this section.

The first option is based on a single RVE solution. We assume that in elastic-
plastic range global response of the body in the macro-scale may be derived from the
analysis of a single RVE. Numerically simulated tensile tests over RVE with different
loading paths leads to a relation between averaged strains and stresses. Then effective
plastic parameters (yield strength limit, hardening coefficient, etc.) are evaluated and
global response of the inelastic macro-model is determined. The proposed method is
presented more precisely for the following example.

It was assumed that for metallic composites both in the micro- and macro-scales
the stresses are bounded by the Mises yield surface using relation (2.6) and rates of
strains are given by the associative plastic flow rule in the form (2.7) that may be
modified for orthotropic material according to [18].

For the test purpose the same composite, as in section 4.1 with cross section pre-
sented in Fig. 4.1, was used. The RVE with a ball-like inclusion located centrally
was assumed. Both materials underwent elastic-plastic deformations with kinematic
hardening. Properties of both composite components are presented in Tab. 4.6. On
the basis of the tensile test simulated numerically dependency between averaged stress
and strain was obtained (Fig. 4.16). It enables estimation of effective Young modulus,
Poisson ratio and kinematic hardening parameter.
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Material parameters inclusion | matrix
Young modulus £ (GPa) 300 100
Poisson ratio v 0.3 0.3
yield strength o¥ (MPa) 300 200
hardening coefficient H (GPa) 0.1E 0.1E
Table 4.6: Material parameters.
350
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Figure 4.16: Single RVE analysis. Tensile tests.

The yield strength limit is estimated as an y-coordinate of the intersection of the
tangents to the elastic and plastic parts of the tensile curve (Fig. 4.17). Then, based on
tests carried out for other loading paths, the points, where the first yielding occurred,
were detected. They are marked by the red circles in Fig. 4.18.
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Figure 4.17: Single RVE analysis. Relation between < o,, > and < ¢,, > for various
loading paths (see Fig. 4.18) and yield limit estimation.
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Figure 4.18: Single RVE analysis. Yield limit for various loading paths.

All these points belong (with a small tolerance) to a certain Mises yield surface, as
it is shown in Fig. 4.19. After unloading and re-loading selected stress states evaluated
by RVE analysis also fitted the shifted surface (Fig. 4.20), what validates kinematic
hardening at the macro-scale.

-200 0
< 042 > [MPa|

Figure 4.19: Single RVE analysis. Fitting of a Mises yield surface (the continuous
violet line).
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-200 0 200
< 042 > [MPa|

Figure 4.20: Single RVE analysis. Validation of kinematic hardening (the continuous
green line).

Thus, on the basis of the analysis performed on a single RVE, one may define a Mises
yield surface of the homogenized material in the macro-scale with effective parameters
(vield limit o, , shear yield limit k.;; and kinematic hardening parameter H.ss) and
postulate associated plastic flow rule

) 0¢
P= = 4.1
€0 )\80'0 ( 3)
1 2 p 2 p 2
¢(og) = 5\ S0~ gHeffeo o S0 — gHeffeo — ks (4.14)
¥>0, 6<0, y¢=0 (4.15)

where ”0” denotes solutions for homogenized material.

4.2.1 Micro-scale analysis

The same composite type, as in section 4.1, was considered. The elastic-plastic prop-
erties of the components are defined in Tab. 4.6. At the micro-level the analysis was
performed for three different RVE shown in Figs. 4.21, 4.24 and 4.26 to verify influence
of RVE orientation on the global effective parameters. Figs. 4.22, 4.23, 4.25 and 4.27
present, qualitative solution for different RVE in tensile test simulation in y direction.
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e RVE 1: centrally located inclusion

Z

Ao

Figure 4.21: RVE 1. Material distribution.

Figure 4.23: RVE 1. Component ¢,, of total strain tensor.
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e RVE 2: inclusion located at vertexes

Figure 4.25: RVE 2. Component £, of total strain tensor and component e/ of plastic
strain tensor.

e RVE 3: domain rotated by 45°

Figure 4.26: RVE 3. Material distribution and component o, of stress tensor.
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Figure 4.27: RVE 3. Component ¢, of total strain tensor and component £?_ of plastic
strain tensor.

Tensile test results for the three described above RVE are compared in Fig. 4.28.
One may notice that the size and orientation of RVE practically does not change the
results.
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Figure 4.28: RVE test. Comparison of the tensile test results for different RVE.

4.2.2 Macro-scale analysis

Since normality rule may not be valid for heterogeneous materials [61], two numerical
tests were performed in order to validate this assumption.

Analysis at the macro-scale was performed for the following elastic-plastic effective
parameters determined by numerical analysis of tensile test for RVE:
Eeff =112.44 GPa, Ve = 03, Heff = 0.104Eeff, Ugff = 208.03 MPa.
Simultaneously, for comparison purposes, much more time-consuming calculation for a
heterogeneous material without homogenization was carried out.
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Numerical example — L-shaped domain

The 3D L-shaped domain was considered. Assumed boundary conditions, a cross
section and selected segment AB that is used for post-processing purposes, are sche-
matically presented in Fig. 4.29.

On the walls parallel to the plane yz no penetration boundary conditions were as-
sumed, while the wall marked by the black color was fixed. The upper horizontal part of
the boundary was subjected to kinematic enforcing v, = § = 0.16 @ and zero horizontal
traction. On the remaining boundary part the homogeneous Neumann boundary con-
ditions were imposed. Finite element discretizations, generated by hp-adaptive method
for homogenized material and exclusively h-adaptation for fully heterogeneous mate-
rial, are shown in Fig. 4.30. To provide a better compliance between mesh and shapes
of inclusions additional refinements of elements with different material parameters were
used.

20a

B
ZT_» 20a /;

NDOFS ~ 460 000 NDOFS =~ 7000

Figure 4.30: L-shaped domain. Descretization of heterogeneous and homogenized ma-
terials.



Homogenization of elastic-plastic composites 46

The results are presented in Figs. 4.31 and 4.32. They were also compared along
the segment AB in Figs. 4.33 — 4.36.

Figure 4.31: L-shaped domain. Contour map of component £ ~of plastic strain tensor
for heterogeneous and homogenized materials. Color scales match approximately.

Figure 4.32: L-shaped domain. Contour map of component o,, of stress tensor for
heterogeneous and homogenized materials. Color scales match approximately.
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Figure 4.33: L-shaped domain.
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Figure 4.34: L-shaped domain. Comparison of component o,, of stress tensor for
heterogeneous and homogenized material along segment AB.
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Figure 4.35: L-shaped domain. Comparison of component 7 of plastic strain tensor
for heterogeneous and homogenized material along segment AB.
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Figure 4.36: L-shaped domain. Comparison of component 2 of plastic strain tensor
for heterogeneous and homogenized material along segment AB.
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Stress component o, was also compared along another segment C'D (Fig. 4.37).
In this example one may observe a good approximation of heterogeneous solution using
single RVE approach with postulated associative plastic flow rule in the macro-scale.
Computation time after homogenization was reduced three times.
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Figure 4.37: L-shaped domain. Comparison of component o,, of stress tensor for
heterogeneous and homogenized material along segment C'D.

Numerical example — cantilever beam

In the next test a cantilever beam, shown in Fig. 4.38, was considered as a 3D body.
The beam was fixed on the wall in the plane xz and subjected to the constant dis-
tributed load ¢ = 80 kN/m?, perpendicular to the upper wall. On the other parts of
the boundary homogeneous Neumann conditions were assumed.

Z  9a
J—»y I /5(1

Figure 4.38: Cantilever beam. Boundary conditions and a cross section.
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Finite element discretizations for heterogeneous and homogenized materials are
shown in Fig. 4.39. The results of the analysis are shown in Figs. 4.40 — 4.41 and
relevant components of stress and strain obtained for homogenized and heterogeneous
material are compared along the segment EF'in Figs. 4.42 — 4.44.

D%

NDOFS ~ 280000 NDOFS ~ 5000

Figure 4.39: Cantilever beam. Descretization of model with heterogeneous and homo-
genized material.

Figure 4.40: Cantilever beam. Contour map of component €7, of plastic strain ten-
sor for heterogeneous and homogenized domain in cross section. Color scales match
approximately.
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Figure 4.41: Cantilever beam. Contour map of component €l of plastic strain tensor
for heterogeneous domain and in its cross section. Color scales match approximately.
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Figure 4.42: Cantilever beam. Comparison of component o,, of stress tensor for hete-
rogeneous and homogenized material along segment EF.
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Figure 4.43: Cantilever beam. Comparison of component oy, of stress tensor for hete-
rogeneous and homogenized material along segment EF.
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Figure 4.44: Cantilever beam. Comparison of component €7 = of plastic strain tensor
for heterogeneous and homogenized material along segment EF'.

One may notice that a single RVE approach with associative plasticity assumed in
the macro-scale for periodic microstructures approximates the heterogeneous solution
with a good accuracy for considered examples.
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4.3 Fixed set of RVE

The single RVE approach resulted in a good solution approximation of a real hete-
rogeneous material for examples considered in the previous section. However, if the
material properties after homogenization are not the same in the whole domain, more
than one RVE should be used in order to guarantee an accurate solution. In classical
homogenization approach each Gauss integration point is associated to RVE but, as it
was previously mentioned, such an analysis is rarely possible to perform for 3D domain.

The approach proposed in this section is based on the idea of fixed RVE positions,
independent of the integration points [91, 64, 65]. Data transfer between fixed and
Gauss points is performed by simple MLS (moving least square) approximation [92].

The numerical test of such an approach was conducted for the composite, where
both components may deform in elastic-plastic range. The L-shaped domain, schemat-
ically presented in Fig. 4.45, was considered. One wall, marked by the black color,
was fixed. The wall in the plane xz was subjected to a constant loading ¢ in horizontal
direction, for walls parallel to yz plane no penetration conditions are enforced. For the
other parts of the boundary homogeneous Neumann conditions were assumed.

A ‘ q
20a -
7
20a
' y

Figure 4.45: L-shaped domain. Boundary conditions of a model.

Initial computations were performed in the elastic range for the homogenized ma-
terial with effective Young modulus and Poisson ratio in order to determine places,
where the Mises equivalent stresses reached the largest values. The finite element dis-
cretization is shown in Fig. 4.46 and contour maps of the stress tensor components o,
and o,, are plotted in Fig. 4.47.
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l 8
p=1

Figure 4.46: L-shaped domain. FE discretization.

LY

Figure 4.47: L-shaped domain. Contour maps of o,, and o,. components of stress
tensor for homogenized domain. Color scales match approximately.
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Distribution of fixed points in the macro-scale was established on the basis of the
Mises equivalent stresses distribution. The results shown that the plastic yield limit
was reached in vicinity of the reentrant corner of the domain. Thus, 16 fixed points
(RVE), 8 for each wall (shown in Fig. 4.48) were assumed and parallel elastic-plastic
computation was performed in the micro-scale. These points were selected manually.
However, in practice they may be regularly distributed in the plastic zone.

Figure 4.48: L-shaped domain. RVE distribution.

For each RVE the boundary conditions were assumed on the basis of averaged
strains from the macro-scale. Contour maps defining the state of stresses in each RVE
are shown in Fig. 4.49.
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Figure 4.49: L-shaped domain. Contour maps of component o, of stress tensor in fixed
number of RVE near reentrant corner (color scales are different for different RVE).
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In the next step the increments of plastic strains (Ae”) obtained by RVE analysis
were transfered to the Gauss integration points by MLS approximation method [59, 92|
constructed on the approximate solution at m (here all 16) points Py (x1,y1), Po(22,y2), - -
Po(Zm, ym). Using, for the sake of simplicity, notation f; = oy (FP;), f* = o (P*) for
arbitrary k,l € {1,2,3} and the Taylor formula with neglected second order reminder
term (the Taylor formula with higher order terms may be used in the same way re-
sulting in better approximation properties), one obtains an expression for the known
values f; in terms of the unknown quantities at i-th point (z*,3*) in the form

fi="+hif,+kif,, hi=2"—zi, k=y —y (4.16)

Minimization of the weighted sum of squared differences between known values and
computed using Eq. (4.16)

S o £3) =D _wilfi — £ = hifty — kif3)’ (4.17)
=1

is the condition used to define the values of f* and its derivatives f7, f7 at point P*.
If weights w; in Eq. (4.17) are singular, then approximation f*(z,y) becomes an
interpolation. There was assumed after [62]

r?=h+ Kk (4.18)

If only the first term is used in Eq. (4.16) the technique is called the Shepard ap-
proximation [92]. Such a simple version of the MLS approximation was used in this
work.

Computed results were compared with a single RVE approach, presented in the
previous section. The qualitative comparison of stress components o,, and o, are
presented in Figs. 4.50 and 4.51. Their distributions along segment AB are compared
in Figs. 4.52 and 4.53.
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Figure 4.50: L-shaped domain. Contour map of components o, and o, of stress tensor
obtained from the homogenization based on a single RVE (qualitative comparison).
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NN

Figure 4.51: L-shaped domain. Contour map of components o,, and o of stress tensor
obtained from the homogenization based on a limited number of RVE (qualitative
comparison).
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Figure 4.52: L-shaped domain. Component o, of stress tensor along segment AB.
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Figure 4.53: L-shaped domain. Component o, of stress tensor along segment AB.

The presented tests shown that both computations based on a single RVE approach
and a small number of RVE located in the appropriate area, give a good approximation
of heterogeneous solution. One may conclude that for uniformly distributed inclusions
we may avoid cumbersome analysis related to each Gauss integration point.



Chapter 5

Homogenization error estimation

Replacement of heterogeneous body by a homogenized one with effective material pa-
rameters introduces an error, related to incomplete information about the microstruc-
ture. Thus, it may happen that the homogenization should not be used for certain part
of the domain. Therefore, estimation of homogenization (modeling) error is discussed
in this chapter. The concepts of modeling error is also employed in a different setting,
where one assesses the adequacy of relatively inexpensive models |76].

A global explicit estimate using the homogenized (coarse) elasticity tensor and the
actual fine-scale elasticity tensor was proposed by Zohdi et al. [112]. However, it is not
able to capture local error.

A scale adaptation strategy developed by Temizer and Wriggers [101] was used
to account for loss of accuracy for the finite deformation analysis of macrostructures.
In that method the adaptation zones that correspond to regions with high strain-
gradients, are identified based on a post-processing step on the homogenized solution.
Subsequently, for critical zones, exact microstructural representation is introduced,
without intermediate models.

In this section an upper bound approach |77, 105, 106| is presented, as well as other
possibilities of modeling error estimation, since this issue is essential for reliability of
the results.

5.1 Upper bound approach

This method of the homogenization error assessment is the following upper bound
proposed in [77, 105, 106|
Iy=1—-C 7 'C.y (5.1)

1/2
llu —uolle < Cupp def { /JOVUO : C A Vuy da:} (5.2)
Q

where u and ug stand for heterogeneous and homogenized solution, respectively; C and
C.ss denote elasticity tensor for heterogeneous domain and effective elasticity tensor
for homogenized body. This approach was verified on the 1D example.
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Numerical example - bar benchmark

The bar benchmark and assumed material distribution are schematically presented in
Figs. 5.1 and 5.2.
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Figure 5.2: Bar benchmark. Material distribution.

The following data were assumed: L = 1 m, P = —60 kN, ¢ = 10x + 20 kN/m,
E1 =50 GPa, E2=0.1-F1
In this 1D example effective Young modulus may be computed as [97]

E,\FE, Iy ly

Ee oy — = — = — 53
1 ny1 oy + no By " " ( )

I’ [

Thus, one may obtain derivatives of the exact solution for homogenized (ug) and
heterogeneous (u) materials:

1
I = — P L 4
ug AEeff( qr + P +qL) (5.4)
1
_ [ By (mat.1)
where: E—{ B, (mat.2)

Since the following relations hold

b
l|u — w3 = /(u’ —up)?Edx (5.6)

b 2
2, = / (1 - %) E(ul)? dz (5.7)
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after a few simplifications one obtains that in this example the inequality (5.2)
simplifies to the relation

[lu = woll% = Cipp (5-8)

Thus, this error bound in 1D example gives exact error. Moreover, it is independent
of the large difference between matrix and inclusion material data.

5.2 Estimation by subdomain solutions

Another possibility of modeling error estimation is based on the solution of heteroge-
neous problem in selected subdomains with boundary conditions assumed on the basis
of homogenized solution. Such an error estimate consists of a few steps:

STEP 1: Compute the homogenized solution in domain €.

Figure 5.3: Homogenization error. Homogenized domain.

STEP 2: Select a part of the body, where the error should be estimated and consider
heterogeneous material in this subdomain.

wug or t(ug)

Figure 5.4: Homogenization error. Cut-off part of heterogeneous domain.
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STEP 3: Solve the boundary value problem for cut-off heterogeneous subdomain with
boundary conditions resulted from homogenized solution. Obtain the solution and
consider it (u;) in a smaller truncated part of the selected heterogeneous domain
(subdomain A denoted by the red rectangle). Estimate the error between solution u;
and homogenized one u, in subdomain A

_ ||U’I - UOHA (5_9)
[[2o]] 4

<=
\ ug or t(ug) =

Figure 5.5: Homogenization error. Analysis of cut-off part of heterogeneous domain.

One may also use two additional steps.

(STEP 4:) Increase the heterogeneous cut-off part and once more solve the boundary
value problem with boundary conditions resulted from homogenized solution in order to
examine the influence of imposed boundary conditions to solution. Obtain the solution
u;; and consider it for the same truncated area A as previously.

e
08999, \ ug or t(ug) =

Figure 5.6: Homogenization error. Second cut-off part of heterogeneous domain.

(STEP 5:) If you want to estimate the quality of solution w; compute the difference
between both solutions
v = [lur —urrlfa (5.10)



Homogenization error estimation 63

Numerical example — bar benchmark

Finite element solution for bar benchmark (Fig. 5.1) is shown below.

x 10 2

0 0.2 0.4 0.6 0.8 1
z [m]

Figure 5.7: Bar benchmark. Material distribution (the horizontal line). Solution for
heterogeneous u (the continuous line) and homogenized ug (the dashed line) material.

For homogenized domain a part of the body where material is heterogeneous was
assumed and, after that, the problem with kinematic boundary conditions from ho-
mogenized solution was solved. The results may be observed in Fig. 5.8 (the green
line). The solution, which was used for error estimation u;, is denoted by the violet
line.

0 0.2 0.4 0.6 0.8 1
2 [m]

Figure 5.8: Bar benchmark. Solution u; in the selected subdomain A (the violet line).
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In the next step the heterogeneous part was increased and the new solution u;; was
computed (presented in Fig. 5.9).

x 1073

@ [m]

Figure 5.9: Bar benchmark. Solution wu;; in the selected subdomain A (the violet line).

Few possibilities of this type of error estimation were considered. The results are

compared below
HUI - UOHO,A

~ 2.57% (5.11)
[0,
[furr = wolloa 5 goor (5.12)
[ufo,jo,
W ~ 2.04% (true error) (5.13)

[lullo.jo.
Influence of boundary conditions to the solution quality

||U1 —UH||0,A

~ 0.28% (5.14)
||U||0,[0,l]

One may observe that influence of boundary conditions to the solution can be
neglected in this 1D example and the formulas (5.11), (5.12) give the reasonable ho-
mogenization error estimate.
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Numerical example — plane strain problem 1

The L-shaped domain in plane strain state was considered. The metal matrix was
reinforced by cylinder-like inclusions, distributed uniformly. Material parameters ale
collected in Tab. 4.1. Assumed boundary conditions, as well as material distribution,
are shown in Fig. 5.10.

VY

20a 50 MPa

20a

Figure 5.10: Boundary conditions for L-shaped domain. Material distribution.

In the first step effective material parameters were determined during tension test
performed on two RVE of sizes a x a and 2a x 2a. The radius of cylinder-like inclusion
was r = 0.3a. Finite element meshes obtained in adaptation processes are presented
in Fig. 5.11.

Computed effective material parameters are: Er; = 129.09 GPa, v.rs = 0.2977 (the
same result for both RVE). They are used for solution of homogeneous problem.
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Figure 5.11: RVE meshes (colors indicate order of approximation).
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In the macro-scale, for the test purposes, the computations were performed for
homogenized material with effective material data, as well as for fully heterogeneous
domain to verify the proposed error estimation approach.

The finite element discretization for heterogeneous and homogenized material are
shown in Fig. 5.12. The FE mesh for homogenized domain was generated in auto-
matic hp adaptation process. However, for heterogeneous domain only hA-refinements
were used at the interface of both materials. Contour maps of displacement vector
components for homogenized material, denoted by ul, are presented in Fig. 5.13.

iz

Figure 5.12: L-shaped domain 1. FE meshes for heterogeneous and homogenized ma-
terial.

EEREL AR

EEEEEN———T

Figure 5.13: L-shaped domain 1. Contour maps of displacement vector components
uy € [0, 0.094 m| and u, € [-0.024 m, 0.078 m| of homogenized domain.
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The entire domain was used to obtain true error in Lo norm. The displacement
solution of complex heterogeneous domain is denoted by u”, ul stands for homogenized
solution. Similar convention was assumed for stresses, as well as strains. The results
are presented below

lu” — uflloo

Tt ~ 1.08% (true error in L-shaped domain) (5.15)
U=llo,n
lo” — aflloo . .
o tllon ~ 24.22% (true error in L-shaped domain) (5.16)
|le” — &5lloe _ .

e oo ~~ 33.86% (true error in L-shaped domain) (5.17)

In the first case heterogeneous subdomain A (see Fig. 5.14) was cut-off from do-
main € with boundary conditions (displacements) resulted from homogenized solution,
approximated along edges of selected subdomain A by 8-th order Legendre polynomials
(Figs. 5.14 and 5.15).

% 16a]

12a

.............

2a 6a

Figure 5.14: L-shaped domain 1. Boundary displacement for heterogeneous subdomain
A resulted from homogenized solution (rescaled values).

Figure 5.15: L-shaped domain 1. Contour maps of displacement vector components u,
and u, with selected subdomain A.
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For the cut-off subdomain A heterogeneous material was assumed. The correspond-
ing FE mesh is shown in Fig. 5.16. The red line shows part B of the subdomain A,
where the solution was considered.

Figure 5.16: FE mesh for domain A and smaller truncated part B of the selected
heterogeneous domain (denoted by the red rectangle).

The Dirichlet boundary conditions (see Fig. 5.14), resulted from solution of homo-
genized body, were imposed to the subdomain A. The solution is shown in Fig. 5.17.
Distribution of stress component o,, in zoomed part of L-shaped with heterogeneity
that enclosed cut-off domain A and solution obtained for independent subdomain A
with kinematic boundary conditions are compared in Fig. 5.18.

Figure 5.17: Contour maps of displacement vector components
u, € 10.008 m, 0.026 m| and u, € [-0.011 m, 0.003 m| of domain A.
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Figure 5.18: Contour maps of stress component o,, € |[-20 MPa, 40 MPa| for zoomed
part of L-shaped domain and domain A.

Estimates of modeling error are collected below, where u, o and e stand for the
solutions in subdomain B obtained by analysis in subdomain A

s = 2~ 0.91% (error in subdomain B) (5.18)
[[ug]lo,s
L
w ~ 22.08% (error in subdomain B) (5.19)
o o5
—— 77— ~35.73% (error in subdomain B) (5.20)
|leg o,

[l — ug]lo.s

Tl ~ 0.64% (true error in selected part of L-shaped domain) (5.21)
Uu~||o,B

L L
HUH L‘(‘TO llo.5 ~ 21.68% (true error in selected part of L-shaped domain) (5.22)
d~llo0,B

||€L - soLHo,B

Tl ~ 34.13% (true error in selected part of L-shaped domain) (5.23)
€71lo,B
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In the next case heterogeneous subdomain C' (see Fig. 5.19) was cut-off from domain
). The corresponding boundary conditions resulted from homogenized solution are
shown in Figs. 5.19 and 5.20.

6a ""'

" % § PN O S—

14a 18a

Figure 5.19: L-shaped domain 1. Boundary displacement for heterogeneous subdomain
C resulted from homogenized solution (rescaled values).

Figure 5.20: Contour maps of displacement vector components u, and u, with selected
subdomain C.

The solution resulted from prescribed Dirichlet boundary conditions is shown in
Fig. 5.21. Contour maps of stress component are presented in Fig. 5.22.
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Figure 5.21: Contour maps of displacement vector components u, € [0.06 m, 0.08 m]
and u, € [0.045 m, 0.067 m| in domain C.

Figure 5.22: Contour maps of stress component o,, € [20 MPa, 80 MPa| for zoomed
part of L-shaped domain and subdomain C'.

Estimated modeling errors in subdomain D are as follows

[lw — ug]lo.o

s ~ 0.03% (error in subdomain D) (5.24)
[luglo.p
L
HJLﬂ ~ 28.43% (error in subdomain D) (5.25)
o llo.0
————— ~36.20% (error in subdomain D) (5.26)
lleg lo.0

||UL - UoLHo,D

Tl ~ 1.18% (true error in selected part of L-shaped domain) (5.27)
u~lo,p

L L
||JH Lﬁ-o [lo.0 ~ 25.8% (true error in selected part of L-shaped domain) (5.28)
o~llo,D
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" — &5 llo.o

el ~ 33.44% (true error in selected part of L-shaped domain) (5.29)
€”|l0,D

The vicinity of reentrant corner was also considered (see Figs. 5.23, 5.24). The
known Neumann boundary conditions were taken into account on two edges, however
the Dirichlet boundary conditions resulted from the homogenized solution may be also
considered.

12a S

8a, T — ol
8a 12a

Figure 5.23: L-shaped domain 1. Boundary displacement for heterogeneous subdomain
E resulted from homogenized solution (rescaled values).
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Figure 5.24: L-shaped domain 1. Contour maps of displacement components
u, € [0.026 m, 0.049 m| and u, € [0.011 m, 0.034 m| in domain F.

The corresponding modeling errors are presented below

l|u — uoL||0,F

s ~ 0.13% (error in subdomain F) (5.30)
[lugllo.r
_ L
w ~ 28.12% (error in subdomain F) (5.31)
loglo.r
|le — &gllo,r . .
———————— ~ 34.52% (error in subdomain F) (5.32)

et lo.r
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One may observe that the modeling error for stresses or strains is larger than for
displacements. This is a consequence of stress concentration at material interfaces and
large changes in material parameters for heterogeneous body.

Numerical example — plane strain problem 2

In the next example the L-shaped domain with different boundary conditions (see Fig.
5.25) was analyzed. Distribution of heterogeneity (cylinder-like inclusions), material
data and corresponding material parameters (also effective ones) were the same as in
the previous example.

AY

20a

v,

20a

Figure 5.25: Boundary conditions for L-shaped domain, q=—2y(y — 10a) MPa.

Finite element mesh obtained during automatic adaptation process for domain with
homogeneous material is presented in Fig. 5.26. Displacement solution is shown in Fig.
5.27.

Figure 5.26: L-shaped domain 2. FE meshes for homogenized material (colors indicate
order of approximation).
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Figure 5.27: L-shaped domain 2. Contour maps of displacement vector components
Uy € [-0.0002 m,0.092 m| and u, € [-0.025 m, 0.114 m| of homogenized domain.

The subdomain C' (see Fig. 5.28) was cut-off from L-shaped body and subjected
to the kinematic boundary conditions resulted from homogenized solution.

6a

C/ % 22, [ L

14a 18a

Figure 5.28: L-shaped domain 2. Boundary conditions for heterogeneous subdomain
C resulted from homogenized solution.

The following modeling error norms were evaluated

= wlon oo o s |
51— ~ 0.05% (error in subdomain D) (5.33)
[|ug o,
_ L
w ~ 19.7% (error in subdomain D) (5.34)
llogllo.n
||5—€5||0,DN . .
——————— &~ 36.7% (error in subdomain D) (5.35)

lledlo.o
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In the next case surrounding of the reentrant corner E (see Fig. 5.29) was cut-off
from the L-shaped domain. The corresponding kinematic boundary conditions resulted
from homogenized solution were assumed.

‘ 12a S

8a SRR =

8a 12a

Figure 5.29: L-shaped domain 2. Boundary conditions for heterogeneous subdomain
FE resulted from homogenized solution.

In this example computed errors are:

||U—U5||0,F

- ~ 0.5% (error in subdomain F) (5.36)
|lug|lo.r
_ L
w ~ 18.56% (error in subdomain F') (5.37)
logllo.r
lle — eollor - 36559 i i
————— ~36.28% (error in subdomain F) (5.38)
lleglo.r

Stress and strain errors are at the same level, while displacement error is ten times
larger.

The above described method of homogenization error estimation additionally de-
livers information about solution at the micro-level that may be necessary e.g. for
debonding or crack propagation analysis. The algorithm was verified on linear exam-
ples only, however, it can be also used for inelastic analysis.

5.3 Estimation based on residuum

By analogy to the explicit residual error indicator for FEM solution |7, 8| the residuum,
i.e. the difference between left and right hand sides of the governing differential equa-
tion, when the solution approximation is plugged into the equation, is used to bound
the solution error.
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The proposed algorithm of homogenization error estimation may be stated in the
following way:
1. Compute effective material parameters for homogenized domain.
2. Solve homogenized problem with effective properties — u° (Eq. (2.2)).

3. Compute residuum R of Eq. (2.1) for heterogeneous body substituting
homogenized solution u° in selected sub-domains, e.g. in each finite element
in the macro-scale.

Residuum of the equation
L(u) = f has the form R = L(u))— f (5.39)

where: L(-) is a differential operator, u) is a finite element approximation of
the solution. In fact, R is a distribution. Its norm, which we are interested
in, may be bounded by the norms of regular part of R and jumps of the
first derivatives of solution.

For the linear elasticity problem the regular part

ry = p(ud .+ u?,ij) + )\u%kjéij — fi in wy 1,j=1,2,3 (5.40)

1,37

where 1 and A are the material parameters for heterogeneous domain, u’
is a homogenized solution, wy stands for a union of a finite element and a
domain with continuous material properties.

4. Compute jumps of tractions at interfaces of finite elements (denoted by Jf)
and material components (denoted by J")

JE =t —t; on dw, 4,5 =1,2,3 (5.41)

J=t" " on Qw, Cw, 0,5 =1,2,3 (5.42)

2

where Ow;. denotes common edge of adjacent elements, Ow,, stands for ma-
terial (m1, m2) interfaces.

5. Wherever
nr = || R|lo + h'?||T¢[lo + B[] T™||o (5.43)

is large, homogenization should not be used.

A reasoning of this estimation for linear problems may be explained on a simple 1D
problem. Let us consider the differential equation for the bar problem (section 3.1)

_d% (E%) _ % (5.44)

Its residuum for function ug has the form

r= d% (E%) + @ = C%(Eug) 442 (5.45)
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The term EM may be discontinuous due to a jump of either the first derivative of

ug at element interfaces or material parameters at material interfaces.
Therefore

Euy inside element and material component
r— q(z) +{ A(Eug)o(x —a;)  on element interfaces (5.46)

up(a;) AEO(z — a;) on material interfaces

where AE = Ey — Ej, 0 denotes Dirac delta pseudo-function, A(Ewuy) denotes jump
of the term (Ewuf). Consequently, the residual error indicator is computed using Eq.
(5.43).

Selected numerical examples will illustrate the proposed method.

Numerical example — plane strain problem 1

The proposed residual approach was examined on the same L-shaped examples, as in
the previous section.

First, example with the L-shaped domain with boundary conditions presented in
Fig. 5.10 was considered. Contour map of selected stress component, both for hetero-
geneous and homogenized material, is shown in Fig. 5.30.

Figure 5.30: L-shaped domain 1. Contour maps of stress component o,, in truncated
range [-50 MPa, 50 MPa| for heterogeneous and homogenized materials.
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Figure 5.31: L-shaped domain 1. Initial discretization (second order shape functions)
for homogenized material.

Error indicator with neglected, for the sake of simplicity, traction jumps at the
element interfaces, i.e. np = h||R|| + h'/?||J™||, was calculated for each element
and the admissible error level of 2000 MN//m was assumed. Its distribution allowed
to localize parts of the domain, where homogenization introduced the largest error
(Fig. 5.32). For 5 finite elements ng exceeded an acceptable limit value, thus in these
elements heterogeneous material was considered with new mesh discretization shown
in Fig. 5.33. That mesh should account for material heterogeneity in specified region
with, as fast as possible, coarsening for the remaining homogenized part.

4500

40001 i

35001 b

3000 1

2500r

R

= 2000

1500F

1000r

5001

0 10 20 30 40 50 60 70 80
element

Figure 5.32: L-shaped domain 1. Distribution of error indicator.
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Figure 5.33: L-shaped domain 1. New material distribution. Finite element mesh after
10 hp-adaptation steps (colors indicate order of approximation).

The results obtained for homogenized domain and partially heterogeneous body
(Fig. 5.33) are compared in Figs. 5.34 — 5.41 along selected segments and in Tab. 5.1.
The fully heterogeneous solution was also calculated to verify approximated results.
One may observe that partially homogenized solution gave better adjustment to real
heterogeneous domain in parts of the body, where the material was considered as
heterogeneous.

0.1
0.08r B
— 0.06r 8
=l
A R
- = 0.04f 1
—heterogeneous
0.02 —homogenized .
g —— partially heterogeneous
\\\ 0 i i i
0 5 10 15 20 25 30
B s |m|

Figure 5.34: L-shaped domain 1. Displacement component u, along segment AB.
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0.07r
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0.05¢

0.041

0.03f

u, [m]

0.02r

—heterogeneous
—homogenized 7
— partially heterogeneous

0.01

~0.01, 5 10 15 20 25 30

s [m]

Figure 5.35: L-shaped domain 1. Displacement component u, along segment AB.
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Figure 5.36: L-shaped domain 1. Stress component o,, along segment AB.
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Figure 5.37: L-shaped domain 1. Stress component o,, along segment AD.
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Figure 5.38: L-shaped domain 1. Stress component o,, along segment AB.
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Figure 5.39: L-shaped domain 1. Stress component o,, along segment C'D.
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Figure 5.40: L-shaped domain 1. Stress component o, along segment C'D.
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0
—heterogeneous
—homogenized
=201 — partially heterogeneous| 1
s -40r i
=
g
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-100 : ‘ : :
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Figure 5.41: L-shaped domain 1. Stress component o,, along segment C'D.

‘ method H formula ‘ homogenization error estimate
.. o -0’
homogenization N1g*~0"llo,jc.0) 20.4%
: o ||0,|[|C,D]
. . . Uaiac O,[C,D]
partially homogenization 6ot m 16.5%

Table 5.1: L-shaped domain. Estimation of modeling error. ¢, a°, o¢ denote stress

tensors for heterogeneous, homogeneous and partially heterogeneous materials, respec-
tively.

Numerical example — plane strain problem 2

In the next example the L-shaped domain with the boundary conditions, schematically
presented in Fig. 5.25, was analyzed. Contour maps of stress component o, in the L-
shaped domain with heterogeneous and homogenized material are shown in Fig. 5.42.
Distribution of error indicator ng = h||R|| + h/?||J™|| for discretization shown in Fig.
5.31 was calculated (see Fig. 5.43). Similarly, as in the previous example J¢, for the
sake of simplicity, was neglected. The admissible error level of 2500 MN/y/m, was
assumed. For partially heterogeneous domain new mesh discretization was obtained
(Fig. 5.44). Solutions for homogenized, partially heterogeneous and fully heterogeneous
domain were compared along selected segments. Their comparison is shown in Figs.
5.45 — 5.47. One may notice a good compliance of the true heterogeneous solution with
results calculated for partially homogenized domain.
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L3

Figure 5.42: L-shaped domain 2. Contour maps of stress component o,, in truncated
range [-80 MPa, 80 MPa| for heterogeneous and homogenized materials.

5000

4500

40001 7

3500

3000r 1

2500 i i
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element

Figure 5.43: L-shaped domain 2. Distribution of error indicator for each element.
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Figure 5.44: L-shaped domain 2. Assumed material distribution and finite element
mesh after 10 hp-adaptation steps (colors indicate order of approximation).

0.1
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Figure 5.45: L-shaped domain 2. Displacement component u, along segment AB.
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Figure 5.46: L-shaped domain 2. Displacement component u, along segment AB.
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Figure 5.47: L-shaped domain 2. Stress component o,, along segment AB.
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Numerical example — L-shaped domain in 3D

Computations were also performed in 3D for the composite with periodic microstruc-
ture (matrix reinforced with ball-like inclusions) in elastic range (material parameters
are presented in Tab. 4.1). The considered problem is schematically presented in Fig.
5.48. One wall, denoted by black color, was clamped. The model was loaded tangen-
tially in y direction. The homogeneous Neumann boundary conditions were assumed
on the other parts of the boundary.

20a

Figure 5.48: L-shaped domain 3. Boundary conditions and a cross section.

Similarly, as for the 2D problems, the following three cases were considered:

1. the full heterogeneous domain with ball-like inclusions regularly distributed in
the volume (analyzed by brute force method to obtain a reference solution)

2. homogenized domain with effective material parameters obtained during RVE
analysis

3. partially heterogeneous domain after error estimation.
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1. Computations for heterogeneous domain

The model was discretized by brick elements with second order shape functions
(Fig. 5.49).

Figure 5.49: L-shaped domain 3. FE discretization (second order shape functions).

Contour maps of the solution u, and stress component o, are shown in Figs. 5.50
and 5.51, respectively. The maximum value of stress oy, is about 800 MPa (near the
point of singularity), minimal value is approximately equal to —550 MPa.

Figure 5.50: L-shaped domain 3. Contour maps of solution component u, and stress
component o, .



Homogenization error estimation 89

Figure 5.51: L-shaped domain 3. Contour map of stress component oy, in cross section
and in selected subdomain.

2. Computations for homogenized domain

In the next step computations were carried out for the homogenized material. Effec-
tive material parameters were obtained by numerical simulations of tensile test per-
formed on RVE in the micro-scale (described in chapter 4). Finite element mesh was
obtained in the process of automatic hp-adaptation (Fig. 5.52). Contour map of the
stress component oy, is shown in Fig. 5.53.

Figure 5.52: L-shaped domain 3. Discretization.
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Figure 5.53: L-shaped domain 3. Contour map of stress component
oy € [-300 MPa, 1200 MPa|.

3. Computations for partially heterogeneous domain

In order to estimate the modeling error, residuum of the equilibrium equation ful-
fillment was calculated using formula (5.40) (no jumps of tractions were taken into
account). Its distribution allowed to localize parts of the domain, where the solution
was the most inaccurate. Two cases with different limit value of accepted residuum,
were considered. Initial mesh for homogenized domain that was used for residuum
estimation, is shown in Fig. 5.54. Two cases of further analysis are presented below.

Figure 5.54: L-shaped domain 3. Discretization (second order shape functions).
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CASE 1

After calculating the error indicator of each element, shown in Fig. 5.55, the admis-
sible residuum level, which equals 10 MN /y/m, was assumed. For the 5 finite elements
residuum exceeded an acceptable limit value. Thus, in these subdomains heteroge-
neous material was assumed with new mesh discretization shown in Fig. 5.56. The
corresponding contour maps of stress tensor component o, are shown in Figs. 5.57
and 5.58.

70

60r N

501 N

residuum

20+ | A
0 I I

0 10 20 30 40 50 60 70 80
element

Figure 5.55: L-shaped domain 3. Residuum of each element.

///////////Q
Ax ST T L AT

L T

Figure 5.56: L-shaped domain 3. Finite element mesh after h-adaptation. Material
distribution in domain and its cross section.
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\|

Figure 5.57: L-shaped domain 3. Contour map of stress component
oyy € [-500 MPa, 1000 MPa].

Figure 5.58: L-shaped domain 3. Contour maps of stress component o, in cross section
and in selected subdomain.

CASE II

In the second case admissible residuum level equal 4 MN/y/m was assumed (Fig.
5.59). Consequently, residuum exceeded the limit value for 9 finite elements and in
these subdomains the exact microstructure was assumed. The resulting partially het-
erogeneous domain and finite element discretization are presented in Fig. 5.60. Contour
map of stress component o, is shown in Fig. 5.61.
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Figure 5.59: L-shaped domain 3. Residuum of each element.
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Figure 5.60: L-shaped domain 3. Finite element mesh after h-adaptation. Material
distribution.
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Figure 5.61: L-shaped domain 3. Contour map of stress component
oyy € |-450 MPa, 960 MPal].

The results obtained by discussed approaches for one component of the stress tensor
along the selected segment AB are compared in Fig. 5.62. Modeling error estimation
for various cases of this example is summarized in Tab. 5.2.

8001
—heterogeneous
homogenized
600+ - - -partially heterogeneous (CASE II)
- - -partially heterogeneous (CASE 1)

2001
A== M-}’A}y | M'N
\\ OF ~ =~ PO o ! “\‘\\
_200 L L L L L L H‘ I}
0 5 10 15 20 25 30
B s [m]

Figure 5.62: L-shaped domain 3. Stress component o, along segment AD.
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‘ method H formula ‘ homogenization error estimate

a _ b

homogenization Ww 27.6%
L 1iy C0,[14,]56’]

partially homogenization (CASE I) W 19.8%

vy 214,

partially homogenization (CASE II) || 12 %wlbian 18.1%

||<7yyH0,[A,B]

Table 5.2: L-shaped domain. Estimation of modeling error. oy, , U,ng o, denote stress

component o, for heterogeneous, homogeneous and partially heterogeneous materials,
respectively.

Numerical example — cantilever beam with extra layers

In the next test a cantilever beam with extra layers, presented in Fig. 5.63, was
analyzed as a 3D body. Metal matrix was reinforced by ball-like metallic inclusions,
distributed periodically (material parameters assumed for this composite are presented
in Tab. 4.1). The layers were made of homogeneous, weaker than the other components
material.

Figure 5.63: Cantilever beam. Boundary conditions (black — fixed face, red — vertical
downward loading of 80 kN/m?, other faces - zero loading).

1. Computations for heterogeneous domain

Fig. 5.64 illustrates heterogeneous domain and finite element discretization. Com-
puted displacement component u. and the stress component o,, are shown in Figs.
5.65 and 5.66.
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Figure 5.64: Cantilever beam. Material distribution.

777

A A A A A A A O
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Figure 5.66: Cantilever beam. Contour map of stress component o,, € [-918 MPa,
918 MPa] in cross section and in selected subdomain.
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2. Computations for homogenized domain

Finite element discretization for homogenized domain is shown in Fig. 5.67. Com-
puted stress component oy, is presented in Fig. 5.68.

Y

Figure 5.67: Cantilever beam. Discretization.

v

Figure 5.68: Cantilever beam. Contour map of stress component o, € [-870 MPa,
870 MPa|.

3. Computations for partially heterogeneous domain

The initial discretization for homogenized material is shown in Fig. 5.69. After
solution of homogenized problem the residuum (5.40) was estimated for each finite
element (no jumps of tractions were considered). Its distribution is shown in Fig. 5.70.
In the elements, where residuum reached value 4 MN/y/m and more it was assumed
that the homogenization would introduce too high error.
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Figure 5.69: Cantilever beam. Discretization of a model.
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Figure 5.70: Cantilever beam. Distribution of residuum in finite elements.

Part of the domain (8 elements), where the material should have been modeled
as heterogeneous one, was selected and new discretization was assumed (Fig. 5.71).
For component of stress tensor o,, (Fig. 5.72) extreme values are similar to results
obtained for fully homogenized domain (see Fig. 5.68).
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RN

Figure 5.71: Cantilever beam. Material distribution in the cross section. h-adaptive
refinement of the domain and its cross section.

Figure 5.72: Cantilever beam. Contour map of stress component o,, € [-962 MPa,
962 MPa| in cross section.

Comparison of stress component o, along selected segment EF' obtained in diffe-
rent ways is shown in Fig. 5.73 and in Tab. 5.3. It may be concluded that computations
based on homogenization approach are slightly overestimated, so they are on the safe
side and require much less computational time than the direct approach.
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Figure 5.73: Cantilever beam. Component of stress tensor o, along segment E'F.

‘ method H formula ‘ homogenization error estimate

. . o8 —a?
homogenization Ny =oullo.te.r) 25.5 %
llogyllo. (B, F

. . . ol —of
partially homogenization Nowy—sullo.(e.r) 18.0 %
llogyllo.5,F

Table 5.3: Cantilever beam. Estimation of modeling error. oy, , agy, oy, denote stress

component o, for heterogeneous, homogeneous and partially heterogeneous materials,
respectively.

One may observe in this case improvement of solution accuracy in a larger domain
than the area, where heterogeneous material was assumed, even though the solution
in this area is still inaccurate. The residual modeling error estimate gave reasonable
results, even though not all terms of Eq. 5.43 were used.



Chapter 6

Automatic hp adaptation for inelastic
problems

It was already mentioned that the automatic Ap mesh adaptation, developed by Demko-
wicz and coworkers [26, 27, 29, 102|, was successfully used for various linear problems.
In this section convergence of hp adaptation strategy for elastic-plastic problems is
examined and some modifications of the algorithm are proposed.

Applications of the adaptive meshing in plasticity were initiated in the eighties.
Cheng [20], as well as Zienkiewicz and coworkers [111]|, developed this approach to
metal forming processes. Peric, Dutko and Owen [81, 82| presented adaptive FEM
solutions for large strain plasticity, Cramer et al. [24] applied partitioning of elements
to associative and non-associative plasticity. The p-adaptive FEM was reported to be
efficient approximation to physically nonlinear problems by Diister and Rank [30]. The
rp-adaptive approach was used by Niibel and coworkers [73| to adjust finite element
mesh to elastic-plastic border in order to take into account the loss of regularity.

According to reported in literature experience [11, 19, 37, 83|, inelastic deformations
should be accounted for in a special way in a-posteriori error estimates in order to
obtain appropriate stress approximation accuracy. In this section modification of hp-
mesh refinement by additional A-refinement along the elastic-plastic interface, which is
a place of lower solution regularity, is studied.

In all the examples described in this work loading was applied in one step. There-
fore, there was no need for solution transfer. However, if more steps were used the
solution transfer might be comparatively easily performed since the mesh is refined by
subdivision of the elements [109).

6.1 1D numerical examples

First 1D numerical tests were performed for the following problem modeling a homo-
geneous bar subject to axial body force: find displacement u(x,t) € C°(0,1) (piecewise
C?), total strain e(x,t), stress o(x,t), plastic multiplier v(z,t) (y(x,t) =0 in w,) and
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inelastic strain eP(x,t) € C°, such that

( do

I = —q(z) Vo € we or w,
0 =F(—¢&P) Vo € we or w,
. du
€= dr Va € we or w,
P = 2y(c — HeP) Vz € we or w, (6.1)
7>0, ¢<0, 7% =0 Vzecw orw, '
¢(o) = (0 — HeP)? — (0¥)? Vz € w, or w,
u(0) =0
du
\ %\ax:L =0

supplemented with initial conditions and standard compatibility conditions at elastic-
plastic interfaces. The axial loading was assumed as

q(z) = —sin (27x) 20¥7

Accuracy of integration in semi-time 7 depends primarily on accuracy of stress
approximation in space, since both plastic multiplier and plastic strain rate are de-
termined by stress rate. It is worth to notice that incremental application of loading
reduces number of iterations and prevents numerical solution from coming too far away
from the true one.

The following material properties were assumed: Young modulus £ = 200 GPa,
Poisson ratio v = 0.3, yield stress limit ¢¥ = 200 MPa and hardening parameter
H=02FE;L=1m.

Exact solution of this problem is presented in Figs. 6.1 and 6.2 in order to illus-
trate lower solution regularity at the elastic-plastic interface. Exact displacements and
stresses are given by the formulas presented below

u(z) = =% [(sin 27%) 5= — ] Vz € [0, £) (elastic part)
u(z) 2” "L gin 222 4 ey 4+ M vz € [£, 2] (plastic part)
oY 3L

u(e) = —ZLsin 22 4 oV (4 3L) + M +0¥L (72 + £) o € (3£, L) (elastic part)
(6.2)
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Figure 6.1: 1D example. Exact displacement and stress.
-3
-3 x 10
7X 10 7
6 o
5 5
4t 4
w SH
3 o 3
2r 2
1 1t
0 : : : ‘ 0 : : : :
0 0.2 0.4 .6 0.8 1 0 0.2 0.4 .6 0.8
2 [mf z [m

Figure 6.2: 1D example. Exact strain and plastic strain.

First, p-stability for presented example was verified and the results presented in
Fig. 6.3 indicate that p-enrichment is reasonable for our problem since it reduces the
error. We may observe limit of convergence for p-stability, but it is caused by set of

yield condition fulfillment accuracy.
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Figure 6.3: First 1D example. p-stability for meshes that initially did or did not comply

with elastic-plastic zones.
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The main objective of the tests was verification whether the fully automatic hAp-
refinements should be complemented with additional h-refinements (or p-enrichment)
in vicinity of the elastic-plastic zone.

Since the rate of convergence is much better for the meshes that initially comply
with the elastic-plastic interface, the numerical analysis with two initial meshes was
performed in order to examine the adaptation process for inelastic problems. In the
first case the initial finite element mesh complied with a-priori known elastic and plastic
zones, while in the second case initial mesh was independent of yielding. In the second
case we have observed that after few automatic adaptation steps the mesh accommo-
dated to elastic-plastic interfaces at points z = 0.25 and x = 0.75 (first 1D example),
as may be observed in Fig. 6.4. Convergences of the error norm for various refinement
strategies are compared in Figs. 6.5, 6.6. One may observe that in the first case, i.e.
with initially detected elastic-plastic interface, the results are better.

ta

p=l

Figure 6.4: First 1D example. Initial and hp-refined meshes.
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Figure 6.5: First 1D example. Convergence test for the mesh that initially complied
with elastic-plastic zone. A — uniform refinement, B — h-adaptation, C — automatic
hp-adaptation with additional A-refinements of neighboring elements, D — automatic
hp-adaptation.
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Figure 6.6: First 1D example. Convergence test for the mesh that did not comply
with elastic-plastic zone. A — uniform refinement, B — h-adaptation, C — automatic hp-
adaptation with additional p-enrichment, D — automatic hp-adaptation, E — automatic
hp-adaptation with additional A-refinements.

To make an example more realistic the elastic-plastic interfaces at arbitrary points
x = 0.23456789 and x = 0.703703670 were assumed (second 1D example). Obviously,
in this case only meshes that did not comply with elastic-plastic interface were used.
The corresponding plastic strain distribution and the resulting mesh refinements are
presented in Fig. 6.7. In this example the p-stability was also observed (Fig. 6.8) and
convergence of error norm for different refinements is presented in Fig. 6.9.
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Figure 6.7: Second 1D example. Plastic strain and mesh after few steps of hp-
adaptation.
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Figure 6.8: Second 1D example. p-stability.
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Figure 6.9: Second 1D example. Convergence test for mesh that did not account for
elastic-plastic zone. A — uniform refinement, B — h-adaptation, C — automatic hp-
adaptation with additional h-refinements, D — automatic hp-adaptation.

Since 1D problems may exhibit super convergence properties the further tests were
performed for 2D examples.
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6.2 2D numerical examples

To verify the proposed modification the computations were performed also in 2D for
homogeneous and heterogeneous (RVE) materials. For considered examples the plane
strain state was assumed. In 2D examples additional h-refinements for elements with
both elastic and plastic zones were performed uniformly or in an anisotropic way in
order to better fit to the zones.

Let us consider four closest to vertices Gauss integration points. If only at two of
those points located near one common edge (marked by the red color in Fig. 6.10)
material yields, then the element is partitioned in the direction perpendicular to that
common edge, otherwise uniform refinement is performed.

(e} (o)

or —
L] )
6] L] [ (&)

o | =
o ] ® e}

Figure 6.10: Cases of additional anisotropic element refinement.

Homogeneous domain — thick-walled cylinder test

A quarter of a thick-walled cylinder with radii 1 m and 2 m, loaded by internal pressure
p = 120 MPa that resulted in yielding at points in distance smaller then ~ 1.226 m
from the center was analyzed. The following material data were assumed for hete-
rogeneous domain: Young modulus £=200 GPa, Poisson ratio v = 0.3, yield limit
oY = 200 MPa, hardening parameter H = 0.1F.

The finite element mesh initially did not comply with the elastic-plastic interface
and consisted of 8 second order isoparametric elements (2 in the radial and 4 in the hoop
directions). Automatic hp-adaptation was performed in the standard way (FE mesh
after a few steps of adaptations is shown in Fig. 6.11) and it was compared with some
other possible refinements (Fig. 6.14). In one of them hp-adaptation was augmented
with additional h-refinements in the radial direction for elements, which contain points
of both elastic and plastic zones (Fig. 6.12). It may be observed that automatic
mesh adaptation (Fig. 6.11) gave FE mesh with smaller element concentration near
edges. Presumably, this is a consequence of the no penetration symmetry conditions
enforcement by penalty function. The proposed modification, based on additional
refinements, resulted in better convergence and higher order approximation in the
elastic zone. For comparison, finite element mesh, which complies with elastic-plastic
interface was assumed (Fig. 6.13) and automatically refined. As one may expect in
such a situation the best convergence was observed.
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NDOF=9554

Figure 6.11: Cylinder test. Mesh after 20 steps of hp-refinements.

NDOF=2082

Figure 6.12: Cylinder test. Mesh after 14 steps of modified hp-refinements.
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Figure 6.13: Cylinder test. Initial and refined (in 13 hp-steps) meshes.

error norm

| NDOF

10° 10° 10*

Figure 6.14: Cylinder test. Convergence of error norm. A — uniform refinement, B —
h-adaptation, C — original automatic hp-adaptation, D — automatic hp-adaptation with
additional h-refinements of elements containing elastic-plastic interfaces, E — automatic
hp-adaptation for mesh, which initially complies with known elastic-plastic interface.
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Homogeneous domain — perforated plate

A quarter of a perforated plate in the plane strain state with constant loading was
analyzed as a next test. Material parameters were the same as in the previous test.
Assumed boundary conditions and loading are shown in Fig. 6.15. The next figures
present meshes obtained by fully automatic refinement of hp and h-type (Fig. 6.16), as
well as after additional h-refinements along elastic-plastic interface (Fig. 6.17). In this
example such a modification of adaptation process did not improve error convergence
and the best one was observed for the original algorithm. However, the number of
necessary adaptation steps that guarantees results with assumed accuracy was reduced.
The overall time of computation is shown in Fig. 6.18. One may conclude that the
original automatic hp adaptation is faster than the modified one.

— 200MPa

Im

NDOF=3944 NDOF=18358

Figure 6.16: Perforated plate. Meshes after 20 steps of hp-refinements and 16 exclu-
sively h-refinements.
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Figure 6.17: Perforated plate.
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Mesh after 15 steps of modified hp-refinements and
convergence history (A — adaptive h-refinement, B — automatic hp-adaptation with
additional h-refinements, C — original automatic hp-adaptation).
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Figure 6.18: Perforated plate. Comparison of computation time (the continuous blue

line — original hp-adaptation process, the dashed red line — original hp-adaptation
process modified by additional h-refinements).
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Heterogeneous domain — RVE with a cylinder-like inclusion

In the next test RVE with a cylinder-like inclusion was considered. Both materials un-
derwent elastic-plastic deformations with kinematic hardening (Tab. 4.6). The model
was loaded by constant loading ¢ = 220 MPa. Boundary conditions and equivalent
plastic strain distribution are shown in Fig. 6.19. The initial mesh and mesh after
h-adaptive refinements are presented in Fig. 6.20. Using additional refinement the
interface between elastic and plastic zones was successfully detected (see Fig. 6.21).
Convergence history is shown in Fig. 6.22. Similarly as in the previous plate example
the additional anisotropic refinements of elements with elastic-plastic borders reduced
the number of necessary steps of refinements.
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Figure 6.19: RVE. Boundary conditions, elastic and plastic zones.
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Figure 6.20: RVE. Initial mesh and after 20 steps of adaptive h-refinements.



Automatic hp adaptation for inelastic problems 113

NDOF= 21048 NDOF= 54052

Figure 6.21: RVE. Mesh after 40 steps of original and 20 steps of modified hp-
refinements.
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Figure 6.22: RVE. Convergence history (A — adaptive h-refinement, B — automatic
hp-adaptation with additional h-refinements, C — original automatic hp-adaptation).

6.3 Sequel of tests

Only in the case of a cylinder modification of the fully automatic hp-adaptation resulted
in a speed up of the convergence. Presumably the reason for significant improvement
only in this case was the shape of the elastic-plastic interface, which could have been
relatively easily captured in the cylinder. Therefore, the proposed modification of the
fully automatic hp mesh refinement for elastic-plastic problems should probably be
supplemented with the r-adaptation, similarly as it was done for p-refinements |73].
In all these nonlinear problems the automatic hp-adaptivity resulted in the fastest
convergence but of algebraic rather than exponential type.



Chapter 7

Mixed finite element method

The finite element method, in which at least two fields e.g. displacements and stresses
are approximated independently, is called the mixed method. One introduces stresses
to a formulation in order to improve their convergence and obtain well-posed formu-
lation for incompressible materials. Independent approximation of stresses is useful in
multiscale computations, where homogenization is based on evaluation of stress solu-
tions in the lower scale.

Applications of mixed finite elements have been developed since the seventies, es-
pecially by Brezzi [16], Crouzeix and Raviart [25], Raviart and Thomas [87] or Arnold
2, 3, 4].

Stable mixed finite elements for solid mechanics are very difficult to construct.
They have to provide symmetry of stress tensor and continuity of only traction across
interelement boundaries rather than all the stress components.

7.1 Problem formulation
The equations of linear elasticity can be written in the following form:

(e(u)=C'o inQ
diveo = -b in Q
u=1u on 0{)p (7.1)

on=t on 0y

\

where C' is a tensor of elastic material parameters and b denotes body forces.

In order to formulate the elasticity problem weakly let us multiply Eq. (7.1); and
Eq. (7.1)3 by test functions 7 € L*(Q,S) and v € L*(,V), respectively. Here S
is the space of second order symmetric tensors Rgjj and V is the vector space R™.
Integration by parts of the first equation results in the following weak formulation
that is a counterpart of the Hellinger—Reissner principle: find o € Hy(div,€,S) and

u € L*(Q,V), such that:

fTZCilo'dQ—i-fdiVT-’u,dQ = f’r'n,-'&ds
Q Q a0

Jv-dive dQ =—[v-bdQ (7.2)
Q Q
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V1 € Ho(div,,S), VwvelL*Q)

where Hy(div, 2, S) and H;(div, 2, S) stand for stresses with square integrable diver-
gence and vanishing or equal to g tractions on 0y, S is the space of second order
symmetric tensors, @ is displacement known on 0Qp, 90QpUOQ N = 0, O0pNIQN = 0.

The choice of the shape function spaces for such a formulation is not trivial. E.g.,
considering the resulting system of algebraic equations

Apxm  Brxn u | |cC
L, ] Le - Le) =
the relation m > n must be satisfied to avoid singularity. More precise conditions are

specified by the inf-sup theorem [5], recalled below.
Assuming denotations

a(t,o) = / T:C 'odQ, b(T,u) = / divr - u dQ (7.4)
0 Q

it states that if:
1. a(t,0) =a(o,T) (symmetry)
2.3M >0:a(r,o) <M ||| [lo]|  (continuity)
3. da>0:a(r,7) > af|7|? (coercivity)

4. AN > 0:b(T,u) < N ||7]| ||u]| (continuity)

5. 36> 0 Supr ey (divay BEPL > B lol] Vo € (Lo()?

then there exists a unique solution of problem (7.2).
Usually, it is more convenient to verify commutativity of the de Rham diagram [17]

C>(Q,S) —% ¢ (0, R?)

. e

Eh div Vh

where II,, Pj, are projections defined by the finite element degrees of freedom. It
guarantees stability and convergence of the mixed model (fulfillment of the inf-sup
theorem).

Summing up the main features of the approximation should be as follows:
- continuity requirement for traction (on) across the interelement boundaries
- discontinuous approximation of displacement field u

- the relation between orders of approximation should be determined by the exact
sequence (Xy, A Y —s0 [33])
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- de Rham diagram should commute

- hp refinements should be possible.

Since enforcement of symmetry together with traction continuity is a very difficult
task for arbitrary order and shape of finite elements, one may use a modified weak
formulation [4, 85| with build in condition of stress tensor symmetry.

The problem may be formulated in the following way: find o € H;(div, Q, M),
u € L*(,V) and p € L*(Q,K) such that:

f’r:Cilo'dQ—i—fdiV'r-udQ—I—fT-de: [ Tn-ads
Q Q Q o0
év-divadQ:—évth (7.5)

[q-0d2=0
0

V1 € Ho(div, O, M), Vo el?Q,V), Vqel*Q,K)

where M is the space of second order (now, not necessary symmetric) tensors, K is the
space of skew-symmetric tensors.

7.2 Discretization

The last formulation was used for 2D problems and discretization described below. 9
node quadrilateral elements, shown schematically in Fig.7.1, were used. The nodes are
ordered in the following way:

e vertex nodes: ay, as, as, as (used only for geometry)
e edge nodes: as, ag, ar, asg

e middle node: aq.

a1

Figure 7.1: Master finite element K.

The master element K is defined as K = {(&,7) € R? : £, € (0,1)}. The trans-
formation that maps K onto a particular finite element K is assumed in the standard
form

8 8
x:inQi(f,n), yzzyiﬁi(ﬁﬂl) (7.6)
i=1 i=1
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where: ¢; are at most second order shape functions; z; and y; are the geometrical de-
grees of freedom.

All shape functions are defined as products of the following two sets of 1D functions
that contain integrated Legendre polynomials

Ut = 1 or Gi(t) = 1—t
bat) = 11 Galt) = ¢ D

supplemented with the following higher order shape functions

w:s(t) = 953(75) = t(t - 1)

~

Uu(t) = Pa(t) = t(t—1)(t—2) (7.8)

where ¢ € [0, 1].

Scalar shape functions gy, ..., go related to nodes ay,...,aq (see Fig.7.1) are con-
structed in the following way

an&n) = $2A8) o1(n)
92(&,m) P2(€) Pa(m)
93(&,m) P1(8) p2(n)
94(&,m) $1(8) p1(n)
g5(&m) = @2(8) P3(n) (7.9)
96(&;m) = ¢3(&) Paln)
91&m) = ¢1(&) o3(n)
(&) = @3(8) P1(n)
9o(&,m) = @3(&) P3(n)

Additionally, bilinear shape functions that are used for approximation of stresses,
are defined in the following way:

e1(§,m) P2(§) 7?1 (n)

ex(§m) = @2(5) Va(n)

es(&m) = (&) @a(n) (7.10)
(& m) V(&) P2(n)

One of the shape functions used for stress approximation, is shown in Fig. 7.2.
Such an approximation enables enforcement of only tractions continuity. There is no
assumption about stress tensor continuity.
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Figure 7.2: FE discretization. A basis shape function for stress approximation.

The general form of approximation for stress field that enforces continuity of trac-
tion, is assumed in the following form

ah:aXZ&ieZX—l—a’YZﬁie}/—l—aXY Z vier +a¥ X Z Sie) (7.11)

iEIX Z‘GIY ielxy iGIYX
where:

oX = ( e Vel )/detJ (7.12)

Ty Ty —Yuelyy
o XY — ( LTog Ton Yse Loy )/detJ (7.13)

Tye Yy Yse Y
o’ = ( e TYm Y ) /det J (7.14)

Lye Ty Yy Ty

oV X = ( T e TYm ) /det J (7.15)
—TypYse —YmlYse

a;, Bi, Vi, 0; denote degrees of freedom, Iy, Iy, Ixy, Iy x are sequences of appropriate
indices, J is the determinant of the Jacobi matrix. Formulas (7.12) — (7.15) were
obtained satisfying appropriate conditions, e.g.

ocn=n or 0 (dependent on the edge) (7.16)

The resulting traction continuity for tensor o for linear approximation is shown in
Fig. 7.3.
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Figure 7.3: Principal directions of stress tensor o*. Traction continuity.

Another approach that also enables obtaining stress tensors with tractions coincid-
ing at every point of the element interfaces, is based on the Piola transform for matrices
[23], which transforms functions from master K to physical finite element K by relation

o, =6,B",  dive), = (det J)divé, (7.17)

R > X . . (10
where: B = TotT and e.g. 0 as a mapping of &) = ( 0 0
has the form
X = ( xdf yéé ) /det J (7.18)

The above mentioned transformation is suggested in [3, 15| and guarantees that
the Rham diagram commutes. Comparison of traction continuity obtained by both
possible methods and contour maps of tensor fields are shown in Figs. 7.4 — 7.6.
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Figure 7.4: Traction components continuity for Eq. (7.12) (left) and Eq. (7.18) (right).
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Figure 7.5: Tensor field components of o for Eq. (7.12). Top left: 0%, top right: oi5,
bottom left: o3, bottom right: os5.

o



Mixed finite element method 121

1.2

1 0.6
0.8 0.4
0.6 0.2
0.4 0
0.2 o2
05 05
0 0
-0.5 -0.5
-1 -1

Figure 7.6: Tensor field components of o for Eq. (7.18). Top left: 05X, top right: o7,
bottom left: o5, bottom right: o25.

In general for plane state problems there are N, degrees of freedom related to tensor
field, where assuming orders of approximation p; and ps in two directions

No =4(p1 + 1) +4(p2+ 1) +6(p1 — 1) +6(p2 — 1)

edge nodes middle node

These degrees of freedom correspond to edge nodes (as, ag, a7, ag) and middle node
(ag) (see Fig. 7.1).

In order to satisfy the exact sequence condition the shape functions used for ap-
proximation of displacements should contain polynomials of order lower by one in each
direction. Thus, for p; = py = 2, they are in the form:

rH
2(&,m) = Pa(n
BEm) = (€ taln) (7.19)

fa&m) = ¥a(§) Ya(n)

Discontinuous approximation for displacements is as follows

1\ < 0) ©
UhZ(O)ZCifH-(l)Zdifi (7.20)

Discontinuous approximation for Lagrange multiplier of p; — 1, p, — 1 orders has a

form:
Ip

0 1
Example of shape functions that are used for discontinuous approximation is shown
in Fig. 7.7.
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Figure 7.7: Shape functions for displacements.

Therefore, there are N, degrees of freedom for displacement approximation
Ny = 2p1p2

and N, unknown parameters for Lagrange multipliers (skew-symmetric tensor field)
Ny = pip2

Appropriate degrees of freedom for displacements and Lagrange multipliers are associ-
ated with middle node ag (see Fig. 7.1).
All together there are N degrees of freedom in each element

N =N, +N,+N,

2D finite element for plane stress problem with the second order of approximation for
stresses and the linear approximation both for displacements and Lagrange multipliers
has 48 degrees of freedom.

The proposed approximation was verified on selected examples presented in the
next section.

7.3 Numerical examples

Cooke membrane

The first test was performed to validate the formulation and the proposed approxima-
tions for stresses and displacements. The considered plate in plane stress state was
fixed on the left side and subjected to tangential parabolic loading ¢ on the right hand
side (schematically shown in Fig. 7.8), with resultant force equal to —100 kN. Defor-
mation of the area and contour maps of the stress tensor components are shown in
Figs. 7.9 — 7.12. They confirm correctness of the applied approximation.
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Figure 7.8: Cooke membrane. Boundary conditions.
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Figure 7.9: Cooke membrane. Deformation.
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Figure 7.10: Cooke membrane. Contour map of component o,

of the stress tensor.
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Figure 7.11: Cooke membrane. Contour map of component o,

of the stress tensor.
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Figure 7.12: Cooke membrane. Contour map of component o, of the stress tensor.

Heterogeneous material

Further tests were performed for a problem considered at the micro-level to calculate

the effective material parameters on the basis of the tensile test simulations.

The first test was performed for a square RVE (2 mm x 2 mm) with square inclusion
(1 mm x 1 mm) located in the central part. The model was subjected to constant
loading ¢ = 100 kN/m. Due to the symmetry only 1/4 part of the area was analyzed
(see Fig. 7.13). All material data are collected in Tab. 7.1.

Material parameters | matrix | inclusion
E (GPa) 200 0.002
v 0.3 0.3

Table 7.1: Material parameters for RVE:1 with square inclusion.
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Figure 7.13: RVE:1 with square inclusion. Boundary conditions and deformation.

For discretization by 324 quadrilateral elements (11880 DOF) the principal stress
directions are shown in Fig. 7.14, contour maps of selected stress and strain components
are presented in Figs. 7.15 — 7.17.
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Performing uniform refinements of finite element mesh a comparison of stress and
displacement results obtained by the mixed and the standard (displacement) formula-
tions was done. The effects are summarized in Fig. 7.18.

Also effective Young modulus and Poisson ratio were determined by formulas

Eepr = EZ—Z; (7.22)
Veff = —% (7.23)

Convergence of the effective parameters computed on the basis of displacement and
mixed formulations are shown in Fig. 7.19. It may be noticed that each formulation
provides good either upper or lower bound. Therefore, presumably both formulations
can be used for a small number of degrees of freedom, then s mean value may be treated
as an estimate of the effective parameters.
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A similar test, for RVE with the same size and shape as previous, was performed
with another material parameters, collected in Tab 7.2.

Material parameters | matrix | inclusion
E (GPa) 100 300
v 0.3 0.3

Table 7.2: Material parameters for RVE:2 with square inclusion.

Convergence of solution norms and effective material parameters for uniform mesh

refinements are shown in Figs. 7.20 and 7.21.
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In the next example the square RVE 2 mm x 2 mm with circle-like inclusion (radius
r = 0.7 mm) located centrally was tested. Numerical tensile test was analyzed with
constant loading ¢ = 100 kN/m. Because of the symmetry only a quarter of the plate
was analyzed (Fig. 7.22). Material data were the same as for RVE:1 (summarized in
Tab. 7.1). Principal directions of stresses are shown in Fig. 7.23. Contour maps of
selected results are presented in Figs. 7.24 — 7.26.
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Figure 7.22: RVE:3 with circle inclusion. Boundary conditions and deformation.
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Similarly, as in the previous tests, comparison of effective parameters and solution
was carried out. The results are shown in Figs. 7.27 and 7.28.
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Figure 7.28: RVE:3 with circle inclusion. Effective material parameters.
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Values greater than 0.5, obtained in the last test (Fig. 7.28) indicate that elastic
continuum theory cannot be used at the macro-scale (non-homogeneous material).

In the next test square RVE 2 mmx 2 mm with circle inclusion (r = 0.6 mm)
was tested. Material constants were the same as for RVE:2 (summarized in Tab. 7.2).
Constant loading ¢ = 100 kN /m was assumed for simulation of tensile test. Comparison

of the results is shown in Figs. 7.29 and 7.30. The numerical comparison of the results
is collected in Tab. 7.3.
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Figure 7.29: RVE:4 with circle inclusion. Norm of solutions.

Material parameters | mixed formulation | standard formulation
E.rr (GPa) 127.5 126.4
Vers 0.31 0.31

Table 7.3: Effective material parameters for RVE:4 with circle inclusion.
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Figure 7.30: RVE:4 with circle inclusion. Effective material parameters.

The results confirm that simultaneous use of the standard and mixed approaches
enables obtaining the effective parameters more precisely and faster than using only
one of these FEM versions.



Chapter 8

Conclusions

The purpose of the presented research was to apply the hp-adaptive finite element
method to modeling of inelastic heterogeneous materials (metal matrix composites)
with periodic microstructure by two-scale approach. The thesis contains theoretical ba-
sis of inelastic, RVE based computational homogenization, mathematical formulations,
details of the algorithms and many numerical examples (1D, 2D and 3D problems) that
illustrate the proposed approaches.

Computations, both in the macro and micro-scale, were performed using automatic
hp FEM that enables obtaining accurate results in a reasonable time. In each adap-
tation step appropriate anisotropic h, p or hp mesh refinements are performed to find
optimal mesh for the assumed accuracy. This technique, used so far only for linear
problems, is especially efficient in analysis of heterogeneous materials, when FE mesh
should fit, in the best possible way, the material boundaries.

In the classical algorithm of computational homogenization each quadrature point
is associated to RVE. However, if inelastic behavior occurs such an analysis is rarely
possible to perform, even using parallel computations. In this work two other possibil-
ities of two-scale homogenization were presented. The first one was based on the single
RVE analysis used for evaluation of effective parameters, both for elastic and plastic
material behavior. These parameters were later on applied to evaluate the macro-scale
global response of homogenized body. The second approach was more similar to clas-
sical homogenization algorithm. However, the set of RVE was restricted to certain
number and they were associated to selected fixed points, independent of the Gauss
integration abscissas. This way the number of RVE was significantly reduced and the
results were accurate enough.

Sometimes homogenization may introduce too large error resulting from the loss of
information about microstructure. Thus, it is necessary to determine the subdomains,
where homogenization should not be used. In this work three possibilities of homoge-
nization error estimation, based on the upper bound approach, residuum of equilibrium
equation and subdomain analysis, were used. Assessment of homogenization error and
detailed microstructure consideration in selected parts allow improvement of modeling
reliability and accuracy.

In this work the automatic hp adaptive FEM was tested for inelastic problems. The
obtained results enable one to confirm that the original algorithm works correctly, even
for inelastic problems. Additional refinement of finite elements with both elastic and
plastic zones introduced in order to better adjust the mesh to elastic-plastic interface
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did not improve the convergence.

From engineering point of view correct estimation of stresses is necessary for the
safety of structures. In classical FEM the primary unknowns are displacements, while
stresses are computed during post-processing. A mixed method, where both displace-
ment and stress are approximated independently, seems to be a better approach. In
this work mixed formulation based on the modified Hellinger—Reissner principle with
weakly enforced symmetry of stress tensor and new shape functions were used and val-
idated on several examples. Direct stress approximation is certainly an advantage of
this method. However, special requirements that guarantee stability of approximation,
have to be fulfilled.

In this research numerical analysis was performed using three adaptive FE computer
codes, developed by Demkowicz group, written in Fortran95 (hplD, hp2D and hp3D).
They had to be modified and supplemented with a number of own routines that enable

e.g.:
e definition of material distribution for RVE

e computation of average values of strains, stresses, effective material parameters,
verification of Hill-Mandel condition

e driving integration of the plasticity problem

e post-processing (dumping data, plotting graphs of functions along a segment or
in a domain)

e detection of various materials or plastic zones in elements
e estimation of modeling error and determination of subregions with large error
e modification of adaptation process for inelastic problems.

Certain computations were carried out by independent codes prepared in either
Fortran (especially mixed method) or Matlab environment (for initial tests and addi-
tional post-processing of results). All of the self prepared routines contain more than
20000 lines.

The main original contributions of the work are:

application of automatic hp-adaptive FEM to inelastic two-scale homogenization

e clastic-plastic two-scale analysis based on limited number of RVE (either one
or a few assumed independently of Gauss integration points) with continuous
approximation of effective material parameters

e modeling error estimation to select parts of the domain where homogenization
should not be used

e modification and testing of hp-adaptation algorithm for inelastic problems

e application of a mixed FEM with new shape functions
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The new approaches developed in this work might be applied to many engineering
problems, such as: predicting the properties and thus efficient design of new metallic
composites, calculation of deformations and stresses in bodies made of such composites.
Future work on development of this approach may by focused in particular on further
tests and mathematical proofs for modeling error estimates, adaptive distribution of
fixed RVE, implementation of other constitutive laws at the micro-level, analysis of
random distribution of inclusions, detection of debonding of materials, comparison of
the results with experimental results.
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STRESZCZENIE

”Zastosowanie hp-adaptacyjnej MES
do obliczen dwuskalowych”

ROZDZIAYL 1: WPROWADZENIE

Innowacyjne materiaty sa jednym z gtéwnych czynnikow wplywajacych na rozwdj
technologii obserwowany w ostatnich latach. W tej dziedzinie kompozyty metaliczne
(sktadajace sie przynajmniej z dwoch roznych skladnikow matrycy oraz inkluzji w
ksztalcie np. czastek, witokien, warstw) stanowia material czesto stosowany przez
inzynieréow (m.in. w przemysle samochodowym, lotniczym, kolejowym, militarnym,
budownictwie itd.). W celu zmniejszenia zaréwno kosztow, jak i czasu eksperymen-
tow niezbedne jest ich uzupelnienie modelowaniem komputerowym, ktore pozwala
przewidzie¢ nie tylko cechy nowo projektowanego materiatu, lecz takze zbada¢ bez-
pieczenstwo konstrukcji, w ktorych te materiatly beda uzywane.

Modelowanie komputerowe wymaga wprowadzenia pewnych uproszczen. Jednym z
nich jest zastosowanie podejscia wieloskalowego, w ktorym mozna przewidzie¢ ogdlne
wlasnosci materiatu przez systematyczne zmniejszanie ogromnej, i zwykle niepotrzeb-
nej, ilosci informacji o mikrostrukturze. Taki proces nazywany jest homogenizacjg.
W szczegolnosci jej obliczeniowa wersja (ang. computational homogenization) stanowi
efektywne narzedzie do modelowania.

W niniejszej pracy analizowane sg elementy konstrukcyjne wykonane z kompozytow
metalicznych, modelowane w zakresie sprezystym i poza nim. Do obliczen wykorzys-
tana jest hp-adaptacyjna wersja metody elementoéw skonczonych, ktora umozliwia efek-
tywne przeprowadzenie obliczen. Gloéwnym celem pracy jest polaczenie homogenizacji
obliczeniowej i adaptacyjnej MES, w celu uzyskania skutecznego narzedzia do mode-
lowania wspomnianych kompozytow.

W rozdziale 1 omowiono aktualny stan wiedzy dotyczacy metod modelowania wie-
loskalowego i technik adaptacyjnych w metodzie elementéw skoriczonych. Rozdziat 2
zawiera opis modeli matematycznych, sformulowania i ogblne zatozenia. Rozdziat 3
przedstawia wstepne testy homogenizacji obliczeniowej, w tym weryfikacje algorytmu i
szczegOly dyskretyzacji elementami skoriczonymi. W kolejnym rozdziale zawarto algo-
rytm modelowania dwuskalowego dla kompozytow w zakresie sprezysto-plastycznym,
ktory zostal zilustrowany licznymi przyktadami. Rozdzial 5 dotyczy oszacowania bledu
homogenizacji, kluczowego dla uzyskania wiarygodnych wynikéw. Rozdzial 6 przed-
stawia testy modyfikacji hp-adaptacyjnego algorytmu dla zagadnien niesprezystych. W
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rozdziale 7 pokazano mozliwosci zastosowania mieszanego (wielopolowego) sformutowa-
nia metody elementéw skoriczonych do modelowania wieloskalowego. Rozdzial 8 pod-
sumowuje prace.

Wszystkie materialy uzywane w inzynierii maja niejednorodna strukture, ktorag
mozna dostrzec w odpowiedniej skali. Rozne skale sa zdefiniowane przez ich charak-
terystyczny wymiar, najczesciej jest to wymiar geometrii elementoéw struktury mate-
riatu, np. nominalna Srednica kruszywa mieszanki betonowej, ale moze to by¢ rowniez
dhugosé fali dla probleméw akustyki. Dla réznych skal analizy, zaré6wno w czasie jak i
przestrzeni, moga obowiazywacé inne prawa fizyki.

Jedna z mozliwych metod analizy o$rodka niejednorodnego jest stworzenie mo-
delu obliczeniowego z uwzglednieniem wszystkich szczegétowych informacji. W tym
celu niezbedne jest zastosowanie komputeréw duzej mocy oraz efektywnych technik
numerycznych, np. adaptacyjne [6, 12, 29, 40| lub wzbogacone [69, 96] metody ele-
mentow skoriczonych, podejscia wielosiatkowe |63, 108], podzial na podobszary [1],
obliczenia rownolegte. Zazwyczaj jednak koszt obliczeniowy takiego podejscia wcigz
jest zbyt duzy, a szczegbétowosé uzyskanych wynikéw nadmierna.

W przypadku kompozytow deformujacych sie sprezyscie najprostszym podejéciem
jest zastosowanie bezposredniej albo odwrotnej reguty mieszanin. Kolejng mozliwoscia
sa metody teoretyczne zwigzane z oszacowaniem gornym i dolnym tensora wlasnosci
makroskopowych z wykorzystaniem modelu Voigta [107| (jednorodne odksztatcenia) i
Reussa [88| (jednorodne naprezenia). Sa to jednak oszacowania bardzo niedokladne,
wiecej informacji na ich temat mozna znalez¢ np. w [72]. Dokladniejsze oszacowanie
otrzymane z zasady wariacyjnej znane jest jako podejscie Hashina-Shtrikmana oblicza-
nia efektywnych stalych materialowych [42, 43]. Wada metody jest zaleznosé¢ wyniku
od wielkosci probki.

Inng mozliwoscig obliczania efektywnych stalych materiatlowych jest zastosowanie
koncepcji inkluzji typu Eshelbiego dla wzmocnienia elipsoidalnego w nieskonczonej ma-
trycy oraz podstawy schematu wewnetrznie zgodnego (ang. self-consistent) dla cial
niejednorodnych [21, 32, 47].

Podobna metode stanowi usrednianie Mori-Tanaka [71]|, w ktorym wlasno$ci mate-
rialu wyznaczane sg z rozwigzania analitycznego problemu brzegowego dla pojedynczej
inkluzji w nieskonczonej matrycy.

Innym podejsciem jest metoda tzw. rozniczkowego osrodka efektywnego (ang. dif-
ferential effective medium approzimation DEM) (14, 89, 98|. Proces sklada sie z ite-
racyjnego zwiekszania objetosci inkluzji w jednorodnej matrycy przy roéwnoczesnym
obliczaniu efektywnych wtasciwos$ci materiatu, az do uzyskania odpowiedniej zalozonej
zawartosci inkluzji.

Dla osrodkow periodycznych i prostych oszacowan mozliwe jest zastosowanie ho-
mogenizacji asymptotycznej (matematycznej) [13, 60, 86, 90, 97|, w ktorej dokonuje sie
aproksymacji rozwigzania za pomoca rozwiniecia asymptotycznego wzgledem matego

parametru € = %, a nastepnie dokonuje sie przej$cia granicznego przy € zmierzajacym
do 0 .
u(@,y) = uV(z,y) + euV(z,y) + Eu®(zy) +...,  y==
€

Jednym 7 nowszych pomystow jest lokalna homogenizacja obliczeniowa [49, 50]
oparta na analizie w dwoch skalach. W skali makro ustala sie zgrubna dyskretyza-
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cjé elementami skoriczonymi, a nastepnie kazdy taki element analizuje si¢ niezaleznie
poprzez zageszczenie siatki elementow skonczonych w celu odzwierciedlenia mikrostruk-
tury i niejednorodnosci (skala mikro). W tym wypadku homogenizacja polega na
obliczeniu efektywnych macierzy sztywnosci dla kazdego elementu w skali makro na
podstawie macierzy sztywnosci z siatki gestej. Metoda ta jest efektywna przede wszys-
tkim dla zagadnien, gdzie nie zachodzi warunek rozdzielnosci skal méwigcy o tym, ze
wymiar charakterystyczny inkluzji powinien by¢ przynajmniej dziesie¢ razy mniejszy
od przyjetego obszaru skali mikro.

Jezeli w skali mikro chcemy uwzglednié¢ doktadnie ziarna powstale na skutek np.
rekrystalizacji, wygodne staje sie wykorzystanie podejscia dwuskalowego, w ktorym
w skali mikro material bedzie modelowany metoda automatéw komorkowych (ang.
cellular automata, CA), natomiast w skali makro jako osrodek ciagly za pomoca MES,
dajac w ten sposob metode CAFE [22, 38, 64].

Najbardziej popularng metoda do modelowania wieloskalowego ostatnich lat jest
homogenizacja obliczeniowa |13, 18, 31, 35, 36, 52, 56, 68, 78, 104, 113]. Metoda ta nie
potrzebuje zadnych zalozen w skali makro o relacji miedzy naprezeniami i odksztat-
ceniami. Relacja jest obliczana w kazdym punkcie (najczesciej punktach catkowania
Gaussa) w skali makro przez dokladng analize w skali mikro w tzw. reprezentatywnym
elemencie objetosciowym (z ang. representative volume element, RVE) odpowiadaja-
cym kazdemu punktowi catkowania Gaussa.

W prezentowanej pracy zastosowano podejscie oparte na analizie w dwoch skalach
- mikro i makro, bazujace na RVE. W makro-skali zaklada si¢ material jednorodny,
niejednorodnosé jest brana pod uwage w skali mikro w RVE, ktore powinno by¢ na
tyle duze, aby statystycznie reprezentowaé¢ mikrostrukture osrodka i na tyle mate, aby
spetniony byl warunek rozdzielnosci skal [39, 46, 79]. Nalezy pamietaé, ze rzeczywisty
material ma mikrostrukture z inkluzjami roztozonymi w sposob losowy, dlatego RVE
moze by¢ wyznaczone tylko w sensie statystycznym (SVE) [79, 86, 99].

Klasyczny algorytm homogenizacji obliczeniowej dla zagadnien nieliniowych roz-
poczyna sie od dyskretyzacji obszaru w skali makro i ustaleniu punktow (najczesciej
punktow catkowania), w ktorych bedzie prowadzona dokladna analiza w skali mikro
(RVE). W skali makro ustala sie wstepne parametry materialu na podstawie np. testu
rozciggania przeprowadzonego na RVE lub zgrubnego oszacowania metoda mieszanin
w celu okresdlenia aktualnego stanu odksztalcenia (lub srednich naprezen) dla zadanego
przyrostu obciazenia. Na tej podstawie przyjmowane sa warunki brzegowe dla RVE.
Nastepnie dla kazdego kroku czasu rozwiazywany jest problem poczatkowo-brzegowy w
celu wyznaczenia $redniego przyrostu odksztalcen plastycznych lub naprezen, zaréwno
w zakresie sprezystym, jak i poza nim. Poprzez analize RVE obliczane sg réwniez efek-
tywne parametry materialowe, ktore sa nastepnie przekazywane do punktéw Gaussa w
skali makro. W kolejnym etapie dokonywane jest oszacowanie btedu i albo dokonywana
jest nowa dyskretyzacja, albo obliczenia sa przerywane.

Obliczenia numeryczne wykonywane sa za pomoca adaptacyjnej metody elementow
skoniczonych. Adaptacyjny dobor siatki jest niezbedny, aby uzyskaé¢ wiarygodne wyniki
w stosunkowo krotkim czasie, zwlaszcza dla zagadnien gdzie wystepuja osobliwosci i
regularne zageszczanie siatki przestaje by¢ optymalne. Podstawa adaptacyjnego po-
dzialu elementow jest oszacowanie btedu a-posteriori. Mozna wyr6zni¢ dwie gtowne
techniki adaptacji - typu h [6, 40], w ktorej modyfikowany jest rozmiar elementu,
a stopien aproksymacji pozostaje bez zmian oraz metode typu p |9, 10, 12|, w ktorej
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rozmiar elementu sie nie zmienia, natomiast stopien funkcji ksztattu jest modyfikowany.
Inng grupe stanowia metody typu r [44, 103], polegajace na relokacji istniejacych
weztow w celu zmniejszenia btedu rozwiazania. Technika ta moze by¢ réowniez tac-
zona z innymi typami adaptacji (np. 7p [73]). Innym sposobem jest wykorzystanie
adaptacji zorientowanej na jakis cel (ang. goal-oriented) |75, 84| np. przemieszczenia
w punkcie.

Kolejng mozliwosé stanowia metody adaptacji hp |29, 40, 41|, pozwalajace na row-
noczesne modyfikowanie rozmiaru elementu, jak i stopnia aproksymacji. Glowna zaleta
tej techniki jest najszybsza ekponencjalna zbieznosé (e=*N”). Warto zwroci¢ uwage, ze
same techniki h lub p-adaptacji pozwalaja jedynie na zbieznos¢ algebraiczna (np. N —p/3
dla probleméw 3D), gdzie N oznacza liczbe stopni swobody, p stopien aproksymacji,
a> 01/ >0 sa pewnymi statymi.

W pracy zastosowano do obliczenn technike automatycznej hp-adaptacji, zapro-
ponowang przez Demkowicza i wspolpracownikow [26, 27, 29|, ktora jest z powodzeniem
stosowana w zagadnieniach liniowych. Algorytm jest oparty na oszacowaniu bledu
interpolacji. Dla aktualnej dyskretyzaji dokonywany jest podziat kazdego elementu
w kazdym kierunku i podnoszony jest stopienn aproksymacji, w celu wygenerowania
rozwigzania dokladniejszego. Otrzymane rozwiazanie jest interpolowane na wszystkie
albo wybrane mozliwe nowe siatki. Nastepnie rozwigzywany jest problem optymalizacji
w celu znalezienia siatki, ktora zapewnia maksymalizacje zmniejszenia btedu na kazdy
dodatkowy stopieri swobody. W algorytmie dopuszczone jest istnienie siatek jedno-
nieregularnych z weztami wiszacymi, co usprawnia dziatanie adaptacji.

ROZDZIAL 2: SFORMULOWANIA PROBLEMU

W rozdziale 2 zestawiono sformutowania matematyczne, ktore byty podstawa obli-
czei numerycznych. Dla obszaru niejednorodnego w skali makro zadanie sprezysto-
plastyczne polegaloby na znalezieniu przemieszczen, odksztatcen plastycznych i napre-
zen tak, aby w kazdej chwili czasu i dla kazdego jednorodnego podobszaru spelnione
byly rownania réwnowagi oraz konstytutywne z uwzglednieniem niesprezystych defor-
macji o$rodka. Jednak ze wzgledu na ztozono$¢ problemu takie obliczenia wymagalyby
duzych kosztéw. Problem rozwiazuje sie stosujac podejscie dwuskalowe. W skali makro
zaklada sie, ze osrodek jest jednorodny i poszukiwane sa jedynie usrednione (zhomoge-
nizowane) wartosci. Jedynie w skali mikro (RVE) rozwiazywany jest problem niejed-
norodny. Zaklada sie, ze naprezenia ograniczone sa powierzchnia plastycznosci Misesa,
postuluje sie stowarzyszone prawo ptyniecia. Calkowanie w czasie odbywa sie za po-
moca niejawnej metody Eulera z korektorem typu "rzutowanie po promieniu" (ang.
radial return algorithm). Poprawno$¢ analizy dla obszaru heterogenicznego dodatkowo
weryfikuje sie za pomoca warunku Hilla - Mandela, ktory powinien by¢ spetniony dla
niejednorodnych materialow bez uszkodzen [48|.

Na jako$¢ rozwiazania w skali mikro wplyw maja warunki brzegowe (kinematyczne,
statyczne, periodyczne). Dla obszaréw z inkluzjami roztozonymi w sposob rownomierny
najlepsze wyniki daje zastosowanie periodycznych warunkéw brzegowych do analizy na
poziomie RVE [45, 66, 110] poniewaz w najszybszy sposob pozwalaja oszacowaé efekty-
wne parametry materialowe. Warunki periodyczne moga zosta¢ uwzglednione na etapie
dyskretyzacji (np. za pomoca metody funkcji ksztattu lub mnoznikow Lagrange’a) albo
bezposrednio w sformutowaniu stabym problemu.
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ROZDZIAL 3: WSTEPNE WYNIKI HOMOGENIZACJI OBLICZENIOWEJ

Wstepne testy mialy za zadanie sprawdzenie poprawnos$ci dziatania algorytmu obli-
czen dwuskalowych oraz wpltywu dyskretyzacji obszaroéw niejednorodnych na jakosé
rozwigzania. Dokonano oszacowania btedu wykorzystujac metode hierarchiczna [26],
polegajaca na wykonaniu obliczenn na aktualnej siatce i na siatce zageszczonej réwno-
miernie. Potwierdzono, ze istotne znaczenie na doktadno$¢ wynikow ma dopasowanie
siatki elementow skonczonych do granic materiatow.

ROZDZIAL 4: HOMOGENIZACJA KOMPOZYTOW W ZAKRESIE
SPREZYSTO-PLASTYCZNYM

Do obliczen wykorzystano wspomniang wczesniej adaptacyjng metode elementow
skoniczonych. Dla wybranej struktury periodycznej dobrano RVE i w zakresie sprezys-
tym poréownano efektywne parametry materialowe otrzymane réznymi metodami (me-
toda mieszanin, odwrotna metoda mieszanin, oszacowania graniczne Hashina-Shtrik-
mana, podejscie Maxwella, homogenizacja numeryczna polegajaca na symulacji testu
rozciggania). W rozdziale tym przedstawiono wyniki obliczen efektywnych parametrow
materiatowych przy roznych metodach dyskretyzacji i dla réznych ksztattow inkluzji.
Najlepsze wyniki osiggnieto, gdy siatka elementéw skonczonych wstepnie uwzglednia-
ta rozktad i ksztalt inkluzji. Taki przypadek dopasowania siatki do ksztattu inkluzji
jest jednak rzadko mozliwy do wykonania. Dobrym rozwigzaniem jest zastosowanie hp-
adaptacji, ktora poprzez oszacowanie btedu w jak najlepszy sposob stara sie dopasowaé
siatke do granicy materialow, poprzez zageszczenie elementéw w okolicach zmiany ma-
teriatu. Sprawdzono, jaki wplyw na wyniki ma orientacja i rozmiar przyjetego RVE.
Dla przypadku inkluzji w ksztatcie kulek roztozonych w spos6b rownomierny w matrycy
rozmiar RVE nie ma istotnego wplywu. Pokazano réwniez, ze analizowany kompozyt
wykazuje wlasnosci izotropowe, niezalezne od kierunku.

Analiza zagadnien niesprezystych, nawet po zastosowaniu numerycznej homogeniza-
cji, jest bardzo czasochtonna, gdyz obliczenia na poziomie mikro musza by¢ wykony-
wane wielokrotnie. W klasycznej homogenizacji kazdemu punktowi catkowania Gaussa
przyporzadkowany jest RVE. Jednak gdy material zaczyna wykazywaé zachowanie
niesprezyste obliczenia staja sie dodatkowo czasochtonne. Ponadto pojawia sie problem
przy stosowaniu adaptacyjnej wersji MES, gdyz po kazdym etapie adaptacji dochodza
nowe punkty catkowania, w ktorych historia deformacji w skali makro jest nieznana.
Zaproponowano dwie mozliwosci rozwiazania tego problemu.

Jezeli deformacje materialu zachodza w zakresie sprezystym i niejednorodnosci
sktadnikow sa roztozone periodycznie wystarczajaca jest analiza pojedynczego RVE do
oszacowania sprezystych statych materialowych, obserwowanych w skali makro. Ana-
logicznie mozna postapi¢ w zakresie poza sprezystym i przewidywac globalne sprezysto-
plastyczne zachowanie materiatu w skali makro. Dla RVE symulowane sa testy rozcia-
gania dla roznych $ciezek obcigzenia w celu znalezienia relacji miedzy srednimi odksz-
tatceniami a naprezeniami. Nastepnie formulowane jest globalne prawo dla skali makro
z efektywnymi parametrami plastycznymi (granica plastycznosci, parametr wzmocnie-
nia itp.). Do obliczen przyjeto kompozyt metaliczny wzmocniony inkluzjami (kulkami)
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wykonanymi z innego materiatu o wyzszej wytrzymatosci, roztozonymi periodycznie.
Obydwa materialy wykazywaly charakter sprezysto-plastyczny ze wzmocnieniem. Za-
tozono, ze w skali mikro i makro obowigzuje stowarzyszone prawo ptyniecia i hipoteza
Misesa. Dla pojedynczego RVE wykonano symulacje testow rozciggania przy réznym
obcigzeniu. Dla wyznaczonego prawa konstytutywnego przeprowadzono testy w skali
makro dla sprawdzenia zalozonego stowarzyszonego prawa ptyniecia. Zweryfikowano,
ze przyjety model ze wzmocnieniem kinematycznym jest poprawny.

Jezeli wlasciwosci materialu po homogenizacji nie sa jednakowe w calym obszarze
nalezy zastosowa¢ wiecej niz jeden RVE. Mozna jednak przyja¢ ich mniej niz punk-
tow catkowania Gaussa [91, 64, 65]. W pracy zaproponowano zastosowanie analizy
bazujacej na ustalonej liczbie punktow. Na podstawie wstepnej analizy w skali makro
podejmowana jest decyzja w jakim obszarze mozna spodziewaé sie uplastycznienia i
tylko tam rozmieszczane sa punkty z przyporzadkowanymi im elementami RVE. Jed-
noczesnie nalezy zapewni¢ mozliwos¢ transferu danych pomiedzy punktami przyjetymi
z RVE a punktami Gaussa, i na odwrot. Algorytm zostat zweryfikowany na przyktadzie.

ROZDZIAYL 5: OSZACOWANIE BLEDU HOMOGENIZACJI

Zastapienie materiatu heterogenicznego przez materiat jednorodny z efektywnymi
parametrami materialowymi wprowadza blad zwigzany z utrata petnej informacji o
mikrostrukturze osrodka. Jezeli homogenizacja wprowadza zbyt duzy btad do obliczen,
to nie powinna by¢ stosowana dla catego obszaru albo jego czesci.

Globalne oszacowanie bledu rozwigzania z wykorzystaniem tensora zhomogeni-
zowanych parametrow materialowych i doktadnego tensora ze skali mikro zaproponowat
Zohdi ze wspolpracownikami. [112]. Z kolei strategia adaptacyjna Temizera i Wrig-
gersa [101] polega na wybraniu podobszaréw, odpowiadajacych strefom z wysokimi
gradientami odksztatcen, w ktorych wprowadzona zostaje doktadna mikrostruktura.

W tym rozdziale pokazano podejscie bazujace na oszacowaniu od gory [77, 105, 106]
oraz dwie inne mozliwosci oszacowania btedu modelowania.

W jednej z nich w skali makro definiuje sie obszar, w ktorym chcemy oszacowaé
jakos$¢ rozwigzania. Nastepnie wyodrebnia sie ten obszar i uwzglednia sie w nim
niejednorodnos¢é. Dobierane sa warunki brzegowe na podstawie rozwigzania zhomoge-
nizowanego i rozwigzywany jest problem brzegowy. Nastepnie dokonuje si¢ poréwnania
otrzymanego wyniku z rozwigzaniem zhomogenizowanym. Tam, gdzie blad jest duzy
przyjmuje sie material niejednorodny. Siatka elementow skonczonych powinna zatem
zapewnia¢ dobre dopasowanie do niejednorodno$ci oraz szybkie rozgeszczanie dla po-
zostatego obszaru.

Innym pomystem oszacowania btedu modelowania, przez analogie do oszacowania
btedu aproksymacji w MES |7, 8|, jest zastosowanie podej$cia bazujacego na sprawdze-
niu residuum spetnienia réwnania rownowagi. Najpierw wyznaczane sa efektywne
parametry dla obszaru zhomogenizowanego na podstawie analizy RVE. Nastepnie roz-
wigzywany jest problem dla jednorodnego obszaru w celu wyznaczenia rozwigzania
zhomogenizowanego. W kolejnym etapie obliczane jest residuum réwnania obszaru
niejednorodnego dla rozwigzania zhomogenizowanego w kazdym elemencie skonczonym
w skali makro. W rzeczywistosci jest to dystrybucja. Oszacowanie jej normy daje in-
formacje o bledzie homogenizacji.

W tym rozdziale, na przyktadach numerycznych, przedstawiono procedury doboru
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obszaréw, w ktorych nie mozna stosowa¢ homogenizacji.

ROZDZIAL 6: AUTOMATYCZNA HP-ADAPTACJA DLA PROBLEMOW
NIELINIOWYCH

Jak zostalo wczesniej wspomniane stosowana adaptacyjna wersja typu hp |26, 27,
29, 102] byla z powodzeniem wykorzystywana do zagadnieri liniowych. Jednak nie ma
dowodow, ktore pokazalyby, ze taki sam algorytm zastosowany do zagadnien niespre-
zystych bedzie optymalny.

W tym rozdziale sprawdzono zbieznos¢ hp-adaptacji dla zagadnien sprezysto-plas-
tycznych oraz zaproponowano modyfikacje algorytmu. Zastosowania adaptacji w plas-
tycznoscei siegaja lat 80-tych. Cheng [20| oraz Zienkiewicz [111] rozwineli takie podejscie
do procesu formowania metali; Peric, Dutko i Owen [81, 82| zastosowali adaptacyjna
MES do probleméw duzych odksztatcen, Cramer i wspolpracownicy [24| zastosowali
podzial elementéw dla stowarzyszonej i niestowarzyszonej plastycznosci. Adaptacja
typu p zostata przedstawiona jako efektywna do problemoéw fizycznie nieliniowych
przez Diistera i Ranka [30]. Technika rp zostata uzyta przez Niibela i wspoltpra-
cownikow [73] w celu dopasowania siatki elementow skonczonych do granicy sprezysto-
plastycznej i uwzglednienia regularnosci. Z opisow w literaturze [11, 19, 37, 83] wynika,
ze niesprezyste deformacje powinny by¢ uwzglednione w specjalny sposoéb w estyma-
torze bledu a-posteriori. W rozdziale tym zaproponowano i testowano modyfikacje hp
poprzez wzbogacenie jej o dodatkowe podzialy typu h w elementach, w ktorych wys-
tepuja zarowno sprezyste jak i poza sprezyste deformacje. Okazuje sie, ze zastosowanie
hp bez modyfikacji jest wystarczajace do uzyskania szybkiej, ale tylko algebraiczne]
zbieznosci.

ROZDZIAEL 7: SFORMULOWANIE MIESZANE W METODZIE ELEMEN-
TOW SKONCZONYCH

Podstawa MES jest sformulowanie stabe (wariacyjne). W klasycznej wersji prze-
mieszczeniowej sformutowania problemu liniowej teorii sprezystosci nieznane sa prze-
mieszczenia, natomiast pozostalte pola (odksztalcen, naprezen) obliczane sa w wyniku
postprocessingu. Wowczas, oprocz btedu aproksymacji przemieszczen pojawia sie btad
zwigzany z pochodnymi rozwigzania, niezbednymi do wyznaczenia pozostatych pol.

Wygodne wydaje sie zastosowanie sformulowania mieszanego (dwupolowego) metody
elementow skoniczonych, w ktorym w sposob niezalezny aproksymowane sa pola prze-
mieszczen i naprezen. Zastosowania sformulowania mieszanego bylty rozwijane od lat
70-tych, nalezy tutaj wymieni¢ przede wszystkim prace takich autorow jak: Brezzi
[16], Crouzeix and Raviart [25|, Raviart i Thomas [87], Arnold [2, 3, 4]. Trudnosci
zwiazane sg z zapewnieniem symetrii tensora naprezenia, przy rOwnoczesnym zapewnie-
niu ciggtosci wektora naprezenia i stabilnosci aproksymacji.

W pracy zastosowano zmodyfikowana zasade Hellingera-Reissnera [4, 85|, w ktorej
symetria tensora naprezenia jest wymuszana w sposob staby. Dodatkowo, w celu za-
gwarantowania stabilnosci aproksymacji zapewnia sie spetnienie warunku inf — sup
lub przemiennosci diagramu Rhama. Przeprowadzone testy potwierdzity poprawnosé
zaproponowanej nowej aproksymacji w zadaniach dwuwymiarowych.
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ROZDZIAYL 8: PODSUMOWANIE

W przedstawionej pracy pokazano w jaki spos6b mozna zastosowac hp-adaptacyjna
metode elementow skoriczonych do modelowania kompozytow metalicznych przy wyko-
rzystaniu podej$cia dwuskalowego. Przedstawiono sformutowania problemu dla skali
mikro i makro, zaproponowano modyfikacje klasycznej metody homogenizacji w celu
usprawnienia procesu obliczen, zwlaszcza gdy material wykazuje zachowania poza
sprezyste. Przedstawiono metody oszacowania btedu modelowania, ktore jest klu-
czowe dla uzyskania wiarygodnych wynikéow. Dokonano proby modyfikacji procesu
hp-adaptacji dla zagadnienn nieliniowych. W pracy zawarto réwniez sformulowanie
mieszane elementow skonczonych, dzieki ktéremu mozna w sposéb niezalezny bezpo-
Srednio aproksymowac naprezenia, wazne z punktu widzenia inzyniera. W obliczeniach
wykorzystano adaptacyjne programy MES [26, 27| hplD, hp2D i hp3D (w jezyku
Fortran95), ktore wzbogacono wlasnymi procedurami. Dodatkowo cze$é obliczen
wykonano w niezaleznie przygotowanych programach w Fortranie oraz w $rodowisku
Matlab. Napisano ponad 20000 linii wtasnego oprogramowania.

Do oryginalnych elementéw pracy mozna zaliczy¢ m.in.:

e zastosowanie hp-adaptacyjnej MES do modelowania dwuskalowego

e sprezysto-plastyczng analize kompozytoéw metalicznych przy wykorzystaniu ogra-
niczonej liczby RVE

e pordéwnanie wptywu ksztaltu i rozmiaru RVE na wyniki
e oszacowanie btedu modelowania

e modyfikacja i przetestowanie algorytmu automatycznej hp-adaptacji dla zagad-
nien nieliniowych
e zastosowanie sformulowania wielopolowego z nowymi funkcjami ksztaltu w zada-

niach homogenizacji.

Plany dalszych prac obejmuja dowody matematyczne stosowanych btedéw homoge-
nizacji, adaptacyjne rozmieszczanie ustalonych RVE, zastosowanie innych praw konsty-
tutywnych, uwzglednienie losowosci, rozwarstwienia i poréwnania z eksperymentami.



