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NOTATION

In the thesis the Voigt’s notation (called also matrix-vector notation) is used. However, when it

is necessary, indicial notation is additionally adopted. Despite a transient problem is considered,

time t is usually omitted in the notation. Standard mathematical operations (e.g. matrix trans-

position) are written in a standard way. The Latin and Greek symbols as well as abbreviations

employed are listed below. The page number, optionally preceded by the equation number, in

which a symbol is defined the first time, are additionally given to make these lists more helpful.
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∂B boundary (surface) of domainB, Eq. (3.16), p. 61

∂Bdis discontinuity surface (curve), p. 5

∂Bt (part of) boundary of domain with given tractions, Eq. (3.16), p. 61

∂Bu (part of) boundary of domain with given displacements, Eq. (3.16), p. 61

E, Ec, Es Young’s modulus, Eq. (2.11), p. 15

Etan tangent stiffness, Eq. (1.9), p. 6

E elastic stiffness operator in matrix form, Eq. (2.5), p. 15
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E∗ auxiliary stiffness operator (crack closing), Eq. (2.83), p. 30
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ǭ averaged (non-local) strain measure, Eq. (3.1), p. 57
ǫ0 homogeneous strain, Eq. (1.11), p. 6

ǫe elastic part of strain, p. 98
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BDP Burzyński-Drucker-Prager, p. 23

CDM continuum damage mechanics, p. 2

EER elastic energy release, p. 15

FE finite element, p. 8

GLS Galerkin least-square, p. 81

GGLS gradient Galerkin least-square, p. 83

FI full integration, p. 73

FEM finite element method, p. 26

HMH Huber-Mises-Hencky, p. 24

IBVP initial boundary value problem, p. 6

RC reinforced concrete, p. 12

RI reduced integration, p. 73

XFEM extended finite element method, p. 8

dofs degrees of freedom, p. 68

ips integration points, p. 71

lin linear interpolation, p. 71

quad quadratic interpolation, p. 71

s. eigs signs of eigenvalues, p. 73





CONTENTS

1 Introduction 1

1.1 Basis of damage theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Numerical modelling of (reinforced) concrete . . . . . . . . . . . . . . . . . . 3

1.2.1 Concrete – quasi-brittle material . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Localization problem – fundamentals . . . . . . . . . . . . . . . . . . 4

1.2.3 Review of numerical models . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Aim and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Damage coupled to plasticity 13

2.1 Scalar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Coupling with plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Crack closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Isotropic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 One strain measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Two strain measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Willam’s test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Results for scalar damage . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Results for coupled model . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.3 Results for isotropic damage . . . . . . . . . . . . . . . . . . . . . . . 50

3 Finite elements for gradient damage 57

3.1 Proposals of gradient enhancement for damage . . . . . . . . . . . . . . . . . 57

3.2 Gradient damage with one or two parameters . . . . . . . . . . . . . . . . . . 61

3.2.1 Gradient scalar damage with plasticity – dynamics . . . . . . . . . . . 61

3.2.2 Gradient isotropic damage – dynamics . . . . . . . . . . . . . . . . . . 66

3.3 Implementation of two-field finite elements . . . . . . . . . . . . . . . . . . . 67

3.4 Properties of elements and hourglass control . . . . . . . . . . . . . . . . . . . 72

3.4.1 Four-noded element – spectral analysis . . . . . . . . . . . . . . . . . 73

3.4.2 Stabilized four-noded element . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Other elements – spectral analysis . . . . . . . . . . . . . . . . . . . . 90

xiii



xiv CONTENTS

4 Testing of finite elements 93

4.1 Bar with imperfection under static tension . . . . . . . . . . . . . . . . . . . . 93

4.1.1 1D simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.2 2D and 3D simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Two tests for dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.1 Bar under impact loading . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.2 Dynamic direct tension test . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Numerical model applications 115

5.1 Cantilever beam under load reversals . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Brazilian split test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 Application of scalar damage . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Confrontation with isotropic damage . . . . . . . . . . . . . . . . . . . 128

5.3 Four-point bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3.1 Statics – plain concrete . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.2 Statics – reinforced concrete . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.3 Dynamics – reinforced concrete, impact loading . . . . . . . . . . . . 139

5.4 Dowel action in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 RC slab-column connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.1 Punching shear in RC slabs – problem description and experiment [1] . 149

5.5.2 Simulation – simplifications and data . . . . . . . . . . . . . . . . . . 151

5.5.3 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . 153

6 Conclusions 165

A Local damage 169

B Properties of four-noded element – supplement 173

C Dowel disc test 179

List of figures 183

List of tables 189

Bibliography 191

Summary 205

Streszczenie 207



CHAPTER 1

INTRODUCTION

1.1 BASIS OF DAMAGE THEORY

All materials undergo from partial degradation to total failure. Of course this permanent process

is observed also in civil engineering. Different undiserable effects which appear for example

in structures originate from defects which can be noticed only at the micro- or even nanoscale.

However, larger defects can also be measured at higher levels and during the whole existence

of a given structure or its part. The reasonable level of observation firstly depends on the kind

of material, associated phenomena, intensity of loading which acts on the structure and hence

determines the degree of degradation.

The simplest, but universal representation seems to be the definition of damage firstly in-

troduced by Kachanov [76], but an application to creep of metals under uniaxial load was only

performed then. Although this damage concept was proposed for isotropic continuum with one

scalar parameter, it can be generalized introducing anisotropy.

A certain domainB, occupied by a material body, is considered at time instantt, see Fig. 1.1.

An arbitrary section with normal direction~n can be virtually made, dividing this domain into

two parts. On this section infinitesimal areadS~n is chosen. It consists of damaged partdSd
~n and

undamaged partdSu
~n according to the relation:

dS~n = dSd
~n + dSu

~n (1.1)

The damaged area includes defects such as cavities, microcracks, voids, etc. The undamaged

area constitutes its intact part. The damage in the plane normal to direction~n is defined at time

t as:

ω~n =
dS~n − dSu

~n

dS~n

=
dSd

~n

dS~n

(1.2)

The above definition complies with the interpretation that for a material without any defect (the

lack of damage) the parameterω~n equals0. For a material with a complete loss of stiffness in

direction~n (total damage) we obtainω~n = 1.

If damage directions are distinguished then one scalar parameter is insufficient and an

anisotropic model should be adopted. In that case the damage phenomenon should be de-

scribed using vectors or tensors. For example if the degradation of composites like layered

1
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~n

dS~n

dS~n dSd~n

dSu~n

Figure 1.1: Concept of damage.

laminates is modelled then tensors are necessary in mathematical description. In the literature

damage vectors [31,81], second-order damage tensors [14,95,109,164] and fourth-order dam-

age tensors [22,80,92] have been introduced and as consequence commonly applied. The theory

which bases on the approach presented in Eq. 1.2 is called the continuum damage mechanics

CDM [76,91,92,145].

A family of different CDM models can be used for purely mechanical or coupled prob-

lems. Among many mechanical features which materials reveals during damage evolution first

of all brittle [60,81] or ductile [44,91] character of damage can be distinguished. Brittle failure

is rather met within composites, while ductile failure - in metals and polymers. The bound-

ary conditions and type of loading also influence the description of the damage phenomenon.

Historically creep damage [76, 134, 161] is the oldest where the nucleation and growth of mi-

crovoids and microcracks in metal grains was modelled as a permanent effect in time. Another

frequently mentioned mechanism is called fatigue damage [90, 92]. This is understood as the

degradation of a material under repeated cyclic loading. An interaction between both the ob-

served phenomena is also possible [25]. The problem of creep and/or fatigue damage is quite

often formulated if the failure process in metals is described. The details of various mechanical

models can be found for example in [92] in Chapter 7. Moreover a wide review of the literature

connected with CDM is given for instance in [15,149].

In coupled problems usually two types of effects are added, namely thermal or chemical.

Thermo-mechanical damage is often considered with reference to different materials, see for

example [52, 123]. On the other hand, chemical deterioration is usually taken into account for

concrete [82,139].
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1.2 NUMERICAL MODELLING

OF (REINFORCED) CONCRETE

1.2.1 CONCRETE– QUASI-BRITTLE MATERIAL

A general classification of materials (cf. for example [69, 168]) which focuses on the progress

of degradation inside their structure is similar to the one mentioned in the previous section.

The first group is composed of strongly brittle materials like glass, where fracture mechanics

with sudden emergence of distinct discontinuities in the domain is adequate. On the other

hand ductile materials like some polymers and metals are described using different continuous

approaches, for example the plasticity theory. Between brittle and ductile materials there is

also place for so-called quasi-brittle materials. There are among others: rocks, polymers and

concrete.

In quasi-brittle materials, after the initial state of microdamage, two stages of failure are ob-

served. Firstly, just after the peak load, strains localize in one or several thin zones starting from

certain point(s) of the medium. The onset of localization is connected with the origin of rup-

ture [136]. The rest of the domain is subjected to unloading, stiffness degradation and softening

of material are observed. At the point which softens increasing strain together with decreasing

stress is regarded. This local response projects into the global response of the medium. Here

DAMAGE PROGRESS FRACTURE PROGRESS

Initial state→ Microdamage→ Macrodamage→ Cracks → Overload → Failure

Micro-

cracks

Micro-

defects

Voids

Heteroge-

neities

Coalescence

Growth

Propagation

Macrocracks

Material

degradation

Propa-

gation

Growth

Coale-

scence

Stress

concentration

Secondary

cracks

Total

destruction

Figure 1.2: Degradation process in quasi-brittle materials. Based on [56].
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a continuous description like CDM but with some additional procedures is enough. After that,

at an advanced level of degradation process, there are noticeable displacement jumps in the zone

of localization. From this moment the role of CDM diminishes in the whole description. Hence

discontinuity should be considered, either in an explicit form like in [146, 168] or, simplifying,

the continuous approach is still adopted, in which negligible residual stresses and a stiffness

close to zero simulate fracture. The latter option is used in this work. The evolution of failure

in quasi-brittle materials is depicted in Fig. 1.2.

Concrete is a heterogeneous material which includes aggregate and mortar. The description

of its basic features with reference to experiments and different mechanical models can be found

for example in [78, 156]. Concrete can be treated as a composite after the hardening process

when the carrying capacity achieves a certain assumed (guaranteed) level. During hardening

microcracks and microvoids are created due to shrinkage effects at the interface between aggre-

gate and mortar. It should be underlined, that these defects exist before concrete is subjected

to any load [135]. It is also possible that microcracks are enclosed within aggregate or mortar.

Therefore the weakest link in the whole concrete matrix decides about its behaviour, indepen-

dently of the kind of other defects. Considering the presence of these ingredients the theory

of mixtures can be employed like for example in [115]. An alternative approach is a transi-

tion from the micro- and mesoscale to the macroscale, but including effects connected with the

lower levels of observation. In quasi-brittle materials like concrete strain localization occurs

as a consequence of softening, which is experimentally confirmed [66, 112, 165]. The onset

of localization creates so-called weak discontinuity. Eventually, the description of emerging of

explicit cracks (strong discontinuity) can be included as described in the previous paragraph.

The observed softening is not a real material property [135], but it is a result of inhomoge-

neous deformation due to the formation of a macroscopic crack. The growth and coalescence

of microdefects lead to visible strain localization and finally to discrete cracking. Hence, the

material softening should not be incorporated directly into stress-strain relations of local consti-

tutive theories. Just after the first point in the structure reaches the state of softening, the local

continuum theory is not valid. From the mathematical and numerical point of view it provides

some complications.

1.2.2 LOCALIZATION PROBLEM – FUNDAMENTALS

Firstly, the mathematical rudiments of localization in the classical continuum are recollected,

according to the presentation in [37,116]. Strain localization may occur only if a given material

suffers from a loss of stability at a certain level of deformation. Thus a material is called

stable [65, 99] if its constitutive relationship satisfies the condition of positive second order

work density:

ǫ̇T σ̇ > 0 (1.3)
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It the above inequalitẏǫ denotes the strain rate tensor,σ̇ is the stress rate tensor (both in the

vector form). If incrementally linear constitutive equations are taken into account the relation

between stress and strain rates is:

σ̇ = Etan ǫ̇ (1.4)

with material tangent stiffness operatorEtan, which can be treated as general, nonsymmetric

and without any reference to the specific model. Substituting Eq. (1.4) into inequality (1.3) it

is observed that material stability is held as long as the operatorEtan is positive definite. The

loss of material stability may occur in the deformation history prior to the limit point and loss

of uniqueness related to a diffuse bifurcation, cf. [37]. Concluding, the loss of material stability

opens the possibility of structural instability. Structural stability is assured for domainB if:
∫

B

ǫ̇T σ̇ dV > 0 (1.5)

µ

B
∂Bdis

υ

Figure 1.3: Discontinuity surface (curve in 2D). Definition of unit vectorsυ andµ.

As a consequence, structural instability causes so-called weak discontinuity (see Fig. 1.3). The

weak discontinuity in the structure of a material can appear upon a certain further increment of

deformation. Strain jumps across the discontinuity surface (curve)∂Bdis are admitted, but the

displacement field remains continuous. From the kinematic compatibility condition for strains

and the requirement that tractions across the surface∂Bdis must be continuous (rate jump equals

zero) the following relation in the indicial notation is obtained:

(υi E
tan
ijkl υl)µk = 0 (1.6)

whereυ is the unit normal to surface∂Bdis andµ is the unit vector connected with the direction

of the jump. The product within brackets is defined as the acoustic tensorA [136,141]. Here it

is written as:

Ajk = υi E
tan
ijkl υl (1.7)

Eq. (1.6) gives a non-trivial solution if and only if the determinant of the acoustic tensor van-

ishes:

det A = 0 (1.8)
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The singularity of the acoustic tensorA implies ill-posedness of the initial boundary value

problem. In statics the elliptic character of the boundary value problem changes into hyperbolic.

Moreover, in dynamics the hyperbolic character of the initial boundary value problem (further

called IBVP) changes into elliptic. The loss of ellipticity for static problems and the loss of

hyperbolicity for dynamic problems coincides with the formation of the discontinuity and the

onset of strain localization.

For an IBVP of the bar extending along one spatial directionx the set of governing equations

at time t can be written using the partial differential equation in linearized version (see also

[124,127]):

Etan(ǫ)
∂2v

∂x2
+
∂Etan

∂x

∂v

∂x
= ρ

∂2v

∂t2
(1.9)

whereEtan is the tangent stiffness,ǫ is the axial strain,v(x, t) is the axial velocity andρ is

the density of the material. If a reference solution with homogeneous strainǫ0 is assumed, the

second term on the left disappears. Then a single linear harmonic wave propagating in direction

x along the bar constitutes the solution (cf. [150]):

v(x, t) = A ei kw (x−cw t) (1.10)

Herekw denotes the number of wave lengths in the bar over2π andcw is the velocity. This

solution should satisfy the dispersion relation:

kw
2
(
ρ cw

2 − Etan(ǫ0)
)

= 0 (1.11)

The above equation has the following non-trivial solution:

cw =

√
Etan(ǫ0)

ρ
(1.12)

If the tangent stiffnessEtan is positive the wave velocitycw is real. In case of softeningEtan < 0

and the wave velocity becomes imaginary for all wave numberskw. Thus the loading waves

cannot propagate and a standing wave appears. Simplyfing, it results in strain localization in

dynamics. More details, which concern also the dispersion analysis for different mechanical

models, can be found in [56,59,117,150].

The loss of well-posedness of IBVP admits to an infinite number of solutions. In the clas-

sical approach during softening the strongest deformation narrows into a discrete form (curve

or surface). In finite-element solutions it is simply limited to a band of one-element width, so

that the zone of localization is governed by the mesh of finite elements. Standard numerical

constitutive models reveal spurious dependency of the results on the density of the mesh and

also on the direction of mesh lines. The amount of material which softens is dictated by the nu-

merics and not the physics of the given problem [135]. Thus the lack of objectivity in numerical

modelling is noticed.
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Mesh sensitivity can easily be shown by the example of a bar subjected to uniaxial tension

and discretized with a given different number of elements (see for example [56, 116]. In the

constitutive relation linear softening is usually employed. An imperfection is introduced in one

element. After elastic loading the material softens and the strains localize in this element (other

elements unload). It is clearly shown that the number of elements going to infinity introduces a

Dirac delta distribution in the strain field. It means that the mesh refinement determines the so-

lution. For damage this unacceptable fact is presented in Appendix A. When strain localization

occurs incorporating an internal length as an additional parameter in the formulation overcomes

the problem with spurious sensitivity of the results.

1.2.3 REVIEW OF NUMERICAL MODELS

This subsection is devoted to a brief review of computational modelling of cracking in quasi-

brittle materials, especially in concrete. Numerical modelling concepts can be divided into

discrete methods and methods for continuous media (also those admitting discontinuities).

Discrete methods consider a body composed of suitably small elementary ingredients, see

for example [79, 144]. Each entity possesses material properties. The system can be made

from lattices, beams, spheres, etc. There are mutually linked and they represent the material

microstructure. The links can be cut and this way cracking is simulated.

The methods for continuum models can be distinguished similarly to the classification pre-

sented in Subsection 1.2.1. The existence of so-called smeared crack models as a separate group

can also be emphasized. Here the total strain is divided into elastic part for the uncracked mate-

rial and inelastic part related to traction transmitted across the crack (to learn details see [69]).

Different variants of the smeared crack approach are analyzed in [140].

displacement

strain
∞

(a) Strong discontinuity.

displacement

strain

(b) Weak discontinuity.

displacement

strain

(c) Regularized discontinuity.

Figure 1.4: Discontinuity – displacement and strain distribution in one dimension.
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However, the simplest model seems to be for linear elastic fracture mechanics, where dis-

crete cracks appear suddenly after reaching a certain limit state. The behaviour of such strong

discontinuity is shown for the displacement and strain fields in one dimension in Fig. 1.4(a).

One of many approaches is to introduce special interface elements with zero thickness into

the original finite element (FE) mesh. These elements are placed everywhere inside the mesh

between two adjacent original elements. The simulation of cracking using interface elements

was performed not only for concrete like in [140, 160], but also for composites [143, 160] or

masonry structures [97]. The effect of delamination between material layers [64, 143] can also

be simulated. Interface elements can be helpful in the numerical analysis of concrete if bond

slip between the reinforcement and the concrete matrix [121, 140, 153] or fracture in concrete

observed at the mesolevel [160] are taken into account. Another method is the application of

so-called XFEM (extended finite element method) technique according to the theory in [6].

However, standard XFEM seems to be applicable rather to brittle materials like glass (sudden

discrete crack) [107] or composites (delamination) [168].

The next group of continuum models contains various regularized methods, also called

methods with localization limiters, cf. [12]. The weak discontinuity presented in Fig. 1.4(b)

is obviously connected with strain localization. An internal length parameter should be in-

cluded in the model to get localization, but in a smoothed version like in Fig. 1.4(c) (regularized

discontinuity) and, as mentioned in the previous subsection, eventually to prevent spuriously

mesh-sensitive results.

The earliest works [9, 128, 140], where mesh-dependence is partly overcome, accept the

fact that localization is limited to a band of one-element width, but the size of finite element is

related to a certain widthwf derived from the fracture energyGf :

Gf = wf

∫
σ dǫ (1.13)

Gf is defined as the amount of energy necessary to open a unit crack area. It is depicted in

Fig. 1.5 that this energy can correspond to discrete cracking or to smeared cracking over width

wf . The parameterwf is called the crack band width, because it is interpreted as the size of

σσσσ
u wf

Gf =
∫
σ du Gf = wf

∫
σ dǫ

Figure 1.5: Fracture energy for discrete and smeared crack.
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the region with smeared microcracks. The crack normal tractionσ which depends on strain is

under the integral. The integral determines the area under the softening curve inσ-ǫ diagram.

Therefore, fitting the constitutive model to the element size ensures a proper dissipation of

energy during the softening stage. Such models are classified as fracture energy-based models.

Regularization is also reached if an additional rate-dependent term like viscosity is en-

closed in the constitutive equation. Many authors adopt different versions of rate-dependence

to enhance the plasticity theory [59, 96, 110, 150, 172], but a coupled damage-viscoplasticity

model [57] can also be applied. It is confirmed in [150] that these models give better effects in

dynamics.

The family of higher-order models involves three types of regularization, namely: micropo-

lar (Cosserat) models, non-local (integral) models and gradient-enhanced models.

Apart from standard translations microrotations are considered at a material point in microp-

olar models. Stress components are augmented with so-called couple-stresses. Couple-stresses

are calculated from microcurvatures, whereby an internal length parameter is employed. In

application to strain localization, not only in granular materials, the Cosserat continuum the-

ory was presented for instance in [32, 108, 159]. As concluded in [150], a disadvantage of this

model is the lack of mesh-objectivity when decohesion (tensile crack) dominates. Regulariza-

tion is active while strain localization due to slip is analyzed.

Firstly higher-order theories were mentioned in [48, 101] in different contexts of physics

(see [117] to read a description of the references). The Laplacian operator was used in order

to prevent spurious mesh-sensitive numerical results almost at the same time for the plasticity

theory [2] and for the so-called imbricate continuum concept [7]. The damage model is usually

enhanced using integral (non-local) or gradient approach.

The framework of integral models, called also non-local, founds on the fact that a given

stress component at a material point during the loading history depends on certain state variables

at this point, but also at points in its surrounding region. In the numerical analysis this region is

defined by means of a membership function with decreasing weights at larger distances from the

considered point. Therefore in computations the values of selected state variable are smoothed.

The non-local damage theory was proposed in [7, 10, 129]. Many researchers modified this

approach, for example to split scalar damage into tensile and compressive actions (cf. [27]).

Isotropic damage models with integral averaging are summarized and compared for instance

in [68]. An anisotropic nonlocal damage model is derived in [86].

The stress-strain response for pure damage models gives a return to the origin during un-

loading (cf. Fig. 2.10 in Section 2.2). If an unloading path is considered in a cracking process a

coupling of damage and plasticity theories seems to be necessary. During unloading irreversible

strains are recovered in such coupled model. The coupling in integral approach is included

among others in [17, 61]. Both works introduce a local plastic hardening law and non-locality

in the damage function. In [61] a history parameter is non-local, while in [17] – an equivalent

strain measure (definitions are present in Section 2.1). Due to the existence of an integral over
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the defined region an additional loop over finite elements must be performed in implementation.

Gradient-enhancement regularizes the problem via a certain variable averaged by a gradi-

ent operator. That variable is incorporated in the formulation in such a manner that an extra

averaging equation appears and additional degrees of freedom must be included in the dis-

cretization of finite element. This approach was firstly developed as gradient plasticity, cf.

in a sequence [2, 12, 35, 37, 116]. Gradient enhancement in scalar damage was formulated

in [125] and then evolved in [55, 124, 126]. Anisotropic gradient damage can be implemented

like in [83, 84], but an averaging equation for each component (of strain tensor) demands a

number of degrees of freedom in an element and makes computations time-consuming. Com-

bination of gradient plasticity and scalar damage like in [155] or scalar gradient damage and

hardening plasticity like in [36, 117] is possible and needs additional computations only at the

(integration) point level. The advantages and disadvantages of scalar gradient damage also with

coupling to plasticity are presented in this thesis. The use of gradient damage for geometrically

non-linear problems [94, 154] is rather relevant for materials such as metals and polymers, not

quasi-brittle like concrete.

The most sophisticated methods join continuous and discontinuous modelling. A viscoplas-

tic medium together with discontinuities simulated by means of XFEM is included in [168].

Finite elements with a procedure for non-local damage and embedded displacement discon-

tinuity are formulated and applied in [73]. Gradient damage combined with XFEM is firstly

proposed in [146], where also its implementation and verification are shown. Currently a lot

of works, published by many authors and not cited here, deals with continuous-discontinuous

modelling for different applications.

A general classification of various approaches quoted in this review, in which cracking is

modelled not only in quasi-brittle materials, is depicted in Fig. 1.6.

smeared
crack crack

explicit

(fracture)

XFEMwith interface FE

continuous-discontinuousregularized
i.e. regularization + XFEM

crack band rate-dependent

micropolar

higher-order

non-local
(integral)

gradient-enhanced

NUMERICAL MODELS FOR CRACKING

discrete continuum

Figure 1.6: Classification of models mentioned in the review.
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As mentioned previously correct modelling of concrete structures at the macrolevel requires

regularization methods for appropriate simulations of cracking phenomenon in concrete. The

interaction between reinforcement and the concrete matrix should be represented if reinforced

concrete structures are analyzed. Actually, not only softening of concrete in constitutive equa-

tions is considered, not only bond slip between reinforcement bars placed in two orthogonal

directions and the concrete matrix is modelled, but also cracking due to dowel action of the

reinforcement like in [114] can be reproduced. In this thesis bond slip is omitted as in practical

computations, knowing that this aspect of modelling was widely discussed in [117,121].

1.3 AIM AND SCOPE

The thesis of this dissertation is following: if the stress state in plain and reinforced concrete

structures is dominated by tension or bending then scalar gradient damage coupled to hardening

plasticity gives a possibility to simulate cracking, strain localization and loss of carrying capac-

ity correctly.

The aim is to enhance and verify the scalar gradient damage model for different kinds of

cracking simulations. The model is developed for three-dimensional problems. The formulation

includes dynamics. The implementation of effective finite elements is tested. This allows one

to expand the range of applications of this model in plain and reinforced concrete mechanics.

The main simplifying assumptions and limitations are as follows:

• continuum damage mechanics (CDM) is employed to simulate cracking,

• concrete is treated as a homogeneous material,

• reological effects are omitted,

• linear kinematic relations are satisfied,

• the reinforcement is modelled as elasto-plastic truss elements,

• full bond between the concrete matrix and the reinforcement is assumed.

Chapter 2 deals with the damage model at the level point. Attention is focused on its

isotropic version with one or two damage parameters. For the scalar theory (with one param-

eter) a coupling with the plastic flow theory and crack closing options are included. Isotropic

damage is split into volumetric and deviatoric parts. The Willam’s test for this model with

different components is performed.
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The formulation and implementation of the IBVP are discussed in Chapter 3. The gradient

enhancement is introduced into the damage model. The algorithm for dynamics without damp-

ing is presented. The properties of two-field finite elements for two- and three-dimensional

(2D and 3D) problems based on eigenvalue analysis are reported. The possibility of their im-

plementation including hourglass control are explained using the example of four-noded quadri-

lateral element.

The tests for statics and dynamics are put together in Chapter 4. At the beginning the

simplest benchmark, namely a bar with imperfection, is examined. All tests (for example two-

dimensional configuration under dynamic direct tension) are analyzed for various paramaters to

emphasize possibilities of gradient damage model.

The numerical applications given in Chapter 5 are divided into two parts. Firstly two-

dimensional problems are computed, in turn: cantilever beam under load reversals, Brazilian

split test, four-point bending test for statics and dynamics. Next the cracking phenomenon in

three dimensions is simulated. Dowel action in an RC structure and the punching shear in an

RC slab-column connection are analyzed. Different components and paramaters of the model

are employed for its better verification.

Chapter 6 summarizes conclusions and remarks. Further possibilities of the research are

also included.



CHAPTER 2

DAMAGE COUPLED TO PLASTICITY

2.1 SCALAR MODEL

The simplest model of the continuum damage mechanics (CDM) which can describe elastic

stiffness degradation in quasi-brittle materials is scalar damage. It means that one damage mea-

sureω , which grows monotonically from0 to 1 [76, 113], is a function of the damage history

parameterκd and depends on the deformation state in a body.

The system of equations for dynamics (no damping effects) at the material point level con-

sists of: the motion equations, the kinematic equations and the nonlinear constitutive relation.

The equations of motion are written as:

LTσ + b = ρü (2.1)

whereL is a matrix of differential operators,σ is the stress tensor in a vector form,b is the

body force vector,ρü contains inertia forces with the densityρ and the acceleration vectorü.

It is also possible to include the inertia forces inb, like in [157]. The acceleration vector is

calculated from the displacementsu by double differentiation with respect to timet. Further

the timet will occur in notation if it is necessary or in the case of special emphasis.

The kinematic equations permit one to obtain strain tensorǫ (similarly in a vector form):

ǫ = Lu (2.2)

Small strains are assumed, i.e. a geometrically linear problem is considered.

During the damage evolution we distinguish fictitious undamaged counterparts of stresses

σ̂ and strainŝǫ, which are called effective. The strain equivalence has been postulated in [90]

(cf. also [145]):

"the strain associated with a damaged state under the applied stress is equivalent

to the strain associated with its undamaged state under the effective stress"

and hence the following relation is expressed:

ǫ = ǫ̂ (2.3)

13
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Equivalent strain

1
1

=

Effective spacePhysical space

σ

σ

ǫ

ǫ

ǫ

ω 6= 0

σ̂ = σ
1−ω

σ̂ = σ
1−ω

Figure 2.1: Idea of strain equivalence.

The idea is illustrated in Fig. 2.1. The fictitious counterpart represents the undamaged skeleton

of the body and the effective stressesσ̂ act on it. Indeed, the real stress tensorσ and its effective

counterpart̂σ are related by the mentioned above parameterω:

σ = (1 − ω) σ̂ (2.4)

where:

σ̂ = E ǫe (2.5)

ω

1 − ω σ σ

σ̂

σ = 0

Figure 2.2: Scheme of scalar damage model.
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HereE is the elastic stiffness operator. The elastic strain tensorǫe is equal to the strain tensorǫ

when the standard elasto-damage model is considered. The so-called damage stressσd which

describes the change in the stress state due to damage can be defined:

σd = ωE ǫe (2.6)

so Eq. (2.4) can be also written as follows:

σ = σ̂ − σd (2.7)

This model in one dimension is also visualized in Fig. 2.2, where a single spring can be in-

terpreted as a fibre or tie in the material. Instead of the strain equivalence hypothesis other

concepts have been introduced, for example the postulate of elastic energy equivalence [30].

The strain equivalence is related with a loading functionfd called also a damage activation

function defined in the strain space. This function limits the behaviour of the material during

the damage process:

fd(ǫ, κd) = ǫ̃ (ǫ(t)) − κd(t) = 0 (2.8)

An equivalent strain measurẽǫ will be defined below in details. The parameterκd governs the

damage evolution:

κd(t) = max

{
κo, max

ti∈[0,t]
[ǫ̃ (ǫ(ti))]

}
(2.9)

Heremax [ǫ̃ (ǫ(ti))] denotes the largest value ofǫ̃ reached in the loading history at instantti.

The elastic state is observed until the initial thresholdκo is reached byκd. The damage process

is deactivated iffd < 0. The activation of damage follows the loading/unloading conditions

written in the Kuhn-Tucker form:

fd ≤ 0 κ̇d ≥ 0 κ̇dfd = 0 (2.10)

The equivalent strain measureǫ̃ can be described in different ways. In equivalent strain

definitions below timet is omitted in notation. The normalized elastic energy release (EER)

rate [74,92]:
ǫ̃ =

√
1

E
ǫTEǫ (2.11)

can be employed for materials which behave in the same manner in tension and compression,

for example for metals. HereE is Young’s modulus. It is well-known that the compressive

strength of concrete is about 10 times larger than its tensile strength, so this definition is not ad-

equate. However, it will be applied for testing. The shapes of envelopes based on Eq. (2.11) for

two- and three-dimensional problems are depicted in Fig. 2.3. Additionally principal directions

(positive half-axes) are marked in Figs 2.3(b)–2.3(d) to distinguish the orientation of the surface.
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(c) 3D problem,ν = 0.2, ǫ̃ = 1.0, view A. (d) 3D problem,ν = 0.2, ǫ̃ = 1.0, view B.

Figure 2.3: EER definition of̃ǫ (2.11) in strain space.

An equivalent strain definition which exhibits different behaviour in tension and compres-

sion is the Mazars definition [102,103]:

ǫ̃ =

√
(H(ǫ1)ǫ1)

2 + (H(ǫ2)ǫ2)
2 + (H(ǫ3)ǫ3)

2 (2.12)

The positive principal strainsǫI (I = 1, 2, 3) are chosen using the Heaviside functionH(·).
For this definition the stress conditions have influence on the character of the damage surface

for this definition. Like previously this proposal is visualized in Fig. 2.4. For plane strain and

three-dimensional problems there are no limits on the compressive side, so as a consequence

there is no damage in biaxial compression. For plane stress the loading function depends on the

Poisson’s ratio like in Fig. 2.4(a). An analogical definition to the Mazars proposal but described
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Figure 2.4: Mazars definition of̃ǫ (2.12) in strain space.

in the space of effective stressesσ̂ is:

ǫ̃ =
1

E

√
(H(σ̂1)σ̂1)

2 + (H(σ̂2)σ̂2)
2 + (H(σ̂3)σ̂3)

2 (2.13)

By means of the Heaviside functionH(·) only positive principal effective stressesσ̂I (I =

1, 2, 3) are included. Like in (2.12) a smooth round-off in the tensile region is expected. This

definition has been proposed in [71] and then applied also for example in [72]. The following

proposal is similar to both the above and the Rankine criterion. The equivalent strainǫ̃ is

obtained as the scaled maximum principal effective stress [70]:

ǫ̃ =
1

E
max

I=1,2,3
(H(σ̂I)σ̂I) (2.14)

The last definition is depicted and then exploited in computations in [17].



18 CHAPTER 2. DAMAGE COUPLED TO PLASTICITY

Finally the von Mises definition involving the first and second strain invariants [38] can be

adopted:

ǫ̃ =
k − 1

2k(1 − 2ν)
Iǫ1 +

1

2k

√(
k − 1

1 − 2ν
Iǫ1

)2

+
12k

(1 + ν)2
Jǫ

2 (2.15)

which seems to be a reasonable choice for the description of quasi-brittle materials.Iǫ1 andJǫ
2

are strain invariants:

Iǫ1 = ǫ1 + ǫ2 + ǫ3 = tr(ǫ) (2.16)

Jǫ
2 =

1

3

(
ǫ21 + ǫ22 + ǫ23 − (ǫ1ǫ2 + ǫ2ǫ3 + ǫ1ǫ3)

)
(2.17)

The loading functions for plane strain and plane stress depending on Poisson’s ratioν are put

together in Fig. 2.5(a). The parameterk incorporates the influence of the ratio of compressive

and tensile strength:

k =
fc

ft

(2.18)

In this work the parameterk is usually set equal to10 or 20. The size of envelopes for these

values is verified in Fig. 2.5(b). Although this proposal looks promising for 2D problems it

can be inappropriate for problems in three dimensions. Firstly, as is depicted in Fig. 2.6 the

surface has no limits for three-axial compression. Secondly the shape of the surface near the

shear region in the strain spaceǫ2 = −ǫ1 expands too widely. Nevertheless, the results for 3D

examples (Chapter 5), especially where tension plays an important role, show that the function

defined in Eq. (2.15) works quite well.

A comparative analysis respectively for:ν = 0.0 in Fig. 2.7(a), plane strain in Fig. 2.7(b)

and plane stress in Fig. 2.7(c), corresponds to the equivalent strain definitions proposed in

Eqs (2.11), (2.12) and (2.15). Similar comparisons for 2D problems can be found in [17].
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Figure 2.5: Modified von Mises definition of̃ǫ (2.15) in strain space, 2D problems.
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(a) View A. (b) View B.

(c) View C, 10 times larger. (d) View D, 10 times larger.

(e) View E, 100 times larger. (f) View F, 100 times larger.

Figure 2.6: Modified von Mises definition (2.15) in strain space for 3D problems,ǫ̃ = 1.0.
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Figure 2.7: Loading functions in 2D strain space.

As it was mentioned at the beginning of this chapter the damage measureω depends on the

history parameterκd. During the damage evolutionκd can grow in time in different ways. The

laws, by means of which damage is controlled, can be divided into so-called short-range and

exponential (see [55]).

In the first groupκd exceeds from damage thresholdκo and tends to ultimate valueκu which

corresponds to total damage. For instance, the common functionω(κd) can represent a linear

softening stress-strain diagram [125]:

ω(κd) =
κu

κd(t)

κd(t) − κo

κu − κo

(2.19)

The above definition is frequently applied in primary numerical tests. The modified power law

is a generalization of Eq. (2.19):

ω(κd) = 1 −
(

κu

κd(t)

)β (
κu − κd(t)

κu − κo

)α

(2.20)
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In this equationβ andα are model parameters. The rate of stress decrease depends on bothα

andβ, but additionallyβ (if it is less than1) can change the value of the peak load. In particular,

this relation has been used to simulate failure process in fibre reinforced polymers [55].

The second idea assumes thatκd permanently grows from damage thresholdκo to infinity so

that damageω asymptotically increases but never reaches1. Now we define the damage growth

function according to [103,126]:

ω(κd) = 1 − κo

κd(t)

(
1 − α + αe−η(κd(t)−κo)

)
(2.21)

The respective parametersη andα are responsible for the rate of softening and residual stress

which in one dimension tends to(1 − α)Eκo. The former one is thus connected with material

ductility and related to concrete fracture energyGf . The latter one prevents the complete loss of

material stiffness and residual stresses remain if onlyα < 1. As a consequence it leads to a more

stable numerical response. The law in Eq. (2.21) is well-suited to reproduce the tensile fracture

in concrete, since the experimental uniaxial softening relation is exponential [66]. Alternatively,

an exponential relation characterized by three parametersn1, n2 andη can be used [55]:

ω(κd) = 1 −
(

1 − κo

κd(t)

) (
0.01

κo

κd(t)

)n1

−
(

κo

κd(t)

)n2

e−η(κd(t)−κo) (2.22)

but Eq. (2.21) is more frequently employed in computations. Some authors also introduced

definitions relevant for other materials, for example characterized by hyperbolic softening [129].

Next, one three-dimensional finite element with eight nodes is subjected to static tension in

one direction in order to compare the chosen damage growth definitions. The following material

data are introduced: Young’s modulusE = 20000 MPa, Poisson’s ratioν = 0.20 and damage

thresholdκo = 0.0001. For linear softening defined in Eq. (2.19) the ultimate valueκu = 0.002
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Figure 2.8: Damage growth functions.
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is assumed. For Eq. (2.20) with the modified power law the parameters areκu = 0.004,α = 5.0

andβ = 0.75. Finally the exponential relation given in Eq. (2.21) withα = 0.98 andη = 1000

is verified. The above values of parameters are selected in a such way that the fracture energy

for calculated cases is almost equal. In Fig. 2.8 theσ-ǫ diagrams are presented.

2.2 COUPLING WITH PLASTICITY

The coupling of the damage model with plasticity is performed in order to incorporate the phys-

ically observed irreversible strains. The damage theory was formulated in the strain space, but

the plasticity theory is formulated in the stress space [74, 145]. Both theories have a simple,

isotropic format (intrinsic anisotropy is neglected). As before, in this section timet will be

omitted in notation, despite the fact that a transient problem is considered. Hence the damage

theory included in previous section is combined with the one described next (see also [36,119]).

Assuming the standard additive decomposition of the strain tensor into elastic and plastic

parts:

ǫ = ǫe + ǫp (2.23)

the elastic strain rate can be derived as:

ǫ̇e = ǫ̇ − ǫ̇p (2.24)

According to Eq. (2.5) the elastic strain rate is in a one-to-one functional relation with the

effective stress rate:
˙̂σ = E ǫ̇e (2.25)

The plastic strain ratėǫp according to the classical flow rule is governed by the plastic multi-

plier λ:

ǫ̇p = λ̇
∂gp

∂σ̂
(2.26)

wheregp is a plastic potential. The above derivative is the plastic flow directionm:

m =
∂gp

∂σ̂
(2.27)

Now the yield condition in the effective stress space is defined:

fp(σ̂, κp) = σ̃(σ̂) − σy(κ
p) = 0 (2.28)

whereσ̃ is an equivalent stress function,σy is the yield strength,κp is a plastic history parameter.

Isotropic hardening is assumed and the loading/unloading Kuhn-Tucker conditions are imposed:

fp ≤ 0 λ̇ ≥ 0 λ̇fp = 0 (2.29)
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The plastic consistency conditioṅfp = 0 constitutes the following partial differential equation:

∂fp

∂σ̂
˙̂σ +

∂fp

∂κp
κ̇p = 0 (2.30)

Next we introduce the definitions of the gradient tensorn normal to the yield function:

n =
∂fp

∂σ̂
=
∂σ̃

∂σ̂
(2.31)

and of the hardening/softening modulush:

h = − κ̇
p

λ̇

∂fp

∂κp
= − κ̇

p

λ̇

∂σy

∂κp
(2.32)

In this theory during the loading history the identityκp = λ is assumed, but in general inequality

of both the variables can be allowed. Iffp = gp, then associated plasticity is obtained, however

non-associated plastic flow is admitted. From the plastic consistency condition (2.30) the rate

of the plastic multiplieṙλ is calculated as:

λ̇ =
1

h
nT ˙̂σ (2.33)

Using relations (2.33), (2.26), (2.27) and Eq. (2.24), the elastic strain rate can be substituted into

Eq. (2.25). The Sherman-Morrison formula leads to the tangential relation between the strain

and effective stress rates:
˙̂σ = Eep ǫ̇ (2.34)

with the classical elasto-plastic tensor:

Eep = E − E m nT E

h + nT E m
(2.35)

In this work the classical Burzýnski-Drucker-Prager (BDP) yield function is applied in com-

putations:

fp(σ̂, κp) = q̂ + αp p̂− βp cp(κ
p) (2.36)

where botĥq – the deviatoric stress measure andp̂ – the hydrostatic pressure are determined in

the effective stress space as follows:

q̂ =

√
3Jσ̂

2 (2.37)

p̂ =
1

3
Iσ̂1 (2.38)

The invariants of the effective stress tensor are:

Iσ̂1 = σ̂1 + σ̂2 + σ̂3 = tr(σ̂) (2.39)

Jσ̂
2 =

1

3

(
σ̂2

1 + σ̂2
2 + σ̂2

3 − (σ̂1σ̂2 + σ̂2σ̂3 + σ̂1σ̂3)
)

(2.40)



24 CHAPTER 2. DAMAGE COUPLED TO PLASTICITY

Coefficientsαp andβp are functions of the internal friction angleϕ:

αp =
6 sinϕ

3 − sinϕ
(2.41)

βp =
6 cosϕ

3 − sinϕ
(2.42)

andcp is a measure for the cohesion. Further, the plastic potentialgp has the form:

gp = q̂ + αp p̂ (2.43)

whereαp is a function of the dilatancy angleψ, similar to the definition ofαp in Eq. (2.41):

αp =
6 sinψ

3 − sinψ
(2.44)

If the friction angleϕ is equal to the dilatancy angleψ, then associated plasticity is ensured. The

special case of Huber-Mises-Hencky (HMH) yield function is obtained forsinϕ = sinψ = 0.

Now a combination of both models, namely scalar damage and hardening plasticity, can be

proposed. The stress rateσ̇ can be derived from Eq. (2.4):

σ̇ = (1 − ω) ˙̂σ − ω̇ σ̂ (2.45)

where the rate of damagėω during loading (hereκd = ǫ̃ ) is evaluated as:

ω̇ =
dω

dκd

dκd

dǫ̃

dǫ̃

dǫ
ǫ̇ (2.46)

and during unloadinġω = 0. Hence:

dκd

dǫ̃
=

{
1 during loading

0 for unloading
(2.47)

The above derivatives can be denoted in the following way :

L =
dω

dκd

dκd

dǫ̃
(2.48)

and

sT =
dǫ̃

dǫ
(2.49)

Finally taking advantage of the effective stress rate for the plastic process can also be received

from Eq. (2.34) and the constitutive relation for the coupled model is obtained:

σ̇ =
[
(1 − ω) Eep − L σ̂ sT

]
ǫ̇ (2.50)
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σ σ

(a) Coupling bỹǫ(ǫ).

σ σ

(b) Coupling bỹǫ(ǫe).

Figure 2.9: Schemes for damage coupled to hardening plasticity.

The equivalent straiñǫ can depend on the total strain tensor or its elastic part, which means

that the plastic strains either stimulate the damage growth or they do not. If a full coupling

exists, for instance for plastically induced damage in metals [47], plastic strains also contribute

to ǫ̃. When the second option is chosen, the damage growth is determined by the effective

stresses and then the coupling of damage with plasticity is weaker. Here both possibilities are

considered, so that the equivalent strain measure is eitherǫ̃(ǫ) or ǫ̃(ǫe). The scheme in Fig. 2.9

on the left depicts the full coupling. The model coupled by means of the elastic strains is

shown on the right. These schemes are built based on [69, 156], where similar one dimension

representations are contained, but the context is different.

Analogically to the previous section one eight-noded finite element in three dimensions and

under tensile loading/unloading in statics is used to show differences in the pure and coupled

models. The elastic coefficients are Young’s modulusE = 20000 MPa and Poisson’s ratioν =

0.20. For pure and coupled damage models linear softening (2.19) is introduced with damage
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thresholdκo = 0.0001 and ultimate valueκu = 0.002. Linear hardening HMH plasticity is

adopted with yield strengthσy = 2 MPa and hardening modulush = 2E. This value seems to

be unrealistically large, but it is known from [36] that in the coupled model plastic effects are

connected only with the fictious (effective) configuration called also the material skeleton. The

part of the model related to damage theory is responsible for the development of microcracks.

As it was shown in [119] an increasing value ofh gives the solution which is closer to pure

damage model. Pure softening plasticity is also calculated only to confront the unloading paths.

In this model the yield strength is assumed as above, but to recover the same softening path like

for pure damage modulush is equal to−0.05E.

The stress-strain diagrams during the loading/unloading process are depicted in Fig. 2.10.

The behaviour of pure models is obvious. It is worthy of emphasis that for coupled model dif-

ferent equivalent strain definitions are employed and different paths are obtained. As expected

for these options irreversible strain is received and it has the same final value. Moreover, for

pure damage and damage with full coupling an identical rate of stress evolution is observed

from a certain moment on (see parallel diagrams in Fig. 2.10).

2.3 CRACK CLOSING

The coupled formulation described in the previous section does not cover the crack closure

phenomenon which occurs for compression following tension (like in Fig. 2.11). As previ-

ously timet is omitted in notation. If a pure damage model is considered during unloading the

constant (secant) stiffness is:

Esec = (1 − ω) E (2.51)

In this case no residual strains remain after unloading (see also Fig. 2.10). It means that microc-

racks and microvoids in the material close completely. If so then the damage process should not

influence the elastic behaviour under compression and the initial stiffness should be retrieved

when the origin is passed once (see Fig. 2.11).

To control crack closure effect (or, more generally, a different stiffness in compression and

tension) a very simple mechanism has been proposed [62,102,145]. The theory presented below

is also explained in [117, 120, 122, 170], but similarly to [120] the Voigt’s (called also matrix-

vector) notation is used to make programming the FEM code easier. If it is necessary, notation

with indices will be additionally employed. Firstly the tensile part of elastic strains is separated

from the total elastic strains using a projection operatorP +:

ǫe+ = P + ǫe (2.52)

Generally the second order strain tensor corresponds to the projection operatorP + defined

as a the fourth order tensor, hereP + is resolved to a matrix. It is assumed that onlyǫe+ is
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Figure 2.11: Stiffness change in crack closure phenomenon (without irreversible strains).

responsible for damage:

σd+ = ωE ǫe+ (2.53)

Further, only the tensile part of the damage stress is admitted:

σd+ =
(
P +

)T
σd (2.54)

Now the stress-elastic strain relationship is written:

σ = σ̂ − σd+ = E ǫe − ω
(
P +

)T
E P + ǫe = Esec ǫe (2.55)

where the secant stiffness is distinguished as:

Esec = E − ω
(
P +

)T
E P + (2.56)

The key point in the above approach is a suitable formulation of the projection operator

which transforms the strain tensor into its tensile part. If we assume that the projection operator

P + has the following form in Voigt’s notation:

P + = T−1 H T (2.57)

the idea of the tensile strain projection can be enumerated as follows [89,102]:

a) transform strain tensor to its principal directions:

ǫe ′ = T ǫe (2.58)

where matrixT corresponds to the transformation from the original coordinate system to

the principal directions (more detailed description below) and symbol′ denotes the new

coordinate system coinciding with the principal directions,
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b) choose the principal values which are greater than zero and make a new strain tensor (called

positive or tensile) composed of these values:

ǫe+ ′ = H ǫe ′ (2.59)

where ones may only be placed on the diagonal of matrixH,

c) transform this positive strain tensor back to the original coordinate system:

ǫe+ = T−1 ǫe+ ′ (2.60)

The above actions can be depicted in the simple commutative diagram:

ǫe a)T−−−→ ǫeI
b)H−−−−→ ǫe+I

c)T −1

−−−−→ ǫe+ (2.61)

HereI = 1, 2, 3 denotes the chosen principal direction.

For three-dimensional problems the transformation matrixT with the size6 × 6 concerns

elements which depend on three angles between the axes of the original coordinate system and

suitable principal directions. This matrix is given explicitly in [149].

For the generalized two-dimensional problems (plane stress, plane strain, axisymmetry) it

can be determined by means of one angleΘ and its sine and cosine function

cΘ = cos Θ sΘ = sin Θ (2.62)

as follows:

T =




cΘ
2 sΘ

2 0 cΘ · sΘ

sΘ
2 cΘ

2 0 −cΘ · sΘ

0 0 1 0

−2 · cΘ · sΘ 2 · cΘ · sΘ 0 cΘ
2 − sΘ

2


 (2.63)

Now there can be distinguished two forms of the projection operatorP + for 3D problems.

The first one was proposed by Ortiz in [115]. IfdI are unit vectors along the principal direc-

tions with components in the original coordinate system the operator in the indicial notation is

introduced as:

P+
ijkl = H(ǫ1) d1 i d1 j d1k d1 l +H(ǫ2) d2 i d2 j d2 k d2 l +H(ǫ3) d3 i d3 j d3 k d3 l (2.64)

Naturally the second index in vectorsdI points at a succeeding elements andH(·) denotes the

Heaviside function. Hence it can be deduced that in this option the matrixH is:

HOrtiz = diag⌈H(ǫ1), H(ǫ2), H(ǫ3), 0, 0, 0⌋ (2.65)

and the entire operator:

P +
Ortiz = T−1 HOrtiz T (2.66)
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An alternative form was proposed by Simo and Ju in [145] and afterwards simplified by

Hansen in [62]. Firstly, the second order tensor must be assumed:

Q+
ik = H(ǫ1) d1 i d1k +H(ǫ2) d2 i d2k +H(ǫ3) d3 i d3k (2.67)

Based on the above relation the projection operator can be defined in indicial notation:

P+
ijkl = Q+

ikQ
+
jl (2.68)

It means that matrixH has the following form:

HSJH = diag⌈H(ǫ1), H(ǫ2), H(ǫ3), H(ǫ1)H(ǫ2), H(ǫ1)H(ǫ3), H(ǫ2)H(ǫ3)⌋ (2.69)

and now the operator is:

P +
SJH = T −1 HSJH T (2.70)

For triaxial tension, when all principal values of the strain tensor are larger than zero and

H(ǫ1) = H(ǫ2) = H(ǫ3) = 1, the following relations are obtained:

P + ǫe = ǫe (2.71)

(
P +

)T
σd = σd (2.72)

Hence the secant stiffness takes the form as in Eq. (2.51). In this caseHOrtiz degenerates to:

HOrtiz = diag⌈1, 1, 1, 0, 0, 0⌋ (2.73)

and the projection operatorP +
Ortiz is not equal to the fourth order identity tensor or the identity

matrix in the Voigt’s notation. In a different manner is for the second option:

HSJH = diag⌈1, 1, 1, 1, 1, 1⌋ (2.74)

and henceP +
SJH becomes the fourth order identity tensor or the identity matrix. The second

operator could be regarded as a superior one. However, for both cases in triaxial tension the

tensile strain tensor is equal to the full strain tensor.

For triaxial compression in the model with crack closure effect the identityH(ǫ1) = H(ǫ2) =

H(ǫ3) = 0 holds and no damage is expected, it means that the projection operator becomes zero

and the material behaves elastically even if in the past it has undergone a damage process in ten-

sion:

P + ǫe = 0 (2.75)

Esec = E (2.76)
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If the projection operator is incorporated, the classical elastic energy release is employed as

equivalent strain measure (cf. Eq. 2.11), but withǫ substituted byǫe+:

ǫ̃ =

√
1

E
(ǫe)T (

P +
)T

E P +ǫe (2.77)

The shape of the damage surface described by the above relation is like for Mazars definition

(see Fig. 2.4). However the shape based on Eq. (2.77) for two-dimensional problems is inde-

pendent of the considered state (whether plane stress or strain) and is identical to the Mazars

criterion in plane strain.

Upon differentiation of Eq. (2.55) the following stress-elastic strain relationship is acquired:

σ̇ = Esec ǫ̇e − ω
(
Ṗ +

)T

E P + ǫe − ω
(
P +

)T
E Ṗ + ǫe − ω̇ σ̂+ (2.78)

HereEsec was introduced in Eq. (2.56) and̂σ+ is defined as:

σ̂+ =
(
P +

)T
E P + ǫe (2.79)

Now the derivative of the strain measure with respect to the strain tensor should be calculated

in a such manner:

sT =
dǫ̃

dǫ
=

dǫ̃

dǫe+

dǫe+

dǫe

dǫe

dǫ
(2.80)

where
dǫe+

dǫe
= P + +

∂P +

∂ǫe
ǫe (2.81)

Based on Eqs (2.25) and (2.34) the relation between elastic and total strain increments is:

dǫe

dǫ
= (E)−1 Eep (2.82)

Using the latter result a tangent operatorEtan can be introduced:

Etan = (Esec − ωE∗) E−1 Eep (2.83)

where

E∗ =

[(
∂P +

∂ǫe

)T

E P + + P + E
∂P +

∂ǫe

]
ǫe (2.84)

The damage evolution determined in Eq. (2.46) needs also the definition ofL like in Eq. (2.48).

Of course during unloadinġω = 0 is still obeyed. Therefore the tangent stress-strain relation is:

σ̇ =
(
Etan − L σ̂+ sT

)
ǫ̇ (2.85)

If crack closing is ignored then operatorEtan is reduced to(1 − ω)Eep andσ̂+ remainsσ̂ like

for the coupled model presented in the previous section.
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One finite element test with static tension in one horizontal direction and then compression

in the opposite direction is analyzed in two dimensions since the crack closure effect is not yet

implemented for 3D problems. Here the plane finite element has four nodes. First computations

are performed not only to show the differences between the inclusion of crack closing in the

pure damage model, but also to examine the influence of the value of Poisson’s ratio in plane

strain/plane stress problems with the projection operator. Next to Poisson’s ratio the stiffness is

also determined by Young’s modulusE, which is equal to20000 MPa. For the damage model

linear softening (2.19) is applied, where damage thresholdκo is 0.0001 and the ultimateκu

amounts to0.004. If this model is applied together with plasticity, both types of coupling are

compared (cf. example in the previous section). For plasticity HMH function with yield strength

σy = 2 MPa is introduced. After yielding linear hardening starts and the hardening modulush

equals2E. The crack closure phenomenon is incorporated by means of the projection operator

P +
Ortiz defined in Eq. (2.66).

In Figs 2.12 and 2.13 the loading (tension) – unloading – reloading (compression) paths are

presented for horizontal stressσ11 versus corresponding strainǫ11.

In Fig. 2.12 in the diagram for the model without the projection operator and with zero

Poisson’s ratio the stiffness in the reloading phase is kept from the unloading phase, hence the

lack of crack closure effect is evident. Moreover, cases without the projection operator, but

with Poisson’s ratio equal to0.2 (not depicted in this figure) for plane strain and plane stress

produce identical paths as for the discussed diagram. If crack closing is included the behaviour

is different for each case. A complete crack closing is noticed when Poisson’s ratio is equal to

zero. After softening and return to the origin the elastic stiffness is recovered. This is because

the elements of the strain and stress tensor are not related through Poisson’s ratio. For both

cases (plane strain and plane stress) with non-zero Poisson’s ratio the stiffness changes during
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Figure 2.12: Incorporation of crack closing into scalar damage.
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Figure 2.13: Incorporation of crack closing into coupled model.

reloading, but the elastic stiffness is not fully recovered. It is caused by different influence of

the projection operatorP + on the considered problem. The contribution ofP + is visible just

after the peak load is reached and different softening rates are observed. The projection operator

P + for tension in one direction contains only one non-zero component of matrixH, but for

compression the operator does not become a zero matrix. The projection operator is sensitive to

crossing the origin into the reloading phase. According to the theory described in page 29, for

2D domains and non-zero Poisson’s ratio the original stiffness can be recovered only in biaxial

tensile/compressive test.

Fig. 2.13 confronts the crack closure effect in pure and coupled models. Computations are

performed only forν = 0. Softening paths for both options with weak and strong coupling

are analogical to those presented at the end of Section 2.2. After unloading the same value of

irreversible strain is obtained. Next, the initial elastic stiffness is observed during the reloading

process independently of the adopted type of coupling.

2.4 ISOTROPIC MODEL

Departing from scalar damage, but remaining within the isotropic description, it is possible to

enhance the damage model with two strain measures and/or two damage parameters. One way

of such enhancement can be the decomposition of one parameter damage into two parts related

to tensile and compressive actions [27, 103, 130]. However, the proposal discussed in this sec-

tion results from a volumetric-deviatoric split given for example in [98]. The elastic-damage

constitutive model is considered, i.e. the coupling with plasticity and crack closure effect are

neglected.
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The continuum damage formulation satisfies the isotropy condition if two damage parame-

tersωK andωG for the volumetric and deviatoric part are considered, cf. [21,28,75,98]. The con-

stitutive equation becomes:

σ =
[
(1 − ωK)K ΠΠ

T + 2(1 − ωG)GQ
]
ǫ (2.86)

or briefly:

σ = EKG ǫ (2.87)

where:

EKG = (1 − ωK)K ΠΠ
T + 2(1 − ωG)GQ (2.88)

The first damage parameterωK influences bulk modulusK and the second oneωG – shear

modulusG. Moreover, the following relations are introduced:

Q = Q0 −
1

3
ΠΠ

T Qdev = I − 1

3
ΠΠ

T (2.89)

where:Π = [1, 1, 1, 0, 0, 0]T andQ0 = diag⌈1, 1, 1, 1
2
, 1

2
, 1

2
⌋. Note that strain and stress

vectors are split into volumetric and deviatoric parts:

ǫ =
1

3
Πθ + ǫdev (2.90)

σ = Πp+ ξ (2.91)

Here the variables are respectively denoted as:θ = Π
Tǫ – dilatation,ǫdev = Qǫ – deviatoric

strain,p = 1
3
Π

Tσ – pressure andξ = Qdevσ – deviatoric stress. The stress rate is obtained

differentiating Eq. (2.86):

σ̇ = EKG ǫ̇ − ω̇K K ΠΠ
T ǫ − 2ω̇G GQǫ (2.92)

The basic question is how the damage and the (equivalent) strain which governs it should be

measured. Two approaches can be proposed.

2.4.1 ONE STRAIN MEASURE

The simplest case is to assumeκd = κd
K = κd

G, so that one damage loading function (2.8)

satisfying the Kuhn-Tucker conditions (2.10) is applied with the equivalent strain measureǫ̃

and the damage history parameterκd. However, two different damage growth functions are

distinguished:

ωK = ωK(κd) and ωG = ωG(κd) (2.93)

This proposal will further be called"one strain measure".
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If one history parameterκd governs the damage evolution, the rates of damage parameters

ωK andωG during loading are respectively:

ω̇K =
dωK

dκd

dκd

dǫ̃

dǫ̃

dǫ
ǫ̇ and ω̇G =

dωG

dκd

dκd

dǫ̃

dǫ̃

dǫ
ǫ̇ (2.94)

and during unloading botḣωK andω̇G are equal to0. The derivatives are denoted as:

LK =
dωK

dκd

dκd

dǫ̃
and LG =

dωG

dκd

dκd

dǫ̃
(2.95)

and the definition in Eq. (2.49) is additionally needed. Hence the constitutive relation written in

rates for the one strain measure approach is:

σ̇ =
[
EKG −

(
LK K ΠΠ

T + 2LG GQ
)
sT

]
ǫ̇ (2.96)

An analogical idea is presented in [21], where so-called "single-dissipative isotropic model"

is governed by one primary damage variable, but different volumetric and deviatoric stiffness

degradations are distinguished. Hence like here one loading function and two damage parame-

ters are applied.

This option has been verified by means of one-element benchmark test. The simulations

of three-dimensional element with eight nodes under static tension in one direction have been

performed. The general data like for example Young’s modulus have been employed identical

to the example in Section 2.1 (see page 21). It should be emphasized that damage thresholdκo,

here equal to0.0001, influences directly the history parameterκd. Hence starting the damage

process at two different instants (two thresholds) in proposal called "one strain measure" is not

admitted. On the other hand the simple modification of scalar theory, which was explained

above, gives a possibility to adopt of two different damage growth functions, separately for

degradation of bulk modulusK and shear modulusG. It permits one to construct and then

control damage evolution governed by dominating volumetric or shape failure. Ten calculated

cases are juxtaposed in Table 2.1. There are presented not only detailed damage growth data

and the symbol used to distinguish a given case in the computations but also diagrams of strain

ǫ11 versus damageωK andωG. These diagrams are very helpful in understanding how the addi-

tional chance to construct different damage growth functions influences the results. For example

in the case calledexp,lin (last row in Table 2.1) there is exponential softening for volumetric

degradation and a linear one for the deviatoric part. In the corresponding diagram (last row and

last column) it can be observed that untilǫ11 nearly equals0.0015 the parameterωK is larger

thanωG and afterwards there is a noticeable change. The reasons of this change will be clarified

later in detail. Now it can only be mentioned that untilǫ11 ≈ 0.0015 the exponential softening

for the volumetric part governed byωK decides about the damage evolution. Similarly to the

benchmark presented in Section 2.1 such parameters have been chosen that the fracture energy

for calculated cases is relevant. For instance to gain nearing fracture energy the ultimate value
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Table 2.1: Tension in one direction – all cases computed by means of isotropic damage.

Symbol Damage growth data Strain-damage

of case volumetric part deviatoric part diagrams

lin

linear,

Eq. (2.19),

κK
u = 0.002

linear,

Eq. (2.19),

κG
u = 0.002

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005 ǫ11

ωK

ω

ωG

lin,K

linear,

Eq. (2.19),

κK
u = 0.003

linear,

Eq. (2.19),

κG
u = 0.002

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG

lin,G

linear,

Eq. (2.19),

κK
u = 0.002

linear,

Eq. (2.19),

κG
u = 0.003

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG

lin,K&G

linear,

Eq. (2.19),

κK
u = 0.003

linear,

Eq. (2.19),

κG
u = 0.003

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG

exp

exponential,

Eq. (2.21),

ηK = 1000

exponential,

Eq. (2.21),

ηG = 1000

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG

exp,K

exponential,

Eq. (2.21),

ηK = 750

exponential,

Eq. (2.21),

ηG = 1000

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG

exp,G

exponential,

Eq. (2.21),

ηK = 1000

exponential,

Eq. (2.21),

ηG = 750

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG

exp,K&G

exponential,

Eq. (2.21),

ηK = 750

exponential,

Eq. (2.21),

ηG = 750

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005 ǫ11

ω

ωK

ωG

lin,exp

linear,

Eq. (2.19),

κK
u = 0.002

exponential,

Eq. (2.21),

ηG = 1000

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG

exp,lin

exponential,

Eq. (2.21),

ηK = 1000

linear,

Eq. (2.19),

κG
u = 0.002

 1

 0.95

 0.9

 0.85
 0.002 0.0015 0.001 0.0005

ω

ǫ11

ωK

ωG
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Figure 2.14: Influence of ultimateκu in linear softening for isotropic model.

κu = 0.003 in the linear function corresponds to the ductility parameterηi = 750 (i = K,G)

for the exponential one. The cases with identical data for both damage growth functions can

be treated as reference. The same numerical stability parameterα = 0.98 in all cases with

exponential softening is assigned.

Firstly in Fig. 2.14 cases with linear softening are shown. As it was expected, after the

peak, diagrams forlin,K and lin,G start to descend between diagrams forlin and lin,K&G.

However, it seems astonishing a nonlinear character of softening although the linear damage

growth was defined for caseslin,K and lin,G. Moreover, in caselin,G, where the deviatoric

part has greaterκG
u , arc-length control has been applied during computations because strong

nonlinearity and snap-back have revealed. Therefore, it suffices to change the ultimate valueκu

for chosen volumetric or deviatoric part in order to obtain nonlinear response. It will further be

discussed in the paragraph on page 38.

Fig. 2.15 depicts stress-strain diagrams for damage growth functions related to exponential

softening. The interpretation is easy since each softening branch has an exponential character.

For casesexp,K andexp,G with mixed ductility parameters they run between the extreme cases

expandexp,K&G. Analogically to the cases with linear functions a certain regularity can be

noted. If the fracture energy for the deviatoric part is increased (compare casesexpandexp,G),

it gives a larger difference in response than for fracture energy added to the volumetric part. It

is doubtful to consider fracture energy only for a chosen part of the stiffness, however in order

to simplify the explanations this concept will be used.

The comparison in Fig. 2.16 shows influence of damage growth functions with a different

character, i.e. first of all attention is focused on the two cases with mixed softening, namely

linear-exponential calledlin,expand exponential-linear calledexp,lin. The other diagrams are
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Figure 2.15: Influence of ductility parameterηi (i = K,G) in exponential softening for isotropic

model.

included to explain the response for these calculated cases. The results for both simulations

imply not only a nonlinear character, but as it was mentioned in page 34 (see also Table 2.1) a

change in domination of damageωK or ωG is noticed. In caselin,expat first larger damageωG

for the deviatoric part governs the solution. Sinceǫ11 achieves0.0015 damageωK connected

with volumetric degradation overweights. An opposite situation is observed for caseexp,lin.

Therefore untilǫ11 attain0.0015 for both computations exponential softening dominates. After

exceeding this value the linear function is responsible for the drop in stiffness.
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Figure 2.16: Influence of predefining damage growth functions with different character.
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All the diagrams in Fig. 2.16 intersect at a point whereǫ11 ≈ 0.0015. Considering the basic

caseslin andexp, after the peak load to this characteristic point softening branch decreases

faster for caseexp. Further ifǫ11 > 0.0015 the stress componentσ11 decreases faster for case

lin. Hence in caseslin,exp and exp,lin with mixed damage growth this function dominates

during the evolution, which involves more intensive stiffness degradation. It is also interesting

that branch forlin,expfinally coincides with caselin,G and similarly caseexp,linwith lin,K.

If the data gathered in Table 2.1 are confronted it turns out that both coincidences are connected

with the adopted linear functions having the same ultimate value of damage history parameter.

In caseslin,expandlin,G this isκK
u for the volumetric part, opposite toexp,linandlin,K, where

identical linear softening is employed for deviatoric part with the sameκG
u .

Before the next figure will be described the following definition of Poisson’s ratio depending

on the stiffness degradation is introduced:

νω = ν(ωK, K, ωG, G) =
3(1 − ωK)K − 2(1 − ωG)G

2 [3(1 − ωK)K + (1 − ωG)G]
(2.97)

To distinguish the Poisson’s ratio which is given as an elastic material parameter from the one

defined in Eq. (2.97) the subscriptω is additionally applied. Hence, parameterνω is computed

during the damage process.

As it is shown in Fig. 2.17, if only damage growth functions are predefined for a particu-

lar case then this parameter changes. Furthermore, in the case of linear softening the value of

νω drastically tends to a lower or upper limit. These limits can be perceived as controversial

results and first of all they are not physically motivated. Such extreme behaviour in simu-

lation and as a consequence nonlinear relation betweenǫ11 andσ11 seems to be undiserable.

A completely degradation for the volumetric part (caseslin,expandlin,G) gives finallyνω equal
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Figure 2.17: Sensitivity of Poisson’s ratioνω to adopted damage growth functions.
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Figure 2.18: Sensitivity of dilatationθ to adopted damage growth functions.

to −1. On the other hand the zeroed shear stiffness (casesexp,linandlin,K) leads toνω = 0.5

like for incompressible materials (cf. [21]). Concrete is rather a material where microcracks

under tension decrease the Poisson’s effect during the failure process [75]. The problem is that

non-physical values below zero appear and they even achieve−1. If exponential softening is

used (see Fig. 2.17, caseexp,G) a smooth drop below zero is observed, but this is not always

so. Naturally the starting value ofνω and also the configuration of the considered test decide on

whetherνω becomes negative. For quasi-brittle materials like concrete generally it is expected

that Poisson’s ratio tends to0 during the damage evolution [21]. In this model this is not assured,

hence only by means of appropriate values for the paramaters of the model negative Poisson’s

ratio can be avoided. It is questionable whether such negative values should be admitted in the

simulated process.

Fig. 2.18 provides observations mentioned in the previous paragraph connected with vari-

able Poisson’s ratio in the damage evolution. If the value ofνω reduces, the dilatancyθ grows

more intensively than linearly. Oppositely – increasing variableνω provokes dilatancyθ to grow

slower (caseexp,K) or leads to0 in extreme situations (casesexp,linandlin,K).

Summarizing caseexp,Gseems to be the most promising, but in further tests different com-

binations of exponential softening will be employed in order to verify the isotropic damage

model not only at the point level.

2.4.2 TWO STRAIN MEASURES

A more difficult concept involves a total separation of damage multipliers applied to the bulk

and shear modulus, so that this idea will be called"two strain measures". Now two damage
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loading functions are employed – separately for the dilatancy:

fd
K(θ, κd

K) = θ̃(θ(t)) − κd
K(t) = 0 (2.98)

and for the deviatoric (shear) strains:

fd
G(ǫdev, κ

d
G) = ǫ̃dev(ǫdev(t)) − κd

G(t) = 0 (2.99)

It remains to define functions̃θ(θ) and ǫ̃dev(ǫdev). For example it is possible to divide the

well-known modified von Mises formula [38] into parts related to the first and second strain

invariants. If these invariants are used separately for the volumetric and deviatoric components,

the following definitions can be introduced:

θ̃ =
k − 1

k(1 − 2ν)
Iǫ1 (2.100)

ǫ̃dev =

√
3kJǫ

2

k(1 + ν)
(2.101)

The aim of distinguishing two history parametersκd
K andκd

G is that damage increases sepa-

rately forωK andωG:

ω̇K =
dωK

dκd
K

dκd
K

dθ̃

dθ̃

dǫ
ǫ̇ and ω̇G =

dωG

dκd
G

dκd
G

dǫ̃dev

dǫ̃dev

dǫ
ǫ̇ (2.102)

During unloading it can be assumed that eitherω̇K or ω̇G are equal to0. The following defini-

tions can be introduced:

LK =
dωK

dκd
K

dκd
K

dθ̃
and LG =

dωG

dκd
G

dκd
G

dǫ̃dev
(2.103)

and furthermore:

sT
K =

dθ̃

dǫ
and sT

G =
dǫ̃dev

dǫ
(2.104)

For this option the constitutive relation in rates has the form:

σ̇ =
(
EKG −LK K ΠΠ

T sT
K − 2LG GQsT

G

)
ǫ̇ (2.105)

A similar approach with total separation of damage parameters is described in [21], where

two damage variables influences two loading functions. Such model is called in [21] "bi-

dissipative isotropic model".

Although the idea described above looks attractive, it has not been implemented and can be

a subject of future work.
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2.5 WILLAM ’ S TEST

The tension-shear test was performed for the first time in [169] and since then it is called

Willam’s test. This test is often computed to verify inelastic material models at the point level.

As it was noticed in [171], the responses of particular models are different even if these mod-

els in uniaxial tension exhibit a similar behaviour or are calibrated in such a manner that gives

almost the same results. Many authors checked their ideas using this test, for example: com-

parisons between fixed, rotating and smeared crack models [49, 140], verification of bounding

surface plasticity model [171], verification of multidirectional kinematic softening damage-

plasticity model [106], sensitivity analysis for generalized pseudo-Rankine damage model [20]

and a wide confrontation of models with respect to multi-surface plasticity [131]. From the

point of view of this work the starting point can be the numerical analysis given in [113], where

the results for fixed crack and damage models are collected. Although at the point level the

damage model described there is analogical to the one presented in Section 2.1, but the data

are incomplete. Hence the results presented in [113] compare only qualitatively to the ones

calculated in this section. Eventually the adopted data are based on [131].

One finite element with four nodes in plane stress is subjected to loading in two phases:

I. Uniaxial horizontal tension with vertical contraction due to the Poisson’s effect, according

to the relation between the strain increments:∆ǫ11 : ∆ǫ22 : ∆γ12 = 1 : −ν : 0 .

In Fig. 2.19(a) the scheme of prescribed displacements corresponds to the uniaxial tensile

strain state. These conditions are obeyed until the tensile strength is attained.

II. Immediately after the tensile strength is reached the change of configuration is enforced,

see Fig. 2.19(b). Now the proportions for the strain increments are arranged in the fol-

(a) Phase I. – uniaxial tension. (b) Phase II. – biaxial tension and shearing.

Figure 2.19: Willam’s test – prescribed displacements for the corresponding strain state.
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Figure 2.20: Willam’s test – strain evolution.

lowing way: ∆ǫ11 : ∆ǫ22 : ∆γ12 = 0.5 : 0.75 : 1 . This relation induces tension in two

directions and additionally shear strain. As a consequence a rotation of principal strain

axes occurs, but tension regime is preserved. At the beginning the rate of rotation is fast,

but during the evolution it slows down.

As mentioned in [171] such loading process is observed during the analysis of real RC struc-

tures. Nevertheless in the literature on quasi-brittle materials there seem to be no experiments

for this or similar tests with rotating principal directions [20], probably since it is difficult to

be reproduced in a laboratory test. A possible verification for a given model in different biax-

ial states exists in the results of laboratory tests performed by Kupfer [87, 88]. This group of

tests allows one to trace the experimental loading surface for concrete. A wide analysis of a

numerical model at the point level using different combinations of loading in plane stress like

for example in [132] can be performed and confronted with experimental results.
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The adopted strain evolution for Willam’s test is shown in Fig. 2.20(a) by relations between

ǫ11 regarded here as a history variable and the remaining strain components. The relation be-

tween principal strains is depicted in Fig. 2.20(b). The test is passed if the maximum principal

stress is lower than or at most equal to the given uniaxial tensile strength [131]. The second

condition is that finally all stress components should converge to zero.

The set of data are constructed as for concrete basing on [131], namely Young’s modulus

E = 32000 MPa, Poisson’s ratioν = 0.20 and the remaining paramaters are tuned to uniaxial

tensile strengthft = 3 MPa, uniaxial compressive strengthfc = 38.3 MPa and tensile fracture

energyGf = 0.11 N/mm. In damage theory the threshold is calculated as quotient of the tensile

strength and Young’s modulus, soκo = ft/E = 0.00009375. In the case of one element test

the characteristic length equals the element size, which is here100 mm. For a given fracture

energy and characteristic length it is possible to determine parameters for the adopted function

of damage growth. In this test exponential softening is considered. The first parameterα is

equal to1.0, which means that complete loss of stiffness is admitted. The ductility parameter

η = 4000 seems to be unrealistically huge, but results in a fast material failure. If modified

von Mises definition (2.15) is assumed, the ratio between compressive and tensile strength is

equal tok = fc/ft = 1223
30

. Additional parameters for individual cases will be listed during the

description of results.

2.5.1 RESULTS FOR SCALAR DAMAGE

Firstly, the results for pure scalar damage model are compared and attention is focused on three

different definitions of the equivalent strain measure, which were introduced in Section 2.1. In

Fig. 2.21 the diagrams for stress-strain relations between corresponding components are shown

for the adopted definitions. In Fig. 2.21(a) when softening starts some differences reveal, while

in uniaxial tension regime the loading functions have no influence on the peak load. The most

rapid decrease ofσ11 is noted for modified von Mises definition (2.15). The diagrams for two

other functions are rather close and this observation is also made in Figs. 2.21(b) and 2.21(c).

Analyzing Fig. 2.21(b), due to Poisson’s effect negative vertical strainǫ22 result from the hor-

izontal extension and vertical stressσ22 is zero. When tensile strength is reached,ǫ22 andγ12

start to grow, while bothσ22 andσ12 first increase and then exhibit softening. Thus the peaks for

stressesσ22 andσ12 are achieved later, when the damage process is advanced. For the modified

von Mises measure the maximum values of stressesσ22 andσ12 are about 50 percent smaller

than for the other definitions. Unlike the results given in [20, 171] there are no local bumps

on the softening curves. For all three diagrams the modified von Mises measure produces the

smallest ductility and the Mazars’ measure the largest.
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Figure 2.21: Willam’s test – influence of assumed loading functions.
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(a) Elastic energy release definition (2.11).
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(b) Mazars definition (2.12).
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(c) Modified von Mises definition (2.15).

Figure 2.22: Willam’s test – comparison of stress components for different loading functions.
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Figure 2.23: Willam’s test – evolution of principal stressesfor different loading functions.

Generally for all the options the uniaxial tensile strength is not exceeded and all stress

components tend to zero, hence for pure scalar damage this test is passed. It is also confirmed

in Figs 2.22 and 2.23. Figure 2.22 presents all stress components together with its principal

values, in each subfigure for a different loading function. Figure 2.23 depicts the stress evolution

in principal directions (the vicinity of the origin is zoomed above). It should be emphasized that

the principal directions of the stress (and obviously strain) tensor change during the process.

2.5.2 RESULTS FOR COUPLED MODEL

If the coupled model is selected, plasticity with Huber-Mises-Hencky surface and linear hard-

ening are employed. According to the general data the yield strengthσy is equal to the tensile

strengthft for concrete. Two ways of coupling, namely total and elastic, are considered (see

page 25). Hardening modulush = 0.5E is adopted. This small value make it possible to bring

out differences in results for a given manner of the coupling, because ifh→ ∞ the solution

approaches pure damage (cf. [119]).

The diagrams in Fig. 2.24 show the same tendency as in the example with uniaxial tension

(page 26). After the peak the descending paths run in such way that for optionǫ̃(ǫ) they are

below and for̃ǫ(ǫe) above those resulting from the application of pure damage. A more ductile

response for̃ǫ(ǫe) is especially visible in the relationǫ22 − σ22.

Analogically to the previous subsection all stress components and also its principal values

are depicted in Fig. 2.25 as functions ofǫ11 (treated as history variable). This figure is di-

vided into two subfigures for the two manners of coupling, respectively. Additionally Fig. 2.26

presents the stress evolution in principal directions. Like previously it can be noticed that the

principal stresses return to zero, which satisfies one of the conditions for this test.
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Figure 2.24: Willam’s test – results for pure damage and coupled to plasticity.
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Figure 2.25: Willam’s test – comparison of stress components in coupled models.
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Figure 2.27: Willam’s test – differences between pure and coupled models.
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In Fig. 2.27 attention is focused on differences between pure and coupled models, consid-

ering: the change of angle of principal directions, the development of dilatancy and the relation

between effective principal stresses. It is worth to underlining that the response in the context

of these aspects is the same whether the equivalent strain measure is based on elastic or total

strains. Similarly to the results in [171] after the peak the rotation of principal direction takes

place fast, then becomes slower and tends to the angle with value52.018 deg. For pure dam-

age angleΘσ for principal directions in the stress space changes during evolution together with

angleΘǫ for given principal strains, since for damage without any coupling they are coaxial.

For the coupled version of the model the change of angleΘσ is faster than the change ofΘǫ. It

means that the existence of plasticity accelerates the effect of rotation of principal stresses and

coaxiality is not preserved. Moreover, in the final stage the angle describing the principal stress

directions coincide closer with the theoretical value52.018 deg than for the pure model. On the

other hand if a plastic process is initiated, dilatancyθ grows slower than for pure damage (see

Fig. 2.27(b)). The difference is also observed in the evolution of principal effective stresses. It

is shown in Fig. 2.27(c) that stronger correlation betweenσ̂1 andσ̂2 occurs for coupled models.

2.5.3 RESULTS FOR ISOTROPIC DAMAGE

Similarly to the computations presented in page 36 four cases with different prescribed ductility

parameters are considered. The basic caseexpis for pure scalar damage withηK = ηG = 4000.

Next two cases with different ductilities for the volumetric and deviatoric damage are calcu-

lated. The case with more smooth exponential softening for deviatoric part with parameters

ηK = 4000 andηG = 2000 and as effect larger volumetric damageωK is calledexp,G. The

opposite dataηK = 2000 andηG = 4000 are used for the case calledexp,K, where damage

for the deviatoric part governs the solution. To complete the results of Willam’s test the case

exp,K&G with both smaller parametersηK = ηG = 2000 is also analyzed. In this subsection the

influence of parameters which define the damage growth function on the evolution of Poisson’s

ratioνω is observed.

In Fig. 2.28 diagrams for casesexpandexp,K&G determine bounds for cases with different

ductility paramaters. The stress-strain diagrams forexp,Kandexp,Gare placed in exchanged

order comparing with the example of uniaxial tension (see page 36). It seems surprising, but

only apparently, because the Willam test deals with a different loading history. In Fig. 2.28(c)

shear relationγ12-σ12 is depicted. A full agreement between diagrams forexpandexp,K, and

also between diagrams forexp,K&G andexp,Gis characteristic in this test. It is connected with

the fact that these respective cases have the same parameterηG for the deviatoric part. Another

interesting observation is a similar distance between descending branches for relationsǫ11-σ11

andǫ22-σ22.
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Figure 2.28: Willam’s test – influence of ductility parameterηi (i = K,G) in isotropic model.
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(a) exp,K, ηK = 2000, ηG = 4000.
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Figure 2.29: Willam’s test – comparison of stress components in isotropic model.

Again as a supplement in Fig. 2.29 the components of stress tensor together with principal

stresses are presented versus strainǫ11. The figure shows results only for the isotropic model

taking into account options with mixed ductility parameters. It is noticed that for caseexp,G

the second principal stress achieves negative values. The final tendency is that all components

converge to zero. Both Figs 2.30 and 2.31 show the stress evolution in principal directions. The

upper Fig. 2.30 is plotted for all considered cases withα = 1.0. As it is depicted in enlarged

sector the zero value is finally reached. If the parameterα is less than1.0, e.g.α = 0.97 like

for Fig. 2.31, the residual values remain. In this option the complete loss of material stiffness is

avoided and as a consequence the final stresses should be non-zero.

A crucial difference between the adopted numerical stability parametersα (1.0 or 0.97) is

brought out in Fig. 2.32(a) during Poisson’s ratioνω evolution. Ifα is equal to1 the lower or
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Figure 2.30: Willam’s test – evolution of principal stresses for isotropic model,α = 1.0.
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Figure 2.31: Willam’s test – evolution of principal stressesfor isotropic model,α = 0.97.

upper limit ofνω is reached, while the value ofνω returns to the initial one forα = 0.97 after

increasing for caseexp,Kand decreasing for caseexp,G. It was mentioned in the previous sec-

tion that for quasi-brittle materials like concrete a decreasing of Poisson’s ratio is expected (see

also [21]), but negative values are rather non-physical and undiserable. Attention is focused on

caseexp,G, where the values ofνω are less or at most equal to given in data. It is possible to

setup both paramatersα andη separately for volumetric and deviatoric part in such way that

negative Poisson’s ratio can be prevented. The results in subfigures 2.32(b) and 2.32(c) con-

firm the above conclusion. The first manner is the reduction of the value ofα, but then a too

large residual stresses can remain (not shown here). Secondly the proportion between ductility

parameters results in a smaller or larger drop of Poisson’s ratio. It turns out that cases with
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Figure 2.32: Willam’s test – sensitivity of Poisson’s ratioνω in isotropic model.
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paramatersηK = 4000, ηG = 2666.667 andηK = 3000, ηG = 2000 have an identical lower

limit. The smaller the difference betweenηK andηG is, the less drastical evolution of Poisson’s

ratio is noticed. This holds only ifα < 1.0 (see Fig. 2.32(c)).

Summarizing this section the results for all the options of the model satisfy the conditions

to pass the Willam test.





CHAPTER 3

FINITE ELEMENTS

FOR GRADIENT DAMAGE

3.1 PROPOSALS OF GRADIENT ENHANCEMENT

FOR DAMAGE

The damage theory coupled to plasticity and additionally including the crack closure effect,

presented in the previous chapter, has been formulated in the local approach, so it of course

does not ensure a proper numerical reproduction of failure processes in plain or reinforced con-

crete (see Section 1.2 and Appendix A). For softening materials like concrete, when the tangent

stiffness becomes negative, in the formulation for statics the loss of ellipticity occurs. Ana-

logically the loss of hyperbolicity is noticed in the formulation for dynamics. Mathematically

the ill-posedness of the IBVP is the cause that an infinite number of solutions can be received.

Physically it is connected with the onset of strain localization which is then observable in the

considered domain. The zone of localization has a discrete form (line or surface). In numerical

modelling the loss of well-posedness results in a spurious mesh sensitivity. This well-known

problem can be overcome using different regularization techniques (see details in Section 1.2).

In the dissertation it is assumed that the plasticity model exhibits hardening, so that softening

can only be caused by damage. Therefore, the damage theory is made nonlocal, while the plas-

ticity theory remains standard.

The consideration starts from the assumption that a given stress state at a material pointx

corresponding to time instantt during the loading history depends not only on state variables

at this point but also on points in the neighbourhood. The non-locality in the damage theory

(cf. [7, 10, 129]) can be introduced by a relation of the damage measureω with the equivalent

strain measurẽǫ treated as non-local (averaged):

ǭ(x) =

∫

B

g(x, sx) ǫ̃(sx) dV (3.1)

Heresx denotes the source point around which the non-local weight functiong(x, sx) is spanned.

57
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The weight function is correlated with distancer between pointssx andx in domainB:

r = ||x − sx|| (3.2)

The functiong is non-negative and monotonically decreasing with the increase of distancer

[68]. Therefore the smaller is the distance from the considered pointx, the stronger is the

influence of the stress state at the originsx. During averaging according to Eq. (3.1) an arbitrary

constant field should not be modified [17, 72]. Next to boundaries the weight functiong is

scaled to prevent changing the uniform field, so the presence of a boundary does not modify

the symmetry of the efficient weighting. Different averaging techniques in the proximity of

boundaries are proposed and compared in [72]. The weight functiong(r) is usually accepted as

the Gauss distribution:

g(r) = exp

(
− r2

2l2

)
(3.3)

wherel denotes an internal length parameter. An alternative distribution is the so-called bell-

shaped function, applied for example in [68].

In this thesis a gradient-enhanced model according to [55, 117, 125, 126] has been selected

from among the group of models producing mesh-independent results. Generally, applying

higher-order gradients of a considered field can be motivated physically by two different con-

cepts, as illustrated in [5]. If regularization of certain discontinuities is demanded, higher-order

gradients smooth the heterogeneity of this field. The opposite way is introducing the hetero-

geneity into the considered field in order to obtain its exact representation in the microstructure.

In Fig. 3.1 the strain field in one dimension is depicted before (on the left) and after (on the

right) the operation of applying higher-order gradients.

x

introducing
heterogeneity

smoothing of
heterogeneity

ǫ

ǫ

x

x

ǫ

ǫ

x

Figure 3.1: Two consequences of using higher-order gradients. Based on [5].
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Eq. (3.1) valid for non-local damage can be rewritten upon the Taylor series expansion of

the equivalent strain measureǫ̃. Then it gives due to the isotropy of the weighting function the

following expression (odd terms disappear):

ǭ(x) = ǫ̃(x) + c∇2ǫ̃(x) + d∇4ǫ̃(x) + e∇6ǫ̃(x) + . . . (3.4)

where∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and∇2n = (∇2)
n. The successive coefficientsc, d and so on can

be related to an internal length parameter asc = 1
2
l2, d = 1

8
l4 and so on [4]. The expansion

in Eq. (3.4) truncated after the second order term gives an explicit gradient enhancement for

averaged strain measureǭ:

ǭ(x) = ǫ̃(x) + c∇2ǫ̃(x) (3.5)

The averaged strain measureǭ is then calculated from the local equivalent strain measureǫ̃

and its second-order derivatives. As discussed in [127] the second-order derivative is a local

quantity, so as a consequence the explicit gradient model remains local. The truly non-local

character could be guaranteed only if each term in the Taylor series expansion was included.

Derivations presented in [127] suggest that the explicit gradient model is not able to describe

the cracking phenomenon properly.

On the other hand a so-called implicit gradient enhancement can be obtained as follows.

The second derivative from both sides of Eq. (3.4) is multiplied by parameterc:

c∇2ǭ(x) = c∇2ǫ̃(x) + c2∇4ǫ̃(x) + c d∇6ǫ̃(x) + . . . (3.6)

Next the termc∇2ǫ̃(x) is derived from Eq. (3.6) and substituted into Eq. (3.4). Neglecting again

the fourth and higher order terms the relationship below is obtained:

ǭ(x) − c∇2ǭ(x) = ǫ̃(x) (3.7)

in which the∇2 operator acts on the averaged strain. Gradient terms of orders higher than two

are indirectly contained in the implicit enhancement, so that now the truly non-local character

is preserved, as confirmed in [127]. It is also shown there that this implicit enhancement is for-

mally equivalent with the non-local approach if a specific weighting functiong is selected. In

this thesis the regularization is performed for damage using Eq. (3.7) and moreover that model

is coupled to local hardening plasticity. Relation (3.7) is called the averaging Helmholtz equa-

tion or the diffusion equation. It involves the second gradients of the averaged strainǭ. The

fourth gradients can be also included, but it requires advanced spatial discretization like for ex-

ample the Element-Free Galerkin method (see [3]). The parameterc > 0 has a unit of length

squared and it is connected with the internal length scalel of a material. The relationc = 1
2
l2

is derived for instance in [4]. In this work the parameterc is assumed to be constant, however,

with some modifications in the formulation, it can be made a function ofǫ̃ or ǭ. These three-

field formulations, which treat the parameterc as variable depending on the gradient activity,

are investigated in [55]. They are called failure based transient-gradient damage (with nodal
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values of continuous damageω) or strain based transient-gradient damage (with nodal values

of gradient activity variable). It is presented in [124] that for the implicit gradient enhancement

the loss of ellipticity is avoided. The characteristic determinant derived from the acoustic tensor

for the gradient damage is positive for allω < 1, so during failure process, after the onset of

localization, but until the total loss of the stiffness (ω = 1), the governing system of equations

remains elliptic. The damage theory combined with plasticity, but with averaging ofǫ̃ in a non-

local integral manner, is employed in [17].

Instead of the gradient enhancement of the equivalent strainǫ̃ it is possible to determine the

damage history parameterκd as a nonlocal variable by a similar expansion like in Eq. (3.4) and

neglecting the fourth and higher order terms:

κ̄d = κd + c∇2κd (3.8)

It is emphasized that the damage history parameterκd continuously increases during the loading

process since it is remembered as a maximum value of the equivalent strainǫ̃. In numerical

analysis this difference may reveal for example during unloading. Non-local damage combined

with local plasticity, whereκd is smoothed by an integral as in Eq. (3.1), is presented in [61].

The proposals of gradient enhancement for this and other variables are set together in [34]. For

example the damage parameter can be directly averaged as follows:

ω̄ = ω + c∇2ω (3.9)

The interpretation of parameterc can be different for different versions of the gradient enhance-

ment. The spatial gradient of considered variable can also be introduced directly into a damage

loading function in the stress space like for instance the averaged damage parameter in [26].

For so-called stress-based damage models a damage strain tensor written in a vector form can

be introduced [34]:

ǫd = ω ǫ (3.10)

Furthermore, this field can be enhanced using equivalent damage strain measureǫ̃d = ǫ̃d(ǫd):

ǭd = ǫ̃d + c∇2ǫ̃d (3.11)

Because of the definition of the loading function in the stress space two last proposals remind

gradient plasticity (cf. [35, 116]). Analogically to non-local damage based on the averaging of

the displacement fieldu as in [70], the implicit gradient enhancement can be formulated with

Helmholtz equations for the displacements:

ū − c∇2ū = u (3.12)

The averaging equation can also be constructed for the effective plastic strain measure:

κ̄p − c∇2κ̄p = κp (3.13)
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However, this averaging refers to plasticity-induced damage model elaborated in [47], where

the damage parameterω is inserted in the yield function:

fp(σ, κp, κ̄p) = σ̃(σ) − [1 − ω(κ̄p)] σy(κ
p) (3.14)

Here σ̃ is an equivalent stress measure for stress tensor, cf. Eq. (2.28). The yield strengthσy

is calculated from the plastic history parameterκp, treated here as a local equivalent measure.

Ductile damageω is a function of nonlocal equivalent measure strainκ̄p. The damage param-

eter reduces the yield strengthσy. This approach seems to be particularly useful for materials

like metals, for details see [47]. There are also anisotropic gradient damage models, where ana-

logically to Eq. (3.7) each component of the strain tensor is averaged, cf. [34, 84]. Moreover,

according to the theory shown in [83,154] Helmholtz equation can be interpreted as a condition

of balance of micro-momentum. For the strain tensor it is determined as in [83]:

div τ − ǭ = −ǫ (3.15)

whereτ = τ (∇ǭ) is a certain third-order tensor analogical to the couple-stress tensor in

micropolar models. This interpretation is motivated by the interaction of microdefects. For

anisotropic materials like layered composites the damage tensor is determined, which corre-

sponds to fiber failure, in-plane matrix failure and out-of-plane matrix failure. In this case a

specific set of higher-order variables like in [58] should describe the damage process, so that a

multifield formulation is created. Each averaging equation mentioned in this section should be

completed with suitable boundary conditions.

3.2 GRADIENT DAMAGE WITH ONE OR TWO PARAMETERS

3.2.1 GRADIENT SCALAR DAMAGE WITH PLASTICITY – DYNAMICS

FORMULATION AND SPACE DISCRETIZATION

A certain domainB, occupied by the material body, with boundary∂B is considered and the

following identities are valid:

∂B = ∂Bt ∪ ∂Bu ∂Bt ∩ ∂Bu = ∅ (3.16)

where∂Bt denotes part of boundary with given tractions and∂Bu is part of boundary with

prescribed displacements. In boundary conditions listed in Table 3.1 vectorN is the outward

normal to the surface of domainB. Small strains and motion in time with no damping effects

are assumed. Like in the previous chapter timet will occur in notation if it is necessary for clear

explanation.
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Table 3.1: Set of initial boundary value problem (IBVP) equations.

PROBLEM EQUATIONS

Equations of motion: LTσ + b = ρü (2.1)

Kinematic equations: ǫ = Lu (2.2)

Constitutive equations

(damage + plasticity + crack closing):σ̇ =
(
Etan −L σ̂+ sT

)
ǫ̇ (2.85)

BOUNDARY CONDITIONS

for tractionst: N Tσ = t̂ on ∂Bt
for displacementsu: u = û on ∂Bu

INITIAL CONDITIONS

for displacementsu: u(t = 0) = u0

for velocity u̇: u̇(t = 0) = v0

From the previous section it is assumed that the IBVP, summarized in Table 3.1, is regu-

larized by means of the averaging Helmholtz equation (3.7). Now the following non-standard

natural boundary condition is postulated:

N T∇ǭ = 0 on ∂B (3.17)

After introducing gradient enhancement into the formulation the damage evolution (2.8) has a

nonlocal character. Hence a loading function, in which the averaged strainǭ governs the damage

progress instead of the local equivalent strainǫ̃, is employed:

fd(ǫ, κd) = ǭ (ǫ̃(ǫ(t))) − κd(t) = 0 (3.18)

The weak form of equations of motion (2.1) is obtained multiplying them by a variation of

the displacement fieldδu and integrating:
∫

B

δuT
(
LTσ + b − ρü

)
dV = 0 (3.19)

Further Green’s formula is applied and natural boundary conditions (Table 3.1) are used:
∫

B

δuTLTσ dV =

∫

∂B

δuTN Tσ dS −
∫

B

(Lδu)T
σ dV (3.20)

Substitutingǫ = Lu the following relation is constructed:
∫

B

δǫTσ dV +

∫

B

δuTρü dV =

∫

B

δuTbdV +

∫

∂B

δuTt dS (3.21)

The weak form of Helmholtz equation (3.7) is derived below. The variation of the averaged

strain measureδǭ is introduced:
∫

B

δǭ
(
ǭ− c∇2ǭ

)
dV =

∫

B

δǭ ǫ̃ dV (3.22)
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The Green’s formula results in:
∫

B

δǭ c∇2ǭ dV =

∫

∂B

δǭ cN T∇ǭ dS −
∫

B

(∇δǭ)T c∇ǭ dV (3.23)

Using non-standard natural boundary condition (3.17) the Helmholtz equation in the weak form

is determined as: ∫

B

δǭ ǭ dV +

∫

B

(∇δǭ)T c∇ǭ dV =

∫

B

δǭ ǫ̃ dV (3.24)

Independent interpolations of displacementsu and averaged strain measureǭ are employed

in the semi-discrete linear system and a two-field formulation ensues. The primary fields are

interpolated in this way:

u = N a and ǭ = hTe (3.25)

whereN andh contain suitable shape functions. From the above interpolations the secondary

fieldsǫ and∇ǭ can be computed:

ǫ = B a and ∇ǭ = gTe (3.26)

whereB = L N and gT = ∇hT. To derive matrix equations additionally variations are

interpolated:

δu = Nδa and δǭ = hT δe (3.27)

δǫ = Bδa and ∇δǭ = gT δe (3.28)

and also the time derivatives are employed:

ǫ̇ = B ȧ and ü = N ä (3.29)

The discretized equations of motion are obtained:

δaT

∫

B

BTσ dV + δaT

∫

B

NTρNädV = δaT

∫

B

NTb dV + δaT

∫

∂B

NTt dS (3.30)

and additionally:

δe

∫

B

hhTe dV + δe

∫

B

c g gTe dV = δe

∫

B

hǫ̃ dV (3.31)

The above discretized averaging equation can also be written in this form:

δe

∫

B

(
hhT + c g gT

)
e dV = δe

∫

B

hǫ̃ dV (3.32)

Identities (3.30) and (3.32) must hold for any admissibleδa andδe. Therefore:
∫

B

BTσ dV +

∫

B

NTρNä dV =

∫

B

NTbdV +

∫

∂B

NTt dS (3.33)

∫

B

(
hhT + c g gT

)
e dV =

∫

B

hǫ̃ dV (3.34)



64 CHAPTER 3. FINITE ELEMENTS FOR GRADIENT DAMAGE

TIME DISCRETIZATION (LINEARIZATION )

The IBVP is linearized, hence at nodal points the increments of the primary fields from timet

to timet+ ∆t must be introduced according to the following decomposition:

at+∆t = at + ∆a and et+∆t = et + ∆e (3.35)

Analogically – at the integration points:

ǫt+∆t = ǫt + ∆ǫ hence ǫ̃t+∆t = ǫ̃t + ∆ǫ̃ (3.36)

σt+∆t = σt + ∆σ (3.37)

ǭt+∆t = ǭt + ∆ǭ hence ωt+∆t = ωt + ∆ω (3.38)

For implicit time integration the equations of motion then become:
∫

B

BT
(
σt + ∆σ

)
dV +

∫

B

NTρNät+∆t dV =

∫

B

NTbt+∆t dV +

∫

∂B

NTtt+∆t dS (3.39)

and averaging equation is derived as:
∫

B

(
hhT + c g gT

) (
et + ∆e

)
dV =

∫

B

h
(
ǫ̃t + ∆ǫ̃

)
dV (3.40)

Based on Eq. (2.78) or Eq. (2.85) the constitutive relation is taken into account in its incre-

mental version:

∆σ = Et
tan ∆ǫ − ∆ω

(
σ̂+

)t
(3.41)

whereEt
tan was introduced in Eq. (2.83),

(
σ̂+

)t
in Eq. (2.79) and the increment of damage∆ω

depends on∆ǭ:

∆ω =

[
∂ω

∂κd

]t [
∂κd

∂ǭ

]t

∆ǭ (3.42)

In the relation above instead ofL, defined in Eq. (2.48), a similar identity is applied:

Gt =

[
∂ω

∂κd

]t [
∂κd

∂ǭ

]t

(3.43)

Now interpolations of primary fields (3.25) and their derivatives (3.26) are used:

∆ǫ = B ∆a and ∆ǭ = hT∆e (3.44)

and hence Eq. (2.85) in the incremental form is as follows:

∆σ = Et
tan B ∆a − Gt

(
σ̂+

)t
hT∆e (3.45)

Finally rewriting Eq. (3.39) into a matrix form:

Kaa∆a + Kae∆e + Maaä
t+∆t = f t+∆t

ext − f t
int (3.46)
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The definitions for the submatrices and the right-hand side vectors derived from the equations

of motion are assumed as follows:

Kaa =

∫

B

BT Et
tan B dV (3.47)

Kae = −
∫

B

GtBT
(
σ̂+

)t
hT dV (3.48)

f t+∆t
ext =

∫

B

NTbt+∆t dV +

∫

∂B

NTtt+∆t dS (3.49)

f t
int =

∫

B

BTσt dV (3.50)

The mass matrix is defined in the standard way:

Maa =

∫

B

NTρN dV (3.51)

In Eq. (3.40) the increment of equivalent strain measure∆ǫ̃ is computed from the interpo-

lated displacement increment∆a:

∆ǫ̃ =

[
dǫ̃

dǫ

]t

∆ǫ =
[
sT

]t
B ∆a (3.52)

and Eq. (3.40) can be rewritten in the matrix form:

Kea∆a + Kee∆e = f t
ǫ − f t

e (3.53)

The matrices and vectors in Eq. (3.53) are like in the formulation presented in [125]:

Kea = −
∫

B

h
[
sT

]t
B dV (3.54)

Kee =

∫

B

(hhT + c g gT) dV (3.55)

f t
ǫ =

∫

B

hǫ̃t dV (3.56)

f t
e = Keee

t (3.57)

Finally, this gradient damage formulation can be written as a coupled matrix problem similar

to gradient plasticity [150]:

[
Maa 0

0 0

][
ät+∆t

ët+∆t

]
+

[
Kaa Kae

Kea Kee

][
∆a

∆e

]
=

[
f t+∆t

ext − f t
int

f t
ǫ − f t

e

]
(3.58)
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3.2.2 GRADIENT ISOTROPIC DAMAGE– DYNAMICS

FORMULATION AND SPACE DISCRETIZATION

This section concerns the derivation of isotropic damage with a similar gradient enhancement.

The governing equations of the IBVP are almost the same like for scalar damage (cf. Table

3.1), but instead of Eq. (2.85) the relation defined in Eq. (2.96) or Eq. (2.105) is included. In the

previous chapter (see Section 2.4) two specifications of loading and damage growth functions

were presented. In this subsection the averaging procedure is presented for the isotropic model.

If one-measure approach is assumed, the Helmholtz equation (3.7) is still the basis of the

two-field formulation like for scalar gradient damage.

In the option with two averaged strain measures two damage loading functions for two

averaged strain measures are introduced:

fd
K(θ, κd

K) = θ̄
(
θ̃(θ(t))

)
− κd

K(t) = 0 (3.59)

fd
G(ǫdev, κ

d
G) = ǭdev (ǫ̃dev(ǫdev(t))) − κd

G(t) = 0 (3.60)

Therefore, two different averaging equations must be introduced:

θ̄ − cK∇2θ̄ = θ̃ (3.61)

ǭdev − cG∇2ǭdev = ǫ̃dev (3.62)

and in result a three-field formulation is obtained.

A similar, but much more complicated approach to anisotropic gradient damage model ac-

cording to the microplane theory was proposed in [83,84].

Further, attention is focused only on the one-measure idea. The weak form and discretiza-

tion in space are the same as for scalar gradient damage, so only the discretization in time will

be explained, assuming that Eqs (3.33) and (3.34) are the starting point.

TIME DISCRETIZATION (LINEARIZATION ) – ONE MEASURE

The linearization procedure at the nodal point and at the integration point are the same as for

scalar gradient damage apart from the damage parameters. Both are obtained from the averaged

strain measure discretization (cf. Eq. (3.38)):

ωt+∆t
K = ωt

K + ∆ωK and ωt+∆t
G = ωt

G + ∆ωG (3.63)

The equations of motion presented in the incremental version in Eq. (3.39) hold and the

implicit time integration is used. Next Eq. (3.41) for the scalar theory is replaced by the in-

cremental constitutive relation derived starting from Eq. (2.92) or Eq. (2.96) for the isotropic

model with one averaged strain measure:

∆σ = Et
KG ∆ǫ − ∆ωK K ΠΠ

T ǫt − 2∆ωG GQ ǫt (3.64)
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whereEt
KG was defined in Eq. (2.88). The increments of damage are computed from the aver-

aged strain measure increments∆ǭ:

∆ωK =

[
∂ωK

∂κd

]t [
∂κd

∂ǭ

]t

∆ǭ and ∆ωG =

[
∂ωG

∂κd

]t [
∂κd

∂ǭ

]t

∆ǭ (3.65)

where the derivatives determined in instantt are:

Gt
K =

[
∂ωK

∂κd

]t [
∂κd

∂ǭ

]t

and Gt
G =

[
∂ωG

∂κd

]t [
∂κd

∂ǭ

]t

(3.66)

If the interpolation of the displacements and averaged strain measure in the incremental notation

is employed like in Eq. (3.44) the damage increments can be calculated as:

∆ωK = Gt
K hT∆e and ∆ωG = Gt

G hT∆e (3.67)

and further the incremental stress-strain relation is:

∆σ = Et
KGB ∆a −

[
Gt

KK ΠΠ
T + 2Gt

G GQ
]
ǫthT∆e (3.68)

Therefore the equations of motion (3.39) change into the matrix form:

KKG
aa ∆a + KKG

ae ∆e + Maaä
t+∆t = f t+∆t

ext − f t
int (3.69)

In comparison to the scalar theory in the equation above only submatricesKKG
aa andKKG

ae must

be defined anew:

KKG
aa =

∫

B

BTEt
KGB dV (3.70)

KKG
ae = −

∫

B

BT
[
Gt

KK ΠΠ
T + 2Gt

G GQ
]

ǫt hT dV (3.71)

It should be emphasized that the averaging equation (3.40) has the matrix form exactly like

for scalar gradient damage, hence Eq. (3.53) is in force.

Eventually, the following matrix system of equations is used:
[

Maa 0

0 0

] [
ät+∆t

ët+∆t

]
+

[
KKG

aa KKG
ae

Kea Kee

] [
∆a

∆e

]
=

[
f t+∆t

ext − f t
int

f t
ǫ − f t

e

]
(3.72)

3.3 IMPLEMENTATION OF TWO-FIELD FINITE ELEMENTS

In the described gradient damage formulations the displacementsu and the averaged strain mea-

sureǭ are approximated independently. After interpolation and discretization the incremental

nodal displacements∆a and the increments of nodal averaged strain measure∆e are solved for

in each time step. Hence the nodal valuesa ande are updated using implicit time-integration,

which is based on the standard Newmark algorithm for nonlinear problems. This means that

within time steps we apply the Newton-Raphson method to retrieve internal equilibrium.
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The algorithm for statics, which is the internal iteration in a time step, is described for

example in [36,117,122].

Below the Newmark algorithm for nonlinear problems in dynamics connected with iterative

procedure for considered models will be presented. The following general denotation must be

introduced for clarity of the presented algorithm. The mass matrix is:

M =

[
Maa 0

0 0

]
(3.73)

The tangent operator, which is non-symmetric for the scalar and isotropic model, is respectively

determined as:

Kt =

[
Kaa Kae

Kea Kee

]
and Kt =

[
KKG

aa KKG
ae

Kea Kee

]
(3.74)

The degrees of freedom (dofs) vector for nodal quantities consists of the nodal displacements

and nodal averaged strains:

q =

[
a

e

]
(3.75)

As a consequence the increments and accerelations of the primary fields can be written as:

∆q =

[
∆a

∆e

]
and q̈t+∆t =

[
ät+∆t

ët+∆t

]
(3.76)

Eventually general vectors for external and internal forces are created:

F t+∆t
ext =

[
f t+∆t

ext

0

]
and F t

int =

[
−f t

int

f t
ǫ − f t

e

]
(3.77)

Further in the notation the upper indext+∆t will be omitted presuming that a quantity without

the time indicator is the most up-to-date. After that the system of equations (3.58) or (3.72) is:

M q̈ + Kt ∆q = F ext + F t
int (3.78)

Now the derivation needed for the Newmark method is presented according to in [150]. Based

on the linear approximation of time derivatives, the relations below are exploited:

q̇ = q̇t +
[
(1 − γN) q̈t + γN q̈

]
∆t (3.79)

q = qt + q̇t ∆t+

[(
1

2
− βN

)
q̈t + βN q̈

]
(∆t)2 (3.80)

whereγN andβN are parameters that set the stability and accuracy of the Newmark method. The

difference betweenq andqt gives the incremental nodal vector for succeeding time instants:

∆q = q − qt (3.81)
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The following set of the coefficients is introduced in order to abbreviate the notation:

c0 =
1

βN (∆t)2 c1 =
1

βN ∆t
c2 =

1

2βN
− 1 (3.82)

c3 = (1 − γN)∆t c4 = γN∆t (3.83)

The first three of them and Eq. (3.81) are useful in the definition of the accerelation vector for

instantt+ ∆t derived from Eq. (3.80):

q̈ = c0 ∆q − c1 q̇t − c2 q̈t (3.84)

After the substitution of the above result into Eq. (3.78) the incremental equation can be solved:

K̂ ∆q = F̂ (3.85)

where:

K̂ = Kt + c0M (3.86)

F̂ = F ext + M
(
c1 q̇t + c2 q̈t

)
+ F t

int (3.87)

The matrixK̂ can be called the dynamic tangent matrix and the vectorF̂ denotes the effective

load vector (see [150]). Next the incremental correction vector fori-th internal iteration used to

obtain equilibrium in the time step is:

dq(i) = q(i) − q(i−1) (3.88)

so that:

∆q(i) = ∆q(i−1) + dq(i) (3.89)

The above suggest computing the last nodal quantity as:

q(i) = qt + ∆q(i−1) + dq(i) = qt + ∆q(i) (3.90)

and hence its accerelation:

q̈(i) = c0dq(i) + q̈(i−1) (3.91)

The equations of motion with the incremental correction for thei-th internal iteration take the

form:

M q̈(i) + K(i−1) dq(i) = F ext + F
(i−1)
int (3.92)

or briefly:

K̂
(i−1)

dq(i) = R̂ (3.93)

Here matrixK̂
(i−1)

and the residual force vector̂R are defined as:

K̂
(i−1)

= K(i−1) + c0M (3.94)
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Table 3.2: The algorithm of Newmark method for gradient damage model.

1. Determine constants:c0 = 1
βN(∆t)2

, c1 = 1
βN ∆t

, c2 = 1
2βN

− 1, Eq. (3.82)

c3 = (1 − γN)∆t, c4 = γN∆t Eq. (3.83)

2. Initialize fort = 0: q0, q̇0, q̈0

3. Compute: K̂ = Kt + c0M Eq. (3.86)

F̂ = F ext + M
(
c1 q̇t + c2 q̈t

)
+ F t

int Eq. (3.87)

4. Solve: K̂ ∆q = F̂ Eq. (3.85)

5. i = 1: ∆q(0) = ∆q

6. Internal iteration:

6.1. q̈(i−1) = c0 ∆q(i−1) − c1 q̇t − c2 q̈t Eq. (3.84)

6.2. IF coupling

THEN resolve plasticity Eq. (2.28)

6.3. IF crack closing

THEN compute projection operatorP + Eq. (2.57)

6.4. Resolve damage Eq. (2.8)

6.5. Compute current stressσ

andEtan (or EKG for isotropic model)

6.6. UpdateK(i−1) andF
(i−1)
int

6.7. Compute:̂K
(i−1)

= K(i−1) + c0M Eq. (3.94)

R̂ = F ext − M q̈(i−1) + F
(i−1)
int Eq. (3.95)

7. Solve: K̂
(i−1)

dq(i) = R̂ Eq. (3.93)

8. Update: ∆q(i) = ∆q(i−1) + dq(i) Eq. (3.89)

9. Check convergence: IF not converged

THEN i = i+ 1 and GO TO point 6.

ELSE ∆q = ∆q(i)

10. Calculate new: q̈ = c0 ∆q − c1 q̇t − c2 q̈t Eq. (3.84)

q̇ = q̇t + c3 q̈t + c4 q̈ Eq. (3.79)

q = qt + ∆q Eq. (3.90)

11. Next time step: GO TO point 3.

R̂ = F ext − M q̈(i−1) + F
(i−1)
int (3.95)

Based on the derivation presented above the algorithm from Table 3.2 is employed in the im-

plementation.

The finite elements (FEs) are programmed in the FEAP package [158] using three variants

of C0-continuous interpolation. For the implicit gradient formulation theC0-continuous shape

functions are sufficient [125]. Quadrilaterals are available in two-dimensional problems, brick
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elements – in three dimensions. In Table 3.3 each element is reviewed, the orders of interpola-

tions, numbers of nodes, degrees of freedom (dofs) and integration points (ips) are compared.

Generally, in the first option elements with analogical linear interpolation of both the displace-

ments and the averaged strain are shown. In the thesis these FEs will be called Q4/4 for 2D

problems and consequently B8/8 for 3D problems. In the second option quadratic interpolation

of the displacements and linear of the averaged strain is assumed, hence a different number of

dofs at the corner and midside nodes is required. Hence these FEs in 2D and 3D problems

will be called Q8/4 and B20/8, respectively. For the last group of elements (fourth column) –

quadratic interpolation of both quantities is introduced. The elements for this third option are

Table 3.3: Available elements for gradient damage model.

1D elements

a/e lin/lin quad/lin quad/quad

nodes 2/2 3/2 3/3

dofs 4 5 6

ips 1 2 2

2D elements

abbreviation Q4/4 Q8/4 Q8/8

a/e lin/lin quad/lin quad/quad

nodes 4/4 8/4 8/8

dofs 12 20 24

ips 4/1 4 4

3D elements

abbreviation B8/8 B20/8 B20/20

a/e lin/lin quad/lin quad/quad

nodes 8/8 20/8 20/20

dofs 32 68 80

ips 8 8 27

– a/e – a
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called Q8/8 for 2D problems and B20/20 for 3D problems. Although the second interpolation

option could be optimal, the other possibilities can give stable results, since the analyzed prob-

lem is coupled rather than mixed. Thus it is mentioned in [147] that so-called inf-sup condition

does not have to be obeyed. Oscillations which may appear for some secondary fields, like

for example stress field, have local character i.e. occur only in the zone where damage varies

quickly. In any case care should be taken with respect to volumetric locking and excessive shear

stiffness, but well-established solutions such as for exampleB̄ formulation [67] can be adopted

just as for ordinary displacement-based elements. The first option with linear interpolation for

both fields is implemented in 2D also with possibility of using one sampling point with an

hourglass control (for details see next section).

3.4 PROPERTIES OF ELEMENTS AND HOURGLASS CONTROL

Firstly in this section attention is focused on the description of the spectral analysis of a single

FE including different types of interpolation and integration. One two- or three-dimensional

FE with unit dimensions is subjected to tension in one direction. The elastic (weaker) coupling

of HMH plasticity with linear hardening and the damage model with linear softening (2.19)

is adopted. Loading-unloading path is executed like in Fig. 3.2, in order to detect respective

differences in each phase. The computations of the eigenproblem for the tangent operatorK in

each phase are performed for incremental steps marked on theσ11–ǫ11 diagram. The following

material data are adopted: Young’s modulusE = 20000 MPa, Poisson’s ratioν = 0.20, damage

thresholdκo = 0.0001, ultimate damage is forκu = 0.002, yield strengthσy = 2 MPa and hard-

ening modulush = E/2. The internal length parameterc can be optionally equal to1 or 0. It

permits one to check the influence of the regularization in FE. The spectrum of eigenvalues will
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Figure 3.2: Loading-unloading path used in spectral analysis.
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be shown in tables for the whole tangent operatorK and for particular submatrices, respectively

Kaa which is connected with the equilibrium equations andKee – with the averaging equation.

3.4.1 FOUR-NODED ELEMENT – SPECTRAL ANALYSIS

Now the analysis is limited to four-noded element called Q4/4, where linear interpolation is

employed. In Tables 3.4 and 3.5 there are summarized numbers of positive, zero and negative

eigenvalues for different phases of the loading process. Computations with full integration

(FI) are correct with respect to the FE quality. The accepted precision is equal to1.0−10, so

that absolute eigenvalue less than this limit is assumed to be zero. Three zero eigenvalues are

admitted in the case with FI and as is depicted in Figs 3.3–3.5 they correspond to rigid motions

of the element. A negative eigenvalue forK appears after the peak during the damage progress

and is related to softening in the material model. The non-negative spectrum is restored during

unloading. When reduced integration (RI) without any hourglass control is applied, more than

three zero eigenvalues appear. Moreover, they originate not only fromKaa, but also from

Kee. If c = 1 then altogether six such eigenvalues are present, ifc = 0 – the number rises to

eight. Extra-zero i.e. spurious eigenvalues can be interpreted by means of specially constructed

eigenforms as explained below.

Eigenvectors, which correspond to the eigenvalue spectrum, are depicted in the following

way. In every figure coefficients of the eigenvector are split into the part related to displacement

dofs a and the part connected with dofse for averaged strain measure. The subvectors for

the displacement dofs in each direction can be illustrated as a deformed element in the plane.

Therefore, the real space of the displacements is plotted blue in the figures. It is emphasized

Table 3.4: Eigenvalues for Q4/4,c = 1.

(a) FI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 5 3 0 5 3 0 5 3 0

Kee 4 0 0 4 0 0 4 0 0

K 9 3 0 8 3 1 9 3 0

(b) RI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 3 5 0 3 5 0 3 5 0

Kee 3 1 0 3 1 0 3 1 0

K 6 6 0 5 6 1 6 6 0

Table 3.5: Eigenvalues for Q4/4,c = 0.

(a) FI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 5 3 0 5 3 0 5 3 0

Kee 4 0 0 4 0 0 4 0 0

K 9 3 0 8 3 1 9 3 0

(b) RI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 3 5 0 3 5 0 3 5 0

Kee 1 3 0 1 3 0 1 3 0

K 4 8 0 3 8 1 4 8 0
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that in each phase the tangent operatorK is non-symmetric, so imaginary parts of components

of eigenvectors in the spectral analysis are admitted. If an eigenvector component is complex,

its imaginary and real parts are marked by "iu-ru" and "iv-rv", respectively, for the horizontal

or vertical axis. In this case the imaginary part of the vector will additionally be presented

using a light blue shape of FE. This shape reminds the FE deformation, however the physical

interpretation can be performed only if the whole eigenvector is real. An analogical situation

is for the averaged strain dofs. The components of eigenvector for this field are shown as

shifted vertically and they are marked by the red color. The mark "iASM-rASM" in magenta

color denotes the existence of real and imaginary parts of eigenvector component. The magenta

shape of FE in vertical direction attempts such representation of a complex number as well. All

these illustrations of eigenvectors are called eigenforms or eigenmodes.

Figures 3.3–3.11 collect eigenforms for three specific cases, namely:

• Figs 3.3–3.5: for FE Q4/4 using FI andc = 1,

• Figs 3.6–3.8: for FE Q4/4 using RI andc = 1,

• Figs 3.9–3.11: for FE Q4/4 using RI andc = 0.

A detailed interpretation for the first case in the elastic phase (Fig. 3.3) can easily be offered.

Eigenmodes for which eigenvalues are positive and blue deformed FE is plotted correspond to

the combination of basic states of deformation like tension/compression, shearing and bend-

ing. As mentioned in page 73, FE eigenforms for three zero eigenvalues combine the rigid

body modes despite the fact that imaginary parts activate. The most interesting are eigenforms

marked red related to the averaged strain space for zero values of displacement dofs (inactive

deformations). The producthhT in submatrixKee is the source of a constant field of averaged

strain since the eigenvalue equals0.25 (second row and column in Fig. 3.3). Eigenmodes for

both eigenvalues equal1.0833 make similar linear distributions of averaged strain measure and

probably they come from the productc g gT in submatrixKee. The counterpart for eigenvalue

equal to0.69444 is the vector with a so-called twisted mode for the averaged strain space. Ba-

sic vectors for a separated single field (displacement or averaged strain) can be illustrated like

in [13]. They constitute a base and their non-zero contributions determine the rank of the tangent

operator. After the peak in the damage phase two eigenforms change the character (Fig. 3.4). It

is noticed that non-zero values in eigenvectors arise for both subspaces: displacement and aver-

aged strain fields. Indeed, the coupling in the formulation is visible for these modes and one of

them corresponds to the negative eigenvalue. If the process falls into unloading the eigenforms

are analogical to the elastic phase, see Fig. 3.5.

In the second case, where reduced integration (RI) is applied, the eigenforms agree with the

eigenvalue spectrum. Six zero eigenvalues from operatorK are separated in such a way that

five of them originate from the part connected with submatrixKaa and the last one - from sub-

matrix Kee. It exactly complies with illustrations in Figs 3.6–3.8. Apart from the eigenforms,
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Figure 3.3: Eigenforms for Q4/4, FI,c = 1, elastic phase.
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Figure 3.4: Eigenforms for Q4/4, FI,c = 1, damage phase.
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Figure 3.5: Eigenforms for Q4/4, FI,c = 1, unloading.
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Figure 3.6: Eigenforms for Q4/4, RI,c = 1, elastic phase.
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Figure 3.7: Eigenforms for Q4/4, RI,c = 1, damage phase.
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Figure 3.8: Eigenforms for Q4/4, RI,c = 1, unloading.
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where interpretations can be made similarly to the description given in the previous paragraph,

the remaining group creates so-called spurious hourglass modes. The vectors corresponding to

five zero eigenvalues produce deformed shapes which are combinations of rigid body and in

plane bending modes in the displacement field (blue color), cf. Fig. 3.6. Moreover, due to the

coupled problem the sixth spurious hourglass mode with a twisted form in the averaged strain

space in the elastic phase (third row and column in Fig. 3.6) changes into a non-zero eigenform

for displacement dofs and zero form for the averaged strain measure (third row and second

column in Fig. 3.7).

The spectrum for the case where RI is used andc = 0 encloses even eight zero eigenval-

ues. Like previously the eigenforms, depicted in Figs 3.9–3.11, for five of them are associated

with spurious modes coming from rigid motions combined with bending. They are non-zero

only in the real and imaginary space of the displacements. Identically to previous cases, for the

eigenvalue which is equal to0.25 the constant function is obtained for the averaged strain space

(red lines), see first row and last column in Fig. 3.9. Hence this distribution comes from the

producthhT in submatrixKee. After the damage progress starts the eigenvalue becomes neg-

ative. Only this mode with the constant field for averaged strain dofs modifies in such a manner

that the whole eigenvector is non-zero, again cf. first row and last column, but in Fig. 3.10.

That eigenvalue with the corresponding eigenform are recovered during unloading (Fig. 3.11).

Three subsequent eigenvalues equal to0 with spurious eigenforms also correspond to the av-

eraged strain measure. If RI is employed the main difference between the spectrum forc = 1

andc = 0 is in the number of zero eigenvalues and as a consequence – in improper modes.

From one forc = 1 the number grows to three forc = 0. The gradient term coming from the

averaging action is eliminated. Hence the productc g gT in submatrixKee contributes nothing

(c = 0), thus now linear distributions for the averaged strain field are missing in eigenmodes in

each phase.

Anyway, if FE Q4/4 is applied in computations with one integration point (RI), so-called

hourglass control must be incorporated in both primary fields in the formulation. Additional

spurious eigenforms, which reveal for the displacements and for the averaged strain measure,

confirm that hourglass control also known as mesh-stabilization is needed. It permits one to

prevent pathology in solutions for the considered problem discretized by meshes with elements

Q4/4 and one sampling (integration) point in a FE. It is common that if standard elements with

RI are used and improper hourglass modes have any influence on the results, it could lead

to singularity of the assembled tangent operatorK for the structure and the stable numerical

analysis become impossible. On the other hand FI can be less effective, especially for large

simulated problems. Furthermore under certain boundary conditions FI can cause a locking

phenomenon in the mesh. Therefore, beside ideas similar to theB̄ formulation, the concept of

computations using one point integration in a FE with hourglass control seems to be attractive

for non-linear analysis.
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Figure 3.9: Eigenforms for Q4/4, RI,c = 0, elastic phase.
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Figure 3.10: Eigenforms for Q4/4, RI,c = 0, damage phase.
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Figure 3.11: Eigenforms for Q4/4, RI,c = 0, unloading.

3.4.2 STABILIZED FOUR-NODED ELEMENT

VARIATIONAL EQUATIONS

The standard (static) boundary value problem is considered in this subsection. Now the equa-

tions of motion (2.1) are reduced to the equilibrium equations, sinceρü = 0 in Eq. (2.1). The

governing equations are summarized in Table 3.1, but the additional averaging equation (3.7)

enhances the formulation in order to overcome the mesh-dependence. The constitutive rela-

tions for scalar damage theory combined with hardening plasticity are valid. The corresponding

boundary conditions are assumed. As shown in Sections 3.2 and 3.3, apart from the approx-

imation of displacementsu, the averaged strain measureǭ is also employed as a secondary

discretized field to regularize the problem. Introducing the spatial interpolation of both fields in

the weak form two variational equations can be built as follows (cf. [77,162]):

R1(δa,a, e) = δaT

∫

B

BTσ(a, e) dV − δaT

∫

B

NTb dV − δaT

∫

∂B

NTt dS (3.96)

and

R2(a, δe, e) = δeT

∫

B

(
hhT + c g gT

)
e dV − δeT

∫

B

hǫ̃(a) dV (3.97)

Finally, the variational equations can be written in a general form:

R(δa,a, δe, e) = R1(δa,a, e) +R2(a, δe, e) = 0 (3.98)
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STABILIZATION OF EQUILIBRIUM EQUATIONS

The mixedu−p formulation in [29,162] and the mixed formulation for second order continuum

in [77] are the starting point for the derivations below. For example the stabilization in the

u − p formulation presented in [29, 162] is mathematically motivated. It is possible to apply

one integration point and control hourglass modes in the solution of equilibrium equations by

the Galerkin least-square (GLS) method like in [77, 178]. A stabilization term is added to Eq.

(3.96):

R1(δa,a, e) +Rstab
1 (δa,a, δe, e) = 0 (3.99)

The termRstab
1 can be defined according to the GLS method [178] and for continuous fields is

written as follows:

Rstab
1 (δu,u, δǭ, ǭ) =

nel∑

e=1

∫

Be

(
LTσ(δu, δǭ)

)T
ϕ

(
LTσ(u, ǭ) + b

)
dV (3.100)

The stabilization scaling matrixχ1 is assumed as below:

χ1 =
χ he

2

2G
I (3.101)

Hereχ is an arbitrary, but possibly small value,he is a characteristic length of finite element,

for example its diagonal andG is shear modulus. A further explanation of the definition ofχ1

and the analysis of units are given in detail in [29].

The weighting part of the stabilization term for the equilibrium equations can be written in

the following manner:

P 1(δu, δǭ) = LTσ(δu, δǭ) = LT
[
(1 − ωt(δǭ)) E ǫe(δu)

]
(3.102)

As was done with the plastic part in [29], to avoid the linearization of the damage part in

Eq.(3.102), the damage contribution is omitted and only the elastic one kept. Further, instead

of P 1(δu, δǭ) its discrete counterpartP 1(δa) is introduced:

P 1(δa) = LTE B δa = Ge
aδa (3.103)

where an additional matrix is defined:Ge
a = LTE B.

The equilibrium is obtained at time stept+ ∆t in subsequent iterationsi:

σt+∆t
i+1 = σt+∆t

i + dσ (3.104)

In the following considerations the superscriptt+ ∆t will be skipped. The definition below is

introduced:

Rσ,i+1 = LTσi+1(u, ǭ) (3.105)
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to obtain:

Rσ,i+1 + b = LT(σi + dσ) + b = Rσ,i + dRσ + b (3.106)

The constitutive equation (2.45) in rate form for the damage theory coupled to plasticity can be

rewritten:

σ̇ = (1 − ω) Eep ǫ̇ − ω̇ σ̂ (3.107)

The following expression fordRσ is then derived:

dRσ = LT
[
(1 − ωt) Eep B da − Gt E ǫt hTde

]
(3.108)

Further definitions are introduced:

Eaa = (1 − ωt) Eep (3.109)

Eae = −Gt E ǫt (3.110)

so that:

dRσ = LT
(
EaaB da + Eaeh

Tde
)

(3.111)

Finally, we obtain the residual part:

Rσ,i+1 = Rσ,i + LTEaaB da + LTEaeh
Tde + b

= Rσ,i + Gepd
a da + Gepd

e de + b (3.112)

In the above relation we have:Gepd
a = LTEaaB andGepd

e = LTEaeh
T.

According to these derivations the stabilization term (3.100) is equal to:

Rstab
1 =

nel∑

e=1

∫

Be

(Ge
aδa)T

χ1

(
Rσ,i + Gepd

a da + Gepd
e de + b

)
dV (3.113)

When the following definitions are introduced:

K̄aa =

∫

Be

(Ge
a)

T
χ1 Gepd

a dV (3.114)

K̄ae =

∫

Be

(Ge
a)

T
χ1 Gepd

e dV (3.115)

f̄ =

∫

Be

(Ge
a)

T
χ1 (Rσ,i + b) dV (3.116)

the final matrix form can be written as:
[

Kaa + K̄aa Kae + K̄ae

Kea Kee

][
da

de

]
=

[
f ext − f int − f̄

f ǫ − f e

]
(3.117)
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STABILIZATION OF AVERAGING EQUATION

In a similar manner a stabilization term can be added to the averaging variational equation

(3.97):

R2(a, δe, e) +Rstab
2 (δa,a, δe, e) = 0 (3.118)

In fact, in [29, 162] the sign before termR2 is changed to preserve the positive definiteness

of the tangent operator. Here the sign remains positive. Apparently simple to perform, an

analogical GLS method seems questionable for the averaging equation. Below three proposals

are presented and it is explained, why this doubt appears. The third approach is a method based

on the idea presented in [13].

1. GALERKIN LEAST-SQUARE (GLS) METHOD. In this approach for continuous fieldsRstab
2

is determined as:

Rstab
2 (u, δǭ, ǭ) =

nel∑

e=1

∫

Be

(
δǭ− c∇2δǭ

)T
χ2

(
ǭ− c∇2ǭ− ǫ̃(u)

)
dV (3.119)

whereχ2 is the following stabilization scaling factor:

χ2 =
χ he

2

2 c
(3.120)

This coefficient is calculated according to a dimensional analysis in [29]. The definitions of

quantitiesχ andhe are as previously,c is connected with the internal length parameterl as

usual. After discretization and linearization, presented in details in Appendix B, it turns out that

for rectangular elements∇2hT = 0, so then this method does not remove spurious singular

modes. Clearly, in this casēKee is defined by the producthhT like the original operatorKee,

so that the hourglass control fails. It can be confirmed by a spectral analysis (see also Appendix

B).

2. GRADIENT GALERKIN LEAST-SQUARE (GGLS) METHOD. The idea of this method is

taken from [63]. Here for continuous fieldsRstab
2 has the form:

Rstab
2 (u, δǭ, ǭ) =

nel∑

e=1

∫

Be

∇
(
δǭ− c∇2δǭ

)T
χ2 ∇

(
ǭ− c∇2ǭ− ǫ̃(u)

)
dV (3.121)

where the stabilization scaling matrixχ2 is now expressed as:

χ2 = χ he
2 I (3.122)

Unfortunately, like for GLS method, after discretization and linearization (shown in Appendix

B), the stabilization operator̄Kee in the matrix equation arises as a result of multiplying matrix

g and its transposition. An identical term is included inKee, so that hourglass control cannot

work. As for GLS method the spectral analysis can verify this observation.
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3. OPERATOR γ METHOD. According to [13], if RI is used in four-noded quadrilateral, the

results can be stabilized properly by means of the so-called operatorγ method (or shortly:γ

method). Analogically to the analysis performed there for the Laplace equation, in this approach

Rstab
2 is taken into account as:

Rstab
2 (δǭ, ǭ) =

nel∑

e=1

∫

Be

δḡT χ2 ḡ dV (3.123)

whereχ2 is defined in Eq. (3.120). The field̄g denotes a certain additional gradient connected

with the averaged strain field. Discretization must be introduced in a such way that it should

satisfy the condition [13]:

ḡ = 0 (3.124)

for any nodal values associated with a linear distribution ofǭ. On the other hand the identity

ḡ 6= 0 should be valid if only the distribution of̄ǫ is in the so-called improper null-space. In this

case the rank ofKee, which is equal to3 for RI (three positive eigenvalues), should be increased

to 4 and the hourglass control should be properly introduced. Hence, after [13] operatorγ is

adopted, which should not influence the linear fields, but affects in the improper null-space:

γT = a
[
te −

(
te

T xe

)
gx −

(
te

T ye

)
gy

]
(3.125)

where in the above relation additional element quantities must be defined [13]:

te
T = [−1, 1,−1, 1] g = [gx gy] (3.126)

xe
T = [xe 1, xe 2, xe 3, xe 4] ye

T = [ye 1, ye 2, ye 3, ye 4] (3.127)

The parametera can be equal to1, because it is an arbitrary constant. The vectorte constitutes in

2D a the twisted form. The nodal coordinates are gathered in vectorsxe andye, the second index

in their components refers to consecutive nodes. It should be emphasized that the derivatives

of shape functionsg for the averaged strain field are separated in Eq. (3.125). Analogically to

the proceeding in the previous subsection the discretization of the stabilization termRstab
2 is

performed as follows:

ḡ = γT e and δḡ = γT δe (3.128)

where the discretizedδḡ can be treated as the weighting partP 2(δe).

Linearization of the residual can easily be derived:

ḡi+1 = ḡi + dḡ = ḡi + γT de (3.129)

Therefore, the termRstab
2 has the form:

Rstab
2 =

nel∑

e=1

∫

Be

γ χ2

(
ḡi + γT de

)
dV (3.130)
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For theγ method an additional matrix and vector are introduced:

K̄ee =

∫

Be

χ2 γ γT dV (3.131)

f̄ e =

∫

Be

χ2 γ ḡi dV (3.132)

in order to obtain the final matrix form:
[

Kaa + K̄aa Kae + K̄ae

Kea Kee + K̄ee

] [
da

de

]
=

[
f ext − f int − f̄

f ǫ − f e − f̄ e

]
(3.133)

It can be shown that an analogical approach for the first stabilization term, i.e. for the

equilibrium equations, is equivalent to the one applied in the previous subsection in the GLS

method. However, this equivalence is valid only for the four-noded FE. The GLS method seems

to be more general, since the derivation is prepared for elements with an arbitrary number

of nodes. The disadvantage of theγ method is the lack of such versatility: in 2D it can be

employed only for the four-noded element. The elaboration of the formulation with an effective

stabilization for the 3D B8/8 element requires further research and the above derivation can

constitute its initial point.

SPECTRAL ANALYSIS FOR STABILIZED FINITE ELEMENT

The accepted proposal of stabilized FE can be verified again using the spectral analysis. The

data for the considered eigenproblem has been shown at the beginning of this section. A single

element with RI and stabilization of the first or both variational equations is computed. The

stabilization scaling factorχ in each case is equal to0.0001. The parameterc = 1 represents

the active averaging of the problem, so the case withc = 0 is not considered in this analysis.

Table 3.6 summarizes the spectrum of eigenvalues. It is clearly shown that the stabilization

defined according to Eq. (3.117) ensures the suitable spectrum of eigenvalues only for submatrix

Kaa + K̄aa, which is connected with the variational equilibrium equation (Table 3.6 on the

left). One additional zero eigenvalue results from the unstabilized averaged strain field in the

element. This spurious representation can be corrected by means of the idea like in Eq. (3.133).

It is confirmed not only in Table 3.6 on the right, but also in the figures below.

Table 3.6: Eigenvalues for stabilized Q4/4,c = 1, χ = 0.0001.

(a) RI with stabilization according to Eq. (3.117).

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa + K̄aa 5 3 0 5 3 0 5 3 0

Kee 3 1 0 3 1 0 3 1 0

K + K̄ 8 4 0 7 4 1 8 4 0

(b) RI with stabilization according to Eq. (3.133).

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa + K̄aa 5 3 0 5 3 0 5 3 0

Kee + K̄ee 4 0 0 4 0 0 4 0 0

K + K̄ 9 3 0 8 3 1 9 3 0
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Figure 3.12: Eigenforms for Q4/4, RI with stabilization according to Eq. (3.117),c = 1, χ =

0.0001, elastic phase.
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Figure 3.13: Eigenforms for Q4/4, RI with stabilization according to Eq. (3.117),c = 1, χ =

0.0001, damage phase.
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Figure 3.14: Eigenforms for Q4/4, RI with stabilization according to Eq. (3.117),c = 1, χ =

0.0001, unloading.
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Figure 3.15: Eigenforms for Q4/4, RI with stabilization according to Eq. (3.133),c = 1, χ =

0.0001, elastic phase.
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Figure 3.16: Eigenforms for Q4/4, RI with stabilization according to Eq. (3.133),c = 1, χ =

0.0001, damage phase.
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Figure 3.17: Eigenforms for Q4/4, RI with stabilization according to Eq. (3.133),c = 1, χ =

0.0001, unloading.
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All figures with groups of eigenforms are presented in accordance with the rules discussed in

page 74. Figures 3.12–3.14 are connected with the case where only the first variational equation

in the formulation is stabilized. In comparison to Figs 3.6–3.8, where RI without stabilization

has been applied in FE, the spurious eigenforms for the displacement filed vanish. However, as

emphasized in the previous paragraph, one zero eigenvalue is still present and the correspond-

ing eigenvector represents a spurious eigenform. In the elastic and unloading phases Figs 3.12

and 3.14) it is a twisted mode in the averaged strain space, but in the damage phase (third row

and second column in Fig. 3.13) their influence on eigenforms is not completely clear. The

tendency is similar to the case in Fig. 3.7, where the coupling between the displacement and av-

eraged strain fields is of importance. Like there, now the eigenform has non-zero values for the

displacement dofs, but in such a way, that they are visualized like a rigid body motion. Simulta-

neously the twisted mode in the averaged strain space is preserved, but the values of components

in the eigenvector are close to zero. In the damage phase apart from the negative eigenvalue,

the coupling is also present for eigenvalues equal to1, while in other phases eigenforms for the

averaged strain measure are only active. The observed behaviour seems surprising, in fact it

is caused by the averaging process (c = 1) and the coupling of both fields in the model. The

eigenmodes in the averaged strain space (marked by red) remind a linear distribution, while in

the displacement space (marked by blue) – the twisted form in the vertical direction is activated.

The eigenmodes in Figs 3.15–3.17 are composed as previously, but now the stabilization

for the whole tangent operatorK + K̄ is adopted, see Eq. (3.133). Three eigenforms with

zero eigenvalues correspond to the combination of rigid motions. The eigenform with the non-

zero eigenvalue and the twisted mode in the averaged strain space are the same in each phase,

which means that stabilization is fully initiated. Moreover, the second field is stabilized by the

γ method, where operatorγ for a rectangular element is reduced to the twist vectorte. Like

previously the coupling of variational equations can be observed if eigenforms for eigenvalues

equal to1 are illustrated in the damage phase, where linear functions for the averaged strain

dofs together with the twisted form in vertical direction for displacement dofs are obtained.

When one-point reduced integration RI is applied in the four-noded FE mesh then for ef-

fective computations a stabilization must be assured in the formulation. In this subsection the

possibility of stabilization in such finite elements has been proposed and verified in the spectral

analysis. As demonstrated, the stabilization terms are needed in both variational equations, in

order to ensure a proper quality of FE and finally stable numerical results. However, in the

discussed approach two different methods of stabilization for the given equation have been as-

sumed.



90 CHAPTER 3. FINITE ELEMENTS FOR GRADIENT DAMAGE

3.4.3 OTHER ELEMENTS– SPECTRAL ANALYSIS

This subsection is devoted to a brief presentation of the spectral analysis performed for other

elements. The implemented FEs are illustrated in Table 3.3, so far only element Q4/4 has been

investigated (1D elements are neglected in the analysis). The general data and the loading path,

which are representative for the model considered in this work, has been described at the be-

ginning of this section. The eigenforms are not computed, because their analysis would be

analogical to the results presented for element Q4/4.

The numbers of positive, zero and negative eigenvalues shown at the top of Table 3.7 are

evaluated for element Q8/4 with four integration points. It means that for the displacement dofs

RI is applied, but for the averaged strain field FI is employed. Apart from three zero eigenvalues

connected as usual with the rigid motions, the extra spurious mode is possible due to the fourth

zero eigenvalue. This singularity reveals in each phase of the loading process and comes from

the submatrixKaa in the tangent operatorK. However, it is known (cf. for example [178])

that the zero eigenvalue and the spurious form are removed when more elements than one are

assembled in the mesh. Like previously one negative eigenvalue appears in the damage phase

(just after the peak) and the reason is the onset of softening in the material model.

The above explanations are additionally verified when FE Q8/8 is tested. If FI with nine

sampling points is used (Table 3.7, at the bottom, on the left) only three zero eigenvalues are

calculated and as mentioned in the previous paragraph this is correct. Similarly to Q8/4, four

points are now used for RI. Also here one additional zero eigenvalue together with its spurious

eigenform disappear from the discretized problem if more than one FE is assumed.

Table 3.7: Eigenvalues for other 2D elements,c = 1.

(a) Q8/4, 20 dofs,a – RI, e – FI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 12 4 0 12 4 0 12 4 0

Kee 4 0 0 4 0 0 4 0 0

K 16 4 0 15 4 1 16 4 0

(b) Q8/8, 24 dofs, FI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 13 3 0 13 3 0 13 3 0

Kee 8 0 0 8 0 0 8 0 0

K 21 3 0 20 3 1 21 3 0

(c) Q8/8, 24 dofs, RI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 12 4 0 12 4 0 12 4 0

Kee 8 0 0 8 0 0 8 0 0

K 20 4 0 19 4 1 20 4 0
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Table 3.8: Eigenvalues for 3D elements,c = 1.

(a) B8/8, 32 dofs, FI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 18 6 0 18 6 0 18 6 0

Kee 8 0 0 8 0 0 8 0 0

K 26 6 0 25 6 1 26 6 0

(b) B8/8, 32 dofs, RI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 6 18 0 6 18 0 6 18 0

Kee 4 4 0 4 4 0 4 4 0

K 10 22 0 9 22 1 10 22 0

(c) B20/8, 68 dofs,a – RI, e – FI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 48 12 0 48 12 0 48 12 0

Kee 8 0 0 8 0 0 8 0 0

K 56 12 0 55 12 1 56 12 0

(d) B20/20, 80 dofs, FI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 54 6 0 54 6 0 54 6 0

Kee 20 0 0 20 0 0 20 0 0

K 74 6 0 73 6 1 74 6 0

(e) B20/20, 80 dofs, RI.

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa 48 12 0 48 12 0 48 12 0

Kee 20 0 0 20 0 0 20 0 0

K 68 12 0 67 12 1 68 12 0

Table 3.8 summarizes the eigenvalue analysis for three-dimensional elements. The data and

the loading path are identical to the previous computations.

The most elementary discretization with the so-called brick elements B8/8 is adopted, where

linear interpolation and eigth nodes for both fields are used. Results for FI (eight sampling

points) are shown in Table 3.8 at the top on the left. As expected, the spectrum in each phase

is analogical to the one for Q4/4 with FI. Six zero eigenvalues correspond to the motions of

the rigid body in 3D space and one negative eigenvalue occurs in the damage phase. For RI

one integration point is used. In this case in the tangent operatorK sixteen additional zero

eigenvalues are observed. Twelve of them originate in partKaa derived from the variational

equilibium equations. The next four result from submatrixKee, which is constructed based

on the variational averaging equation. Moreover, ifc = 0 is used inKee, only one positive

eigenvalue is noticed (these results are not presented). It means that the non-zero parameter

c and as a consequence the averaging operation contributes three proper modes into 3D FE.

However, to ensure stable computations for B8/8 with RI hourglass control must be introduced.

In this thesis in the 3D tests and examples only FI is employed. The stabilization of B8/8 can

be considered in future research.

For completeness the eigenvalue numbers for other 3D elements are listed at the bottom of

Table 3.8. In brief, the results are fully analogical to the ones presented before in Table 3.7.





CHAPTER 4

TESTING OF FINITE ELEMENTS

4.1 BAR WITH IMPERFECTION UNDER STATIC TENSION

The simulation of uniaxial tension for a bar with imperfection in the middle is the most basic

and typical test in physically nonlinear mechanics. In the zone where the specimen is made

from a weaker material, it has a smaller cross-section, a notch or another kind of abatement, the

phenomenon of localization is triggered. Numerical analysis allows one to observe if and how

applied models can simulate the stiffness degradation in the specimen. In a load-displacement

diagram, after reaching the peak load, a softening branch is expected. Because of general char-

acter of the test it can be run for ductile materials like metals as well as for brittle materials

like concrete and rocks. The character of this test permits one to compare different numerical

models, but not necessarily to confront them with experiments. Usually, the results for this test

are performed to verify a new model and present its properties, for example the gradient scalar

damage model was firstly used for this test in [125], where analytical and numerical solutions

were obtained. Geometrically non-linear version of gradient damage (e.g. in [154]) was also

tested using the simulation of the tensile bar with imperfection. Similarly, the coupling of scalar

damage with hardening plasticity was checked by means of this test, cf. [36,119]. For complete-

ness of the thesis some results of this test, which were presented previously in different works

by other authors, are computed. Indeed, their connection with new results serves the purpose of

verification of the considered numerical model.

The bar has an imperfection in the middle of the specimen. A reduction of selected geo-

metrical or physical quantity by 10 per cent depends on the used model. The test is depicted

in Fig. 4.1. The general data are summarized in Table 4.1. The basic data for gradient damage

are presented in Table 4.2. They can be optionally changed, in order to observe a certain aspect

of the model. The bar is computed subsequently by means of 1D, 2D and 3D finite elements.

The load control and the arc length method are used because the snapback effect is possible.

Moreover, for the majority of computations equal steps are assumed in order to show the evolu-

tion of variables, which are illustrated as surfaces spanned along the bar and pseudo-time axis

in second direction.

93
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Limp

u(L)L

σ x

Figure 4.1: Bar with imperfection for localization test in tension.

Table 4.1: General problem data.

Geometry: length:L = 100 mm

weaker central zone:Limp = 10 mm

imperfection:10%

Material: Young’s modulus:E = 2 × 104 MPa

Table 4.2: Basic data for gradient damage model (also with plasticity).

Pure gradient damage:

internal length parameter:c = 4 mm2 (l = 2.83 mm)

threshold: κo = 0.0001

damage growth function: linear softening,κu = 0.0125

Gradient damage with plasticity:

tensile strength: σy = 5 MPa

yield function: HMH, linear hardening,h = E

4.1.1 1DSIMULATIONS

For computations with one-dimensional finite elements a smaller cross-section is assumed as

the imperfection in the middle of the bar. For all analyzed options the elements with quad/lin

interpolation are employed. Quadratic polynomials for the displacement field together with lin-

ear interpolation for the averaged strain dofs seems to be optimal [124], because oscillations of

secondary fields are avoided. For the 1D problem the stress is calculated asσ = (1 − ω) E ǫ.

As shown in [124, 147] if lin/lin FE is used for discretization the combination of linear dis-

tribution of damage and piecewise constant strain field for elements gives an oscillating stress

field. Somehow, it is confirmed in [147] that for the numerical solution of the imperfect bar,

discretized with80 FEs, oscillations occur in the zone where damage varies quickly and this

effect can be overcome by means of postprocessing. All three types of 1D elements (see the

top in Table 3.3) give a similar, stable solution. The load-displacement diagrams, presented

in [117,122], are close to each other. A comparison of elements in 2D and 3D problems, where

different interpolation is used, will be performed later.
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Figure 4.2: Tensile bar with imperfection in 1D. Stress-displacement diagrams for different

numbers of elements.
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(b) Averaged strain, after peak load.
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(c) Damage distribution, final state.
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(d) Averaged strain, final state.

Figure 4.3: Tensile bar with imperfection in 1D. Results for different numbers of elements –

mesh-independence.
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The basic issue is to check if the analyzed model is spuriously sensitive to FE discretization.

Starting from20 elements each next mesh is constructed multiplying the previous number by4

up to5120 elements. The results, depicted in Figs 4.2 and 4.3, demonstrate the same tendency

as the ones presented in [125]. As expected, the gradient damage model is mesh-objective.

However, the stress-displacement diagram for20 elements in Fig. 4.2 departs from the others.

For this coarse mesh the internal length is smaller than the length of a single FE (2.83 mm< 5

mm), so the size of the element determines the width of the localization zone. Even so, the

averaged strain and damage distributions are similar for the whole set of meshes (see Fig. 4.3).

Generally, localization occurs in a zone broader than one FE and the problem is regularized.

The snap-back effect appears in the advanced phase of the loading, when a growing part of the

localization zone runs into unloading and the active process is observed only in the narrowing

part of the bar in the center (see Fig. 4.3(d)). The results converge to a certain solution, which

is governed by the internal length parameter and is insensitive to the adopted mesh.

From now on the 1D analysis for the uniaxial tension test is limited to the mesh with80 el-

ements along the bar. Here the influence of the internal length scale is verified. Figs 4.4 and 4.5

collect the results for different values of parameterc. According to the observation in [125], the

larger the internal length parameter is, the higher the peak stress is obtained. The difference is

not too significant, but noticeable (see Fig. 4.4). Moreover, the increasing value ofc not only

causes the widening of the localization zone like in Fig. 4.5, but also delays the onset of the

snap-back. Ifc = 0 is adopted then oscillating distributions occur. It is known that in this case

they are governed by discretization. The lengthl and accordingly adjustedc should be larger
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Figure 4.4: Tensile bar with imperfection in 1D. Stress-displacement diagrams for different

values of internal length parameter.
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Figure 4.5: Tensile bar with imperfection in 1D – internal length influence.

than the size of FE, in order to invoke efficient regularization. On the other hand, ifc = 16

is introduced the regularized zone is so wide that the whole bar is damaged. It seems to be

unrealistic, hence the value of the parameterc should be properly selected. Indeed, the internal

length parameterl (and of coursec) is connected with the microstructure of the material. For

quasi-brittle materials like concrete the adequate value of the parameter can be associated with

the maximum aggregate size [10].

Further computations are performed for different damage growth functions, with reference

to the analysis at the material point level (one FE) presented in Section 2.1. The basic option

with linear softening remains without changes as in Table 4.2. For exponential softening, de-

fined in Eq. (2.21), model parameters are:α = 0.96 andη = 200. If the modified power law

in Eq. (2.20) is employed, the ultimate parameter is as for linear softening, i.e.κu = 0.0125.

The exponents in this law areα = 5.0 andβ = 0.6. The convergence analysis for this damage

growth function is performed for example in [55, 85] and an additional parameter study can be

found in [55]. The modified power law was applied to computations for polymers [55], so this

function will be omitted in next examples. The parameters for all the above cases correspond

to a similar value of fracture energy, however the damage progress is quite different. Fig. 4.6(a)

illustrates non-linear stress-elongation paths for the assumed damage growth laws. Differences

are also visible in damage distributions along the bar at the final state (see Fig. 4.6(b)). For

linear and exponential softening the damaged and undamaged regions are distinguished. In the

active zone damage spreads similarly to cosine function. If the modified power law is employed

the whole bar is damaged despite the fact thatc still equals4. The problem of evidently too

wide damage zone can be solved for example like in [55], where the constant parameterc is

substituted by a function of equivalent or averaged strain measure. Nevertheless, the final dis-

tribution of averaged strain̄ǫ has the same character for all cases. The largest averaged strain for

the exponential law corresponds to a much larger elongation of the bar. Obviously the adopted

damage growth function has neglible influence on the averaged strain distribution.
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Figure 4.6: Tensile bar with imperfection in 1D – different damage growth.

The results for gradient damage combined with hardening plasticity, discussed in [36,119],

are supplemented in the present and next paragraphs. The basic data for the model are given in

Table 4.2. The start of the plastic process is slightly delayed with reference to damage initiation.

The equivalent strain can optionally be a function of the elastic or total strain tensor, so in 1D

respectivelỹǫ = ǫe constitutes the so-called weak coupling andǫ̃ = ǫ – the strong coupling.

The stress-displacement diagrams for the coupled model are depicted in Fig. 4.7 together with

the equilibrium path for pure gradient damage. For the weak coupling the response is more

ductile than for the pure model. On the other hand the more brittle process is observed if the

strong coupling is assumed. As noticed in [119] and confirmed in these calculations, the larger

the value of the hardening parameterh, the closer the solution is to pure gradient damage. This

relation holds true for both options of the coupling (see Fig. 4.7).
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Figure 4.8: Pure gradient damage – evolution of chosen variables.

In the end the evolutions of characteristic variables are shown in Figs 4.8–4.10. The growth

of averaged strain measureǭ along the bar is slower for the coupled models, but the maximum

value is almost equal and amounts to nearly1.25 × 10−2 for the pure and both coupled mod-

els. The axial strainǫ evolution differs. Moreover, as proved in [85], an increasing number
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Figure 4.9: Weak coupling of gradient damage and plasticity – evolution of chosen variables.
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Figure 4.10: Strong coupling of gradient damage and plasticity – evolution of chosen variables.
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of elements in the bar results in the convergence of the axial strain distribution to Dirac delta

function at the final state. It is observed that the zone with non-zero plastic strainǫp occupies

nearly half of the whole bar for both coupling options. The averaged, axial and plastic strain

distributions, which are made during the loading process, are quite similar. For the weak cou-

pling the damage evolution is like for the pure model. This is because the lack of contribution

of the plastic part into the damage growth is involved. If the strong coupling is employed then

the mutual interaction causes that the damage zone along the bar is active in a thinner band. A

concise presentation of gradient damage based on the benchmark of the bar with imperfection

in 1D and also a comparison with gradient plasticity is performed in [118].

4.1.2 2DAND 3D SIMULATIONS

In two- and three-dimensional configurations a physical imperfection is introduced, however it

has the same meaning as in the previous computations. Now the damage threshold is reduced by

10 % in the middle of the bar. Firstly, 2D elements with different types of integration are tested.

Next, the isotropic gradient model with one or two damage parameters is verified. Finally, the

confrontation focuses on 3D elements with different interpolation options.

In this part FE Q4/4 is checked with different combinations of integration schemes. The

basic data are summarized in Tables 4.1 and 4.2. Additionally Poisson’s ratioν is equal to

zero. Plane stress is assumed, where both thicknessT and widthB equal5 mm. Arc length

control computations with varying steps size adapted along the loading path are employed. In

Fig. 4.11 stress-elongation diagrams are presented. Three approaches, described in Chapter 3,
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Figure 4.11: Tensile bar with imperfection in 2D. Stress-displacement diagrams - different types

of integration in FE Q4.
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(a) Averaged strain, after peak. (b) Damage, after peak.

(c) Averaged strain, final state. (d) Damage, final state.

Figure 4.12: Results for bar with imperfection – elements Q4 with FI.

(a) Averaged strain, after peak. (b) Damage, after peak.

(c) Averaged strain, final state. (d) Damage, final state.

Figure 4.13: Results for bar with imperfection – elements Q4 with RI and stabilization accord-

ing to Eq. (3.133),χ = 0.000001.

are compared. They are in turn: full integration (FI) and reduced integration (RI) with stabi-

lization according to Eq. (3.117) or Eq. (3.133). If the elements are stabilized, the coefficient

χ = 0.000001 is introduced. Apart from that, a fourth option is calculated. In this option

the equilibrium equations are formulated and implemented together with stabilization, so RI is

applied, but the derivation as for standard FEs is valid for the averaging equation, where FI is

preferred. The element with such mixed integration is not practical, because finally five sam-

pling points are required. However, the computations for this type of integration are performed

in order to show one more alternative.

Generally, if FI is employed for the second or both discretized fields, the relation between

elongationu(L) and the stressσ is like for a slightly stiffer bar. The diagram in Fig. 4.11 for FI

ends before the stress approaches zero, but it is connected with the fact that the damage history

parameter reaches the ultimate valueκu and an unwanted change of the stiffness or unloading

is obtained. For RI and stabilization according to Eq. (3.117), which does not assure a proper

FE without spurious eigenmodes, computations diverge in the advanced state of deformation.

For fully correct paths, namely for these where FI or RI with stabilization like in Eq. (3.133)

are applied, the averaged strain and damage distributions in two phases are shown in Figs 4.12

and 4.13. Both variables have similar distributions just after the peak load and also in the final

state.

At the end of this part a convergence study is performed similarly to [94]. Two basic types

of integration are confronted in Table 4.3. Four or five characteristic steps are chosen according

to the figures placed at the top of this table. A drastically different number of active integration

points (ips) is observed as the consequence of the adopted integration in a single FE. It is con-

firmed that the solution reaches quadratic convergence in every step for both alternative cases.
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Table 4.3: Convergence study – bar with imperfection. Two types of integration.

type FI RI + stabilization, Eq. (3.133)

ips (1 FE) 2 × 2 = 4 1 × 1 = 1

 2

 1.5

 1

 0.5

 0
 0.15 0.1 0.05 0

77

122

 2  22

u(L) [mm]

σ
[M

P
a]

 2

 1.5

 1

 0.5

 0
 0.15 0.1 0.05 0

2
22

77

122

143

u(L) [mm]

σ
[M

P
a]

Step no. Relative energy norm Active ips Relative energy norm Active ips

2 1.000000000000000E+00 8 1.000000000000000E+00 2

5.321187441983860E+02 8 5.763488320259804E+02 2

2.534990264376641E–04 8 6.048211715158885E–04 2

1.770959355358748E–10 8 1.304413629483436E–09 2

8.617827040306284E–23 8 6.008164724480290E–21 2

22 1.000000000000000E+00 40 1.000000000000000E+00 8

–9.779478750996960E–06 40 –3.149860222058139E–04 8

1.548406070066814E–10 40 –7.542830989034233E–12 8

3.871666510054424E–11 40 –1.885723762863035E–12 8

1.260922539766909E–19 40 4.655693122775198E–24 8

77 1.000000000000000E+00 12 1.000000000000000E+00 4

–6.737739431886433E–02 12 –8.738447627994261E–02 4

–1.936878713736846E–19 12 1.595955486024598E–16 4

–3.543616722096119E–27 4

122 1.000000000000000E+00 12 1.000000000000000E+00 4

–8.424036872173256E–02 12 –5.664603859365940E–01 4

–3.265570463637080E–20 12 6.614336369593637E–19 4

143 1.000000000000000E+00 4

–6.109566557762603E–01 4

3.162731767832675E–19 4

The two-dimensional bar with imperfection is also tested using the isotropic model, where

different paramaters for the damage growth function are introduced. The general data still hold

for the considered benchmark. Since, as shown in Section 2.4, the solution for linear softening

at the level of a material point is less stable than for exponential softening, so only the latter

function is employed. The gradient damage with volumetric-deviatoric split and linear soften-

ing has been numerically verified, but results are questionable, especially if the load carrying

capacity is exhausted for either the volumetric or deviatoric damage measures and Poisson’s ra-

tio νω attains0.5 or non-physical value−1. The initial value ofνω equals0.2 for each analyzed

case. Differently from the previously presented computations, now the plane strain configu-

ration is proposed. It extends the analysis performed in this section. At the beginning two
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Table 4.4: Bar with imperfection – cases computed by means of isotropic gradient damage.

Symbol Parameters for exponential softening Damage

of case volumetric part deviatoric part growth

exp ηK = 600 ηG = 600 more intensive

exp,K ηK = 200 ηG = 600 ωK < ωG

exp,G ηK = 600 ηG = 200 ωK > ωG

exp,K&G ηK = 200 ηG = 200 less intensive
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(a) Elastic energy release (2.11).
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(b) Modified von Mises (2.15).

Figure 4.14: Tensile bar with imperfection (2D). Isotropic gradient damage. Load-displacement

diagrams – different types of equivalent strain measure.

different damage loading functions are considered: elastic energy release EER definition (2.11)

or modified von Mises definition (2.15). Computations are limited to the case with 80 elements

Q8/4, where quad/lin interpolation is introduced. Like previously, the arc length control is used,

but here the loading path is divided into equal steps. The widthB equals5 mm.

The load-elongation diagrams for the two adopted equivalent strain measures are illustrated

in Fig. 4.14. A given value of the load is calculated as the sum of horizontal reactions on the left

boundary. The relations between damage growth parametersηK andηG for exponential soften-

ing are listed in Table 4.4, thus four cases are distinguished. For casesexpandexp,K&G the

model is in fact scalar, so the diagrams are different with reference to ductility, independently of

the employed damage loading function. Isotropic properties appear for casesexp,K andexp,G,

where deviatoric or volumetric damage dominates. For the EER loading function (2.11) the

diagrams for casesexp,K andexp,G run between the bounding casesexpandexp,K&G and

the diagram forexp,G is more ductile. On the other hand, for the modified von Mises definition

(2.15) this does not hold and moreover, the diagram forexp,K is more ductile. Therefore, the

shape of the damage loading function and additionally the non-zero Poisson’s ratio decide about

the response in this test although the bar is under tension in one direction. Next, the analysis is

focused on the computations in which the modified von Mises definition is adopted.
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Table 4.5: Convergence study – bar with imperfection. Scalar vs isotropic models.

Model

 0

 2

 4

 6

 8

 10

 0  0.05  0.1  0.15  0.2

P
 [N

]

 90
 60

 30

 220  420

 15

 10

scalar:exp

u(L) [mm]

 0

 2

 4

 6

 8

 10

 0  0.05  0.1  0.15  0.2

 10

 16
 30

 60
 90

 220
 420

isotropic:exp,K

u(L) [mm]

P
[N

]

Step no. Relative energy norm Active ips Relative energy norm Active ips

10 1.000000000000000E+00 0 1.000000000000000E+00 0

6.545127804761267E+01 0 6.545127804761267E+01 0

7.237258773905286E–27 0 7.237258773905286E–27 0

exp: 15 1.000000000000000E+00 32 1.000000000000000E+00 56

exp,K: 16 1.332232373671283E+02 40 7.104307390597425E+01 60

(peak) 5.283882949851624E–02 40 2.828519453667412E–03 60

1.517076421774993E–05 40 2.195920115196281E–08 60

1.271296475843388E–12 40 3.044556460158339E–19 60

1.631334537801833E–26 40

30 1.000000000000000E+00 64 1.000000000000000E+00 100

–7.145757073494839E+00 64 –8.050307462407983E–01 100

–2.523525035112035E–12 64 1.529335843988511E–13 100

–6.308773112513990E–13 64 3.823338587620005E–14 100

6.502890662243225E–25 64 1.759515922801841E–27 100

60 1.000000000000000E+00 52 1.000000000000000E+00 68

–1.033016859561164E+00 52 –5.097062669130918E–01 68

7.135799125742083E–15 52 3.283294745214887E–15 68

3.647482047565556E–27 52 8.208230538840247E–16 68

2.052057119854064E–16 68

5.130140402320353E–17 68

90 1.000000000000000E+00 60 1.000000000000000E+00 52

–4.733095888274573E–02 60 –2.813217273957667E–01 52

1.587455443544377E–16 60 2.287022780935627E–16 52

8.742964699372276E–27 60 5.717548206029520E–17 52

220 1.000000000000000E+00 84 1.000000000000000E+00 56

–8.145727820349697E–05 84 –1.979850284683554E–02 56

7.918728946372482E–20 84 7.956711042408951E–19 56

420 1.000000000000000E+00 100 1.000000000000000E+00 80

–1.703893288677314E–06 100 –2.546419098702699E–03 80

3.747828894113349E–22 100 8.311343950960651E–20 80

Before the results for various quantities are presented in detail, the convergence study is con-

fronted in Table 4.5 for two chosen options:expandexp,K, as representatives of the scalar and

isotropic models. The convergence study for caseexp,K&G is similar toexpand accordingly
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Figure 4.15: Tensile bar with imperfection (2D). Isotropic gradient damage. Damage distribu-

tion along the bar in final state.

(a) Deformation (50×) and averaged strain,exp,K. (b) Deformation (50×) and averaged strain,exp,G.
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(c) Averaged strain evolution,exp,K.
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(d) Averaged strain evolution,exp,G.
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(f) Dilatation evolution,exp,G.

Figure 4.16: Tensile bar with imperfection (2D). Isotropic gradient damage. Deformation and

strain state.

exp,G – toexp,K. It can be noticed that the quadratic convergence is lost near the peak load, but

it is recovered for subsequent steps. The number of iterations during respective steps is almost

the same for both analyzed cases. Moreover, the value of the relative energy norm diminishes

in a similar manner.

Figs 4.15 and 4.16 show the results for two options, where ductility parametersηi (i =

K,G) in the damage growth laws are different. The final damage distributions are depicted in
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Figure 4.17: Bar with imperfection (2D). Isotropic gradient damage. Poisson’s ratio evolution.

Fig. 4.15. It should be emphasized that the ranges of horizontal and vertical axes are shorten in

order to clearly show the relations between parametersωK andωG, because the differences are

rather small. Generally, the results for caseexp,K are presented on the left and the results for

exp,G are on the right. Final deformations, enlarged50 times, together with the averaged strain

patterns are illustrated in Figs 4.16(a) and 4.16(b). If caseexp,K is considered the deformation

produces a thinner localization band than for theexp,G option. Besides, in caseexp,G, where

volumetric degradation dominates, the bar can exhibit volume growth in the localization zone.

It is caused by Poisson’s ratioνω decreasing below zero. These results looks non-physical, so

they are not included in the analysis. The evolution of averaged strainǭ and dilatationθ during

the damage evolution is similar for both cases, as shown in Fig. 4.16.

The Poisson’s ratio distributions are compared in Fig. 4.17. The parameterνω increases up

to 0.45 in the zone of localization for the caseexp,K whereωG > ωK. However, in advanced

state this value reduces in the middle of the bar where damage is equal almost to1, but close

to this zone where difference betweenωG andωK still holds Poisson’s ratio is approximately

0.45. An analogical situation is noticed in caseexp,G whereωK > ωG. Now the evolution of

the Poisson’s ratio is inverted, i.e. it decreases in the zone of localization and then in the middle

of the bar the initial value is retrieved. As mentioned in Section 2.4, for concrete it is expected

that Poisson’s ratio tends to0 during the fracture evolution [21], but it does not drop below this

value. It is possible to setup data in such a way that the negative Poisson’s ratio is avoided, cf.

results for the isotropic model in Section 2.5. On the other hand, maybe the deviatoric degrada-

tion (caseexp,K) should be dominating, so it is still unclear which type of isotropic damage is

more proper for concrete. Hence, in the next chapter both options will be considered.

Finally a short comparison for 3D elements is performed. The general data are again sum-

marized in Tables 4.1 and 4.2 including the return to the linear softening law. The pure gra-

dient damage model is computed. Five different types of interpolation and mesh divisions

are confronted. Load-elongation diagrams are presented in Fig. 4.18. In Table 4.6 not only

the important features for analyzed cases are characterized, but also the times of computa-

tions are shown. This computational time for each option is rather approximated, although all
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Figure 4.18: Tensile bar with imperfection in 3D. Load-displacement diagrams.

Table 4.6: Bar with imperfection – different 3D discretizations.

abbreviation 20–LL 80–LL 160-LL 20–QL 20–QQ

used FE B8/8 B8/8 B8/8 B20/8 B20/20

interpolation lin/lin lin/lin lin/lin quad/lin quad/quad

discretization 20×1×1 80×1×1 40×2×2 20×1×1 20×1×1

elements 20 80 160 20 20

nodes 84 324 369 248 248

dofs 336 1296 1476 828 992

equations 164 644 975 324 488

steps 231 141 176 152 151

iterations 772 675 756 730 720

iteration/step 3.34 4.79 4.30 4.80 4.77

total time (CPU) [s] 34.93 148.06 367.52 117.33 211.39

CPU time/step [s] 0.1512 1.0501 2.0882 0.7719 1.3999

CPU time/iteration 0.0452 0.2193 0.4861 0.1607 0.2936

measurements have been performed on the same processor called Intel Xeon with clock 2.4

GHz and RAM size of 4 GB. As expected, the fastest time is for case 20–LL. If more exact

results are needed, a better idea is to enhance interpolation in FE than to refine the mesh. In-

troducing quad/lin interpolation into 3D elements in this simple test causes a triple increase

of computational time, but quadratic interpolation for both fields costs over6 times more. In

large scale 3D problems discretized with fine meshes of twenty-noded FEs too much time can

be consumed, so FE B8/8 with linear interpolation is chosen despite the fact that the solution

can then produce less accurate results. The damage patterns at the final instant are depicted in

Fig. 4.19.
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(a) 20–LL. (b) 20–QL and 20–QQ.

(c) 80–LL. (d) 160-LL.

Figure 4.19: Results for bar with imperfection. 3D elements, damage – final distribution.

4.2 TWO TESTS FOR DYNAMICS

4.2.1 BAR UNDER IMPACT LOADING∗

The experimental review and mathematical foundations of softening phenomena in wave prop-

agation can be found for example in [135]. A solution for a bar loaded at both sides or fixed at

one and loaded at the other is presented in [8] and [150]. The analytical solution of a classical

strain-softening bar in dynamics explains the mechanism of propagating waves before and af-

ter a reflection on a boundary. When the stress exceeds the elastic limit after the reflection of

the wave front, softening occurs, imaginary wave speeds are obtained and hence waves do not

propagate (a standing wave appears). When the propagating wave stops, strain localization is

observed, which can lead to cracking in the solid. In a local continuum a displacement disconti-

nuity accompanies the standing wave and the strain at the place of localization can be defined as

a Dirac delta function. Hence, in the local approach the zone of intense deformation is limited

to a discrete line (curve) or plane (surface), the IBVP loses hyperbolicity and the finite element

solution reveals mesh sensitivity.

In this example it will be confirmed that among different regularization techniques also

the gradient-dependent model can be applied for the wave propagation problem in softening

materials and cracking phenomena under a pulse loading are suitably simulated. As the simplest

test a bar extended in one dimension is considered. Almost the same benchmark has been

computed to verify and compare various numerical models for example in [150]. In order to

analyze wave propagation a time-dependent load at the right end of the bar is applied and the

stress wave propagates to the left supported end. The stress attempts to double upon reflection,

which results in damage and a standing wave related to softening.

∗Based on example presented in [173]
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Figure 4.20: Results for the bar under one-dimensional dynamic tension.
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The length of the bar isL = 100 mm, widthB = 5 mm and thicknessT = 5 mm. The

data for the gradient damage model (scalar, without plasticity) are as follows: Young’s mod-

ulusE = 20000 MPa, Poisson’s ratioν = 0.0, densityρ = 5000 kg/m3, internal length

l = 2
√

2 mm. A linear damage growth as in Eq. (2.19) is assumed with thresholdκ0 = 0.0001

and ultimate valueκu = 0.0125. Linear-constant type of the pulse loading is adopted (as shown

on the right-hand side of Fig. 4.21), where for instantt1 = 1.5 × 10−5 s the traction intensity

P1 = 0.75ft is reached (ft is the tensile strength). The time step is 2×10−6 s. The mesh con-

tains 20 or 80 elements for the 2D analysis and 20 elements for 3D.

In Figs 4.20(a)–4.20(c) three surface plots for the case with 80 two-dimensional elements

are shown: averaged strain measureǭ, stressσ and damage parameterω are plotted against

time and length of the bar. For the averaged strain it can be observed how the propagating

wave changes into a standing wave, although the elastic part of the propagating energy results

in small humps. In Fig. 4.20(b) a superposition of waves (values of stresses are not smoothed)

is noticed. Damage initiates when the front of the wave reflects on the support, cf. Fig. 4.20(c).

The results for all the applied meshes are similar. The final damage state for the 3D mesh is

depicted in contour plot 4.20(d).

In this test the behaviour of the propagating wave in the gradient damage model is obtained,

which seems to be similar to other mesh-independent softening models (see for example [150]).

Due to the gradient terms the propagation is dispersive and hyperbolicity of the governing equa-

tions is preserved.

4.2.2 DYNAMIC DIRECT TENSION TEST†

The aim of this test is a two-dimensional analysis of tensile wave propagation in a reinforced

concrete damaging bar. The results of this test are compared with those for plain concrete bar

(cf. also [118]) and the differences in dynamic response are examined.

As shown in Fig. 4.21, a bar supported along both symmetry axes and loaded with a time-

dependent normal traction at both ends is considered. The reinforcement is located along the

axis of the bar. The length of the bar isL = 250 mm, widthB = 60 mm. The plane stress

configuration with thicknessT = 50 mm is analyzed. Figure 4.21 also shows the employed

discretization, where the central zone is refined because localization is expected there. Eight-

noded two-field gradient damage elements for concrete and elastic truss finite elements for the

reinforcement are introduced. Full bond between steel and concrete is assumed.

For the gradient damage model of concrete the material data are as follows: Young’s mod-

ulusE = 18000 MPa, Poisson’s ratioν = 0.0, densityρ = 2320 kg/m3. Exponential damage

growth function (see Eq. (2.21)) is used withκo = 0.00188 (tensile strengthft = 3.4 MPa),

α = 0.99 and η = 500. The modified von Mises definition of the equivalent strain (2.15)

†Based on example presented in [175]
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Figure 4.21: Dynamic direct tension test.

is employed. Three values of the internal length scale parameter, namelyl = 2/4/8 mm,

are considered. The steel reinforcement is modelled withE = 200000 MPa, ν = 0.0 and

ρ = 7800 kg/m3 and cross sectionAr = 30 mm2 (the reinforcement ratio equals 1%). The time

step is 2×10−6 s, in Fig. 4.21 timet1 = 3 × 10−5 s and the traction intensity is P1 = 2.4 MPa.

The diagrams depicted in Fig. 4.22 confront the behaviour of the bar with and without

the reinforcement. For plain concrete the elongation tends to infinity due to fracture, while

for reinforced concrete the axial displacement oscillates around a certain state. Nevertheless,

for both responses a standing wave and localization are observed in the centre of the bar (cf.

Figs 4.23(e) and 4.23(f)).

Figure 4.23 shows the internal length influence for plain and reinforced concrete. The

elongation-time diagrams for plain concrete, which are presented in Fig. 4.23(a), demonstrate

that the smaller the value of parameterl is, the faster the elongation grows. Figure 4.23(b)

points out that for reinforced concrete together with the decrease ofl the amplitude of elon-
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Figure 4.22: Elongation history for plain vs reinforced concrete.



4.2. TWO TESTS FOR DYNAMICS 113

 0

 0.05

 0.1

 0.15

 0.2

 0  5e-05  0.0001  0.00015 0.0002  0.00025 0.0003

E
lo

ng
at

io
n 

at
 p

oi
nt

 A
 [m

m
]

t [s]

l = 2 mm
l = 4 mm
l = 8 mm

(a) Diagrams for plain concrete.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.0001  0.0002  0.0003  0.0004  0.0005  0.0006

E
lo

ng
at

io
n 

at
 p

oi
nt

 A
 [m

m
]

t [s]

l = 2 mm
l = 4 mm
l = 8 mm

(b) Diagrams for reinforced concrete.

(c) Averaged strain, plain,l = 2 mm. (d) Averaged strain, reinforced,l = 2 mm.

(e) Averaged strain, plain,l = 4 mm. (f) Averaged strain, reinforced,l = 4 mm.

(g) Averaged strain, plain,l = 8 mm. (h) Averaged strain, reinforced,l = 8 mm.

Figure 4.23: Internal length influence for plain and reinforced concrete bar.

gation during vibrations decreases. Forl = 2 mm a much smaller period of the vibrations

occurs. A similar upper limit of the elongation for eachl is observed , which is related to the

reinforcement action.

All contour plots in Fig. 4.23, which illustrate the averaged strain distribution, are performed

for the time instantt = 0.0006 s (after 300 time steps). Comparing the results, for plain concrete

and l = 2 mm (Fig. 4.23(c)) two separated zones of localization appear, which is probably a

numerical effect. For the other cases one central zone emerges, which is consistent with the

analytical solution for the strain-softening bar presented in [8]. The standing decohesion wave

is located exactly in the centre. The general tendency for gradient-enhanced models that the

width of the zone increases together with largerl is valid. For plain concrete the localization

zones are perpendicular to the bar axis and the averaged strain contours form even bands, which

is expected due to the loading direction (for a non-zero Poisson’s ratio the distribution of the

averaged strain looks similarly).
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Figure 4.24: Sensitivity of results to load intensity and reinforcement ratio.

On the right-hand side of Fig. 4.23 the averaged strain distribution for reinforced concrete

is shown. Here, like for plain concrete, with the growth ofl the zone of localization enlarges.

A new visible effect is that the reinforcement delays the progress of cracking along the whole

width. Along the bar axis localization does not seem to occur. The most active zones are the

farthest from the reinforcement, but similarly to plain concrete the standing wave and damage

zone are placed in the central part of the tensile bar. The full bond between concrete and the

rebar influences the shape of the damage zones, which do not look very realistic. In reality

more than one localized cracks, which gradually develop in the vertical direction next to the

reinforcement, are observed. However, the existence of the reinforcement in this simulation

suppresses evolution of the localized zone, cf. diagrams in Figs 4.23(a) and 4.23(b) . To simu-

late this behaviour a proper representation of bond slip and, from the numerical point of view,

the implementation of interface elements can be adopted like in [153].

The elongation-time diagrams in Fig. 4.24(a) present the dependence on the load scaling

factor for the plain concrete test withl = 4 mm. The limit load factor when either the elongation

goes to infinity or oscillations occur is between 0.8 and 0.9. For 0.7 P(t) the standing wave

does not appear, which means that the elastic energy dominates the solution. The influence

of the reinforcement ratio is considered in Fig. 4.24(b). For the smallest cross section of the

reinforcement the specimen behaves similarly to the tests with plain concrete, when the standing

wave is noticed and the elongation tends to infinity. The results for 2% of reinforcement show

similar oscillations to the case 0.7 P(t) for plain concrete. In fact, it is difficult to assess whether

the propagating wave changes into a standing one, but the damage zone arises (not presented).



CHAPTER 5

NUMERICAL MODEL APPLICATIONS

5.1 CANTILEVER BEAM UNDER LOAD REVERSALS

A cantilever beam (similar to a half of three-point bending test) subjected to reversed loading

is analyzed. The beam together with the employed FE mesh are illustrated in Fig. 5.1. This

test was also solved and discussed in [117, 122], so the results presented below extend the

ones previously shown. The elements Q8/4 with quadratic/linear interpolation and2× 2 Gauss

integration are adopted. The dimensions of the beam are shown in Fig. 5.1 and the thickness is

50 mm. The vertical force is exerted along the left edge under deformation control of all vertical

degrees of freedom. The load is first applied upwards, so tensile fibers are at the bottom. Then

after an unloading stage the load changes the sign and the upper fibers are under increasing

tension, followed by unloading again. The nodes at the clamped edge are fully constrained.

The elastic constants are as follows: Young’s modulusE = 40000 N/mm2 and Poisson’s

ratio ν = 0.0. The reasons why this particular value of Poisson’s ratio is chosen will be dis-

cussed later. The material data for pure damage are assumed as follows: modified von Mises

definition (2.15) of the strain measure with thresholdκo = 0.000075, exponential damage evo-

lution (2.21) withα = 0.92 andη = 300, gradient influence factorc = 4 mm2.

100 mm

250 mm

P(w)

Figure 5.1: Cantilever beam under load reversals together with FE mesh.
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If the crack closure is activated, it provides a possibility to retrieve the original elastic stiff-

ness when compression follows tensile damage at a point, and also makes it unnecessary to use

the modified von Mises definition of the strain measure. This is because with the projection

operatorP + the definition of elastic energy release rate in Eq. (2.77) is sensitive to the sign of

loading and in triaxial compression no damage occurs (see Section 2.3, page 29). Therefore,

the cantilever test is repeated with this equivalent strain measure and the crack closing effect is

incorporated by means ofP + according to the Ortiz definition (2.66).

Next, the weak coupling with the hardening plasticity theory is added to the model which

results in irreversible strains. In this option the equivalent strainǫ̃ depends only on the elastic

part of the strain tensor. The HMH criterion is used with yield strengthσy = 4.5 N/mm2 and

modulush = E/2. The damage and plastic processes start simultaneously.

Fig. 5.2 shows the relationship between the total force exerted at the left edge and vertical

displacementw of the middle node of the edge for the three considered options, namely: pure

damage without and with the crack closure projection and finally coupled damage-plasticity

together with crack closing. The upward load causes damage starting at the bottom near the

clamped edge (cf. Fig. 5.5 and also crack patterns in [122]). Obviously all paths involve soften-

ing, but for the coupled model the process is less rapid. Unloading shows the stiffness degrada-

tion due to the accumulated damage. The pure model without and with activated crack closing

does not exhibit differences in diagrams until the origin is passed. For the model without crack

closure effect the original stiffness is not retrieved. The crack closure takes place if operatorP +

is included in computations. The unloading path for the coupled model with crack closing ends

−2000
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 1500

 2000

−0.2−0.15 −0.1 −0.05  0  0.05  0.1  0.15  0.2  0.25  0.3
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P
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]

damage

+ crack closing
damage + plasticity

+ crack closing
damage

Figure 5.2: Cantilever beam under load reversals – load-displacement diagrams.
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before the load value drops to zero. There are clearly visible irreversible strains and also the

return to the initial stiffness. The active damage process starts under reversed loading, before

the deflection of the beam changes the sign.

Now attention is focused on the results for the case when damage-plasticity together with

the crack closure effect is analyzed. Figures 5.3 and 5.4 present the distribution of the horizontal

stressσ11 along the vertical line A-A during the loading process (at points marked on the equi-

librium path). The line A-A runs along the height of the beam crossing the integration points in

the second column of elements from the clamped edge, see Fig. 5.3(a). After the elastic limit

is reached, it is visible in Figs 5.3(c)–5.3(e) that the value of the tensile strength calculated as

ft = κo E = 3 MPa is not exceeded and the zone corresponding to this value grows from the

bottom. Figure 5.3(f) is plotted for point 5, when unloading is advanced, but crack closing is

not entered yet. The next figure is made for point 6, just after the crack closure effect activates.

At this moment negative stresses appear at the bottom of the section. The return to the original

stiffness is observed in the diagram (Fig. 5.3(a)), so a sufficient number of integration points

cross into compression and from that moment on crack closing is noticed as the general be-

haviour of the beam. Figure 5.4(a) shows that the tensile strength is reached at the upper side.

The most negative value in the stress distribution is obtained at point 9, when the largest vertical

displacement downwards is forced. After that the beam returns again to the state, where tensile

fibers are at the bottom. Starting from point 10 in Fig. 5.4(c) negative stresses appear at the

top and the second increase of the global stiffness is reproduced. The stress distributions was

prepared without any smoothing, so some disturbances near the lower and upper boundaries are

observed.

Figures 5.5 and 5.6 present the crack patterns at the state when the largest vertical dis-

placementw is observed in the two directions. The secondary damage zone develops at the

top near the clamped edge at smaller stress, since the primary damage weakened the critical

cross-section. Observe that in this model the attained damage level is remembered at a point

irrespective of any change of the sign of strains, so in the secondary phase two damage zones

are visible although the averaged strain measure plot shows the active zone. This test has been

computed forν = 0, since for the zero Poisson effect the tangent stiffness operatorEtan takes

a particular form for which discontinuities in the stress-strain response are avoided [23].

In fact, forν = 0.2 the solution diverges if crack closure is activated (hence this case is not

shown in the thesis, see [117, 122]). As noticed in [23], due to the unilateral character of the

crack closure phenomenon a discontinuity (Heaviside function) is introduced in the formulation

and this might be the cause of numerical difficulties. The problem can be solved in different

ways. For example, a modification of the crack closing algorithm along the lines proposed in

[53] can be formulated and implemented. This requires the introduction of a certain continuous
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(c) Point 2.
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(d) Point 3.
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(e) Point 4.
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(f) Point 5.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 3 0−5−10−15−20
σ11 [MPa]

h
ei

g
h

to
fb

ea
m

(g) Point 6.
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(h) Point 7.

Figure 5.3: Cantilever beam under load reversals – evolution of stressσ11 along line A-A.
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(b) Point 9.
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(c) Point 10.
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(d) Point 11.
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(e) Point 12.
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Figure 5.4: Cantilever beam, load reversals – evolution of stressσ11, line A-A (continued).

function in the projection operator. Then, if crack closing is activated, the change of the stiffness

does not involve any jumps. It is physically motivated, because the experimental observation is

that microdefects do not close suddenly but rather gradually.

As has been noticed in [55], the damage predictions of the model with a constant gradi-

ent influence factorc and the exponential damage evolution law may be unrealistic for two-

dimensional configurations, since the damage zone tends to broaden instead of evolving into a

crack when failure is approached, cf. Figs 5.5(c) and 5.6(c). The coupling to plasticity does not

solve this problem. If a localized final damage pattern is to be simulated, the gradient-damage

model should be improved, for instance by making the gradient influence factor variable and

adopting a different damage law, see [55]. An other idea is to remove totally damaged finite

elements from the discretized mesh during the solution like in [124], however the application

of this approach together with crack closing is problematic.
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(a) Averaged strain̄ǫ. (b) Plastic strainǫp. (c) Damageω.

Figure 5.5: Part of cantilever near clamped edge. Damage coupled to plasticity and crack

closing – contour plots for maximum upward displacementw.

(a) Averaged strain̄ǫ. (b) Plastic strainǫp. (c) Damageω.

Figure 5.6: Part of cantilever near clamped edge. Damage coupled to plasticity and crack

closing – contour plots for maximum downward displacementw.

5.2 BRAZILIAN SPLIT TEST

5.2.1 APPLICATION OF SCALAR DAMAGE

This example presents the behaviour of the gradient damage model in the so-called Brazilian

test (see Fig. 5.7). Under the influence of compression primary and secondary cracks form

[137,138], when splitting inside the specimen is observed. This phenomenon is used to establish

the concrete tensile strength, because the compression between the loading platens induces the

perpendicular tensile force action in the middle. In the numerical simulation, according to the

experiment (see for example [137, 167]), localization is expected in the vertical central zone

of the specimen between load-transferring strips as is shown e.g. in [49, 138]. The cylinder

specimen is simulated in plane strain, but plane stress [172] or 3D analyses [142] are also

possible.
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(a) Load action. (b) Wedge formation. (c) Primary and secondary cracks. (d) Splitting.

Figure 5.7: Idea of Brazilian split test. Subfigures (b), (c) and (d) quoted from [137].

(a) Mesh C12. (b) Mesh M20wp. (c) Mesh F20/F24.

Figure 5.8: Exemplary meshes for Brazilian test.

Due to a double symmetry and in order to reduce the computation time only a quarter of

the domain (with radius equal to 40 mm) is considered. The general geometry data are based

on [49, 172]. The load is applied to the specimen indirectly via a stiff platen (width - 5 mm,

height - 2.5 mm). The platen is perfectly connected with the specimen. The meshes selected for

this case are shown in Figs 5.8(a) and 5.8(c). The applied discretizations are listed in Table 5.1.

The influence of mesh refinement will be discussed in the next paragraph. To compare, direct

loading without the platen can be considered, see mesh M20wp in Fig. 5.8(b). The load acts

downwards at the top of the platen or in the case without platen at the edge part equivalent to

the platen. The material data are presented in Table 5.2. No coupling with plasticity is included

in the model (pure gradient damage). Because of a possible snapback response the test is com-

puted using the arc length method. In the calculations selective integration is applied for lin/lin

interpolation (FE Q4/4) and2 × 2 integration for the remaining elements.

The vertical displacement at the top of the platen on the symmetry axis is measured, which

grows with the applied loading. In Figs 5.9 and 5.10 load-displacement diagrams for the used

meshes are presented. For no solution a softening curve is obtained like in [49], instead a

snapback response is observed which is connected with the splitting process. In Fig. 5.9 two
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Table 5.1: Brazilian test – discretizations used in simulations.

COARSE MESHES

name C12 (Fig. 5.8(a)) C20 C24

used FE Q4/4 Q8/4 Q8/8

interpolation lin/lin quad/lin quad/quad

dofs/element 12 20 24

nodes/sym.edge 17 17 17

elems/sym.edge 16 8 8

MEDIUM MESHES

name M12 M20 M24

used FE Q4/4 Q8/4 Q8/8

interpolation lin/lin quad/lin quad/quad

dofs/element 12 20 24

nodes/sym.edge 33 33 33

elems/sym.edge 32 16 16

FINE MESHES

name F12 F20 (Fig. 5.8(c)) F24 (Fig. 5.8(c))

used FE Q4/4 Q8/4 Q8/8

interpolation lin/lin quad/lin quad/quad

dofs/element 12 20 24

nodes/sym.edge 65 65 65

elems/sym.edge 64 32 32

Table 5.2: Brazilian test – material model data.

SPECIMEN: damaging

Young’s modulus: Ec = 37700 MPa

Poisson’s ratio: ν = 0.15

Equivalent strain measure: modified von Mises definition,k = 10

Damage growth function: exponential softening,α = 0.99, η = 600

Fracture energy: Gf = 0.075N/mm

Internal length scale: l = 6 mm, i.e.c = 18.0

Threshold: κo = 7.9576 × 10−5

PLATEN: elastic

Young’s modulus: Es = 10 · Ec

Poisson’s ratio: ν = 0.15
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Figure 5.9: Load-displacement diagrams for used meshes in Brazilian test – summary.

groups of diagrams are noticed. One group shows a sharper drop after a longer peak phase. It is

for solutions performed with coarse meshes, and M20 or M24. The second group of branches

(fine meshes and M12) show the response with a more distinct peak and the snapback is less

pronounced. An explanation why the solution for mesh M12 belongs to the second group can be

found if we compare the mesh density and especially integration point density for the meshes.

In this context the ratio of refinement for mesh M12 is the same as for meshes F20 and F24 (see

Table 5.1).

A difference between the solutions for meshes M20/M24 and M12 is observed, as is de-

picted in Fig. 5.10(b), hence an improvement of the approximation can slightly influence the

loading path. However, in general the results are almost independent of the mesh. In the final

stage, the loading paths go to the same residual load level.

The contour plots in Figs 5.11–5.13 show the mesh independence of the results. The failure

mode associated with primary crack formation [137,138] is seen, it means that a crack appears

exactly under the loading platen along the vertical symmetry axis. All the plots are shown for

the final points of the loading paths. The deformation presented in Fig. 5.12(b) seems to be

similar to [16,49], but apart from the splitting a small concentration of strains in the area under

the platen is observed here (see also contour plots 5.11(a), 5.12(a) and 5.13(a) for the horizontal

normal strainǫ11). Probably the concentration is induced just after the primary crack formation
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(b) Medium.
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Figure 5.10: Load-displacement diagrams for coarse, medium and fine meshes in Brazilian test.

(a) ǫ11 (b) ω (c) ǭ

Figure 5.11: Brazilian test. Contour plots for mesh C12.

and it can depend on the value of the internal length parameter. The broad damage zones as in

the cantilever subjected to load reversals are perceived.

The internal length parameter, which is incorporated in the Helmholtz equation (3.7), de-

cides in the Brazilian test whether or not and how the splitting phenomenon appears. The

diagrams in Fig. 5.14 show that with the decreasing value ofl the material becomes more brit-

tle. When the parameter equals3 mm the splitting phenomenon during the process does not

occur. It is reflected in the contour plots (Fig. 5.15) and in the diagram with the monotonically

softening curve. The loading path forl equal to12 mm, first exhibits a gradual softening stage
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(a) ǫ11 (b) Deformation (magnification factor is 30).

(c) ω (d) ǭ

Figure 5.12: Brazilian test. Contour plots for mesh M20.

(a) ǫ11 (b) ω (c) ǭ

Figure 5.13: Brazilian test. Contour plots for mesh F24.
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Figure 5.14: Brazilian test. Influence of internal length scale – diagrams.

(a) ǫ11, l = 3 mm. (b) ω, l = 3 mm, (c) ǭ, l = 3 mm.

(d) ǫ11, l = 12 mm. (e) ω, l = 12 mm. (f) ǭ, l = 12 mm.

Figure 5.15: Brazilian test. Influence of internal length scale – contour plots.
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Figure 5.16: Brazilian test. Influence of platen definition – diagrams.

(a) ǫ11, in platen: gradient el-

ements withl = 0.

(b) ω, in platen: gradient ele-

ments withl = 0.

(c) ǭ, in platen: gradient ele-

ments withl = 0.

(d) ǫ11, no platen. (e) ω, no platen. (f) ǭ, no platen.

Figure 5.17: Brazilian test. Influence of platen – contour plots (M20/M20wp).
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and then a snapback drop, in contrast with the diagram forl = 6 mm. The higher the value ofl

the more delayed the snapback is. Moreover, if Figs 5.12 and 5.15(d)–5.15(f) are confronted it

can be concluded that the localization zone broadens together with the increase of the internal

length scale. In the last case (l = 12 mm) the concentration of strains in the area under the

platen almost vanishes, as is depicted in Fig. 5.15(d).

In Fig. 5.16 load-displacement diagrams are compared for the same mesh M20, but for

different platen representations. For the second case gradient elements (and not standard ones)

are used in the platen withEs = 10 · Ec andl = 0.0. The model called M20wp does not have

a platen, so the load acts directly on the specimen. The character of the splitting process is

analogical. The load-displacement paths run very closely to each other, only the case without

platen exhibits a slightly smaller initial stiffness. The small differences between the elastic

platen and the gradient platen are in the neighbourhood of the peak and the reason lies in the

release of the constraints for the averaged strain measure field in the connection. It is visible if

attention is focused on the joint in contour plots 5.17(a)–5.17(c) (see also Fig. 5.12). However,

the splitting process and final localization zone for the considered cases give a quite similar

image, so the definition of the platen is insignificant.

5.2.2 CONFRONTATION WITH ISOTROPIC DAMAGE

The splitting effect and the snapback response in the Brazilian test is not simple to obtain in

numerical computations, because damage can localize directly under the platen (see the case

with l = 3 mm in the previous subsection). In this subsection attention is focused on the

comparison of the isotropic damage model with one and two paramaters. In fact, different

mechanical models have been verified numerically using this test, for example: in [24] plasticity

theories are analyzed, in [49] rotating crack and plasticity models are confronted, in [106]

multidirectional kinematic softening damage-plasticity and fixed crack models are tested. Here

it will be shown that in the gradient model not only the internal length parameter decides about

the results of the test, but also other parameters of the model, for instance the choice of the

damage growth function.

Now one discretization, namely mesh M20, is considered. Geometry and material data

Table 5.3: Brazilian test – cases computed by means of isotropic gradient damage.

Symbol Parameters for exponential softening Damage

of case volumetric part deviatoric part growth

exp ηK = 1200 ηG = 1200 more intensive

exp,K ηK = 600 ηG = 1200 ωK < ωG

exp,G ηK = 1200 ηG = 600 ωK > ωG

exp,K&G ηK = 600 ηG = 600 less intensive
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Figure 5.18: Brazilian test. Influence of ductility parameter ηi (i = K,G) in isotropic model –

load-displacement diagrams.

(a) Caseexp,G, point A. (b) Caseexp,G, point B. (c) Caseexp,K, point A. (d) Caseexp,K, point B.

Figure 5.19: Brazilian test. Contour plots of averaged strainǭ for isotropic model.

(Table 5.2) are like previously, but four options of damage growth are analyzed. Table 5.9 sum-

marizes the damage growth parameters. Again the arc length method and2 × 2 integration are

employed.

Load-displacement diagrams in Fig. 5.18 are traced for the four considered cases. It is no-

ticed that for casesexp,K andexpthe softening paths are monotonic and without any snapback.

The same value of parameterηG = 1200 governs the solution. On the other hand, for cases

exp,G andexp,K&G the snapback response is retrieved. This means that deviatoric damage

is more important in the stiffness degradation and decides about the proper behaviour in the

Brazilian test. Contour plots in Figs 5.19–5.22 are presented for the peak and the final state (in

Fig. 5.18 the respective points A and B are marked).

The splitting is obtained only for the cases which correspond to the larger value of fracture

energyGf for the deviatoric part, i.e. the ductilityηG = 600. It is confirmed by means of

Figs 5.19 and 5.20, where the distributions of averaged strain and strain invariants are plotted
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(a) Caseexp,K&G, point A,Iǫ
1 . (b) Caseexp,G, point A,Iǫ

1 . (c) Caseexp,K, point A,Iǫ
1 .

(d) Caseexp,K&G, point B,Iǫ
1 . (e) Caseexp,G, point B,Iǫ

1 . (f) Caseexp,K, point B,Iǫ
1 .

(g) Caseexp,K&G, point A,Jǫ
2 . (h) Caseexp,G, point A,Jǫ

2 . (i) Caseexp,K, point A,Jǫ
2 .

(j) Caseexp,K&G, point B,Jǫ
2 . (k) Caseexp,G, point B,Jǫ

2 . (l) Caseexp,K, point B,Jǫ
2 .

Figure 5.20: Contour plots of strain invariants for isotropic model in Brazilian test.
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(a) DamageωK, exp,G,

point A.

(b) DamageωK, exp,G,

point B.

(c) DamageωK, exp,K,

point A.

(d) DamageωK, exp,K,

point B.

(e) DamageωG, exp,G,

point A.

(f) DamageωG, exp,G,

point B.

(g) DamageωG, exp,K,

point A.

(h) DamageωG, exp,K,

point B.

Figure 5.21: Damage patterns for isotropic model in Brazilian test.

(a) Caseexp,G, point A. (b) Caseexp,G, point B.

(c) Caseexp,K, point A. (d) Caseexp,K, point B.

Figure 5.22: Change of Poisson’s ratioνω for isotropic model in Brazilian test.
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for the two stages (points A and B). The lack of noticeable splitting effect in the pattern occurs

only for the first invariantIǫ1 after the peak (point A), cf. Figs 5.20(a)–5.20(c). Contour plots in

Figs 5.20(j) and 5.20(k) for the second invariantJǫ
2 in final state resemble a wedge formation

like in Fig. 5.7(b). The interaction between the compressive loading and the tensile response

seems to be transferred via the deviatoric characteristics in the model.

Figure 5.21 shows the damage patterns for casesexp,G andexp,K. According to the as-

sumptions included in Table 5.9, the domination of damageωK in caseexp,G and inverselyωG

– in caseexp,K is visible. The variable distribution of Poisson’s ratioνω during the process is

depicted in Fig. 5.22. The splitting effect observed for caseexp,G is expected in the Brazilian

test, so the coincidence with the decrease ofνω during the process is suitable for concrete. How-

ever, the problem with negative values is observed. In Fig. 5.22(b) they are noted in zones of the

damage front, where the strain gradient is more intensive. Recommendations from Section 2.5

could partly overcome the problem with negative values, but the main idea in this subsection

was to confront the model with one and two damage parameters.

5.3 FOUR-POINT BENDING∗

This benchmark is reffered to a reinforced concrete beam, which was analyzed experimentally

under dynamic loading by Eibl et al. [46]. Subsequently, numerical analyses were performed

by Sluys [151,152] and Pijaudier-Cabot et al. [45], using various cracking models.

The data are setup on the basis of [151]. The geometry data are presented in Table 5.4

and Fig. 5.23. Two supports are introduced at the bottom of the beam, while the loading is

imposed at two points at the top. Plane stress conditions for concrete and full bond between

steel and concrete are assumed. Steel is modelled as elastic-ideal-plastic (here shortly called

"plastic") material in uniaxial stress state using truss finite elements. In the experiment concrete

was additionally reinforced by Dramix fibers (1.2% volume) and hence the presence of fibers

gives an additional physical motivation to the gradient enhancement and increased ductility of

the model. The basic material model data are summarized in Table 5.5. Computations are

performed for three different FE meshes, namely: coarse -56 × 8, medium -112 × 16 and fine

- 168 × 24 elements for the concrete matrix.

The parameters of the gradient damage model areκo = 95.6×10−6, α = 0.96 andη = 350.

The internal length scale takes three valuesl = 4/16/96 mm. Finite elements with a linear

interpolation of both the displacements and averaged strain are used. Full integration (FI) is

applied, with the exception of the beam without the reinforcement and statical load. In this case

also stabilized elements with one integral point are adopted and a comparison is carried out.

For dynamics the beam is loaded by impact like in the experiment [46], with slightly differ-

ent load histories for the left and right forces, as shown in Fig. 5.23. The experimental response

∗Section based on [175] and [174]
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Figure 5.23: RC beam in four point bending.

Table 5.4: Four point bending – geometry data for beam.

length:L = 2800 mm, height:B = 250 mm, thickness:T = 200 mm

lower reinforcement:Ar = 308 mm2 (2φ14) located at31.25 mm from bottom

upper reinforcement:Ar = 100.5 mm2 (2φ8) located at218.75 mm from bottom

span between supports:2400 mm, distance between load points:500 mm

Table 5.5: General material data in four point bending test.

FIBER REINF. CONCRETE: STEEL REINFORCEMENT:

Young’s modulus Ec = 32940 MPa Es = 245390 MPa

Poisson’s ratio νc = 0.2 νs = 0.3

Compressive strengthfc = 31.50 MPa fy = 638 MPa

Tensile strength ft = 3.15 MPa as above

Density ρ = 2320 kg/m3 ρ = 7800 kg/m3

is known up to timet = 0.011 s. In computations constant final values of the forces are kept for

a longer time. The load control is used.

In the case of static loading the forces have exactly the same values, and displacement

control is used.

5.3.1 STATICS – PLAIN CONCRETE

Firstly, the static response of the beam without reinforcement is examined to assess the width

of the fracture process zonewf and determine the proper internal length parameterl. Figu-

res 5.24(a), 5.24(b) and 5.24(c) show the load-deflection diagrams for different values ofl and in

each case for three mesh densities used in computations (here only FI is employed). From these
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(b) Mesh-indep. limitl = 16 mm.
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(c) Mesh independ.,l = 96 mm.

Figure 5.24: Diagrams for plain concrete beam.

results and the contour plots of the averaged strain presented in Fig. 5.26 it is concluded that

l = 16 mm is the value for which mesh sensitivity is almost removed. Then, for the coarse mesh

one broader damage zone is still observed, while for the medium and fine meshes two "cracks"

occur. For the medium mesh the width of the fracture bandwf measured on the averaged strain

contour plot is equal to about four times the element size (approximately100 mm), sowf ≈ 6l.

It is only a rough estimation, but it is similar to gradient plasticity [35], wherewf = 2πl. For

smaller values, the size of the element determines the solution (cf. the diagrams in Fig. 5.24(a)).

On the other hand for a largel like 96 mm, mesh-independent results (Fig. 5.24(c)) are obtained,

but strain localization does not occur. Moreover, the increase of the internal length produces a

similar peak load due to averaging over a wider area.

Secondly, like in [174], the influence of the type of integration is examined. For one-point

integration and stabilization in single FE the scaling factorχ is equal to0.0001. From the com-

parison of diagrams in Fig. 5.25 the general tendency of results obtained from computations
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Figure 5.25: Load-deflection diagrams – influence of meshes and integration types.
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(a) Coarse mesh, full integration FI. (b) Coarse mesh, stabilization.

(c) Medium mesh, full integration FI. (d) Medium mesh, stabilization.

(e) Fine mesh, full integration FI. (f) Fine mesh, stabilization.

Figure 5.26: Averaged strain distribution for plain concrete beam.

(a) Coarse mesh, full integration FI. (b) Coarse mesh, stabilization.

(c) Medium mesh, full integration FI. (d) Medium mesh, stabilization.

(e) Fine mesh, full integration FI. (f) Fine mesh, stabilization.

Figure 5.27: Deformation for plain concrete beam.

with reduced integration (i.e. with stabilized FEs) is that a slightly smaller load carrying capac-

ity is obtained than for computations with full integration. As expected, the simulated behaviour

gives the response as for a slightly less stiff beam. The general character of diagrams does not

differ significantly. The diagrams for the fine mesh are the nearest to one another.

From Fig. 5.27 with the deformations of the meshes and Fig. 5.26 with the corresponding

contour plots of the averaged strain measure it is noticed that two zones of localization are sim-

ulated. An exception is constituted by the case with coarse mesh and full integration. Of course

these zones can be associated with cracking of the beam. It is also confirmed in Figs 5.26(a)

and 5.27(a) that among the calculated cases, the solution for the coarse mesh and full integration

leads to the stiffest model. However, according to the plastic hinges theory in bars, both forms

of deformation, both crack patterns and hence one or two localization zones are admissible.

In brief it can be concluded that the reduced integration results in a slightly less stiff re-

sponse of the model, which is consistent with what is known about the influence of integration

quadrature on FEM results.
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5.3.2 STATICS – REINFORCED CONCRETE

In this subsection attention is focused on the aspects of the material model and on the selection

of its suitable parameters. Hence, the computations are performed only for the medium mesh

and full integration.

A comparison of the diagrams for the RC beam is presented in Fig. 5.28. When the carrying

capacity of concrete is reached, the load is transmitted to the reinforcement and a change of the
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Figure 5.28: Comparison of load–deflection diagrams for RC beam.
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slope for each load-deflection path is observed. The peak points are connected with reaching

the yield strength for the reinforcement. The character of each particular path near the peak and

further in the final phase depends on the selection of parameters. However, a general tendency

is that the numerical results converge to the ultimate force computed from the theoretical limit

state of the reinforced concrete beam in bending, namely 42 kN. In Fig. 5.28(a) the diagrams

are compared for different values of ductility parameterη for concrete. For a smaller value ofη

the material is more ductile, fracture energyGf and the value of the peak load are larger. In the

absence of tension stiffening the peak would not appear and a direct transition into the yielding

branch would be noticed. Forη = 700 the computations diverge before the peak, probably

because the assumed fracture energy of concrete is too small.

The corresponding contour plots of the averaged strain are shown in Fig. 5.29. Forη = 175,

the wide band of larger strains, which is connected with the spread of microcracks, reshapes

into one zone of localization understood as a "crack". Forη = 350 or 525, at the beginning

of the computations a diffuse cracking character is obtained as previously, but two "cracks"

can be distinguished and in further phases they dominate. Forη = 700 more dominant zones

occur before divergence. Figure 5.30 shows more clearly that ductility also influences the final

deformation. However, analogically to the beam without the reinforcement, in the theory both

patterns are admissible, because one or two plastic hinges in the beam can be considered.

The material model withη = 350 is accepted for further computations, so that they are

numerically stable and possibly realistic. Ifl = 96 mm is applied the fracture has a totally

distributed character (cf. Fig. 5.31). The failure mode seems to strongly depend on the assumed

length scale and the regularization looks excessive. The parameterl from the simulation in the

previous subsection gives here only a guideline, but remains valid. In Fig. 5.28(b) the diagram

for this case is confronted with the one forl = 16 mm.

Figure 5.28(c) compares load-deflection paths for two different values compressive/tensile

strength ratiok, cf. Eq. (2.15). Ifk = 50 an extremely huge value of the compressive strength

for concrete matrix is implied, so the damage functionfd is never violated in compression. The

slight softening after peak point like for the basic ratiok = 10 is not observed. Moreover, in

the contour plot in Fig. 5.32(b) the damage zone does not reach the top edge directly under the

force location.

Further, the case of gradient damage coupled to Huber-Mises-Hencky plasticity is consid-

ered. The coupling to plasticity does not cause significant changes in the obtained results. If

the concrete compressive strength as the yield limit is assumed, the results of computations are

identical to those without the coupling. It means that the coupling is not activated in the al-

gorithm, because the yield strength is not reached. If the tensile strength as the yield limit is

introduced, the coupling is activated. The effects, depicted in Fig. 5.28(d), are a smaller stiff-

ness and divergence after the peak. The more ductile diagram is related to the contour plots in

Fig. 5.33, where one dominant zone of localization is simulated.
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(a) η = 175, before peak. (b) η = 350, before peak.

(c) η = 175, after peak. (d) η = 350, after peak.

(e) η = 175, final state. (f) η = 350, final state.

(g) η = 525, before peak. (h) η = 700, final state (divergence before peak).

(i) η = 525, after peak.

(j) η = 525, final state.

Figure 5.29: Averaged strain – comparison of results for different ductility parameterη.

(a) η = 175, final state. (b) η = 350, final state.

Figure 5.30: Deformation patterns for two values ofη.

(a) Before peak. (b) After peak.

(c) Final state.

Figure 5.31: Averaged strain for largerl = 96 mm.

(a) k = 10, final state. (b) k = 50 ≈ ∞, final state.

Figure 5.32: Damage – influence of compressive strength to tensile strength ratio.
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(a) Averaged strain, before peak. (b) Equivalent plastic strain, before peak.

(c) Averaged strain, after peak. (d) Equivalent plastic strain, after peak.

(e) Averaged strain, final state. (f) Equivalent plastic strain, final state.

Figure 5.33: Averaged and equivalent plastic strain for damage coupled to plasticity withσy =

ft.

Figure 5.34: Averaged strain for reinforcement ratio multiplied by4, final state.

The original reinforcement ratio is equal to0.62%. For much stronger reinforcement, when

the reinforcement ratio is equal to2.64% (double diameters), the beam exhibits more pro-

nounced softening, see Fig. 5.28(e). This is caused by a shear failure which starts before the

beam can attain its load carrying capacity in bending (here the computed theoretical ultimate

force in bending is about 149 kN). Figure 5.34 shows clearly the zones of shear failure from the

top edge to the thin zones of damage along the bottom reinforcement.

Numerical material modelling and similar analyses for a reinforced concrete beam under

static loading have been performed by many authors, see for example [18,66,117].

5.3.3 DYNAMICS – REINFORCED CONCRETE, IMPACT LOADING

The displacement-time diagram obtained in the experiment is taken from [46]. Here, two as-

pects of numerical simulations are considered, namely the mesh dependence and the influence

of the reinforcement ratio. For the original reinforcement all the computed deflection histo-

ries, shown in Fig. 5.35(a), exhibit a quite good agreement with the experimental response. Of

course, for the stronger reinforcement a stiffer response is noticed. Cross marks denote the final

points of the computations before the solution diverges. Figures 5.35(b) and 5.35(c) present

the velocity and acceleration histories for the original reinforcement. It is seen that the time-

velocity paths are almost independent of the assumed discretizations, whereas the accelerations

plots in the time domain are much more sensitive to the used meshes. Such a phenomenon is

typical for dynamic computations [67]. It is also noticed that the analyzed problem does not

tend towards an equilibrium state, but, to the contrary, the values of velocity and acceleration

increase continuously leading to a failure of the beam.



140 CHAPTER 5. NUMERICAL MODEL APPLICATIONS

-70

-60

-50

-40

-30

-20

-10

 0

 0  0.002  0.004  0.006  0.008  0.01  0.012

t [s]

Experiment
Coarse

Medium
Fine

Coarse, strong reinf.
Medium, strong reinf.

Fine, strong reinf.

P
S

frag

w
c

[m
m

]

(a) Time–deflection diagrams.

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0  0.001  0.002  0.003  0.004  0.005  0.006

t [s]

Coarse
Medium

Fine

v c
[ m

m s
]

(b) Time–velocity diagrams.

-4e+06

-3.5e+06

-3e+06

-2.5e+06

-2e+06

-1.5e+06

-1e+06

-500000

 0

 500000

 0  0.001  0.002  0.003  0.004  0.005  0.006

t [s]

Coarse
Medium

Fine

a
c

[ m
m s2

]

(c) Time–acceleration diagrams.

Figure 5.35: Deflection, velocity and acceleration history diagrams.

Figures 5.36 and 5.37 present the averaged strain measure and deformation at the same time

instantt = 0.00625 s for the original and stronger reinforcement, respectively. For the beam

with the original reinforcement mesh-independent results are reproduced. For the coarse mesh

the contour plot of averaged strain in Fig. 5.36(a) strongly depends on the size of the mesh,

but for the medium and fine meshes the contour plots (Figs 5.36(c) and 5.36(e)) are almost the

same. It is analogical behaviour like for results of the plain concrete beam under statical load.

Apart from the fact that the final points of the time-deflection paths are different, the character

and tendency of failure patterns are really well-reproduced for each mesh.

However, mesh dependence is observed for the strong reinforcement. Although the di-

agrams run almost identically, two times longer paths can be followed for the coarse mesh.

It is confirmed if the averaged strain measure in Fig. 5.37 is compared. The time instant

t = 0.00625 s is just before computations diverge for the medium and fine meshes, while

for the coarse mesh the averaged strain contour plot does not reach the state of clear cracks

yet. The character of the final contour plots for averaged strain in the case of medium and fine

meshes is also different.
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(a) Averaged strain, coarse mesh. (b) Deformation, coarse mesh.

(c) Averaged strain, medium mesh. (d) Deformation, medium mesh.

(e) Averaged strain, fine mesh. (f) Deformation, fine mesh.

Figure 5.36: Averaged strain and deformation for three different meshes (t = 0.00625 s, beam

with original reinforcement).

(a) Averaged strain, coarse mesh. (b) Deformation, coarse mesh.

(c) Averaged strain, medium mesh. (d) Deformation, medium mesh.

(e) Averaged strain, fine mesh. (f) Deformation, fine mesh.

Figure 5.37: Averaged strain and deformation for three different meshes (t = 0.00625 s, beam

with stronger reinforcement).

Some other experimental tests, the description of material models and simple numerical

benchmarks for a three-point bending RC beam under impact loading can be found in [11,19].

5.4 DOWEL ACTION IN 3D

Many experiments of dowel action were performed with reinforcement pushed against concrete

core (called strong mechanism, see for example [39]) or a concrete cover (weak mechanism)

with (cf. [40]) or without embedded stirrups in concrete or fibre-concrete specimen like in [41].

The dowel action in reinforced concrete can simply be analyzed by means of the so-called dowel

disk test in two-dimensional plane stress analysis (cf. [42,50,85]) or as a three-dimensional slice

like in Appendix C (see also [85]). However, the weak mechanism of the loading in the dowel
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disk test is slightly different from the dowel bar test. In the former one the rebar is pulled

upwards on both the front and back sides, while in the latter one only on the front side. If

dowelling against the concrete cover is simulated, localization directly below and above the re-

inforcement is firstly observed. Then shear transmission occurs, which leads to crack opening.

A more realistic dowel action is reproduced when, after crack opening, spalling of the cover

in the third dimension finally emerges, hence the dowel disc test is insufficient. For a better

agreement with observations of structures (for instance: joints, slab foundations) and also ex-

periments, the numerical analysis requires modelling in three dimensions. Here the dowel bar

test is modelled and comparison of results with the experiment [41] is performed (see Fig. 5.38).

The following geometry data were adopted in the experiment: height – 200 mm, width –

300 mm and length – 400 mm. In the simulation only a symmetric half of the whole specimen

is considered in order to reduce the computing time. The computations for the whole specimen,

but with a coarse division in length direction were performed in [85]. Additionally, the compu-

tational domain is limited to the first half-length of the specimen, so that its dimensions in the

numerical analysis are as follows: height – 200 mm, width – 150 mm and length – 200 mm.

Boundary conditions, apart from the cutting rear plane, are depicted in Fig. 5.39(a). The hori-

zontal normal displacements in the symmetry plane are blocked. The bottom wall is clamped.

Table 5.6: Material model data for dowel bar.

CONCRETE: damaging

Young’s modulus:Ec = 35600 MPa

Poisson’s ratio:ν = 0.2

Tensile strength:ft = 3.64 MPa

Equivalent strain measure:

modified von Mises definition,k = 10

Damage growth function:

exponential softening

α = 0.98 η = 550

Fracture energy:Gf = 0.0867N/mm

Internal length scale:

l = 2
√

2 mm, i.e.c = 4.0

Threshold:κo = 10.225 × 10−5

INTERPHASE: damaging

Young’s modulus:E∗
c = 17800 MPa

Poisson’s ratio:ν = 0.2

Tensile strength:f ∗
t = 2.912 MPa

Equivalent strain measure:

modified von Mises definition,k = 10

Damage growth function:

exponential softening

α = 0.98 η = 450

Fracture energy:Gf = 0.0867N/mm

Internal length scale:

l = 2
√

2 mm, i.e.c = 4.0

Threshold:κo = 16.36 × 10−5

REINFORCEMENT (STEEL): elastic

Young’s modulus:Es = 206000 MPa

Poisson’s ratio:ν = 0.3
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Figure 5.38: Dowel bar test – from experiment in [41].

(a) Load and boundary conditions.

CONCRETE

INTERPHASE

REINFORCEMENT

(b) Mesh partition on materials.

Figure 5.39: Dowel bar test – numerical definition of problem.
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(a) Mesh A. (b) Mesh B.

Figure 5.40: Dowel bar test – applied meshes.

Two kinds of supports at the cutting rear plane are analyzed:

• case 1 – the rear plane is not supported,

• case 2 – the horizontal displacement in the direction parallel to the reinforcing bar is equal

to zero on the rear plane.

It is common knowledge, that the real situation is between these two cases. The load is applied

upwards to the axis of the reinforcement at the front point under displacement control as shown

in Fig. 5.39(a), so that the rebar is pushed against the concrete cover. The diameter of the rebar

is equal to 18 mm and the concrete cover has the same thickness.

In the computational domain not only concrete and reinforcement are specified, but also an

interface zone called an interphase, similarly to the numerical analysis of the dowel disk test

in [42, 50]. The interphase joins the concrete matrix and the steel rebar and weaker concrete

within it is assumed. The thickness of the interphase is assumed to equal 3 mm. On the basis

of [41] the compression strengthfc = 45.56 MPa (FRB1 concrete) is introduced and other

parameters for concrete are calculated according to [51]. The material data are presented in

detail in Table 5.6. Young’s modulus (E∗
c = 0.5Ec) and the tensile strength (f ∗

t = 0.8ft) are

reduced for the interphase. The connected quantities are recalculated.

Two different meshes (Fig. 5.40) have been prepared basing on a mesh-inpendence investi-

gation: mesh A – semi-structural, mesh B – pseudo-adapted. Only linear brick B8/8 elements

are employed and the pure gradient damage model is applied for concrete and the interphase.

The partition of mesh B into materials is shown in Fig. 5.39(b). The stirrups and ducts inside

the specimen are omitted.
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Figure 5.41: Dowel bar test – load-displacement diagrams.

The load-displacement diagrams in Fig. 5.41 show that the nearest diagram to the experi-

mental path is in case 2 for mesh B. The level of the peak value is quite close, although all the

simulations exhibit a much higher initial stiffness. For both meshes in case 1, when the cutting

rear wall is not constrained, the softening curve occurs. It turns out that the localization zone

reaches the rear boundary plane (cf. Fig. 5.42), so such a kind of support is not acceptable.

After the peak in case 2 (see again Fig. 5.41) for mesh A and B stages of mild softening and

hardening are observed. Despite the fact that the crack patterns presented in Fig. 5.43 corre-

spond to the results in [41] (Fig. 5.44), the obtained diagrams approximate the experimental

path rather coarsely. The inclination of the propagating crack (cf. also the experiment in [50])

and the domain of the spalled cover are similar to the ones observed in the experiment. If at-

tention is focused only on the contour plots (Fig. 5.43) again it is noticed that the results are

almost mesh-independent. It is possible that the mesh adapted in the third dimension and/or

the analysis of the full-length symmetry domain could give even better results. In Fig. 5.45 the

development of the damage parameter is shown. It is expected that fracture under and crushing

over the rebar (Fig. 5.45(a)) are seen firstly. Next, a localization zone develops in the direction

of the top surface and along the specimen (Figs 5.45(b) and 5.45(c)). The final failure stage,

where the damage zone turns to the symmetry plane, was presented earlier in Fig. 5.43(b).
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(a) ω, mesh A. (b) ω, mesh B.

(c) ǭ, mesh A. (d) ǭ, mesh B.

Figure 5.42: Dowel bar test. Final contour plots for case 1 (v = 1.0 mm).
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(a) ω, mesh A (v = 1.21 mm). (b) ω, mesh B (v = 2.05 mm).

(c) ǭ, mesh A (v = 1.21 mm). (d) ǭ, mesh B (v = 2.05 mm).

Figure 5.43: Dowel bar test. Final contour plots for case 2.
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Figure 5.44: Dowel bar test. Crack pattern evolution for concrete FRB1 in experiment [41],

front and top view.

(a) v = 0.076 mm (b) v = 0.4 mm (c) v = 1.0 mm

Figure 5.45: Dowel bar test. Development of damage parameter, mesh B, case 2.
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5.5 RCSLAB-COLUMN CONNECTION†

5.5.1 PUNCHING SHEAR IN RC SLABS – PROBLEM DESCRIPTION

AND EXPERIMENT [1]

In multi-storey buildings designers commonly apply flat slab-column structures instead of slab-

girder-column combinations. Advantages of flat floors are well-known, they include the reduced

height of buildings and more economical design and performance. However, the problem of

punching shear failure occurs in flat slabs.

When a typical internal slab-column segment is considered, cracks usually form due to

bending of the slab, on its surface under tensile stresses, in radial directions from the column.

On the other hand, punching can be caused by a concentration of shear stresses in the vicinity of

the column. In this case cracking along circular lines is observed directly around the column on

the compressed surface of the slab and, at a certain distance around the column, on the surface

under tension. The description of this phenomenon, some experimental results and analytical

model can be found for instance in [104,163].

Strengthening of reinforced concrete slabs against punching shear is then a necessity in

many practical situations. Many well-known methods which help one to avoid the punching

failure can be used during the construction of a building, e.g. thickening of slabs near column

capitals or additional reinforcement (stirrups, bent bars, studs, etc.). A new technique for the

retrofit of existing slabs near slab-column connections has recently been developed and experi-

mentally tested at the University of Waterloo [1]. To increase the punching shear strength and

ductility a number of shear bolts like in Fig. 5.46 are installed in the critical zone near the col-

umn. They are steel bars anchored at both ends at slab surfaces. The strengthening requires

drilling of a small hole through the slab and anchoring the bolt. The bolts are not bonded to the

slab and no prestressing is required. This simple method can effectively prevent the destruction

due to punching shear failure in slabs.

The problem of punching shear is not trivial to be simulated, since the interaction between

flexural and shear failure needs to be reproduced, while localized fracture zones evolve. Some

numerical simulations of punching shear are presented in [93,105,111,133,166,177]. Although

the problem of proper simulation of localized failure seems to be less severe in reinforced struc-

tures, it has been decided to employ a regularized continuum description to minimize the effects

of pathological mesh sensitivity and numerical instabilities. This section thus reports on the

simulations of a laboratory test using the damage model which was first proposed in [125] and

is developed also in this thesis. It includes a gradient localization limiter and linear kinematics.

For comparison, the same configuration is computed with the classical cracking model using

the DIANA FE package [43].

†Section partly based on [176]
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Figure 5.46: RC slab-column connection. Bolt installed to prevent punching shear failure in

existing slabs. Photo quoted from [1].

Table 5.7: RC slab-column connection – experimental data [1].

Dimensions mm mm mm

Slab 1800 1800 120

Column 150 150

Supports 1500 1500

Concrete

strength MPa

Tensile 2.13

Compressive 41

Reinforce- Spacing Cover Section Yield

ment area strength

mm mm mm2 MPa

In slab:

Tensile 90/100 20 100 455

Compressive 200 20 100 455

In column:

Bars 300 455

Ties 50 455

Bolts:

First 45÷60 70.8 381

Subsequent 75÷90 70.8 381

In the experimental research [1] full-scale models representing interior slab-column connec-

tions were tested. The dimensions of the slabs were1800 × 1800 × 120 mm and the columns

had square cross-section150 × 150 mm. Simple supports were introduced at the bottom plane

of the slab150 mm from its edges. Additionally, the corners of the slab were clamped at the

top against lifting. The specimen was loaded downwards through the column until failure.

Note that the experimental configuration was in an upside down position in comparison with

the real structural case. The flexural reinforcement was formed by bars of cross-section area

Ar = 100 mm2. The bars in the tension mat had the spacing of100 mm and90 mm for the

upper and lower bar families, respectively, in order to produce almost identical bending capac-

ities in the two orthogonal directions. The reinforcement bars at the compression side formed

a grid with two times larger spacing. The column segments were reinforced with 4 bars having

Ar = 300 mm2.

Some slabs had openings constructed near the column. One slab, called SB1, had no shear

bolts installed and served as a control specimen. The other specimens were strengthened using

an increasing number of symmetrically placed bolts with9.5 mm diameter, at most four in each

row, as in specimen SB4 shown in Fig. 5.47(b). The geometry and material properties from the

experiment are gathered in Table 5.7.
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(a) Crack pattern for SB1. (b) Crack pattern for SB4.

Figure 5.47: RC slab-column connection. Final crack patterns for slabs SB1 and SB4, visible

from the tension side. Photos quoted from [1].

The test results in terms of deflections, strains and crack widths were monitored. The exper-

imental load-deflection diagrams for SB1 and SB4 are reproduced further in Fig. 5.49 together

with numerical results. The final experimental crack patterns for the selected slabs SB1 and

SB4, as seen from the tension side, are presented in Fig. 5.47. For all examined specimens,

the flexural cracks initiated at column corners and propagated radially towards the slab edges.

It was found that specimen SB1 failed due to punching shear, but specimen SB4 failed in a

flexural mode. The application of shear bolts increased the shear strength of the connection and

significantly improved its ductility.

5.5.2 SIMULATION – SIMPLIFICATIONS AND DATA

For the simulation a symmetric slab-column geometry and loading are selected, hence one

quarter of the configuration is analyzed. The specimens with openings are not considered. The

slab and column are discretized with B8/8 elements, i.e. a linear interpolation of the displace-

ments and averaged strain is used with full integration (FI). A top view on the applied mesh

is presented in Fig. 5.48(a). Elasto-plastic truss elements are employed as the reinforcement.

Bond-slip between concrete and reinforcement is neglected. In the numerical simulations the

configuration is limited by support lines, i.e. a slab segment with dimensions1500×1500×120

mm is computed. Clamps are simulated by supporting three nodes near the corner of the slab.

The distance between the tensile reinforcement truss elements is equal to100 mm in both di-

rections. The basic data for the computations are specified in Table 5.8. The location of the

whole reinforcement including bolts is depicted in Fig. 5.48(b). Two cases are considered in
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(a) Finite element mesh. (b) Reinforcement in simulated specimen.

Figure 5.48: RC slab-column connection. Simulated specimen.

Table 5.8: RC slab-column connection – numerical simulation data.

Dimensions mm mm mm

Slab 1500 1500 120

Column 150 150

Supports 1500 1500

Elastic Young’s Poisson’s

constants modulus ratio

GPa

Concrete 34.4 0.2

Steel 205 0.3

Concrete strength MPa

Tensile,ft 2.13

Compressive,fc k × ft

Reinforce- Spacing Cover Section Yield

ment (to axis) area strength

mm mm mm2 MPa

In slab:

Tensile 100 24 100 455

Compress. 200 24 100 455

In column:

Bars 25 300 455

Ties 50 455

Bolts:

First 50 70.8 381

Subseq. 75 70.8 381

the simulations: the slab without bolts (SB1) and the slab with eight bolts at each side of the

column (SB4), idealized using bar elements connected to the slab at its surfaces. Static loading

shown in Fig. 5.48(a) is applied under displacement control, i.e. the vertical movement of the

upper plane of the column segment is imposed monotonically.

The parameters for the gradient damage model are as follows: thresholdκo = 6.2 × 10−5,

exponential softening according to Eq. (2.21) with residual stress parameterα = 0.94 and

ductility parameterη = 400. Modified von Mises definition (2.15) is employed and it is treated

as the basic case, when the ratiok = fc/ft is equal to 20. This value ofk approximates the
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material data. In the simulation this model can be combined with the Burzyński-Drucker-Prager

hardening plasticity by means of weak coupling, i.e. only the elastic strains induce damage.

The parameters for the plastic part of the model are: yield strengthσy = 2.13 MPa, hardening

modulus for cohesionh = 17.2 GPa, friction and dilatancy coefficientssinϕ = sinψ = 0.5.

Another possibility is to use the isotropic model with different damage growth for volumetric

and deviatoric parts. There are analyzed cases with combinations of ductility paramatersηi (i =

K,G), similarly to the previously presented examples for the isotropic model (cf. Subsection

5.2.2). At the beginning the internal length scale wasl = 20 mm, but after the examination of

the results this value has been changed. A detailed explanation is given in the next subsection.

For l = 20 mm the relationc = 1
2
l2 is assumed to be valid [4] and the width of the fracture

band is estimated aswf ≈ 6l. In order to mitigate the effect that cracking in the slab induces

damage in the column due to non-locality, which does not seem to have a physical background,

the behaviour of concrete elements in the column is constrained to be elastic by introducing

κo = 6.2 × 10−3.

Since the simulation results are not satisfactory for the model of the slab without bolts, the

same configuration is computed with the classical smeared cracking model using the DIANA

FE package [43], see also e.g. [140]. Here brick elements with selective integration of shear

terms are used. The discrete elasto-plastic reinforcement bars are embedded in the continuum

elements. In the cracking model in DIANA the fracture energy isGf = 106.5 N/m, the es-

timated numerical crack band width iswf = 24 mm (smallest element size) and the shear

retention factor equals0.2.

5.5.3 NUMERICAL RESULTS AND DISCUSSION

Figure 5.49 presents a comparison of experimental and computed diagrams. Initial responses of

both numerical models, without and with coupling of damage to plasticity, are too stiff. It is also

clearly seen that almost identical results are computed for the simulation without and with bolts

(experimental case SB1 and SB4, respectively). Actually, instead of four different diagrams

from numerical analyses, only two can be distinguished, the first one for pure damage and the

second for the coupled model. This proves that the bolts are in fact hardly active in the numerical

model, which is in contradiction with the experimental results. The modelling of bolts seems

to be too crude, it does not include the anchorage bond like in [111]. Moreover, the peak for

pure gradient damage occurs too early and the whole equilibrium path is not representative with

reference to either of the experimental diagrams. The load carrying capacity is well-reproduced

for the coupled model with bolts (experimental case SB4). However, this is not crucial: it is

not too difficult to tune the parameters of the damage-plasticity model to achieve this. On the

other hand, it is shown that the coupling to plasticity results in a largely increased ductility of

the model. All branches are obtained forl = 20 mm. This value of the internal length is quite

large, the expected width of the fracture band is approximatelywf = 120 mm which is equal to



154 CHAPTER 5. NUMERICAL MODEL APPLICATIONS

 0

 50

 100

 150

 200

 250

 300

 350

 0  10  20  30  40  50
w [mm]

Damage + plasticity, SB1

Damage + plasticity, SB4

Damage, SB4

Damage, SB1

Experiment, SB4

Experiment, SB1

P
[k

N
]

Figure 5.49: RC slab-column connection. Load-displacement diagrams, experiment versus

simulation.

the slab depth. The averaging and smoothing effect is then quite strong, the dissipated fracture

energy strongly exaggerated, and for larger deflections damage is predicted in a large part of the

slab, which does not seem realistic.

Figure 5.50 presents the simulated averaged strain patterns for the case with the coupled

damage-plasticity model and the simulated bolts taken into account (thus representing the ex-

perimental case SB4). The contour plots of the averaged strain measure are connected with the

distributed cracking zones for three slab deflection valuesw ≈ 3, 12, 41 mm. The plots are

drawn for the bottom face of the slab which exhibits tensile cracks (figures on the left) and for

a cross section of the configuration with a vertical symmetry plane (on the right). A bending

mode of failure is reproduced and the fracture first localizes in the direct vicinity of the col-

umn, then extending in zones following the symmetry planes of the configuration. As can be

noticed in Fig. 5.50(e) and 5.50(f) the largest strains finally occur at the bottom slab-column

connection line. These averaged strain patterns are similar for the case without bolts, which is

unrealistic and means that the model fails in predicting the punching shear phenomenon. As

shown in [176] the tendency that the slab is cut directly at the column is observed also for other

values of parameterk = fc/ft.

The unsuccessful results induce the search for the punching shear failure mode similar to

the experimental case SB1. Therefore, in next simulations attention is focused on the model

without bolts and a parametric study aiming at the reproduction of the punching shear effect.

In contradiction to the data assumed in the previous section, a quite small value of the internal

length parameterl = 4 mm is adopted. The related valuewf = 24 mm equals the element size

in the dense mesh part, so this seems to be the limit value for the regularization to be active.

Additional computations withl = 8 mm can be treated are an intermediate case. The second
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(a) Deflectionw ≈ 3.0 mm, bottom view. (b) Deflectionw ≈ 3.0 mm, side view.

(c) Deflectionw ≈ 12.0 mm, bottom view. (d) Deflectionw ≈ 12.0 mm, side view.

(e) Deflectionw ≈ 41.0 mm, bottom view. (f) Deflectionw ≈ 41.0 mm, side view.

Figure 5.50: RC slab-column connection, SB4. Contour plots of averaged strain for gradient

damage-plasticity,l = 20 mm.

change is the introduction of an alternative denser mesh with a double number of elements

along the height of the slab. The difference between basic and denser meshes is illustrated in

Fig. 5.52. From now on the basic mesh will also be called the coarse mesh.

The previous computations have confirmed that the internal length parameterl = 20 mm is

too large. The non-locality region is so wide that the model is not able to analyze the formation

of cracks in the slab beside the ones originating from the flexural failure mode. The load-
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Figure 5.51: RC slab-column connection, SB1. Load-displacement diagrams, influence of in-

ternal length scale, gradient damage (without plasticity).

(a) Coarse mesh,w ≈ 5.5 mm, side view. (b) Denser mesh,w ≈ 9.5 mm, side view.

Figure 5.52: RC slab-column connection, SB1. Deformation (magnification factor is 10) of slab

for two different meshes, gradient damage,l = 4 mm.

deflection diagrams, where the influence of the internal length scale is verified, are depicted in

Fig. 5.51. Here the pure gradient damage model is adopted. The equilibrium paths for the two

considered meshes are plotted for the cases with smallerl (l = 4 mm or8 mm). Additionally

the diagram forl = 20 mm and the coarse mesh, which has been previously presented in

Fig. 5.49, is included. The diagram for the case withl = 4 mm and the denser mesh resembles

the experimental path. After the initial elastic phase in the numerical diagram a change of its

slope fits the general character of the diagram observed in the experiment. Furthermore, the

computations diverge, when the load reaches about 250 kN similar to the experimental load

carrying capacity. For the other cases computations diverge earlier. Ifl = 8 mm is adopted, in

the final stage a change of stiffness is noticed into small softening.

The punching shear failure is a sudden phenomenon. Usually the moment of this failure

follows the yielding of the tensile reinforcement in the slab. However, if the main reinforcement

ratio is large enough it is also possible that the punching shear effect appears before the yield

condition is attained in the reinforcement, see [163]. In the case withl = 4 mm and the

denser mesh, which seems to be the most adequate from the view point of the experiment,
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the maximum stress in the tensile reinforcement of the slab is approximately 414 MPa (smaller

than the yield strength).

The deformation of the slab at the final stage is depicted in Fig. 5.52. It is visible for both

meshes that the slab is not cut directly at the column, but on the other hand the deformed

elements do not form a clear oblique shear crack as is seen in experiments and reality.

Figures 5.53 and 5.54 illustrate the simulated averaged strain patterns for the casel = 4 mm

and both meshes. Similarly to Fig. 5.50, the contour plots are made for the bottom face of

the slab and for the cross section along the vertical symmetry plane. Side views of averaged

strain distributions again show that the simulated slab is not cracked near the connection, al-

though the shear cone is poorly reproduced. The patterns at the bottom face of the slab are

different from the case withl = 20 mm. Now, for the small value of the internal length param-

eter, many flexural cracks are initiated at column corners and propagate radially. The averaged

strain distributions still do not simulate circular cracks at some distance from the column, hence

(a) Deflectionw ≈ 5.5 mm, bottom view. (b) Deflectionw ≈ 5.5 mm, side view.

Figure 5.53: RC slab-column connection, SB1. Contour plots of averaged strain for coarse

mesh, gradient damage,l = 4 mm.

(a) Deflectionw ≈ 9.5 mm, bottom view. (b) Deflectionw ≈ 9.5 mm, side view.

Figure 5.54: RC slab-column connection, SB1. Contour plots of averaged strain for denser

mesh, gradient damage,l = 4 mm.
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(a) Deflectionw ≈ 6.75 mm, bottom view. (b) Deflectionw ≈ 6.75 mm, side view.

Figure 5.55: RC slab-column connection, SB1. Contour plots of averaged strain for denser

mesh, gradient damage,l = 8 mm.

the punching shear fracture along inclined cone-shaped surface is rather not observed. The

results forl = 4 mm look better than forl = 8 mm also when averaged strain patterns are com-

pared. Figure 5.55 presents the bottom and side views forl = 8 mm. It was expected that the

slightly more regularized model would make the results more correct and that circular cracks

would be reproduced properly together with radial ones. It turns out that introducing a little

larger non-locality, which corresponds to about two elements in the mesh, does not improve the

results. Of course the localization zone is wider, butl = 8 mm results in dominating averaged

strains closer to the column than it is forl = 4 mm.

The load-displacement diagrams depicted in Fig. 5.56 are drawn for computations with the

denser mesh and two other options of the numerical model. As expected, the equilibrium path

obtained for damage-plasticity is stiffer than for pure damage, but the solution diverges when

the load is smaller than 200 kN. The results for the alternative loading function according to

Mazars’ definition (see Eq. (2.12) and Fig. 2.4), which seems to be promising for concrete in

tension-compression regime, completely fail. It is reflected in the diagram in Fig. 5.56.

Next the numerical analysis is performed taking into account the isotropic damage model

and the denser mesh. The internal length parameterl is equal to4 mm. Table 5.9 summarizes all

examined cases, where different ductility parameters for exponential softening law are adopted.

Considering diagrams in Fig. 5.57 it can be concluded that the model with volumetric-deviatoric

split (and as a consequence with two damage parameters) does not improve the results. A more

intensive damage growth whenη = 600 induces more brittle response and computations di-

verge for the load equal to 170 kN. As expected, the diagrams for the cases where damage

grows differently for volumetric and deviatoric parts run between the bounding casesexpand

exp,K&G. The diagrams for casesexp,G andexp,K&G are very close to each other. It should

be emphasized that in the caseexp,G the damage growth function for the deviatoric part is the

same as in the basic caseexp,K&G (η = 400).
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Figure 5.56: RC slab-column connection, SB1. Load-displacement diagrams, denser mesh,

l = 4 mm.

Table 5.9: RC slab-column connection, SB1 – cases for isotropic gradient damage.

Symbol Parameters for exponential softening Damage

of case volumetric part deviatoric part growth

exp ηK = 600 ηG = 600 more intensive

exp,K ηK = 400 ηG = 600 ωK < ωG

exp,G ηK = 600 ηG = 400 ωK > ωG

exp,K&G ηK = 400 ηG = 400 less intensive
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Figure 5.57: RC slab-column connection, SB1. Load-displacement diagrams obtained for

isotropic model,l = 4 mm.
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(a) Deflectionw ≈ 6.5 mm, bottom view. (b) Deflectionw ≈ 6.5 mm, side view.

Figure 5.58: RC slab-column connection, SB1. Contour plots of averaged strain for isotropic

gradient damage, caseexp,G, l = 4 mm.

Figure 5.58 depicts contour plots of averaged strain for caseexp,G. In fact, these results are

similar to the ones obtained for the basic caseexp,K&G (cf. Fig. 5.54). The larger difference

between the ductility parameters for volumetric and deviatoric damage can involve the problem

with negative values of Poisson’s ratioνω (see Section 2.4). Generally, introducing the isotropic

model does not cause the results to reproduce the punching shear phenomenon.

Since a possible reason for the above-described incorrect simulation results can be that the

nonlocal smoothing prevents the formation of secondary inclined fracture surface related to

shear, the analysis of the SB1 configuration (without bolts) is repeated once again with local

smeared crack models in the DIANA FE package. Two types of the model are verified, namely
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Figure 5.59: RC slab-column connection, SB1. Load-displacement diagrams obtained using

DIANA package.
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fixed and total crack models, [43]. The load-displacement diagrams in Fig. 5.59 are obtained

for the two considered cases: the slab with the basic main reinforcement (cross-section area

equals 100 mm2) and double cross-section of the main reinforcement (to increase the flexural

stiffness of the slab). It is noticed that for the fixed crack model the failure of simulation for

the two cases occurs at similar load values. On the other hand for the total crack model the

computations end when similar values of the deflection are reached.

Figures 5.60 and 5.61 present the contour plots of the equivalent deviatoric strain measure

Jǫ
2 for the two respective models, performed right before the computations stop. Neither of

the plots reproduces satisfactorily the punching shear failure mode. Secondary fracture zones

(a) Bottom view. (b) Double reinfo in slab, bottom view.

(c) Side view. (d) Double reinfo in slab, side view.

Figure 5.60: RC slab-column connection, SB1. Contour plots of equivalent strain for fixed

crack model, final state.
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(a) Bottom view. (b) Double reinfo in slab, bottom view.

(c) Side view. (d) Double reinfo in slab, side view.

Figure 5.61: RC slab-column connection, SB1. Contour plots of equivalent strain for total crack

model, final state.

emerging at some distance from the column are observed for the fixed crack model, which could

initiate the shear cone similar to the experiments, but the iterative process fails. Moreover, the

ductility of both types of the model is insufficient, see the diagrams in Fig. 5.59.

The numerical simulations of fracture in the experimental slab-column configuration taken

from [1] do not predict the expected punching shear failure for the model without strengthening

bolts. For the case with the denser mesh and the small value of the internal length parameter

l = 4 mm the solution is the closest to the experimental observations, but in fact it is unclear if

the punching shear failure is reproduced. In fact, the results are neither satisfactory for different



5.5. RC SLAB-COLUMN CONNECTION 163

versions of the gradient-enhanced model implemented in FEAP, nor for the classical crack

models from DIANA. The inability of the gradient model in simulating the punching shear

failure can have the following reasons:

• the employed meshes are too coarse,

• the nonlocal smoothing prevents the formation of secondary inclined fracture surface

related to shear effect causing the bending mode to be dominant,

• the proposed loading functions are improper for the three-dimensional analysis of a con-

figuration where shear (mixed mode) effects should be precisely computed,

• full bond between concrete and reinforcement seems to be a too rough modelling of the

reinforcement structure (without and with bolts),

• since the gradient-enhanced isotropic model with two damage parameters does not im-

prove the results, maybe an anisotropic damage description for concrete with a gradient

or nonlocal integral enhancement of all strain tensor components could be a solution.

Summarizing, the implemented numerical model reproduces the bending-type failure, so phe-

nomena where shear effects govern the final fracture should be analyzed using another (possibly

fully anisotropic) version of the damage model, or another fracture model. It is a good subject

for further research.





CHAPTER 6

CONCLUSIONS

Extensions of the gradient damage model coupled to the plasticity theory have been verified in

this thesis. This model, proposed in [36, 117], is employed to reproduce properly the phenom-

ena of localization and failure in (reinforced) concrete. The cracking process in quasi-brittle

materials like concrete, which is unavoidable during the service time of structures, can be ob-

jectively simulated owing to the presence of the intrinsic length scale in the formulation. This

is because the non-local approach like gradient damage guarantees that the spurious mesh sen-

sitivity of results is avoided. Three-dimensional problems, dynamics without damping effects

and the implementation of effective finite elements have been examined.

At the point level the scalar damage theory in the strain space has been reviewed. The cou-

pled model has been adopted in order to incorporate irreversible strains, and as a consequence a

better agreement with the real response. Hardening plasticity has been formulated in the stress

space, so the coupling has been introduced according to [74,145]. Moreover, the crack closure

phenomenon, which is observed in structures subjected to load reversals, has been included.

Although this seemingly complicated model can represent different physical components, there

are only few model parameters to determine.

If isotropic damage is considered, it is possible to equip the damage model with two strain

measures and/or two damage parameters. The simplest case with one equivalent strain measure

and two different damage parameters has been implemented. In this case two different groups of

paramaters can be adopted for damage growth definitions. Since linear softening functions can

provide unrealistic change of the Poisson’s effect, exponential softening law is more adequate.

The so-called Willam’s test has been performed to verify each option of the model. In this

benchmark at the beginning a material point is loaded in uniaxial tension. After the tensile

strength is reached, tension in two directions and additionally shear are enforced. Such loading

process is observed during the analysis of real RC structures as mentioned in [171]. The results

for all the options of the model show that the conditions to pass this test have been satisfied.

The initial boundary value problem (IBVP) has been regularized by means of the averag-

ing Helmholtz equation identically to [125], so independent interpolations of displacements

and averaged strain fields have been employed. The two-field formulation holds for scalar and
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isotropic gradient damage, as long as one strain measure is applied. However, for the possi-

ble approach with two strain measures, separately for the volumetric and deviatoric parts, a

discretization with three primary fields should be introduced.

For dynamics, the algorithm requires only a minor modification with respect to the static

case proposed in [36], i.e. the equations of motion are implemented as an extension of the

equilibrium equations. The finite elements (FEs) have been programmed in the FEAP package

[158] using three variants ofC0-continuous interpolation.

The properties of the implemented elements have been examined by means of spectral analy-

sis of a single FE including different types of interpolation and integration. In three-dimensional

(3D) elements with full integration (FI) the computational cost for large scale problems can be

too much and one-point Gaussian integration is a better solution. Before attacking 3D im-

plementation in the future, the 2D four-noded element with reduced integration (RI) has been

constructed. If RI is applied in the four-noded FE mesh then for effective computations a sta-

bilization must be assured in the formulation. The possibility of stabilization in such finite

elements has been proposed and verified in the spectral analysis. As demonstrated, the sta-

bilization terms are needed in both variational equations, i.e. the motion equations and the

averaging equation. Then a proper quality of FE and stable numerical results are obtained.

In the discussed approach two different methods of stabilization for the given equations have

been assumed, namely Galerkin least-square (GLS) method for the equations of motion accord-

ing to [162, 178] and operatorγ method for the averaging equation according to [13]. This is

because the GLS method for the averaging equation does not work, as confirmed in Appendix B.

The simulation of uniaxial tension for a bar with imperfection is the most basic benchmark.

The employed numerical model was verified previously in [36,125], but some new results have

been shown in this thesis. The differences between pure gradient damage and the coupled

model have been brought up. Neither the presence of stabilization in the formulation, nor also

the isotropic split in the model destroy the quadratic rate of convergence during the iterative

process. It is noticed, that in large scale problems discretized with fine meshes of twenty-noded

3D FEs too much time can be consumed. Therefore the FE with linear interpolation has been

chosen despite the fact that the solution can then produce less accurate results.

The differences in the dynamic response between plain and reinforced concrete have been

examined by means of the 2D direct tension test. For the same load scaling factor for plain

concrete the elongation tends to infinity due to fracture, while for reinforced concrete the axial

displacement oscillates around a certain state. Nevertheless, for both responses a standing wave

and strain localization have been observed.

A cantilever beam subjected to reversed loading has been analyzed in order to verify the cor-

rectness of the algorithm with crack closing. For the model with crack closure effect the original

stiffness has been retrieved, but only for zero Poisson’s ratio. If crack closing is activated and
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ν 6= 0, the solution diverges. The reason is probably the discontinuity (Heaviside function)

introduced in the formulation, while the crack closure phenomenon has the continuous charac-

ter and the change of the stiffness does not involve any jumps. The experimental observation

is that microdefects do not close suddenly but rather gradually, so it should be reflected in the

numerical model, cf. e.g. [53].

The compressive loading in the so-called Brazilian test induces splitting inside the concrete

specimen and the tensile strength can be established during the experiment. The gradient dam-

age model, scalar or isotropic, is able to simulation this behaviour. A snapback response can

follow in the wake of the splitting process. It has been observed that the modelling of the load

transferring platen on the concrete specimen is insignificant, but the model parameters decide

whether or not and how the splitting phenomenon appears. Moreover, if isotropic gradient

damage is employed in the analysis, the deviatoric damage is more important in the stiffness

degradation.

Four-point bending in a reinforced concrete (RC) beam had been analyzed experimentally

under dynamic loading by Eibl et al. [46]. This benchmark has been examined to show simi-

ralities and differences between the responses of the static and dynamic loading. At first, the

static response of the beam without reinforcement has been computed and the minimum value

of the internal length parameter for mesh-independent results has been found. If FEs with sta-

bilization are applied it can be concluded that the reduced integration results in a slightly less

stiff response of the model. For the RC beam under static loading the computations with the

coupled damage-plasticity model have been performed and the coupling to plasticity has not

caused significant changes in the numerical response. The obtained contour plots correspond

to the theory, because one or two plastic hinges in the beam can be considered. For dynamics,

the displacement-time diagram exhibits a quite good agreement with the experimental response.

For the RC beam under the dynamic loading mesh-independent results are obtained.

If dowelling of a reinforcement bar against the concrete cover in a RC specimen is observed

in experiments, localization directly below and above the reinforcement is first visible. Further

loading leads to crack opening. After that finally the spalling of concrete in the third dimension

is exhibited. Therefore, for a better agreement with observations of structures, the numerical

analysis requires modelling in three dimensions. Within the limits of continuum modelling,

the numerical results are a reasonable representation of the experimental ones from [41].

In the numerical analysis of punching shear a symmetric slab-column configuration has been

modelled based on the experiment presented in [1]. The gradient damage-plasticity description

for concrete and embedded elastic-plastic reinforcement bars have been adopted. Two cases

have been considered: the slab without bolts and the slab with eight bolts at each side of the

column. In reality the bolts are installed to increase the punching shear strength and the duc-

tility in the slab. The performed simulations have not predicted the expected punching shear

failure for the model without strengthening bolts, although the case with the smallest internal

length and denser mesh gave the results which resemble the experimental ones. The possible
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reasons can be as follows: the finite-element mesh is too coarse, nonlocal smoothing causes that

the bending failure is too strong and the formation of the shear fracture mode is prevented, the

employed loading functions are improper for the three-dimensional analysis, when shear effects

are dominant, the influence of bond-slip in the model is omitted.

Summarizing, the most important conclusions are listed below:

• The scalar description in the damage model is sufficient in the analysis where tension/com-

pression and/or bending dominate.

• The introduction of two damage parameters into the model is simple. On the other hand,

difficulties with the interpretation of the results can appear, for example negative Pois-

son’s ratio can be obtained.

• Both the scalar and isotropic damage can be ineffective if shearing dominates. The cou-

pling of scalar damage with plasticity does not remove this disadvantage.

• The implicit gradient enhancement guarantees mesh objectivity and well-posedness of

the solution.

• For dynamics, the algorithm requires only a minor modification with respect to the static

case and proper results of localization simulations are obtained.

• The presence of the reinforcement does not provide the regularization of the cracking

problem.

• Stabilized elements with one-point reduced integration give more efficient algorithm.

Finally, the following topics can be considered in the future:

• The implementation of efficient three-dimensional elements with hourglass control ac-

cording to the formulations derived in this thesis.

• The verification of isotropic description of damage with two different averaged strain

measures and additionally combination with plasticity.

• The application of a bond slip-model in RC modelling, and in particular for slab-column

connection. In this case the modelling of bolts should include the anchorage slip similar

to [111].

• The incorporation of the projection operator with continuous function.

• The formulation, implementation and application of the continuous-discontinuous model

similar to [146], but extended to three-dimensional problems.

Especially, the last issue seems a challenge in advanced numerical modelling of concrete.



APPENDIX A

LOCAL DAMAGE

A.1 LOCAL DAMAGE – FORMULATION

The governing equations for the local damage theory at the material point level was summarized

in Table 3.1 together with suitable boundary conditions. The weak form of motion equations

(2.1) has the final form as in Eq. (3.21).

The interpolation of displacementsu is as follows:

u = N a (A.1)

whereN contains suitable shape functions. Hence:

ǫ = B a (A.2)

whereB = L N . Therefore, the variations and time derivatives can be obtained:

δu = Nδa and δǫ = Bδa (A.3)

ǫ̇ = B ȧ and ü = N ä (A.4)

If the above relations are introduced and assuming that the discretized equations of motion must

hold for any admissibleδa the form like in Eq. (3.33) is obtained.

The increments of nodal displacements are considered from timet to timet+ ∆t:

at+∆t = at + ∆a (A.5)

Now, at the integration point the following relations are written:

ǫt+∆t = ǫt + ∆ǫ ǫ̃t+∆t = ǫ̃t + ∆ǫ̃ ωt+∆t = ωt + ∆ω (A.6)

The stress update is:

σt+∆t = σt + ∆σ (A.7)
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After that the equations of motion are represented like in Eq. (3.39). The constitutive equation

in the incremental form can be derived:

∆σ = (1 − ωt) Eep ∆ǫ − ∆ω σ̂t (A.8)

where:σ̂t = Ee (ǫe)t and ∆ω =
[

∂ω
∂κd

]t
[

∂κd

∂ǫ̃

]t

∆ǫ̃. The following definitions are valid:

∆ǫ = B ∆a and ∆ǫ̃ =

[
∂ǫ̃

∂ǫ

]t

∆ǫ (A.9)

If the notation from Eqs (2.48) and (2.49) is additionally adopted then the increment of damage

can be written as:

∆ω = Lt
[
sT

]t
B ∆a (A.10)

and the increment of stresses as:

∆σ = (1 − ωt) Eep B ∆a − Lt Ee ǫt
[
sT

]t
B ∆a (A.11)

The discretized Eq. (3.33) in a matrix form reads:

K ∆a + Mät+∆t = f t+∆t
ext − f t

int (A.12)

The mass matrixM is defined in a standard way, see Eq. (3.51). The force vectors are given in

Eqs (3.49) and (3.50). The tangent operator is defined in the following way:

K =

∫

B

BT
[
(1 − ωt) Eep − Lt Ee ǫt

[
sT

]t
]
B dV (A.13)

A.2 LOCALIZATION IN CANTILEVER BEAM

The aim of this example is a brief presentation of the test, for which results are spuriously mesh-

sensitive. Now the cantilever beam considered previously in Section 5.1 is pulled upwards, so

damage is expected at the bottom near the clamped edge. Two meshes are adopted, the coarse

mesh as in Fig. A.2 (here deformation is also visible) and the fine mesh shown in Fig. 5.1. The

data are identical to the ones used for the computations in Section 5.1, except Poisson’s ratio

ν which equals now0.2. The coupling with plasticity and the crack closure effect are omitted.

For gradient damage the internal length parameterc is 4 mm2. The local damage theory is im-

plemented according to the previous section, so here only the introduction of a material model

subroutine for non-linear analysis is required in comparison to a standard FEM code.
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Figure A.1: Cantilever beam. Local vs gradient damage – load-displacement diagrams.

(a) Local damage. Final state. (b) Gradient damage. Final state.

Figure A.2: Cantilever beam – deformation (100 times larger) for coarse mesh.

(a) Local damage, coarse. (b) Local damage, fine. (c) Gradient dam., coarse.(d) Gradient damage, fine.

Figure A.3: Part of cantilever near clamped edge. Contour plots for damageω in final state.



172 APPENDIX A. LOCAL DAMAGE

The results clearly illustrate the mesh-dependence for local damage and overcoming this

problem by means of the gradient model. Indeed, in case of local damage the load-carrying

capacity (see Fig. A.1) is different for both meshes and for the fine mesh the computations

diverge just after the peak. Spuriously mesh-sensitive results are also visible in the damage

patterns in Figs A.3(a) and A.3(b).



APPENDIX B

PROPERTIES OF FOUR-NODED ELEMENT

– SUPPLEMENT

B.1 STABILIZATION OF AVERAGING EQUATION

– DISCARDED PROPOSALS

B.1.1 GALERKIN LEAST-SQUARE (GLS) METHOD

The additional termRstab
2 for GLS method in the variational averaging equation has a general

form as in Eq. (3.119).

The weighting part ofRstab
2 in this method is:

P 2(δǭ) = δǭ− c∇2δǭ (B.1)

Further,P 2(δǭ) is changed into the discrete form:

P 2(δe) =
(
hT − c∇2hT

)
δe = Gh

eδe (B.2)

The linearization of the residual part is introduced:

Rǭ,i+1 = ǭi + dǭ− c∇2 (ǭi + dǭ) − (ǫ̃i + dǫ̃) = Rǭ,i + dRǭ (B.3)

where Rǭ,i = ǭi − c∇2ǭi − ǫ̃i, dRǭ = dǭ− c∇2dǭ− dǫ̃. The matrixGh
e can be applied after

discretization. Additionally matrixGh
a = −

[
sT

]t
B is defined. Therefore:

dRǭ =
(
hT − c∇2hT

)
de −

[
sT

]t
Bda = Gh

ede + Gh
ada (B.4)

and eventually the residual can be computed from the following relation:

Rǭ,i+1 = Rǭ,i + Gh
ede + Gh

ada (B.5)

The stabilization term (3.119) is written using matrices:

Rstab
2 =

nel∑

e=1

∫

Be

(
Gh

eδe
)T

χ2

(
Rǭ,i + Gh

a da + Gh
ede

)
dV (B.6)
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In addition to the matrices derived for the equilibrium equations, such new matrices should be

defined for GLS method:

K̄ea =

∫

Be

(
Gh

e

)T
χ2 Gh

a dV (B.7)

K̄ee =

∫

Be

(
Gh

e

)T
χ2 Gh

e dV (B.8)

f̄ e =

∫

Be

(Ge
e)

T
χ2 (Rǭ,i) dV (B.9)

Finally, the matrix equations are reformulated as:
[

Kaa + K̄aa Kae + K̄ae

Kea + K̄ea Kee + K̄ee

][
da

de

]
=

[
f ext − f int − f̄

f ǫ − f e − f̄ e

]
(B.10)

B.1.2 GRADIENT GALERKIN LEAST-SQUARE (GGLS) METHOD

Introducing gradients of continuous fields according to [63] the termRstab
2 is as in Eq. (3.121).

The weighting part ofRstab
2 in GGLS method can be proposed as follows:

P 2(δǭ) = ∇
(
δǭ− c∇2δǭ

)
(B.11)

It is obvious that∇3ǭ is equal to0. Hence after discretization Eq. (B.11) is reduced to:

P 2(δe) = gTδe (B.12)

The residual part ofRstab
2 can be linearized starting from:

Rǭ,i+1 = ∇ǭi + ∇dǭ− c∇3 (ǭi + dǭ) −∇ (ǫ̃i + dǫ̃) = Rǭ,i + dRǭ (B.13)

Next the following notation is applied:Rǭ,i = ∇ǭi−c∇3ǭi−∇ǫ̃i, dRǭ = ∇dǭ−c∇3dǭ−∇dǫ̃.

As previously∇3ǭ is equal to0. Therefore, matrixGh
a is now determined by the relation:

Gh
a = −

[
∇sT

]t
B (B.14)

Further,dRǭ is:

dRǭ = gTde −
[
∇sT

]t
Bda = gTde + Gh

ada (B.15)

The final form of the residual part is characterized as follows:

Rǭ,i+1 = Rǭ,i + gTde + Gh
ada (B.16)

The term (3.121) after discretization and linearization can be presented in this manner:

Rstab
2 =

nel∑

e=1

∫

Be

(
gTδe

)T
χ2

(
Rǭ,i + Gh

a da + gTde
)

dV (B.17)
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Introducing the following definitions for this method:

K̄ea =

∫

Be

g χ2 Gh
a dV (B.18)

K̄ee =

∫

Be

g χ2 gT dV (B.19)

f̄ e =

∫

Be

g χ2 (Rǭ,i) dV (B.20)

the matrix formulation has the form:
[

Kaa + K̄aa Kae + K̄ae

Kea + K̄ea Kee + K̄ee

] [
da

de

]
=

[
f ext − f int − f̄

f ǫ − f e − f̄ e

]
(B.21)

B.2 SPECTRAL ANALYSIS FOR STABILIZED ELEMENT

– SUPPLEMENT

Both proposals derived in the previous section do not result in stabilization. The spectral anal-

ysis of a single FE confirms that hourglass control, for which GLS or GGLS method is applied

in formulation of the averaging equation, does not behave properly. One spurious zero eigen-

value of submatrixKee corresponds to a twisted eigenmode for the averaged strain field (see

the figures below), apart from the damage phase in Fig. B.5, where four combinations of rigid

motions of the element are observed instead of the correct three. The eigenforms are shown in

specific manner, which is explained at the beginning of Section 3.4.

Table B.1: Eigenvalues for Q4/4, improper stabilization of averaging equation,χ = 0.0001,

c = 1.
(a) RI and GLS stabilization, Eq. (B.10).

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa + K̄aa 5 3 0 5 3 0 5 3 0

Kee + K̄ee 3 1 0 3 1 0 3 1 0

K + K̄ 8 4 0 7 4 1 8 4 0

(b) RI and GGLS stabilization, Eq. (B.21).

Elasticity Damage Unloading

s. eigs + 0 − + 0 − + 0 −
Kaa + K̄aa 5 3 0 5 3 0 5 3 0

Kee + K̄ee 3 1 0 3 1 0 3 1 0

K + K̄ 8 4 0 7 4 1 8 4 0
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Figure B.1: Eigenforms for Q4/4, RI and GLS according to Eq. (B.10),χ = 0.0001, c = 1,

elastic phase.
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Figure B.2: Eigenforms for Q4/4, RI and GLS according to Eq. (B.10),χ = 0.0001, c = 1,

damage phase.
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Figure B.3: Eigenforms for Q4/4, RI and GLS according to Eq. (B.10),χ = 0.0001, c = 1,

unloading.
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Figure B.4: Eigenforms for Q4/4, RI and GGLS according to Eq. (B.21),χ = 0.0001, c = 1,

elastic phase.
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Figure B.5: Eigenforms for Q4/4, RI and GGLS according to Eq. (B.21),χ = 0.0001, c = 1,

damage phase.
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Figure B.6: Eigenforms for Q4/4, RI and GGLS according to Eq. (B.21),χ = 0.0001, c = 1,
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APPENDIX C

DOWEL DISC TEST

The dowel disc test can be treated as an introduction into the full three-dimensional analysis of

dowel action, which was presented in Section 5.4. Now meshes A and B are three-dimensional

slices of finite elements and half of the specimen is considered. The structure of both meshes in

plane is like for the dowel bar test. Boundary conditions are the following: the symmetry plane

is assumed, at the bottom all horizontal and vertical displacements are zero, additionally at the

corner on the right one displacement perpendicular to the front plane is restrained. The load acts

upwards at the axis of the rebar. The deformation control is used. The cover thickness is equal

to the diameter of the rebar, identically to the analysis in Section 5.4. Apart from the rebar, the

concrete matrix and the interphase are distinguished in the material structure. The material data

given in Table C.1 come from [50]. They are almost the same as for the dowel bar test, but now

Table C.1: Material model data for dowel disc.

CONCRETE: damaging

Young’s modulus:Ec = 34000 MPa

Poisson’s ratio:ν = 0.2

Tensile strength:ft = 3.5 MPa

Equivalent strain measure:

modified von Mises definition,k = 13.143

Damage growth function:

exponential softening

α = 0.98 η = 550

Fracture energy:Gf = 0.11N/mm

Internal length scale:

l = 2
√

2 mm, i.e.c = 4.0

Threshold:κo = 10.225 × 10−5

INTERPHASE: damaging

Young’s modulus:E∗
c = 17000 MPa

Poisson’s ratio:ν = 0.2

Tensile strength:f ∗
t = 2.8 MPa

Equivalent strain measure:

modified von Mises definition,k = 13.143

Damage growth function:

exponential softening

α = 0.98 η = 450

Fracture energy:Gf = 0.11N/mm

Internal length scale:

l = 2
√

2 mm, i.e.c = 4.0

Threshold:κo = 16.471 × 10−5

REINFORCEMENT (STEEL): elastic

Young’s modulus:Es = 206000 MPa Poisson’s ratio:ν = 0.3
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three different cases are taken into account. The basic case is pure gradient damage with the

modified von Mises definition (2.15) as the loading function. The first modification is only the

change of the loading function to the Mazars definition, see Eq. (2.12). The model coupled with

linear hardening plasticity is an alternative modification. If the weak coupling is activated, the

following data for the BDP plasticity are assumed: hardening modulush = Ec/2, friction and

dilatancy coefficientssinϕ = sinψ = 0.5 and two different yield strengths equal toft andf ∗
t

for the concrete matrix and for the interphase, respectively (cf. Table C.1).

The results are confronted with the experimental ones obtained in [50]. The load value at

the center of the reinforcement is plotted against the vertical displacement at this point. Addi-

tionally damage and averaged strain contour plots for the final stage are depicted in each case.

It is difficult to say which computed case fits the experiment the best. The load-displacement

diagrams in Fig. C.1 for the coupled model seem to be the closest, but the load peak is evidently

different. On the other hand if pure damage with the modified von Mises definition is employed,

the value of the peak load is about5 kN like for the experiment, but the softening path is

quite different. If the Mazars definition is adopted, the results are questionable. The load-

displacement diagrams for both meshes exhibit a too high peak and further a too steep slope

of the softening path is observed. It is confirmed also in Figs C.2(a) and C.3(a) for damage

and in Figs C.4(a) and C.5(a) for averaged strain distributions. These crack patterns show that

the spalled cover is too small and the angle of the crack front is too large in comparison to

the experimental patterns presented in [50]. Hence this loading function is rather improper in

this test. The distributions are closer to the experimental patterns if the modified von Mises

definition is assumed. For both the pure and coupled models contour plots resemble the crack

patterns presented in [50].
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Figure C.1: Dowel disc test – load-displacement diagrams.
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(a) Mazars definition. (b) Modified von Mises. (c) Damage + plasticity.

Figure C.2: Dowel disc test. Final damage distribution for mesh A (v = 0.4 mm).

(a) Mazars definition. (b) Modified von Mises. (c) Damage + plasticity.

Figure C.3: Dowel disc test. Final damage distribution for mesh B (v = 0.4 mm).
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(a) Mazars definition. (b) Modified von Mises. (c) Damage + plasticity.

Figure C.4: Dowel disc test. Final averaged strain distribution for mesh A (v = 0.4 mm).

(a) Mazars definition. (b) Modified von Mises. (c) Damage + plasticity.

Figure C.5: Dowel disc test. Final averaged strain distribution for mesh B (v = 0.4 mm).



L IST OF FIGURES

1.1 Concept of damage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Degradation process in quasi-brittle materials. Based on [56]. . . . . . . . . . . 3

1.3 Discontinuity surface (curve in 2D). Definition of unit vectorsυ andµ. . . . . 5

1.4 Discontinuity – displacement and strain distribution in one dimension. . . . . . 7

1.5 Fracture energy for discrete and smeared crack. . . . . . . . . . . . . . . . . . 8

1.6 Classification of models mentioned in the review. . . . . . . . . . . . . . . . . 10

2.1 Idea of strain equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Scheme of scalar damage model. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 EER definition of̃ǫ (2.11) in strain space. . . . . . . . . . . . . . . . . . . . . 16

2.4 Mazars definition of̃ǫ (2.12) in strain space. . . . . . . . . . . . . . . . . . . 17

2.5 Modified von Mises definition of̃ǫ (2.15) in strain space, 2D problems. . . . . . 18

2.6 Modified von Mises definition (2.15) in strain space for 3D problems,ǫ̃ = 1.0. 19

2.7 Loading functions in 2D strain space. . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Damage growth functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Schemes for damage coupled to hardening plasticity. . . . . . . . . . . . . . . 25

2.10 Damage, plasticity and coupled models. . . . . . . . . . . . . . . . . . . . . . 25

2.11 Stiffness change in crack closure phenomenon (without irreversible strains). . . 27

2.12 Incorporation of crack closing into scalar damage. . . . . . . . . . . . . . . . . 31

2.13 Incorporation of crack closing into coupled model. . . . . . . . . . . . . . . . 32

2.14 Influence of ultimateκu in linear softening for isotropic model. . . . . . . . . . 36

2.15 Influence of ductility parameterηi (i = K,G) in exponential softening for

isotropic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.16 Influence of predefining damage growth functions with different character. . . . 37

2.17 Sensitivity of Poisson’s ratioνω to adopted damage growth functions. . . . . . 38

2.18 Sensitivity of dilatationθ to adopted damage growth functions. . . . . . . . . . 39

2.19 Willam’s test – prescribed displacements for the corresponding strain state. . . 41

2.20 Willam’s test – strain evolution. . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.21 Willam’s test – influence of assumed loading functions. . . . . . . . . . . . . . 44

2.22 Willam’s test – comparison of stress components for different loading functions. 45

2.23 Willam’s test – evolution of principal stresses for different loading functions. . 46

183



184 LIST OF FIGURES

2.24 Willam’s test – results for pure damage and coupled to plasticity. . . . . . . . . 47

2.25 Willam’s test – comparison of stress components in coupled models. . . . . . . 48

2.26 Willam’s test – evolution of principal stresses for different kinds of scalar model. 48

2.27 Willam’s test – differences between pure and coupled models. . . . . . . . . . 49

2.28 Willam’s test – influence of ductility parameterηi (i = K,G) in isotropic model. 51

2.29 Willam’s test – comparison of stress components in isotropic model. . . . . . . 52

2.30 Willam’s test – evolution of principal stresses for isotropic model,α = 1.0. . . 53

2.31 Willam’s test – evolution of principal stresses for isotropic model,α = 0.97. . . 53

2.32 Willam’s test – sensitivity of Poisson’s ratioνω in isotropic model. . . . . . . . 54

3.1 Two consequences of using higher-order gradients. Based on [5]. . . . . . . . . 58

3.2 Loading-unloading path used in spectral analysis. . . . . . . . . . . . . . . . . 72

3.3 Eigenforms for Q4/4, FI,c = 1, elastic phase. . . . . . . . . . . . . . . . . . . 75

3.4 Eigenforms for Q4/4, FI,c = 1, damage phase. . . . . . . . . . . . . . . . . . 75

3.5 Eigenforms for Q4/4, FI,c = 1, unloading. . . . . . . . . . . . . . . . . . . . . 76

3.6 Eigenforms for Q4/4, RI,c = 1, elastic phase. . . . . . . . . . . . . . . . . . . 76

3.7 Eigenforms for Q4/4, RI,c = 1, damage phase. . . . . . . . . . . . . . . . . . 77

3.8 Eigenforms for Q4/4, RI,c = 1, unloading. . . . . . . . . . . . . . . . . . . . 77

3.9 Eigenforms for Q4/4, RI,c = 0, elastic phase. . . . . . . . . . . . . . . . . . . 79

3.10 Eigenforms for Q4/4, RI,c = 0, damage phase. . . . . . . . . . . . . . . . . . 79

3.11 Eigenforms for Q4/4, RI,c = 0, unloading. . . . . . . . . . . . . . . . . . . . 80

3.12 Eigenforms for Q4/4, RI with stabilization according to Eq. (3.117),c = 1,

χ = 0.0001, elastic phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.13 Eigenforms for Q4/4, RI with stabilization according to Eq. (3.117),c = 1,

χ = 0.0001, damage phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.14 Eigenforms for Q4/4, RI with stabilization according to Eq. (3.117),c = 1,

χ = 0.0001, unloading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.15 Eigenforms for Q4/4, RI with stabilization according to Eq. (3.133),c = 1,

χ = 0.0001, elastic phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.16 Eigenforms for Q4/4, RI with stabilization according to Eq. (3.133),c = 1,

χ = 0.0001, damage phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.17 Eigenforms for Q4/4, RI with stabilization according to Eq. (3.133),c = 1,

χ = 0.0001, unloading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Bar with imperfection for localization test in tension. . . . . . . . . . . . . . . 94

4.2 Tensile bar with imperfection in 1D. Stress-displacement diagrams for different

numbers of elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Tensile bar with imperfection in 1D. Results for different numbers of elements

– mesh-independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



LIST OF FIGURES 185

4.4 Tensile bar with imperfection in 1D. Stress-displacement diagrams for different

values of internal length parameter. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Tensile bar with imperfection in 1D – internal length influence. . . . . . . . . . 97

4.6 Tensile bar with imperfection in 1D – different damage growth. . . . . . . . . . 98

4.7 Tensile bar with imperfection in 1D – stress-displacement diagrams for gradient

damage and hardening plasticity. . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Pure gradient damage – evolution of chosen variables. . . . . . . . . . . . . . . 99

4.9 Weak coupling of gradient damage and plasticity – evolution of chosen variables.100

4.10 Strong coupling of gradient damage and plasticity – evolution of chosen variables.100

4.11 Tensile bar with imperfection in 2D. Stress-displacement diagrams - different

types of integration in FE Q4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.12 Results for bar with imperfection – elements Q4 with FI. . . . . . . . . . . . . 102

4.13 Results for bar with imperfection – elements Q4 with RI and stabilization ac-

cording to Eq. (3.133),χ = 0.000001. . . . . . . . . . . . . . . . . . . . . . . 102

4.14 Tensile bar with imperfection (2D). Isotropic gradient damage. Load-displacement

diagrams – different types of equivalent strain measure. . . . . . . . . . . . . . 104

4.15 Tensile bar with imperfection (2D). Isotropic gradient damage. Damage distri-

bution along the bar in final state. . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.16 Tensile bar with imperfection (2D). Isotropic gradient damage. Deformation

and strain state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.17 Bar with imperfection (2D). Isotropic gradient damage. Poisson’s ratio evolution.107

4.18 Tensile bar with imperfection in 3D. Load-displacement diagrams. . . . . . . . 108

4.19 Results for bar with imperfection. 3D elements, damage – final distribution. . . 109

4.20 Results for the bar under one-dimensional dynamic tension. . . . . . . . . . . . 110

4.21 Dynamic direct tension test. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.22 Elongation history for plain vs reinforced concrete. . . . . . . . . . . . . . . . 112

4.23 Internal length influence for plain and reinforced concrete bar. . . . . . . . . . 113

4.24 Sensitivity of results to load intensity and reinforcement ratio. . . . . . . . . . 114

5.1 Cantilever beam under load reversals together with FE mesh. . . . . . . . . . . 115

5.2 Cantilever beam under load reversals – load-displacement diagrams. . . . . . . 116

5.3 Cantilever beam under load reversals – evolution of stressσ11 along line A-A. . 118

5.4 Cantilever beam, load reversals – evolution of stressσ11, line A-A (continued). 119

5.5 Part of cantilever near clamped edge. Damage coupled to plasticity and crack

closing – contour plots for maximum upward displacementw. . . . . . . . . . 120

5.6 Part of cantilever near clamped edge. Damage coupled to plasticity and crack

closing – contour plots for maximum downward displacementw. . . . . . . . . 120

5.7 Idea of Brazilian split test. Subfigures (b), (c) and (d) quoted from [137]. . . . . 121

5.8 Exemplary meshes for Brazilian test. . . . . . . . . . . . . . . . . . . . . . . . 121



186 LIST OF FIGURES

5.9 Load-displacement diagrams for used meshes in Brazilian test – summary. . . 123

5.10 Load-displacement diagrams for coarse, medium and fine meshes in Brazilian

test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.11 Brazilian test. Contour plots for mesh C12. . . . . . . . . . . . . . . . . . . . 124

5.12 Brazilian test. Contour plots for mesh M20. . . . . . . . . . . . . . . . . . . . 125

5.13 Brazilian test. Contour plots for mesh F24. . . . . . . . . . . . . . . . . . . . . 125

5.14 Brazilian test. Influence of internal length scale – diagrams. . . . . . . . . . . . 126

5.15 Brazilian test. Influence of internal length scale – contour plots. . . . . . . . . 126

5.16 Brazilian test. Influence of platen definition – diagrams. . . . . . . . . . . . . . 127

5.17 Brazilian test. Influence of platen – contour plots (M20/M20wp). . . . . . . . . 127

5.18 Brazilian test. Influence of ductility parameterηi (i = K,G) in isotropic model

– load-displacement diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.19 Brazilian test. Contour plots of averaged strainǭ for isotropic model. . . . . . . 129
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SUMMARY

FINITE-ELEMENT ANALYSIS OF CRACKING IN CONCRETE

USING GRADIENT DAMAGE-PLASTICITY

The thesis concerns the numerical analysis of the behaviour in plain and reinforced concrete

during static and dynamic loading processes. The application of a proper numerical model is the

fundamental issue in the simulations of cracking phenomenon, which is observed in quasi-brittle

materials, in particular in concrete. A gradient enhancement of the damage theory coupled to

plasticity ensures mesh-objective results.

The model presented previously in the paper by de Borst et al (1999) is further developed in

this dissertation. Three-dimensional problems, dynamics without damping effects and the im-

plementation of effective finite elements are dealt with. Next the model is verified in different

applications together with parameter studies.

At the beginning of Chapter 1 the damage concept is briefly explained. Different aspects

of numerical analysis for (reinforced) concrete are discussed. The localization problem, mesh

dependence of results and different approaches to overcoming this difficulty are reviewed. The

main simplifying assumptions and limitations are listed in Section 1.3.

In Chapter 2 the model is considered at the point level. The scalar damage theory is first

used and the strain equivalence is postulated. The damage loading and damage growth functions

are proposed. The coupling with the plasticity theory is included in order to incorporate the

physically observed irreversible strains. Additionally the crack closure phenomenon can be

taken into account as shown in Section 2.3. Another approach is to split the damage constitutive

relation into volumetric and deviatoric parts to obtain isotropic damage with two parameters.

The model is verified performing uniaxial tension and Willam’s tests.

Chapter 3 contains a compact description of gradient enhancement proposals for the damage

models. The formulation and implementation of the initial boundary value problem (IBVP)

are discussed. It should be emphasized that the averaging equation is enclosed in the system

of equations, so two primary fields must be discretized: the displacements and the averaged
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strain measure. The algorithm for dynamics without damping is shown. The properties of

finite elements (FEs) for two- and three-dimensional (2D and 3D) problems are specified using

spectral analysis. The stabilization of underintegrated gradient damage equations is derived for

four-noded quadrilateral element in order to obtain an efficient hourglass control.

The standard test of a bar with an imperfection is analyzed in Chapter 4 under static and

dynamic loading and the implemented FEs together with various paramaters are examined. The

response of plain and reinforced concrete are compared in the dynamic direct tension test.

Chapter 5 describes the applications of the numerical model. Two-dimensional configura-

tions are computed first. The crack closing option is employed for the cantilever beam under

load reversals. The Brazilian test is simulated in order to present the splitting effect inside the

specimen which is subjected to compression. The scalar model, where one damage parame-

ter is considered, is confronted with the isotropic model using two damage parameters. The

last two-dimensional benchmark is the four-point bending test, where plain and reinforced con-

crete are first considered for statics. Next the reinforced concrete beam under impact loading

is calculated. Further, the dowel action of reinforcement in concrete is examined. The three-

dimensional numerical simulation of the dowel bar experiment is performed, because after crack

opening spalling of the concrete cover is noticed in the third dimension. Finally, the punching

shear in the RC slab-column connection is considered. Different models and their paramaters

are employed, but the results of this benchmark are not completely satisfactory. The reasons are

briefly discussed.

Chapter 6 concludes the performed analysis. At the end the research perspectives are also

proposed.

Three appendices are attached after the conclusions. The local approach for damage theory

is criticized with reference to the gradient one, cf. Appendix A. Next, Appendix B includes

the derivations and spectral analysis for ineffective hourglass control. The results for the dowel

disc test in Appendix C can be treated as an introduction to Section 5.4.



STRESZCZENIE

NUMERYCZNA ANALIZA ZARYSOWANIA BETONU

PRZY UŻYCIU GRADIENTOWEGO MODELU

SPRZĘ̇ZONEJ MECHANIKI USZKODZEŃ I PLASTYCZNOŚCI

ROZDZIAŁ 1: WPROWADZENIE

1.1. PODSTAWY TEORII USZKODZENIA: Jako pierwszy pojęcie uszkodzenia wprowadził

Kaczanow [76] w odniesieniu do pełzania metali pod obciążeniem jednoosiowym. Definicja

jest jednak na tyle uniwersalna,że mȯze býc uogólniona nawet do anizotropii. Rysunek 1.1

ilustruje koncepcję tego pojęcia. Pewne ciałoB zostało mýslowo przecięte. Z płaszczyzny

przecięcia, która ma kierunek normalny~n, wybrano nieskónczenie małą powierzchniędS~n.

Powierzchnia ta składa się z części uszkodzonejdSd
~n i nieuszkodzonejdSu

~n. Warto podkréslić,

że czę́sć uszkodzoną stanowię wszelkie mikrodefekty struktury materiału, natomiast część nie-

uszkodzoną jego szkielet. Definicja (1.2) wprowadza pojęcie uszkodzenia jako pewną miarę

czę́sci uszkodzonej tej powierzchni. Dla materiału bez defektów uszkodzenieω~n = 0, natomiast

ω~n w materiale całkowicie uszkodzonym wynosi1. Jésli uszkodzenie jest ró̇zne w przekrojach

o różnych normalnych~n, wówczas model jest anizotropowy. Gdy nie zachodzi konieczność

wyróżnienia kierunków to model staje się izotropowy. Wprowadzona teoria nosi nazwę kon-

tynualnej mechaniki uszkodzeń (KMU, skrót ang.CDM).

1.2. NUMERYCZNE MODELOWANIE BETONU (I ŻELBETU): Ogólna klasyfikacja materiałów

może skupiác się na rodzaju degradacji ich wewnętrznej struktury (por. np. [69,168]). Pierwszą

grupę stanowią materiały silnie kruche, np. szkło, dla których odpowiednie jest stosowanie

mechaniki pękania. Po drugiej stronie można wyró̇znić materiały ciągliwe, np. niektóre metale,

gdzie mȯzna stosowác teorię plastycznósci. Natomiast pomiędzy nimi znajdują się materiały

quasi-kruche, takie jak beton. W tych materiałach obserwuje się dwa poziomy zniszczenia.

Najpierw powstają mikrorysy i następuje lokalizacja odkształceń w jednej lub wielu strefach
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ośrodka, a następnie w stanie zaawansowanej destrukcji widoczne są skoki przemieszczeń i po-

jawiają się makrorysy. Rysunek 1.2 przedstawia rozwój degradacji materiału quasi-kruchego.

Beton jest materiałem niejednorodnym (por. [78, 156]), który jako kompozyt może býc mode-

lowany przy pomocy teorii mieszanin jak np. w [115]. Upraszczając można przej́sć do skali

makro, uwzględniając w modelu pewne efekty związane z niższym poziomem obserwacji.

Obserwowana jest lokalizacja i osłabienie materiału, które nie jest rzeczywistą cechą mate-

riału, ale wynikiem niejednorodnej deformacji z powodu tworzenia się makrorys, por. [135].

Zatem osłabienie materiału nie powinno być zawarte bezpósrednio w klasycznych związkach

fizycznych ósrodka ciągłego. Pojawia się problem modelowania lokalizacji odkształceń.

Z podstaw matematycznych problemu lokalizacji wynika,że najpierw następuje lokalna

utrata stateczności materiału, a w jej konsekwencji może nastąpíc utrata stateczności jego całej

struktury. Wówczas występuje tzw. nieciągłość odkształcén (zachowana jest ciągłość przemie-

szczén) czyli lokalizacja. Zjawisku temu towarzyszy złe postawienie problemu początkowo-

brzegowego. W statyce eliptyczny charakter równań zmienia się na hiperboliczny, a w dynam-

ice hiperboliczny – na eliptyczny. Ponadto w dynamice prędkość fali staje się urojona, pojawia

się tzw. fala stojąca. Problem jest źle postawiony i wówczas w analizie numerycznej pojawia

się zalėznósć szerokósci strefy lokalizacji od dyskretyzacji, np. siatki elementów skończonych.

W numerycznym modelowaniu betonu wyróżnia się modele dyskretne i ciągłe. Do podejść

dyskretnych mȯzna zaliczýc np. model beleczkowy (zob. [79, 144]), gdzie wzajemnie powią-

zane beleczki imitują strukturę materiału. W modelowaniu ciągłym osobną grupę stanowi tzw.

model rys rozmazanych. W pracy [140] rozpatrywano różne warianty tego modelu. Symu-

lacja zarysowania w betonie może býc prowadzona przy pomocy dyskretyzacji standardowymi

elementami skónczonymi wraz z dodatkowymi elementami interfejsowymi w siatce, jak np.

w pracach [140, 160]. Elementy interfejsowe są także przydatne przy uwzględnianiu poślizgu

pomiędzy matrycą betonową a stalowym zbrojeniem [121, 140, 153]. Wyżej wymienione mo-

dele nie zawierają tzw. wewnętrznej skali długości.

Modele zregularyzowane „radzą sobie” w określony sposób z problemem lokalizacji. O ro-

związaniu nie decyduje wówczas zagęszczenie siatki, ale odrębny parametr zwany wewnę-

trznym parametrem długości. Najwczésniejsze prace [9,128,140] uwzględniają wpływ rozmia-

ru elementu skónczonego na model konstytutywny poprzez energię pękaniaGf . Kolejną grupę

stanowią modele zależne od prędkósci deformacji, gdzie w równaniach fizycznych uwzględnia

się człon wiskotyczny [59,96,110,150,172]. Modele wyższego rzędu mȯzna podzielíc następu-

jąco: modele mikropolarne, modele nielokalne (całkowe) i modele gradientowe. W modelach

mikropolarnych [32, 108, 159] regularyzacja działa pod warunkiem,że rozwȧza się lokalizację

wywołaną póslizgiem. W odniesieniu do mechaniki uszkodzeń modele nielokalne (całkowe)

były zaproponowane w pracach [7, 10, 129]. Użycie podej́scia całkowego dla sprzężonej teorii

mechaniki uszkodzén i plastycznósci mȯzna znaleź́c w pracach [17,61].
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Modele gradientowe zostały zapoczątkowane dla teorii plastyczności [2, 12, 35, 37, 116],

natomiast gradienty dla skalarnej mechaniki uszkodzeń pojawiły się w równaniu úsredniają-

cym począwszy od pracy [125] i były dalej rozwijane w [55, 124, 126]. Użycie modelu gra-

dientowego do mechaniki uszkodzeń i sprzę̇zenie z plastycznóscią ze wzmocnieniem zapro-

ponowano w [36,117], a jego rozwinięcie i weryfikacja są przedmiotem niniejszej pracy.

Najbardziej zaawansowane są modele, które uwzględniają w analizie numerycznej jedno-

czésnie regularyzację i nieciągłość przemieszczén (idea podziału jednósci) wewnątrz elementu

skónczonego, por. [73,146,168].

Ogólna klasyfikacja wẏzej wymienionych modeli jest przedstawiona na Rys. 1.6.

1.3. CEL I ZAKRES: Celem pracy jest rozwinięcie i weryfikacja gradientowego modelu

skalarnej mechaniki uszkodzeń w odniesieniu do ró̇znego rodzaju symulacji zarysowania w

betonie. Uogólnienie modelu dla problemów trójwymiarowych, uzupełnienie sformułowania

o dynamikę (bez tłumienia) oraz implementacja efektywnych elementów skończonych umȯzli-

wiają poszerzenie zastosowań modelu. Analiza numeryczna zawiera szeroki zakres testów,

jednak poczynione są pewne założenia upraszczające:

• do symulacji zarysowania stosuje się kontynualną mechanikę uszkodzeń (KMU),

• beton jest traktowany jako materiał jednorodny,

• pomija się efekty reologiczne,

• obowiązują liniowe związki kinematyczne,

• zbrojenie jest modelowane za pomocą sprężysto-plastycznych elementów kratowych,

• nie uwzględnia się póslizgu pomiędzy matrycą betonową a stalowym zbrojeniem.

Praca obejmuje sześć rozdziałów. Rozdział 2 dotyczy rozważán na poziomie punktu materia-

lnego. Oprócz rozpatrywanych komponentów modelu, na końcu opisany jest tzw. test Willama

z charakterystycznym dla betonu procesem obciążania. Rozdział 3 dotyczy sformułowania i im-

plementacji. Badane są również własnósci pojedynczego elementu skończonego na podstawie

analizy spektralnej. Zaproponowana jest także implementacja czterowęzłowych elementów

skónczonych ze zredukowanym całkowaniem i stabilizacją. Rozdział 4 odnosi się do staty-

cznych i dynamicznych testów elementów skończonych. Zastosowania modelu w mechanice

betonu są zawarte w Rozdziale 5, gdzie kolejno są symulowane: wspornik pod obciążeniem

znakozmiennym, test brazylijski rozłupywania próbki, czteropunktowe zginanie belki, kołkowe

działanie zbrojenia i na kóncu przebicie w połączeniu płyta-słup. Wnioski zawiera Rozdział 6.

ROZDZIAŁ 2: SPRZĘŻENIE MECHANIKI USZKODZEŃ I PLASTYCZNOŚCI

2.1. OPIS SKALARNY MECHANIKI USZKODZEŃ: Układ równán na poziomie punktu ma-

terialnego zawiera: równania ruchu (2.1), równania kinematyczne (2.2) oraz odpowiednie ró-

wnania fizyczne. Na podstawie Podrozdziału 1.1 można wprowadzíc pojęcie skalarnej miary
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uszkodzenia nazywanej dalej krótko uszkodzeniem. W tej pracy uszkodzenie opiera się na po-

stulacie równowȧznósci odkształcén [90], zilustrowanym na Rys. 2.1. Fikcyjna konfiguracja

z efektywnym tensorem naprężeniaσ̂ reprezentuje nieuszkodzony szkielet. Pomiędzy rzeczy-

wistym a efektywnym tensorem naprężenia zachodzi relacja (2.4). Powyższy postulat wią̇ze się

z załȯzeniem funkcji obcią̇zenia (2.8), dla mechaniki uszkodzeń definiowanej w przestrzeni od-

kształcén. O rozwoju uszkodzeniaω w czasiet decyduje parametr historiiκd. Definicja funkcji

obcią̇zenia jest równowȧzna definicji równowȧznej miary odkształceniãǫ.

W pracy wymienia się trzy definicje tej miary: unormowana miara energii sprężystej (skrót

ang. EER) wg wzoru (2.11), definicja Mazarsa (2.12) oraz zmodyfikowane kryterium HMH

(ang. modified von Mises). Ta ostatnia miara (2.15) została zaproponowana w [38] i jest

obliczana na podstawie niezmienników tensora odkształcenia oraz współczynnikak zalėznego

od ilorazu wytrzymałósci naściskaniefc do wytrzymałósci na rozciąganieft. Na Rys. 2.3–2.7

przedstawiono powierzchnie uszkodzenia (funkcje obciążenia) według wẏzej wymienionych

definicji.

Obok funkcji obcią̇zenia nalėzy sprecyzowác funkcję wzrostu uszkodzenia. Najprostsza

jest definicja (2.19) zgodna z liniowym osłabieniem. Najczęściej stosowana jest natomiast

definicja (2.21) związana z osłabieniem eksponencjalnym. Różnice są zilustrowane w przy-

kładzie, gdzie na Rys. 2.8 pokazane są wykresyǫ11-σ11 dla tych definicji oraz tzw. zmody-

fikowanego prawa potęgowego (2.20).

2.2. SPRZĘŻENIE Z PLASTYCZNOŚCIĄ: Sprzę̇zenie skalarnego modelu mechaniki uszko-

dzén i teorii plastycznósci ma na celu uwzględnienie nieodwracalnych odkształceń obserwowa-

nych w rzeczywistósci. Teoria uszkodzenia jest formułowana w przestrzeni odkształceń, nato-

miast teoria plastyczności – w przestrzeni naprężén [74,145]. Związek konstytutywny dla mo-

delu sprzę̇zonego, który jest zapisany w prędkościach, przedstawia wzór (2.50). Sprzężenie jest

widoczne w u̇zyciu klasycznego tensora sprężysto-plastycznegoEep, który jest skonstruowany

według zalėznósci (2.35). Istotną jest też kwestia czy odkształcenie równoważne ǫ̃ zalėzy od

całego tensora odkształcenia czy też od jego czę́sci sprę̇zystej. Jésli jedynie odkształcenia

sprę̇zyste wpływaja na definicję miarỹǫ(ǫe), to mȯzna mówíc o słabym sprzę̇zeniu. Ten rodzaj

sprzę̇zenia jest zazwyczaj stosowany w odniesieniu do betonu. Jeśli występuje pełne sprzęże-

nie, wówczas równiėz odkształcenia plastyczne indukują odkształcenie równoważne, poniewȧz

istnieje zalėznósć ǫ̃(ǫ). Wpływ sprzę̇zenia ilustrują: schemat na Rys. 2.9 oraz przykład, którego

wyniki znajdują się na Rys. 2.10.

2.3. ZAMYKANIE SIĘ RYS: W modelu na poziomie punktu materialnego dodatkowo można

uwzględníc efekt zamykania rys, który po zadaniu obciążenia wywołującego rozciąganie i od-

ciążeniu pojawia się wraz z wywołanieḿsciskania. Idea tego zjawiska jest pokazana na wykre-

sie na Rys. 2.11. Teoria bazuje na pracach [62, 102, 145] i była szerzej przedstawiana w [117,

122, 170]. Uwzględnienie zamykania rys wymaga odpowiedniej definicji tzw. operatora pro-
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jekcji P +, który odpowiada za wydzielenie dodatniej części ze sprę̇zystego tensora odkształce-

nia, zgodnie ze wzorem (2.52). Operator tworzy iloczyn macierzy według równania (2.57),

gdzieT jest macierzą transformacji do kierunków głównych, aH jest macierzą wybierającą.

Można wyró̇znić dwie propozycje definicji tej macierzy, a mianowicie Ortiza (2.65) oraz alter-

natywnie Simo, Ju i Hansena (2.69). Związek konstytutywny, gdzie efekt zamykania rys jest

uwzględniony, stanowi relacja (2.85). Wpływ tego efektu widać w definicji operatora stycznego

Etan (2.83) oraz w dodatniej części efektywnego tensora naprężeniaσ̂+ (2.79). Przykłady na

końcu podrozdziału pokazują wpływ uwzględnienia zamykania rys na poziomie punktu mate-

rialnego (pojedynczego elementu skończonego).

2.4. MODEL IZOTROPOWY MECHANIKI USZKODZEŃ: Opis skalarny jest najprostszym w te-

orii mechaniki uszkodzén. Pozostając przy opisie izotropowym można jednak wyró̇znić dwie

miary odkształcenia i/lub dwa paramtery uszkodzenia. Dekompozycja, która rozróżnia inny

rozwój uszkodzenia pod wpływem rozciągania iściskania została przedstawiona w pracach [27,

103, 130]. Mȯzliwy jest równiėz podział na czę́sć związaną ze zmianą objętości i postaci, jak

np. w [98]. Taki aksjatorowo-dewiatorowy model został zaproponowany również w niniejszej

pracy, zob. wzór (2.86). Rozpatruje się zatem dwa parametry uszkodzenia –ωK odpowiadające

za redukcję modułúscísliwościK i ωG redukujący moduł́scinaniaG. Zmiana tych parametrów

w najprostszy sposób może zalėzéc od jednej równowȧznej miary odkształcenia. Alternatywnie

można rozpatrywác dwie równowȧzne miary odkształcenia, odpowiadające za zmianę objętości

i postaci. W pracy zaimplementowane jest podejście łatwiejsze.

Przykład jednokierunkowego rozciągania pojedynczego elementu skończonego pokazany

w tym podrozdziale analizuje możliwość zadawania ró̇znych funkcji wzrostu uszkodzenia dla

czę́sci aksjatorowej i dewiatorowej. Zastosowanie prawa osłabienia liniowego (2.19) z różnymi

wartósciami kóncowymi κu dla odkształcenia objętościowego i postaciowego przy wzroście

jednego parametru historiiκd powoduje silnie nieliniową odpowiedź w zakresie osłabienia. Co

więcej, zmiana współczynnika Poissonaνω zdefiniowanego wzorem (2.97) może doprowadzíc

do takiego obni̇zenia jego wartósci, która nie posiada odzwierciedlenia w obserwacjach mate-

riału takiego jak beton. W trakcie procesu rozciągania efekt Poissona w betonie może zanikác

(por. [75]), ale wartósć νω nie powinna zmierzác do granicy−1. Wprowadzenie prawa osłabie-

nia eksponencjalnego (2.21) z odpowiednimi parametrami dla obu funkcji wzrostu uszkodzenia

ωK(κd) i ωG(κd) łagodzi niepȯządane tendencje, por. Rys. 2.17.

2.5. TEST WILLAMA : Numeryczny test rozciągania ześcinaniem został pierwszy raz wyko-

nany w [169] i jak wspomniano w [171] jest on charakterystyczny dla zachowania się kon-

strukcji żelbetowych. Niemniej jednak w literaturze nie można spotykác wyników ekspery-

mentalnych, prawdopodobnie z powodu trudności w przeprowadzeniu takiego testu. Test do-

brze weryfikuje dany model na poziomie punktu materialnego. Istnieją dwa warunki, które

sprawdzają poprawność modelu: maksymalne naprężenie główne musi býc co najwẏzej równe
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wytrzymałósci na rozciąganieft oraz wszystkie składowe tensora naprężenia powinny zmierzác

do zera w kóncowym stadium procesu obciążenia. Test Willama mȯzna podzielíc na dwie

fazy. Pierwsza stanowi jednokierunkowe poziome rozciąganie, gdzie zależnósci pomiędzy

przyrostami składowych odkształcenia∆ǫ11 : ∆ǫ22 : ∆γ12 = 1 : −ν : 0 obowiązują do mo-

mentu osiągnięcia granicy wytrzymałości betonu na rozciąganie. Po przekroczeniu tej wartości

konfiguracja zmienia się tak,że wymuszane jest rozciąganie w dwóch kierunkach wraz ześci-

naniem: ∆ǫ11 : ∆ǫ22 : ∆γ12 = 0.5 : 0.75 : 1 . Rysunek 2.19 przedstawia deformację

narzucaną w obu fazach.

Otrzymane wyniki pokazują,̇ze są spełnione wymagania testu Willama dla modeli: czystej

mechaniki uszkodzén, sprzę̇zonego z plastycznością oraz izotropowego z dwoma parametrami

uszkodzenia. W przypadku modelu mechaniki uszkodzeń zachodzi współosiowość odkształcén

i naprę̇zén głównych. Jésli rozpatruje się sprzężenie modelu z plastycznością wówczas ta

współosiowósć nie jest zachowana i zmiana kierunków głównych dla naprężén jest szybsza,

zob. Rys. 2.27(a). Wyniki dla modelu izotropowego ponownie pokazują,że mȯzna tak do-

brác parametry dla funkcji wzrostu uszkodzenia,że problem ujemnej wartości współczynnika

Poissonaνω może býc zniwelowany, zob. Rys 2.32.

ROZDZIAŁ 3: ELEMENTY SKOŃCZONE

DLA GRADIENTOWEGO MODELU MECHANIKI USZKODZEŃ

3.1. MOŻLIWOŚCI GRADIENTOWEGO WZBOGACENIA MODELU MECHANIKI USZKODZÉN:

Teoria prezentowana w Rozdziale 2 jest lokalna, co oznacza,że przy osłabieniu materiału szty-

wność styczna zmienia się na ujemną, a sformułowanie traci eliptyczność i dopuszczalna jest

nieskónczona liczba rozwiązań. Lokalizacja towarzysząca osłabieniu i obserwowana w ma-

teriałach ogranicza się do linii lub powierzchni (w trzech wymiarach), co przy analizie nu-

merycznej oznacza,że o szeokósci strefy lokalizacji decyduje gęstość dyskretyzacji, np. w MES

jest to pasmo elementów skończonych o najmniejszej możliwej szerokósci. Z tego powodu

wprowadza się teorię nielokalną, aby zregularyzować problem.

W modelach gradientowych o strefie lokalizacji decyduje wówczas wewnętrzna skala dłu-

gości l. Warto jednak podkréslić, że wprowadzenie gradientów danego pola może miéc dwojaki

skutek – wygładza niejednorodność lub ją wprowadza, por. Rys 3.1 i [5]. Do gradientowego

modelu mechaniki uszkodzeń obok standardowego kompletu równań wprowadza się dodatkowe

równanie úsredniające (3.7), które powoduje uśrednianie równowȧznej miary odkształceniãǫ.

Równanie to nazywa się również równaniem dyfuzyjnym lub równaniem Helmholtza. Wielkość

ǭ oznacza úsrednioną miarę odkształceń, a parametrc jest związany z wewnętrzną skalą dłu-

gości l w następujący sposóbc = 1
2
l2. Ta relacja została wyprowadzona np. w [4]. Znane są

podobne podejścia, gdzie równanie uśredniające odnosi się do innych wielkości. Szereg takich

propozycji zostało opisanych w [34].
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3.2. GRADIENTOWY MODEL MECHANIKI USZKODZEŃ Z JEDNYM LUB DWOMA PARAME-

TRAMI : Niniejszy podrozdział zawiera kompletne wyprowadzenie od sformułowania przez

dyskretyzację, ȧz do otrzymania równania macierzowego dla gradientowego modelu mechaniki

uszkodzén w opisie skalarnym (jeden parametr uszkodzenia) i izotropowym (dwa parametry

uszkodzenia). Do funkcji aktywacji uszkodzenia (3.18) wprowadza się zatem uśrednioną mia-

rę odkształcén ǭ. Punktem startowym jest równanie ruchu (2.1) i równanie uśredniające (3.7),

które po wprowadzeniu formy słabej i przestrzennej dyskretyzacji mają postać (3.33) i (3.34).

Wprowadzona została zatem niezależna interpolacja (3.25) dla pola przemieszczeń jak w stan-

dardowym MES oraz dodatkowo dla pola uśrednionych odkształceń. Zatem w takim dwupo-

lowym modelu poszukiwane będą węzłowe przemieszczeniaa i węzłowe wartósci úsrednio-

nej miary odkształceniae. Po wprowadzeniu linearyzacji otrzymuje się macierzowy układ

równán (3.58) dla modelu z jednym paramtrem uszkodzenia lub (3.72) dla modelu z dwoma

parametrami uszkodzenia. Model z dwoma parametrami jest nadal dwupolowy i oparty jest na

załȯzeniu,że zmiana tych parametrów zależy od jednej i tej samej miary odkształcenia. Gdyby

te parametry zalėzały odpowiednio od pewnej uśrednionej miary odkształcenia objętościowego

i postaciowego, to sformułowanie byłoby trójpolowe.

3.3. IMPLEMENTACJA DWUPOLOWYCH ELEMENTÓW SKÓNCZONYCH: Węzłowe przemie-

szczeniaa i węzłowe wartósci úsrednionej miary odkształceniae są poszukiwane na poziomie

każdego kroku przyrostowego. Jeśli rozwiązywany jest test, gdzie obecne są również siły

bezwładnósci, to oprócz standardowej iteracyjnej metody Newtona-Raphsona poszukiwania ró-

wnowagi wewnątrz danego kroku przyrostowego (czasowego) do procedury rozwiązania włą-

czony jest algorytm Newmarka z niejawnym całkowaniem po czasie. Rozwiązywane jest zatem

równanie (3.78), gdzie wektorq składa się ze wszystkich stopni swobody dla obu pól. Cały al-

gorytm zawiera Tabela 3.2. Elementy skończone zaprezentowane w Tabeli 3.3 oprogramowano

w pakiecie FEAP [158]. Jak wspomniano w [147], problem analizowany przy użyciu gradien-

towego modelu mechaniki uszkodzeń jest raczej sprzę̇zony ni̇z mieszany, zatem dopuszczalna

jest interpolacja obu pól takimi samymi funkcjami kształtu, np. liniowymi.

3.4. WŁASNOŚCI ELEMENTÓW SKOŃCZONYCH I KONTROLA FORM PASȮZYTNICZYCH :

Charakterystykę elementów skończonych mȯzna okréslić m.in. poprzez analizę problemu wła-

snego. W przypadku gradientowego modelu mechaniki uszkodzeń sprzę̇zonego z plastyczno-

ścią operator styczny jest analizowany w trzech fazach: sprężystej, z aktywnym uszkodzeniem

i w fazie odcią̇zenia. Rysunek 3.2 przedstawiaściėzkę równowagi z zaznaczonymi punktami,

kiedy analiza spektralna operatora stycznego została wykonana, odpowiednio dla każdej fazy.

Na początku analiza skupia się wyłącznie na czterowęzłowym elemencie skończonym. Roz-

patrywane są przypadki z pełnym i zredukowanym całkowaniem oraz przy założeniu zerowej

i niezerowej wartósci parametru wewnętrznego długości c. Tabele 3.4 i 3.5 podają dodatnie,

zerowe i ujemne wartósci własne dla całego operatora stycznegoK oraz dla podmacierzyKaa
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i Kee związanych odpowiednio z równaniami równowagi i z równaniem uśredniającym.

Rysunki 3.3–3.11 przedstawiają formy własne dla czterowęzłowego elementu skończonego

w zalėznósci od danego przypadku i poszczególnych faz. Na rysunkach od punktów węzłowych

odłożone są składowe wektorów własnych dla odpowiadających im wartości własnych. Kolorem

niebieskim zaznaczona jest ta część wektora, która odpowiada przemieszczeniowym stopniom

swobody. Mȯze býc zatem interpretowana jako postać deformacji elementu skończonego.

Forma zaznaczona kolorem czerwonym została skonstruowana w ten sposób,że wartósci wę-

złowe úsrednionej miary odkształcenia są odłożone pionowo. Ponieważ cały operatorK może

być niesymetryczny, to dopuszczalne są zespolone składowe. Wówczas część urojona jest

reprezentowana jako forma własna odłożona kolorem jasno niebieskim i/lub różowym, odpo-

wiednio dla stopni swobody przemieszczeniowych i uśrednionej miary odkształcenia. Z tabel

i rysunków wynika przede wszystkim,że w przypadku stosowania zredukowanego całkowa-

nia (z jednym punktem Gaussa) należy dokonác stabilizacji obu pól w celu wyeliminowania

zerowych nadliczbowych wartości własnych czyli kontroli form pasożytniczych.

Do wariacyjnego równania równowagi z wprowadzoną interpolacją pola przemieszczeń do-

daje się składnik tak, aby dokonać stabilizacji sformułowania Galerkina przez metodę najm-

niejszych kwadratów (MNK, skrót ang.GLS) [162, 178]. W składniku tym występuje macierz

skalującaχ1 zalėzna od wymiaru charakterystycznego elementu skończonego, modułúscinania

G oraz współczynnika liczbowegoχ. Ostatecznie po stabilizacji wprowadzonej do równania

równowagi układ równán w zapisie macierzowym ma postać (3.117). Pozornie łatwa do wyko-

nania w słabej formie równania uśredniającego analogiczna procedura stabilizacji za pomocą

MNK lub gradientowej MNK nie wprowadza kontroli form pasożytniczych. Skuteczną okazuje

się konstrukcja składnika stabilizującego za pomocą operatoraγ, podobnie jak w analizie ró-

wnania Laplace’a przedstawionej w [13]. Operator ten zależy wyłącznie od geometrii elementu

i nie ma wpływu na pola liniowe. W składniku stabilizującymχ2 podobnie jak poprzednio

występuje współczynnik skalującyχ. Ostatecznie zapis równania macierzowego ze stabilizacją

wprowadzoną do obu równań (równowagi i úsredniającego) przyjmuje postać (3.133).

Zgodnie z oczekiwaniami analiza spektralna elementu czterowęzłowego ze zredukowanym

całkowaniem i wprowadzoną kontrolą form pasożytniczych według równania (3.133) pokazuje,

że dopiero stabilizacja obu pól zapewnia poprawne spektrum wartości własnych i formy własne,

zob. Tabela 3.6 i Rys. 3.12–3.17.

Tabele 3.7–3.8 na końcu Podrozdziału 3.4 pokazują liczby dodatnich, zerowych i ujemnych

wartósci własnych dla pozostałych dwu- i trójwymiarowych elementów skończonych.

ROZDZIAŁ 4: TESTOWANIE ELEMENTÓW SKÓNCZONYCH

4.1. STATYCZNE ROZCIĄGANIE PRĘTA Z IMPERFEKCJĄ: Numeryczna analiza statycznego

rozciągania pręta z imperfekcją jest podstawowym testem służącym do obserwacji i porównań

modeli dla zagadnién fizycznie nieliniowych. Ẃsrodku pręta wprowadza się imperfekcję, np.
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nieco słabszy materiał, mniejszy przekrój, itd. W odpowiedzi można otrzymác lokalizację od-

kształcén w strefie imperfekcji oraz ró̇zne rezultaty, zalėzne np. od analizy parametrycznej

danego modelu. W niniejszej pracy zawarto wyniki, które uzupełniają obliczenia zawarte

w [36,119,125]. Weryfikowane są elementy jedno-, dwu- i trójwymiarowe.

Rysunek 4.2 pokazuje wykresy naprężenie-wydłu̇zenie dla analizy jednowymiarowej. O-

prócz dyskretyzacji20 elementami, gdzie zadana wewnętrzna skala długości jest mniejsza od

wymiaru pojedynczego elementu skończonego (2.83 mm< 5 mm), wyniki są niezalėzne od

dyskretyzacji. Widác to wyraźnie na Rys. 4.3, gdzie rozkłady parametru uszkodzenia i uśre-

dnionej miary odkształcenia mają nieomal identyczne wartości. Rysunki 4.4 i 4.5 przedsta-

wiają wpływ wewnętrznego parametru długości c na rozwiązanie. Oscylacje w rozkładach

uszkodzenia i úsrednionego odkształcenia, widoczne dla przypadkuc = 0, świadczą o braku

regularyzacji.

Rysunek 4.6 ilustruje wpływ wyboru funkcji wzrostu uszkodzenia. Warto dodać, że parame-

try modelu zostały tutaj tak dobrane, aby wartość energii pękania była podobna. Można za-

tem otrzymác zupełnie inną odpowiedź, por. wykresy naprężenie-wydłu̇zenie oraz rozkłady

uszkodzenia, pomimo,̇ze wzrost úsrednionego odkształcenia będzie miał podobny charakter.

Kolejna analiza porównawcza dotyczy obecności sprzę̇zenia z plastycznóscią w modelu, zob.

Rys. 4.7–4.10. Wartósć modułu wzmocnieniah może wydawác się nierealistycznie wysoka,

ale jak potwierdzono w [119] im większa wartość h tym większe zbli̇zanie się do rozwiązania

jak dla czystego gradientowego modelu mechaniki uszkodzeń. Wynika to z faktu,że moduł

wzmocnienia odnosi się do szkieletu materiału. Jeśli rozpatruje się słabe sprzężenie modeli,

tzn. ǫ̃ = ǫe, to rozwój uszkodzenia dla modelu sprzężonego i bez sprzężenia jest taki sam.

Kolejnym etapem analizy są symulacje dwuwymiarowe. Rysunki 4.11–4.13 dotyczą po-

równania wyników dla elementu czterowęzłowego w zależnósci od typu całkowania. Nieco

mniej sztywną odpowiedź uzyskuje się dla całkowania z jednym punktem Gaussa i stabilizacją,

chóc rozkład wartósci dla úsrednionej miary odkształcenia i parametru uszkodzenia nie różni

się. Tabela 4.3 potwierdza fakt,że przy całkowaniu zredukowanym ze stabilizacją kwadratowa

zbiėznósć iteracji w kroku przyrostowym zostaje zachowana.

Innym aspektem analizy dwuwymiarowej jest weryfikacja modelu izotropowego. W Tabe-

li 4.4 zostały zestawione przypadki, dodatkowo rozróżniając definicję funkcji obcią̇zenia: miarę

energii sprę̇zystej (EER) i zmodyfikowane kryterium HMH (modified von Mises). Okazuje się,

że odpowiedź jest zależna od definicji tych funkcji, co widác na Rys. 4.14. Dalsze obliczenia

skupiają się na zastosowaniu jedynie zmodyfikowanego kryterium HMH. Z Tabeli 4.5 wynika,

że proces zbiėznósci przy stosowaniu modelu izotropowego nie pogarsza się w stosunku do

standardowo u̇zywanego modelu skalarnego. Rysunki 4.15–4.17 ilustrują kolejne porównania

dla u̇zywanego modelu izotropowego. W zależnósci od wzajemnej relacji zadanych parametrów

ciągliwości η dla czę́sci aksjatorowej i dewiatorowej uzyskuje się inny rozwój degradacji ma-

teriału w osłabionej strefie. Najbardziej widoczna różnica jest dla zmiennego współczynnika

Poissonaνω, którego wartósć wrasta lub maleje w zależnósci od rozwȧzanego przypadku.
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Krótkie porównanie wyników obliczén wykonanych przy pomocy elementów trójwymi-

arowych dotyczy przede wszystkim pomierzonych czasów obliczeń, zob. Tabela 4.6. Oczywi-

ście najkrótszy czas jest dla przypadku, gdzie stosuje się elementy trójwymiarowe z ośmioma

węzłami. Mimo wprowadzonej do nich interpolacji liniowej obu pól i w efekcie możliwych

niedokładnósci wyników, ten element jest wybrany do dalszych obliczeń problemów trójwy-

miarowych.

4.2. DWA TESTY DLA DYNAMIKI : Kontynuując poprzedni podrozdział można przetestowác

model na przykładzie pręta pod działaniem obciążenia uderzeniowego. Znane jest rozwiązanie

analityczne (por. np. [8, 150]) dla pręta jednostronnie zamocowanego, które wyjaśnia mech-

anizm propagacji fal przed i po odbiciu się od brzegu. W chwili kiedy następuje wyjście

poza zakres sprężysty wraz z osłabieniem przy zamocowaniu pojawia się fala stojąca (z uro-

joną prędkóscią). Ostatecznie prowadzi to do lokalizacji i zniszczenia przy zamocowanym

brzegu. W celu uniknięcia zależnósci rozwiązania numerycznego od siatki należy zastosowác

model z regularyzacją, tak aby nie nastąpiła lokalizacja wyłącznie w elemencie najbliżej zamo-

cowania. Rysunki 4.20(a)–4.20(c) pokazują ewolucję uśrednionego odkształcenia, naprężenia

osiowego i uszkodzenia. Widoczne jest powstanie fali stojącej i odbijanie się fali sprężystej.

Rysunek 4.20(d) przedstawia ostateczny rozkład parametru uszkodzenia w pręcie.

Drugi test dotyczy jednokierunkowego dynamicznego rozciągania obszaru dwuwymiaro-

wego, jak na Rys. 4.21. Wzdłuż poziomej osi opcjonalnie umieszcza się zbrojenie. Różnica

pomiędzy konfiguracją bez zbrojenia (beton) i ze zbrojeniem (żelbet) jest widoczna na Rys. 4.22

i 4.23. Dla betonu otrzymuje się wyraźną lokalizację i wzrost wydłużenia do nieskónczonósci.

Natomiast dlȧzelbetu pomimo lokalizacji widoczna jest obecność fali sprę̇zystej i oscylacje

wydłużenia wokół pewnego stanu. Rysunek 4.24 przedstawia zależnósć wyników od intensy-

wności obcią̇zenia i stopnia zbrojenia.

ROZDZIAŁ 5: ZASTOSOWANIA MODELU NUMERYCZNEGO

5.1. WSPORNIK POD OBCIĄ̇ZENIEM ZNAKOZMIENNYM : Test wspornika pod obciążeniem

znakozmiennym ma na celu demonstrację zastosowania gradientowego modelu z opcją zamyka-

nia rys. Siatka elementów skończonych wraz z warunkami brzegowymi jest przedstawiona na

Rys. 5.1. Test był analizowany w [117, 122], ale nie dotyczył on modelu sprzężonego z pla-

stycznóscią i z opcją zamykania rys. Wykresy na Rys. 5.2 pokazują,że bez opcji zamykania

rys nie jest przywracana początkowa sztywność przy zmianie znaku obciążenia. Dla modelu

z plastycznóscią widoczna jest dodatkowo obecność trwałych odkształcén. Rysunki 5.3 i 5.4

pokazują ewolucję naprężeniaσ11. Można zauwȧzyć, że wytrzymałósć betonu na rozciąganieft

nie zostaje przekroczona, a zamykanie rys pojawia się pomiędzy punktem 5 i 6, co odpowiada

zmianie znaku naprężenia w dolnej strefie, Rys. 5.3(g). Rys. 5.5 i 5.6 obrazują (zaczyna-

jąc od lewej) rozkłady úsrednionego odkształcenia, odkształcenia plastycznego i parametru
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uszkodzenia. Warto zwrócić uwagę,̇ze uszkodzenie jest wielkością niemalejącą i pomimo zmi-

any znaku obcią̇zenia jest ono zachowywane.

5.2. BRAZYLIJSKI TEST ROZŁUPYWANIA PRÓBKI: Test rozłupywania próbki, zwany też

testem brazylijskim ma na celu wyznaczenie wytrzymałości betonu na rozciąganie. Pod wpły-

wem ściskania próbki w kształcie walca, jak to jest pokazane na Rys. 5.7, tworzą się rysy

pierwotne i wtórne, ewentualnie klin, a następnie rozłupanie. Do obliczeń zastosowano model

gradientowy samej mechaniki uszkodzeń (bez sprzę̇zenia) dla 9 przypadków z różnym typem

interpolacji i gęstóscią siatki. Dane są zestawione w Tabelach 5.1 i 5.2. Rysunki 5.9–5.13 przed-

stawiają wyniki dla wszystkich przypadków. Na Rys. 5.9 da się zauważyć podział wykresów

na dwie grupy, ale generalnie wyniki są niezależne od wyboru siatki. Jest to widoczne przy

porównaniu rysunków warstwicowych wybranych wielkości. Dalsze obliczenia dotyczą́sre-

dniej siatki i elementów z mieszaną interpolacją. Na Rys. 5.14 i 5.15 można zauwȧzyć wpływ

wartósci wewnętrznej skali długości l na wyniki obliczén i na kwestię, czy efekt rozłupa-

nia zostanie odtworzony. Z drugiej strony różna definicja przekładki (Rys. 5.16 i 5.17) nie

ma większego wpływu i zachowanie próbki walcowej jest zgodne z procesem obserwowanym

w eksperymentach.

W drugiej czę́sci obliczén weryfikowano model izotropowy i stosowanie dwóch parametrów

uszkodzenia. Ponownie została użyta siatkásrednia i elementy z mieszaną interpolacją. Dane

dla rozwȧzanych przypadków są zestawione w Tabeli 5.9. Z wyników obserwowanych na

Rys. 5.18–5.22 mȯzna wywnioskowác, że zadawana wartość parametru ciągliwósci η może

mieć wpływ na zachowanie się symulowanego procesu rozłupania próbki, co więcej bardziej

istotna jest tutaj wartósć tego parametru dla części dewiatorowej. Rysunek 5.22(b), na którym

przedstawiona jest zmiana wartości współczynnika Poissona, ilustruje fakt,że ekstremalne

ujemne wartósciνω pojawiają się w kóncowej fazie testu na froncie strefy uszkodzenia.

5.3. CZTEROPUNKTOWE ZGINANIE BELKI: Analiza tego testu bazuje na doświadczeniu

wykonanym przez Eibla i współpracowników [46]. Uzyskane wyniki eksperymentalne porówny-

wano wczésniej z wynikami symulacji numerycznych [45, 151, 152]. Belka została obciążona

dynamicznie. Dane geometryczne i materiałowe oraz historia obciążenia są zestawione na

Rys. 5.23 i w Tabelach 5.4–5.5. Obliczenia opisane w tym podrozdziale są podzielone na kilka

etapów.

Pierwszy etap stanowi analiza belki betonowej (bez zbrojenia) pod obciążeniem statycznym

w celu wyznaczenia granicznej wartości wewnętrznego parametru długości, tak aby otrzymane

wyniki były niezalėzne od gęstósci siatek (rzadkiej –56 × 8, średniej –112 × 16 i gęstej –

168 × 24). Okazuje się,̇ze graniczna wartósć l wynosi 16 mm. Dodatkowo zweryfikowano

przy pomocy tego przykładu możliwość całkowania z jednym punktem Gaussa i stabilizacją.

Podobnie jak w téscie jednoosiowym, generalna tendencja, iż uzyskuje się nieco mniej sztywną

odpowiedź w porównaniu do obliczeń przy u̇zyciu pełnego całkowania, nadal jest zachowana.
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Rysunek 5.25 przedstawia odpowiednie wykresy, natomiast na Rys. 5.26 i 5.27 znajdują się

mapy warstwicowe dla úsrednionego odkształcenia oraz deformacje dla wszystkich przypad-

ków obliczén.

Kolejny etap stanowią obliczenia statyczne belkiżelbetowej (zbrojonej). Wykonano tutaj

szereg porównán dotyczących parametrów modelu. Rysunek 5.28 przedstawia wykresy w za-

leżnósci od wartósci: parametru ciągliwósci η, wewnętrznego parametru długości, współczyn-

nika k będącego stosunkiem wytrzymałości naściskaniefc do wytrzymałósci na rozciąganie

ft. Analizowany jest tak̇ze wpływ sprzę̇zenia z plastycznóscią i zalėznósć od stopnia zbrojenia.

Natomiast Rys. 5.29–5.34 ilustrują te porównania na mapach warstwicowych.

Ostatni etap obliczén dotyczy konfrontacji z eksperymentem. Wykresy na Rys. 5.35 poka-

zują zgodnósć symulacji belkiżelbetowej pod obcią̇zeniem dynamicznym i przeprowadzonego

eksperymentu. Dodatkowo na Rys. 5.36 i 5.37 przedstawiono rozkłady uśrednionych odkszta-

łceń i deformacje dla belki zbrojonej zgodnie z danymi oraz z powiększonym zbrojeniem.

5.4. EFEKT KOŁKOWANIA ZBROJENIA W TRZECH WYMIARACH: Działanie kołkowe zbro-

jenia wywołujące odrywanie otuliny betonowej może býc analizowane jako problem dwuwymi-

arowy lub trójwymiarowy przy ograniczeniu,że pręt zbrojeniowy przemieszcza się jednakowo

wzdłuż osi (ang.dowel disk test). Bardziej rzeczywista jest jednak symulacja, gdzie zbroje-

nie jest odrywane na jednym końcu. Wówczas konieczna jest analiza zagadnienia w trzech

wymiarach (ang.dowel bar test). Test numeryczny został wykonany w dowiązaniu do ekspery-

mentu [41], ale wprowadzone zostały następujące ograniczenia: rozpatrywano połowę próbki

ze względu na symetrię, pomiędzy zbrojeniem a matrycą betonową umieszczono tzw. interfazę.

Dla zmniejszenia modelu obliczeniowego odrzucono tylną część próbki przy załȯzeniu braku

jakiegokolwiek podparcia tylnej́sciany lub przy poziomym podparciu tejściany równolegle do

osi pręta (2 przypadki). Dane, warunki brzegowe, siatki przyjęte do obliczeń są zilustrowane

na początku podrozdziału w Tabeli 5.6 i na Rys. 5.39–5.40. Wykresy siła-przemieszczenie zna-

jdują się na Rys. 5.41. Rezultat najbliższy eksperymentalnemu uzyskano dla przypadku siatki

nieregularnej i z poziomym podparciem tylnejścianki próbki. Rysunki 5.42 i 5.43 przedsta-

wiają kóncowe rozkłady uszkodzenia i uśrednionego odkształcenia dla wszystkich obliczonych

przypadków.

5.5. ŻELBETOWE POŁĄCZENIE PŁYTA-SŁUP: Bezpósrednie połączenie płyta-słup jest obe-

cnie powszechnie stosowanym rozwiązaniem konstrukcyjnym. Temu rozwiązaniu towarzyszy

niebezpieczénstwo przebicia płyty, związane z działaniemścinania ukósnie do powierzchni

styku słupa z płytą. Tworzy się tzw. stożek przebicia. Szczegółowy opis można znaleź́c m.in.

w [104,163]. Dlatego płyta w trakcie budowy wzmacniana jest naścinanie strzemionami, itp. W

istniejących konstrukcjach można stosowác specjalnésruby, np. takie, które zostały ekspery-

mentalnie zweryfikowane w pracy [1]. Doświadczenia opisane w [1] pokazują,że obecnósć

takichśrub wzmacnia płytę i zapobiega zjawisku przebicia. Zadaniem opisanym w niniejszym
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podrozdziale jest odtworzenie tego eksperymentu.

Po wprowadzeniu załȯzén upraszczających zdecydowano,że test będzie analizowany przy

użyciu gradientowego modelu bez sprzężenia (sama mechanika uszkodzeń), ale tak̇ze sprzę̇zo-

nego z plastycznóscią. Dane obliczeniowe są zawarte w Tabeli 5.8. Na Rys. 5.48 przedstawiono

siatkę MES oraz wizualizację zbrojenia (łącznie ześrubami).

Porównanie wykresów siła-ugięcie uzyskanych z przeprowadzonego eksperymentu [1] oraz

z rozwiązania numerycznego zostało umieszczone na Rys. 5.49. Nie ma różnicy pomiędzy

wynikami obliczén dla modelu zésrubami i beźsrub. Stąd wniosek,̇ze w trakcie symulacji

nie potrafią się one uaktywnić, býc mȯze z powodu mało precyzyjnego ich modelowania, które

nie uwzględnia efektu zakotwienia w płycie, jak np. w [111]. Wykresy otrzymane dla mo-

delu mechaniki uszkodzeń bez sprzę̇zenia nie są reprezentatywne w porównaniu z wykresami

z dóswiadczén, natomiast wykresy dla modelu sprzężonego są częściowo zgodne z ekspery-

mentalnym przypadkiem, gdzie uwzględnionośruby. Jednak̇ze nie jest trudno tak dostosować

parametry modelu, aby osiągnąć zgodnósć krzywych. Mapy warstwicowe úsrednionego od-

kształcenia dla ró̇znych etapów deformacji konfiguracji ześrubami zamieszczono na Rys. 5.50.

Jak widác największe odkształcenia występują na linii połączenia płyty ze słupem po stronie

rozciągania, co oznacza,że nie tylko nie uzyskano różnic widocznych w eksperymencie, ale

równiėz nie jest symulowane samo zjawisko przebicia.

Powẏzsze wyniki skłoniły do poszukiwania takiego modelu, który byłby w stanie poprawnie

odtworzýc zjawisko przebicia. Po wprowadzeniu małej wartości wewnętrznego parametru dłu-

gości l = 4 mm i jednokrotnym zagęszczeniu siatki po grubości płyty otrzymano wyniki

bardziej zbli̇zone do eksperymentalnych. Jak pokazują Rys. 5.51–5.53 nie tylko obliczona

krzywa przypomina kształtem uzyskaną z doświadczenia, ale także płyta nie zarysowywuje się

tuż przy połączeniu ze słupem. Warto jednak podkreślić, że maksymalna wartość naprę̇zenia

w zbrojeniu głównym (na rozciąganie przy zginaniu) nie przekroczyła granicy plastyczności,

a zatem wcią̇z nie mȯzna powiedziéc, że zjawisko przebicia zostało poprawnie odtworzone.

Pozostałe przypadki, włączając wyniki dla modelu izotropowego z dwoma parametrami oraz

obliczone za pomocą pakietu DIANA standardowymi modelami dla mechaniki betonu, nie

poprawiły jakósci rozwiązania.

Można wymieníc następujące prawdopodobne przyczyny niepoprawnej symulacji zjawiska

przebicia dla połączenia płyta-słup:

• zbyt rzadkie siatki elementów skończonych,

• wprowadzenie modelu nielokalnego zapobiega tworzeniu się rys związanych ześcinaniem,

jednoczésnie powodując,̇ze występuje dominacja zginania,

• zastosowane nieodpowiedniej dla trójwymiarowego testu funkcji obciążenia (powierzchni

uszkodzenia),

• pełna przyczepnósć (brak póslizgu) pomiędzy zbrojeniem i betonem.

Poniewȧz model izotropowy nie podnosi jakości rozwiązania, więc býc mȯze nalėzałoby zasto-

sowác model anizotropowy mechaniki uszkodzenia.
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Po omówieniu szczegółowych wniosków z pracy na końcu tego rozdziału podano następujące

najwȧzniejsze uwagi:

• Skalarny opis uszkodzenia jest wystarczający do analizy numerycznej, jeśli występuje

dominacja rozciągania/ściskania i/lub zginania.

• Wprowadzenie dwóch parametrów uszkodzenia do modelu jest proste. Z drugiej strony,

taka wersja modelu nastęcza trudności z interpretacją wyników, np. pojawiają się ujemne

wartósci współczynnika Poissona.

• Opis izotropowy uszkodzenia z jednym lub dwoma parametrami nie wystarcza gdy do-

minuje ścinanie. Zastosowanie skalarnego modelu sprzężonego nie usuwa tej niedogo-

dnósci.

• Model gradientowy zapewnia niezależnósć wyników od siatki.

• Algorytm dla dynamiki wymaga tylko niewielkiej modyfikacji w odniesieniu do algo-

rytmu dla statyki, a lokalizacja jest symulowana poprawnie.

• Obecnósć zbrojenia nie gwarantuje regularyzacji rozwiązania.

• Elementy stabilizowane z jednym punktem całkowania dają efektywny algorytm obliczeń.

DODATKI

Dodatek A przedstawia porównanie lokalnego i gradientowego modelu mechaniki uszkodzeń.

Pokazana jest zależnósć rozwiązania od siatki dla modelu lokalnego.

Dodatek B dotyczy wyprowadzenia sformułowania ze stabilizacją przy pomocy MNK dla

równania úsredniającego. Analiza spektralna potwierdza,że element zaprogramowany na bazie

tego sformułowania nie usuwa pasożytniczych zerowych wartósci własnych i odpowiadających

im nieoczekiwanych form własnych.

Dodatek C pokazuje wyniki uzyskane dla testu kołkowego działania zbrojenia obliczanego

przy pomocy jednej warstwy trójwymiarowych elementów (ang.dowel disk test).


