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Chapter 1
Introduction

The material softening and the non-symmetry of the tangéfess operator are possi-
ble sources of material (e.g. soil) instability and straicdlization. The numerical simulation
of these phenomena in porous materials is the subject ofttbsss.

The issue of material instabilities causing strain loclan has been investigated for
example in the review papers [15,41,81], in the extensivaysof bifurcations in geomateri-
als [79] and in the proceedings of IUTAM symposium [16]. If aterial instability [26, 37]
is encountered in the deformation history of a body, tharsdraften localize in a number of
narrow bands, while the remaining parts of the body unloadhiwa classical continuum
formulation and for static problems this phenomenon is@ased with the loss of elliptic-
ity of the governing partial differential equations. There, discretization methods used to
solve the equations may yield mesh-sensitive and hencdiop@isle results. To overcome
this problem, a form of rate-dependent or non-local enhaecs of the constitutive model
should be adopted [15, 65]. The non-locality may have the fok micropolarity (e.g. [40]),
integral averaging (e.g. [4]) or spatial gradient-depewege.g. [77]). All these approaches
imply the introduction of an internal length parameter ia tontinuum description. In cer-
tain cases, for instance for the simulation of discrete fessin rocks, discontinuum mod-
elling can also be an option.

This thesis is focused on instabilities in porous matendisch are often modelled as
two-phase media composed of solid and fluid. The solid-flatéraction influences the
critical load level for which an instability can occur as e the direction and width of the
localized deformation bands. In particular, the perméshdloefficient and the pore fluid
compressibility are found to affect localization cf. fosstance [3,31,59]. However, it is
unclear whether the onset of instability in a two-phase mradcoincides with that in the
underlying drained solid. In this thesis the influence ofdlphase on soil instabilities is
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4 Chapter 1

investigated using the local and gradient-enhanced mddifeen-clay model [58].

In [3] an investigation of the plane-strain instability aitsrated porous media is per-
formed. It is concluded that the elastic-plastic modelsedmbit two-phase instability de-
spite the fact that the solid phase remains in the stableneegirhe contractant hardening
materials are found to be more inclined to two-phase inktykian dilatant ones. In [31],
the problem of strain localization in porous materials isrdughly discussed. The author
confirms that the localized solution is possible when thaiatio tensor associated with the
underlying drained material becomes singular. It is cahetlthat soil under undrained
conditions requires stronger softening than drained s@lder to reach a state in which lo-
calization is possible. In [59] the conditions for the onsfethear localization in the limiting
cases of drained and undrained state for dilatant and ataitageomaterials are discussed.
It is stated that for dilatant soil the condition for locaiion is met earlier for drained than
undrained response. On the contrary, in case of the coalria®til the conditions for local-
ization are fulfilled for undrained state before drained.

Moreover, in [62] it is claimed that the two-phase modellofgsoil involves a certain
regularization by introducing a gradient term via the D& ¢gw, although the necessity of
regularization of the constitutive model for a multiphasatenial is usually recognized. In
[88] a gradient plasticity model is used to analyze dynamstabilities in fully and partially
saturated granular material. The influence of permealahtyhe width of localization zone
in a one-dimensional test is also evaluated. In [42] a graeBahanced visco-plastic model
is applied to localization analysis of clays. In [5] it is sftothat the length scale introduced
by incorporating the fluid flow depends on the integratioretistep and is thus insufficient
for the regularization of unstable behaviour.

More recent developments concerning the problem of numesimulations of localized
deformation bands in multiphase (granular) media are eavéar instance in [7,11, 34, 44,
89]. In [7] the problem of deformation and strain localipatin partially saturated porous
medium is considered and a constitutive model (extensidheomodified Cam-clay model)
for such a three-phase medium is proposed. In [44] a genanaltsnal framework of Cam-
clay theory is constructed within the finite deformationgpieity. In [89] the issue of internal
length scale introduced by the fluid-solid interaction issidered in a dynamic context. The
dynamic aspects of the analysis of the two-phase saturatieahsler dynamic load can also
be found in [84] and other works of these Authors.

In [89], using stability and dispersion analyses the limats& numbers are evaluated, for
which the internal length parameter vanishes and hencéarggation is mandatory. These
results are confirmed in [11]. On the other hand, in [34] argnts are given to support the
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opinion that, at least for saturated sand undergoing diteiathe fluid phase stabilizes the
soil and regularizes the solution.

1.1 Research objectives

The general objective of this thesis is the numerical amalgkinstabilities and strain
(and pore pressure) localization in one-phase and fluigkest&td porous materials.

The realization of the goal requires the reliable modellgeomaterials considering
their basic features as multiphase materials. The soietkelbehaviour is described using
the modified Cam-clay model originally proposed in [58] anchenonly accepted as reliable
for cohesive soils.

In order to preserve the well-posedness of the governingppdifferential equations in
the presence of material instabilities, the Cam-clay m@lehhanced by introducing suit-
able higher-order deformation gradients in an enhancetimcanm description. In particular,
the degree of overconsolidation is made dependent on tHadiap of a hardening/softening
parameter, or, more precisely of the plastic multipliere Emhancement introduces an in-
ternal length parameter and prevents the mesh-sensiivitiscretized numerical solutions.
The effectiveness of this gradient regularization of thelified Cam-clay model is studied.

Particular attention is focused on the analysis of the infteeof fluid phase represented
by (excess) pore pressure on soil behaviour. The influenseilbpermeability on the stabi-
lizing role of fluid phase is investigated.

The implementation and consistent linearization of thalldam-clay model follows
[22] and the gradient-enhancement of the theory is basedcepts developed in [12, 13,
39]. The numerical material model and the algorithms wererporated into the FEAP finite
element package [70] in the following steps. At first the logsion of Cam-clay model
for one-phase medium was implemented. The classical olaeefEment with discretization
of displacements was used at this stage. This formulatimwalfor the analysis of two
extreme stages: drained state (excess pore pressure eqeabj or undrained state (fluid
motion prevented). The second step is a description of saltao-phase medium. A two-
field finite element in which the displacements and the expess pressure are discretized
is considered. In order to prevent the mesh-sensitivity wherical results the gradient
enhancement of Cam-clay model is incorporated. A two-fildchent with the discretization
of displacements and plastic multiplier is programmed &t $iage. The final step is an
implementation of gradient-dependent Cam-clay model fier ttvo-phase medium. This
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formulation requires a three-field element in which displaents, excess pore pressure and
plastic multiplier are discretized.

The thesis of the dissertation is the statement that in tbepiwase soil description based
on the Cam-clay model, the presence of the second phase diogganantee regularization.
It is necessary to enhance the constitutive model, for el@bpintroducing suitable higher-
order (inelastic) deformation gradients in the continuweadatiption.

1.2 Assumptions and limitations

Inertial effects and large deformations or strains aredattof the scope of the thesis,
but both static deformation and consolidation problemsarsidered. The attention is thus
limited to elliptic or elliptic-parabolic problems withrlear kinematics. The equilibrium and
kinematic equations have the form (Moigt's matrix-vectotation is used):

LYo, + pg =0, (1.1)

€ = Lu, (1.2)
whereL is a differential operator matrixg; is the total stress tensor in a vector forms
the densityg is the gravitation vectok is the strain tensor in a vector form, is the dis-
placement vector and superscripts the transpose symbol. The stresses and displacements
satisfy the relevant natural and essential boundary comndit

The derived formulations are three-dimensional, the imgletation is limited to two-
dimensional plane strain and axisymmetric configuratiortse attention is focused on the
physical and numerical aspects in the sense of aiming at-meshsitive results with a
clear physical explanation. However, the aim is not to aralhe efficiency of different
(in particular stabilized, cf. [73]) finite elements or deadaptive remeshing techniques,
undoubtedly advisable for the analyzed class of problems.

The Terzaghi's concept of effective stress is adopted ierta represent the dominant
role of solid skeleton in load-carrying capacity of soil.€lgpoverning equations for partially
saturated soil are derived in Sect. 5.1, but the implemienté limited to the case of fully
saturated soil.

1.3 Contents

The thesis is organized as follows. The remaining part optdral includes the stress
and strain notation. The volumetric-deviatoric decompasiof the mentioned tensors is
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presented. A list of matrices, vectors, scalars and funstised in this thesis is enclosed.

In chapter 2 the problem of numerical modelling of granulatenials is discussed.
Essential physical properties of soils are described diofytheir multiphase nature. The
Terzaghi’'s assumption of effective stresses is preseiitegirole of total and effective stress
is explained. An overview of plasticity models used for thecmanical analysis of geomate-
rials is included.

Chapter 3 deals with the problem of material instability dochlization phenomena in
granular materials. Instability indicators for one-phassdium are discussed. However, the
attention is focused on the influence of fluid phase on themahteehaviour. The literature
on the subject is reviewed.

The modified Cam-clay model in its local version is descrilmethapter 4. The nonlinear
stress-strain relations are presented. The cases of afesband non-associated plasticity are
considered. The finite element implementation of the matenodel is summarized. The
one-element tests showing the typical soil behaviour agdlization tests which exhibit
mesh sensitivity are enclosed.

Chapter 5 presents the equations for two-phase modellidlpfand partially saturated
soil and the special cases of undrained and drained stathiain one-phase modelling is
possible. It also contains the description of the formuated implemented finite element
models, including their linearization and discretizati®he results for one-element tests and
benchmark results showing the strain and pore pressurkziatan for two-phase medium
are also presented.

The gradient-enhancement of the Cam-clay model is reported chapter 6. The algo-
rithm for the gradient-dependent Cam-clay plasticity aisgrétization-independent results
of numerical simulations are included. The influence of infgions on the numerical re-
sults is examined.

Chapter 7 contains the description of the formulated tfiedd-finite element, including
its linearization and discretization. The results of nuc@rsimulations are also discussed.

Selected applications of the developed numerical modelsaluded in chapter 8.

Final remarks are gathered in chapter 9.

1.4 Volumetric-deviatoric decomposition

Due to the granular and multiphase nature of soils we havéstmmguish between the
total and effective stress (cf. Sect. 2.2 for the explamytid he constitutive equations are
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written in terms of the effective stress tensor. Its matepresentation reads:

Ozx Ozy Ogz
Oyz  Oyy Oyz (1.3)

Ozz Ozy Ozz

or using Voigt’s matrix-vector notatiost = [0, 0yy» T2z Ouys Oyzy Tae] -
In a similar way we can write the matrix representation aisttensor:

(1.4)

which in a vector form using the engineering shear strainpmmnts is written ase =
€y €ys €22, 264y, 26,2, 26| T . This vector representation will be used in this thesis.

The usual solid mechanics sign convention is such thatdemsiassumed to be possitive
(both stress and strain). On the other hand, in nearly akaspof soil mechanics only
compressive stresses are present thus it is very frequasétihe convention of compression
being positive. Eventually, in this thesis, the adopted signvention is that the compressive
stresses and strains are negative, however, the comm@seasure is regarded as positive.

The formulation of many plasticity models requires the woddric-deviatoric split of
stress and strain tensors. The stress tessor\oigt's notation can be decomposed into:

1
0':€—Hp:£+§HHTa', (1.5)

in which ¢ is the deviatoric stres§] = [1,1,1,0,0, 0] andp is the pressure. The deviatoric
stress vectof is defined as:

¢ = Qo, (1.6)
matrix QQ is given by:

Q:I—%HHT (1.7)

2 -1 -1

. 0 3 3 3
Q:[Q ] Q=|5 i 3| Q=dadlLLl 1§

0 Q -1 -1 2

3 3 3

Note thatl is the identity matrix.
The hydrostatic pressure which is the invariant of the sttessor is given by:

1 1 . 1 1
b= _g(amz + oy +0..) = _511 = —§HT0' = —gtl’(a') (1.9)
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The equivalent deviatoric stress is defined as:

g= /3], = ,/ggTRg. (1.10)

In a similar way the strain tenserin vector form can be decomposed into:
e=~v+1II0 (1.11)
where the deviatoric strain vectgris given by:

1
vy = ng. (1.12)
and the volumetric strain (the invariant of strain tenssalled dilatation and computed as:

0 = €pp + €4y + €22, (1.13)

1.5 Notation

Here is the list of symbols and abbreviations most freqyeargéd in the thesis:
Tensors, matrices, vectors:
~ deviatoric strain vector
D tangent stiffness tensor
€ strain tensor in a vector form
g gravitation vector
k permeability matrix
L differential operator matrix
m vector normal to a plastic potential
n vector normal to the yield surface
r vector of residuals
s vector of primary unknowns
o effective stress tensor in a vector form
o, total stress tensor in a vector form
u displacement vector
vy Darcy'’s fluid flow velocity
& deviatoric stress vector
Q) acoustic tensor
Scalars:
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¢ cohesion

e void ratio

F yield function

g gradient scaling factor

G plastic potential

G secant shear modulus

h hardening/softening modulus

6 volumetric strain

0 elastic part of volumetric strain
6 plastic part of volumetric strain
K, tangential bulk modulus

K secant bulk modulus

x swelling index

A compression index

A plastic multiplier

M, M material constants

n Porosity

v Poisson’s ratio

p effective pressure acting on the soil skeleton

p. preconsolidation pressure
Py EXCESS pore pressure

g equivalent deviatoric stress
p density

p saturated density of the soil-fluid mixture

p, density of the solid phase
py density of the fluid phase
S saturation ratio

V material volume

V, pore volume

V, skeleton volume

o friction angle

® dilatation angle
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Numerical modelling of granular

materials

In general, three

In Fig. 2.1 the multiphase, porous and granular nature dissdepicted.

phases can be distinguished i.e. solid skeleton with padlited fvith fluid and gas phase.

This complex microstructure determines the soil featunescauses instabilities observed at

macroscopic scale.
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Figure 2.1: Soil as a multiphase, porous and granular medium

2.1 Soil features

One of the fundamental soil features is its sensitivity togiy/volume changes, which

can be caused either by a change in effective confining peegsur by a rearrangment of

grains in the structure due to shearing load. Typical fdristhe tendency to reach a critical

state, in which only the deviatoric plastic strain incretsare observed and the strength and

volume are constant.

11
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Let us consider the two soil idealizations presented in E@. If a shear load is applied,
the solid particles slide and roll. In case of a loose soil@arthe pore volume will decrease
during shearing (contraction) involving material harahgni On the other hand, if a dense
configuration is loaded in shear the pore volume increaskgdtion) and material soften-
ing is observed, cf. results in Sect. 4.6.3. Similar res@tongly dependent on the soil
density, can be obtained for a triaxial test, cf. Sect. 4 A.Bose specimen exhibits contrac-
tation (hardening behaviour), while a dense one densifissataind then dilates (material
softening). The conclusion is that the density/volume geardetermine the soil behaviour.

e

Figure 2.2: Soil grains in loose (left) and dense (right)frguration. Contractant and dilatant be-
haviour, after [25].

2.2 Effective and total stress

To represent the multiphase nature of soil in phenomencddgnodelling the concept
of effective stress is introduced. All forces acting on tbé siass are balanced by the total
stress tensar,. However, the total stress decomposes into the effectigesin solid skele-
ton and the pressures in fluid constituents. This decompns# necessary to reproduce the
dominant role of solid part in the load-carrying capacitgoil. It is known that the incorpo-
ration of pore fluid in the analysis considerably reducesntiagerial strength. Particularly,
all shear stresses are supported by the solid grains simeenater and/or air can carry no
shear stress at all. For a fully saturated soil (solid graim$ pores completely filled with
water) this decomposition is ilustrated in Figs 2.3-2.4.

The effective pressure acting on the soil skeleton is detoyed

1
p= —gtr(o't) — D, (2.1)

wherep; is the excess pore pressure. The effective stress tenfaorthe porous medium is
related to the total stress tensor by:

o = o+ Ipy, (2.2)
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Figure 2.4: Effective stress, based on [72]

whereIl = [1,1,1,0,0,0]". The above relations are known as the effective stressiplinc
and were given by Terzaghi. In case of partially saturatddsaid skeleton and voids partly
occupied by water and partly by air) the extended Bishogécéfe stress concept is used
in the form:

o = o+ ILSpy, (2.3)

whereS - saturation ratio.

To summarize, the effective stress is responsible for therchation and limit states of
saturated soil (it is used in constitutive equations). Talatce of the medium is maintained
by the total stress (it stands in momentum balance equations

2.3 Plasticity models for geomaterials

The elastic or plastic behaviour of the material dependsherstress level. The yield
condition for perfect plasticity is in general written &%0) = 0. The set of stress states



14 Chapter 2

that satisfy this condition (plastic stress states) foimesyield surface bounding all possible
stress states. The stresses within the yield surface pomds to elastic stress states. Stresses
outside the yield surface are not allowed (impossible).

Differently shaped yield surfaces have been proposed lisrdiit researchers for differ-
ent materials. In ductile materials such as metals, thetaisgelding does not depend on
the volumetric part of the stress. On the contrary, frictlomaterials such as sands, soil,
rocks or concrete are called pressure-sensitive due tesengal effect of the first invariant
I7 on the yield condition and inelastic behaviour. Thus, agdicwy to experimental observa-
tions, constitutive relations for geomaterials are eithitant or contractant.

An overview of plasticity models used for the mechanicalysia of geomaterials can be
found for instance in [24,33,90]. The modern computati@salects of the plasticity models
are covered among others in [9,25,73]. Next to the plagtisidels described in this section
also hypoplastic models are very popular (cf. [71]). Here, fisst summarize the Mohr-
Coulomb and Burziski-Drucker-Prager (BDP) theory (cf. [91] for the expldoa of the
name), commonly used, but suitable for a rather simplifiemlyesns of frictional materials.
The idea of closed yield surface is briefly described (cf, 2B]). Then we extensively cover
the modified Cam-clay model which properly represents thesighl properties of a large
class of geomaterials.

2.3.1 Mohr-Coulomb plasticity

The Mohr-Coulomb yield criterion is represented by:
1 1 .
F(o) = 5(03 —01)+§(03 —071)sinp — ccos g, (2.4)

whereo; ando; are the largest and smallest principal stresses, respbclys > 1), ¢ is

a friction angle and: is cohesion. The above equation is valid as longas< o, < o3.

If this is not the case, we can obtain the other five yield cooowls by cyclic permutation
(cf. [10, 32]). The Mohr-Coulomb yield function is represeth in the three-dimensional
principal stress space as a hexagonal pyramid, shown irRFigThe model representation
in theII-plane (perpendicular te; = o, = o3 axis) is shown in Fig. 2.6. The model can
be used to describe with reasonable accuracy the behavisand, drained clays, rocks and
concrete.
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2.3.2 Burzynski-Drucker-Prager plasticity

The classical Burzyski-Drucker-Prager (BDP) yield function can be writterf@akows:
F(o)=q+ap—fc, (2.5)

whereq = /3J, and .J, is the second invariant of the deviatoric stress tengas, the
hydrostatic pressure, the coefficientand are functions of the internal friction angje

o 6sir?<p . 6co§<p 7 (2.6)
3 —sing 3 —singp
c iIs a measure for the cohesion. For a non-associated flowthdeplastic potentiad is
defined as:

G=q+ap, (2.7)
wherea is a function of the dilatation angle, similar to the definition ok in eq. (2.6):

6 sin ¢

et (2.8)

o=

When ploted in the three-dimensional principal stressepide Drucker-Prager yield func-
tion when ploted in the three-dimensional is a cone, the akishich coincides with the
hydrostatic axis, cf. Fig. 2.5. The model representatioth@il-plane is shown in Fig. 2.6.
Forsin ¢ = sinvy = 0 the special case of Huber-Mises-Hencky (HMH) yield functiehich
is a cylinder with radiusr, = 2c is obtained. The yield function for the HMH plasticity
reads:

F(lo)=q— o0, (2.9)

For isotropic hardening, the eq. 2.5 has to be rewrittenerfom:
F(o,e?) = q+ ap — Pe(eP) (2.10)

whereeP is an invariant plastic strain measure (hardening parajnek®r linear harden-
ing/softening we have = ¢, + h.cP with constant modulua..

In the case of gradient-dependent Drucker-Prager plasfis, 66], the yield function is
additionally dependent on the Laplacian of the plastidstreeasure®?. Assuming that only
the cohesion exhibits the gradient dependence, the yialdditin takes the form:

F(o,e V?eP) = ¢+ ap — Be(k, V3eP) | (2.11)

and the plastic potential function does not change.
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Mohr-Coulomb

Drucker-Prager

Figure 2.5: Representation of the Mohr-Coulomb and Druékeger yield criteria in the three-
dimensional principal stress space

Mohr-Coulomb

Drucker-Prager

Figure 2.6: Representation of the Mohr-Coulomb and Druékager yield surfaces in tHé-plane
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p

Figure 2.7: Open and closed yield surface, after [90]

2.3.3 Closed yield surfaces

The classical elastoplastic models for soils like Mohr-lBab or Burzyhski-Drucker-
Prager can only be used for a specific range of problems dbeitsevere limitations. When
for example the Mohr-Coulomb or Burizgki-Drucker-Prager yield surface is used in the
case of strong hydrostatic compression, no plastic defitomée produced since these yield
criteria are open on the compressive side along the hydiostds. In such a case, closed
yield criteria must be used [90]. This fact is illustratedFig. 2.7. When the equivalent
deviatoric stresg = 0, the stress path coincides with the hydrostatic axis ank attes 1
and 2 are located inside the yield surfggethus, no plastic strain is produced. To overcome
the problem, the yield surface intersecting the hydrastatis and also expanding from point
1 to 2 (hardening due to densification) should be used.

Therefore, majority of modern plasticity models for soits &ased on critical state soil
mechanics framework, developed by the group of researdtmrsthe University of Cam-
bridge [58]. The ideas of volumetric hardening and closedidysurface are applied in this
framework. The main assumptions of the critical state thean be found for example
in [20, 90].



18

Chapter 2




Chapter 3
Instabilities and strain localization

The strain localization can turn up in various materialss ibbserved when the whole
deformation of the material sample concentrates in one @emarrow bands. The sources
of localization phenomena lies at the meso- or micro-le¥ebservation (e.g. heterogeneity
or local material defects).

The problem of material instabilities inducing loss of @iicity and strain localization
will now be recapitulated following [66].

We now recapitulate the problem of material instabilitieducing loss of ellipticity and
strain localization. A broader discussion of the issuesesgnted in [15, 41, 65, 81], in the
study of bifurcations in geomaterials [79], and in the mozaeyal theoretical considerations
gathered in [53,54]. Then, we review some literature on tifl@ence of the second phase
on the phenomena will be reviewed, cf. [3,31, 35,62, 87].

3.1 Instability indicators for one-phase medium

According to the definition of material stability [37, 38,]82 material is stable if its
constitutive relationship satisfies the condition of pgsisecond order work density:

€ij0i; > 0, (3.1)

whereé¢;; andg,; are the strain and stress rate tensors, respectively, arslithmation con-
vention is adopted. Our consideration is limited to incratally linear constitutive equa-
tions:

dij - Dijklék:l . (32)

19
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A material instability is indicated by the loss of positidefiniteness of the tangent stiffness
tensorD,;;,, i.e. by the singularity of the symmetric part bf;,;:

det(Dijkl + Dk;lij) =0. (3.3)

It was shown in [82] that the smallest eigenvaluelaf,, is larger than or equal to the
smallest eigenvalue of its symmetric part. Therefore, foba-symmetric tangent stiffness
tensor the loss of material stability may occur in the defation history prior to the limit
point and loss of uniqueness related to a diffuse bifuroatd [15, 81], which are marked
by the condition:

det(Dijkl) =0. (34)

Limiting interest to elasto-plasticity, the classical gant stiffness operator can be ob-

tained as:
De

[$]
i MmnTpg D

paki (3.5)

I~ Mo Do Mg

. e
Dijkl - Dz‘jkl -

where D¢ is the elastic stiffness operatdr,is the hardening/softening moduluss, is the
plastic flow direction vector (normal to a plastic potentetdn is the vector normal to the
yield surface. As shown in [82], the special structure ofélaestic-plastic tangent operator
D in eq. (3.5) implies that it has only real eigenvalues evenisfnon-symmetric, so that
condition (3.4) is satisfied only whein = 0. This means that if one assumes> 0, the
diffuse bifurcation cannot occur.

However, when the material stability is lost due to softgnar nonsymmetry of the
tangent operator, a so-called discontinuous bifurcasgossible, cf. [15, 43, 45,57, 60, 82].
For a homogeneous and homogeneously deformed body weigatesthe possibility that
upon a further increment of deformation a discontinuityraf deformation gradient across a
plane with normal; is admitted:

[wij] = u;rj —u;; #0, (3.6)

where[[ ]| denotes a jump of a quantity while the ‘+' and ‘-’ signs refertie two sides
of the discontinuity plane (Fig. 3.1). During this bifuriat the continuity of displacements
and the equilibrium condition are preserved at each pointhd deformation satisfies the
kinematic compatibility equations, it is piecewise homogeus, so that, for an arbitrary
vectoryu;, the strain jump can be written as:

[ejll = %(ij + Vi) - (3.7)
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Figure 3.1: Material instability: discontinuity planeeif[48]

With the piecewise linear constitutive equation (3.2) weaobthe stress rate jump at the
onset of the discontinuity:

[6ij | = Dijull €], (3.8)

where it is assumed that according to the concept of a lirsapearison solid [26], the same
tangent stiffness moduli represent the material behawauroth sides of the discontinuity
plane. Equilibrium requires that during the formation a# thiscontinuity the tractiong are
continuous across the plane with normal

[i;] =wl o] =0, (3.9)

S0 substituting eq. (3.8) and the rate form of eq. (3.7) imgo39, and exploiting the sym-
metry propertyD; i, = D, ;i we obtain the following equation:

(ViDijlel),Uk: =0, (3-10)

which has a non-trivial solution only when the determindrthe so-called acoustic tensor
ij = ViDijk;lVl IS zero:
det(Qjk) = 0. (3.11)

For a given tangent stiffness the last condition producesc#ovy,;, which defines the dis-
continuity direction. The vecton, can then be determined from eq. (3.10) and the jump
modev, 1y is known. For a shear band vecigris perpendicular tqu,.

The singularity of the acoustic tensor and the formatiorhefdtrain discontinuity corre-
spond to the local loss of ellipticity of the rate equilibmwequations. The ellipticity is one
of the necessary conditions for well-posedness of the ratadary value problem (BVP),
cf. references in [15]. Well-posedness is understood asxtstence of a finite number of
linearly independent and continuous solutions, of theioonin BVP.
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The emergence of the discontinuities in the deformatiodigrd has been identified with
strain localization since paper [60] was published. A shxard may be viewed as a zone
of intense deformation bounded by two discontinuity plandswever, since the distance
between those two planes remains undefined for a classidatialanodel, they coincide
giving localization in a set of measure zero. In this thesésriotion of strain localization is
understood in a broader sense, as the emergence of bandseeht@ted deformation due to
material instabilities. Nevertheless, the first point ia tteformation history for which there
exists a nontrivial solution of eq. (3.10) marks the possdiset of localization.

Substituting the elasto-plastic stiffness matrix from €35) into the definition of the
acoustic tensor and analyzing eq. (3.11) it is possible tbtfie critical values of the hard-
ening modulus:, for which ellipticity is lost, and the direction vectornormal to the dis-
continuity plane [45, 60]. The critical value &f which may be positive for non-associated
plasticity, and the directior depend on the stress state as well as on the form of the yield
and plastic potential functions. In numerical analysis istrete systems condition (3.11)
can be used to detect the loss of ellipticity and potentiedliaation at an integration point
level.

This type of analytical examination of the acoustic tensoperformed in [30, 66, 80].
The analysis determines the normalized value of the determiof the acoustic tensor as a
function of an angle defining the direction of the disconitypnplane in a two-dimensional
case. It proves that the degree of non-associativenessineddsy the difference between the
friction coefficientsin ¢ and the dilatation coefficiersin ¢ is the crucial instability factor.

Itis noted that, in addition to the above analyzed so-calledk discontinuities, jumps in
the displacement field itselb{rongdiscontinuities) can be considered, cf. for instance [83].
They correspond to a displacement discontinuity (crackh@lplane interfaces, while in
the continuous parts of the body material stability andogtlity are preserved. Since the
softening behaviour is then concentrated in the interfattess BVP for the discontinuum
remains well-posed.

However, in this work we look for solutions within the coniiim mechanics description
and propose to enhance the formulation with a form of notearaging, which regularizes
the BVP in presence of material instabilities, cf. Fig. 3r2particular the family of gradient-
dependent models is pursued. As shown in [46, 81], the oeacer of the discontinuity
plane is then only possible for a very special structure efdbnstitutive operator. Usually
ellipticity is guaranteed and localization in a set of measero is prevented.

Nevertheless, for the gradient dependent continuum thieadrvalue of the hardening
modulus and the direction of the localization band can berdehed from the classical



Instabilities and strain localization 23

Well-posedness of BVP

Material instability
£'o<0
0 =D& - detD®=0

Strain
softening

Classical continuum

Loss of ellipticity

(discontinuous bifurcation)
detQ=0

Qjk(n) =Dy

Strain localization
in a set of measure
zero

Higher-order/nonlocal continuum

Strain localization
in a zone of nonzero
volume

Ellipticity preserved
(continuous strain fields)

Figure 3.2: lllustration of ill-posedness problem and rdmeafter [47]

condition of the acoustic tensor singularity (3.11) if prio the moment of bifurcation into
a localized deformation pattern the gradient terms havathaeince on the solution.

3.2 Influence of fluid phase

In [35] the issue of instabilities in saturated two-phaséamals is discussed in the dy-
namic context, i.e. acceleration wave speeds in a ratgpardient elastic-plastic porous ma-
terials with ideal fluid phase are considered. The loss oéHyglicity and well-posedness is
related to the emergence of zero or conjugate complex waegls@associated with a station-
ary discontinuity (standing localization wave) or fluttesiability, respectively. The model
is based on the theory of mixtures. The major conclusiorasttie critical hardening modu-
lus for which a stationary discontinuity is possible is dqoahe modulus for the underlying
drained solid. However, it is also shown that the flutter mmeenon can occur immediately
upon the onset of plastic loading if plasticity is non-asatie and both phases are assumed
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to be incompressible. For compressible constituents #msatso happen, while this type
of instability is usually excluded for solid skeletons. Siaécases of a BDP elastic-plastic
solid and plastically contractant skeletons is considered

The special case of undrained solid was analyzed in the dgrsiability context in [76] and
chapter 11 of [79], leading to the conclusion that contnaictaaterials become unstable at
the critical state of maximum shear while for the dilatantenials instabilities occur in the
softening regime of the underlying drained skeleton.

It was pointed out in [36] that the presence of the pore fluid delay localization in
viscoplasticity. This line of reasoning is examined in tleéaf papers of Schrefler and co-
workers [61-63, 87, 88]. They discuss both theoreticallg anmerically the influence of
the coupling of the equilibrium (or motion) equation to thasa continuity equation for the
fluid phase. Within the context of dynamic analysis of pdtisaturated medium they focus
on the phenomenon of cavitation caused by negative porsymesand on the ability of
the Laplacian present in the continuity equation to regzdethe localization problem. The
Laplacian which enters the formulation from the Darcy’s lswscaled by the permeabil-
ity coefficient. The regularization effect is related to aternal length parameter, derived
to depend on what the authors call intrinsic permeabilitytlee fluid saturation, density,
elastic modulus and wave number. For large permeabilityhrsessitivity is still observed
and for small permeability the estimated internal lengtfapeeter is very large resulting in
distributed failure. It is also shown that the inclinationshear bands depends on the per-
meability and boundary conditions for the pore pressurd.fiehe derivation of the internal
length parameter based on permeability holds for a certarevaumber domain and is im-
possible for a shear wave propagation problem. Therefieein this study, the authors also
considered a Laplacian term in the yield condition [88].

An investigation of the plane-strain instability of satié porous media is performed
in [3]. Itis concluded that the elastoplastic models cant@khwo-phase instability despite
the fact that the solid phase remains stable. The contrtaletaidening materials are found
to be more inclined to two-phase instability than dilataneé®. The two-phase instability,
caused by solid-fluid interaction, may be delayed by the ftoithpressibility.

The problem of strain localization in porous materials galiscussed in [31]. The au-
thor confirms that the localized solution is possible whenaboustic tensor associated with
the underlying drained material becomes singular (theusamgy of the undrained acoustic
tensor then involves an unbounded discontinuity). Largs@sents an opinion that fully
drained conditions have a major influence on the occurreht®edocalization. It is con-
cluded that soil under undrained conditions requires ggosoftening than drained soil in
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order to reach a state where localization is possible. Tihesimce of material parameters on
the localization phenomena is also investigated. The palitity coefficient and the pore
fluid compressibility is found to affect the localizationggtomenon. In some cases the fluid
can have a regularization effect.

The authors of the recent publications seem to agree than¢beporation of the fluid
flow (via Darcy’s velocity) introduces an internal lengthakein the description but it is
dependent on the integration time step and thus insuffitderggularize the problem. Such
a conclusion and its explanation can be found for exampl8,ihl].

3.3 Laplacian-dependent plasticity

Now, we revisit the gradient plasticity formulation [12,]38 which the yield function
which depends on the Laplacian of a hardening parametsrwritten as:

F(o,eP, V3P) = 0. (3.12)
The yield function satisfies the Kuhn-Tucker conditions:
A>0, F<0, AF =0, (3.13)

in which A is the plastic multiplier. The gradient-dependence of teédyfunction implies
that the plastic consistency conditiéh= 0 is the following partial differential equation:

or . OF OF

ép

— 2¢P — () . 3.14
80’0 + OeP * 8V25pv c 0 ( )

The plastic consistency condition (3.14) requires that

F=n"¢—hA+gV*A=0, (3.15)
wheren andh are given by:
oF eP OF
T
n 5 h e (3.16)
and o oF
£
= — A7
9= % avier (3.17)

is a positive gradient influence factor with the dimensiofioos€e. Forg = 0 the classical
plastic flow theory is retrieved, but fgr+~ 0 the plastic multiplier is a solution of the partial
differential equation (3.15). In order to comput¢his differential equation should be solved.
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Force

Displacement ‘ w =27l |
[ 1

Figure 3.3: Typical evolution of the plastic strain distiilon when softening results in localization
[47]

As will be shown in Sect. 6.3, in the employed algorithm thed/icondition (3.12) is written
in a weak form, the plastic multiplier field is discretizeddahis additional integral equation
is solved in parallel with the equilibrium problem. The ctagpboundary value problem, its
linearization and discretization are given in Sect. 6.3atfo [12,13].
In the majority of papers on the subject the Laplacian-ddpenyield function has the
form
F=5(0o)—o,(e?) + gV?e? =0, (3.18)

whereg is an equivalent stress measure,is the yield strength (usually isotropic harden-
ing/softening is assumed) apds assumed to be constant, although it can be made dependent
for instance on the equivalent plastic strafr{46].

For instance, in the case of gradient-dependent BDP pilgdii6], assuming that only
the cohesion exhibits the gradient dependence, the yialditin takes the form:

F(o,e?, V?P) = ¢ + ap — Bc(eP, V2eP) | (3.19)

and the plastic potential function remains as given in edf.)(2

Itis emphasized that the gradient terms disappear fromahstitutive equations if a ho-
mogeneous state of strain and stress is analyzed. The gréeliss are negligible if strains
vary slowly in space (in the pre-peak regime of softeningofms), but have a significant
influence in the presence of strain localization (in the {pestk regime).

The enhancement of the classical theory has been made irtomteserve well-posedness
of the governing equations for materials which do not conwaty the material stability re-
quirement [15,37,82], i.e. when a softening relation betwstresses and strains is assumed
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h < 0 or when non-associative plastic flow is postulated to repcedexperimental response
of soil, making the tangent operat®¥*® nonsymmetric. For a softening medium the factor
g can be associated with an internal length paranieteg. in a one-dimensional analytical
solution we havey = —hl? > 0 [12]. However, also for a hardening material the Laplacian
term withg > 0 smoothes the solution [13].

It is illustrative to observe a typical evolution of the giasstrain in a one-dimensional
localization problem or along a cross-section of the I@edion band in a two-dimensional
problem. In Fig. 3.3 we can observe that the plastic zone hamsatant width, which is
estimated analytically by = 2=l [12].
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Chapter 4
Modified Cam-clay model

The considered formulation is a combination of nonlineasetity and plasticity with
a modified Cam-clay yield condition and is based on [22]. Thoalifred Cam-clay model
belongs to critical state models [20] and describes thebetaof the soil skeleton. The
constitutive equations are written in terms of the effexiress tensor. This elastic-plastic
model is capable of reproducing the essential physicalestigs of soils, including harden-
ing/softening and contraction/dilatation.

In the three-dimensional principal stress space the mdd@em-clay yield function is
represented by an ellipsoidal surface, see Fig. 4.1, fudhe In thep — ¢ plane it is an
ellipse, symmetric about the hydrostatic axis, see Fig. 4.2

The dependence of the yield condition on the third invar@rthe stress tensor (Lode
angle) is not incorporated in the description. On the otlaech the non-associativity of the
plastic flow is taken into account. The elliptic shape of tied/function can be distorted to

Figure 4.1: Ellipsoidal yield surface of the modified Caraycinodel
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approximate better the experimental results [23, 28] paltiin this is not done in the present
work.

4.1 Nonlinear elasticity

In general, the elastic behaviour of soils is nonlinear. pressure — volumetric elastic
strain relation can be written as follows:

dp = — K, d¢°, (4.1)

with tangential bulk modulus growing with increasing prags

1+e

Ki(p,e) = P, (4.2)

wheree - void ratio, s - positive parameter called swelling index.
Substituting eq. (4.2) into eq. (4.1) we obtain:

dp  1+e
p K

dee. (4.3)

After integration over a finite increment we obtain the efifex hydrostatic pressure as an
expotential function of volumetric strain increment:

1+€0

P(AB°) = pyexp {— AH‘*} . (4.4)

The subscript '0’ indicates the values at the reference s¢ag). at the beginning of a loading
step andA the difference between the value of a quantity at the curstate and at the
reference state. The secant bulk modutufer the increment can be computed from eq. (4.1)

(1 exp [ 07
_ po(l—exp|—TAp°
K= g 4.5
AN (4.5)
or, whenAg° — 0, it is given by:
_ 1+e
K=— % Do. (4.6)

The void ratioe is defined by the following relation between the pore volujgeskeleton
volumeV, and material volumé’:

~1. (4.7)
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It is assumed that the void ratio changes slowly and can batagdanly once at the end of a
loading step according to:

e(Af) = (1 + eg) exp[Af] — 1. (4.8)

The nonlinear elasticity is described in terms of voluneatomponents. Assuming isotropy
and constant Poisson’s ratiove can calculate the secant shear modais:

- 31—-2v -
G 21+v (4.9)
and the deviatoric stress is updated according to:
£€==¢6 +2GRAAC, (4.10)
whereR = diag1, 1, 1, 2, 2, 2|. Further, the tangential operator is computed as:
do dg dp
= == _ 1z 411
de de de ( )
and eventually we obtain:
do - -1 oG T T
with: G x
31—2v t , P—Do
== 4.13
ONG° 2 1+ {AQ@ AQ@Q} (4.13)
or, for Ag° — 0: B )
oG 31—-2v(1+¢
ONGe 4 1+v ( K ) bo- (4.14)

4.2 Associated plasticity

The modified Cam-clay yield function is written in terms oétbecond invariant of the
deviatoric stress tensor, the internal friction angle, ¢haent hydrostatic pressure, and a
measure for the current degree of overconsolidation, wisiehfunction of the plastic vol-
umetric strain adopted as the hardening/softening pasamé@the elliptic yield function
(Fig. 4.2) can be written as:

F= q2 + M2p(p - pc) = 07 (415)

where the equivalent deviatoric stress is defined in eq.. 1 le shape of the ellipse is
determined by a material constavitand does not change during hardening or softeniig.
is a function of friction angle and defines the inclination of the critical state line (CSL):

6 sin ¢

M=—
3 —sin ¢

(4.16)
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The yield surface intersects the hydrostatic axis at thgiroand at the pointy(, 0). The
preconsolidation pressure i.e. the largeest effectivesure the soil has ever experienced in
its history is denoted by.. The evolution of the preconsolidation presspres related to
the volumetric part of the plastic strain and given by a foaraimilar to eq. (4.4):

1
pe = Do exp(— 1 CAPP), (4.17)

— K

where\ is a hardening modulus which defines the inclination of tihgimiconsolidation line
in the (1 + e) versusdn p diagram in Fig. 4.3, ané® denotes the plastic dilatation.
Since the fractiori;—eg is positive the signs gf. andd» must be opposite. This means that
the hardening (contraction) is observed for decreasingment of plastic volumetric strain
(fr < 0 = p. > 0). The material exhibit softening (dilatation) for incr@agincrement of
plastic volumetric straindp > 0 = p, < 0). Note that the hardening rule has the character
of the mixed hardening.

Let us introduce the so-called over-consolidation rati@R)which is a relation between
the initial preconsolidation pressupg and the initial compressive pressure:

OCR = - P2 (4.18)

Po

If OCR > 1 we deal with overconsolidated soil which has a tendency titasadt (soften-
ing) behaviour. The soil for whickC' R = 1 is called normally consolidated and is prone to
contraction (hardening).

q

Figure 4.2: Material model: yield surface. CSL denotes titecal state line.

Unlike in [67], the additional pressure shift parameterhe yield condition has been
abandoned here. It was proposed in [22] to enable the stadroputations in the absence
of initial stresses and motivated by cohesion, but its platsignificance is not sufficiently
clear, since the initial state of soil always involves sorompression (positive pressure).
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1+et

ln];
Figure 4.3: Material model: elastic behaviour.
4.3 Linearization in local Cam-clay plasticity

The rate equations are integrated over a finite time stepthéimplicit backward Euler
integration scheme. At the beginning of an increment, dshby '0’, the stresses, the total
and elastic strains and hardening parameter are known.dalésgo update these quantities.
Here, the algorithm proposed in [6] is employed, cf. alsq £&74].

Assuming the usual additive decomposition of the straiesrate can write for the volu-
metric strain rate as

F
df = do°® + do® = do° — dA%— = do° — 2dAM2(p —a) (4.19)
D
and for the rate of the deviatoric strain vector as
. . OF [(dq\" .
dy =dy°+dy? =dv° + dAa— a—g = dv° + 3dARE. (4.20)
q

For a finite increment the update of the deviatoric stres&/engoy:
€ =&+ 2GR YAy — A4P). (4.21)

If we assume that eq. (4.19) is valid for finite incrementg, skbstitution ofA~? =
3AARE into eq. (4.21) leads to a convenient relation betwéesnd the trial deviatoric

stresst;,;a- .
= &ials vial = &0 + 2GR A~. 4.22
'3 1T 60A) Eriat,  Erial = &0 Y ( )

Then, the effective deviatoric stress is calculated agongrtb:

1 3 T
/€T RE il 4.2
q 1+ 6GAN 2£t7‘zal Eirial ( 3)

In order to return to the yield surface using a fully implicitegration scheme, the fol-
lowing nonlinear system of equations is defined:

r =r(s(e),e), (4.24)
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where s is a vector of the primary unknowns = [p,q, G, p., AA] andr is a vector of
residuals: = [rq, r9, r3, 74, 75]. The residuals in vectar are given by:

1+60

rL = P — Ppoexp {— A@e] , (4.25a)

1 3 _ T _

= g —— /2 2GR-'A 2GRA 4.25b
9 q 1+6GAA\/2 [EoJr GR 'y] R[Eo—l— GR 'y], ( )

. 31—2vpo(1l —exp [~ HEAG)
o= GmeTy Afe ’ (4.25¢)
T4 = Pe— Pco €XP {—1)\+ “ Mp} ) (4.25d)

— K

rs = ¢+ M?p(p—p.). (4.25€)

In the above system\#° and A6P are obtained from eq. (4.19) as functiongofz andAA.
The set of equations (4.25) is solved using the Newton-Raphteration scheme:

or] !
Si11 = 8; — |:$:| ;. (426)
The consistent tangent operator is given by:
do  0¢ op [o€ opl [or]1 7" [Or
de " oe Mo {a_ - H%} H de (4.27)

and the respective derivatives are listed in the Appendix.

4.4 Non-associated plasticity

In order to describe the soil behaviour in a more realistiy wad to model the phe-
nomenon of static liquefaction, the option of non-assoagplasticity is required. Lique-
faction is a phenomenon in which the shear resistance ovanishes due to the increase of
pore pressure which reduces the effective pressure ongalittles. The plastic potential
for non-associative plasticity is proposed in the form agals to eq. 4.15:

G =q¢*+ M°p(p — pec) (4.28)

in which M is a function of dilatation angle:
i — 6 sir?g/) ‘
3 —sinvy
Variablep,. is undefined in eq.(4.28) and has to be eliminated from the VieetoroG/op
[75]. From condition/” = 0, and denoting) = g we can express overconsolidation measure

(4.29)
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Pe as:
_ Y
Pe=1Dp [<M> +1} (4.30)
Analogically, we can write:
JEAR 4.31
pcg_p|:l<ﬁ) +:| ( )
Substituting eq. (4.31) into eq. (4.28) we can compute thve fiectoroG/op:
oG -
o pM? — pip? (4.32)
However, we cannot usgcomputed at the trial state, so knowing that
oF
we find:
oF
p’=pM* — =~ (4.34)
P
and eventually obtain:
oG . oF
—— =p(M? - M?) + — 4.35
o Pl ) + o (4.35)
where:
oF
— = M?*(2p — p. 4.36
o (2p — pe) (4.36)
The volumetric strain rate is now given by:
e e aG e 2 \ 12 2
df = db° + do® = do° — dAﬁ— =d#° — dAM=(2p — p.) — dAp(M*= — M*).  (4.37)

p

Consequently all the functions df)° anddé® have to be corrected and derivatives with

respect to the hydrostatic pressure and the rate of thagtasttiplier have to be recalcu-

lated (see Appendix).

4.5 Numerical differentiation for consistent tangent

The exact linearization requires the computation of mamyatves. This task is some-

times cumbersome and analytical derivations can invohstakes. Therefore, as was pro-
posed among others in [25, 51, 52], numerically computetakgres can either be used to

check the analytical derivations (unless they are perfdrayenbolically using for instance
the MAPLE package) or simply to calculate the consistergéanoperator altogether.
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In this work all approaches have been combined since the issoorrect computation
of derivatives within the Newton algorithm turned out to baantrivial task due to inter-
dependence of the involved variables. The numerical apmation of derivatives of func-
tion F'(x) in a linear space with versoes is performed using the finite difference central
scheme:

OF(x) F(x+ hie;) — F(x — hie;)

_ 2
S T +O(h?) (4.38)

or forward scheme
OF(x) F(x+ he)— F(x)
= : 4.
oz, D + O(hy), (4.39)
in whichz; = x - e;, h; = hoy max{1.0,|z;|} and the optimal step (perturbation) sizg,
needs to be selected via numerical experiment (some goésedire proposed in [51]). Jf

is a tensor-valued function af, the computations must be performed element by element.

In this research the forward scheme has been used due tmBaty (it requires only one
additional determination of the value ¢f with A,,; = 10~ or 10~5.

4.6 One-elementtests

In order to verify the material model implementation a sesiaiple one-element tests
are performed. They also allow one to find out the featureh@frumerical model and
understand the soil behaviour better.

For all of the calculations presented in the current sedi@endrained conditions are
considered. The calculations are carried out using 8-nptiete strain finite element (with
the discretization of displacements). The element sizénisx 1m. The following material
data are adopted: Poisson’s ratio= 0.3, swelling indexx = 0.013, initial void ratio
eo = 1.0, compression index = 0.05, and material constait/ = 1.0.

4.6.1 Biaxial compression

The biaxial compression test is performed for two cases, slghtly preconsolidated
soil (OCR=2) and strongly preconsolidated soil (OCR=10)Fig. 4.4 on the left the initial
stress generation is depicted. The initial stress vectog is [—0.2, —0.2, —0.08,0.0] MPa.
The compression process is driven under displacementatocitr Fig. 4.4 on the right. The
results of calculations are presented in Figs 4.5-4.8. Aseted, the responses obtained for
the two cases are completely different.
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When a loose sample is loaded, its volume decreases (cf.4FEyinducing material
densification and thus hardening. The initial yield surfexpands, the value of preconsoli-
dation pressure,. increases from the initial value @f0. For a dense sample the peak load
and then material softening is observed. This fact is aasetiwith the initial contraction
and subsequent dilatation of the specimen (cf. Fig 4.7)idgn48 the evolution of the yield
surface is shown. In this case the valugotlecreases and the ellipse shrinks.

The explanation of such a behaviour lies in the granulactire of the material. When
the dense sample is loaded, the pore volume becomes snidher@eginning but later the
only possibility for the material is to dilate. On the othamld, as illustrated in Fig. 2.2, the
loose configuration has to contract (densify).

In both cases the yield surface evolution continues unélgtress path intersects the
critical state line. After that, the strength and volumeldd specimen remain constant and
the plastic flow becomes purely deviatoric.

LLLETTTTTT) g = 200kN/m? i 7| v
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Figure 4.4: Biaxial compression test. Initial stress aratling - static and kinematic boundary con-
ditions (initial stress remains).

4.6.2 Triaxial compression

One-element triaxial compression test is performed fomatly consolidated soil (OCR=1)
and heavily preconsolidated soil (OCR=5). In Fig. 4.9 onldfiethe initial stress generation
is depicted. The initial stress components have vattyes- [—0.2, —0.2, —0.2,0.0] MPa.

The compression process is driven under displacementatpatr Fig. 4.9 on the right. In
Figs 4.10-4.13 the results of numerical simulations arsgmeed.

Figs 4.10-4.11 show that the normally consolidated soilil@i contraction and thus
hardening. The value gi. increases, the yield surface expands. On the contrary, when
heavily preconsolidated soil is loaded the contraction exaderial softening is observed.
The value of preconsolidation pressure decreases, sed Ei<l.13.
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Figure 4.5: Stress-strain diagram for the vertical diecind relative volume evolution for normally

consolidated soil and drained state (biaxial compression)
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Figure 4.6: Yield surface evolution for normally consotigld soil and drained state during biaxial

compression test

In both cases, the calculations are completed for the afgitate with stress rati%): M.

After this state is reached, only the deviatoric plastiaistincrements are observed, the
material strength and volume remain constant and the yigfdee evolution stops.
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Figure 4.7: Stress-strain diagram for the vertical digectnd relative volume evolution for strongly
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Figure 4.8: Yield surface evolution for strongly precomdaled soil and drained state during biaxial

compression test

4.6.3 Shear

The third of one-element tests is performed again for igf@iCR=2) and heavily (OCR=5)
preconsolidated material. The initial stress veatgr= [—0.2, —0.2, —0.08,0.0] MPa is
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Figure 4.11: Yield surface evolution for normally consalied soil and drained state during triaxial
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Figure 4.12: Stress-strain diagram for the vertical dioecand relative volume evolution for strongly
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Figure 4.13: Yield surface evolution for strongly precdigated soil and drained state during triaxial
compression test

generated as shown in Fig. 4.14 on the left. The shear prixdssen under displacement
control, cf. Fig. 4.14 on the right. In Figs 4.15-4.16 theutesfor the soil with OCR=2
are shown. As in the previous tests for the lightly overcéidated material the volume of
the sample decreases inducing hardening behaviour. Foethaly preconsolidated soil the
peak load and then material softening associated withadiidatt is encountered. The initial
yield surface is shrinking due to a decreasing value of mangdgsoftening parametey., cf.
Figs 4.17-4.18.

In both cases, the yield surface stops evolving when thesstaiio% = M is reached
and the flow becomes purely deviatoric with constant mdtstiangth and volume.

It is necessary to point out that the volume changes starhwihe process becomes
plastic. Thus, the stress path before reaching the yielciis parallel toj-axis. The
effective hydrostatic pressure does not change as lodgas A#? = 0.

4.7 Mesh-dependent localization test - biaxial compressio

In order to show the mesh-dependence of the numerical solthe biaxial compression
test is repeated for a multi-element configuration. Theaizbe specimen is now 1m 2m.
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Figure 4.14: Pure shear test. Initial stress and loadingticsand kinematic boundary conditions
(initial stress remains).
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Figure 4.15: Stress-strain diagram for the vertical dioecand relative volume evolution for normally
consolidated soil and drained state (pure shear)

The model is discretized with 10 20, 20x 40 and 40x 80 finite elements.

The following material data are adopted: Poisson’s ratie 0.2, swelling indexx =
0.013, initial void ratioe, = 1.0, hardening parameter, = 2.0 MPa, compression index
A = 0.032, material constand/ = 1.1. The initial stresses, = [—0.2, —0.2, —0.08, 0.0]
MPa are generated in a similar way as in the case of one-etassts. To load the sample
a vertical traction on the top edge is prescribed. For thal lmodel the diplacement control
cannot be used due to a snap-back response and the lineangdedgth control is employed.

To initiate a shear band formation a small area in the bottsftrhiand corner of the

sample (one element for the coarse mesh, four elements daméddium one and sixteen
for the fine one) is assigned1&% smaller initial value of the overconsolidation measure
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Figure 4.16: Yield surface evolution for normally consalied soil and drained state during pure
shear test
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Figure 4.17: Stress-strain diagram for the vertical dioecand relative volume evolution for strongly
preconsolidated soil and drained state (pure shear)

Peo = 1.8 MPa.

The sample with the area of imperfection marked is shown ¢n #i19. In Fig. 4.20
some experimental results of this test are shown.

In Figs 4.21-4.22 the results for the coarse, medium and fieghes for the local Cam-
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Figure 4.18: Yield surface evolution for strongly precdidated soil and drained state during pure
shear test
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Figure 4.19: Biaxial compression test: the sample and ifepgon location

clay model and drained conditions are shown. Since the rabteodel used in computations
is not regularized we observe mesh sensitivity of the obthidiagrams and deformation
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Figure 4.20: Biaxial compression test: experimental tesalter [64]
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Figure 4.21: Load-deformation curves for local model iki@hcompression test

patterns. In the load-deformation curve in Fig. 4.21 a slggtlap-back for the coarse mesh
and a more distinct one for the medium and fine meshes ardevisilys 4.23-4.22 show that
the width of the shear band strongly depends on the disatetiz Strains indeed localize in
the narrowest possible area determined by the element size.
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Figure 4.22: Deformed meshes for local model in biaxial coragion test

Figure 4.23: Equivalent plastic strain distribution focé model in biaxial compression test
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Chapter 5
One- and two-phase modelling

The structure of soil is very complex. It is a multiphase matevhich consists of a solid
skeleton and voids filled with fluids (usually water and aB¥nerally, voids are partly occu-
pied by water and partly by air. We call such soil partiallyusated (three-phase medium).
In the case when pores are completely filled with water we dathl fully saturated soil
(two-phase medium). The soil can also be dry if no free watgresent. Interactions of
the phases strongly affect the properties and behaviouoitsf. sin Fig. 5.1 the model of
three-phase medium is presented. The figure contains tpratation of some geotechni-
cal notions like porosity and saturation ratio.

air n(1-S)
n
fluid nsS
n—porosity
(1-n) solid
S—saturation ratic

Figure 5.1: Thee-phase material model, after [86]
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5.1 Partially saturated soil

Partially saturated soil is a three-phase material. Thélpro variables are: the solid
displacement, water pore pressure and air pore pressutiee present model it is assumed
that the gaseous phase remains at constant (atmosphessupe. This assumption allows
one to reduce the number of problem variables from three aq$wlid displacement, water
pore pressure). Such a two-phase medium, with the assumgdtiocompressibility of solid
grains, is governed by the following two equations [73, 90]:

LYo, + pg =0, (5.1)
V-u+V~vd—(nSf—|—n%Kf)éf:O, éf:—ﬁ (52)
Ipy Ky
with:
oy =0 —IILS;py, (5.3)
ﬁ = (1 - n)ps + nSfpf> (54)
vy = —kT(Sf)k:V(% +2), (5.5)
f

wherep - saturated density of the soil-fluid mixturg, - density of the solid phase, -
density of the fluid phasegg - gravitation vectoru - displacement vector; - porosity 0,

- volumetric strain of compressible fluid; - permeability matrix and-coordinate in the
direction of gravitation governing the stationary stat@ofe pressures without loading,

- bulk modulus for the fluidS; - saturation ratiok,(S;) - relative permeability coefficient.
The porosityn and void ratioe are related by:

. (&
"Tire
whereV/, - pore volume and’; - skeleton volume.
Egs (5.1) and (5.2) require appropriate boundary and Imtiaditions. The initial con-

_ Y
e—VS, (5.6)

ditions for displacements and pore pressures at timé) are:
U = Uy, (57a)
pf = pfO- (57b)

The boundary conditions to be satisfied at any timaee:

o=t on Iy, (5.8a)
vgv = q on Ty, (5.8b)
u=u on [y, (5.8¢)

pr =Dy on L), (5.8d)
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wherelI, ---T', are appropriate boundary parts, such thanh I’y = o, I UT', = T,
I',nl,=2,I'yul’, =T InFig. 5.1 the example of the boundary conditions is shown.

pr=0
q#0

Figure 5.2: Boundary conditions for two-phase medium

For S; = 1 this formulation collapses to the fully saturated soil.

5.2 Fully saturated soill

Fully saturated soil is a two-phase material. The problemabées are: the solid dis-
placement vector and the water pore pressure. Such a tvae ph@dium, with the assump-
tion of incompressibility of solid grains, is governed by tlollowing two equations [73,90]:

L'oy+ pg =0, (5.9)
VT + VT +ntl =, (5.10)
Ky
with:
oy =0 — I py, (5.11)
p=(1—=n)ps +npy, (5.12)

and Darcy'’s fluid flow velocity given by:
vy = kv (5.13)
vr

notice thaty, is the excess pore pressure.
Eq. (5.9) represents the balance of momentum and eq. (5héMalance of mass. They
require appropriate boundary and initial conditions, ¢f(®.8) and eq.(5.8).
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5.3 Drained state

If we assume long-term load together with appreciable pahitigy, fluid flows out freely
and in this case pore pressures are independent of the ahateformation (excess pore
pressure is equal to zerp; = 0). We can consider soil as a one phase medium and apply
the algorithms described in Sections 4.3 and/or 6.2.

5.4 Undrained state

Another case where we can limit our consideration to ones@haedium is the undrained
state. We deal with such a case for rapidly loaded soil arm¥oy permeability, when the
fluid motion is prevented. In this case Darcy’s velocity isi@to zero ¢, = 0) and from
the mass balance equation (5.10) we have:

0=V -u=nby, (5.14)
where the velocity of fluid volume chan@g can be written as:
b, = LI (5.15)

Assuming the linear relation between the rate of the poresore and the rate of the material
volume change we eventually obtain:

K Ki(l+e
py= —Big_ Kilte)
n e

6. (5.16)

Again we do not need to solve the coupled problem in eqs(51®)5It is enough to substi-
tute eq.(5.16) with = IT1'¢ into the rate form of eq.(5.11) and then eq. (5.11) into the ra
form of eq.(5.9) to calculate the total stress as:

K
o =0+ 1114 (5.17)
n

and to see that we only have to modify the tangent stiffnessimdd for the drained state
according to:
K
D" =D+ ~Lrm” (5.18)
n

5.5 Linearization and discretization for two-phase medium

The governing equations in the analysis of the coupled deition and fluid flow prob-
lem are derived from the mechanical equilibrium of the skellston and the mass balance of
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the pore fluid. The unknown variables in the obtained systeegoations are not only the
solid displacements and fluid pore pressure but also thtes.rd he solution of such a system
of equations requires the application of a stable and atztirae integration scheme.

5.5.1 Integration in time

The discretization in time is usually carried out using teagralized trapezoidal method
(the ©-method). With this method, all time dependent variablesestimated at some in-
termediate point with the interval depending on the chosduevof©. To assure the un-
conditional stability of the algorithm, the integrationetficient should satisfy the condition
© > 1. This method and the problems of convergence, consistertgtability of the nu-
merical algorithms (and various aspects of their analysisovered for instance in [27]. In
the discussed implementation the backward Euler schenhelwit 1 is used. The applica-
tion of this integration method gives:

UN+1 = UN + At UN + @AtAuN+17 (519)

PN+1 = DN + At py + OAtAPN 4 (5.20)

5.5.2 Two-phase (fully saturated) medium, u-p element

In Sect. 5.2 the strong form of the coupled deformation and flaw problem for a fully
saturated medium is described. For the finite element appraaak forms of momentum
and mass balance equations are required. The pore presddrie then discretized in addi-
tion to the displacements.

The weak format of the momentum balance reads:

/ v (Lo, 4+ pg) d2 =0 Yo. (5.21)
0

The weak format of the mass balance is:

/w<V~u+V-vd+np—f) d0=0 V. (5.22)
Q Kf

In egs.(5.21 - 5.22% andw are suitable weighting functions. After integration bytgand
using natural boundary conditions we obtain:

/(L’U)Tdt dQ — / vT pg dQ —/ vT tdl =0, (5.23)
Q Q I’
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/wVTudQ—/(Vw)TvddQ+/wipfdQ+/ w qdl, = 0. (5.24)
Q Q Q Kf Iy

Let us introduce the following finite element interpolatifumctions for the approximated
fields:

u=Nu, p;=N,p, v=Nwv, w=DN,w, (5.25)

wherew andp are the nodal displacement and nodal pore pressure veotspEectively.
According to the Galerkin approach, the weighting funcsiare interpolated similarly. The
used interpolation functions are quadratic for the disgiaents and linear for the pore pres-
sure. The displacements are interpolated between eigktrat excess pore pressure using
four nodes, see Fig. 5.3. With above definitions and withraggion of linear kinematic re-
latione = Lu, the discretization of strains can be expressed as:

e = Bu, (5.26)

whereB = LN. We also havd.v = Bv.
Introducing the above expressions into eq. (5.23) we oltterdiscretized equilibrium
condition:

/ v' (B0 — B'IIN,p) dQ — /
Q

2" NTpgdQ — / o' NTtdl' = 0. (5.27)
Q

Iy

It must be satisfied for any™, so we obtain for the unknown time stép-+ 1:

[ (B'ows - BTN py.i) d2 = fu (5.28)
Q

where:
Jeat = / NTpn1gdQ+ | Nty dl. (5.29)
Q

I':

Incremental-iterative algorithm is used with the follogidecomposition:
i+1 i i i+1 i i
o) = oW+ Ag@H Pl = pl) 4 A, (5.30)

where Aot and Ap(+t1) denote iterative corrections ofy,; andpy,; respectively, in
iteration(: 4 1). After linearization the relation (5.28) becomes:

/QBTD;?J(QBdQ A,a(i-l—l) _/QBTHdiQ Aﬁ(i+1),
= fe:ctN+1 - fintN+1 (531)
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where
fintngr = /Q <BT(;§\’,)+1 B'IIN pN+1) dQ. (5.32)

The discretized weak form of the mass balance equation cargressed as:
/ w" N, I B dQ) — / w"VN, vy dQ
Q Q

_ n - _ _
+ / w'N, e ,pdQ+ [ w'NSgdl'=0. (5.33)

Ly

For anyw™ # 0, and introducing Darcy’s law (5.13), we obtain for the catréme step:

/ N, II"BdQ iy + — / (VN,)"EVN,AQ py 1

/ N];f?N dQ prs1 = / (N,)" gy, dl
f Iy

After linearization we have:

/ NITI"BdQ A 71 (VN,)"kVN,dQ Apt+D
f
/ NE—N dQ Api+Y = — / (N,) G, dl — / NIITBAQ ).,
Fq
1 T (i) T . (3)
- Q(VNp) kVN,AQ pY),, — N, EN LA b, (5.34)

Applying the time integration scheme introduced in Sed&.15.we eventually obtain:

/NTHTB dQ Aal+Y
Q
n

+ (At / (VN,)"kVN, dQ + / N'—N, dQ) ApHt =
V¥ Q K

At (- / (N,) gy, Al — / N'I'B dQ 4y,
Iy Q

]_ _(7 n = (7
—— [ (VN,)'kEVN, dQ Y., — / N N, 40 pggﬂ) .
VrJa f

Let us rewrite the obtained coupled system of linearizecgqgns in a matrix form:

Kg\if)ﬂ —C
cT (ﬁ—;H + M)

Agl+D ] _ [ Sewtnt1 - fi(r?tNJrl ] (5.35)

Apt+D Fiv
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where:

K, = / B"D?") BAQ, (5.36)

Q
C = / B'TIN,dQ, (5.37)

Q
H = / (VN,)"kVIN,AQ, (5.38)

Q

M= [ N' N0 5.39
| NI N9, (5.39)

— = (z 1 _(2 = (¢
fr=At <_/r (N) @4 dl — CTU’EV)Jrl - V_fﬂpgv)ﬂ - Mpgv)H) :

® O O,

@ ﬂl? ﬂ27 p
O O

Oy,

©O—(OO—®
Figure 5.3: Two-phase u-p element

Applying the derivations shown above to equations (5.1)(&r2) we can obtain a similar
set of linear equations for partially saturated soil [73].

5.6 One-element undrained tests

Now, the simple one-element tests described in Sect. 4.6epsated for the undrained
state. The additional material data for the undrained d¢ondi is K; = 10.0 MPa. The
results for the drained and undrained analysis are compardae biaxial and triaxial com-
pression test. The triaxial compression test for the unddhstate is then repeated for non-
associative plasticity. The results for undrained sheaa&o included.

5.6.1 Drained/undrained biaxial compression

The results for the drained and undrained analyses are cethfma the biaxial compres-
sion test with slightly and heavily preconsolidated soibr Ehe drained state excess pore
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pressurepr = 0. For the undrained state the pore pressure is proportionidlet change
of solid skeleton volume and evolves according to eq. (5.76)e effective stress can be
obtained from eq. (5.17). In Fig. 5.4 and in Fig. 5.6 the ddfece between the total and
effective stress is shown. The soil strength is lower in angrd than in drained conditions
because of the generated pore pressures. The influence\@rtieal strain on the volume
changes and excess pore pressure is also presented. Faséhefdilatation due to large
preconsolidation, the volume increase induces the negatiwess pore pressure and the final
value of effective vertical stress is higher than the onéneftbtal stress. In Fig. 5.5 and in
Fig. 5.7 the stress paths and the yield surfaces evolutiothédrained and undrained anal-
ysis are compared. In both considered cases, the critat@ khe is reached earlier for the
undrained state. However, for strongly overconsolidatabtise final value ofp, is larger
for the undrained state. For a strongly overconsolidatéddtke presence of the fluid phase
generates a cohesive effect resulting in a larger residadllevel.

0.3
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02 / ]
12

Total stress

0.1 f ‘\ ]

Effective stress

Excess pore pressure [MPa]

Volume decrease

0 0.05 01 . 0.15 0.2
Vertical strain
-0.1 !

0 0.05 01 _ 0.15 0.2
Vertical strain

Relative volume x 10, Vertical stress [MPa]

Figure 5.4: Stress-strain diagram for the vertical dimctrelative volume and excess pore pressure
evolution for slightly preconsolidated soil and undrairstate (biaxial compression)

5.6.2 Drained/undrained triaxial compression

The comparison of the results obtained in a triaxial congoestest for the limiting
cases of the drained and undrained conditions is also peefibr The normally consolidated
and strongly preconsolidated soil is taken into accounki¢n 5.8 and in Fig. 5.10 the vol-
ume changes, the excess pore pressure, total and effettégs s shown in relation to the
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Figure 5.5: Yield surface evolution for slightly precoridated soil; comparison of drained and
undrained state (biaxial compression)
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Figure 5.6: Stress-strain diagram for the vertical dimctrelative volume and excess pore pressure
evolution for strongly preconsolidated soil and undraietade (biaxial compression)

vertical strain. In Fig. 5.9 and in Fig. 5.11 the stress patid yield surfaces evolution are
presented. Similar observations can be made to those peeserthe previous section can
be made. The stress path reaches the critical state eartiasée of the undrained conditions,
both for contractant and dilatant soil. Analysing the strpaths for the normally consol-

idated soil, we can notice that it turns left during the ptagrocess which results in the

'softening’ in the diagram of the effective stress. Howegamnerally contraction and hard-
ening is observed. On the contrary, in the case of precatsteli material, when the yield

surface is reached, the stress path turns right. The eféestiess diagram does not exhibit
the softening behaviour of the soil.
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Figure 5.7: Yield surface evolution for strongly precomsated soil; comparison of drained and

undrained state ( biaxial compression)
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Figure 5.8: Stress-strain diagram for the vertical dimgttrelative volume and excess pore pressure
evolution for normally consolidated soil and undrainedes{ériaxial compression)

5.6.3 Undrained triaxial compression - non-associated psicity

One-element triaxial-compression test is now reconsdlfaea one-phase medium un-
der undrained conditions and different values of ratié)/. The presented test was de-
scribed in [72]. The following material data are adopted:= 0.3, K; = 1.0e10 kPa
(almost incompressible fluid), = 0.01, ¢, = 1.0, p. = 200 kPa,A = 0.05, M = 1.2 and
M =1.2:1.0;0.8;0.6.

The initial stresses, = [—200, —200, —200, 0.0] kPa is generated. The compression pro-
cess is driven under displacement control. The verticgldcement of the nodes on the top
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Figure 5.10: Stress-strain diagram for the vertical dioggtrelative volume and excess pore pressure
evolution for strongly preconsolidated soil and undraistade (triaxial compression)

edge is prescribed. In Fig. 5.12 the results of calculatavespresented. The inclination of
the CSL is now defined by/ and point §,¢) in the critical state is not the top point’ of
the yield surface (foi/ # M). For increasing non-associativity the strength of materi
decreases.

5.6.4 Drained/undrained shear

At last the results for undrained shear test are includediirithe behaviour of slightly
and heavily preconsolidated soil under drained and unéddagonditions are compared. In
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Figure 5.12: Finall yield surfaces and loading paths fér = 1.2 and various values ol for
undrained triaxial compression test

Fig. 5.13 and in Fig. 5.15 the volume changes, the excesspressure, and shear stress
is shown in relation to the vertical strain. Note that theaststress is not affected by pore
pressure evolution so there is no difference between tla aoid effective (shear) stress.
In Fig. 5.14 and in Fig. 5.16 the stress paths and yield sesfavolution are presented.

Like in the previously presented tests, the slightly preodidated soil contracts and heavily
preconsolidated one dilates. The stress path reachesiticalstate earlier in case of the

undrained conditions, both for contractant and dilataiit so
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5.7 Simple two-phase tests

The following simple tests are performed in order to verifg humerical implementation
of the finite element described in Sect. 5.5.2. The calcutatare repeated after [73].
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5.7.1 Uniaxial consolidation - one element test

This example shows the results for a simple one element teshws used to verify
the performance of the implemented numerical algorithntliertwo-phase medium. The
boundary conditions and loading function are depicted g1 5i17. The specimen is loaded
by vertical traction along the upper edge. The conditjoa 0 means that the boundary is
impermeable. Water can flow out of the sample only througip#reof the boundary where
pr =0.

The computations are carried out using the two-phase liekstic and elasto-plastic



64 Chapter 5

Cam-clay model for a fully saturated medium. The followingterial data are adopted:
E = 1.0e04 kPa,v = 0.3, vy = 10 kN/m?, K; = 1.0¢08 kPa,k = 1.0 e-03 m/day for the
elastic model and additionally = 0.013, eg = 1.0, p. = 0.3 kPa,A = 0.032, M = 1.1,

K; = 1.0e05 kPa,k = 1.0 m/day for the Cam-clay model.
In Fig. 5.18 the dependence of pore presgyren time is shown. As expected, the pore
pressure increases at the beginning of the loading proeétgsdrowing loading) and then,

because the pore fluid flows out, it decreases to zero.
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Figure 5.17: Consolidation test: geometry, static andrkiagc boundary conditions

0.1

0.1

008 |- *\ 1 008 |-
i “‘ \

| |
0.06 | | 0.06 |- | \
|

pore pressure

0.04

pore pressure
—k-

0.04 |

|
|
|
|
|
|
|
|
J“
0.02 H 1 0.02 | | 1
‘ |
| |
| |
| | —
" " K 0 ! L 7""%*%7 S ‘v u‘/
10 15

0 e
5 10 15
time

*

F—

time

Figure 5.18: Dependence of pore pressure on time for lineatigty (left) and for Cam-clay model

(right)



One- and two-phase modelling 65

5.7.2 Uniaxial consolidation - soil column

A similar problem as the previous one is analyzed for a nelément configuration. The
specimen of size 1nx 10m is discretized with0 elements. The boundary conditions and
loading function are similar as for the one element test aaglown in Fig. 5.19.

The computations are performed using the linear elasticetagto-plastic Cam-clay model
for the fully saturated two-phase medium. The following enetl data are adopted for linear
elastic model:E = 1.0e04 kPa,v = 0.3, 7y = 10 KN/m?, K; = 1.0¢08 kPa,k = 1.0 e-02
m/day, and for Cam-clay model = 0.013, ¢, = 1.0, p. = 0.3kPa,\ = 0.032, M = 1.1,
K; = 1.0e05 kPa,k = 1.0 m/day.

In Fig. 5.20 the dependence of the pore pressure on the tichg @ordinate (height) is
shown. In Fig. 5.21 and Fig. 5.22 the distribution of the pan@ssure along the vertical axis
for some time steps is presented, cf. [86].
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Figure 5.19: Consolidation test: geometry, static andrkiaiic boundary conditions

5.8 Localization in biaxial compression in two-phase mediuon

One of the major goals of the thesis is to examine the influefidbe fluid phase on
instabilities in the Cam-clay soil model. As mentioned ia thtroduction, it is claimed that
the fluid phase can introduce some regularization into timeanical model. Therefore, the
biaxial compression test presented in Sect. 4.7 is now tegdar a two-phase medium. For



66 Chapter 5

t=1 &—a t=3 &—=a
0.1 =3 oo—— g 01 | t=7 o > ,
4 t=11 c——o ) t=11 oo
t=21 =—+o t=17 ==
g t=41 *—* g t=59 *——*
& &
4 4
o o
o o
S 005 { 8 o005t ]
p—o—a—s—a o
0 5 = % 0 * K = % - PR S
0 2 2 6 8 10 0 2 2 6 8 10
y[m] y[m]
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Figure 5.21: Pore pressure distribution - linear elasticit
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Figure 5.22: Pore pressure distribution - Cam-clay model

the fluid phase the additional material data are takgn= 10 kN/m?, K; = 1.0e05 kPa,
k = 1.0 e-06 m/day. At first, the boundary conditions are such thad tannot flow out of
the sample (homogeneous natural boundary condition). fitialiexcess pore pressure is
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Figure 5.23: Load-deformation curves for= 1.0 e-06 m/day (biaxial compression test for local
Cam-clay model)

equal to zero.

As can be seen in Figs 5.23-5.25 the numerical results armesi-independent in this
case. For the fine mesh the calculations were not completedodeconvergence problems.
Note that the contour plots for the second invariant of th@stensor would look similarly
to those of the vertical strain presented in Fig. 5.24. Hexehe pore pressure distribution
shown in Fig. 5.25 does not exhibit localization in the naet zone, and in this respect
it is similar for all the three meshes. At the same time, in Big@3 a distinct snap-back is
visible in the load-deformation curve (sometimes even tmapsbacks are simulated). This
fact and the problems with convergence during calculatguggest that in comparison to
the one-phase medium the two phase material is less stable.

In order to avoid the numerical difficulties and snap-batiesdalculations are then re-
peated forp,, = 1.0 MPa (., = 0.9 MPa for the imperfect region in the bottom left-
hand corner of the sample). The results for this data sett{formeshes) are presented
in Figs 5.26-5.27. The diagrams in Fig. 5.26 are differemtcmarse and fine meshes, the
vertical strain distribution (Fig. 5.27 left) shows the ahbands dependent on the adopted
discretization, but the pore pressure distribution in Big7 (right) seems to be nearly mesh-
independent. The range of values in the contour plots argiwen but can be found in [68].
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Figure 5.24: Vertical strain distribution fdr = 1.0 e-06 m/day (biaxial compression test for local
Cam-clay model)

T

Figure 5.25: Pore pressure distribution for= 1.0 e-06 m/day (biaxial compression test for local
Cam-clay model)
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Figure 5.26: Load-deformation curves for= 1.0 e-06 m/day ang., = 1.0MPa (biaxial compres-
sion test for local Cam-clay model)

Figure 5.27: Vertical strain (left) and pore pressure @igfistribution fork = 1.0 e-06 m/day and
peo = 1.0MPa (biaxial compression test for local Cam-clay model)
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Figure 5.28: Load-deformation curves for different valoépermeability coefficient and permeable
upper edge (local Cam-clay model)

5.9 Influence of permeability coefficient in biaxial compres
sion

In order to examine the role of permeability coefficiémh the regularization effect of the
fluid, the calculations for various values/o{k = 1.0 e-04 m/dayk = 1.0 e-05 m/dayk =
1.0 e-06 m/dayk = 1.0 e-10 m/day) and for a permeable top edge have been perfoirhed.
obtained contour plots for the vertical strain turned ouieanesh-dependent. Irrespectively
of the value oft the strains localize in the narrowest possible area detearby the element
size. The selected results (for one mesh only) are presentéds 5.28-5.30. On the other
hand, the value of the permeability coefficient influences divection of the localization
band (cf. Fig. 5.29) and the critical load level for which thstability occurs (cf. Fig. 5.28).
Moreover, for the case of permeable top edge, the pore peedmtribution depends strongly
on the value of permeability coefficient, cf. Fig. 5.30. Fangle permeability no localized
pore pressure pattern is found.
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Figure 5.29: Vertical strain distribution for differentluas of permeability coefficien = 1.0 e-04
m/day, £k = 1.0 e-05 m/day,k = 1.0 e-06 m/day,k = 1.0 e-10 m/day, from left to right (local
Cam-clay model)

Figure 5.30: Pore pressure distribution for different ealof permeability coefficient: = 1.0 e-04
m/day, £k = 1.0 e-05 m/day,k = 1.0 e-06 m/day,k = 1.0 e-10 m/day, from left to right (local
Cam-clay model)



72

Chapter 5




Chapter 6
Regularization

The dilatant (softening) and possibly also non-asso@atesponse of the Cam-clay
model implies the necessity of regularization in order toidvhe loss of ellipticity of the
governing equations and to stabilize the numerical respoAfthough alternative regular-
ization methods could prove equally effective or simpleteirms of implementation, cf. [8],
a gradient enhancement of the model is employed in thisghesi

6.1 Gradient enhancement of the Cam-clay yield function

In general, higher-order spatial gradients of differentnponents of the constitutive
model can be incorporated. If isotropy is assumed, the Ilcégoias an optimal regularizing
operator. The elastic part of a model can be made gradigrardgient by adding (or sub-
tracting) Laplacians of elastic strain components, scaiéida square of a length parameter,
to (or from) the strains themselves [1, 2]. Otherwise, asufised in the previous section, a
plasticity model can include the Laplacian of some equivigbtastic strain measure in the
yield condition [12, 39, 56, 69] or evolution equations foetplastic variables [56, 78]. Yet
another gradient-enhancement is achieved using additweeaging equations for suitable
equivalent quantities or all (inelastic) strain tensomiponents [14,18,19, 49, 50].

Here, it is proposed to make the Cam-clay yield function depat on the Laplacian of
the hardening/softening parameg&ror of the plastic multiplie\. In result, the yield con-
dition F = 0 in eq. (4.15) becomes a differential equation which musuoibeesl numerically
in addition to the equilibrium equations, cf. [12, 13]. Thssachieved by taking the weak
form of the yield function (which means the yield conditi@not imposed pointwise, but
in an integral sense, as was first proposed in [55]), andetigorg the plastic multiplier as

73
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a primary unknown next to displacements. This means thdiahkward Euler algorithm at
the integration point level, described in Sect. 6.1, is @ygdl for the first four residuals, in
which AA is now a parameter computed from the nodal values of theatized field. As
has been explained, the fifth equati{ern = 0) is solved at the global level, and the consistent
tangent operator derived in eq. (4.27) must be modified daugly.

It remains to specify the form of gradient-enhancement ef@am-clay yield function.
In principle, it is possible to assume that = p.(6°, V?6P) in eq. (4.15) or introduce a
gradient term directly in the yield function:

F=q+Mpp—p(0F) + gV*(6)], (6.1)

whereg > 0 is a gradient scaling factor proportional to a square of &rimal length scale
l. There are however two difficulties: &) is not a monotonically growing parameter, so for
dilatation the influence of the gradient term will be stailg, but forAg° < 0 the gradient
term should rather be switched off; b) since according to(4€d.9) the volumetric plastic
strain increment depends not only &n but also orp andp,,, the gradient of a product of
three functions would have to be computed.

Therefore, itis proposed to incorporate the Laplacianefilastic multiplier itself, either
in the form:

F =¢*+ M?p [p—pe(6”) + gV*(M)], (6.2)

or by writing:

F=q+ M?p[p—pe(6°)), (6.3)
wherefP is a function of the averaged plastic multiplierand the latter quantity is defined
as:

A=A+ PV(A). (6.4)
The former option results in a stabilizing gradient effenttbe yield function evolution
irrespective of the sign of?, the latter results in a slower growth of the quantity due to
averaging, which is stabilizing only for dilatation.
Finally, the format in eq. (6.3) opens a possibility of usamgadditional averaging equa-
tion for the plastic multiplier, cf. [19], instead of the giiant-dependent yield condition. The
averaging equation has the form:

A —IPV3(A) = A, (6.5)
and its weak form can be discretized instead of the weak fdrthe yield condition in

order to computé\. This however might require a modification of the evolutiaw ffor the
preconsolidation measure.
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6.2 Linearization and discretization in gradient plasticity

We start from the analysis of a single-phase medium. Theefglgment implementa-
tion is based on the following two weak-form equations gougg respectively the static
equilibrium and the plastic consistency:

/(Lv)Ta'dV:/vang+/’uTidS, (6.6a)
Q Q r

/ v, F(o, A, V?A)dV =0, (6.6b)
Q

wherev andwv, are suitable weighting functions. For a simple yield fuoctie.g. for
Burzynski-Drucker-Prager (BDP) plasticity theory, the plastialtiplier A is proportional
to the plastic strain measus®. Equation (6.6b) requires the discretization of thield.

Equations (6.6) are written for iteratiant- 1 of the incremental-iterative algorithm and
the following decomposition is used:

ot =@ do, ATV = AD 1 dA. (6.7)

In eq. (6.7)do denotes the corrective increments in iteration- 1), which in eq. (5.30)
where denoted byAc(t1). The yield functionF is developed in a truncated Taylor series
around(a™, A®) to obtain the following incremental equations:

/Q (Lv)'do dV = fer — fime (6.8a)
/Q v, [nTdo — hdA + gV*(dA)]dV =— /Q v, F(e@,AD V2AD) dV, (6.8b)
with
Jeat = /Fva ds + /Q vl pg dV, (6.9a)
fint = /Q (Lv) o dV. (6.9b)

It is important to notice that, if the yield condition (3.1B) used in the classical return
mapping algorithm to distinguish elastic and plastic sta#!-continuous interpolation of

A is unavoidable, otherwis&?A loses meaning [13, 46]. Therefore, the Laplacian term is
not removed from the left-hand side of eq. (6.8b) using Gsefemmula, although this can
be done if a homogeneous non-standard boundary cond¥idn)*v = 0 is assumedy is

the vector normal to the surface of the plastic part of theyhod
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Adopting the standard additive decomposition of straia éanto an elastic and a plastic
part, the stress rate is written as:

o = D(é — Am). (6.10)
Substituting the incremental form of eq. (6.10) into eq8&¥and (6.8b) we obtain:

/ (Lv)'D°dedV — / (Lv)"D*mY AA AV = font — fint, (6.11a)
Q Q

/ v, " DdedV — / v, [(BY + ™D D*m @) dA — gV*(dA)]dV =
Q Q

=— / v, F(a®W A V2AD) qV, (6.11b)
Q

Next, we discretize eqs (6.11a) and (6.11b). The displan&swaeand the plastic multi-
plier A are interpolated as follows:

u=Nu, A=h"A, (6.12)

where N and h contain interpolation polynomials for the displacememid #he plastic
multiplier, respectively, ang andA are arrays which contain their respective discrete nodal
values. Consequently, we obtain for the strai@md the Laplacian of the plastic multiplier:

e=Bu, V?’A=sTA, (6.13)

whereB = LN ands = V2h. The respective weighting functions are interpolated sim-
ilarly according to the Galerkin approach. The used intipan functions are quadratic
for the displacements and cubic (Hermitean) for the plastitiplier. Invoking the usual
argument that the weighting functions are arbitrary, tlsemdite counterpart of egs (6.11) is
the following set of linear algebraic equations:

Kuu Ku du ext ~ Jin
Mo | T T (6.14)
KAu KAA dA .fA
where the respective submatrices are:
K, = / B'D°BdV, (6.15a)
Q
K= — / BTD*mYnT dv, (6.15b)
Q
Ky, =— / hnTO DB AV, (6.15¢)
Q
Kap = / (R + nTO D mDYRRT — ghs™]dV, (6.15d)
Q

fr= / hF (oW AD V2AD) V. (6.15¢e)
Q
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and f_,, and f,,, are the external and internal force vectors, respectivety. an elastic
process we sat = m = 0, so the off-diagonal matrices are zero, but makix, is non-
singular, so thal A = 0 is obtained. Further details of finite element implementatian be
found in [13].

One further remark on linearization is however made. In tteelignt-dependent BDP
plasticity one obtains the consistent tangent operatotifigrentiating the incremental con-
stitutive relation (6.10):

Ao = D°(Ae — AAm) (6.16)

to obtain:
dm
do = D° <de —dAm — AAEdU) : (6.17)

Bringing the last term to the left-hand side we realize tloatdonsistent linearizatio®®
must be substituted in egs. 6.14 by the following operator:

-1
Deons — (I n AADei—m) D", (6.18)
(oa

6.3 Gradient-dependent Cam-clay plasticity; uA element

In the numerical implementation we focus on the gradiempedeent Cam-clay yield
function proposed in eq. (6.2), written in terms of the ®r@sariants and the plastic multi-
plier:

F(o, A, V*A) = ¢* + M?p[p — p.(A0P) + gV3A]. (6.19)

The gradient coefficient g scales the nonlocality effectnodides stabilization (hardening)
in the model. Its unit results from the fact that the unit of theld function is fN?/m?],
hence the unit of the plastic multiplier isif /kN] and of its Laplacian{/kN]. Unlike the
standard gradient plasticity, the Laplacian term is herbtexhally scaled by pressure p.
The preconsolidation parameterevolves according to eq. (4.17):

1+ €0
Pe = Deo €XP(— 3

AGP). (6.20)

— KR
The increment of plastic dilatation according to eq. (4i$®omputed as:

do® = —dAM?*(2p — p. + gV?A). (6.21)

We will now derive the specific form of the two weak-form eqaas of static equilibrium
and plastic consistency (6.6), written for iteration 1. With F(+) = F() 4 dF and the
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decompositions in eq. (6.7), they have the form:

/ (Lv) Ao AV = fupr — fine (6.22a)
Q

OF OF oF _, B
—/va {%da—i- a—AdA+ (,NQAV (dA)| dV = fu (6.22b)

where the chain rule has been used to comgttef... and f;,; are defined in egs (6.9) and
fa is defined as:

fa= / vp F (0, A9 V2AD) aV. (6.23)
Q

As in the previous section, the algorithm involves the dgiszation of the plastic multi-
plier field. It is computed from nodal values and plays the somilar to strains: the return
mapping algorithm is now driven by the increments of straid plastic multiplier. In the
internal iterative loop performed at the integration pasmtompute the stress satisfying the
yield condition bothe and A (or their total incrementa\e and AA) are constant. However,
both these fields change in the global equilibrium iteratj@o that the linearization of stress

IS now computed as:

do do
do = Ede + Jdl\. (6.24)

We now have to determine the stress increnaentind the derivatives in eq. (6.22b).
In the algorithm for the gradient-dependent Cam-clay pagtwe follow the concept of
consistent linearization used for the local model. Heneeywite:

o = o (s(Ae, AN), Ae, AN), (6.25)

where vectors = [p, ¢, G,p.] now contains only four primary unknowns. The Newton
algorithm similar to the one described in Sect. 6.1 is usambtopute these unknowns, only
now we deal with residuals = [ry, r9, r3, 4], and the Jacobian matrik = g—'g has the size
4x 4. The respective derivatives in eq. (6.24) are computedrdogy to eq. (4.27):

do _dods do 06 _pop (06 pop) o (or
de_83d6+8e_8e H@e (85 Has)J Oe (6.26)
and the following one:

do _dods  do 06 _Lop (96 pon\ (o

dA ~osdh T or _or oA (as Has)J an ) (6.27)

The partial derivatives are given in the Appendix, in patiac from the Jacobian for the local
model one can compu% =Ji5, 1=1...4.
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Next, the increment of stresir from eq. (6.24) is substituted into egs (6.22):

do rdo
T_ —_— .
/Q (L)' ——dedV + /Q (Lv)" AN AV = fet = fin (6.28a)
(9F do OFdo OF
— [ vy dedV - / (a dA aA)dAdV—
—/ OF G 2(dA)dV = f (6.28b)
o P OVIA R '
The remaining derivatives are computed as follows:
OF OF 0q 0¢  OF Op T 1., —
— =———4+ ——=3§{ RQ — -M~"(2p — p. MIT™, 6.29
90 070600 opoo o BR-3Mr—petgViA) (6.29)
OF ., Op.oo°
A = M=p 69P TR (6.30)
apc _ P agp 2 2
ogp — —PeoBexp(=BAGP), == —M"(2p — pc + gV7A), (6.31)
OF )
TUIN M*gp. (6.32)

Finally, as in eqs (6.12) we discretize eqs (6.11a) and [§.idl.obtain the set of linear
algebraic equations similar to (6.14) with the followindid&ions of the submatrices (the
iteration index has been skipped):

K., / BT—B dv, (6.33a)
K\ =— / BT—hT dv, (6.33b)
F
K, = / ha—d—aB v, (6.33c)
Oo de
OF do OF OF
Ky = — hhT + ——hp'| d 6.33d
A / Kao— an aA) avea | 4V (6.330)
Fa= / hF(o, A, VZA)dV. (6.33e)
Q

In Fig. 6.1 the nodes are marked in which the appropriate fgeidterpolated (eight nodes
for the displacements and four for the plastic multiplier).

6.4 Discretization-independent localization in biaxial om-
pression test

The results presented in Sect. 4.7 show the mesh-sensitftie numerical simulations
for the biaxial compression test. In order to avoid this thedified Cam-clay model has
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O
O
O,

Figure 6.1: Regularized finite elementiu-

been regularized in the way described in Sect. 6.3, i.e. thdignt termgV2A has been
included in the plasticity function. The following calctilans are repeated with the gradient-
dependent Cam-clay model to study the effectiveness ohtineduced regularization. The
following additional material model parameter has beerpseth g = 0.05 KN/m?.

The diagrams in Fig 6.2 as well as the localization pattehnasva in Figs 6.3-6.4 prove
the mesh-independence of numerical results for the gradependent Cam-clay model.
In fact, unlike in the gradient plasticity with a standardg(eHuber-Mises) yield function
and linear softening [13], in Cam-clay gradient plastitiig shear band width grows since
softening is nonlinear. The shear band patterns in Fig6&4re plotted for the vertical
displacement of the upper edge equal to 0.016m. The distibaf volume changes (plas-
tic dilatancy increments) exhibits at first similar sheands as the profiles of the second
invariant of the deviatoric strain tensor, but as the aiti&tate is approached, the material
volume ceases to change.

6.5 Influence of gradient scaling factory

The following example allows us to investigate the influeofitine gradient scaling factor
on the obtained results. Two values of gradient congtané considered; = 0.025 kN/m?
andg = 0.05 kNe/m?. In Fig. 6.5 the load-deformation curves are shown. It candi&ed
that the solution for @ = 0.05 kNe/m? is a bit more ductile. In Figs 6.6- 6.7 the distribution
of the equivalent plastic strain at various stages of nurakdalculations is presented for
two values ofy. We can observe that the shear bands evolve during the ppdisess. The
width of the localization zone is different for the two cathsied cases and determined by the
value ofg. It can easily be noticed that the shear band width is growiitly the increasing
gradient scaling factor.
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Figure 6.2: Load-deformation curves (gradient Cam-clayleto
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Figure 6.3: Deformed meshes (gradient Cam-Clay model)
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Figure 6.4: Distribution of invarianf, of strain tensor (gradient Cam-Clay model)
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Figure 6.5: Load-deformation curves for different valuégradient scaling factoy = 0.025 kN'/m?
andg = 0.05 kN*/m?
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Figure 6.6: Equivalent plastic strain distribution for dient scaling factoy = 0.025 kN*/m?/

Figure 6.7: Equivalent plastic strain distribution for dient scaling factoy = 0.05 kNe/m?
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6.6 Influence of imperfections

Unlike in dynamics (cf. [21]), in static simulations of Idization phenomena the imper-
fections merely trigger the process and set the initialtpwsof deformation bands. Here,
the analysis is limited to the influence of imperfection libma and its intensity on the re-
sults. In Fig. 6.8 the locations of the imperfection areastu@wvn. In the presented tests, four
or eight elements are assigned®: or a1% smaller value of the initial overconsolidation
measure. Now, only one discretization with the medium mesionsidered.

In Figs 6.9- 6.13 the contour plots with the distributionsimfariant .J, of the strain
tensor are shown for different loading process stages! tasés the shear band evolution is
observed. First a crossed pattern of bands is formed, thewfihem remains active, since
this is energetically preferable. Finally, as the critistdte is approached, the band width
increases. Unlike in gradient plasticity with a constaméiinal length parameter, standard
(e.g. HMH) yield function and linear softening, in Cam-clgsadient plasticity the shear
band width grows since softening is nonlinear. A uniaxigbragimation of the relation
between the gradient scaling coefficigrand the internal length scalés g = —hi?, where
h is the softening modulus, and in this case the derivativg. afith respect toAA. The
width of the shear band is governedlgnd for dilatant flow the derivative decreases, hence
[ apparently grows. To accommodate this the gradient faciwogjd have to be made a
(decreasing) function of a plastic strain measure (whichld/@hysically mean a reduction
of nonlocality as the critical state is approached).

In the presented simulations the smaller value of the imtiaconsolidation pressure is
assigned in a small area of the specimen to initiate the sseat formation. However, the
initial void ratio can also be used in order to start the lzedion process.
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Figure 6.9: Shear band evolution for 10% imperfection ledah the middle of the sample
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Figure 6.10: Shear band evolution for 10% imperfection tedan the middle of the left edge of the
sample
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Figure 6.11: Shear band evolution for 1% imperfection ledah the middle of the left edge of the
sample

Figure 6.12: Shear band evolution for 10% eight-elementenigation located in the middle of the
left edge of the sample
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AN

Figure 6.13: Shear band evolution for two 10% imperfectioesated on the left edge of the sample
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Gradient-dependent Cam-clay model for
two-phase medium

The results of numerical simulations presented in Sectdé .80t show a significant sta-
bilizing effect of the fluid phase in strain localization ptems. Therefore, a regularization
of the softening constitutive model for soil seems to be sgary within a two-phase descrip-
tion. The gradient regularization of the modified Cam-claydel, described in Sect. 6.3, is
now applied to two-phase medium.

7.1 Discretization of three-field formulation; u-p-A element

To discretize the problem of pore pressure evolution coetbwith the gradient-enhanced
plasticity modelling of the solid skeleton, the weak fornfsequations (5.9), (5.10) and
(6.19) are required.

The weak form of the momentum balance equation reads:

/QUT(VO't +pg) dQ =0 (7.1)
The weak form of the plastic consistency condition is writées:
/va F(o, A, V*A)dQ =0 (7.2)
The weak form of the mass balance equation is:
/Qw(V-u—i-V-vdenf(—ff)dQ:O (7.3)

In egs (7.1-7.3p, v, andw are suitable weighting functions.

89
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After the integration of momentum and mass balance equabgmarts we obtain:

/(Lv)Tat dQ — / v'pg dQ —/ vt tdl' =0, (7.4)
Q Q e

/wVTudQ—/(Vw)TvddQ+/wﬂpfdQ+/ w qdl, = 0. (7.5)
Q Q Q Kf Iy

In eqs (7.4-7.5) natural boundary conditions have beemnjporated.

We introduce the following finite element discretizationdesplacements, plastic mul-
tiplier A and excess pore pressure

u=Nu, A=h"A, p;=N,p, (7.6)

where N, h and N, contain the respective interpolation polynomials andA andp are
vectors with the discrete nodal values. The weighting fiomst are interpolated similarly
according to the Galerkin approach. The used interpoldtiantions are quadratic for the
displacements, linear for the pore pressure and cubic (k) for the plastic multiplier.
In Fig. 7.1 it is shown at which nodes which quantities areatoeégrees of freedom.

Due to the assumption of linear kinematic relations we ctmoduce matrixB = L.
With vectors = V2h the discretization of strains and of the Laplacian of ptastultiplier
can be expressed as in Sect. 6.2:

e =Bu, V*A=s"A. (7.7)

After linearization of the governing equations and aftendiintegration of eqs (7.1) and
(7.5), (the implicit backward Euler integration schemessdias in Sect. 5.5.2) introducing
the employed interpolation of the problem variables andkmg the usual argument that
the weighting functions are arbitrary, the following coeghlsystem of linearized equations
in a matrix form is obtained:

Kuu KuA _Kup Au fe:ct - fint
Ky Ki O AA | = i . (7.8)
K, 0 K, Ap fr
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The definitions of the submatrices are as follows:
K., / BT BdQ (7.9a)
Ko = /BT—thQ (7.9b)
Ky, = ha—Fd—aBdQ (7.9¢)
Jo de
B OFdo  OF T, oF T
K, = /BTHdiQ, (7.9e)
K, = gH+M (7.9f)
Vf
H = /(VNP)Tk:VNp dq, (7.99)
Q
_ T "
M = /Np KfN dQ, (7.9h)
fo = /NTﬁng+/ NTtdr, (7.9i)
Q Iy
fi = /(BTO'—BTpr> dQ, (7.9j)
Q
fa = /hF(a’,A,VQA)dQ, (7.9K)
Q
fr = At (-/ Nqur—Kgp'h—inh—Mph>. (7.91)
T, Vr
@O—O—@
@ uy, U2, A7 A:L"v Aya AZL"Z/? p
O O
O Uy, Uz
©O—O—@

Figure 7.1: Three-field u-px finite element
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Figure 7.2: Load-deformation curves (regularized Cany-otadel for two-phase medium)

7.2 Localization in biaxial compression for regularized two-

phase medium

Again, the biaxial compression test is computed for twosghaedium in which the
behaviour of the solid skeleton is described using regzédrigradient-dependent Cam-clay
model withp., = 2.0 MPa,g = 0.05 kN//m? andk = 1.0 e-06 m/day. The results for this
case are shown in Figs 7.2-7.4. In Fig. 7.2 the results focta@se mesh are not accurate
enough due to standard discretization error. However, thgrams for the medium and
fine mesh almost coincide. The strain and pore pressurebditms in Figs 7.3-7.4 are
also mesh independent. This proves that the pathologisatatization sensitivity has been
removed.
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Figure 7.4: Pore pressure distribution (regularized Céay-+model for two-phase medium)
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Chapter 8
Selected applications

The preliminary results of the steep slope stability probsee described in this section.
However, it should be emphasized that the application ofrtiemented material models
and finite elements to the numerical simulations of geoteehbenchmarks which involve
instabilities and localization is not the main goal of thisgis.

8.1 Steep slope stability - two-phase medium

This numerical test examines a square specimen of soil tbhge rigid footing. The
side length of the configuration is 10m, the rigid footingesds over 7m along the left part
of the top surface. The drainage of the pore flyig & 0) is only allowed through the
remaining part of the upper surface of the specimen. The gagmoading and boundary
conditions for the displacements and pore pressure arershmokig. 8.1. Boundary condi-
tions for the plastic multiplier field constrain the normabamixed derivatives\,,, andA .,
to zero on all the edges. The loading process is performedrudisiplacement control. The
vertical displacement of the rigid footing (upper nodesha sample) is prescribed to load
the sample. In fact, since we assume that the footing is tafinstiff and cannot rotate (but
can slide along the top edge), the displacements of the raddbe sample are prescribed.
Three discretizations with 18 10, 20x 20 and 40x 40 finite elements are considered.

The following material data are adopted= 0.2, k = 0.013, eg = 1.0, p. = 640.0 kPa,
A =0.032, M = 1.1, v; = 10 KN/m?, K; = 3.0¢03 kPa,k = 1.0 x 10~* m/day,g = 1.0e05
KNZ/m?2.
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10m  g=0 u=0 g=0

v=0 g=0
10m

Figure 8.1: Steep slope stability problem: geometry, mdtaind essential boundary conditions

8.1.1 Steep slope stability (local Cam-clay model)

For a start, the calculations are performed for a two-phasdivm and local version
of the modified Cam-clay model (= 0). In Figs 8.2-8.5 the results for three meshes are
presented. The deformed meshes, strain and pore presstnibution are plotted at the
end of calculations. The lack of the regularization resultthe mesh-dependence of the
numerical solution. As shown in Figs 8.3 - 8.4 for each messirss localize in the narrowest
possible area. On the other hand, the pore pressure digiribudo not exhibit localization.

0,8 \
07k 10x10 mesh |
0,6— _

— 0157 —

= 20x20 mesh

° 0,41 _

§ | 40x40 mesh

(@)

LL 0,3 |
0,2- _
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| |
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Figure 8.2: Load-deformation curves for local Cam-clay eldd = 0)
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Figure 8.4: Vertical strain distribution for local model
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8.1.2 Steep slope stability - regularized two-phase medium

The following results have been obtained for the three-fedament. As can be seen
in Fig. 8.6 the results for the coarse mesh are not accurategbndue to a standard dis-
cretization error. However, the diagrams for the mediumfar&mesh almost coincide. In
Fig. 8.7 the deformed meshes are shown. Fig. 8.8 and Fig.r8sept the strain and pore
pressure distribution, respectively. All results are f@dtat the end of calculations. The
width of the shear band (cf. Fig. 8.7 and Fig. 8.8) is simitardach of the three considered
discretizations.
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Figure 8.6: Load-deformation curves for gradient-enhdri¢am-clay mode = 1.0e05 kN?/m?
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Figure 8.7: Deformed meshes for gradient-enhanced Caymutael
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Figure 8.8: Vertical strain distribution for gradient-emited Cam-clay model
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Chapter 9
Conclusions

In this thesis the numerical analysis of strain and porespmeslocalization in one- and
two-phase geomaterials has been performed. The modifiedodzanmodel and its exten-
sions have been used to describe the behaviour of soil ekelé&irst, the response of the
model for the limiting cases of undrained soil (approachimgpmpressible material) and
drained soil has been assessed. Then, the general case piase fully saturated medium
within a consolidation theory has been analyzed.

For the case of dilatation due to large preconsolidatialengt softening and, in some
cases, negative excess pore pressures have been predibe@nalysis of the numerical
results leads to the conclusion that, in comparison to aptrase material the two-phase
medium has a lower load-carrying capacity and is in genesa stable. Thus, no distinct
stabilizing effect of the fluid phase has been observed inctmputed examples for the
two-phase medium with the soil skeleton described with disall Cam-clay model.

In the biaxial compression test of shear banding, the (gtie)astrain distributions ob-
tained for various values of the permeability coefficierd aensitive to the discretization
density. On the other hand, the pore pressure distribuaoasiearly mesh-independent.
However, the pore pressure distribution depends stronglthe value of the permeability
coefficient and also on the boundary conditions for the poeesure field.

The obtained results of numerical simulations do not confirenstatement that the two-
phase soil modelling involves a certain regularizationriiyoducing a gradient term present
in the Darcy’s law. Thus, the necessity of regularizatiothef constitutive model for a mul-
tiphase material has been proved. We conclude that a regatlan of the softening and/or
nonassociative constitutive model for soil is mandatosp alithin a two-phase description.

The gradient-enhancement of the modified Cam-clay modebkas proposed in the
thesis in order to preserve the well-posedness of the gmgepartial differential equations
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in the presence of material instabilities. The regulairais based on the incorporation of
the Laplacian of the plastic multiplier in the Cam-clay diélinction. Consequently, a three
field finite element has been proposed for the analysis odliigtes in the consolidation
problem of evolving deformations and pore pressures.

The numerical material model and the algorithms have bemrporated into the FEAP
finite element package [70]. Although the attention has eensed on the plane strain
biaxial compression benchmark, a number of elementary &t larger scale problems in-
volving unstable (softening) behaviour and localized detation have also been computed.
The performed numerical tests have verified the employeatrigihgns and their implemen-
tation. The ability of the model to simulate a variety of sgatates and histories has been
demonstrated. Moreover, the results obtained for the gntdinhanced (regularized) the-
ory and the three-field element do not show the pathologiesimdependence of numerical
result due to instabilities and strain localization.

In Sect. 6.1 the alternative concepts of gradient enhancena&e been sketched, which
should be a subject of further research. The extension @ #me-clay model to viscoplastic-
ity [8] is also worth implementing since it would enable athar discussion of regularization
need and efficiency.

In a future research, the dependence of the yield conditiothe Lode angle should
be incorporated in the description. The elliptic shape efyreld function could also be
distorted like in [23,28] to approximate better the expemtal results. In order to extend the
possible application of the implemented numerical modebation of deviatoric hardening
should also be introduced in the description.

A numerical analysis of geomaterials is a very strong andtal tool, since general
stress states for arbitrary configurations can easily bengmed. Extensions of the present
implementation to a three-dimensional case or dynamicihgado not seem to pose large
difficulties.



Chapter 10
Appendix

Note that in this appendix the preconsolidation presguie denoted bya.

Derivatives in Newton algorithm for associated Cam-clay @s-
ticity

The Jacobian matrix needed for the Newton-Raphson iteratbeme in eq. (4.26) has
the form:

[ o o O 9 9 ]
Op dq oG da O0AA
Org  Ory Orpg Ora  Org

B Op dq oG da O0AA
TV | ors ors Ors Ors O (10.1)
0s op dq oG da  OAA '

Ors  Ora Ory Ora O
Op dq oG da O0AA
ors Ors Ors ors  ors
op dq oG da  OAA

with the following derivatives:

%—’; =1+ ZH%MQAA])O exp [—H%AHB]

or1 _
8q_0
or1
8G_O
Or1 _ _ Or1
da 8p+1

sax = 2550 M3 (p — a)po exp [ AG°]

Ory _

op 0

Ory _

g 1

8—@ — — Bsz;‘ialA_’Y _'_ 6AAgtMal
9G Griat(1+6GAN) T (14+6GAA)?
Ory _

Oa 0
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Ora  __ 6GQ_t'rial
AN — (116GAA)?

ors 2% 11:_2: 1150 M?2AApg exp[fH%Aae] 2% 11:_2: MQAApO(lfexp[fH%Aae])
op T Age + N

Ors _

d0q 0

Ors _

ac =1

Ors _ _Org

da dp

31920 1+ 1+ w -
Ors __ _2%11+2VV Ne() MQ(p*a)poeXP[*%Aae] + 2%11+2:M2(p*a)p0(1fexp[— ;0 A@e])

OAN — R N

A special case must be considered &gt — 0:

drs _ 31—2v/1+eg)\2 12
ap_Ql—l—V(n)MAApO
Ors _ __Ors

da op

_ 2
F = 32 (L) M2 (p — a)py

%—’;‘ = —Q%MQAA(IO exp [—%AQP}

In order to calculate the consistent tangent operator th@xfimg matrices are required:

¢ the derivative of deviatoric stregswith respect to straia
o€ 2G .
— | == = 10.2
{aJ 1+ 6GAAR @ ( )
e the derivative of functiorf, describing the change of hydrostatic pressyre: f,(p) =
poexp [—ELAp°(p)] with respect to straia
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afp Ofp Ofp Ofp Ofs Ofp Ofp
{7527] ::[ 9 Oex Oes  Oea  Des  Deo ] = [’_l(t -K, =K, 0.0 0 ] (10.3)

e the derivative of deviatoric stregswith respect to vector of primary unknowrs- 6
x 5 matrix with columns defined as

o€ o ot 0t 0t O
{%}:[éa_séa_gaa—i} (10.4)

o8 _
a—p—O

06 _
dq
& — 2R71A’7 _ 6AA£trial
0G T 1+6GAA (1+6GAN)?2

o8 _

da 0 ~

BE — _ 6G£_tria,l
AN (1+6GAN)2

¢ the derivative of functiory, with respect to vector of primary unknowss

afp Ofp Ofp Ofp Ofp Ofp
[g]:[a—p B ¢ Ba 8AA] (10.5)

%L; = —QH%MQAAZJO exp [_H%Aee] _ _2H%M2AAP

Ofp _
U —

o1,

=P —

oG 0

o _ 0w

da Op
oan = —2E2 M (p — a)poexp [~ HEAG] = 2B M (p — a)p

¢ the derivative of vector of residuatswith respect to straia — 5 x 6 matrix with rows

defined as
T
or — | 9 O9ra Oy Ora O (10.6)
Oe Oe Oe Oe Oe Oe )
ory _ T
Fe — K, I1 )
% - 3552@[? Q
Oe - qtrial(1+6GAA)
ors __ _31-2v ( K; P—Po T
e 2 1+v (AHe A9e2) IT
for Ag° — 0
drs _ 312w (1+eq)> T
Oe _41+1/( K )pOH
Ors _
Oe 0
ars — 0

Oe
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Derivatives in Newton algorithm for non-associated Cam-

clay plasticity

The derivatives in the Jacobian matrix:

%—’; =1+ H9o(M? — M?)AApyexp [— L AG°]

% = —QH%MQAA})O exp [—H%Aﬁe}

Or — Lteo (N[2(p — 2a) + M>p)pg exp [— LA

OANA
31-2v 1te Y Iteq © 1+e e
ors % 11+2V KO(M2+M2)AAPOBXP[7 NOAH ] n % (M2+M2)AA;D()(1 exp[ OAH ])
op Age N
312 1te 1te e 31 1+e e
ory _ 23 SO MPAAp exp[ - FE0AGY] 23 07 > [ 220 Age])
da Age g
ory _ _ B T (M2 (p-20) I p)po exp[ - T AG°] L HER O 20+ p (1 exp[ -0 A6°])
AN Ao =

A special case must be considered Agt® — 0:

s —2v e \2 \ /

T = 33 (20) (M2 + M) Adpg

T —2v 2

= R (s A

25 = 3R (O — 20) + NPy

66_1;1 = —21;%?(M2 + M2)AAa0 exp [—%Agp}

@ =1+ 21+60M2AA6L0 exp [ &t—?AQp]

6‘95\ = — 9 (M2 (p — 2a) + M?p)ag exp [—3EL AGP]

The derivatives of functiorf, with respect to the components of vector of primary unknowns

S.

Yo = —Lreo(M? + M?)AApg exp [- LA = — Lo (M2 4 M) AAp

O = ot M AApy exp [~ H2AF] = 2 M2 ANp

st = =L (M2 (p — 2a) + M2p)pg exp [—HLA6] = -2 (M(p — 2a) + M2p)p

The derivatives have been computed analytically using B1@@, and verified with the
finite difference method.
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Numerical analysis of strain localization

in one- and two-phase geomaterials

Summary

In the thesis the problem of instability as well as strain pack pressure localization in
granular materials is approached. In the analysis the nedd@am-clay plasticity model is
used in its local (without an internal length parameter) antdanced version (with a gra-
dient term) for a one-phase medium (including the limitiages of drained and undrained
conditions) and a two-phase medium. The plastic model isbooad with nonlinear elas-
ticity. The gradient-enhancement of the model is proposeorder to avoid the spurious
discretization sensitivity of finite element solutions. eTtlassical and gradient-dependent
versions of the theory for one- and two-phase soil and th&merical implementation are
summarized. Calculations are performed using the devedoprersion of the FEAP finite
element package. The numerical material model and theitllgas are incorporated into the
FEAP in the following steps:

e local version of Cam-clay model for one-phase medium

o two-field finite element with discretization of displacertseand excess pore pressure
(local Cam-clay model for two-phase medium)

o two-field finite element with discretization of displacerntseand plastic multiplier
(gradient-enhanced Cam-clay model for one-phase medium)

o three-field finite element with discretization of displa@ts, excess pore pressure
and plastic multiplier (gradient-dependent Cam-clay nhéatewo-phase medium)

Basic one-element tests and a typical shear banding bemklofiiaiaxially compressed soil
specimen are discussed. In the analysis the attention isédcon the influence of fluid
phase on soil instabilities.
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Numeryczna analiza zjawisk lokalizacji odksztatce

w jednofazowym i dwufazowym&odku geotechnicznym

Streszczenie

W pracy zostat przeanalizowany problem niestatesznolokalizacji odksztatce oraz
ciSnieh porowych w materiatach ziarnistych. Do analizy w zakrgdéestycznym ayto mo-
delu Cam-clay w wers;ji lokalnej (bez wewnetrznej skalighisci) oraz zregularyzowanej
(czton gradientowy) dlag&rodka jednofazowego (stan zatrzymanego i swobodnegaairen
i dwufazowego. Uwzgledniono nieliniowe zachowanie matarw zakresie sp@ystym.
Gradientowa wersje modelu zaproponowano dla unikai@eisaytniczej zalendsci roz-
wiazah uzyskanych metoda elementéw Bkaonych od dyskretyzacji. Przedstawiono opis
klasycznej i gradientowej wers;ji teorii dlssmdka jedno- i dwufazowego oraz ich nume-
ryczna implementacje. Obliczenia prowadzono w rozvéjawversji pakietu FEAP po wcze-
Sniejszym zaimplementowaniu wiasnych procedur. Oprogreemy zostat model materiatu
Cam-clay oraz trzy elementy skozone. Byly to: element dwupolowy z aproksymacja pola
przemieszczei (nadwyzki) cisnieh porowych (lokalny model Cam-clay di&mdka dwufa-
zowego), element dwupolowy z aproksymacija pdl przemiefzcmnaznika plastycznego
(zregularyzowany model Cam-clay dlarodka jednofazowego) i ostatecznie element tréj-
polowy z dyskretyzacja wszystkich trzech wymienionych egteej pol (gradientowy mo-
del Cam-clay dla srodka dwufazowego). Przedyskutowano wyniki podstawdwgstow
jednoelementowych oraz typowego zagadnienia powstavp@asascinania w dwuosiowo
Sciskanej probce gruntu. W obliczeniach szczegélna evekagdcono na wptyw fazy ciektej
na rozwiazania zagadriieiestateczrici materiatu.



