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SCALARS AND SCALAR FUNCTIONS

austenite finish temperature

austenite start temperature

linear hardening parameter

Young's modulus

tangent stiffness modulus

Helmholtz free energy

Gibbs free energy or shear modulus (depending on the context)
enthalpy or the Heavyside step function (depending on the context)
second invariant of stress tensor

bulk modulus

bulk modulus of martensite

bulk modulus obtained by Mori-Tanaka homogenisation
tangent bulk modulus of austenite

martensite finish temperature

martensite start temperature

pressure or accumulated plastic strain (depending on the context)
isotropic hardening parameter

entropy

temperature

equilibrium temperature

internal energy

volume
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body-centred-cubic structure; martensite
Bauschinger parameter

face-centred-cubic structure; austenite

strain at yield point

plastic strain at saturation of phase transformation
plastic strain at the onset of phase transformation
shear modulus

shear modulus of martensite

shear modulus obtained by Mori-Tanaka homogenisation
tangent shear modulus of austenite

Poisson's ratio

Poisson's ratio of austenite

Poisson's ratio of martensite

volume fraction of martensite

saturation level of volume fraction of martensite
yield stress

shear stress

2™ RANK TENSORS

stress deviator

back stress tensor
strain tensor

Bain strain tensor
plastic strain tensor
thermal strain tensor

stress tensor



4™ RANK TENSORS

E - stiffness tensor

lé:eff - effective stiffness tensor

lgm - stiffness tensor of martensite

Eyr - effective stiffness tensor obtained by Mori-Tanaka homogenisation
E. - tangent stiffness tensor of austenite

£ - identity tensor

% - projector representing hydrostatic state

K - projector representing shear state

ABBREVIATIONS

b.c.c. - body-centred-cubic
b.c.t. - body-centred-tetragonal

f.c.c. - face-centred-cubic

FEM - finite element method

FGM - functionally graded materials

FGSM - functionally graded structural member
RVE - representative volume element

TRIP - transformation-induced plasticity
UPF's - user programmable features



1.INTRODUCTION

1.1. Structural materials in cryogenic applications

Nowadays cryogenic technologies are more commonly implemented in various
engineering applications. Initially, they were reserved only for scientific laboratories but
currently cryogenics is also used in medicine as well as industry and is strongly
combined with superconductivity, which is employed in such devices as particle
accelerators or modern magnetic trains [1]. Ever increasing interest in applications of
low temperatures imposes on engineers the requirement of designing structures working
in extreme conditions. The choice of structural materials which assure reliable
functioning of structures is crucial [2].

Response of materials at cryogenic temperatures is often contradictory with
respect to room temperature experience. For instance, materials such as polymers or
rubbers, which are usually elastic at room temperatures, become brittle and can be
easily damaged when cooled down to cryogenic temperatures. Fracture toughness is
always fundamental and one of the most important factors in choosing the material to
cryogenic structural applications. One of the reasons of metallic materials embrittlement
at low temperatures is the body-centred-cubic (b.c.c.) crystalline structure. Therefore,
carbon steels, ferritic steels or iron — the most popular engineering materials
characterized by the b.c.c. structure — should not be used at cryogenic temperatures and
should be avoided especially in structures carrying loads.

The materials that remain ductile and can work even at extremely low
temperatures are characterized by the face-centred-cubic (f.c.c.) crystalline structure. To
this group of materials belong among others aluminium, copper, lead, nickel and brass.
Nevertheless, the most often used structural materials for cryogenic applications are
type AISI 300 stainless steels, especially metastable 304 and 316 alloys (7ab. 1.1) [3].
The austenitic stainless steels are known as materials with high ductility, low yield
stress and relatively high ultimate tensile strength in comparison with typical carbon
steels. High contents of chromium (at least 11 wt. %) and nickel (minimum 8 wt. %)
suppress the transformation on cooling to a mixture of ferrite and cementite, keeping the
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material fully austenitic. Due to the corrosion resistance and very good mechanical
properties, austenitic stainless steels are often used in civil, automotive, aerospace and
chemical engineering, as industrial equipment, surgical instruments and in many other
common applications.

Table 1.1: Chemical composition of typical AISI 300 stainless steels.

AISI type | C % max Cr % Ni % Mn % max N % Other
304 0.08 18-20 8-12 2 - -
304L 0.03 18-20 8-12 2 - -
1% Si max
304LN 0.03 18-20 8-12 2 0.10-0.16 10.6 % P max
0.03 % S max
316 0.08 16-18 10-14 2 - -
316L 0.03 16-18 10-14 2 - -
1% Si max
316LN 0.03 16-18 10-14 2 0.10-0.16 10.6 % P max

0.03 % S max

Mechanical properties of the most common materials at cryogenic temperatures
differ from room temperature properties [3]. The Young modulus, the yield and the
ultimate stresses usually increase with decreasing temperature, though the yield stress
depends significantly on material processing. Fatigue behaviour of the f.c.c. materials
seems to change in favour of low temperatures. Thermal contraction of materials
changes non-linearly below room temperature. The biggest thermal contraction appears
down to 50-70K, further cooling causes minor contraction.

Properties of austenitic stainless steels at cryogenic temperatures can be modified
by changing the alloy composition and by thermomechanical processing [4]. Strength of
the material can be increased by adding nitrogen. Steels with higher nitrogen content
tend to have higher yield strength. Addition of nitrogen through alloying is an easy and
cheap method of improving the low-temperature properties of steel. The influence of
nitrogen content is especially significant in liquid helium temperature range (~ 4K).
Reducing grain size and cold working also result in strengthening of steels. Toughness
of the austenitic steels can be strongly enhanced by adding nickel. The nickel content
beyond 8 wt. % increases the ductility at low temperatures, the stability of the austenite
and the stacking-fault energy.

Most of the austenitic stainless steels are metastable at cryogenic temperatures,
which means that they can undergo phase transformation from f.c.c. to b.c.c.
structure [5]. Complete, spontaneous phase transformation is disadvantageous and can
lead to structure damage. However, controlled strain-induced phase transformation,
carried out in the most loaded regions, causes nucleation of hard martensitic inclusions
in a soft austenitic matrix. These inclusions increase strength of the material due to their
elastic properties and capability of interacting with dislocations. It enables us to create
structures with functionally graded properties varying from the austenitic elastic-plastic
part to the two-phase austenitic-martensitic regions.
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1.2. Thermodynamic fundamentals of phase transformations

Phase transition can be defined as a change in macroscopic configuration of atoms
or molecules caused by change of thermodynamic variables characterizing the system,
such as temperature, pressure or magnetic field. A phase is understood here as
homogeneous microstructure, having identical properties and defined boundaries.

Thermodynamic state of a system can by described by means of four scalar
functions of natural variables that are known as thermodynamic potentials: internal
energy, enthalpy, Helmholtz free energy and Gibbs free energy [6]. If a system is
described in terms of thermodynamic potential, all the thermodynamic properties of the
system can be determined by computing partial derivatives of this potential function
with respect to its natural variables. On the other hand, if all state functions of the
system are known, the potentials can be calculated by integration. This type of
description is useful in the case of complex systems undergoing transitions such as
chemical reactions or phase transformations.

The internal energy U is a sum of the kinetic energy associated with motion of
molecules and the potential energy associated with the interaction between molecules
by means of the atomic forces.

The enthalpy H consists of energy and work done by the system with respect to its
surrounding, expressed as the product of pressure p and volume ¥, often called flow
work:

H=U+pV (1.1)

The Helmholtz free energy F is a thermodynamic potential that defines the
amount of work obtained from a closed system with constant temperature 7' and volume
V:

F=U-TS (1.2)
where S is the entropy.

The Gibbs free energy G constitutes a thermodynamic potential that expresses the
maximum amount of work which can be extracted from a closed system with constant
temperature 7" and pressure p, defined as:

G=H-TS=U+pV —TS (1.3)

Stability of a system corresponds to minimum of potentials F' (for constant
temperature and volume) and G (for constant temperature and pressure). Undergoing
phase transition means that for given conditions the thermodynamic potential of one
phase becomes lower than of the other phase. Thus, if the system is described in terms
of Gibbs free energy and each phase is represented by a surface, the phase transition
takes place at the point where the surfaces cross each other. Figure 1.1 shows the Gibbs
free energy of phase a and £ as a function of temperature. As long as the temperature of
the system stays below the equilibrium temperature 7., the free energy of a-phase has
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lower value and this phase is stable. At the temperature 7. the thermodynamic potentials
G, and Gy have the same value and both phases can coexist. When the temperature
increases above 7., the free energy of phase f becomes lower which leads to the phase
transformation from a to S-phase.

Ga

Figure 1.1. Gibbs free energy of phases a. and p as a function of temperature.

The state of equilibrium of completely isolated system corresponds to the
maximum of entropy, which implies the fact that all virtual variations of entropy are
equal to zero (0S = 0). Let us write the entropy increment AS in the form of an
expansion in the vicinity of equilibrium [7]:

l o | |
AS=8S+50°S+3,6"S 4785 +... (1.4)
where the terms &°S, °S, §°S ... are the second-, third-, and fourth-order differentials
with respect to the state variables. The equilibrium is stable if all differentials are
negative (8°S, &°S, 6°S ...< 0). Thus, the system tends to equilibrium after the
perturbation has been applied. The equilibrium is metastable if the conditions 65 = 0 and
82§ < 0 are fulfilled but it may happen that third- or higher-order differentials are
positive. It means that after having applied a small perturbation all parameters of the
system return towards their original values, but after having applied a large perturbation
they will rather tend to state transition. When for certain perturbations the condition
828 > 0 is satisfied, the equilibrium is unstable and even in the case of very small
perturbations the system will move further and further away from the equilibrium.

The classification of phase transformations is historically based on the Ehrenfest
proposal [8]. He proposed to group phase transitions according to the lowest
discontinuous derivative of the free energy. The modern classification scheme divides
the phase transitions into two broad categories:

* 1% order phase transition can be qualified as the one with discontinuous first
derivative of the free energy. Good examples of the first-order phase transition
are all gas-liquid-solid type transitions where discontinuous change in density
(therefore also volume) can be easily observed:

10
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oG\ _
(%)T—V (15)

As a consequence of the discontinuous change of entropy, the first-order phase
transitions involve latent heat — a fixed amount of energy which is either
absorbed or released in a system:

oG

oT
In the first-order transitions two different phases can coexist with each other
when system is approaching the unstable state, creating mixed-phase regimes in

which some parts of the system have completed the transition and the others
have not.

=5 (1.6)

p

2" order phase transition (also called continuous phase transition) is
characterized by continuous first and discontinuous second derivative of the free
energy:

oG\ _[oV

=|=—| =—8V .
S
oG oS c,
(8T2 :_(G—T) :—7 (1.8)
oG\ [ev) _
oz 5 =

where o and S denote the thermal expansion and the compressibility,
respectively, and ¢, is the heat capacity at constant pressure. The second-order
phase transitions do not have the associated latent heat and the system passes
continuously from one phase to another without the possibility of coexistence of
phases. This type of phase transition has in general the character of the order-
disorder transition. Typical examples of the second-order phase transitions are
the ferromagnetic transitions, the transition from normal-conducting to
superconducting state in some materials or the superfluid transition observed in
liquid helium at cryogenic temperatures.

An excellent example of the second-order phase transformation is the so-called

lambda transition in liquid helium. The transition takes place at the temperature
T,=2.17K (at atmospheric pressure) and transforms the normal helium (He I) into the
superfluid helium (He II). Due to the fact that in the case of second-order phase
transitions the coexistence of phases is not possible, there exists a distinct boundary
between phases and the transition can be modelled as a moving front, called further the
lambda front. The superfluid state of helium is characterised by very special properties:
vanishing viscosity and excellent heat transport capabilities.

Heat transport in superfluid helium has quantum nature and its classical

description is based on the mechanisms characteristic of Bose-Einstein condensates.
However, it is not possible to use this description in the engineering calculations that are

11
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required in the design process of cryogenic systems. Thus, the two-fluid model
proposed by Tisza is used [9], which assumes that superfluid helium is a mixture of the
normal and the superfluid components and all properties of He II depend on the ratio
between these two components, that changes as a function of temperature. This
approach allows us to describe quantitatively the mass and heat transport in a narrow
channel, filled initially with He I, by means of equations analogical to classical liquids
[10], [11].

On the basis of Tisza theory, the Gorter-Mellink law is defined [12]. It describes
heat transfer in superfluid helium and forms an analogy to the Fourier law:

(1.10)

q=[f<T>d—T]3

dx

where f(T) represents the conductivity function.

In order to derive the temperature profile in He II the Gorter-Mellink law is
integrated assuming that, for the sake of simplicity, the heat flux along the channel is
constant:

oo (1.11)

.3
9 tenr

The temperature profile in He I is obtained by solving the problem of a solid (e.g.
copper wire) in the liquid helium cylindrical enclosure. As an example, the heat
transport in a concentric configuration of copper wire located in the middle of long,
narrow channel filled with liquid helium is recalled [11]. The Fourier law written both
for solid and for helium, with the assumption of perfect heat transport between solid and
fluid in the radial direction, reads:

[(pCpA)Hd"’(pcpA)Cu]aa_Y;:[(kALM—F(kA)CM]% (1.12)

As the specific heat of copper is small when compared to helium and the
conductivity of liquid helium is insignificant when compared to copper, one can
simplify Eq. 1.12 to the following form:

or_ 0T
ot ax

(1.13)

where D denotes combined thermal diffusivity and is assumed to be constant here:

D:ﬂzconst (1.14)
(pcpA)HeI . ‘

For a spacio - temporary problem the transformation of variables is usually
applied. Assuming that the beginning of coordinate system moves together with the
lambda front at the velocity v:

E=x—vt (1.15)

12
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The heat transport equation (Eq. /.13) transforms to the following form:
oT _ o'T oT
_:D — 1) —
ot oF v(t) 0&

(1.16)

The solution is obtained by applying the method of separation of variables. It is
assumed that the general solution is expressed as a product of function of spatial
variable ¢ and a function of time 7 with additional constant value 7,;, which denotes the
temperature at the end of the channel (cold reservoir):

T(E,t)=2(t)¥(8)+T,, (1.17)

Substituting the general solution (Eg. 1.17) to the heat transport equation
(Eq. 1.16) one obtains:

oP ot 4 oY
—=Do —v(t)d— .
5 P v () P (1.18)

For the sake of simplicity, the assumption of constant velocity v of the lambda
front is made. The final form of the heat diffusion equation can be written as follows:

L oe_13¥ v o¥
D® ot Y g DY ¢

(1.19)

Since the left hand side of Eq. /.19 is a function of ¢ alone and the right hand side
is function of ¢ alone, the only possible solution implies that they are both equal to a
separation constant k. Thus:

1 0®_
YT k (1.20)

1Y v oY _
¥ og? DY 0F

i’ (1.21)
Eq. 1.20 can be simply solved by integrating both sides of the equation:
| C{T‘p:j ~k* Dt (1.22)
Then, the general solution of Eg. 1.20 reads:
B (1)=C P (1.23)

Eq. 1.21 represents a linear homogeneous second order differential equation:

¥ vovY
— L k=0 .
D 129

in which the general solution takes the form of exponential function:
Y=t (1.25)

Substituting this general solution to the main equation one obtains:

13
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AE(A2+%A+I€2):0 (1.26)

A non-trivial, real solution of the differential equation (Eq. 1.24) exists if the expression
in brackets in Eq. 1.26 has real roots, which implies that the following condition must
be satisfied:

2
A:(%) —4K*>0 (1.27)

Thus, the solution of Egq. /.24 takes the form:
Y (£)=C,e"* +C, et (1.28)
where:

—v+\/vz—4D2k2
2D
1.29
—y— \/v —4D*k* ( )

2D

A=

A=

The general solution of Eq. 1.19 is derived as a product of Eq. /.23 and Eq. 1.28:
T(E,t)=e """ (4" +B ™) (1.30)

where A=C-C, and B=C-C; are constants, calculated by applying suitable
boundary conditions regarding the temperature value and the temperature gradient at the
point of the phase transition:

T(§-0)=T,
A 1.31)
)= iterr (1.
ag (g ) ACukCu A e, ™
Finally, the temperature profile in He I takes the form [11]:
Tou—T Dg
T(E,1)=T 22 (A, =2, 84 L0 M (1.32)

A=A, A=A,

A complete temperature profile on either side of the phase transformation front is
shown in Fig. 1.2. Motion of this front along the channel reflects the nature of the
second-order phase transition — both phases can not coexist in thermodynamic
equilibrium. The lambda front moves as long as the remnants of He I exist and
disappears only when the total volume of He I has been replaced by He II.

On the other hand, any first-order phase transformation allows coexistence of both
phases in thermodynamic equilibrium. Good example of such process consists in the
transition from f.c.c. lattice to b.c.c. lattice and is called martensitic transformation.

14
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T, T, T

copper wire

4.5 |

|

1.5 T T — T T

x[m]

Figure 1.2: lllustration of the propagation of phase transformation front in
liquid helium (2" order phase transition according to Ehrenfest).

1.3. Martensitic transformation

Diffusionless phase transformations in solids, also known as displacive
transformations, consist in coordinated displacements of atoms at very small distances
in such a way that they retain their original relationships with neighbouring atoms. This
implies change of crystallographic configuration but without the diffusion mechanism.
Relative displacements of atoms are usually smaller than interatomic distances.
According to the classification of diffusionless transformations proposed by Cohen et al.
[13], they can be divided into the transformations dominated by homogeneous lattice-
distortive strains, known also as the Bain strains, and shuffles (Fig. 1.3).

Shuffle transformations change the symmetry or structure of the crystal by
intercellular atom displacements, whereas the strain in the lattice is either negligible or
not observed. Thus, the energy increase in the system is mainly due to interfacial
energy, while the contribution of strain energy is rather small. Homogeneous lattice-
distortive transformations consist in changes of the lattice shape and the strain energy
term is significant here. They are subdivided into dilatation and deviatoric (shear)
transformations, depending on the type of dominant deformation.

15
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Diffusionless phase transformations

interfacial enercy

strain energy -

Shuffle transformations Lattice distortive transformations

deviatori t
- eviatoric componen

dilatational t
ional componen -

Deviatoric dominant Dilatation dominant

driving energy

-
strain energy

.

Quasi-martensitic Martensitic

Figure 1.3: Classification of diffusionless transformations (Cohen et al. [13]).

An example of dilatation dominant transformation is the increase in size of cubic
lattice along all three axes (Fig. 1.4). In this case, the sphere after the transformation
remains the sphere, however it is not possible to find a vector with unchanged length.
On the other hand, pure shear transforms the sphere into the ellipsoid but there is a set
of vectors with unchanged lengths. This means that there is an invariant line which
remains undistorted during the transformation. The necessary condition for deviatoric
dominant transformation is the existence of such an invariant line.

Dilatation Shear

Figure 1.4: Mechanisms of dilatation and shear.

Comparing the magnitude of lattice-distortive displacements and vibrational
displacements, one can distinguish between quasi-martensitic and martensitic
transformations. Quasi-martensitic transformations are characterized by comparable
lattice-distortive and vibrational displacements. In the case of martensitic
transformations, the lattice-distortive displacements are large enough to dominate the
kinetics and the morphology of transformation and high elastic strain energies are

16
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involved.

The martensitic transformation is thus the lattice-distortive transformation of
deviatoric character, where displacements of atoms are much bigger when compared to
lattice vibrations. It belongs to the group of the first order phase transformations in the
solid state, which means that the parent and the product phases can coexist during the
process. The diffusionless character of the transformation implies the possibility of
transition even at very low temperatures and the growth of product phase is
characterized by the speeds close to that of sound in metal (1100 m/s in steels). The
transformation consists in the alteration of the distance between neighbouring atoms and
it manifests itself as a change of crystallographic structure from face-centred-cubic y
parent phase to body-centred-cubic o' product phase.

The mechanism of y—a' transformation in terms of crystallography was first
explained by Bain as a homogeneous deformation of the lattice. A unit cell of austenite
can be described both as the face-centred-cubic cell with axes [ai,a»,a3] (Fig. 1.5 a) as
well as the body-centred-tetragonal cell with axes [b;,b,,bs] (Fig. 1.5 b). By contraction
of the parent lattice along b; axis and simultaneous expansions along b, and b, axes one
gets the body-centred-cubic martensitic lattice (Fig. 1.5 c) and this type of deformation
is called the Bain strain.

f.c.c. austenite b.c.t austenite T b.c.c. martensite

Figure 1.5: Martensitic transformation as a result of Bain strain.

Austenite can be geometrically represented as a sphere which, as a result of the
Bain strain, is transformed into an ellipsoid (Fig. 1.6 a, b). After the transformation
there are only two lines that are undistorted, however they are rotated with respect to
their initial positions (wx to wx"and yz to y'z" in Fig. 1.6 b). The necessary condition for
the martensitic transformation is that at least one line stays invariant after the
transformation, which is clearly not fulfilled in the case of applying only the Bain strain.
However, if the Bain strain is combined with the rigid body rotation, it is possible to
obtain an invariant line (yz is coincident with yz" in Fig. 1.6 c). The above theory is
consistent with experiments, that show the spatial orientation of crystals changed after
the transformation.

17
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Figure 1.6: Geometric representation of f.c.c.-to-b.c.c. phase transformation.

Martensite, a product of the martensitic transformation, was first observed in
quenched steels and as hard constituent had an important technological meaning.
Nowadays, many others materials such as pure metals, metal alloys, ceramics, minerals,
superconductors, solidified gases or polymers are known as structures which can
undergo the martensitic transformation. Martensite is formed in the shape of plates or
lenses. The interface between martensite and the surrounding parent phase is coherent.
The chemical composition of martensite is identical to that of parent austenite but the
properties differ.

In the case of spontaneous martensitic transformation, the driving force depends
only on temperature. When the austenite is cooled, it begins to change into martensite.
The temperature at which the transition starts is called the martensite start temperature
M, whereas the temperature at which all austenite is transformed into martensite is

called the martensite finish temperature Mf . The spontaneous transformation is
reversible. When martensite is heated, austenite forms starting from the temperature 4_
and the transformation finishes at the temperature A /. Temperatures M_and 4 as well as

Mfand A h usually do not correspond to each other resulting in transformation hysteresis
loop (Fig. 1.7).
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Figure 1.7: Hysteresis of martensitic transformation.
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The applied stress or the plastic strain influence the free energy change, which
acts as the driving force and can cause the phase transformation even above the
martensite start temperature M. The deformation-induced martensitic transformation

can be related to the TRIP (transformation-induced plasticity) effect resulting in the
uniform, unrecoverable, macroscopic strain, which occurs in some high-strength
metastable austenitic steels.

The conditions under which the mechanically-induced phase transformation takes
place are shown in the form of temperature-stress diagram in Fig. /.8 [14]. Up to the
temperature M , the martensite nucleation can be induced solely by elastic stress and
is known as the stress-assisted transformation. The mechanism of stress-assisted
martensitic transformation was described in detail by e.g. Stupkiewicz and Patryk [15].
Plastic yielding below this temperature under applied stress is initiated by the
martensitic transformation and the volume fraction of martensite depends linearly on the
strain. Above the temperature M the plastic flow occurs before martensite can be
induced by stress and it precedes the nucleation of martensite. The relationship between
the strain and the volume fraction of martensite becomes non-linear because the strain is
related to both plastic deformation of austenite and transformation plasticity. The
highest temperature at which martensite nucleation can be mechanically induced is
called the M temperature [16].
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Figure 1.8: Stress-assisted and strain-induced regimes for
mechanically- induced transformation.

1.4. Functionally graded materials

Since the beginning of human civilization people have been constantly trying to
improve properties of materials in order to better adapt them to different needs. Alloy
technology, which allows to obtain partial or complete solid solution of one or more
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elements in a a metallic matrix, has been developed for ages. Starting from bronzes —
alloys consisting mostly of copper, through steels consisting primarily of iron, to
nowadays sophisticated alloys with various composition carefully designed in scientific
laboratories, different types of alloys have been developed in such a way that their
properties could best suit to their application.

Composite materials are another example of engineered materials, known and
improved since ancient civilizations. Composites consist of two or more materials
which are referred as matrix and reinforcement depending on their role. The
constituents have significantly different physical or chemical properties and remain
separate and distinct on a macroscopic level within the finished structure. The matrix
material surrounds and supports the reinforcement materials by maintaining their
relative positions, whereas the reinforcements impart their special mechanical and
physical properties to enhance the matrix properties.

The next step in material science was introduction of functionally graded material
(FGM) concept in 1984 by Japanese scientists for a space plane project. The principle
idea was to create a composite with heat-resistant ceramics on the high-temperature side
and metals with high thermal conductivity on the low-temperature side with a gradual
composition from one component to the other (Fig. 1.9) [17].
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Figure 1.9: Concept of functionally graded materials

Currently, functionally graded materials belong to the family of modern
engineering materials, that are characterized by gradually evolving micro-structure,
composition, phase distribution, porosity, etc. They are designed to obtain optimal
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spatial variation of properties, adapted to the specific application. FGMs join
advantages of composites and materials with surface layers as well as eliminate such
problems like material discontinuity and associated high stresses and initiation of cracks
and damage at the boundaries between two constituents or two layers.

There exists variety of fabrication methods of FGMs ranging from steel hardening
to recently developed processes involving plasma or lasers. Among them the most
known are: powder metallurgy (PM), physical vapour deposition (PVD), chemical
vapour deposition (CVD), plasma spraying, self-propagating high-temperature synthesis
(SHS), galvanoforming, eutectic reactions, diffusion. The majority of the presented
fabrication methods are expensive and difficult in mass production. Thus, the use of
functionally graded materials is still limited to structures where reliability rather than
cost is the key issue. The processing of FGMs which is commonly available, relatively
easy to realize, with good reproducibility is needed [18].

Research in this domain is continuously carried on because potential practical
applications of functionally graded materials are significant. Due to combination of
incompatible functions, FGMs are of special interest in the industry dealing with
structures working at extreme conditions. For example thermal barriers capable of
withstanding huge temperature gradients used in nuclear reactors, engine components,
turbine blades, aircraft components, etc. are developed. Materials for industrial tools,
requiring both wear resistance and toughness can be produced as FGMs. The biological
and medical applications are also promising: biological compatibility, corrosion
resistance and excellent hardness in artificial bones, joints and teeth can be achieved by
using functionally graded materials. The concept of FGMs could be also successfully
used in optics, optoelectronics, energy conversion systems, telecommunication and
many other novel applications.
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2. ConstrturivE MODELLING OF
STRAIN-INDUCED M ARTENSITIC
TRANSFORMATION

2.1. Literature review

* Constitutive description of inhomogeneous elastic-plastic materials

A theoretical basis of constitutive modelling of materials containing inclusions
was developed by Eshelby [19], who presented the solution of the transformation and
the inhomogeneity problems. The author investigated stress and strain fields related to
ellipsoidal inclusions dispersed in infinite homogeneous isotropic elastic medium. The
obtained results are of fundamental meaning for all theories regarding modelling of two-
phase continuum.

Homogenization schemes and numerical algorithms for two-phase elastic-plastic
materials were studied by Doghri and Ouaar [20]. The tangent operators: elastic-plastic
(or “continuum’’) versus algorithmic (or ‘““consistent”) as well as anisotropic versus
isotropic, were considered. The comparison of the stiffnesses of various tangent
operators has been performed. Both Mori—Tanaka and double inclusion homogenization
schemes were used together with two plasticity models: classical J, plasticity and
Chaboche model with non-linear kinematic and isotropic hardening. The improved
version of the formulation and tests with non-spherical inclusions were presented by
Doghri and Friebel [21]. Mean-field homogenization of multiphase elastic-plastic
materials reinforced with non-spherical and non-uniformly distributed inclusions was
analysed further by Doghri and Tinel [22].

The effective mechanical response of elastic-plastic matrix reinforced with
homogeneously distributed elastic ellipsoids was investigated by means of
computational micromechanics and homogenization methods by Pierard et al. [23]. The
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2. Constitutive Modelling of Strain-induced Martensitic Transformation

authors performed both finite element simulation of the representative volume element
of microstructure and non-linear composite by means of linearisation of the local
behaviour through the use of the tangent or the secant stiffness tensors of the phases.
The finite element results were used as benchmarks to estimate the accuracy of the
prediction based on the homogenization methods for composites. The authors concluded
that the best approximations of the effective properties with respect to the reference
numerical results were provided by the incremental and the second-order secant
methods, while the classical or first-order secant approach overestimated the composite
flow stress.

* Materials showing plastic strain-induced martensitic transformation

The first attempt to explain transformation induced plasticity effect resulting from
the phase transformation was made by Greenwood and Johnson [24]. The authors
developed a phenomenological description of the stress-strain relation taking into
account the applied stress, TRIP strain and the volume change during phase
transformation.

The first description of kinetics of the plastic strain-induced martensitic
transformation was introduced by Olson and Cohen [25]. They assumed that the strain-
induced nucleation of martensitic embryos appears on the shear-band intersections and
the increasing number of shear-band intersections depends on the plastic strain in the
austenite. Volume fraction of martensite ¢ was described as an exponential function in
the following form:

g=1—exp{—B[l—exp(—ae)]’} 2.1)

The model consists of three parameters: o represents the rate of shear-band formation, f
is proportional to the probability that the intersection will produce an embryo and # is a
fixed exponent which allows to fit numerically the obtained curve to the experimental
data. Comparison of analytically-derived sigmoidal curves and experimental results
showed reasonably good agreement.

The constitutive modelling of steels undergoing the plastic strain-induced
martensitic transformation started from the model of Narutani, Olson and Cohen [26],
which aimed at estimating the plastic flow of steels including the phase transformation.
The model comprised a static-hardening effect due to the presence of two phases in the
material and the influence of dynamic softening caused by the martensitic
transformation, which was treated as deformation mechanism. A strain-corrected rule of
mixture was implemented in order to predict behaviour of two-phase material.
Afterwards, Stringfellow, Parks and Olson [27] developed a more complex model for
nonthermoelastic alloys which included the hardening effect of the martensite platelets
as well as softening effect of the transformation itself, presented as the transformation
strain. A self consistent method was used to describe the stress-strain relation. They also
extended the Olson-Cohen model of transformation kinetics by indicating that under
isothermal conditions, the volume fraction of martensite is not only the function of
plastic strain but also the local stress state.

The model of Stringfellow et al. was generalised by Tomita and Iwamoto [28] in
order to account for the experimentally observed temperature and strain rate sensitivities
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2. Constitutive Modelling of Strain-induced Martensitic Transformation

of the strain-induced martensitic transformation. It was noticed that the number of
shear-band intersections increases together with the strain rate and this dependence was
included into the relation describing phase transformation kinetics. The constitutive
equations for the stress rate in two-phase composite material was established by
introducing the plastic strain rate, composed of the sum of the plastic strain rate
introduced by slip deformation and by the transformation. This model was later
completed by Iwamoto, Tsuta and Tomita [29], who introduced deformation-mode-
dependent transformation kinetics based on the traction and compression experimental
results. The authors observed that the volume fraction of martensite for compression is
higher than that for tension in the initial stage of the deformation, and then the relation
is reversed in the high-strain region, what is also observed in the deformation mode
dependence of the stress-strain relation.

Another constitutive model was proposed by Fischer et al. [30]. The authors
developed a constitutive description of transformation-induced plasticity on the basis of
the Gibbs free energy combined with the yield condition and the transformation
condition. Applying this, they were able to obtain coupling of the plasticity and the
phase transformation in the derived flow rule for the plastic strain rate and the
transformation kinetics.

Micromechanical modelling of transformation induced plasticity in steels by
means of local tangent approach was presented by Diani, Sabar and Berveiller [31]. The
transformation kinetics was based on the local Bain strain rate of martensite variants
and their volume fractions. The model involved complex coupling between plasticity
caused by the thermomechanical loading and from the internal stresses due to the
incompatible transformation strain. The model led to formulation of simple equations
describing incompressible isotropic two-phase material.

The model predicting the amount of o' - martensite created during the strain-
induced phase transformation under multiaxial thermomechemical loading of TRIP
steels was presented by Diani and Parks [32]. They adapted the Olson-Cohen shear-
band concept to a mesoscopic scale in order to define the kinetics of the deformation
mechanism within the grain and build polycrystalline numerical model to simulate
different strain states.

Levitas, Idesman and Olson [33] proposed a model based on the mesoscopic
continuum thermodynamics theory and the solution of the corresponding boundary-
value problem, which aimed at describing the experimental results related to the
nucleation at the shear-bands intersections. The authors used multiplicative
decomposition of the total deformation gradient into small elastic, finite plastic and
transformation parts. The generalised Prandtl-Reuss equations were extended to the case
of large strains and phase transformation. A revised theory of the martensitic
transformation in elastic-plastic polycrystalline materials together with the orientation
effect was developed by Fischer et al. [34].

Cherkaoui, Berveiller and Sabar [35] derived constitutive equations for an
austenitic single crystal undergoing transformation induced plasticity, from which the
overall behaviour of polycrystalline TRIP steels can be deduced using classical scale
transition method. As a next step, the new approach to constitutive modelling was
proposed by Cherkaoui, Berveiller and Lemoine [36]. Based on the micromechanical
analysis of martensitic transformation, they considered formation of macrodomains with

24



2. Constitutive Modelling of Strain-induced Martensitic Transformation

moving boundaries together with conditions for the nucleation and growth of
martensitic platelets in he case of both homogeneous and heterogeneous plastic strain. It
was assumed that the stress and the strain fields were continuous in each phase but
undergo discontinuities across moving boundaries and Eshelby description of ellipsoidal
inclusions was applied. The Helmholtz free energy was used as a potential in order to
describe the thermodynamic state of two-phase material. Coupling between plasticity
and martensitic phase transformation at the grain level was considered and the
constitutive equations of an austenitic single crystal were derived, from which the
overall behaviour of TRIP steels was deduced by using the self-consistent algorithm.

A new approach to kinetics of strain-induced martensitic transformation and
constitutive equations of steels undergoing the phase transformation, which takes into
account the dependence on the austenitic grain size, was proposed by Iwamoto and
Tsuta [37]. The proposed constitutive equations were implemented in the finite element
software and the deformation behaviour of a cylinder made of 304 austenitic stainless
steel has been simulated under different environmental temperatures with various
austenitic grain sizes. The dependence of the mechanical properties on the austenitic
grain size was discussed.

Tomita and Iwamoto [38] proposed a constitutive model that includes the effect of
temperature, strain rate and applied stress in modelling of strain-induced martensitic
transformation. The authors implemented the set of constitutive equations of material
undergoing martensitic transformation to finite element code which was used to
simulate deformation behaviour including tension, compression and shear in 304
stainless steel under different environmental temperatures (from 77 to 353 K).
Computation of the cyclic deformation response of steel bars with ringed notches was
additionally performed.

Another numerical microstructure-based model describing the strain-induced
martensitic transformation in metastable austenitic steel was presented by Han et al.
[39]. The computational model was based on the assumption that the martensitic
transformation kinetics was modelled as a nucleation-controlled phenomenon by a
function of the interaction energy between externally applied stress state and lattice
deformation and the increase of nucleation site in the austenite due to the plastic
deformation was represented by the increase of the shear-band intersection. A self-
consistent model was implemented in iterative program based on the radial return
method to predict the deformation behaviour under various loads. The results obtained
were compared with the experimental data of the uniaxial tension and simple shear.

Dan et al. [40] developed a constitutive model of the transformation-induced
plasticity accompanying the strain-induced martensitic transformation in TRIP steels.
Nucleation sites in the austenite due to the plastic deformation were modelled as the
increase of the shear band intersection and the probability of nucleation was derived
taking into account stress state, plastic strain and strain rate, which influence the
temperature increment. Anisotropic yield function was used and a mixed hardening law
with four phases was developed instead of the mixed hardening law with two phases.
The constitutive model was implemented in the finite element software and the
comparison between the experimental data and the simulations was carried out.
Involving the effect of temperature increase allowed to obtain better results in the case
of modelling the transformation-induced plasticity than by using the models with
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constant temperature.

Fatigue behaviour of austenitic stainless steels in view of plastic strain-induced
martensitic transformation was first investigated by Baudry and Pineau [41]. The
authors identified the volume fraction of martensite by using magnetic measurements
and X-ray techniques. They introduced the concept of critical plastic strain amplitude,
below which the material does not undergo the phase transformation. Properties of 316L.
and 316LN austenitic stainless steels during cyclic loading at 300 K and 77 K were
investigated by Vogt et al. [42]. The authors pointed out the enhancing role of nitrogen
content in the fatigue resistance. At room temperature slight hardening followed by
softening is observed in both steels. At 77 K behaviour of both materials is characterised
by hardening and quasi-saturation for smaller strain amplitudes but in the case of higher
strain amplitudes 316L shows significant hardening whereas in 316LN the initial
hardening is present followed by softening and again hardening. The difference in low-
cycle fatigue behaviour at cryogenic temperatures results from the y—a' transformation
and different volume fractions of martensite in both steels. Botshekan et al. [43], [44]
performed monotonic and cyclic tests of 316LN stainless steel at 300 K and 77 K,
taking into account the influence of the martensitic transformation under high plastic
straining on the stress-strain relationship and the fatigue life. The o' — martensite volume
fraction was measured during tests. No martensite was detected at room temperatures
but at cryogenic temperatures partial martensitic transformation was observed when
cyclic loading of high strain amplitude was applied. A characteristic feature of the
material at cryogenic temperatures is higher tensile elongation in the monotonic test and
secondary hardening in the fatigue test. These effects were explained in terms of
martensite presence, which makes crack nucleation and growth more difficult. Suzuki et
al. [45] investigated the fatigue properties of 304L and 316L stainless steels at cryogenic
(4 K and 77 K) and room temperatures with special focus on the mechanical strength
and the magnetic properties. They conducted both tensile and fatigue tests and for both
types of test the magnetic permeability of the steels was measured. The authors aimed at
investigating the critical strain above which the plastic strain-induced phase
transformation starts. The stress and the strain limitations were considered in view of
design of superconducting magnets, where increasing permeability of material due to
the phase transformation is undesirable.

The linearised law describing kinetics of the y—a' phase transformation in
metastable austenitic stainless steels, adapted especially to low temperature
applications, was presented by Garion and Skoczen [46]. Next, Garion, Skoczen and
Sgobba [47] developed a constitutive model of the plastic strain-induced martensitic
transformation on the basis of the linearised kinetics law, mixed hardening rule and
Mori-Tanaka homogenisation. They also carried out experiments on 316L stainless steel
at room and at cryogenic temperatures in order to identify the necessary parameters.
Based on this, the method of creation of functionally graded structural members by
straining them at low temperatures and initiating the phase transformation was proposed
by Skoczen [48], presenting as an example torsion of circular rods. This idea was
further developed by Sitko, Skoczen and Wréblewski [49], who proposed bending of
rectangular beams as a method of obtaining structures with spatial variation of
properties.

The two-phase model of plastic hardening of materials undergoing the strain-
induced phase transformation was presented by Mroz and Zigtek [50]. The authors
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formulated constitutive equations introducing the yield surface, the limit back stress
surface and the transformation surface. It was assumed that the back stress is affected by
the volume fraction of martensite. The numerical simulations of uniaxial cyclic loads
were carried out and showed good agreement with experimental data.

Lee et al. [51] carried out uniaxial tension tests of 304 and 316 steels at cryogenic
temperatures. The authors proposed a new constitutive description of austenitic stainless
steels based on the modified Bodner plasticity model that includes three kinds of
nonlinearities: discontinuities at yielding, phase transformation and damage. Results of
the tests were used to investigate inelastic behaviour of the materials and identify proper
parameters of the constitutive model. Finite element model was built and numerical
results were cross-checked with the experimental data.

Lee, Kim and Han [52] formulated a crystal plasticity model incorporating the
mechanically induced martensitic transformation in metastable austenitic steel. The
kinetics of martensite transformation was based on the consideration of nucleation-
controlled phenomenon and nucleation probability was a function of the interaction
energy between externally applied stress and lattice deformation. The finite element
analyses were carried out considering the effect of volume change by the Bain
deformation and the lattice-invariant shear during the martensitic transformation by
modifying effectively the evolution of plastic deformation gradient in the conventional
rate-dependent crystal plasticity. Comparison between the finite element results and the
experimental data under simple loading conditions was carried out in order to validate
the model and good agreement with the measurements for the stress—strain response,
transformed martensitic volume fractions and the influence of strain rate on the
deformation was obtained.

The literature review shows that many attempts have been made to correctly
describe the strain-induced martensitic transformation and related TRIP effects. Both
the kinetics of the transformation and the constitutive equations describing material
behaviour are constantly developed by using different formulations (thermodynamic
potentials, micromechanical approach, effective properties, etc.). The application of
numerical methods, especially finite element method, offers the opportunity to
implement even more complex constitutive models, simulate the mechanical behaviour
of materials and cross-check the results with the experimental data in order to validate
the models. Application of the constitutive modelling to design of functionally graded
materials obtained via the plastic strain-induced martensitic transformation is a novel
idea which will be developed in the present Thesis.

2.2. Aim and scope of the Thesis

The main objective of the Thesis consists in further development of methods of
creating functionally graded materials by the strain-induced martensitic transformation
at cryogenic temperatures. Appropriate straining of structural members at low
temperatures leads to creation of materials with spatial variation of properties thanks to
the phase transformation. The gradient of material properties results from the amount of
martensitic inclusions created in the austenite matrix. Mechanical properties of
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martensite in steels differ from the properties of austenite: the austenite already flows
plastically when undergoing the phase transformation whereas the new-created
martensitic platelets are still in the elastic state. This two-phase structure containing
hard martensitic inclusions dispersed in a soft austenitic matrix improves the effective
properties of material. What is more important, the inclusions form obstacles for motion
of dislocations, what affects the strengthening of steel.

One can design the properties of structural member by programming proper
loading conditions and by considering the internal forces distribution and the
corresponding stress and strain fields. For example, a component with radially varying
mechanical properties can be obtained by applying torque at cryogenic temperatures to a
stainless steel rod of circular cross-section. As a results, one creates a structure where
the elastic-plastic austenitic core is surrounded by the hardened, two-phase layer
consisting of austenitic matrix with martensitic inclusions. Similarly, bending of a beam
at cryogenic temperatures leads to creation of structural member of gradually varying
mechanical properties with respect to the neutral axis, where external layers of the beam
have two-phase structure.

In the Thesis, the fully analytical models corresponding to 1D cases are presented,
based on extended version of the constitutive model of two-phase continuum with
evolution of proportion between the phases, developed by Garion, Skoczen and Sgobba
[47], and kinetics of the y—a' phase transformation proposed by Garion and Skoczen
[46]. In particular, the following cases are elaborated:

* tension/compression of rods in order to evaluate parameters of the
constitutive model and correlate the model with experimental results,

* torsion of circular rods aimed at obtaining radially evolving mechanical
properties,

* bending of prismatic beams aimed at obtaining layered structures with
evolving mechanical properties,

* cyclic and combined loadings applied to structural members in order to
investigate the influence of the y—a' phase transformation on adaptation
and inadaptation mechanisms.

The analytical models are cross-checked with the numerical model implemented
in the finite element software (ANSYS). The numerical tests are carried out in order to
compare the results obtained by both analytical and numerical calculations. Next, the
numerical simulations of more complex structures are shown, such as analysis of the
thin-walled shells (bellows expansion joints) working at cryogenic temperatures.

2.3. Kinetics of the strain-induced y—a' phase transformation

In consequence of the strain-induced phase transformation of TRIP steels,
martensite platelets dispersed in the austenitic matrix are formed. It has been observed
that the martensite embryos are created on the intersection of shear-bands. In a natural
way, the volume fraction of martensite ¢ depends on the temperature due to the relation
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with chemical energy. However, in the case of strain-induced transformation, also the
plastic deformation as well as the stress field influence the transformation driving force
and regulate the amount of new-created martensite.

Transformation curves, illustrating the volume fraction of martensite as a function
of temperature, are usually sigmoidally shaped. For transformations proceeding at the
temperatures close to room temperature, they have rather flat characteristics and slowly
reach the saturation level (Fig. 2.1 a). At cryogenic temperatures the thermodynamic
driving force at the transformation is higher and therefore the phase transformation
process has more dynamic course. The whole process can be divided into three stages
(Fig. 2.1 b):

* Phase I: very low rate of phase transformation combined with nucleation of

martensite embryos

* Phase II: reaching the threshold value of plastic strain &/, followed by rapid
growth of o'-phase content with a constant transformation rate

¢ Phase III: reaching the second threshold strain value ¢;, where the phase
transformation slows down and the volume fraction of martensite approaches
asymptotically the saturation level &; .
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Figure 2.1: Volume fraction of martensite as a function of plastic strain:
temperature dependence (a) and linearised model (b).

This three-stage description of phase transformation kinetics, characteristic of
cryogenic temperatures, can be approximated by the linearised law proposed by Garion
and Skoczen [46], where only phase II is taken into account as an active process. The
rate of volume fraction of martensite is expressed as:

E=A(T,&" ¢)pH(e"—€l,&,~F) (2.2)

where 4 is a parameter determining the slope of the curve in phase II of the process, p
is the accumulated plastic strain rate and H is the double-argument Heavyside step
function.
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2.4. Constitutive model of material with y—a' phase
transformation

Formulation of the constitutive model of a material subjected to the plastic strain
induced phase transformation is based on multiscale considerations. On the one hand, it
takes into account micromechanical phenomena such as interactions of dislocations with
martensitic inclusions or influence of hard inclusions on a soft matrix (the Eshelby
approach [19] used in the homogenisation). On the other hand, the model is defined on
the mesoscopic level by means of a representative volume element (RVE), where all
material properties are treated as uniform and their equivalent values are obtained via
homogenisation process. Size of the RVE should be large in comparison with the
microstructure, containing sufficient amount of inhomogeneities, but small enough to
justify using the local approach (Fig. 2.2). Consequently, the RVE is considered as such
a portion of material over which the stresses and the strains are assumed uniform,
therefore the mechanical behaviour of material can be described in terms of continuum
mechanics.

Eepresentative Volume

Element (RVE)

S
: /Af ‘ martesific

/ inclusions

Figure 2.2: Representative Volume Element.

The general constitutive law of material subjected to the plastic strain field ¢”,
the thermal strain field ¢” and the Bain strain ¢”, assuming that all strains can be
considered small, is given in the following form:

g=E:(e—€e’'—¢"—5€") (2.3)

bs

The Bain strain ¢ represents here the relative volume change Av due to the phase

transformation:
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bs 1 Vm_Va
€ ZEAVL Av= % (2.4)

a

where V,, and V, are the volumes of martensite and austenite, respectively, and [ is the
second rank identity tensor.

a5

The stiffness tensor can be expressed as a sum of the spherical operator .é ,

representing the hydrostatic part of elastic energy and the deviatoric operator ]é , that
represents the shear state:

£:3k%+2u§ (2.5)
where:

Iol; K=I-J (2.6)

and é is the fourth rank identity tensor, whereas p and k are the elastic shear and

bulk moduli, respectively. The moduli are expressed below by using Young's modulus £
and Poisson's ratio v, in the following way:

__F ,__E
K=y MRy 2.7)

The yield surface f is defined by means of the second invariant J, of the stress
tensor:

fla, X, R)=J,(c—X)-0,—R (2.8)
3
Jz(g—£)=\/§(§—é_i):(§—2_i) (2.9)

where X stands for the back stress, R is the isotropic hardening parameter, s is the

deviatoric stress and 0, denotes the yield stress.

It is assumed that the plastic strain increment defined for a material that undergoes
phase transformation can be described by means of the associated flow rule, where the
yield surface fis understood as the plastic potential:

r=0f
de_agdA (2.10)

Here, A is the Lagrange multiplier and can be calculated by using the consistency
condition:

flg. X, R)=0 (2.11)

The model of plastic hardening consists of the kinematic hardening component,
represented by the position of the centre of yield surface in the form of 2™ rank tensor
X , and the isotropic hardening component, described by a scalar parameter R. The
phase transformation influences significantly both hardening parameters:
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dX=d X 4dX,.,=5C,(E)de’ (2.12)
dR=C ,(£)dp (2.13)

where Cy and Cy are the kinematic and the isotropic hardening moduli, respectively.
Both of them are functions of the volume fraction of martensite and the total kinematic
hardening is represented as a sum of the back stress X, , corresponding to the motion
of dislocations in the austenite, and the back stress X, resulting from the

homogenised two-phase material (austenite and martensite).

In the case of plastic behaviour of pure austenite, the linear kinematic hardening
law can be used:

d X, =5 Cyde’ (2.14)

where C, is the linear hardening modulus. However, in the presence of evolving
martensitic inclusions the hardening law can not be considered linear. Interactions
between dislocations and martensitic platelets cause additional hardening of the material
due to the fact that inclusions act as barriers for moving dislocations and the whole
process becomes nonlinear. The hardening modulus Cj is thus replaced by the modulus
C(¢) that depends on the martensite content and can be expressed as:

C(E)=C, (&) for 0<E<E, and ¢(0)=1 (2.15)

2.4.1. Micromechanics

When crossing an inclusion of the average size d, much smaller than the average
distance between inclusions (d << /), a dislocation has to develop the shear stress T,
required for the passage and leaves behind a closed loop around each inclusion (Orowan
mechanism, Fig. 2.3).

austenite martensite passing dislocation Orowan loops

.ﬂ©¢/‘%. ﬂz‘f/;
Iy <l K

Figure 2.3: RVE with passing dislocation and the mechanism of Orowan loops.

On the basis of the micromechanial analysis, the general formula for the shear
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2. Constitutive Modelling of Strain-induced Martensitic Transformation

stress T, is given as a relation between the shear modulus 4, the length of the Burgers
vector b and the mean distance between inclusions /:

b
T,EHT (2.16)

Assuming that the inclusions are distributed uniformly in the material, the total
volume of the considered RVE is expressed as product of the volume of elementary cell
(Fig. 2.4) and the number »’ of inclusions in the RVE:

V=n(l+d) (2.17)

matrix

inclusions

Figure 2.4: Unit cell containing inclusions.

Since the size of inclusions is small when compared to the distance between them,
Eq. 2.17 can be simplified:

V=nl (2.18)

The total volume that is occupied by martensitic inclusions is calculated as the
volume of single inclusion ¥; multiplied by the number of inclusions #°. For the sake of
simplicity, it is assumed that the inclusions have spherical shape:

3 3 ‘lTa’3
Ve=nV,;=n"— (2.19)
Thus, the volume fraction of martensite reads:
Vg w(d ’
=—==—|= 2.20
§ Vo6 ( / ) ( )

The above equation defines the distance between the martensitic inclusions as a
function of the size of inclusions and the volume fraction of martensite:

1 136&
== 2.21
[ d\m ( )
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Substituting this relation to £q. 2.16, one obtains the shear stress T, needed for a
dislocation to pass across the inclusion, as a function of the volume fraction of

martensite:
b6
o, =L2E (2.22)

The volume fraction of martensite can be expressed as a sum of the initial volume
fraction of inclusions ¢ and the increment of inclusions caused by the phase
transformation A4¢:

E=&,TAE (2.23)
In view of Eq. 2.23, the shear stress is equal to:

Ag
1+ £,

1
bil6 3
Tp:“7 s ’ (2.24)

€o

By expanding the expression in brackets into the Tylor series, one arrives at:

1+48

1

3 1 A
==+

&

~l4—

SE (2.25)

Neglecting the higher order terms of the series, the final expression for the shear
stress in the case of two-phase material becomes approximately linear as a function of
the volume fraction of martensite [48] and is equal to:

1/3
Tp:%(%) (1+—§3_§0°) (2.26)

In consequence, the function (&), that relates the linear hardening modulus to the
hardening modulus resulting from the Orowan mechanism, can be expressed in the
linear form:

b (E)=1+hE (2.27)

where 4 is a material dependent parameter.

The back stress increment can be thus decomposed into the term responsible for
the hardening of pure austenite (d X)) and the term corresponding to additional
hardening due to the presence of martensitic inclusions (d X ):

2 2 2

déa:décm—i_déaﬁ:g CO(b(g)dgp:E C0d§p+gcohgd§p (228)

2.4.2. Tangent stiffness of martensite and austenite

The constitutive relation between the stress and the strain fields in martensite is
obtained under the assumption that martensite remains elastic while the material is
being loaded and can be expressed as:
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s>

Ag,=

E,:Ae (2.29)

The stiffness modulus E, does not change during the loading process and is reflected
by:

E,=3k,J+2u, K (2.30)
__E . __E__
=2y )" " 3(1=2v,) (2.31)

where k,, and u,, are the bulk and the shear moduli of martensite (in the elastic state),
respectively, and v,, is the Poisson's ratio of martensite.

For the austenite, that flows already plastically in the course of the phase
transformation the approach proposed by Hill [53] is applied. It consists in linearisation
of the elastic-plastic constitutive equations and definition of suitable local tangent
stiffness operator. The stress increment can be obtained by imposing the tangent
stiffness modulus £, on the strain increment and performing contraction:

Ag,=E, A€ (2.32)

The basic concept of linearisation in the constitutive modelling of elastic-plastic
continuum and extraction of tangent stiffness operator is shown in Fig. 2.5.

G A

>
£

Figure 2.5: Basic idea of the incremental solution by means of tangent
operator.

In its general form, the elastic-plastic tangent stiffness tensor £, becomes an

anisotropic operator expressed by means of tangent bulk modulus &, and tangent shear
e modulus:
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n®n
E =3k, J+2 K————=
Ly T 4Ha| & 1+£ (2.33)

3u

where n denotes unit vector normal to the yield surface:

3 s—X

P =

However, in many cases it is more convenient to apply the elastic-plastic tangent
stiffness operator reduced to isotropic form without loosing the precision of
computations. The operation of “stripping down” the tangent stiffness operator is
performed by projection of the complete anisotropic operator into the space of isotropic
operators. It is worth pointing out, that from the numerical point of view it is beneficial
for the correct convergence of the solution process.

As a result of the projection to the space of isotropic operators good predictions of
the effective properties are obtained. This formulation was studied in detail by Doghri
and Ouaar [20] as well as Doghri and Friebel [21]. The isotropic form of the elastic-
plastic operator is built in the form similar to the elastic stiffness tensor, which leads to
the following expression:

éta:3ktaé+2uta§ (235)

where:

EC(E)

EE)=7"75 (2.36)

. E[(¥)
kia= = E+C(E)

“2(1+v,) " " 3(1-2v,)

It is worth pointing out, that here an original formulation involving tangent
stiffness modulus £, has been used. This modulus can be easily extracted — for
comparison — from a uniform stress-strain curve obtained by means of unidirectional
tension/compression test performed at cryogenic temperatures.

In the case of y—a' phase transformation, the tangent modulus F; is a function of
the volume fraction of martensite ¢ and evolves continuously during the phase
transformation process, influencing both the bulk and the shear modulus. By
substituting tangent modulus into the formulae for shear and bulk modulus one obtains:

__E _CE) __ E
“ta_2(1+va)E+C(§)_2(l+va>W(§) (2.37)
ho=— £ CE __E

3(1-2v,) E+C(8) 3(1-2v,)

It is easy to observe that the constituents of the elastic tangent stiffness tensor are
scaled by a function (&), that depends on the volume fraction of martensite (Egq.
2.37). The Hill incremental approach [53] allows us to update the value of the tangent
stiffness operator at each step of the solution, taking into account the influence of
martensitic inclusions on the overall behaviour of the material.
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2.4.3. Homogenisation algorithm

The majority of engineering materials have heterogeneous structure when
considering the microscopic level, and mathematical models that reflect in a proper way
all the relations between individual constituents would make the analysis too
complicated. Therefore, various methods of homogenisation have been developed. They
all aim at replacing real material containing discrete inhomogeneities by equivalent
continuum, characterised by continuous structure and effective, averaged properties

(Fig. 2.6).

Q HOMOGENISATION

heterogeneous real homogeneous equivalent
material material

Figure 2.6: The idea of homogenisation.

The simplest methods of homogenisation are Voigt and Reuss schemes based on
the rule of mixture. The Voigt method assumes that the strain field is homogeneous and
determines the effective stiffness modulus by averaging the stresses, what finally leads
to linear approximation:

éef; /iE, (2.38)

On the contrary, the Reuss method allows to calculate the effective stiffness modulus by
averaging the strains and assuming the uniform stress field:

E =), f.E' (2.39)
Ej=2fE

Both Voigt and Reuss approximations define in general the upper and the lower
bounds for the effective properties of heterogeneous material [54]. Another method of
estimating the bounds of equivalent properties of materials was proposed by Hashin and
Shtrikman and is based on the variational methods applied to nonhomogeneous linear
elasticity [55]. Commonly used homogenisation schemes are also the self-consistent
methods that define the effective properties of the embedding material with inclusions,
introduced by Hershey [56] and Kroner [57].

The simplest methods, like these by Voigt and Reuss, do not take into account the
effects of interactions between the inclusions and the matrix that influence the effective
properties, especially when the differences in the elastic properties of constituents are
significant. Taking into account the Eshelby's solution [19] for a single ellipsoidal
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inclusion embedded in an infinite homogeneous body subjected to a uniform

transformation strain, it is possible to compute the stresses and the strains within the

inclusion surrounded by the elastic matrix. This approach has been adopted a basis of

many homogenisation methods, such as the Mori-Tanaka method. The Mori-Tanaka

homogenisation scheme is an effective field theory based on calculating the average

internal stress [58]. The effective stiffness modulus results from the following formula:
-1

(£W+£Hill)—1: Z fi(gﬂrgm”) (2.40)

i=a,m

where ém denotes here the Hill influence tensor and f; is the volume fraction of a
given constituent in the material (here: a — austenite, m — martensite).

Typical shapes of martensitic inclusions are plates or a laths. Therefore, when
modelling materials with o'-phase, the assumption of ellipsoidal inclusions that are
dispersed uniformly in the material is justified and enables us to use the Eshelby
solution. The linearised stress-strain relationship in the material undergoing the phase
transformation and consisting of a soft matrix and hard inclusions is based on the

effective tangent stiffness operator £, :

AL, n=LEey: A€ (2.41)

where the effective stiffness tensor is obtained via the Mori-Tanaka homogenisation and
can be decomposed into the bulk and shear terms:

Ey=E = 3kMTé+2“MTK (2.42)

where the relations between the moduli are as follows:

o N < 3
3k, +3k'=
ur¥ _3(k,a+k*)+3(km+k*)
Lt S S
2o+ w] 2o o]
4y, (9k,+8u,)
k=gt 20 =305

2y 2u = (2.43)

The total increment of stress in the material can be decomposed into the stress
increment for pure austenite (before the phase transition) and the surplus stress
increment resulting from the phase transformation and formation of heterogeneous
structure:

Ag:Aga+Aga+m:Em:Ag+( MT ™~

s>
llfe=y

PRAY: (2.44)

The term desribing the influence of two-phase structure on the stress increment,
together with the assumption that the strain increment is mainly due to the plastic
strains, can be evaluated as:

Aga+m:2(”MT_uta)A§p:Ca+mAgp (245)

where M, is the shear modulus obtained via the Mori-Tanaka homogenisation process
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and C,,, represents the hardening modulus for the two-phase material.

If pure kinematic hardening is taken into account only, the formula describing
backstress increment in two-phase material is expressed in the following way:

AX —%CMWAQ’ (2.46)

2 a+m™
which can also be written in the incremental form as:
_2 p
diLﬂrm_E Ca+md§ (247)

In the case of pure isotropic hardening, evolution of the hardening parameter
looks as follows:

A R:A Ra+m:”A ga+m‘|:\/Aga+m:A ga+m:2 (“MT_uta) Ap (248)

where the accumulated plastic strain increment is computed as:

Ap:d%A 7 Ae” (2.49)

The incremental form of isotropic hardening parameter can be written as:

[
o)

d R:dRa+m:”Aga+m":2 (uMT_uta) dp:Cu+mdp (250)

Usually both the kinematic and the isotropic hardening is observed in the
materials, however one of them can be dominant. Thus, the Bauschinger parameter f
has been introduced with the parametrization developed by Zyczkowski [59]:

o'+o’
— - 0<B<1 )
2(0"'—0y) p (2:51)

ﬁ:

where ¢’ represents the stress level at which the unloading process starts and ¢’ ~ is the
stress level at the reverse active process (Fig. 2.7). This parameter allows us to
determine the ratio between isotropic hardening (no Bauschinger effect, f = 0) and
kinematic hardening (ideal Bauschinger effect, f = ) and can be determined
experimentally in uniaxial tension — compression tests.

Finally, the hardening parameters in the mixed hardening model are expressed as:

2
d£:§BCa+md§p (252)

dR=(1-B)C,,, dp (2.53)
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> ¢
o' - 20‘0— ————————————————————————— ideal Bauschinger effect, B =1
S E— stabilization of the yield stress, B = 0.5
A — no Bauschinger effect, f =0

Figure 2.7: Bauschinger effect and parameter p.

2.5. Numerical application in ANSYS

Finite element method (FEM) is a powerful tool that enables us to find
approximate solutions of boundary problems described by means of partial differential
equations. The main idea of the FEM consists in replacing local forms of equations by
global, variational forms. Thus, instead of solving differential equations, the problem is
reduced to set of linear equations, which can be easily and efficiently solved by using
numerical algorithms.

Nowadays, there exist many commercial programs based on the finite element
method, that help to solve various engineering problems generated by the structural
analysis, electromagnetics, fluid mechanics and others, both linear and non-linear,
steady-state and transient. Among them, one of the most popular is ANSYS.

Thanks to its open architecture, ANSYS offers the possibility of modifying or
extending software packages by providing access to the set of Fortran functions and
routines, called User Programmable Features (UPFs), which can be adjusted depending
on users' needs [60]. The UPFs enable us to create new elements, change specifications
of existing elements, create materials with custom properties, modify constitutive laws
(plasticity, creep, damage, etc.) or prepare procedures for other calculations. Using these
procedures requires relinking ANSYS, which results in a custom version of the
software.

In order to take into account the influence of martensitic inclusions on hardening
of the material, the USERPL procedure is used. The procedure allows users to write
their own plasticity laws. In this procedure, the material data has to be defined by user-
defined data-table (7B, USER command), which is an indication in the custom version
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that the program should use USERPL procedure when computing stresses and strains.
The list of elements that support USERPL procedure is given in Table 2.1 [61].

The program enters the procedure within every load step when computing the
stress-strain relationship in each element. First of all, for the current strain state, the
volume fraction of martensite £ is determined and based on this the moduli Cx and Cy as
well as all homogenisation parameters are calculated. Then, the backstress X and the
trial stress ¢” are evaluated. When the stress state is determined, one can compute the
equivalent stress (¢” - X )., If the equivalent stress is smaller than g, + R the material is
elastic and no plastic strain increment is computed.

Table 2.1: The elements that support user-defined plasticity laws.

Structural line LINK1 (2D), LINKS (3D)

Structural pipe PIPE20, PIPE6O

Structural beam | BEAM23 (2D), BEAM24 (3D)

Structural shell SHELLA43 (3D), SHELLS51 (2D), SHELL93 (3D), SHELL143 (3D)

PLANE2 (2D), PLANE42 (2D), PLANES2 (2D), SOLID45 (3D),
SOLID65 (3D), SOLID92 (3D), SOLID95 (3D)

Structural solid

Structural layered
composite

Couple-field SOLID62 (3D)

SHELL91 (3D)

However, as soon as the equivalent stress exceeds the yield stress, the plastic
multiplier 4 is determined by the local Newton-Raphson iteration procedure from the
consistency condition (Eg. 2.11), which takes the following form:

flg, X, R)= gf o+ gf( X+2£R 0 (2.54)

By substituting expressions related to the constitutive law (Eq. 2.3) and the
evolution of hardening parameters (Egs 2.12 and 2.13), the consistency conditions is
derived as:

—&"—E")+C g )aa)/; é'+C (E)%FO (2.55)

g

where the derivatives of the yield function are equal to:

lm-

® ’ )}
IS [~
lles

of_ 3 of _ of of of_3 of _
A (Y ' - _ : -2
o 2%@ ) 6X o6c’ d8ag oc 2 OR (2.56)
Thus, the consistency condition takes the form:
of. of of bs| 3 .
——E:é—| =L + A4 + + A=
o L6 5y EilGaT1E 5Cx (8) CR(E)] 0 (2.57)

The plastic multiplier 4 is computed as:
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_ 1 of ...
A_—(E) —ag-g.g‘ (2.58)
where:
_of p.|of bs| 3
H(E)—ag-g 5‘g+A +2CX(§)+CR(§) (2.59)

The increment of plastic strain is evaluated according to the associated flow rule
(Eq. 2.10). Then, the current plastic strain is updated and the elastic strain is computed.
Finally, based on the constitutive law, the stress is evaluated [62].

In view of the above equations, the general constitutive law may be written in the
incremental form as:

: ﬂ+Ag’”)A‘ (2.60)

e 1 of\of : A s\ O f
=E:€e— E: Eié———E:e | L:
The tangent stiffness tensor is derived from the above equation in the following form:
— 1 of of A bs\ o | Of
=E— E: ® E|———|E: € |®| = E
=72 H(g)(g o) \oa é) e L] (ag é) (262)

The algorithm of this procedure is shown in the form of flowchart in Fig. 2.8.

Application of this numerical procedure integrated in ANSYS offers almost
unlimited possibilities of computing mechanical behaviour of complex structures
undergoing phase transformations. What is more, it provides also a method of
optimising materials with respect to martensite content, which is of great importance in
the case of design of all structures working at cryogenic temperatures.
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i

Figure 2.8: Flowchart presenting USERPL subroutine.
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3. TENsiON AND COMPRESSION OF Robps

3.1. Experimental results and evaluation of parameters

Tension or compression of rods does not lead to creation of functionally graded
structural member (FGSM) because the distribution of stresses and strains resulting
from such type of loads is homogeneous in the cross-section and along the structure.
However, these uniaxial cases are analysed here in order to identify the material
parameters of the constitutive model and cross-check the numerical results with
experimental data.

All parameters of the constitutive model are evaluated based on the experimental
data obtained in monotonic tension and cyclic tension-compression tests. It is rather
difficult to find in the literature the experimental data for austenitic stainless steels
loaded in cryogenic conditions because this type of tests requires specialised equipment
working at extremely low temperatures and providing constant or programmed
temperature during the tests.

The model requires essentially 10 material parameters to be defined. Young's
modulus E, Poisson's ratio v, yield stress ¢, and hardening modulus C, can be directly
identified from the stress-strain curve obtained in the tensile test (Fig. 3.17). Parameter
[ defining the proportion between the isotropic and the kinematic hardening is estimated
based on the cyclic tests. Parameter / is a free parameter and is adjusted in such a way
that the numerically obtained stress-strain relationship fits best to the experimental data.

The parameters referring to the kinetics of martensitic transformation: such as the
threshold value of accumulated plastic strain p:at which the phase transformation starts,
the parameter 4 determining slope of the linearised part of transformation curve as well
as saturation level of the transformation &, are evaluated based on the measurements of
magnetic response of the material (Fig. 3.11). The magnetic properties of individual
phases (paramagnetic y austenite and ferromagnetic o' martensite) are used to estimate
the amount of martensite in the material. The magnetic permeability of steel changes as
a function of the content of ferromagnetic martensite and can be measured by using a
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magnetometer. Then, the measured permeability level can be directly converted to the
volume fraction of martensite.

stress-strain curve transformation
EA curve

gl
€

=Y

Pe

Figure 3.1: Experimental curves and main parameters of the model.

Mechanical properties of 316L stainless steel at 77K, with special consideration of
phase transformation, were investigated by Garion et al. [63]. Two samples of cross
sections 0.15mm x 3mm and 0.25mm x 3mm, respectively, were tested in liquid nitrogen.
The chemical composition of steel for both specimens was identified and the results are
given in Table 3.1. The kinematically controlled tensile tests were performed by using a
universal electromechanical testing machine with a special cryostat installed. In order to
identify the threshold strain at which the phase transformation begins, the volume
fraction of martensite was estimated for different strain levels: 0.05, 0.1, 0.2, 0.3 and
0.4. The magnetic measurements were carried out by removing the sample from the
cryogen as soon as the required deformation was obtained and measuring the
permeability at room temperature. Resulting stress-strain curve and the volume fraction
of martensite as a function of strain are shown in Fig. 3.2. The authors performed also
similar tests of 316L stainless steel in liquid helium temperature (4.2K).

Table 3.1: Chemical composition of AISI 316L samples (wt %).

el C Cr Ni Mn Mo N P S Si Fe
sample

gnfl;mm X10.027 117.99 (1029 156 2.03 10.0075]0.022 0.0009 0.596 |Bal.
g’ifnmm X10.029 117.91 [11.03 087 1.97 10.00740.025 0.0022 0.492 |Bal.

The properties of 304L stainless steel were defined on the basis of tests performed
by Morris et al. [64]. The chemical composition of samples is presented in Table 3.2.
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The stress-strain curve and the volume fraction of martensite as a function of strain
obtained from experiments are shown in Fig. 3.2.

Table 3.2: Chemical composition of AISI 304L steel (wt %).

C Cr Ni Mn Mo N P S Si Fe

304L 0.019 |189 829 |1.84 |0.43 |0.087 |0.024 |0.015 |0.033 |Bal.
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Figure 3.2: Experimental curves according to [64] for 304L steel and [63] for 316L
steel.

The set of material parameters identified on the basis of tensile tests and magnetic
measurements for 304L and 316L is given in Table 3.3. These parameters are used in all
calculations presented in the Thesis unless otherwise stated.

Table 3.3: Parameters of constitutive model for 316L (based on Garion et al. [63]) and
304L (based on Morris et al. [64]) stainless steels at 77 K.

E Go Co
Steel [GPa] v [MPa] | [MPa] h A P: EL Av

304L  |190 0.3 580 750 1.9 4.23 0.004 |03 0.05

316L 206 0.3 645 720 0.7 4.3714 10.0886 |0.9 0.05

It should be pointed out that the saturation level of the phase transformation &,
may change significantly depending on the chemical composition of steel. Due to the
fact that homogenisation algorithm models the two-phase structure assuming that the
martensitic inclusions are dispersed in the austenitic matrix, therefore austenite is the
dominant constituent of material. The maximum saturation level in all calculations
should not be assumed greater than 0.5 (& < 0.5). However, in the calculations
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performed for 304L stainless steel the value 0.9, resulting from the tests, is used and still
good agreement between numerical analyses and experimental data can be achieved.
However in this case the results for the accumulated plastic strains larger than 0.12
should be analysed with additional care.

3.2. General 1D constitutive model of material with phase
transformation

Based on the general constitutive law related to the material undergoing the
plastic strain-induced phase transformation and presented in Chapter 2, the special case
of 1D state equations is derived. In the elastic range, the linear elasticity constitutive law
in one-dimensional case is applied up to the point where the plastic threshold €,
corresponding to the yield point 0, is reached:

o‘=FEe for €<€0 (31)

When the material becomes elastic-plastic, but before the phase transformation
starts, the linear hardening takes place, which can be described as:

o7=0y+Cle—¢€,) for €<e<e; (3.2)

where 0, stands for the yield stress, Cy is the hardening modulus and €; denotes the
phase transformation threshold.

As soon as the y—a' transformation starts, the influence of martensitic inclusions
must be included in the constitutive model. Because the relationship between stress and
strain in no longer linear, the incremental formulation of the constitutive equations is
used (Hill's concept [53]), which takes into account linear hardening, interaction of
inclusions and dislocations as well as homogenization procedure:

doy=do,,+do,+do,;=C,de+CyhEde+C,,,de for €=¢ (3.3)
Here C,.,, represents the tangent stiffness modulus due to homogenization for the two-
phase material composed of martensite and austenite.

The volume fraction of martensite is obtained from the kinetic law of phase
transformation. Assuming that the parameter 4 is constant, which is justified for the
isothermal processes, one obtains linear relationship describing the volume fraction of
martensite as a function of the current strain € (Fig. 3.3):

E(e)ZTAde:A(E—EE) (3.4)

€¢

The tangent stiffness modulus C,.,, resulting from Mori-Tanaka homogenisation
scheme, can be expressed as:
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Figure 3.3: Volume fraction of martensite as a function of strain.

1— B
3 + g —2u —2u, (3.5)

2(p,+u) 2y, +u)

Ca+m(§>:2(”MT_l’lta):

With the onset of phase transformation, the austenite matrix becomes plastic
which implies the fact that Poisson's ratio of the austenite is equal to 0.5. Then, the
tangent bulk modulus of austenite tends to infinity k,—% and thus 1/k,—0.
Consequently, the shear modulus is equal to one third of the tangent stiffness of
austenite H,=FE,/3 . The above assumption leads to the tangent stiffness modulus

written as:

S5EE(Ea—E,)
(1+v,)|[2Ea(1-E)+E,(3+2%)]

C,.nl8)= (3.6)

where a is a constant parameter expressing the relationship between the Poisson's ratio
of martensite V,, and the Poisson's ratio of austenite Vv, :

l1+v,
a=
I+v,,

(3.7)

o : : EC :
Substituting the expression for tangent modulus of austenite E,Zm—c(é)), Eq. 3.6 is

transformed to the following form:

__SE n g
C"+m(§)_2(1+va) 1+n 2a(1+n)+3n_§ (3.8)
2a(l+n)-2n

where n determines the ratio between the hardening modulus C($) and the Young's
modulus E:
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C(g)_C,(1+hE)
E E

n(&)= (3.9)

The values of n in the defined range of plastic strains (up to 0.2) stay below
0.005 for 316L stainless steel and reach the maximum value of 0.01 for 304L stainless

steel (Fig. 3.4). Thus, one can assume that n<<1 and, further, that 1+n~1 in this
specific range. Therefore, Eg. 3.8 simplifies to the following form:

_SEng
3(1-8)

C,.nl¥) (3.10)

0.012
0.010

0.008
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== 304L

Mllll!lll"—l._'l—“ll — 31 6L
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Figure 3.4: Parameter n as a function of strain.

Thanks to the simplification of the formula 3./ and by substituting the kinetic law
of phase transformation (Eq. 3.4) one obtains the homogenised modulus of two-phase
material as a function of strain:

_5C,A[1+hA(e—¢)|(e—¢)

ool =3 d(c=c))]

(3.11)

The comparison of the above simplified version of the hardening modulus and the
exact value obtained from Egq. 3.5 shows that the maximum relative error does not
exceed 2.5% for 316L steel and 15% for 304L steel in the small strain range ( €<0.2),
which is illustrated in Fig. 3.5.
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Figure 3.5: Comparison of exact and simplified C,+,, moduli for 304L and 316L steel.

By reordering the components of Eq. 3.11, one obtains the final form of
homogenised tangent stiffness modulus with a quadratic function of strain in the
numerator and a linear function of strain in the denominator:

A€+ A, e+ 4,
C =
o+nl€) A e+ A,

(3.12)

where A4,,..., As are constant coefficients, that are introduced in order to abbreviate the
notation:

A,=54°Cyh
A4,=5A4C,(1-2hA¢,)
A,=5AC, €. (hde.—1) (3.13)
A,=—3A

A=3(1+4e,)

The total stress value in the range of phase transformation is evaluated by
integrating Eg. 3.3 over the plastic strain:

ol=0+[ Cy(1+hd(e—e))de+ [ C,,, (e)de (3.14)

€g €

where O is the stress level relevant to the strain €¢, at which the phase transformation
is induced.

The stress increment o,., obtained due to the homogenisation of two-phase
material is represented by integral of the homogenised modulus C,:.:

0'a+m:f C,. (e)de=B e +B,e+B,In(A4,e+A4,)-B, (3.15)

where B,,..., Bs are constant coefficients equal to:
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— Al
24,

B _A2A4_A1A5

=2 s

A4, (3.16)
5 A ;- A, A, A+ A, A
=

4,

B,=B,e;+B,e.+B,In(4,e.+ 4)

Finally, the direct formula for stress as a function of strain during the phase
transformation is:

o’=C, (e—e§)+%hA(e—e§)2 +B,e+B,e+B,In(d,e+4,)—B, (3.17)

The calculated stress-strain distributions for 304L and 316L are shown in Figs. 3.6
and 3.7, respectively.
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Figure 3.6. Stress vs strain for 304L stainless steel.

Due to the fact that the constitutive model accounts for the influence of phase
transformation on the material hardening, there is a significant difference between the
linear hardening model and the phase transformation model. In the case of 304L
stainless steel, the phase transformation is initiated immediately after reaching the
plastic state. Therefore, the range of plastic deformation with linear hardening is
significantly reduced and strong nonlinear hardening due to the presence of martensite
can be observed. For 316L stainless steel all three domains representing elastic, linear
plastic and nonlinear plastic hardening ranges are well visible.
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Figure 3.7: Stress vs strain for 316L stainless steel.

3.3. Finite element analysis of monotonic tension

In order to verify the finite element procedure presented in Chapter 2, monotonic
tensile test in the range of phase transformation is simulated in ANSYS. Two different
models of tensile bar are built in order to test the USERPL procedure (Fig. 3.8):

* 2D model by using PLANE42 elements. PLANE42 are 2D structural solid
elements with four nodes, having two degrees of freedom at each node:
displacement in the nodal x and y directions [65].

* 3D model by using SOLID45 elements. SOLID45 are 3D elements
characterised by eight nodes having three degrees of freedom at each node:
displacement in the nodal x, y, and z directions [65].

Both types of the above mentioned elements will also be used in further calculations
concerning bending of beams, torsion of rods and more complex structures.

PLANEA42 mesh

- ; SOLID45 mesh

Figure 3.8: Boundary conditions and mesh for the numerical traction test.
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A comparison of the results obtained by means of numerical simulations,
analytical solution of 1D model and experimental data is shown in Figs. 3.9 and 3.1.
For 316L steel excellent agreement between experiment and modelling is obtained up to
the 0.2 strain level. At higher strains the results start to diverge. In the case of 304L steel
the results are convergent up to 0.15 strain level. Then, the analytical solution gives
overestimated values of stresses but the finite element models still converge well with
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—Experimental data — Amnalitical solution FE model PLANE42 ==TF model SOLID43

Figure 3.9: Comparison between experimental, numerical and analytical traction
curves for 316L steel at 77 K.
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Figure 3.10: Comparison between experimental, numerical and analytical
traction curves for 304L steel at 77 K.

53



3.Tension and Compression of Rods

the experimental results up to 0.2 strain. Based on these results, it is stated that the
constitutive model represents correctly the behaviour of both metastable stainless steels
for the strain range below 0.2 and for the temperature of liquid nitrogen (77K).

The divergence between the analytical solution and finite element results, backed
by the experimental data, for 304L stainless steel can be easily explained by enhanced
error of C,., modulus for the strain value above 0.15 (Fig. 3.5). On the other hand, the
closed-form solutions obtained by means of the analytical approach have large value for
practical engineering applications.

3.4. Cyclic tension/compression with phase transformation

Although the constitutive model of material undergoing y—a' phase
transformation is dedicated to monotonic loading and does not take into account the
mechanisms related to fatigue and to cyclic hardening, it is used here in order to
investigate the influence of martensitic transformation on the hardening of steels under
cyclic loading. Moreover, the mechanisms of adaptation and inadaptation to cyclic loads

are studied.
F
F

Figure 3.11: Rod subjected to cyclic tension/compression.

The 2D finite element models of rods, made of 304L stainless steels, are tested
under uniaxial cyclic straining. The rods are subjected to tension and compression at
cryogenic temperatures (77 K) with the strain amplitudes of 1.06%, 1.4% and 2.36%.
The values of loads have been chosen on the basis of experimental data available in the
literature and presented by Suzuki et al. for 304L stainless steel [45]. The experimental
data presented in the articles are not sufficient to perform full identification of the
parameters required by the constitutive model. Only the yield strength has been
modified for the simulations according to the values given in the article: 353MPa for
304L. The other parameters have been assumed as in Table 3.3.

Based on the best fit between cyclic tests and numerical analyses, the Bauschinger
parameter £ = 0.9 has been chosen for both steels. It implies the fact that kinematic
hardening dominates over the isotropic hardening and suggests that the yield surface
during cyclic loading moves in the stress space without increasing much its size. From
the curves presenting evolution of the stress amplitude (Fig. 3.12) one can easily deduce
that for bigger strain amplitudes the martensitic transformation is initiated much faster
and significantly increases the stress level during loading. It shows that the martensitic
phase transformation has big influence on the strain hardening. It is well known that
martensitic inclusions are beneficial for the fatigue strength of materials. They are often
created in the regions of the biggest local strain concentrations that are usually located
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at the tip of propagating crack. The presence of hard martensite stops the growth of the
crack and, additionally, may also initiate the closure of short cracks [66].

304L

) = Expeniment Az = 1.06%
L I L BB e e i R = 1Experiment Az=14%
; Experiment Az=236%
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1000 - — Simulation Az = 1.06%
= Simulation As= 1.4%
500 - : Simulation As=236%
Lt
0 T

] w20 i 40 0 60 0 30 o) 100
Number of cycles

Figure 3.12: Comparison of experiments and numerical simulations for 304L steel
under cyclic loading.

It should be highlighted here that the above presented results of cyclic loadings
cannot be compared quantitatively to the experiments but only qualitatively due to the
fact that full identification of parameters was not possible for currently available
experimental data.
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4.1. Functionally graded structural members obtained by
bending of beams

Bending of beams made of austenitic stainless steels at cryogenic temperatures
may lead to creation of functionally graded structural members due to the plastic strain-
induced phase transformation. One can initiate the transformation in external parts of
cross-section by imposing kinematically controlled loading in the plastic range. Then,
pre-bent structural members are composed of several layers: the elastic layer close to
the neutral surface, the plastic layer located further away and the two-phase (y+a')
reinforced layer located at the top and bottom surfaces of the beam. The transition
between layers is gradual and smooth, which eliminates the problem of stress
concentrations between layers and possibilities of delamination. What is even more
important, the strain-induced phase transformation is an irreversible process and the
two-phase microstructure does not change after heating up to room temperature.

The constitutive model of materials undergoing the plastic strain-induced
martensitic transformation is used in this chapter to form the set of equations describing
behaviour of beams subjected to bending at cryogenic temperatures.

4.2. Elastic-plastic bending with y—a' phase transformation

Constitutive equations related to bending of beams in the elastic-plastic range with
y—a' phase transformation are formulated analogically to 1D case presented in
Chapter 3. Bending of a prismatic beam can be separated into compression in one part
of the cross-section and tension in the other part and the border between these two
processes is placed in the neutral plane of the beam. Thus, in the case of pure bending,
one can consider only one part of the cross-section and assume that the constitutive
equations for the other part are the same but with opposite sign. In the rectangular cross-
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4. Bending of Prismatic Beams

section the three domains, arranged symmetrically with respect to the neutral axis, can
be distinguished: elastic zone, plastic zone with linear hardening and plastic zone with
phase transformation (Fig. 4.5).

[~ .
S elastic zone

plastic zone with
st Il

linear hardening

2a

. plastic zone with
phase transformation

S

y

b

-t -
i |

Figure 4.1: Cross-section of rectangular beam subjected to bending.

The stresses in the elastic zone, the plastic zone with linear hardening and the
stress increments for plastic zone with phase transformation read:

oc‘=FEe€ for e<g,
doj=do,+do,+do,,,=Cyde+C hEde+C,, de for e=¢,

where a direct formula for the current stress level in the phase transformation zone is
obtained by integration of the incremental form of d o5 :

Uf:leO[1+hA(e—e§)]de+j'C (e)de (4.2)

€¢ €g

a+m

A simplified version of the homogenised stiffness modulus of two-phase material,
derived in Chapter 3, is used:

B SCOA[I—FhA(e—eE)](e—EE)

C,..le)= 4.3
a+m( ) 3[1—A(€_E§)] ( )
For the sake of simplicity, Eq. 4.3 is expressed by means of constant coefficients:
A€+ A e+ A,
= (4.4)

a“amT 4 e+ A

where A4,,..., A5 are defined in the following form:
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4. Bending of Prismatic Beams

A,=54°Cyh
4,=5A4C,(1-2hA¢,)
A,=5AC, €. (hde.—1) (4.5)
A,=-3A

A,=3(1+4¢;)

Finally the distribution of stresses as a function of strains during the phase
transformation reads:

ay(e)=C, (e—eg)-l-gA(e—eg)2 +B,€’B,e+B;In(A4,e+ A,)—B, (4.6)

The value of bending moment in the beam is obtained by integrating the stresses,
multiplied by the distance from the neutral axis z, over the cross-section area. The
bending moment for the beam of rectangular cross-section of height 2a and width b
amounts to:

M:Hasz=2b_fazdz 4.7)
A z

In the case of elastic-plastic bending with the plastic strain-induced phase
transformation, the stress is integrated over three domains, arranged symmetrically with

respect to neutral axis: §¢ denoting the elastic, central zone, S — the plastic zone with

linear hardening and S5 — the plastic zone with martensitic transformation (Fig. Error:
Reference source not found). Thus, the bending moment takes the form:

M=” UezdSe+”Ufzde+” 0V zdS) (4.8)
s st Sy

A number of theories describe kinematics of bending beams. The simplest one,
known as Bernoulli hypothesis, assumes that cross-sections that are plane and
perpendicular to the beam axis before deformation remain plain and perpendicular to the
beam axis after deformation and shear deformation of the cross-section is not
considered. This theory was improved by Timoshenko by adding a term accounting for
the shear deformation and the effect of rotational inertia. The Timoshenko theory is used
to describe mostly short beams, where the shear influence is significant, or the so called
sandwich composite beams. Another approach that has to be mentioned is the sandwich
beam theory, derived initially for bending beams composed of three layers: a core which
is subjected to transverse shear deformation and two facings that are subjected to
stretching and bending action and deform according to the Bernoulli theory. The
sandwich theory assumes that the core and facings are visibly separated from each other.

None of these theories was developed in view of kinematics of a beam with
gradually changing material properties subjected to bending. The Bernoulli hypothesis
of plane cross-sections is applied here due to its simplicity, which allows us to derive
the analytical formulas for bending moment. It implies the fact that elongations and
contractions of longitudinal fibres are proportional to the distance from the neutral axis.
Accordingly, the following linear relation between the axial strain €, the curvature of
neutral axis « and the current coordinate z is derived:
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4. Bending of Prismatic Beams

€E=KzZ (4.9)

The bending moment in the elastic range is expressed as a function of curvature:
M*(K)=2b[ Eezdz=2b[ Exz’dz (4.10)
0 0

When the plastic deformation starts (before the phase transformation is activated)
the bending moment is expressed by means of two terms, integrated over the elastic and
the elastic-plastic zones, respectively:

zy(k) a
M (k)=2b [ ExZdz+2b [ [0)+Cylrz—¢,)|zdz (4.11)

J(k
0 2 4(K)

As soon as the phase transformation starts, obtaining the value of bending moment
requires integration over three zones: elastic, elastic-plastic with linear hardening and
elastic-plastic with phase transformation:

Z(K) z (k)
MY (k)=2b J' Ekz dz+2b f [O’O+CO(Kz—€O)]2dz+
° . k) (4.12)
+2b f [U§+U,in+aa+m]zdz
Z,)/(K)

Finally, taking into account components of the bending moment for all zones, the
relationship between the bending moment and curvature of bending beam is described
by the equation:

z¢(

.
M(k)=2B{ [ Exz’dz+
0

(k)
f zloy+Cy(kz—€,)|dz |+

z%(k)

— |z

+2B z O'§+C0(KZ—€§)+gACO(KZ—€§)2 dz(+ (4.13)

=%

K)

N

— |

+2B z|B,K’2*+ B,kz+B,In(A,kz+A,)—B,|d z

zl(k)

where B,,..., Bs are constant coefficients:

_ A4

24,
A2 A4_A1A5

4] (4.14)

5 A A A, A A+ A, A,

37 Ai
B,=B,ci+B,e.+B,In (4, €.+ 4)

B,=
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4. Bending of Prismatic Beams

The bending moment as a function of curvature for rectangular beam with the
plastic strain-induced phase transformation is shown in Fig.4.2.
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Figure 4.2: Bending moment as a function of curvature for 304L and 316L stainless
steel.

The distribution of the volume fraction of martensite evolves along the height of
the cross-section, creating symmetrically located layers (Fig. 4.3).

304L 316L
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Volume fraction of martensite
Volume fraction of martensite
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Figure 4.3: Martensite content as a function of beam height.

4.3. Numerical examples of beams with y—a' phase
transformation subjected to bending

Rectangular beams made of 316L stainless steel, subjected to bending at 77 K are
considered. Numerical analyses using the USERPL procedure, that takes into account
the influence of y—a' phase transformation on the material behaviour, were prepared for
two load cases:

a) cantilever beam of rectangular cross-section subjected to constant bending
moment (Fig. 4.4a);

b) simply supported beam of rectangular cross-section loaded symmetrically with
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two concentrated forces (Fig. 4.4D).

The following dimensions are assumed: length L = 10 c¢m, height 2a = 10 mm, width
b =35 mm.

=

:

Figure 4.4: Load cases: a) constant bending moment, b) two concentrated
forces.

The beams are modelled by means of PLANE42 elements. Using options
available for this element, one can solve the case of beam subjected to bending
assuming the plane stress state. This assumption enables us to use a relatively dense
finite element mesh, which reduces the analysis run-time.

- L~

Figure 4.5: Finite element mesh of a beam subjected to bending.

Analysis of the beam subjected to bending by means of constant bending moment
shows how the layers with gradually changing microstructure are located. One can also
observe non-linear distribution of stresses in the cross-section which results from the
hardening caused by the presence of martensite (Fig. 4.6).
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Figure 4.6: Strain and stress distributions in the cross-section of a beam.

Loading a simply supported beam with two concentrated forces leads to constant
bending moment between the forces. This configuration can be easily applied in an
experimental set-up in order to generate the functionally graded material structure. By
cutting-off the end parts of the beam, one can obtain a beam with continuously changing
properties in the cross-section, similar to a layered structure (Fig. 4.7).

cryostat liquid nitrogen /
\ F liquid helium bath

~

beam subjected

/ to bending

Figure 4.7: Creation of FGSM by by loading simply supported beam with two forces.

The numerical simulation of such a process is shown in Fig. 4.8. The presented
distribution of strains is directly related to the distribution of a' phase (martensite) and
represents the layered structure of the beam.
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Figure 4.8: Numerical simulation of FGSM creation process.

4.4. Cyclic bending of rectangular beams

Cyclic bending of a simply supported beam subjected to two symmetrically
applied forces is considered (Fig. 4.9). The dimensions and the finite element mesh are
the same as for the monotonic bending.

Iy Iy

Figure 4.9: Rectangular beam subjected to cyclic loading.

The hysteresis loops for four different saturation levels of martensite in the
material are shown in Fig. 4.10. When the phase transformation is not active, the linear
hardening is present only. However, with the increasing amount of martensite in the
material, its influence on the strain hardening becomes more and more visible. The size
of the hysteresis loops decreases faster during cyclic loading of materials with higher
martensite content. It can be interpreted by the fact, that the materials with higher
content of martensite dissipate less energy (inclusions are assumed elastic).

The set of hysteresis loops for different saturation levels & of the phase
transformation is shown in Fig. 4.11. Additionally, for the sake of comparison, the
results for a material with &, = 0.9 are presented. However, one should bear in mind that
allowing for martensite content above 50% may not be correct in view of the applied
homogenisation process.
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Figure 4.10: Stress - strain hysteresis loops for different phase transformation
saturation levels &, during cyclic bending.
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Figure 4.11: Comparison of hysteresis loops for different martensite
content levels.

Analysis of the plastic strains distribution under cyclic loadings indicates that the
process of alternating plasticity is accompanied by strong reduction of plastic strain
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amplitude in the presence of martensite (Figs 4./2 and 4.1). The bigger martensite
content, the lower strain amplitudes are achieved for the same number of cycles.
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Figure 4.12: Evolution of plastic strain for different phase transformation saturation
levels during cyclic bending.
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Figure 4.13: Comparison of plastic strain amplitudes for different martensite

content levels.
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The evolution of the accumulated plastic strain as a function of the number of
cycles is shown in Figs 4.14 and 4.15 . A material which does not undergo the phase
transformation is characterised by linear increase of the accumulated plastic strain in the
course of cycling. The presence of martensite manifests itself in reduction of the rate of
increase of the accumulated plastic strain and the whole process takes the non-linear
form.
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Figure 4.14: Evolution of the accumulated plastic strain for different phase
transformation saturation levels during cyclic bending.

It is possible to estimate the relation between the martensite content and the
accumulated plastic strain (Fig. 4.16). The power dependence can be observed here. The
more martensite the smaller increase of the accumulated plastic strain.
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5.1. Functionally graded structural members obtained by
torsion of circular rods

Applying torque at cryogenic temperatures to circular rods made of metastable
austenitic stainless steels may generate structures of radially varying mechanical
properties. Based on the mechanism of plastic strain-induced phase transformation it is
possible to create rods with elastic-plastic core surrounded by a hardened, two-phase
layer consisting of the mixture of y austenite and o' martensite.

The process of creating a rod with functionally graded properties can be realised
by immersing the structural member in liquid helium or liquid nitrogen and twisting
above the plastic strain threshold associated with the initiation of the phase
transformation. Martensite created in the material during the strain-induced phase
transformation is stable even after heating the structure up to room temperature due to
the fact, that this transformation is irreversible.

5.2. Elastic-plastic torsion with y—a' phase transformation

A bar of a circular cross-section, fixed at one end and twisted by a torque applied
at the other extremity is analysed. In general, the torque M, twisting a rod is equivalent
to the sum of moments of internal forces with respect to the axis of the rod, which can
be expressed in the form of integral over the cross-section area. In case of a rod of
circular cross-section, the analytical expression for the torque in the polar coordinate
system takes the form:

M,foTrdA=27TfTr2dr (5.1)
A4 r
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5.Torsion of Circular Rods

where 7 is the shear stress, 7 is the radial coordinate and 4 denotes the cross-section area.

It is assumed that the shear strain y can be expressed as a linear function of the
unit angle of twist § and radius 7:

y=0r (5.2)

In the case of elastic-plastic torsion of a circular rod undergoing the martensitic
phase transformation one can distinguish three zones, located concentrically with

respect to the axis of the rod: S§¢ — elastic zone, S{ — plastic zone of austenitic
structure without phase transformation and S — plastic zone undergoing the phase

transformation and consisting of austenite and martensite (Fig. 5.7). The constitutive
equations describing behaviour of material in these three domains are built on the basis
of general model presented in Chapter 2 and converted to the case of pure shear.

e . *
S D elastic region

SP - plastic region with
: linear hardening

5 plastic region with
% . phase transformation

Figure 5.1: Cross-section of circular rod subjected to torsion.

In the elastic range, the shear stress is related to the shear strain according to the
Hook's law:

Te:Gy for YSY() (53)

where G is the shear modulus and y, represents the plastic strain threshold.

According to Eq. 5.1, the torque as a function of the unit angle of twist for the
elastic range takes the following form:

R R
Me(0)=21TGfyrzdr=2TrGf9r3dr (5.4)
0 0

As soon as the yield stress is achieved, the plastic deformations start to appear on
the outer surface of the rod. The shear stress in the plastic range with linear hardening is
expressed as:

Ti=To+Coly —yo) for y,Sysye (5.5)

where y: represents the phase transformation shear strain threshold.

The value of torque in the elastic-plastic region before the phase transformation
starts is obtained by integrating the relevant stresses over the elastic ( 0<r<r, ) and the
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plastic (7, <7 <R domains respectively:

r4(0) R
M (0)=2m [ Gorldr+2m [ [t +Col0r—y,)|r dr (5.6)

0 r«,(e)

The stress increment in the elastic-plastic region during the phase transformation
is composed of the terms related to the shear stress increments due to the linear
hardening d T;, , the interaction of dislocations with martensitic inclusions d T;, and
the homogenisation of two-phase structure d T,_,, :

dTi=d T+ d T, +d T, =Cod y+ CohEd y+Cop,d y S

The linearised kinetic law of the phase transformation defines the volume fraction
of martensite as a function of shear strain as:

Ely)=) Addy=Aly-y;) (5.8)

Ve

Substituting this to Eq. 5.8 and integrating from the phase transformation shear
strain threshold to the current shear strain, one obtains the stress value as:

Y Y
=] Cl1+hd(y—yldy+[C,.(y)dy (5.9)
Ye Ye
Ca+m 1s the simplified version of the homogenised stiffness modulus expressed as:

2 )

2
Al(l) +4, Y14,
C,on= (5.10)

where 4,,..., As are constant coefficients defined as:

A,=54°Cyh
4,=54C,(1-2hA¥¢,)
A;=5A4C e (hAde;—1) (5.11)
A,=—3A
A,=3(1+A€;)

The final expression for stress in the range of phase transformation is:

5 (y)=C, (y—y§)+g/1(y—yg)2

2
+Bl(%) Bz%+B3ln(A4%+A5)—B4 (5.12)

where B,,..., Bs are constant coefficients equal to:
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B,= 4
24,
B _A2A4_A1A5
4 (5.13)
2 ! 2 '
2 A Ai— Ay A A+ A, A
37 A3
4

B,=B,e;+B,e.+B,In(4,e.+ 4)

Calculation of the torque value in the case of plastic strain-induced phase
transformation process requires integrating the stresses over the elastic zone
(0<r=<r,), the elastic-plastic zone with linear hardening ( 7., <7 <r¢) and the elastic-
plastic zone with the phase transformation (7¢S7<R).

rg,(Q) 75(9)
MY (0)=2m f GOridr+2m f [To+Col0r—y,)|rdr+
0

7, (0)
R

+2m f TECOl(Br—y§)+%A(0r—y§)2]r2dr+ (5.14)

7¢(0)

R
+27Tf

rg(e)

2
rodr

2
or or or
31(7) 3274‘33111(14474‘145)—34

The torque as a function of unit angle of twist with three characteristic domains is
presented in Fig. 5.2. In the case of a bar made of 304L stainless steel the phase
transformation starts almost immediately after reaching the yield point, which makes the

linear hardening process relatively narrow and leads to significant non-linear hardening
of material.

3041
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2
00000 05000 1—
g 150000 g
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50000 L4t phase transform ation \
E“/ threshold l :
ot . . . 0 . . .
000 0ot 002 003 004 000 001 002 0.03 004

Unit angle of twist [1/mm] Unit angle of twist [1/mm]

Figure 5.2: Torque as a function of unit angle of twist.

The volume fraction of martensite evolves along the radius generating the
functionally graded structure and radially varying mechanical properties of the rod
(Fig. 5.3). Martensite is created in the outer layer of the rod, what strengthens its surface
with simultaneous preservation of the elastic-plastic properties of the core.
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Figure 5.3: Martensite content as a function of radius.

5.3. Numerical examples of rods with y—a' phase
transformation subjected to torsion

Circular rods made of 316L stainless steel and subjected to torsion at 77 K are
selected as examples for numerical analysis of structural members with functionally
graded properties. The solid rod has radius R = Smm whereas the annular rod is
characterised by the outer radius R,,, = Smm and the inner radius » = 2.5mm. The loads
are applied according to the scheme shown in Fig. 5.4 a, b.

i e
i O

Figure 5.4: Load cases: a) torsion of a solid rod and b)
torsion of a hollow rod.

The rods are modelled by means of SOLID45 elements. In order to reduce the size
of the model and obtain reliable results, the finite element mesh is denser in the middle
of the rod length, in the place where the results are red out (Fig. 5.5).
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Figure 5.5: Finite element mesh in rods subjected to torsion.

The stress and the strain distributions for both cases are presented in Figs 5.6 and
5.7. In the central part of the solid rod one can distinguish the region without phase
transformation, where only y phase is present. The region with the phase transformation,
where both y austenite and o' martensite are present, is created on the outer surface of
the rod. In the case of annular rod the whole cross-section contains martensitic
inclusions, however the distribution of martensite changes gradually along the radius of
the rod.

strain stress

007293 ~AIE e

035566 —372.759

06384 -266.257
09z114 -159.754
120388 -53.251
.148662 53.251
159.754
266.257

372.75%9

478.262

Figure 5.6 Strain and stress distributions in the cross-section of a solid rod subjected
to torsion.
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Figure 5.7: Strain and stress distributions in the cross-section of a hollow rod subjected
to torsion.

5.4. Cyclic torsion of thin-walled cylinders (tubes)

A thin-walled cylinder (tube) made of 316L stainless steel is subjected to cyclic
torsion at the liquid nitrogen temperature. The outer radius of the cylinder is R = 5mm
and the thickness ¢ = 0.5mm. In order to investigate how the martensite content affects
on the behaviour of the material subjected to cyclic loadings, it is assumed that the
saturation level of the phase transformation may be adjusted. The finite element model
has been built by using SOLID45 elements and the boundary conditions are set as
shown in Fig. 5.8.

M

Figure 5.8: Boundary conditions and finite element mesh of thin-walled cylinder
subjected to cyclic torsion.

The comparison of hysteresis loops for different saturation levels of the
martensitic transformation is presented in Figs 5.9 and 5./0. Similarly like in the
bending case, one can observe that the size of the hysteresis loops decrease with
increasing amount of martensite in the material.
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Figure 5.9: Stress - strain hysteresis loops for different phase transformation saturation
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Figure 5.10: Comparison of hysteresis loops for different phase transformation

saturation levels during cyclic torsion.

Initially, the plastic strain range reduces from cycle to cycle. However, it stabilises
very quickly and remains with constant plastic strain amplitude. This effect is more
visible for materials with bigger saturation level of the phase transformation (Figs 5.1/

and 5.12).
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Figure 5.11: Evolution of plastic shear strain for different phase transformation
saturation levels during cyclic torsion.
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Figure 5.12: Comparison of stabilized plastic strain amplitudes for
different martensite content levels.

The biggest increase of the accumulated plastic strain is observed for the materials
without phase transformation (Figs 5.13 and 5.14). The presence of martensite reduces
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significantly the amount of plastic work dissipated in the material.
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Figure 5.13: Evolution of the accumulated plastic strain for different phase
transformation saturation levels during cyclic torsion.
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6. FunctioNnALLY GRADED STRUCTURAL
MEMBERS SuBJECTED TO COMBINED
LoAapINGs

6.1. Combined loadings applied to structures undergoing
phase transformation

In this chapter, the FE simulations of nonproportional loading paths applied to
thin-walled cylinders undergoing the strain-induced phase transformation are carried
out. Two distinct numerical analyses consisting of four loading cycles were performed:

* uniaxial tension (first cycle) combined with three cycles of oscillating
torsion (cycles 2 - 4)

* torsion (first cycle) combined with three cycles of tension and
compression (cycles 2 - 4)

The cylinder of length L = 70mm has outer radius of R = 5mm and the thickness
t = 0.5mm. The finite element model was built by means of 3D SOLID45 elements
(Fig. 6.1). All results are extracted from the element lying at the outer surface of the
cylinder in the middle of its length in order to reduce the influence of the applied
boundary conditions.

First cycle is understood here as a monotonic loading up to the assumed load level
(sustained load), followed by further cycling with respect to the complementary stress
component. For instance, monotonic tensile load which is followed by cyclic torsion.
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Figure 6.1: Finite element mesh of thin-walled cylinder subjected to combined
load.

6.2. Case 1: tension with cyclic torsion

Thin-walled cylinder subjected to uniaxial tension and then to cyclic torsion is
considered (Fig. 6.2).

Figure 6.2: Thin-walled cylinder subjected to tension and cyclic torsion.

The load values are chosen in such a way that during tension the equivalent strain
reaches the level which assures initiation of the plastic strain-induced phase
transformation and, subsequently, during cyclic torsion the equivalent strains stay below
the value of 0.2. The loading path in the stress space is shown in Fig. 6.3.
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Figure 6.3: Loading trajectory in the stress space for uniaxial tension and cyclic
torsion.

Distribution of the equivalent stress as a function of the equivalent strain resulting
from the calculations is shown in Fig. 6.4. One can observe that the dissipation of
energy — characteristic of cyclic loading of plastic material — is not present starting from

the third cycle.
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Figure 6.4: Equivalent stress versus equivalent strain for uniaxial tension and cyclic
tforsion.

Characteristics of individual stress components as a function of the number of

80



6. Functionally Graded Structural Members Subjected to Combined Loadings

cycles and the strain are shown in Figs 6.5 and 6.6. According to the assumed loading
scenario, during the first cycle only the normal component of the stress changes up to
the prescribed value and stays constant during the next part of the process. On the
contrary, the shear component of the stress is activated from the second cycle when the
torque is applied and oscillates with constant amplitude during the next three cycles.
Only one hysteresis loop is created during the second cycle and since then the material
does not dissipate energy. Such behaviour indicates clearly fast shakedown process,
which is beneficial from the point of view of the fatigue life of the structure.
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Figure 6.5: Normal stress as a function of cycle number and normal strain.
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Figure 6.6: Shear stress as a function of cycle number and shear strain.

The accumulated plastic strain starts to increase during the first cycle and reaches
a constant level during the second cycle (Fig. 6.7). It turns out that after the initial
stretch and single torsion cycle the yield surface attains the maximum size which is not
modified by further loading. As a result, the material shakes down and the structure
starts working without further dissipation of the energy. The phase transition is initiated
at the end of the tensile loading and reaches the saturation level very quickly during the
first torsion cycle.
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Figure 6.7: Accumulated plastic strain and volume fraction of martensite as a function
of the number of cycles.

6.3. Case 2: torsion with cyclic tension

Thin-walled cylinder, initially twisted and then subjected to uniaxial cyclic
tension and compression, is analysed (Fig. 6.8).

Figure 6.8: Thin-walled cylinder subjected to torsion and cyclic tension/compression.

The loading trajectory in the stress space is shown in Fig. 6.9. After loading up to
the point when the phase transformation starts, the cylinder is subjected to tension and
compression cycles in such a manner that the equivalent strain stays below 0.2.
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Figure 6.9: Loading trajectory in the stress space for torsion with cyclic tension
and compression.

The equivalent stress as a function of the equivalent strain is shown in Fig. 6.10.
One can observe that like in the case of uniaxial tension and cyclic torsion, the energy is
not dissipated starting from the third cycle..
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Figure 6.10: Equivalent stress versus equivalent strain for torsion and cyclic
tension/compression.

Stress components as a function of the number of cycles and the strain are shown
in Figs 6.11 and 6.12. During the first cycle the shear component of stress increases to
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the level which assures initiation of the plastic strain-induced transformation. The
normal component of the stress is activated starting from the second cycle when the
tension is applied and oscillates with constant amplitude during the next three cycles.
There is only one hysteresis loop developed during the second cycle and next material
stops dissipating energy.
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Figure 6.11: Normal stress as a function of cycle number and normal strain.
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Figure 6.12: Shear stress as a function of cycle number and shear strain.

The phase transition is initiated during the first cycle of torsion and reaches the
saturation level immediately after the tension process starts in the course of the second
load cycle (Fig. 6.13). The accumulated plastic strain stops increasing during the second
cycle just after the compression, which indicates the fact that the material shakes down
and no further energy dissipation is observed. Such a fast shakedown process is again
beneficial for the fatigue life of the structure.
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Figure 6.13: Accumulated plastic strain and volume fraction of martensite as functions
of the number of cycles.

The results presented in Figs 6.4 and 6.1/0 were obtained for two different values
of the Bauschinger parameter: f = 0.9 and f = 1.0. As the shakedown is reached at the
same moment, no matter whether the Bauschinger parameter was equal to 0.9 or 1.0, the
conclusion can be drawn that the main cause of “accelerated* shakedown in the case of
analysed material is the phase transformation process. The explanation consists in the
fact that the austenitic micro-structure is gradually replaced by the elastic martensite
inclusions. This mechanism substantially reduces dissipation of plastic power on cycle.
It is worth pointing out, that similar accelerated shakedown occurs for both combined
loadings: tension with cyclic torsion (case 1) and torsion with cyclic tension (case 2).
This conclusion should be regarded as important contribution to the design process of
structures manufactured of metastable materials subjected to cyclic loads at cryogenic
temperatures. In particular, partial phase transformation may turn out to be beneficial
for the enhancement of fatigue life of structures applied at cryogenic temperatures.
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7. DESIGN oF THIN-WALLED STRUCTURES
UNDERGOING PHASE TRANSFORMATION

7.1. Thin-walled corrugated shells

Bellows expansion joints belong to thin-walled structures of high flexibility,
commonly applied in compensation systems (Fig. 7.1). They are used to compensate for
the relative motion of two adjacent assemblies subjected to thermal cycles or service
loads. Bellows are frequently used in extreme conditions, comprising various
temperature ranges and load types, which makes them a class of highly engineered
structures that need to be correctly designed, manufactured and installed. Design of

Figure 7.1: Examples of bellows expansion joints (CERN).
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expansion joints requires taking into account working conditions such as the piping
system layout, flowing medium, pressure, temperature and possible motions. Equally
important is the specification of bellows material, which must be compatible with the
flowing medium, the external conditions and the operating temperatures [67].

The bellows expansion joints are crucial elements for systems working at
cryogenic temperatures, where all structures contract significantly during cool-down
process and the emerging displacements of components need to be compensated.
Among many systems working at cryogenic temperatures and using this type of thin-
walled structures the Large Hadron Collider (LHC), the superconducting particle
accelerator currently in operation at CERN, is a good example.

The LHC is operated at superfluid helium temperature which implies the fact that
the bellows expansion joints must work reliably in the range of temperatures from 293K
to 1.9K. Compensation elements are usually placed in the interconnections between
superconducting magnets where the deformations due to thermo-mechanical loads are
localised (Fig. 7.2). Their main objective is to compensate for the thermal contraction of
magnets and to provide continuity of beam vacuum chamber, all cryogenic lines and
insulation vacuum.

Figure 7.2: Bellows expansion joints in the LHC accelerator (CERN).

7.2. Numerical analysis of the expansion bellows

Thanks to the implementation in the finite element software of the constitutive
model of a material undergoing the plastic strain-induced phase transformation, the
mechanical behaviour of any structure can be easily computed and the evolution of
two-phase continuum created during the transformation can be investigated. As an
example, the finite element analysis of expansion bellows is presented.

The model of analysed expansions bellows is based on the geometry of
components integrated in the LHC compensation system which provide continuity of
the beam vacuum chambers between two adjacent dipole magnets. All geometrical
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parameters of the expansions joint are specified in Table 7.1.

Table 7.1: Basic geometrical parameters of the expansion bellows.

Material | Thickness Number. of Pitch Il.mer Quter Convoluted
convolutions diameter diameter length
316L 0.15 mm 15 5 mm 82 mm 98 mm 80 mm

The finite element model has been built by means of 2D PLANE42 elements
assuming the axial symmetry (Fig. 7.3). Moreover, it has been assumed that the
expansion bellows is made of 316L stainless steel and is modelled for the conditions of
liquid nitrogen temperature (77K). The shell is subjected to external pressure (p = 1.3
bar) and kinematically loaded according to the following program:

asymmetric tension of 42 mm and compression of /6 mm in order to
compare the simulations with the experimental results;

symmetric tension and compression in the range of +/- 70 mm, which
allows us to trace the evolution of martensite in the convolutions.

Au

<+— external

pressure

) —

<

+axial symmetry
| —

Figure 7.3: Boundary conditions and finite element mesh of expansion bellows.

The numerical and the experimental (based on [68]) results for single tension and
compression of the expansion bellows are shown in Fig. 7.4.
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Figure 7.4: Comparison of experimental and numerically simulated cyclic force-
displacement curves.

Cyclic tension and compression of the bellows within the plastic range causes
slow propagation of two-phase regions in the course of loading. Sufficient plastic
deformation initiates immediately the martensitic transformation which evolves at root
and at crest of the convolutions. The zones containing the martensitic inclusions arise in
the course of cycles gradually, providing reinforcement (hardening) in the areas

subjected to the highest strains (Fig. 7.5).
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Figure 7.5: Evolution of two-phase structure in the convolutions of expansion bellows.
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The quantitative evolution of the volume fraction of martensite through-thickness
of the convolution is presented in Fig. 7.6. The amount of martensite evolves up to the
assumed saturation level (here: & = 0.3).
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Figure 7.6: Distribution of secondary phase through-thickness of convolution.

The stress distribution in a single convolution after 30 cycles is presented in
Fig. 7.7. One can easily notice that the highest stress intensity appears at root and at
crest of the convolution — in the zones which are strengthened by the martensite.
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Figure 7.7: Stress distribution in expansion bellows after 30 cycles.

The distribution of the accumulated plastic strain and related distribution of the
volume fraction of martensite after 30 cycles are shown in Fig.7.8.

The localisation of the phase transformation process coincides with so-called
“skin layer” resulting from the technological process (rolling) when manufacturing fine
gauge stainless steel sheets. In order to avoid premature failure of strongly hardened
material (hardening due to rolling + hardening due to phase transformation) it is
necessary to reduce the intensity of phase transformation down to acceptable level. On
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Figure 7.8: Accumulated plastic strain and volume fraction of martensite after 30
cycles.

the other hand, the existence of ellipsoidal martensitic inclusions (lenticular martensite)
is beneficial for the life-time of the component because the inclusions act as macro-
crack stoppers in the two-phase continuum. Therefore, a limited phase transformation is
regarded as a positive contribution to enhancement of the fatigue life of thin-walled
shell.
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Kinematically controlled plastic strain-induced martensitic transformation may be
used as a method of creating functionally graded materials with “tailored” mechanical
properties. The FGM can be easily obtained within the structural members made of
metastable austenitic stainless steels by loading them above the yield point and inducing
the y—a' phase transformation. It is possible to obtain various distributions of
mechanical properties, generated by two-phase micro-structure of the material,
depending on the distribution of plastic strain fields as a function of the shape of
structure.

In the Thesis a constitutive model of materials undergoing the plastic strain-
induced phase transformation has been developed. The model is based on the linearised
transformation kinetics, which is particularly relevant for the cryogenic conditions.
RVE-based approach with rate independent plasticity, the Huber-Mises-Hencky yield
condition, associated flow rule and mixed hardening model was used. The evolution of
effective properties of material due to the evolving ratio between the parent and the
secondary phase is included in the model thanks to the Mori-Tanaka homogenisation
performed at each step of the non-linear analysis. The constitutive model has been
implemented in the finite element software (ANSYS) by means of the external
procedure USERPL, which incorporates the user defined plasticity law.

The constitutive model was used to compute analytically the 1D cases:
tension/compression of rods, bending of rectangular beams and torsion of circular rods.
The results of the analyses were then cross-checked with the experimental data and the
FE simulations. The results obtained for circular rods subjected to torque as well as for
rectangular beams subjected to bending were presented as examples of functionally
graded structural members obtained via the plastic strain-induced phase transformation.

Thanks to the implementation of the constitutive model in the finite element code,
the mechanical behaviour of any structure working at cryogenic temperatures and
undergoing the phase transformation can be computed. As an example, a thin-walled
cylinder (tube) subjected to combined loads and a expansion bellows (thin-walled shell)
subjected to combined and cyclic loads were studied including the propagation of the
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phase transformation regions.

In the recent years, the applications of cryogenic technologies increased rapidly
what generated the problem of correct design of engineering systems working in such
extreme conditions. Constitutive modelling of materials for cryogenic temperatures
becomes a key issue and has to include all physical phenomena taking place in the
lattice in the extreme working conditions. Application of functionally graded structures
created by the strain-induced martensitic transformation in the range of cryogenic
temperatures may become a desired solution, especially taking into account the
relatively easy method of production and possibility of numerical programming.

It is also possible to design optimum materials by changing the content of alloying
elements in order to obtain favourable properties, such as the required maximum
volume fraction of martensite at a given temperature. Such material design was
performed in the case of the Large Hadron Collider compensation system where special
on-purpose austenitic steel was designed and manufactured in order to reduce the
intensity of phase transformation at 1.9K down to a necessary minimum.

One may ask a question related to the ratio between the gain and the technological
effort when creating the functionally graded structural members (FGSM). The gain can
be attributed within the following domains:

* enhanced strength of the outer, reinforced layers and resistance against
mechanical damage;

* enhanced stability of FGSMs against buckling, especially in the case of columns
of circular cross-section;

* enhanced resistance against fracture because of the mechanism of martensite
inclusions acting as the stoppers for macro-cracks propagating in the two-phase
continuum,;

* enhanced fatigue life of FGSMs due to fast shakedown when subjected to cyclic
loads in the presence of sustained load (verified for tension/compression and
twisting configurations);

* wide range of operational conditions, the maximum temperature without
evolution of y/a' ratio being of the order of 400°C.

The technological effort is definitely small because of the following arguments:
* technology of bending or twisting is very well mastered,

* no sophisticated equipment is required — simple liquid nitrogen (77K) or helium
(4.2K) bath is sufficient;

* the process is fast and the FGSM immediately ready for use;

* the only drawback consists in the necessity of cutting off small portions of the
beam subjected to bending.

An example of evolving micro-structure of material created in the FGSM by
means of y—a' phase transformation is shown in Fig. 8.1.
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Figure 8.1: Creation of functionally graded structural members (FGSM).
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