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Chapter 1

Introduction

The material softening and the non-symmetry of the tangent stiffness operator are possi-

ble sources of material (e.g. soil) instability and strain localization. The numerical simulation

of these phenomena in porous materials is the subject of thisthesis.

The issue of material instabilities causing strain localization has been investigated for

example in the review papers [15,41,81], in the extensive study of bifurcations in geomateri-

als [79] and in the proceedings of IUTAM symposium [16]. If a material instability [26, 37]

is encountered in the deformation history of a body, the strains often localize in a number of

narrow bands, while the remaining parts of the body unload. Within a classical continuum

formulation and for static problems this phenomenon is associated with the loss of elliptic-

ity of the governing partial differential equations. Therefore, discretization methods used to

solve the equations may yield mesh-sensitive and hence questionable results. To overcome

this problem, a form of rate-dependent or non-local enhancement of the constitutive model

should be adopted [15,65]. The non-locality may have the form of micropolarity (e.g. [40]),

integral averaging (e.g. [4]) or spatial gradient-dependence (e.g. [77]). All these approaches

imply the introduction of an internal length parameter in the continuum description. In cer-

tain cases, for instance for the simulation of discrete fissures in rocks, discontinuum mod-

elling can also be an option.

This thesis is focused on instabilities in porous materialswhich are often modelled as

two-phase media composed of solid and fluid. The solid-fluid interaction influences the

critical load level for which an instability can occur as well as the direction and width of the

localized deformation bands. In particular, the permeability coefficient and the pore fluid

compressibility are found to affect localization cf. for instance [3, 31, 59]. However, it is

unclear whether the onset of instability in a two-phase medium coincides with that in the

underlying drained solid. In this thesis the influence of fluid phase on soil instabilities is

3



4 Chapter 1

investigated using the local and gradient-enhanced modified Cam-clay model [58].

In [3] an investigation of the plane-strain instability of saturated porous media is per-

formed. It is concluded that the elastic-plastic models canexhibit two-phase instability de-

spite the fact that the solid phase remains in the stable regime. The contractant hardening

materials are found to be more inclined to two-phase instability than dilatant ones. In [31],

the problem of strain localization in porous materials is thoroughly discussed. The author

confirms that the localized solution is possible when the acoustic tensor associated with the

underlying drained material becomes singular. It is concluded that soil under undrained

conditions requires stronger softening than drained soil in order to reach a state in which lo-

calization is possible. In [59] the conditions for the onsetof shear localization in the limiting

cases of drained and undrained state for dilatant and contractant geomaterials are discussed.

It is stated that for dilatant soil the condition for localization is met earlier for drained than

undrained response. On the contrary, in case of the contractant soil the conditions for local-

ization are fulfilled for undrained state before drained.

Moreover, in [62] it is claimed that the two-phase modellingof soil involves a certain

regularization by introducing a gradient term via the Darcy’s law, although the necessity of

regularization of the constitutive model for a multiphase material is usually recognized. In

[88] a gradient plasticity model is used to analyze dynamic instabilities in fully and partially

saturated granular material. The influence of permeabilityon the width of localization zone

in a one-dimensional test is also evaluated. In [42] a gradient-enhanced visco-plastic model

is applied to localization analysis of clays. In [5] it is shown that the length scale introduced

by incorporating the fluid flow depends on the integration time step and is thus insufficient

for the regularization of unstable behaviour.

More recent developments concerning the problem of numerical simulations of localized

deformation bands in multiphase (granular) media are covered for instance in [7, 11, 34, 44,

89]. In [7] the problem of deformation and strain localization in partially saturated porous

medium is considered and a constitutive model (extension ofthe modified Cam-clay model)

for such a three-phase medium is proposed. In [44] a general variational framework of Cam-

clay theory is constructed within the finite deformation plasticity. In [89] the issue of internal

length scale introduced by the fluid-solid interaction is considered in a dynamic context. The

dynamic aspects of the analysis of the two-phase saturated soil under dynamic load can also

be found in [84] and other works of these Authors.

In [89], using stability and dispersion analyses the limit wave numbers are evaluated, for

which the internal length parameter vanishes and hence regularization is mandatory. These

results are confirmed in [11]. On the other hand, in [34] arguments are given to support the
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opinion that, at least for saturated sand undergoing dilatation, the fluid phase stabilizes the

soil and regularizes the solution.

1.1 Research objectives

The general objective of this thesis is the numerical analysis of instabilities and strain

(and pore pressure) localization in one-phase and fluid-saturated porous materials.

The realization of the goal requires the reliable modellingof geomaterials considering

their basic features as multiphase materials. The soil skeleton behaviour is described using

the modified Cam-clay model originally proposed in [58] and commonly accepted as reliable

for cohesive soils.

In order to preserve the well-posedness of the governing partial differential equations in

the presence of material instabilities, the Cam-clay modelis enhanced by introducing suit-

able higher-order deformation gradients in an enhanced continuum description. In particular,

the degree of overconsolidation is made dependent on the Laplacian of a hardening/softening

parameter, or, more precisely of the plastic multiplier. The enhancement introduces an in-

ternal length parameter and prevents the mesh-sensitivityof discretized numerical solutions.

The effectiveness of this gradient regularization of the modified Cam-clay model is studied.

Particular attention is focused on the analysis of the influence of fluid phase represented

by (excess) pore pressure on soil behaviour. The influence ofsoil permeability on the stabi-

lizing role of fluid phase is investigated.

The implementation and consistent linearization of the local Cam-clay model follows

[22] and the gradient-enhancement of the theory is based on concepts developed in [12, 13,

39]. The numerical material model and the algorithms were incorporated into the FEAP finite

element package [70] in the following steps. At first the local version of Cam-clay model

for one-phase medium was implemented. The classical one-field element with discretization

of displacements was used at this stage. This formulation allows for the analysis of two

extreme stages: drained state (excess pore pressure equal to zero) or undrained state (fluid

motion prevented). The second step is a description of soil as a two-phase medium. A two-

field finite element in which the displacements and the excesspore pressure are discretized

is considered. In order to prevent the mesh-sensitivity of numerical results the gradient

enhancement of Cam-clay model is incorporated. A two-field element with the discretization

of displacements and plastic multiplier is programmed at this stage. The final step is an

implementation of gradient-dependent Cam-clay model for the two-phase medium. This
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formulation requires a three-field element in which displacements, excess pore pressure and

plastic multiplier are discretized.

The thesis of the dissertation is the statement that in the two-phase soil description based

on the Cam-clay model, the presence of the second phase does not guarantee regularization.

It is necessary to enhance the constitutive model, for example by introducing suitable higher-

order (inelastic) deformation gradients in the continuum description.

1.2 Assumptions and limitations

Inertial effects and large deformations or strains are leftout of the scope of the thesis,

but both static deformation and consolidation problems areconsidered. The attention is thus

limited to elliptic or elliptic-parabolic problems with linear kinematics. The equilibrium and

kinematic equations have the form (Voigt’s matrix-vector notation is used):

LTσt + ρg = 0, (1.1)

ǫ = Lu, (1.2)

whereL is a differential operator matrix,σt is the total stress tensor in a vector form,ρ is

the density,g is the gravitation vector,ǫ is the strain tensor in a vector form,u is the dis-

placement vector and superscriptT is the transpose symbol. The stresses and displacements

satisfy the relevant natural and essential boundary conditions.

The derived formulations are three-dimensional, the implementation is limited to two-

dimensional plane strain and axisymmetric configurations.The attention is focused on the

physical and numerical aspects in the sense of aiming at mesh-insensitive results with a

clear physical explanation. However, the aim is not to analyze the efficiency of different

(in particular stabilized, cf. [73]) finite elements or develop adaptive remeshing techniques,

undoubtedly advisable for the analyzed class of problems.

The Terzaghi’s concept of effective stress is adopted in order to represent the dominant

role of solid skeleton in load-carrying capacity of soil. The governing equations for partially

saturated soil are derived in Sect. 5.1, but the implementation is limited to the case of fully

saturated soil.

1.3 Contents

The thesis is organized as follows. The remaining part of chapter 1 includes the stress

and strain notation. The volumetric-deviatoric decomposition of the mentioned tensors is
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presented. A list of matrices, vectors, scalars and functions used in this thesis is enclosed.

In chapter 2 the problem of numerical modelling of granular materials is discussed.

Essential physical properties of soils are described including their multiphase nature. The

Terzaghi’s assumption of effective stresses is presented.The role of total and effective stress

is explained. An overview of plasticity models used for the mechanical analysis of geomate-

rials is included.

Chapter 3 deals with the problem of material instability andlocalization phenomena in

granular materials. Instability indicators for one-phasemedium are discussed. However, the

attention is focused on the influence of fluid phase on the material behaviour. The literature

on the subject is reviewed.

The modified Cam-clay model in its local version is describedin chapter 4. The nonlinear

stress-strain relations are presented. The cases of associated and non-associated plasticity are

considered. The finite element implementation of the material model is summarized. The

one-element tests showing the typical soil behaviour and localization tests which exhibit

mesh sensitivity are enclosed.

Chapter 5 presents the equations for two-phase modelling offully and partially saturated

soil and the special cases of undrained and drained state, inwhich one-phase modelling is

possible. It also contains the description of the formulated and implemented finite element

models, including their linearization and discretization. The results for one-element tests and

benchmark results showing the strain and pore pressure localization for two-phase medium

are also presented.

The gradient-enhancement of the Cam-clay model is reportedon in chapter 6. The algo-

rithm for the gradient-dependent Cam-clay plasticity and discretization-independent results

of numerical simulations are included. The influence of imperfections on the numerical re-

sults is examined.

Chapter 7 contains the description of the formulated three-field finite element, including

its linearization and discretization. The results of numerical simulations are also discussed.

Selected applications of the developed numerical models are included in chapter 8.

Final remarks are gathered in chapter 9.

1.4 Volumetric-deviatoric decomposition

Due to the granular and multiphase nature of soils we have to distinguish between the

total and effective stress (cf. Sect. 2.2 for the explanation). The constitutive equations are
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written in terms of the effective stress tensor. Its matrix representation reads:

σ =









σxx σxy σxz

σyx σyy σyz

σzx σzy σzz









(1.3)

or using Voigt’s matrix-vector notationσ = [σxx, σyy, σzz, σxy, σyz, σzx]
T.

In a similar way we can write the matrix representation of strain tensor:

ǫ =









ǫxx ǫxy ǫxz

ǫxy ǫyy ǫyz

ǫxz ǫyz ǫzz









(1.4)

which in a vector form using the engineering shear strain components is written as:ǫ =

[ǫxx, ǫyy, ǫzz, 2ǫxy, 2ǫyz, 2ǫzx]
T. This vector representation will be used in this thesis.

The usual solid mechanics sign convention is such that tension is assumed to be possitive

(both stress and strain). On the other hand, in nearly all aspects of soil mechanics only

compressive stresses are present thus it is very frequent touse the convention of compression

being positive. Eventually, in this thesis, the adopted sign convention is that the compressive

stresses and strains are negative, however, the compressive pressure is regarded as positive.

The formulation of many plasticity models requires the volumetric-deviatoric split of

stress and strain tensors. The stress tensorσ in Voigt’s notation can be decomposed into:

σ = ξ −Π p = ξ +
1

3
ΠΠ

Tσ, (1.5)

in whichξ is the deviatoric stress,Π = [1, 1, 1, 0, 0, 0]T andp is the pressure. The deviatoric

stress vectorξ is defined as:

ξ = Qσ, (1.6)

matrixQ is given by:

Q = I − 1

3
ΠΠ

T (1.7)

Q =

[

Qn 0

0 Qt

]

, Qn =









2
3

−1
3

−1
3

−1
3

2
3

−1
3

−1
3

−1
3

2
3









, Qt = diag[1, 1, 1]. (1.8)

Note thatI is the identity matrix.

The hydrostatic pressure which is the invariant of the stress tensor is given by:

p = −1

3
(σxx + σyy + σzz) = −1

3
Iσ
1 = −1

3
Π

Tσ = −1

3
tr(σ) (1.9)
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The equivalent deviatoric stress is defined as:

q =
√

3J2 =

√

3

2
ξT Rξ. (1.10)

In a similar way the strain tensorǫ in vector form can be decomposed into:

ǫ = γ + Π θ (1.11)

where the deviatoric strain vectorγ is given by:

γ =
1

3
Qǫ. (1.12)

and the volumetric strain (the invariant of strain tensor) is called dilatation and computed as:

θ = ǫxx + ǫyy + ǫzz, (1.13)

1.5 Notation

Here is the list of symbols and abbreviations most frequently used in the thesis:

Tensors, matrices, vectors:

γ deviatoric strain vector

D tangent stiffness tensor

ǫ strain tensor in a vector form

g gravitation vector

k permeability matrix

L differential operator matrix

m vector normal to a plastic potential

n vector normal to the yield surface

r vector of residuals

s vector of primary unknowns

σ effective stress tensor in a vector form

σt total stress tensor in a vector form

u displacement vector

vd Darcy’s fluid flow velocity

ξ deviatoric stress vector

Q acoustic tensor

Scalars:
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c cohesion

e void ratio

F yield function

g gradient scaling factor

G plastic potential

Ḡ secant shear modulus

h hardening/softening modulus

θ volumetric strain

θe elastic part of volumetric strain

θp plastic part of volumetric strain

Kt tangential bulk modulus

K̄ secant bulk modulus

κ swelling index

λ compression index

Λ plastic multiplier

M , M̄ material constants

n porosity

ν Poisson’s ratio

p effective pressure acting on the soil skeleton

pc preconsolidation pressure

pf excess pore pressure

q equivalent deviatoric stress

ρ density

ρ̂ saturated density of the soil-fluid mixture

ρs density of the solid phase

ρf density of the fluid phase

S saturation ratio

V material volume

Vp pore volume

Vs skeleton volume

ϕ friction angle

ψ dilatation angle
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Numerical modelling of granular

materials

In Fig. 2.1 the multiphase, porous and granular nature of soil is depicted. In general, three

phases can be distinguished i.e. solid skeleton with pores filled with fluid and gas phase.

This complex microstructure determines the soil features and causes instabilities observed at

macroscopic scale.
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Figure 2.1: Soil as a multiphase, porous and granular medium

2.1 Soil features

One of the fundamental soil features is its sensitivity to density/volume changes, which

can be caused either by a change in effective confining pressure p or by a rearrangment of

grains in the structure due to shearing load. Typical for soil is the tendency to reach a critical

state, in which only the deviatoric plastic strain increments are observed and the strength and

volume are constant.
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Let us consider the two soil idealizations presented in Fig.2.2. If a shear load is applied,

the solid particles slide and roll. In case of a loose soil sample the pore volume will decrease

during shearing (contraction) involving material hardening. On the other hand, if a dense

configuration is loaded in shear the pore volume increases (dilatation) and material soften-

ing is observed, cf. results in Sect. 4.6.3. Similar results, strongly dependent on the soil

density, can be obtained for a triaxial test, cf. Sect. 4.6.2. A loose specimen exhibits contrac-

tation (hardening behaviour), while a dense one densifies atfirst and then dilates (material

softening). The conclusion is that the density/volume changes determine the soil behaviour.

Figure 2.2: Soil grains in loose (left) and dense (right) configuration. Contractant and dilatant be-

haviour, after [25].

2.2 Effective and total stress

To represent the multiphase nature of soil in phenomenological modelling the concept

of effective stress is introduced. All forces acting on the soil mass are balanced by the total

stress tensorσt. However, the total stress decomposes into the effective stress in solid skele-

ton and the pressures in fluid constituents. This decomposition is necessary to reproduce the

dominant role of solid part in the load-carrying capacity ofsoil. It is known that the incorpo-

ration of pore fluid in the analysis considerably reduces thematerial strength. Particularly,

all shear stresses are supported by the solid grains since pore water and/or air can carry no

shear stress at all. For a fully saturated soil (solid grainsand pores completely filled with

water) this decomposition is ilustrated in Figs 2.3-2.4.

The effective pressure acting on the soil skeleton is definedby:

p = −1

3
tr(σt) − pf , (2.1)

wherepf is the excess pore pressure. The effective stress tensorσ for the porous medium is

related to the total stress tensor by:

σ = σt + Πpf , (2.2)
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pt
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Figure 2.3: Effective stress
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Figure 2.4: Effective stress, based on [72]

whereΠ = [1, 1, 1, 0, 0, 0]T . The above relations are known as the effective stress principle

and were given by Terzaghi. In case of partially saturated soil (solid skeleton and voids partly

occupied by water and partly by air) the extended Bishop’s effective stress concept is used

in the form:

σ = σt + ΠSpf , (2.3)

whereS - saturation ratio.

To summarize, the effective stress is responsible for the deformation and limit states of

saturated soil (it is used in constitutive equations). The balance of the medium is maintained

by the total stress (it stands in momentum balance equations).

2.3 Plasticity models for geomaterials

The elastic or plastic behaviour of the material depends on the stress level. The yield

condition for perfect plasticity is in general written asF (σ) = 0. The set of stress states
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that satisfy this condition (plastic stress states) forms the yield surface bounding all possible

stress states. The stresses within the yield surface corresponds to elastic stress states. Stresses

outside the yield surface are not allowed (impossible).

Differently shaped yield surfaces have been proposed by different researchers for differ-

ent materials. In ductile materials such as metals, the onset of yielding does not depend on

the volumetric part of the stress. On the contrary, frictional materials such as sands, soil,

rocks or concrete are called pressure-sensitive due to the essential effect of the first invariant

Iσ
1 on the yield condition and inelastic behaviour. Thus, according to experimental observa-

tions, constitutive relations for geomaterials are eitherdilatant or contractant.

An overview of plasticity models used for the mechanical analysis of geomaterials can be

found for instance in [24,33,90]. The modern computationalaspects of the plasticity models

are covered among others in [9,25,73]. Next to the plasticity models described in this section

also hypoplastic models are very popular (cf. [71]). Here, we first summarize the Mohr-

Coulomb and Burzýnski-Drucker-Prager (BDP) theory (cf. [91] for the explanation of the

name), commonly used, but suitable for a rather simplified analysis of frictional materials.

The idea of closed yield surface is briefly described (cf. [17,29]). Then we extensively cover

the modified Cam-clay model which properly represents the physical properties of a large

class of geomaterials.

2.3.1 Mohr-Coulomb plasticity

The Mohr-Coulomb yield criterion is represented by:

F (σ) =
1

2
(σ3 − σ1) +

1

2
(σ3 − σ1) sinϕ− c cosϕ, (2.4)

whereσ3 andσ1 are the largest and smallest principal stresses, respectively (σ3 > σ1), ϕ is

a friction angle andc is cohesion. The above equation is valid as long asσ1 < σ2 < σ3.

If this is not the case, we can obtain the other five yield conditions by cyclic permutation

(cf. [10, 32]). The Mohr-Coulomb yield function is represented in the three-dimensional

principal stress space as a hexagonal pyramid, shown in Fig.2.5. The model representation

in theΠ-plane (perpendicular toσ1 = σ2 = σ3 axis) is shown in Fig. 2.6. The model can

be used to describe with reasonable accuracy the behaviour of sand, drained clays, rocks and

concrete.
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2.3.2 Burzyński-Drucker-Prager plasticity

The classical Burzýnski-Drucker-Prager (BDP) yield function can be written asfollows:

F (σ) = q + αp− βc , (2.5)

whereq =
√

3J2 and J2 is the second invariant of the deviatoric stress tensor,p is the

hydrostatic pressure, the coefficientsα andβ are functions of the internal friction angleϕ:

α =
6 sinϕ

3 − sinϕ
, β =

6 cosϕ

3 − sinϕ
, (2.6)

c is a measure for the cohesion. For a non-associated flow rule,the plastic potentialG is

defined as:

G = q + αp , (2.7)

whereα is a function of the dilatation angleψ, similar to the definition ofα in eq. (2.6):

α =
6 sinψ

3 − sinψ
. (2.8)

When ploted in the three-dimensional principal stress space, the Drucker-Prager yield func-

tion when ploted in the three-dimensional is a cone, the axisof which coincides with the

hydrostatic axis, cf. Fig. 2.5. The model representation intheΠ-plane is shown in Fig. 2.6.

Forsinϕ = sinψ = 0 the special case of Huber-Mises-Hencky (HMH) yield function which

is a cylinder with radiusσy = 2c is obtained. The yield function for the HMH plasticity

reads:

F (σ) = q − σy (2.9)

For isotropic hardening, the eq. 2.5 has to be rewritten in the form:

F (σ, εp) = q + αp− βc(εp) , (2.10)

whereεp is an invariant plastic strain measure (hardening parameter). For linear harden-

ing/softening we havec = cy + hcε
p with constant modulushc.

In the case of gradient-dependent Drucker-Prager plasticity [46,66], the yield function is

additionally dependent on the Laplacian of the plastic strain measureεp. Assuming that only

the cohesion exhibits the gradient dependence, the yield function takes the form:

F (σ, εp,∇2εp) = q + αp− βc(κ,∇2εp) , (2.11)

and the plastic potential function does not change.
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Figure 2.5: Representation of the Mohr-Coulomb and Drucker-Prager yield criteria in the three-

dimensional principal stress space

Figure 2.6: Representation of the Mohr-Coulomb and Drucker-Prager yield surfaces in theΠ-plane
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Figure 2.7: Open and closed yield surface, after [90]

2.3.3 Closed yield surfaces

The classical elastoplastic models for soils like Mohr-Coulomb or Burzýnski-Drucker-

Prager can only be used for a specific range of problems due to their severe limitations. When

for example the Mohr-Coulomb or Burzyński-Drucker-Prager yield surface is used in the

case of strong hydrostatic compression, no plastic deformation is produced since these yield

criteria are open on the compressive side along the hydrostatic axis. In such a case, closed

yield criteria must be used [90]. This fact is illustrated inFig. 2.7. When the equivalent

deviatoric stressq = 0, the stress path coincides with the hydrostatic axis and both states 1

and 2 are located inside the yield surfacef1, thus, no plastic strain is produced. To overcome

the problem, the yield surface intersecting the hydrostatic axis and also expanding from point

1 to 2 (hardening due to densification) should be used.

Therefore, majority of modern plasticity models for soils are based on critical state soil

mechanics framework, developed by the group of researchersfrom the University of Cam-

bridge [58]. The ideas of volumetric hardening and closed yield surface are applied in this

framework. The main assumptions of the critical state theory can be found for example

in [20,90].
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Instabilities and strain localization

The strain localization can turn up in various materials. Itis observed when the whole

deformation of the material sample concentrates in one or more narrow bands. The sources

of localization phenomena lies at the meso- or micro-level of observation (e.g. heterogeneity

or local material defects).

The problem of material instabilities inducing loss of ellipticity and strain localization

will now be recapitulated following [66].

We now recapitulate the problem of material instabilities inducing loss of ellipticity and

strain localization. A broader discussion of the issues is presented in [15, 41, 65, 81], in the

study of bifurcations in geomaterials [79], and in the more general theoretical considerations

gathered in [53, 54]. Then, we review some literature on the influence of the second phase

on the phenomena will be reviewed, cf. [3,31,35,62,87].

3.1 Instability indicators for one-phase medium

According to the definition of material stability [37, 38, 82] a material is stable if its

constitutive relationship satisfies the condition of positive second order work density:

ǫ̇ij σ̇ij > 0 , (3.1)

whereǫ̇ij andσ̇ij are the strain and stress rate tensors, respectively, and the summation con-

vention is adopted. Our consideration is limited to incrementally linear constitutive equa-

tions:

σ̇ij = Dijklǫ̇kl . (3.2)

19



20 Chapter 3

A material instability is indicated by the loss of positive-definiteness of the tangent stiffness

tensorDijkl, i.e. by the singularity of the symmetric part ofDijkl:

det(Dijkl +Dklij) = 0 . (3.3)

It was shown in [82] that the smallest eigenvalue ofDijkl is larger than or equal to the

smallest eigenvalue of its symmetric part. Therefore, for anon-symmetric tangent stiffness

tensor the loss of material stability may occur in the deformation history prior to the limit

point and loss of uniqueness related to a diffuse bifurcation, cf. [15, 81], which are marked

by the condition:

det(Dijkl) = 0 . (3.4)

Limiting interest to elasto-plasticity, the classical tangent stiffness operator can be ob-

tained as:

Dijkl = De
ijkl −

De
ijmnmmnnpqD

e
pqkl

h+ nmnDmnpqmpq

, (3.5)

whereDe is the elastic stiffness operator,h is the hardening/softening modulus,m is the

plastic flow direction vector (normal to a plastic potential) andn is the vector normal to the

yield surface. As shown in [82], the special structure of theelastic-plastic tangent operator

Dep in eq. (3.5) implies that it has only real eigenvalues even ifit is non-symmetric, so that

condition (3.4) is satisfied only whenh = 0. This means that if one assumesh > 0, the

diffuse bifurcation cannot occur.

However, when the material stability is lost due to softening or nonsymmetry of the

tangent operator, a so-called discontinuous bifurcation is possible, cf. [15,43,45,57,60,82].

For a homogeneous and homogeneously deformed body we investigate the possibility that

upon a further increment of deformation a discontinuity of the deformation gradient across a

plane with normalνi is admitted:

[[ ui,j ]] ≡ u+
i,j − u−i,j 6= 0, (3.6)

where[[ ]] denotes a jump of a quantity while the ‘+’ and ‘-’ signs refer to the two sides

of the discontinuity plane (Fig. 3.1). During this bifurcation the continuity of displacements

and the equilibrium condition are preserved at each point. If the deformation satisfies the

kinematic compatibility equations, it is piecewise homogeneous, so that, for an arbitrary

vectorµi, the strain jump can be written as:

[[ ǫij ]] =
1

2
(νiµj + νjµi) . (3.7)
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ν

µ

Figure 3.1: Material instability: discontinuity plane, after [48]

With the piecewise linear constitutive equation (3.2) we obtain the stress rate jump at the

onset of the discontinuity:

[[ σ̇ij ]] = Dijkl[[ ǫ̇kl ]] , (3.8)

where it is assumed that according to the concept of a linear comparison solid [26], the same

tangent stiffness moduli represent the material behaviouron both sides of the discontinuity

plane. Equilibrium requires that during the formation of the discontinuity the tractionstj are

continuous across the plane with normalνi:

[[ ṫj ]] = νi[[ σ̇ij ]] = 0, (3.9)

so substituting eq. (3.8) and the rate form of eq. (3.7) into eq. 3.9, and exploiting the sym-

metry propertyDijkl = Dijlk we obtain the following equation:

(νiDijklνl)µk = 0, (3.10)

which has a non-trivial solution only when the determinant of the so-called acoustic tensor

Qjk = νiDijklνl is zero:

det(Qjk) = 0. (3.11)

For a given tangent stiffness the last condition produces a vectorνl, which defines the dis-

continuity direction. The vectorµk can then be determined from eq. (3.10) and the jump

modeνlµk is known. For a shear band vectorνl is perpendicular toµk.

The singularity of the acoustic tensor and the formation of the strain discontinuity corre-

spond to the local loss of ellipticity of the rate equilibrium equations. The ellipticity is one

of the necessary conditions for well-posedness of the rate boundary value problem (BVP),

cf. references in [15]. Well-posedness is understood as theexistence of a finite number of

linearly independent and continuous solutions, of the continuum BVP.
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The emergence of the discontinuities in the deformation gradient has been identified with

strain localization since paper [60] was published. A shearband may be viewed as a zone

of intense deformation bounded by two discontinuity planes. However, since the distance

between those two planes remains undefined for a classical material model, they coincide

giving localization in a set of measure zero. In this thesis the notion of strain localization is

understood in a broader sense, as the emergence of bands of concentrated deformation due to

material instabilities. Nevertheless, the first point in the deformation history for which there

exists a nontrivial solution of eq. (3.10) marks the possible onset of localization.

Substituting the elasto-plastic stiffness matrix from eq.(3.5) into the definition of the

acoustic tensor and analyzing eq. (3.11) it is possible to find the critical values of the hard-

ening modulush, for which ellipticity is lost, and the direction vectorν normal to the dis-

continuity plane [45, 60]. The critical value ofh, which may be positive for non-associated

plasticity, and the directionν depend on the stress state as well as on the form of the yield

and plastic potential functions. In numerical analysis of discrete systems condition (3.11)

can be used to detect the loss of ellipticity and potential localization at an integration point

level.

This type of analytical examination of the acoustic tensor is performed in [30, 66, 80].

The analysis determines the normalized value of the determinant of the acoustic tensor as a

function of an angle defining the direction of the discontinuity plane in a two-dimensional

case. It proves that the degree of non-associativeness measured by the difference between the

friction coefficientsinϕ and the dilatation coefficientsinψ is the crucial instability factor.

It is noted that, in addition to the above analyzed so-calledweak discontinuities, jumps in

the displacement field itself (strongdiscontinuities) can be considered, cf. for instance [83].

They correspond to a displacement discontinuity (crack) along plane interfaces, while in

the continuous parts of the body material stability and ellipticity are preserved. Since the

softening behaviour is then concentrated in the interfaces, the BVP for the discontinuum

remains well-posed.

However, in this work we look for solutions within the continuum mechanics description

and propose to enhance the formulation with a form of nonlocal averaging, which regularizes

the BVP in presence of material instabilities, cf. Fig. 3.2.In particular the family of gradient-

dependent models is pursued. As shown in [46, 81], the occurrence of the discontinuity

plane is then only possible for a very special structure of the constitutive operator. Usually

ellipticity is guaranteed and localization in a set of measure zero is prevented.

Nevertheless, for the gradient dependent continuum the critical value of the hardening

modulus and the direction of the localization band can be determined from the classical
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Well-posedness of BVP

Strain
softening

Material instability
ε̇̇ε Tσ̇̇σ ≤ 0

σ̇̇σ = Dε̇̇ε → detDs = 0

Classical continuum

Strain localization
in a set of measure

zero

Loss of ellipticity
(discontinuous bifurcation)

detQ = 0
Q jk(n) = ni Dijkl nl

Higher-order/nonlocal continuum

Strain localization
in a zone of nonzero

volume

Ellipticity preserved
(continuous strain fields)

Figure 3.2: Illustration of ill-posedness problem and remedy, after [47]

condition of the acoustic tensor singularity (3.11) if prior to the moment of bifurcation into

a localized deformation pattern the gradient terms have no influence on the solution.

3.2 Influence of fluid phase

In [35] the issue of instabilities in saturated two-phase materials is discussed in the dy-

namic context, i.e. acceleration wave speeds in a rate-independent elastic-plastic porous ma-

terials with ideal fluid phase are considered. The loss of hyperbolicity and well-posedness is

related to the emergence of zero or conjugate complex wave speeds associated with a station-

ary discontinuity (standing localization wave) or flutter instability, respectively. The model

is based on the theory of mixtures. The major conclusion is that the critical hardening modu-

lus for which a stationary discontinuity is possible is equal to the modulus for the underlying

drained solid. However, it is also shown that the flutter phenomenon can occur immediately

upon the onset of plastic loading if plasticity is non-associative and both phases are assumed
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to be incompressible. For compressible constituents this can also happen, while this type

of instability is usually excluded for solid skeletons. Special cases of a BDP elastic-plastic

solid and plastically contractant skeletons is considered.

The special case of undrained solid was analyzed in the dynamic stability context in [76] and

chapter 11 of [79], leading to the conclusion that contractant materials become unstable at

the critical state of maximum shear while for the dilatant materials instabilities occur in the

softening regime of the underlying drained skeleton.

It was pointed out in [36] that the presence of the pore fluid can delay localization in

viscoplasticity. This line of reasoning is examined in the set of papers of Schrefler and co-

workers [61–63, 87, 88]. They discuss both theoretically and numerically the influence of

the coupling of the equilibrium (or motion) equation to the mass continuity equation for the

fluid phase. Within the context of dynamic analysis of partially saturated medium they focus

on the phenomenon of cavitation caused by negative pore pressures and on the ability of

the Laplacian present in the continuity equation to regularize the localization problem. The

Laplacian which enters the formulation from the Darcy’s lawis scaled by the permeabil-

ity coefficient. The regularization effect is related to an internal length parameter, derived

to depend on what the authors call intrinsic permeability, on the fluid saturation, density,

elastic modulus and wave number. For large permeability mesh sensitivity is still observed

and for small permeability the estimated internal length parameter is very large resulting in

distributed failure. It is also shown that the inclination of shear bands depends on the per-

meability and boundary conditions for the pore pressure field. The derivation of the internal

length parameter based on permeability holds for a certain wave number domain and is im-

possible for a shear wave propagation problem. Therefore, like in this study, the authors also

considered a Laplacian term in the yield condition [88].

An investigation of the plane-strain instability of saturated porous media is performed

in [3]. It is concluded that the elastoplastic models can exhibit two-phase instability despite

the fact that the solid phase remains stable. The contractant hardening materials are found

to be more inclined to two-phase instability than dilatant ones. The two-phase instability,

caused by solid-fluid interaction, may be delayed by the fluidcompressibility.

The problem of strain localization in porous materials is also discussed in [31]. The au-

thor confirms that the localized solution is possible when the acoustic tensor associated with

the underlying drained material becomes singular (the singularity of the undrained acoustic

tensor then involves an unbounded discontinuity). Larssonpresents an opinion that fully

drained conditions have a major influence on the occurrence of the localization. It is con-

cluded that soil under undrained conditions requires stronger softening than drained soil in
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order to reach a state where localization is possible. The influence of material parameters on

the localization phenomena is also investigated. The permeability coefficient and the pore

fluid compressibility is found to affect the localization phenomenon. In some cases the fluid

can have a regularization effect.

The authors of the recent publications seem to agree that theincorporation of the fluid

flow (via Darcy’s velocity) introduces an internal length scale in the description but it is

dependent on the integration time step and thus insufficientto regularize the problem. Such

a conclusion and its explanation can be found for example in [5,11].

3.3 Laplacian-dependent plasticity

Now, we revisit the gradient plasticity formulation [12, 39] in which the yield function

which depends on the Laplacian of a hardening parameterεp is written as:

F (σ, εp,∇2εp) = 0. (3.12)

The yield function satisfies the Kuhn-Tucker conditions:

Λ̇ ≥ 0 , F ≤ 0 , Λ̇F = 0, (3.13)

in which Λ is the plastic multiplier. The gradient-dependence of the yield function implies

that the plastic consistency conditionḞ = 0 is the following partial differential equation:

∂F

∂σ
σ̇ +

∂F

∂εp
ε̇p +

∂F

∂∇2εp
∇2ε̇p = 0 . (3.14)

The plastic consistency condition (3.14) requires that

Ḟ = nTσ̇ − hΛ̇ + g∇2Λ̇ = 0 , (3.15)

wheren andh are given by:

nT =
∂F

∂σ
, h = − ε̇

p

Λ̇

∂F

∂εp
. (3.16)

and

g =
ε̇p

Λ̇

∂F

∂∇2εp
(3.17)

is a positive gradient influence factor with the dimension offorce. Forg = 0 the classical

plastic flow theory is retrieved, but forg 6= 0 the plastic multiplier is a solution of the partial

differential equation (3.15). In order to computeΛ̇ this differential equation should be solved.
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Figure 3.3: Typical evolution of the plastic strain distribution when softening results in localization

[47]

As will be shown in Sect. 6.3, in the employed algorithm the yield condition (3.12) is written

in a weak form, the plastic multiplier field is discretized and this additional integral equation

is solved in parallel with the equilibrium problem. The coupled boundary value problem, its

linearization and discretization are given in Sect. 6.3, cf. also [12,13].

In the majority of papers on the subject the Laplacian-dependent yield function has the

form

F = σ̃(σ) − σy(ε
p) + g∇2εp = 0, (3.18)

whereσ̃ is an equivalent stress measure,σy is the yield strength (usually isotropic harden-

ing/softening is assumed) andg is assumed to be constant, although it can be made dependent

for instance on the equivalent plastic strainεp [46].

For instance, in the case of gradient-dependent BDP plasticity [66], assuming that only

the cohesion exhibits the gradient dependence, the yield function takes the form:

F (σ, εp,∇2εp) = q + αp− βc(εp,∇2εp) , (3.19)

and the plastic potential function remains as given in eq. (2.7).

It is emphasized that the gradient terms disappear from the constitutive equations if a ho-

mogeneous state of strain and stress is analyzed. The gradient terms are negligible if strains

vary slowly in space (in the pre-peak regime of softening problems), but have a significant

influence in the presence of strain localization (in the post-peak regime).

The enhancement of the classical theory has been made in order to preserve well-posedness

of the governing equations for materials which do not complywith the material stability re-

quirement [15,37,82], i.e. when a softening relation between stresses and strains is assumed
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h < 0 or when non-associative plastic flow is postulated to reproduce experimental response

of soil, making the tangent operatorDep nonsymmetric. For a softening medium the factor

g can be associated with an internal length parameterl, e.g. in a one-dimensional analytical

solution we haveg = −hl2 > 0 [12]. However, also for a hardening material the Laplacian

term withg > 0 smoothes the solution [13].

It is illustrative to observe a typical evolution of the plastic strain in a one-dimensional

localization problem or along a cross-section of the localization band in a two-dimensional

problem. In Fig. 3.3 we can observe that the plastic zone has aconstant width, which is

estimated analytically byw = 2πl [12].
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Modified Cam-clay model

The considered formulation is a combination of nonlinear elasticity and plasticity with

a modified Cam-clay yield condition and is based on [22]. The modified Cam-clay model

belongs to critical state models [20] and describes the behaviour of the soil skeleton. The

constitutive equations are written in terms of the effective stress tensor. This elastic-plastic

model is capable of reproducing the essential physical properties of soils, including harden-

ing/softening and contraction/dilatation.

In the three-dimensional principal stress space the modified Cam-clay yield function is

represented by an ellipsoidal surface, see Fig. 4.1, further on. In thep − q plane it is an

ellipse, symmetric about the hydrostatic axis, see Fig. 4.2.

The dependence of the yield condition on the third invariantof the stress tensor (Lode

angle) is not incorporated in the description. On the other hand, the non-associativity of the

plastic flow is taken into account. The elliptic shape of the yield function can be distorted to

Figure 4.1: Ellipsoidal yield surface of the modified Cam-clay model

29
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approximate better the experimental results [23, 28], although this is not done in the present

work.

4.1 Nonlinear elasticity

In general, the elastic behaviour of soils is nonlinear. Thepressure – volumetric elastic

strain relation can be written as follows:

dp = −Kt dθe, (4.1)

with tangential bulk modulus growing with increasing pressure:

Kt(p, e) =
1 + e

κ
p, (4.2)

wheree - void ratio,κ - positive parameter called swelling index.

Substituting eq. (4.2) into eq. (4.1) we obtain:

dp

p
= −1 + e

κ
dθe. (4.3)

After integration over a finite increment we obtain the effective hydrostatic pressure as an

expotential function of volumetric strain increment:

p(∆θe) = p0 exp

[

−1 + e0
κ

∆θe

]

. (4.4)

The subscript ’0’ indicates the values at the reference state, e.g. at the beginning of a loading

step and∆ the difference between the value of a quantity at the currentstate and at the

reference state. The secant bulk modulusK̄ for the increment can be computed from eq. (4.1)

as:

K̄ =
p0

(

1 − exp
[

−1+e0

κ
∆θe

])

∆θe
(4.5)

or, when∆θe → 0, it is given by:

K̄ =
1 + e0
κ

p0. (4.6)

The void ratioe is defined by the following relation between the pore volumeVp, skeleton

volumeVs and material volumeV :

e =
Vp

Vs

=
V − Vs

Vs

=
V

Vs

− 1. (4.7)
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It is assumed that the void ratio changes slowly and can be updated only once at the end of a

loading step according to:

e(∆θ) = (1 + e0) exp[∆θ] − 1. (4.8)

The nonlinear elasticity is described in terms of volumetric components. Assuming isotropy

and constant Poisson’s ratioν we can calculate the secant shear modulusḠ as:

Ḡ =
3

2

1 − 2ν

1 + ν
K̄ (4.9)

and the deviatoric stress is updated according to:

ξ = ξ0 + 2ḠR−1∆γe, (4.10)

whereR = diag[1, 1, 1, 2, 2, 2]. Further, the tangential operator is computed as:

dσ

dǫ
=

dξ

dǫ
− Π

dp

dǫ
(4.11)

and eventually we obtain:

dσ

dǫ
= 2ḠQR−1 + 2

∂Ḡ

∂∆θe
R−1∆γΠ

T +KtΠΠ
T , (4.12)

with:
∂Ḡ

∂∆θe
=

3

2

1 − 2ν

1 + ν

[

Kt

∆θe
+
p− p0

∆θe2

]

(4.13)

or, for ∆θe → 0:
∂Ḡ

∂∆θe
= −3

4

1 − 2ν

1 + ν

(

1 + e0
κ

)2

p0. (4.14)

4.2 Associated plasticity

The modified Cam-clay yield function is written in terms of the second invariant of the

deviatoric stress tensor, the internal friction angle, thecurrent hydrostatic pressure, and a

measure for the current degree of overconsolidation, whichis a function of the plastic vol-

umetric strain adopted as the hardening/softening parameter. The elliptic yield function

(Fig. 4.2) can be written as:

F = q2 +M2p(p− pc) = 0, (4.15)

where the equivalent deviatoric stress is defined in eq. 1.10. The shape of the ellipse is

determined by a material constantM and does not change during hardening or softening.M

is a function of friction angleφ and defines the inclination of the critical state line (CSL):

M =
6 sinφ

3 − sin φ
. (4.16)
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The yield surface intersects the hydrostatic axis at the origin and at the point (pc, 0). The

preconsolidation pressure i.e. the largeest effective pressure the soil has ever experienced in

its history is denoted bypc. The evolution of the preconsolidation pressurepc is related to

the volumetric part of the plastic strain and given by a formula similar to eq. (4.4):

pc = pc0 exp(−1 + e0
λ− κ

∆θp), (4.17)

whereλ is a hardening modulus which defines the inclination of the virgin consolidation line

in the(1 + e) versusln p diagram in Fig. 4.3, andθp denotes the plastic dilatation.

Since the fraction1+e0

λ−κ
is positive the signs oḟpc andθ̇p must be opposite. This means that

the hardening (contraction) is observed for decreasing increment of plastic volumetric strain

(θ̇p < 0 =⇒ ṗc > 0). The material exhibit softening (dilatation) for increasing increment of

plastic volumetric strain (̇θp > 0 =⇒ ṗc < 0). Note that the hardening rule has the character

of the mixed hardening.

Let us introduce the so-called over-consolidation ratio (OCR) which is a relation between

the initial preconsolidation pressurepc0 and the initial compressive pressure:

OCR = −pc0

p0
(4.18)

If OCR ≫ 1 we deal with overconsolidated soil which has a tendency to a dilatant (soften-

ing) behaviour. The soil for whichOCR = 1 is called normally consolidated and is prone to

contraction (hardening).

q

p

M

pc

1

CSL

Figure 4.2: Material model: yield surface. CSL denotes the critical state line.

Unlike in [67], the additional pressure shift parameter in the yield condition has been

abandoned here. It was proposed in [22] to enable the start ofcomputations in the absence

of initial stresses and motivated by cohesion, but its physical significance is not sufficiently

clear, since the initial state of soil always involves some compression (positive pressure).
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1 + e

ln p

κ

λ

Figure 4.3: Material model: elastic behaviour.

4.3 Linearization in local Cam-clay plasticity

The rate equations are integrated over a finite time step withthe implicit backward Euler

integration scheme. At the beginning of an increment, denoted by ’0’, the stresses, the total

and elastic strains and hardening parameter are known. The goal is to update these quantities.

Here, the algorithm proposed in [6] is employed, cf. also [22,28,74].

Assuming the usual additive decomposition of the strain rates we can write for the volu-

metric strain rate as

dθ = dθe + dθp = dθe − dΛ
∂F

∂p
= dθe − 2dΛM2(p− a) (4.19)

and for the rate of the deviatoric strain vector as

dγ = dγe + dγp = dγe + dΛ
∂F

∂q

(

∂q

∂ξ

)T

= dγe + 3dΛRξ. (4.20)

For a finite increment the update of the deviatoric stress is given by:

ξ = ξ0 + 2ḠR−1(∆γ − ∆γp). (4.21)

If we assume that eq. (4.19) is valid for finite increments, the substitution of∆γp =

3∆ΛRξ into eq. (4.21) leads to a convenient relation betweenξ and the trial deviatoric

stressξtrial:

ξ =
1

1 + 6Ḡ∆Λ
ξtrial, ξtrial = ξ0 + 2ḠR−1∆γ. (4.22)

Then, the effective deviatoric stress is calculated according to:

q =
1

1 + 6Ḡ∆Λ

√

3

2
ξT

trialRξtrial. (4.23)

In order to return to the yield surface using a fully implicitintegration scheme, the fol-

lowing nonlinear system of equations is defined:

r = r(s(ǫ), ǫ), (4.24)
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wheres is a vector of the primary unknownss = [p, q, Ḡ, pc,∆Λ] and r is a vector of

residualsr = [r1, r2, r3, r4, r5]. The residuals in vectorr are given by:

r1 = p− p0 exp

[

−1 + e0
κ

∆θe

]

, (4.25a)

r2 = q − 1

1 + 6Ḡ∆Λ

√

3

2

[

ξ0 + 2ḠR−1∆γ
]T

R
[

ξ0 + 2ḠR−1∆γ
]

, (4.25b)

r3 = Ḡ− 3

2

1 − 2ν

1 + ν

p0(1 − exp
[

−1+e0

κ
∆θe

]

)

∆θe
, (4.25c)

r4 = pc − pc0 exp

[

−1 + e0
λ− κ

∆θp

]

, (4.25d)

r5 = q2 +M2p (p− pc). (4.25e)

In the above system,∆θe and∆θp are obtained from eq. (4.19) as functions ofp, a and∆Λ.

The set of equations (4.25) is solved using the Newton-Raphson iteration scheme:

si+1 = si −
[

∂r

∂s

]

−1

ri. (4.26)

The consistent tangent operator is given by:

dσ

dǫ
=
∂ξ

∂ǫ
− Π

∂p

∂ǫ
−
[

∂ξ

∂s
−Π

∂p

∂s

] [

∂r

∂s

]

−1 [
∂r

∂ǫ

]

(4.27)

and the respective derivatives are listed in the Appendix.

4.4 Non-associated plasticity

In order to describe the soil behaviour in a more realistic way and to model the phe-

nomenon of static liquefaction, the option of non-associative plasticity is required. Lique-

faction is a phenomenon in which the shear resistance of soilvanishes due to the increase of

pore pressure which reduces the effective pressure on solidparticles. The plastic potential

for non-associative plasticity is proposed in the form analogous to eq. 4.15:

G = q2 + M̄2p(p− pcG) (4.28)

in whichM̄ is a function of dilatation angleψ:

M̄ =
6 sinψ

3 − sinψ
. (4.29)

VariablepcG is undefined in eq.(4.28) and has to be eliminated from the flowvector∂G/∂p

[75]. From conditionF = 0, and denotingη = q

p
, we can express overconsolidation measure
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pc as:

pc = p

[

( η

M

)2

+ 1

]

(4.30)

Analogically, we can write:

pcg = p

[

i
( η

M̄

)2

+ 1

]

(4.31)

Substituting eq. (4.31) into eq. (4.28) we can compute the flow vector∂G/∂p:

∂G

∂p
= pM̄2 − pη2 (4.32)

However, we cannot useη computed at the trial state, so knowing that

∂F

∂p
= pM2 − pη2 (4.33)

we find:

pη2 = pM2 − ∂F

∂p
(4.34)

and eventually obtain:
∂G

∂p
= p(M̄2 −M2) +

∂F

∂p
(4.35)

where:
∂F

∂p
= M2(2p− pc) (4.36)

The volumetric strain rate is now given by:

dθ = dθe + dθp = dθe − dΛ
∂G

∂p
= dθe − dΛM2(2p− pc) − dΛp(M̄2 −M2). (4.37)

Consequently all the functions ofdθe anddθp have to be corrected and derivatives with

respect to the hydrostatic pressure and the rate of the plastic multiplier have to be recalcu-

lated (see Appendix).

4.5 Numerical differentiation for consistent tangent

The exact linearization requires the computation of many derivatives. This task is some-

times cumbersome and analytical derivations can involve mistakes. Therefore, as was pro-

posed among others in [25, 51, 52], numerically computed derivatives can either be used to

check the analytical derivations (unless they are performed symbolically using for instance

the MAPLE package) or simply to calculate the consistent tangent operator altogether.
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In this work all approaches have been combined since the issue of correct computation

of derivatives within the Newton algorithm turned out to be anontrivial task due to inter-

dependence of the involved variables. The numerical approximation of derivatives of func-

tion F (x) in a linear space with versorsei is performed using the finite difference central

scheme:
∂F (x)

∂xi

=
F (x + hiei) − F (x − hiei)

2hi

+ O(h2
i ) (4.38)

or forward scheme
∂F (x)

∂xi

=
F (x + hiei) − F (x)

hi

+ O(hi), (4.39)

in whichxi = x · ei, hi = hopt max{1.0, |xi|} and the optimal step (perturbation) sizehopt

needs to be selected via numerical experiment (some guidelines are proposed in [51]). Iff

is a tensor-valued function ofx, the computations must be performed element by element.

In this research the forward scheme has been used due to its simplicity (it requires only one

additional determination of the value off ) with hopt = 10−7 or 10−8.

4.6 One-element tests

In order to verify the material model implementation a set ofsimple one-element tests

are performed. They also allow one to find out the features of the numerical model and

understand the soil behaviour better.

For all of the calculations presented in the current sectionthe drained conditions are

considered. The calculations are carried out using 8-nodedplane strain finite element (with

the discretization of displacements). The element size is:1m× 1m. The following material

data are adopted: Poisson’s ratioν = 0.3, swelling indexκ = 0.013, initial void ratio

e0 = 1.0, compression indexλ = 0.05, and material constantM = 1.0.

4.6.1 Biaxial compression

The biaxial compression test is performed for two cases, i.e. slightly preconsolidated

soil (OCR=2) and strongly preconsolidated soil (OCR=10). In Fig. 4.4 on the left the initial

stress generation is depicted. The initial stress vector isσ0 = [−0.2,−0.2,−0.08, 0.0] MPa.

The compression process is driven under displacement control, cf. Fig. 4.4 on the right. The

results of calculations are presented in Figs 4.5-4.8. As expected, the responses obtained for

the two cases are completely different.
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When a loose sample is loaded, its volume decreases (cf. Fig.4.5) inducing material

densification and thus hardening. The initial yield surfaceexpands, the value of preconsoli-

dation pressurepc increases from the initial value ofpc0. For a dense sample the peak load

and then material softening is observed. This fact is associated with the initial contraction

and subsequent dilatation of the specimen (cf. Fig 4.7). In Fig. 4.8 the evolution of the yield

surface is shown. In this case the value ofpc decreases and the ellipse shrinks.

The explanation of such a behaviour lies in the granular structure of the material. When

the dense sample is loaded, the pore volume becomes smaller at the beginning but later the

only possibility for the material is to dilate. On the other hand, as illustrated in Fig. 2.2, the

loose configuration has to contract (densify).

In both cases the yield surface evolution continues until the stress path intersects the

critical state line. After that, the strength and volume of the specimen remain constant and

the plastic flow becomes purely deviatoric.

6 7 8

54

1 2 3

q = 200kN/m2

6 7 8

54

2 31

v

Figure 4.4: Biaxial compression test. Initial stress and loading - static and kinematic boundary con-

ditions (initial stress remains).

4.6.2 Triaxial compression

One-element triaxial compression test is performed for normally consolidated soil (OCR=1)

and heavily preconsolidated soil (OCR=5). In Fig. 4.9 on theleft the initial stress generation

is depicted. The initial stress components have valuesσ0 = [−0.2,−0.2,−0.2, 0.0] MPa.

The compression process is driven under displacement control, cf. Fig. 4.9 on the right. In

Figs 4.10-4.13 the results of numerical simulations are presented.

Figs 4.10-4.11 show that the normally consolidated soil exhibits contraction and thus

hardening. The value ofpc increases, the yield surface expands. On the contrary, when

heavily preconsolidated soil is loaded the contraction andmaterial softening is observed.

The value of preconsolidation pressure decreases, see Figs4.12-4.13.
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Figure 4.5: Stress-strain diagram for the vertical direction and relative volume evolution for normally

consolidated soil and drained state (biaxial compression)
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Figure 4.6: Yield surface evolution for normally consolidated soil and drained state during biaxial

compression test

In both cases, the calculations are completed for the critical state with stress ratioq
p

= M .

After this state is reached, only the deviatoric plastic strain increments are observed, the

material strength and volume remain constant and the yield surface evolution stops.
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Figure 4.7: Stress-strain diagram for the vertical direction and relative volume evolution for strongly

preconsolidated soil and drained state (biaxial compression)
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Figure 4.8: Yield surface evolution for strongly preconsolidated soil and drained state during biaxial

compression test

4.6.3 Shear

The third of one-element tests is performed again for lightly (OCR=2) and heavily (OCR=5)

preconsolidated material. The initial stress vectorσ0 = [−0.2,−0.2,−0.08, 0.0] MPa is
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Figure 4.9: Triaxial compression test. Initial stress and loading - static and kinematic boundary

conditions (initial stress remains).
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Figure 4.10: Stress-strain diagram for the vertical direction and relative volume evolution for normally

consolidated soil and drained state (triaxial compression)
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Figure 4.11: Yield surface evolution for normally consolidated soil and drained state during triaxial

compression test
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Figure 4.12: Stress-strain diagram for the vertical direction and relative volume evolution for strongly

preconsolidated soil and drained state (triaxial compression)
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Figure 4.13: Yield surface evolution for strongly preconsolidated soil and drained state during triaxial

compression test

generated as shown in Fig. 4.14 on the left. The shear processis driven under displacement

control, cf. Fig. 4.14 on the right. In Figs 4.15-4.16 the results for the soil with OCR=2

are shown. As in the previous tests for the lightly overconsolidated material the volume of

the sample decreases inducing hardening behaviour. For theheavily preconsolidated soil the

peak load and then material softening associated with dilatation is encountered. The initial

yield surface is shrinking due to a decreasing value of hardening/softening parameterpc, cf.

Figs 4.17-4.18.

In both cases, the yield surface stops evolving when the stress ratioq

p
= M is reached

and the flow becomes purely deviatoric with constant material strength and volume.

It is necessary to point out that the volume changes start when the process becomes

plastic. Thus, the stress path before reaching the yield surface is parallel toq-axis. The

effective hydrostatic pressure does not change as long as∆θ = ∆θp = 0.

4.7 Mesh-dependent localization test - biaxial compression

In order to show the mesh-dependence of the numerical solution the biaxial compression

test is repeated for a multi-element configuration. The sizeof the specimen is now 1m× 2m.
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Figure 4.14: Pure shear test. Initial stress and loading - static and kinematic boundary conditions

(initial stress remains).

0 0.025 0.05 0.075 0.1
Shear strain

−0.06

−0.02

0.02

0.06

0.1

R
el

at
iv

e 
vo

lu
m

e 
x 

10
, S

he
ar

 s
tr

es
s 

[M
P

a]
 

Stress

Volume decrease

OCR=2

Figure 4.15: Stress-strain diagram for the vertical direction and relative volume evolution for normally

consolidated soil and drained state (pure shear)

The model is discretized with 10× 20, 20× 40 and 40× 80 finite elements.

The following material data are adopted: Poisson’s ratioν = 0.2, swelling indexκ =

0.013, initial void ratio e0 = 1.0, hardening parameterpc0 = 2.0 MPa, compression index

λ = 0.032, material constantM = 1.1. The initial stressesσ0 = [−0.2,−0.2,−0.08, 0.0]

MPa are generated in a similar way as in the case of one-element tests. To load the sample

a vertical traction on the top edge is prescribed. For the local model the diplacement control

cannot be used due to a snap-back response and the linearizedarc length control is employed.

To initiate a shear band formation a small area in the bottom left-hand corner of the

sample (one element for the coarse mesh, four elements for the medium one and sixteen

for the fine one) is assigned a10% smaller initial value of the overconsolidation measure
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Figure 4.16: Yield surface evolution for normally consolidated soil and drained state during pure

shear test
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Figure 4.17: Stress-strain diagram for the vertical direction and relative volume evolution for strongly

preconsolidated soil and drained state (pure shear)

pc0 = 1.8 MPa.

The sample with the area of imperfection marked is shown in Fig. 4.19. In Fig. 4.20

some experimental results of this test are shown.

In Figs 4.21-4.22 the results for the coarse, medium and fine meshes for the local Cam-
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Figure 4.18: Yield surface evolution for strongly preconsolidated soil and drained state during pure

shear test
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Figure 4.19: Biaxial compression test: the sample and imperfection location

clay model and drained conditions are shown. Since the material model used in computations

is not regularized we observe mesh sensitivity of the obtained diagrams and deformation
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Figure 4.20: Biaxial compression test: experimental results, after [64]
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Figure 4.21: Load-deformation curves for local model in biaxial compression test

patterns. In the load-deformation curve in Fig. 4.21 a slight snap-back for the coarse mesh

and a more distinct one for the medium and fine meshes are visible. Figs 4.23-4.22 show that

the width of the shear band strongly depends on the discretization. Strains indeed localize in

the narrowest possible area determined by the element size.
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Figure 4.22: Deformed meshes for local model in biaxial compression test

Figure 4.23: Equivalent plastic strain distribution for local model in biaxial compression test
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Chapter 5

One- and two-phase modelling

The structure of soil is very complex. It is a multiphase material which consists of a solid

skeleton and voids filled with fluids (usually water and air).Generally, voids are partly occu-

pied by water and partly by air. We call such soil partially saturated (three-phase medium).

In the case when pores are completely filled with water we dealwith fully saturated soil

(two-phase medium). The soil can also be dry if no free water is present. Interactions of

the phases strongly affect the properties and behaviour of soils. In Fig. 5.1 the model of

three-phase medium is presented. The figure contains the interpretation of some geotechni-

cal notions like porosity and saturation ratio.

air

fluid

solid

n

(1−n)

n(1−S)

nS

n−porosity

S−saturation ratio

Figure 5.1: Thee-phase material model, after [86]

49
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5.1 Partially saturated soil

Partially saturated soil is a three-phase material. The problem variables are: the solid

displacement, water pore pressure and air pore pressure. Inthe present model it is assumed

that the gaseous phase remains at constant (atmospheric) pressure. This assumption allows

one to reduce the number of problem variables from three to two (solid displacement, water

pore pressure). Such a two-phase medium, with the assumption of incompressibility of solid

grains, is governed by the following two equations [73,90]:

LTσt + ρ̂g = 0, (5.1)

∇ · u̇ + ∇ · vd − (nSf + n
∂Sf

∂pf

Kf)θ̇f = 0, θ̇f = − ṗf

Kf

(5.2)

with:

σt = σ −Π Sf pf , (5.3)

ρ̂ = (1 − n)ρs + nSfρf , (5.4)

vd = −kr(Sf )k∇(
pf

γf

+ z), (5.5)

where ρ̂ - saturated density of the soil-fluid mixture,ρs - density of the solid phase,ρf -

density of the fluid phase,g - gravitation vector,u - displacement vector,n - porosityθf

- volumetric strain of compressible fluid,k - permeability matrix andz-coordinate in the

direction of gravitation governing the stationary state ofpore pressures without loading,Kf

- bulk modulus for the fluid,Sf - saturation ratio,kr(Sf ) - relative permeability coefficient.

The porosityn and void ratioe are related by:

n =
e

1 + e
, e =

Vp

Vs

, (5.6)

whereVp - pore volume andVs - skeleton volume.

Eqs (5.1) and (5.2) require appropriate boundary and initial conditions. The initial con-

ditions for displacements and pore pressures at timet = 0 are:

u = u0, (5.7a)

pf = pf0. (5.7b)

The boundary conditions to be satisfied at any timet are:

σtν = t̄ on Γt, (5.8a)

vdν = q̄ on Γq, (5.8b)

u = ū on Γu, (5.8c)

pf = p̄f on Γp, (5.8d)
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whereΓt · · ·Γp are appropriate boundary parts, such thatΓt ∩ Γu = ∅, Γt ∪ Γu = Γ,

Γq ∩ Γp = ∅, Γq ∪ Γp = Γ. In Fig. 5.1 the example of the boundary conditions is shown.

Γt

Γp

Γu
Γq

ū = 0

t̄

p̄f 6= 0

q̄ = 0

p̄f = 0

q̄ 6= 0

Figure 5.2: Boundary conditions for two-phase medium

ForSf = 1 this formulation collapses to the fully saturated soil.

5.2 Fully saturated soil

Fully saturated soil is a two-phase material. The problem variables are: the solid dis-

placement vector and the water pore pressure. Such a two-phase medium, with the assump-

tion of incompressibility of solid grains, is governed by the following two equations [73,90]:

LTσt + ρ̂g = 0, (5.9)

∇
Tu̇ + ∇

Tvd + n
ṗf

Kf

= 0, (5.10)

with:

σt = σ − Π pf , (5.11)

ρ̂ = (1 − n)ρs + nρf , (5.12)

and Darcy’s fluid flow velocity given by:

vd = −k∇
pf

γf

, (5.13)

notice thatpf is the excess pore pressure.

Eq. (5.9) represents the balance of momentum and eq. (5.10) the balance of mass. They

require appropriate boundary and initial conditions, cf. eq.(5.8) and eq.(5.8).
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5.3 Drained state

If we assume long-term load together with appreciable permeability, fluid flows out freely

and in this case pore pressures are independent of the material deformation (excess pore

pressure is equal to zero;pf = 0). We can consider soil as a one phase medium and apply

the algorithms described in Sections 4.3 and/or 6.2.

5.4 Undrained state

Another case where we can limit our consideration to one-phase medium is the undrained

state. We deal with such a case for rapidly loaded soil and/orzero permeability, when the

fluid motion is prevented. In this case Darcy’s velocity is equal to zero (vd = 0) and from

the mass balance equation (5.10) we have:

θ̇ = ∇ · u̇ = nθ̇f , (5.14)

where the velocity of fluid volume changeθ̇f can be written as:

θ̇f = − ṗf

Kf

. (5.15)

Assuming the linear relation between the rate of the pore pressure and the rate of the material

volume change we eventually obtain:

pf = −Kf

n
θ = −Kf (1 + e)

e
θ. (5.16)

Again we do not need to solve the coupled problem in eqs(5.9- 5.10). It is enough to substi-

tute eq.(5.16) withθ = Π
Tε into the rate form of eq.(5.11) and then eq. (5.11) into the rate

form of eq.(5.9) to calculate the total stress as:

σt = σ + Π
Kf

n
θ. (5.17)

and to see that we only have to modify the tangent stiffness obtained for the drained state

according to:

Du = Dd +
Kf

n
ΠΠ

T (5.18)

5.5 Linearization and discretization for two-phase medium

The governing equations in the analysis of the coupled deformation and fluid flow prob-

lem are derived from the mechanical equilibrium of the soil skeleton and the mass balance of
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the pore fluid. The unknown variables in the obtained system of equations are not only the

solid displacements and fluid pore pressure but also their rates. The solution of such a system

of equations requires the application of a stable and accurate time integration scheme.

5.5.1 Integration in time

The discretization in time is usually carried out using the generalized trapezoidal method

(theΘ-method). With this method, all time dependent variables are estimated at some in-

termediate point with the interval depending on the chosen value ofΘ. To assure the un-

conditional stability of the algorithm, the integration coefficient should satisfy the condition

Θ ≥ 1
2
. This method and the problems of convergence, consistency and stability of the nu-

merical algorithms (and various aspects of their analysis)are covered for instance in [27]. In

the discussed implementation the backward Euler scheme with Θ = 1 is used. The applica-

tion of this integration method gives:

uN+1 = uN + ∆t u̇N + Θ∆t∆u̇N+1, (5.19)

pN+1 = pN + ∆t ṗN + Θ∆t∆ṗN+1 (5.20)

5.5.2 Two-phase (fully saturated) medium, u-p element

In Sect. 5.2 the strong form of the coupled deformation and fluid flow problem for a fully

saturated medium is described. For the finite element approach weak forms of momentum

and mass balance equations are required. The pore pressure field is then discretized in addi-

tion to the displacements.

The weak format of the momentum balance reads:
∫

Ω

vT(LTσt + ρ̂g) dΩ = 0 ∀v. (5.21)

The weak format of the mass balance is:
∫

Ω

w

(

∇ · u̇ + ∇ · vd + n
ṗf

Kf

)

dΩ = 0 ∀w. (5.22)

In eqs.(5.21 - 5.22)v andw are suitable weighting functions. After integration by parts and

using natural boundary conditions we obtain:

∫

Ω

(Lv)Tσt dΩ −
∫

Ω

vTρ̂g dΩ −
∫

Γt

vT t̄ dΓ = 0, (5.23)
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∫

Ω

w∇
Tu̇dΩ −

∫

Ω

(∇w)Tvd dΩ +

∫

Ω

w
n

Kf

ṗf dΩ +

∫

Γq

w q̄ dΓq = 0. (5.24)

Let us introduce the following finite element interpolationfunctions for the approximated

fields:

u = N ū , pf = Np p̄ , v = N v̄ , w = Np w̄, (5.25)

whereū and p̄ are the nodal displacement and nodal pore pressure vectors,respectively.

According to the Galerkin approach, the weighting functions are interpolated similarly. The

used interpolation functions are quadratic for the displacements and linear for the pore pres-

sure. The displacements are interpolated between eight nodes and excess pore pressure using

four nodes, see Fig. 5.3. With above definitions and with assumption of linear kinematic re-

lationε = Lu, the discretization of strains can be expressed as:

ǫ = Bū, (5.26)

whereB = LN . We also haveLv = Bv̄.

Introducing the above expressions into eq. (5.23) we obtainthe discretized equilibrium

condition:
∫

Ω

v̄T
(

BTσ − BT
ΠNpp̄

)

dΩ −
∫

Ω

v̄TNTρ̂gdΩ −
∫

Γt

v̄TNTt̄dΓ = 0. (5.27)

It must be satisfied for anȳvT, so we obtain for the unknown time stepN + 1:
∫

Ω

(

BTσN+1 − BT
ΠNpp̄N+1

)

dΩ = fext, (5.28)

where:

fext =

∫

Ω

NTρ̂N+1gdΩ +

∫

Γt

NTt̄N+1dΓ. (5.29)

Incremental-iterative algorithm is used with the following decomposition:

σ
(i+1)
N+1 = σ

(i)
N+1 + ∆σ(i+1), p

(i+1)
N+1 = p

(i)
N+1 + ∆p(i+1), (5.30)

where∆σ(i+1) and∆p(i+1) denote iterative corrections ofσN+1 andpN+1 respectively, in

iteration(i+ 1). After linearization the relation (5.28) becomes:

∫

Ω

BTD
ep(i)
N+1BdΩ ∆ū(i+1) −

∫

Ω

BT
ΠNpdΩ ∆p̄(i+1),

= fextN+1 − fintN+1 (5.31)
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where

fintN+1 =

∫

Ω

(

BTσ
(i)
N+1 − BT

ΠNpp̄
(i)
N+1

)

dΩ. (5.32)

The discretized weak form of the mass balance equation can beexpressed as:
∫

Ω

w̄TNT
p Π

TB ˙̄u dΩ −
∫

Ω

w̄T
∇Np

Tvd dΩ

+

∫

Ω

w̄TNT
p

n

Kf

Np ˙̄p dΩ +

∫

Γq

w̄TNT
p q̄ dΓ = 0. (5.33)

For anyw̄T 6= 0, and introducing Darcy’s law (5.13), we obtain for the current time step:
∫

Ω

NT
p Π

TBdΩ ˙̄uN+1 +
1

γf

∫

Ω

(∇Np)
Tk∇NpdΩ p̄N+1

+

∫

Ω

NT
p

n

Kf

NpdΩ ˙̄pN+1 = −
∫

Γq

(Np)
Tq̄N+1dΓ

After linearization we have:

∫

Ω

NT
p Π

TBdΩ ∆ ˙̄u
(i+1)

+
1

γf

∫

Ω

(∇Np)
Tk∇NpdΩ ∆p̄(i+1)

+

∫

Ω

NT
p

n

Kf

NpdΩ ∆ ˙̄p(i+1) = −
∫

Γq

(Np)
Tq̄N+1dΓ −

∫

Ω

NT
p Π

TBdΩ ˙̄u
(i)
N+1

− 1

γf

∫

Ω

(∇Np)
Tk∇NpdΩ p̄

(i)
N+1 −

∫

Ω

NT
p

n

Kf

NpdΩ ˙̄p
(i)
N+1. (5.34)

Applying the time integration scheme introduced in Sect. 5.5.1, we eventually obtain:

∫

Ω

NT
p Π

TB dΩ ∆ū(i+1)

+

(

∆t

γf

∫

Ω

(∇Np)
Tk∇Np dΩ +

∫

Ω

NT
p

n

Kf

Np dΩ

)

∆p̄(i+1) =

∆t

(

−
∫

Γq

(Np)
Tq̄N+1 dΓ −

∫

Ω

NT
p Π

TB dΩ ˙̄u
(i)
N+1

− 1

γf

∫

Ω

(∇Np)
Tk∇Np dΩ p̄

(i)
N+1 −

∫

Ω

NT
p

n

Kf

Np dΩ ˙̄p
(i)
N+1

)

.

Let us rewrite the obtained coupled system of linearized equations in a matrix form:





K
(i)
N+1 −C

CT
(

∆t
γf

H + M
)





[

∆ū(i+1)

∆p̄(i+1)

]

=

[

fextN+1 − f
(i)
intN+1

f
(i)
fN+1

]

(5.35)
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where:

K
(i)
N+1 =

∫

Ω

BTD
ep(i)
N+1BdΩ, (5.36)

C =

∫

Ω

BT
ΠNpdΩ, (5.37)

H =

∫

Ω

(∇Np)
Tk∇NpdΩ, (5.38)

M =

∫

Ω

NT
p

n

Kf

NpdΩ, (5.39)

ff = ∆t

(

−
∫

Γq

(Np)
Tq̄N+1dΓ − CT ¯̇u

(i)
N+1 −

1

γf

Hp̄
(i)
N+1 − M ¯̇p

(i)
N+1

)

.

ū1, ū2

ū1, ū2, p̄

Figure 5.3: Two-phase u-p element

Applying the derivations shown above to equations (5.1) and(5.2) we can obtain a similar

set of linear equations for partially saturated soil [73].

5.6 One-element undrained tests

Now, the simple one-element tests described in Sect. 4.6 arerepeated for the undrained

state. The additional material data for the undrained conditions isKf = 10.0 MPa. The

results for the drained and undrained analysis are comparedfor the biaxial and triaxial com-

pression test. The triaxial compression test for the undrained state is then repeated for non-

associative plasticity. The results for undrained shear are also included.

5.6.1 Drained/undrained biaxial compression

The results for the drained and undrained analyses are compared for the biaxial compres-

sion test with slightly and heavily preconsolidated soil. For the drained state excess pore
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pressurepF = 0. For the undrained state the pore pressure is proportional to the change

of solid skeleton volume and evolves according to eq. (5.16). The effective stress can be

obtained from eq. (5.17). In Fig. 5.4 and in Fig. 5.6 the difference between the total and

effective stress is shown. The soil strength is lower in undrained than in drained conditions

because of the generated pore pressures. The influence of thevertical strain on the volume

changes and excess pore pressure is also presented. For the case of dilatation due to large

preconsolidation, the volume increase induces the negative excess pore pressure and the final

value of effective vertical stress is higher than the one of the total stress. In Fig. 5.5 and in

Fig. 5.7 the stress paths and the yield surfaces evolution for the drained and undrained anal-

ysis are compared. In both considered cases, the critical state line is reached earlier for the

undrained state. However, for strongly overconsolidated soil the final value ofpc is larger

for the undrained state. For a strongly overconsolidated soil, the presence of the fluid phase

generates a cohesive effect resulting in a larger residual load level.
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Figure 5.4: Stress-strain diagram for the vertical direction, relative volume and excess pore pressure

evolution for slightly preconsolidated soil and undrainedstate (biaxial compression)

5.6.2 Drained/undrained triaxial compression

The comparison of the results obtained in a triaxial compression test for the limiting

cases of the drained and undrained conditions is also performed. The normally consolidated

and strongly preconsolidated soil is taken into account. InFig. 5.8 and in Fig. 5.10 the vol-

ume changes, the excess pore pressure, total and effective stress is shown in relation to the
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Figure 5.5: Yield surface evolution for slightly preconsolidated soil; comparison of drained and

undrained state (biaxial compression)
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Figure 5.6: Stress-strain diagram for the vertical direction, relative volume and excess pore pressure

evolution for strongly preconsolidated soil and undrainedstate (biaxial compression)

vertical strain. In Fig. 5.9 and in Fig. 5.11 the stress pathsand yield surfaces evolution are

presented. Similar observations can be made to those presented in the previous section can

be made. The stress path reaches the critical state earlier in case of the undrained conditions,

both for contractant and dilatant soil. Analysing the stress paths for the normally consol-

idated soil, we can notice that it turns left during the plastic process which results in the

’softening’ in the diagram of the effective stress. However, generally contraction and hard-

ening is observed. On the contrary, in the case of preconsolidated material, when the yield

surface is reached, the stress path turns right. The effective stress diagram does not exhibit

the softening behaviour of the soil.
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Figure 5.7: Yield surface evolution for strongly preconsolidated soil; comparison of drained and

undrained state ( biaxial compression)
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Figure 5.8: Stress-strain diagram for the vertical direction, relative volume and excess pore pressure

evolution for normally consolidated soil and undrained state (triaxial compression)

5.6.3 Undrained triaxial compression - non-associated plasticity

One-element triaxial-compression test is now reconsidered for a one-phase medium un-

der undrained conditions and different values of ratioM /M̄ . The presented test was de-

scribed in [72]. The following material data are adopted:ν = 0.3, Kf = 1.0e10 kPa

(almost incompressible fluid),κ = 0.01, e0 = 1.0, pc = 200 kPa,λ = 0.05, M̄ = 1.2 and

M = 1.2; 1.0; 0.8; 0.6.

The initial stressesσ0 = [−200,−200, −200, 0.0] kPa is generated. The compression pro-

cess is driven under displacement control. The vertical displacement of the nodes on the top
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Figure 5.9: Yield surface evolution for normally consolidated soil; comparison of drained and

undrained state ( triaxial compression)
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Figure 5.10: Stress-strain diagram for the vertical direction, relative volume and excess pore pressure

evolution for strongly preconsolidated soil and undrainedstate (triaxial compression)

edge is prescribed. In Fig. 5.12 the results of calculationsare presented. The inclination of

the CSL is now defined bȳM and point (p,q) in the critical state is not the ’top point’ of

the yield surface (forM 6= M̄ ). For increasing non-associativity the strength of material

decreases.

5.6.4 Drained/undrained shear

At last the results for undrained shear test are included. Again the behaviour of slightly

and heavily preconsolidated soil under drained and undrained conditions are compared. In
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Figure 5.11: Yield surface evolution for strongly preconsolidated soil; comparison of drained and

undrained state (triaxial compression)
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Figure 5.12: Finall yield surfaces and loading paths forM̄ = 1.2 and various values ofM for

undrained triaxial compression test

Fig. 5.13 and in Fig. 5.15 the volume changes, the excess porepressure, and shear stress

is shown in relation to the vertical strain. Note that the shear stress is not affected by pore

pressure evolution so there is no difference between the total and effective (shear) stress.

In Fig. 5.14 and in Fig. 5.16 the stress paths and yield surfaces evolution are presented.

Like in the previously presented tests, the slightly preconsolidated soil contracts and heavily

preconsolidated one dilates. The stress path reaches the critical state earlier in case of the

undrained conditions, both for contractant and dilatant soil.
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Figure 5.13: Stress-strain diagram for the vertical direction, relative volume and excess pore pressure

evolution for slightly preconsolidated soil and undrainedstate (pure shear)
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Figure 5.14: Yield surface evolution for slightly preconsolidated soil; comparison of drained and

undrained state (pure shear)

5.7 Simple two-phase tests

The following simple tests are performed in order to verify the numerical implementation

of the finite element described in Sect. 5.5.2. The calculations are repeated after [73].
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Figure 5.15: Stress-strain diagram for the vertical direction, relative volume and excess pore pressure

evolution for strongly preconsolidated soil and undrainedstate (pure shear)
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Figure 5.16: Yield surface evolution for strongly preconsolidated soil; comparison of drained and

undrained state ( pure shear)

5.7.1 Uniaxial consolidation - one element test

This example shows the results for a simple one element test which is used to verify

the performance of the implemented numerical algorithm forthe two-phase medium. The

boundary conditions and loading function are depicted in Fig. 5.17. The specimen is loaded

by vertical traction along the upper edge. The conditionq = 0 means that the boundary is

impermeable. Water can flow out of the sample only through thepart of the boundary where

pf = 0.

The computations are carried out using the two-phase linearelastic and elasto-plastic
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Cam-clay model for a fully saturated medium. The following material data are adopted:

E = 1.0e04 kPa,ν = 0.3, γf = 10 kN/m3, Kf = 1.0e08 kPa,k = 1.0 e-03 m/day for the

elastic model and additionallyκ = 0.013, e0 = 1.0, pc = 0.3 kPa,λ = 0.032, M = 1.1,

Kf = 1.0e05 kPa,k = 1.0 m/day for the Cam-clay model.

In Fig. 5.18 the dependence of pore pressurepf on time is shown. As expected, the pore

pressure increases at the beginning of the loading process (with growing loading) and then,

because the pore fluid flows out, it decreases to zero.
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q=0 q=0
u=0 u=02m
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time1
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Figure 5.17: Consolidation test: geometry, static and kinematic boundary conditions
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Figure 5.18: Dependence of pore pressure on time for linear elasticity (left) and for Cam-clay model

(right)
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5.7.2 Uniaxial consolidation - soil column

A similar problem as the previous one is analyzed for a multi-element configuration. The

specimen of size 1m× 10m is discretized with10 elements. The boundary conditions and

loading function are similar as for the one element test and are shown in Fig. 5.19.

The computations are performed using the linear elastic andelasto-plastic Cam-clay model

for the fully saturated two-phase medium. The following material data are adopted for linear

elastic model:E = 1.0e04 kPa,ν = 0.3, γf = 10 kN/m3, Kf = 1.0e08 kPa,k = 1.0 e-02

m/day, and for Cam-clay modelκ = 0.013, e0 = 1.0, pc = 0.3kPa,λ = 0.032, M = 1.1,

Kf = 1.0e05 kPa,k = 1.0 m/day.

In Fig. 5.20 the dependence of the pore pressure on the time and y coordinate (height) is

shown. In Fig. 5.21 and Fig. 5.22 the distribution of the porepressure along the vertical axis

for some time steps is presented, cf. [86].

u=0  v=0  q=01m

 10m

u=0  q=0

pf=0

0.1kN/m2

loading

time1

0.1

Figure 5.19: Consolidation test: geometry, static and kinematic boundary conditions

5.8 Localization in biaxial compression in two-phase medium

One of the major goals of the thesis is to examine the influenceof the fluid phase on

instabilities in the Cam-clay soil model. As mentioned in the introduction, it is claimed that

the fluid phase can introduce some regularization into the numerical model. Therefore, the

biaxial compression test presented in Sect. 4.7 is now repeated for a two-phase medium. For
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Figure 5.20: Dependence of pore pressure on time and y coordinate for linear elasticity (left) and for

Cam-clay model (right)
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Figure 5.21: Pore pressure distribution - linear elasticity
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Figure 5.22: Pore pressure distribution - Cam-clay model

the fluid phase the additional material data are taken:γf = 10 kN/m3, Kf = 1.0e05 kPa,

k = 1.0 e-06 m/day. At first, the boundary conditions are such that fluid cannot flow out of

the sample (homogeneous natural boundary condition). The initial excess pore pressure is
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Figure 5.23: Load-deformation curves fork = 1.0 e-06 m/day (biaxial compression test for local

Cam-clay model)

equal to zero.

As can be seen in Figs 5.23-5.25 the numerical results are notmesh-independent in this

case. For the fine mesh the calculations were not completed due to convergence problems.

Note that the contour plots for the second invariant of the strain tensor would look similarly

to those of the vertical strain presented in Fig. 5.24. However, the pore pressure distribution

shown in Fig. 5.25 does not exhibit localization in the narrowest zone, and in this respect

it is similar for all the three meshes. At the same time, in Fig. 5.23 a distinct snap-back is

visible in the load-deformation curve (sometimes even two snap-backs are simulated). This

fact and the problems with convergence during calculationssuggest that in comparison to

the one-phase medium the two phase material is less stable.

In order to avoid the numerical difficulties and snap-backs the calculations are then re-

peated forpc0 = 1.0 MPa (pc0 = 0.9 MPa for the imperfect region in the bottom left-

hand corner of the sample). The results for this data set (fortwo meshes) are presented

in Figs 5.26-5.27. The diagrams in Fig. 5.26 are different for coarse and fine meshes, the

vertical strain distribution (Fig. 5.27 left) shows the shear bands dependent on the adopted

discretization, but the pore pressure distribution in Fig.5.27 (right) seems to be nearly mesh-

independent. The range of values in the contour plots are notgiven but can be found in [68].



68 Chapter 5

Figure 5.24: Vertical strain distribution fork = 1.0 e-06 m/day (biaxial compression test for local

Cam-clay model)

Figure 5.25: Pore pressure distribution fork = 1.0 e-06 m/day (biaxial compression test for local

Cam-clay model)
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Figure 5.26: Load-deformation curves fork = 1.0 e-06 m/day andpc0 = 1.0MPa (biaxial compres-

sion test for local Cam-clay model)

Figure 5.27: Vertical strain (left) and pore pressure (right) distribution fork = 1.0 e-06 m/day and

pc0 = 1.0MPa (biaxial compression test for local Cam-clay model)
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Figure 5.28: Load-deformation curves for different valuesof permeability coefficient and permeable

upper edge (local Cam-clay model)

5.9 Influence of permeability coefficient in biaxial compres-

sion

In order to examine the role of permeability coefficientk in the regularization effect of the

fluid, the calculations for various values ofk (k = 1.0 e-04 m/day,k = 1.0 e-05 m/day,k =

1.0 e-06 m/day,k = 1.0 e-10 m/day) and for a permeable top edge have been performed.The

obtained contour plots for the vertical strain turned out tobe mesh-dependent. Irrespectively

of the value ofk the strains localize in the narrowest possible area determined by the element

size. The selected results (for one mesh only) are presentedin Figs 5.28-5.30. On the other

hand, the value of the permeability coefficient influences the direction of the localization

band (cf. Fig. 5.29) and the critical load level for which theinstability occurs (cf. Fig. 5.28).

Moreover, for the case of permeable top edge, the pore pressure distribution depends strongly

on the value of permeability coefficient, cf. Fig. 5.30. For large permeability no localized

pore pressure pattern is found.
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Figure 5.29: Vertical strain distribution for different values of permeability coefficient:k = 1.0 e-04

m/day, k = 1.0 e-05 m/day,k = 1.0 e-06 m/day,k = 1.0 e-10 m/day, from left to right (local

Cam-clay model)

Figure 5.30: Pore pressure distribution for different values of permeability coefficient:k = 1.0 e-04

m/day, k = 1.0 e-05 m/day,k = 1.0 e-06 m/day,k = 1.0 e-10 m/day, from left to right (local

Cam-clay model)
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Chapter 6

Regularization

The dilatant (softening) and possibly also non-associative response of the Cam-clay

model implies the necessity of regularization in order to avoid the loss of ellipticity of the

governing equations and to stabilize the numerical response. Although alternative regular-

ization methods could prove equally effective or simpler interms of implementation, cf. [8],

a gradient enhancement of the model is employed in this thesis.

6.1 Gradient enhancement of the Cam-clay yield function

In general, higher-order spatial gradients of different components of the constitutive

model can be incorporated. If isotropy is assumed, the Laplacian is an optimal regularizing

operator. The elastic part of a model can be made gradient-dependent by adding (or sub-

tracting) Laplacians of elastic strain components, scaledwith a square of a length parameter,

to (or from) the strains themselves [1, 2]. Otherwise, as discussed in the previous section, a

plasticity model can include the Laplacian of some equivalent plastic strain measure in the

yield condition [12, 39, 56, 69] or evolution equations for the plastic variables [56, 78]. Yet

another gradient-enhancement is achieved using additional averaging equations for suitable

equivalent quantities or all (inelastic) strain tensors components [14,18,19,49,50].

Here, it is proposed to make the Cam-clay yield function dependent on the Laplacian of

the hardening/softening parameterθp or of the plastic multiplierΛ. In result, the yield con-

ditionF = 0 in eq. (4.15) becomes a differential equation which must be solved numerically

in addition to the equilibrium equations, cf. [12, 13]. Thisis achieved by taking the weak

form of the yield function (which means the yield condition is not imposed pointwise, but

in an integral sense, as was first proposed in [55]), and discretizing the plastic multiplier as

73
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a primary unknown next to displacements. This means that thebackward Euler algorithm at

the integration point level, described in Sect. 6.1, is employed for the first four residuals, in

which ∆Λ is now a parameter computed from the nodal values of the discretized field. As

has been explained, the fifth equation(r5 = 0) is solved at the global level, and the consistent

tangent operator derived in eq. (4.27) must be modified accordingly.

It remains to specify the form of gradient-enhancement of the Cam-clay yield function.

In principle, it is possible to assume thatpc = pc(θ
p,∇2θp) in eq. (4.15) or introduce a

gradient term directly in the yield function:

F = q2 +M2p [p− pc(θ
p) + g∇2(θp)], (6.1)

whereg > 0 is a gradient scaling factor proportional to a square of an internal length scale

l. There are however two difficulties: a)θp is not a monotonically growing parameter, so for

dilatation the influence of the gradient term will be stabilizing, but for∆θp < 0 the gradient

term should rather be switched off; b) since according to eq.(4.19) the volumetric plastic

strain increment depends not only onΛ, but also onp andpc, the gradient of a product of

three functions would have to be computed.

Therefore, it is proposed to incorporate the Laplacian of the plastic multiplier itself, either

in the form:

F = q2 +M2p [p− pc(θ
p) + g∇2(Λ)], (6.2)

or by writing:

F = q2 +M2p [p− pc(θ̄
p)], (6.3)

whereθ̄p is a function of the averaged plastic multiplierΛ̄ and the latter quantity is defined

as:

Λ̄ = Λ + l2∇2(Λ). (6.4)

The former option results in a stabilizing gradient effect on the yield function evolution

irrespective of the sign ofθp, the latter results in a slower growth of the quantity due to

averaging, which is stabilizing only for dilatation.

Finally, the format in eq. (6.3) opens a possibility of usingan additional averaging equa-

tion for the plastic multiplier, cf. [19], instead of the gradient-dependent yield condition. The

averaging equation has the form:

Λ̄ − l2∇2(Λ̄) = Λ, (6.5)

and its weak form can be discretized instead of the weak form of the yield condition in

order to computēΛ. This however might require a modification of the evolution law for the

preconsolidation measure.
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6.2 Linearization and discretization in gradient plasticity

We start from the analysis of a single-phase medium. The finite element implementa-

tion is based on the following two weak-form equations governing respectively the static

equilibrium and the plastic consistency:

∫

Ω

(Lv)Tσ dV =

∫

Ω

vTρg dV +

∫

Γ

vTt̄ dS, (6.6a)
∫

Ω

vp F (σ,Λ,∇2Λ)dV = 0 , (6.6b)

wherev and vp are suitable weighting functions. For a simple yield function, e.g. for

Burzyński-Drucker-Prager (BDP) plasticity theory, the plasticmultiplier Λ is proportional

to the plastic strain measureεp. Equation (6.6b) requires the discretization of theΛ field.

Equations (6.6) are written for iterationi + 1 of the incremental-iterative algorithm and

the following decomposition is used:

σ(i+1) = σ(i) + dσ , Λ(i+1) = Λ(i) + dΛ. (6.7)

In eq. (6.7)dσ denotes the corrective increments in iteration(i + 1), which in eq. (5.30)

where denoted by∆σ(i+1). The yield functionF is developed in a truncated Taylor series

around(σ(i),Λ(i)) to obtain the following incremental equations:

∫

Ω

(Lv)Tdσ dV = fext − fint (6.8a)
∫

Ω

vp [nTdσ − h dΛ + g∇2(dΛ)] dV =−
∫

Ω

vp F (σ(i),Λ(i),∇2Λ(i)) dV, (6.8b)

with

fext =

∫

Γ

vTt̄ dS +

∫

Ω

vTρg dV, (6.9a)

fint =

∫

Ω

(Lv)Tσ(i) dV. (6.9b)

It is important to notice that, if the yield condition (3.12)is used in the classical return

mapping algorithm to distinguish elastic and plastic states, aC1-continuous interpolation of

Λ is unavoidable, otherwise∇2Λ loses meaning [13, 46]. Therefore, the Laplacian term is

not removed from the left-hand side of eq. (6.8b) using Green’s formula, although this can

be done if a homogeneous non-standard boundary condition(∇dΛ)Tν = 0 is assumed (ν is

the vector normal to the surface of the plastic part of the body).
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Adopting the standard additive decomposition of strain rate ǫ̇ into an elastic and a plastic

part, the stress rate is written as:

σ̇ = De(ǫ̇ − Λ̇m). (6.10)

Substituting the incremental form of eq. (6.10) into eqs (6.8a) and (6.8b) we obtain:
∫

Ω

(Lv)TDedǫ dV −
∫

Ω

(Lv)TDem(i) dΛ dV = fext − fint, (6.11a)
∫

Ω

vp nT(i)Dedǫ dV −
∫

Ω

vp [(h(i) + nT(i)Dem(i)) dΛ − g∇2(dΛ)] dV =

= −
∫

Ω

vp F (σ(i),Λ(i),∇2Λ(i)) dV, (6.11b)

Next, we discretize eqs (6.11a) and (6.11b). The displacementsu and the plastic multi-

plier Λ are interpolated as follows:

u = Nū , Λ = hT
Λ̄, (6.12)

whereN and h contain interpolation polynomials for the displacements and the plastic

multiplier, respectively, and̄u andΛ̄ are arrays which contain their respective discrete nodal

values. Consequently, we obtain for the strainsǫ and the Laplacian of the plastic multiplier:

ǫ = Bū , ∇2Λ = sT
Λ̄, (6.13)

whereB = LN ands = ∇2h. The respective weighting functions are interpolated sim-

ilarly according to the Galerkin approach. The used interpolation functions are quadratic

for the displacements and cubic (Hermitean) for the plasticmultiplier. Invoking the usual

argument that the weighting functions are arbitrary, the discrete counterpart of eqs (6.11) is

the following set of linear algebraic equations:
[

Kuu KuΛ

KΛu KΛΛ

][

dū

dΛ̄

]

=

[

f ext − f int

fΛ

]

, (6.14)

where the respective submatrices are:

Kuu =

∫

Ω

BTDeB dV, (6.15a)

KuΛ = −
∫

Ω

BTDem(i)hT dV, (6.15b)

KΛu = −
∫

Ω

hnT(i)DeB dV, (6.15c)

KΛΛ =

∫

Ω

[(h(i) + nT(i)Dem(i))hhT − ghsT] dV, (6.15d)

fΛ =

∫

Ω

hF (σ(i),Λ(i),∇2Λ(i)) dV. (6.15e)
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andf ext andf int are the external and internal force vectors, respectively.For an elastic

process we setn = m = 0, so the off-diagonal matrices are zero, but matrixKλΛ is non-

singular, so thatdΛ̄ = 0 is obtained. Further details of finite element implementation can be

found in [13].

One further remark on linearization is however made. In the gradient-dependent BDP

plasticity one obtains the consistent tangent operator by differentiating the incremental con-

stitutive relation (6.10):

∆σ = De(∆ǫ − ∆Λm) (6.16)

to obtain:

dσ = De

(

dǫ − dΛm − ∆Λ
dm

dσ
dσ

)

. (6.17)

Bringing the last term to the left-hand side we realize that for consistent linearizationDe

must be substituted in eqs. 6.14 by the following operator:

Dcons =

(

I + ∆ΛDedm

dσ

)

−1

De. (6.18)

6.3 Gradient-dependent Cam-clay plasticity; u-Λ element

In the numerical implementation we focus on the gradient-dependent Cam-clay yield

function proposed in eq. (6.2), written in terms of the stress invariants and the plastic multi-

plier:

F (σ,Λ,∇2Λ) = q2 +M2p [p− pc(∆θ
p) + g∇2Λ]. (6.19)

The gradient coefficient g scales the nonlocality effect andprovides stabilization (hardening)

in the model. Its unit results from the fact that the unit of the yield function is [kN2/m4],

hence the unit of the plastic multiplier is [m2/kN ] and of its Laplacian [1/kN ]. Unlike the

standard gradient plasticity, the Laplacian term is here additionally scaled by pressure p.

The preconsolidation parameterpc evolves according to eq. (4.17):

pc = pc0 exp(−1 + e0
λ− κ

∆θp). (6.20)

The increment of plastic dilatation according to eq. (4.19)is computed as:

dθp = −dΛM2(2p− pc + g∇2Λ). (6.21)

We will now derive the specific form of the two weak-form equations of static equilibrium

and plastic consistency (6.6), written for iterationi + 1. With F (i+1) = F (i) + dF and the
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decompositions in eq. (6.7), they have the form:

∫

Ω

(Lv)Tdσ dV = fext − fint (6.22a)

−
∫

Ω

vp

[

∂F

∂σ
dσ +

∂F

∂Λ
dΛ +

∂F

∂∇2Λ
∇2(dΛ)

]

dV = fΛ (6.22b)

where the chain rule has been used to computedf , fext andfint are defined in eqs (6.9) and

fΛ is defined as:

fΛ =

∫

Ω

vp F
(

σ(i),Λ(i),∇2Λ(i)
)

dV. (6.23)

As in the previous section, the algorithm involves the discretization of the plastic multi-

plier field. It is computed from nodal values and plays the role similar to strains: the return

mapping algorithm is now driven by the increments of strain and plastic multiplier. In the

internal iterative loop performed at the integration pointto compute the stress satisfying the

yield condition bothǫ andΛ (or their total increments∆ǫ and∆Λ) are constant. However,

both these fields change in the global equilibrium iterations, so that the linearization of stress

is now computed as:

dσ =
dσ

dǫ
dǫ +

dσ

dΛ
dΛ. (6.24)

We now have to determine the stress incrementdσ and the derivatives in eq. (6.22b).

In the algorithm for the gradient-dependent Cam-clay plasticity we follow the concept of

consistent linearization used for the local model. Hence, we write:

σ = σ (s(∆ǫ,∆Λ),∆ǫ,∆Λ) , (6.25)

where vectors = [p, q, Ḡ, pc] now contains only four primary unknowns. The Newton

algorithm similar to the one described in Sect. 6.1 is used tocompute these unknowns, only

now we deal with residualsr = [r1, r2, r3, r4], and the Jacobian matrixJ = ∂r
∂s has the size

4×4. The respective derivatives in eq. (6.24) are computed according to eq. (4.27):

dσ

dǫ
=
∂σ

∂s

ds

dǫ
+
∂σ

∂ǫ
=
∂ξ

∂ǫ
−Π

∂p

∂ǫ
−
(

∂ξ

∂s
− Π

∂p

∂s

)

J−1

(

∂r

∂ǫ

)

(6.26)

and the following one:

dσ

dΛ
=
∂σ

∂s

ds

dΛ
+
∂σ

∂Λ
=
∂ξ

∂Λ
− Π

∂p

∂Λ
−
(

∂ξ

∂s
− Π

∂p

∂s

)

J−1

(

∂r

∂Λ

)

. (6.27)

The partial derivatives are given in the Appendix, in particular from the Jacobian for the local

model one can compute∂r
∂Λ

= J i5, i = 1 . . . 4.
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Next, the increment of stressdσ from eq. (6.24) is substituted into eqs (6.22):
∫

Ω

(Lv)T dσ

dǫ
dǫ dV +

∫

Ω

(Lv)T dσ

dΛ
dΛ dV = fext − fint (6.28a)

−
∫

Ω

vp

∂F

∂σ

dσ

dǫ
dǫ dV −

∫

Ω

vp

(

∂F

∂σ

dσ

dΛ
+
∂F

∂Λ

)

dΛ dV −

−
∫

Ω

vp

∂F

∂∇2Λ
∇2(dΛ) dV = fΛ (6.28b)

The remaining derivatives are computed as follows:

∂F

∂σ
=
∂F

∂q

∂q

∂ξ

∂ξ

∂σ
+
∂F

∂p

∂p

∂σ
= 3ξTRQ − 1

3
M2(2p− pc + g∇2Λ)ΠT, (6.29)

∂F

∂Λ
= −M2p

∂pc

∂θp

∂θp

∂Λ
, (6.30)

∂pc

∂θp
= −pc0B exp(−B∆θp),

∂θp

∂Λ
= −M2(2p− pc + g∇2Λ), (6.31)

∂F

∂∇2Λ
= M2gp. (6.32)

Finally, as in eqs (6.12) we discretize eqs (6.11a) and (6.11b) to obtain the set of linear

algebraic equations similar to (6.14) with the following definitions of the submatrices (the

iteration index has been skipped):

Kuu =

∫

Ω

BT dσ

dǫ
B dV, (6.33a)

KuΛ = −
∫

Ω

BT dσ

dΛ
hT dV, (6.33b)

KΛu = −
∫

Ω

h
∂F

∂σ

dσ

dǫ
B dV, (6.33c)

KΛΛ = −
∫

Ω

[(

∂F

∂σ

dσ

dΛ
+
∂F

∂Λ

)

hhT +
∂F

∂∇2Λ
hpT

]

dV, (6.33d)

fΛ =

∫

Ω

hF (σ,Λ,∇2Λ) dV. (6.33e)

In Fig. 6.1 the nodes are marked in which the appropriate fieldis interpolated (eight nodes

for the displacements and four for the plastic multiplier).

6.4 Discretization-independent localization in biaxial com-

pression test

The results presented in Sect. 4.7 show the mesh-sensitivity of the numerical simulations

for the biaxial compression test. In order to avoid this the modified Cam-clay model has
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ū1, ū2

ū1, ū2, Λ̄, Λ̄x, Λ̄y, Λ̄xy

Figure 6.1: Regularized finite element u-Λ

been regularized in the way described in Sect. 6.3, i.e. the gradient termg∇2Λ has been

included in the plasticity function. The following calculations are repeated with the gradient-

dependent Cam-clay model to study the effectiveness of the introduced regularization. The

following additional material model parameter has been adopted:g = 0.05 kN2/m2.

The diagrams in Fig 6.2 as well as the localization patterns shown in Figs 6.3-6.4 prove

the mesh-independence of numerical results for the gradient-dependent Cam-clay model.

In fact, unlike in the gradient plasticity with a standard (e.g. Huber-Mises) yield function

and linear softening [13], in Cam-clay gradient plasticitythe shear band width grows since

softening is nonlinear. The shear band patterns in Figs 6.4-6.3 are plotted for the vertical

displacement of the upper edge equal to 0.016m. The distribution of volume changes (plas-

tic dilatancy increments) exhibits at first similar shear bands as the profiles of the second

invariant of the deviatoric strain tensor, but as the critical state is approached, the material

volume ceases to change.

6.5 Influence of gradient scaling factorg

The following example allows us to investigate the influenceof the gradient scaling factor

on the obtained results. Two values of gradient constantg are considered:g = 0.025 kN2/m2

andg = 0.05 kN2/m2. In Fig. 6.5 the load-deformation curves are shown. It can benoticed

that the solution for ag = 0.05 kN2/m2 is a bit more ductile. In Figs 6.6- 6.7 the distribution

of the equivalent plastic strain at various stages of numerical calculations is presented for

two values ofg. We can observe that the shear bands evolve during the loading process. The

width of the localization zone is different for the two considered cases and determined by the

value ofg. It can easily be noticed that the shear band width is growingwith the increasing

gradient scaling factor.
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Figure 6.2: Load-deformation curves (gradient Cam-clay model)

Figure 6.3: Deformed meshes (gradient Cam-Clay model)
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Figure 6.4: Distribution of invariantJ2 of strain tensor (gradient Cam-Clay model)

0 0.005 0.01 0.015 0.02
Vertical displacement

0

0.2

0.4

0.6

0.8

1

1.2

F
or

ce

c=0.5

c=0.25

Figure 6.5: Load-deformation curves for different values of gradient scaling factorg = 0.025 kN2/m2

andg = 0.05 kN2/m2
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Figure 6.6: Equivalent plastic strain distribution for gradient scaling factorg = 0.025 kN2/m2/

Figure 6.7: Equivalent plastic strain distribution for gradient scaling factorg = 0.05 kN2/m2
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6.6 Influence of imperfections

Unlike in dynamics (cf. [21]), in static simulations of localization phenomena the imper-

fections merely trigger the process and set the initial position of deformation bands. Here,

the analysis is limited to the influence of imperfection location and its intensity on the re-

sults. In Fig. 6.8 the locations of the imperfection area areshown. In the presented tests, four

or eight elements are assigned a10% or a1% smaller value of the initial overconsolidation

measure. Now, only one discretization with the medium mesh is considered.

In Figs 6.9- 6.13 the contour plots with the distributions ofinvariantJ2 of the strain

tensor are shown for different loading process stages. In all cases the shear band evolution is

observed. First a crossed pattern of bands is formed, then one of them remains active, since

this is energetically preferable. Finally, as the criticalstate is approached, the band width

increases. Unlike in gradient plasticity with a constant internal length parameter, standard

(e.g. HMH) yield function and linear softening, in Cam-claygradient plasticity the shear

band width grows since softening is nonlinear. A uniaxial approximation of the relation

between the gradient scaling coefficientg and the internal length scalel is g = −hl2, where

h is the softening modulus, and in this case the derivative ofpc with respect to∆Λ. The

width of the shear band is governed byl and for dilatant flow the derivative decreases, hence

l apparently grows. To accommodate this the gradient factor gwould have to be made a

(decreasing) function of a plastic strain measure (which would physically mean a reduction

of nonlocality as the critical state is approached).

In the presented simulations the smaller value of the initial preconsolidation pressure is

assigned in a small area of the specimen to initiate the shearband formation. However, the

initial void ratio can also be used in order to start the localization process.
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Figure 6.8: Imperfection location
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Figure 6.9: Shear band evolution for 10% imperfection located in the middle of the sample

Figure 6.10: Shear band evolution for 10% imperfection located in the middle of the left edge of the

sample
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Figure 6.11: Shear band evolution for 1% imperfection located in the middle of the left edge of the

sample

Figure 6.12: Shear band evolution for 10% eight-element imperfection located in the middle of the

left edge of the sample
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Figure 6.13: Shear band evolution for two 10% imperfectionslocated on the left edge of the sample
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Gradient-dependent Cam-clay model for

two-phase medium

The results of numerical simulations presented in Sect. 5.8do not show a significant sta-

bilizing effect of the fluid phase in strain localization problems. Therefore, a regularization

of the softening constitutive model for soil seems to be necessary within a two-phase descrip-

tion. The gradient regularization of the modified Cam-clay model, described in Sect. 6.3, is

now applied to two-phase medium.

7.1 Discretization of three-field formulation; u-p-Λ element

To discretize the problem of pore pressure evolution combined with the gradient-enhanced

plasticity modelling of the solid skeleton, the weak forms of equations (5.9), (5.10) and

(6.19) are required.

The weak form of the momentum balance equation reads:
∫

Ω

vT(∇σt + ρ̂g) dΩ = 0 (7.1)

The weak form of the plastic consistency condition is written as:
∫

Ω

vp F (σ,Λ,∇2Λ)dΩ = 0 (7.2)

The weak form of the mass balance equation is:
∫

Ω

w(∇ · u̇ + ∇ · vd + n
ṗf

Kf

) dΩ = 0 (7.3)

In eqs (7.1-7.3)v, vp andw are suitable weighting functions.
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After the integration of momentum and mass balance equations by parts we obtain:

∫

Ω

(Lv)Tσt dΩ −
∫

Ω

vTρ̂g dΩ −
∫

Γt

vT t̄ dΓ = 0, (7.4)

∫

Ω

w∇
Tu̇ dΩ −

∫

Ω

(∇w)Tvd dΩ +

∫

Ω

w
n

Kf

ṗf dΩ +

∫

Γq

w q̄ dΓq = 0. (7.5)

In eqs (7.4-7.5) natural boundary conditions have been incorporated.

We introduce the following finite element discretization for displacementsu, plastic mul-

tiplier Λ and excess pore pressurepf :

u = N ū , Λ = hT
Λ̄ , pf = Np p̄ , (7.6)

whereN , h andNp contain the respective interpolation polynomials andū, Λ̄ and p̄ are

vectors with the discrete nodal values. The weighting functions are interpolated similarly

according to the Galerkin approach. The used interpolationfunctions are quadratic for the

displacements, linear for the pore pressure and cubic (Hermitean) for the plastic multiplier.

In Fig. 7.1 it is shown at which nodes which quantities are nodal degrees of freedom.

Due to the assumption of linear kinematic relations we can introduce matrixB = LN .

With vectors = ∇2h the discretization of strains and of the Laplacian of plastic multiplier

can be expressed as in Sect. 6.2:

ǫ = Bū, ∇2Λ = sT
Λ̄. (7.7)

After linearization of the governing equations and after time integration of eqs (7.1) and

(7.5), (the implicit backward Euler integration scheme is used as in Sect. 5.5.2) introducing

the employed interpolation of the problem variables and invoking the usual argument that

the weighting functions are arbitrary, the following coupled system of linearized equations

in a matrix form is obtained:









Kuu KuΛ −Kup

KΛu KΛΛ 0

KT
up 0 Kpp

















∆ū

∆Λ̄

∆p̄









=









f ext − f int

fΛ

ff









. (7.8)
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The definitions of the submatrices are as follows:

Kuu =

∫

Ω

BT dσ

dǫ
B dΩ, (7.9a)

KuΛ = −
∫

Ω

BT dσ

dΛ
hT dΩ, (7.9b)

KΛu = −
∫

Ω

h
∂F

∂σ

dσ

dǫ
B dΩ, (7.9c)

KΛΛ = −
∫

Ω

[(

∂F

∂σ

dσ

dΛ
+
∂F

∂Λ

)

hhT +
∂F

∂∇2Λ
hsT

]

dΩ, (7.9d)

Kup =

∫

Ω

BT
ΠNp dΩ, (7.9e)

Kpp =
∆t

γf

H + M , (7.9f)

H =

∫

Ω

(∇Np)
Tk∇Np dΩ, (7.9g)

M =

∫

Ω

NT
p

n

Kf

Np dΩ, (7.9h)

fe =

∫

Ω

NTρ̂g dΩ +

∫

Γt

NTt̄ dΓ, (7.9i)

fi =

∫

Ω

(

BTσ − BT
Πpf

)

dΩ, (7.9j)

fΛ =

∫

Ω

hF (σ,Λ,∇2Λ) dΩ, (7.9k)

ff = ∆t

(

−
∫

Γq

NT
p q̄dΓ − KT

upu̇
h − 1

γf

Hph − Mṗh

)

. (7.9l)

ū1, ū2

ū1, ū2, Λ̄, Λ̄x, Λ̄y, Λ̄xy, p̄

Figure 7.1: Three-field u-p-Λ finite element
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Figure 7.2: Load-deformation curves (regularized Cam-clay model for two-phase medium)

7.2 Localization in biaxial compression for regularized two-

phase medium

Again, the biaxial compression test is computed for two-phase medium in which the

behaviour of the solid skeleton is described using regularized, gradient-dependent Cam-clay

model withpc0 = 2.0 MPa,g = 0.05 kN2/m2 andk = 1.0 e-06 m/day. The results for this

case are shown in Figs 7.2-7.4. In Fig. 7.2 the results for thecoarse mesh are not accurate

enough due to standard discretization error. However, the diagrams for the medium and

fine mesh almost coincide. The strain and pore pressure distributions in Figs 7.3-7.4 are

also mesh independent. This proves that the pathological discretization sensitivity has been

removed.



Gradient-dependent Cam-clay model for two-phase medium 93

Figure 7.3: Vertical strain distribution (regularized Cam-clay model for two-phase medium)

Figure 7.4: Pore pressure distribution (regularized Cam-clay model for two-phase medium)
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Selected applications

The preliminary results of the steep slope stability problem are described in this section.

However, it should be emphasized that the application of theimplemented material models

and finite elements to the numerical simulations of geotechnical benchmarks which involve

instabilities and localization is not the main goal of this thesis.

8.1 Steep slope stability - two-phase medium

This numerical test examines a square specimen of soil loaded by a rigid footing. The

side length of the configuration is 10m, the rigid footing extends over 7m along the left part

of the top surface. The drainage of the pore fluid (pf = 0) is only allowed through the

remaining part of the upper surface of the specimen. The geometry, loading and boundary

conditions for the displacements and pore pressure are shown in Fig. 8.1. Boundary condi-

tions for the plastic multiplier field constrain the normal and mixed derivativesΛ,n andΛ,ξη

to zero on all the edges. The loading process is performed under displacement control. The

vertical displacement of the rigid footing (upper nodes of the sample) is prescribed to load

the sample. In fact, since we assume that the footing is infinitely stiff and cannot rotate (but

can slide along the top edge), the displacements of the nodesof the sample are prescribed.

Three discretizations with 10× 10, 20× 20 and 40× 40 finite elements are considered.

The following material data are adopted:ν = 0.2, κ = 0.013, e0 = 1.0, pc = 640.0 kPa,

λ = 0.032,M = 1.1, γf = 10 kN/m3,Kf = 3.0e03 kPa,k = 1.0× 10−4 m/day,g = 1.0e05

kN2/m2.
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Figure 8.1: Steep slope stability problem: geometry, natural and essential boundary conditions

8.1.1 Steep slope stability (local Cam-clay model)

For a start, the calculations are performed for a two-phase medium and local version

of the modified Cam-clay model (g = 0). In Figs 8.2-8.5 the results for three meshes are

presented. The deformed meshes, strain and pore pressure distribution are plotted at the

end of calculations. The lack of the regularization resultsin the mesh-dependence of the

numerical solution. As shown in Figs 8.3 - 8.4 for each mesh strains localize in the narrowest

possible area. On the other hand, the pore pressure distributions do not exhibit localization.
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Figure 8.2: Load-deformation curves for local Cam-clay model (g = 0)
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Figure 8.3: Deformed meshes for local model
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Figure 8.5: Pore pressure distribution for local model
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8.1.2 Steep slope stability - regularized two-phase medium

The following results have been obtained for the three-fieldelement. As can be seen

in Fig. 8.6 the results for the coarse mesh are not accurate enough due to a standard dis-

cretization error. However, the diagrams for the medium andfine mesh almost coincide. In

Fig. 8.7 the deformed meshes are shown. Fig. 8.8 and Fig. 8.9 present the strain and pore

pressure distribution, respectively. All results are plotted at the end of calculations. The

width of the shear band (cf. Fig. 8.7 and Fig. 8.8) is similar for each of the three considered

discretizations.
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Figure 8.6: Load-deformation curves for gradient-enhanced Cam-clay modelg = 1.0e05 kN2/m2
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Figure 8.7: Deformed meshes for gradient-enhanced Cam-clay model
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Figure 8.8: Vertical strain distribution for gradient-enhanced Cam-clay model
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Figure 8.9: Pore pressure distribution for gradient-enhanced Cam-clay model
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Conclusions

In this thesis the numerical analysis of strain and pore pressure localization in one- and

two-phase geomaterials has been performed. The modified Cam-clay model and its exten-

sions have been used to describe the behaviour of soil skeleton. First, the response of the

model for the limiting cases of undrained soil (approachingincompressible material) and

drained soil has been assessed. Then, the general case of two-phase fully saturated medium

within a consolidation theory has been analyzed.

For the case of dilatation due to large preconsolidation, strong softening and, in some

cases, negative excess pore pressures have been predicted.The analysis of the numerical

results leads to the conclusion that, in comparison to a one-phase material the two-phase

medium has a lower load-carrying capacity and is in general less stable. Thus, no distinct

stabilizing effect of the fluid phase has been observed in thecomputed examples for the

two-phase medium with the soil skeleton described with the local Cam-clay model.

In the biaxial compression test of shear banding, the (inelastic) strain distributions ob-

tained for various values of the permeability coefficient are sensitive to the discretization

density. On the other hand, the pore pressure distributionsare nearly mesh-independent.

However, the pore pressure distribution depends strongly on the value of the permeability

coefficient and also on the boundary conditions for the pore pressure field.

The obtained results of numerical simulations do not confirmthe statement that the two-

phase soil modelling involves a certain regularization by introducing a gradient term present

in the Darcy’s law. Thus, the necessity of regularization ofthe constitutive model for a mul-

tiphase material has been proved. We conclude that a regularization of the softening and/or

nonassociative constitutive model for soil is mandatory also within a two-phase description.

The gradient-enhancement of the modified Cam-clay model hasbeen proposed in the

thesis in order to preserve the well-posedness of the governing partial differential equations
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in the presence of material instabilities. The regularization is based on the incorporation of

the Laplacian of the plastic multiplier in the Cam-clay yield function. Consequently, a three

field finite element has been proposed for the analysis of instabilities in the consolidation

problem of evolving deformations and pore pressures.

The numerical material model and the algorithms have been incorporated into the FEAP

finite element package [70]. Although the attention has beenfocused on the plane strain

biaxial compression benchmark, a number of elementary tests and larger scale problems in-

volving unstable (softening) behaviour and localized deformation have also been computed.

The performed numerical tests have verified the employed algorithms and their implemen-

tation. The ability of the model to simulate a variety of stress states and histories has been

demonstrated. Moreover, the results obtained for the gradient-enhanced (regularized) the-

ory and the three-field element do not show the pathological mesh dependence of numerical

result due to instabilities and strain localization.

In Sect. 6.1 the alternative concepts of gradient enhancement have been sketched, which

should be a subject of further research. The extension of theCam-clay model to viscoplastic-

ity [8] is also worth implementing since it would enable a further discussion of regularization

need and efficiency.

In a future research, the dependence of the yield condition on the Lode angle should

be incorporated in the description. The elliptic shape of the yield function could also be

distorted like in [23,28] to approximate better the experimental results. In order to extend the

possible application of the implemented numerical model, an option of deviatoric hardening

should also be introduced in the description.

A numerical analysis of geomaterials is a very strong and practical tool, since general

stress states for arbitrary configurations can easily be examined. Extensions of the present

implementation to a three-dimensional case or dynamic loading do not seem to pose large

difficulties.
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Appendix

Note that in this appendix the preconsolidation pressurepc is denoted by2a.

Derivatives in Newton algorithm for associated Cam-clay plas-

ticity

The Jacobian matrix needed for the Newton-Raphson iteration scheme in eq. (4.26) has

the form:

[

∂r

∂s

]

=



















∂r1

∂p
∂r1

∂q
∂r1

∂Ḡ
∂r1

∂a
∂r1

∂∆Λ
∂r2

∂p
∂r2

∂q
∂r2

∂Ḡ
∂r2

∂a
∂r2

∂∆Λ
∂r3

∂p
∂r3

∂q
∂r3

∂Ḡ
∂r3

∂a
∂r3

∂∆Λ
∂r4

∂p
∂r4

∂q
∂r4

∂Ḡ
∂r4

∂a
∂r4

∂∆Λ
∂r5

∂p
∂r5

∂q
∂r5

∂Ḡ
∂r5

∂a
∂r5

∂∆Λ



















(10.1)

with the following derivatives:

∂r1

∂p
= 1 + 21+e0

κ
M2∆Λp0 exp

[

−1+e0

κ
∆θe

]

∂r1

∂q
= 0

∂r1

∂Ḡ
= 0

∂r1

∂a
= −∂r1

∂p
+ 1

∂r1

∂∆Λ
= 21+e0

κ
M2(p− a)p0 exp

[

−1+e0

κ
∆θe

]

∂r2

∂p
= 0

∂r2

∂q
= 1

∂r2

∂Ḡ
= − 3ξT

trial
∆γ

qtrial(1+6Ḡ∆Λ)
+ 6∆Λqtrial

(1+6Ḡ∆Λ)2

∂r2

∂a
= 0
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∂r2

∂∆Λ
= 6Ḡqtrial

(1+6Ḡ∆Λ)2

∂r3

∂p
= −2 3

2

1−2ν
1+ν

1+e0
κ

M2∆Λp0 exp[− 1+e0
κ

∆θe]
∆θe +

2 3

2

1−2ν
1+ν

M2∆Λp0(1−exp[− 1+e0
κ

∆θe])
∆θe2

∂r3

∂q
= 0

∂r3

∂Ḡ
= 1

∂r3

∂a
= −∂r3

∂p

∂r3

∂∆Λ
= −2 3

2

1−2ν
1+ν

1+e0
κ

M2(p−a)p0 exp[− 1+e0
κ

∆θe]
∆θe +

2 3

2

1−2ν
1+ν

M2(p−a)p0(1−exp[− 1+e0
κ

∆θe])
∆θe2

A special case must be considered for∆θe → 0:

∂r3

∂p
= 3

2
1−2ν
1+ν

(1+e0

κ
)
2
M2∆Λp0

∂r3

∂a
= −∂r3

∂p

∂r3

∂∆Λ
= 3

2
1−2ν
1+ν

(1+e0

κ
)
2
M2(p− a)p0

∂r4

∂p
= −21+e0

λ−κ
M2∆Λa0 exp

[

−1+e0

λ−κ
∆θp

]

∂r4

∂q
= 0

∂r4

∂Ḡ
= 0

∂r4

∂a
= −∂r4

∂p
+ 1

∂r4

∂∆Λ
= −21+e0

λ−κ
M2(p− a)a0 exp

[

−1+e0

λ−κ
∆θp

]

∂r5

∂p
= 2M2(p− a)

∂r5

∂q
= 2q

∂r5

∂Ḡ
= 0

∂r5

∂a
= −2M2p

∂r5

∂∆Λ
= 0

In order to calculate the consistent tangent operator the following matrices are required:

• the derivative of deviatoric stressξ with respect to strainǫ

[

∂ξ

∂ǫ

]

==
2Ḡ

1 + 6Ḡ∆Λ
R−1Q (10.2)

• the derivative of functionfp describing the change of hydrostatic pressure:p = fp(p) =

p0 exp
[

−1+e0

κ
∆θe(p)

]

with respect to strainǫ
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[

∂fp

∂ǫ

]

=
[

∂fp

∂ǫ1

∂fp

∂ǫ2

∂fp

∂ǫ3

∂fp

∂ǫ4

∂fp

∂ǫ5

∂fp

∂ǫ6

]

=
[

−Kt −Kt −Kt 0 0 0
]

(10.3)

• the derivative of deviatoric stressξ with respect to vector of primary unknownss – 6

× 5 matrix with columns defined as
[

∂ξ

∂s

]

=
[

∂ξ

∂p

∂ξ

∂q

∂ξ

∂Ḡ

∂ξ

∂a

∂ξ

∂∆Λ

]

(10.4)

∂ξ

∂p
= 0

∂ξ

∂q
= 0

∂ξ

∂Ḡ
= 2R−1∆γ

1+6Ḡ∆Λ
− 6∆Λξtrial

(1+6Ḡ∆Λ)2

∂ξ

∂a
= 0

∂ξ

∂∆Λ
= − 6Ḡξtrial

(1+6Ḡ∆Λ)2

• the derivative of functionfp with respect to vector of primary unknownss
[

∂fp

∂s

]

=
[

∂fp

∂p

∂fp

∂q

∂fp

∂Ḡ

∂fp

∂a

∂fp

∂∆Λ

]

(10.5)

∂fp

∂p
= −21+e0

κ
M2∆Λp0 exp

[

−1+e0

κ
∆θe

]

= −21+e0

κ
M2∆Λp

∂fp

∂q
= 0

∂fp

∂Ḡ
= 0

∂fp

∂a
= −∂p

∂p
∂fp

∂∆Λ
= −21+e0

κ
M2(p− a)p0 exp

[

−1+e0

κ
∆θe

]

= −21+e0

κ
M2(p− a)p

• the derivative of vector of residualsr with respect to strainǫ – 5× 6 matrix with rows

defined as
[

∂r

∂ǫ

]

=
[

∂r1

∂ǫ
∂r2

∂ǫ
∂r3

∂ǫ
∂r4

∂ǫ
∂r5

∂ǫ

]T

(10.6)

∂r1

∂ǫ
= KtΠ

T

∂r2

∂ǫ
= − 3ξT

trial
Ḡ

qtrial(1+6Ḡ∆Λ)
Q

∂r3

∂ǫ
= −3

2
1−2ν
1+ν

(

Kt

∆θe + p−p0

∆θe2

)

Π
T

for ∆θe → 0

∂r3

∂ǫ
= 3

4
1−2ν
1+ν

(1+e0

κ
)
2
p0Π

T

∂r4

∂ǫ
= 0

∂r5

∂ǫ
= 0
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Derivatives in Newton algorithm for non-associated Cam-

clay plasticity

The derivatives in the Jacobian matrix:
∂r1

∂p
= 1 + 1+e0

κ
(M2 − M̄2)∆Λp0 exp

[

−1+e0

κ
∆θe

]

∂r1

∂a
= −21+e0

κ
M2∆Λp0 exp

[

−1+e0

κ
∆θe

]

∂r1

∂∆Λ
= 1+e0

κ
(M2(p− 2a) + M̄2p)p0 exp

[

−1+e0

κ
∆θe

]

∂r3

∂p
= −

3

2

1−2ν
1+ν

1+e0
κ

(M2+M̄2)∆Λp0 exp[− 1+e0
κ

∆θe]
∆θe +

3

2

1−2ν
1+ν

(M2+M̄2)∆Λp0(1−exp[− 1+e0
κ

∆θe])
∆θe2

∂r3

∂a
=

2 3

2

1−2ν
1+ν

1+e0
κ

M2∆Λp0 exp[− 1+e0
κ

∆θe]
∆θe − 2 3

2

1−2ν
1+ν

M2∆Λp0(1−exp[− 1+e0
κ

∆θe])
∆θe2

∂r3

∂∆Λ
= −

3

2

1−2ν
1+ν

1+e0
κ

(M2(p−2a)+M̄2p)p0 exp[− 1+e0
κ

∆θe]
∆θe +

3

2

1−2ν
1+ν

(M2(p−2a)+M̄2p)p0(1−exp[− 1+e0
κ

∆θe])
∆θe2

A special case must be considered for∆θe → 0:

∂r3

∂p
= 1

2
3
2

1−2ν
1+ν

(1+e0

κ
)
2
(M2 + M̄2)∆Λp0

∂r3

∂a
= −3

2
1−2ν
1+ν

(1+e0

κ
)
2
M2∆Λp0

∂r3

∂∆Λ
= 1

2
3
2

1−2ν
1+ν

(1+e0

κ
)
2
(M2(p− 2a) + M̄2)p0

∂r4

∂p
= −21+e0

λ−κ
(M2 + M̄2)∆Λa0 exp

[

−1+e0

λ−κ
∆θp

]

∂r4

∂a
= 1 + 21+e0

λ−κ
M2∆Λa0 exp

[

−1+e0

λ−κ
∆θp

]

∂r4

∂∆Λ
= −1+e0

λ−κ
(M2(p− 2a) + M̄2p)a0 exp

[

−1+e0

λ−κ
∆θp

]

The derivatives of functionfp with respect to the components of vector of primary unknowns

s:

∂fp

∂p
= −1+e0

κ
(M2 + M̄2)∆Λp0 exp

[

−1+e0

κ
∆θe

]

= −1+e0

κ
(M2 + M̄2)∆Λp

∂fp

∂a
= 21+e0

κ
M2∆Λp0 exp

[

−1+e0

κ
∆θe

]

= 21+e0

κ
M2∆Λp

∂fp

∂∆Λ
= −1+e0

κ
(M2(p− 2a) + M̄2p)p0 exp

[

−1+e0

κ
∆θe

]

= −1+e0

κ
(M2(p− 2a) + M̄2p)p

The derivatives have been computed analytically using Maple 7.0, and verified with the

finite difference method.
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Numerical analysis of strain localization

in one- and two-phase geomaterials

Summary

In the thesis the problem of instability as well as strain andpore pressure localization in

granular materials is approached. In the analysis the modified Cam-clay plasticity model is

used in its local (without an internal length parameter) andenhanced version (with a gra-

dient term) for a one-phase medium (including the limiting cases of drained and undrained

conditions) and a two-phase medium. The plastic model is combined with nonlinear elas-

ticity. The gradient-enhancement of the model is proposed in order to avoid the spurious

discretization sensitivity of finite element solutions. The classical and gradient-dependent

versions of the theory for one- and two-phase soil and their numerical implementation are

summarized. Calculations are performed using the development version of the FEAP finite

element package. The numerical material model and the algorithms are incorporated into the

FEAP in the following steps:

• local version of Cam-clay model for one-phase medium

• two-field finite element with discretization of displacements and excess pore pressure

(local Cam-clay model for two-phase medium)

• two-field finite element with discretization of displacements and plastic multiplier

(gradient-enhanced Cam-clay model for one-phase medium)

• three-field finite element with discretization of displacements, excess pore pressure

and plastic multiplier (gradient-dependent Cam-clay model for two-phase medium)

Basic one-element tests and a typical shear banding benchmark of biaxially compressed soil

specimen are discussed. In the analysis the attention is focused on the influence of fluid

phase on soil instabilities.
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Numeryczna analiza zjawisk lokalizacji odkształceń

w jednofazowym i dwufazowym ósrodku geotechnicznym

Streszczenie

W pracy został przeanalizowany problem niestateczności i lokalizacji odkształcén oraz

ciśnién porowych w materiałach ziarnistych. Do analizy w zakresieplastycznym u̇zyto mo-

delu Cam-clay w wersji lokalnej (bez wewnętrznej skali długości) oraz zregularyzowanej

(człon gradientowy) dla ósrodka jednofazowego (stan zatrzymanego i swobodnego drenażu)

i dwufazowego. Uwzględniono nieliniowe zachowanie materiału w zakresie sprę̇zystym.

Gradientową wersję modelu zaproponowano dla uniknięcia pasȯzytniczej zalėznósci roz-

wiązán uzyskanych metodą elementów skończonych od dyskretyzacji. Przedstawiono opis

klasycznej i gradientowej wersji teorii dla ośrodka jedno- i dwufazowego oraz ich nume-

ryczną implementację. Obliczenia prowadzono w rozwijanej wersji pakietu FEAP po wcze-

śniejszym zaimplementowaniu własnych procedur. Oprogramowany został model materiału

Cam-clay oraz trzy elementy skończone. Były to: element dwupolowy z aproksymacją pola

przemieszczén i (nadwẏzki) ciśnién porowych (lokalny model Cam-clay dla ośrodka dwufa-

zowego), element dwupolowy z aproksymacją pól przemieszczén i mnȯznika plastycznego

(zregularyzowany model Cam-clay dla ośrodka jednofazowego) i ostatecznie element trój-

polowy z dyskretyzacja wszystkich trzech wymienionych wczésniej pól (gradientowy mo-

del Cam-clay dla ósrodka dwufazowego). Przedyskutowano wyniki podstawowych testów

jednoelementowych oraz typowego zagadnienia powstawaniapasmścinania w dwuosiowo

ściskanej próbce gruntu. W obliczeniach szczególną uwag˛e zwrócono na wpływ fazy ciekłej

na rozwiązania zagadnień niestatecznósci materiału.


