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Abstract
Formulae for the deflection of two examples of isostatic systems (simply supported beam, cantilever) 
were derived, accounting for influence of distribution of bending moments on cracking and beam stiffness 
distribution, according to EC2. Numerical analysis of the problem for the same two examples as well as for 
two further hyperstatic systems was performed using an iterative FEM algorithm. The influence of non-
uniformity of cracking on deflection and distribution of bending moments was shown to be negligible in 
typical practical design problems, therefore also an estimation of deflection on the basis of the distribution 
of bending moments and the value of the factor αk obtained from linear solution (before redistribution) is 
shown to be justified.
Keywords: reinforced-concrete, cracking, deflection, Eurocode

Streszczenie
Wyprowadzono zamknięte wzory na ugięcia dla dwóch przykładów układów statycznie wyznaczalnych 
(belka swobodnie podparta, wspornik), uwzględniając wpływ rozkładu momentów zginających na zaryso-
wanie i rozkład sztywności belki, zgodnie z EC2. Wykorzystując iteracyjny algorytm MES, przeprowadzono 
numeryczną analizę zagadnienia dla tych samych schematów statycznych oraz dwóch przypadków układów 
statycznie niewyznaczalnych. Wykazano minimalny wpływ nierównomierności zarysowania na wielkość 
ugięcia i rozkład momentów zginających w typowych praktycznych zagadnieniach projektowych, a tym 
samym stwierdzono zasadność szacowania ugięć na podstawie rozkładu momentów i wartości współczyn-
nika αk dla rozwiązania liniowego (sprzed redystrybucji).
Słowa kluczowe: żelbet, zarysowanie, ugięcie, Eurokod
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1.  Motivation

Design practice indicates that in the case of large-span reinforced-concrete (RC) 
buildings, e.g. large commercial or shopping centres, it is the Serviceability Limit State (SLS) 
not the Ultimate Limit State (ULS) that determines the final amount of reinforcement and 
thus the total cost of construction. As it becomes more common to limit floor deflection up 
to 1/500 of span length in order to prevent possible cracking of in-fill masonry walls due to 
forced deformation, the problem of precise determination of deflection becomes even more 
important because of economic reasons both for designers and investors. This problem is 
influenced by many factors, among which cracking, creep, settlement and global deformation 
of the structure should be mentioned. It is cracking which will be discussed in this paper.k

The algorithm for the calculation of deflections which is presented in the EC2 [1] standard 
is based on the model by Rostasy, Koch and Leonhardt [5]. The code states that having 
determined the curvature of a beam in every section in view of cracking total deflection should 
be obtained via numerical integration of obtained curvatures. The problem is non-linear as 
any change in the structure’srigidity stiffness due to cracking results in redistribution of the 
bending moments in hyperstatic systems. Such problems are usually solved in an iterative 
manner.

Before EC2 came into force in some countries, a different approach was a common design 
practice, namely: calculation of deflections with the use of a single value for the reducedrigidity 
stiffness of the cracked beam for all of its sections. The decrease in beamrigidity stiffness  due 
to cracking for the whole beam was calculated for a single design value of the bending moment 
– the same one then used to calculate deflection according to formula [3]:		   

		  u
M L

Bk
Sd eff=α

5
48

2

.	 (1.1)

or any equivalent, in which αk is determined using the classical methods of structural 
mechanics. The clue aspect of this formula, which is discussed here, is whether Msd and αk 
are determined before or after the redistribution of moments. The commentary given in [2] 
is useless as it refers to an isostatic system in which such a redistribution does not occur. 
However, both old [3] and modern [4] handbooks on the design of RC structures suggest 
using αk resulting from the linear solution even for hyperstatic systems. The origin of Msd is 
discussed in both standards in a general way, stating that it should be determined with the 
use of analysis methods proper for the case under consideration: a linear–elastic analysis 
accounting for cracking or a non-linear analysis. 

A simplified approach, widespread among designers, was to use the design values of 
Msd obtained from the linear solution (before redistribution). It was due to considerable 
difficulties in determining the actual distribution of bending moments when the FEM 
software was not available in the past, or when it did not enable non-linear analysis. It must 
be admitted, however, that even nowadays performing non-linear analysis is expensive (this 
concerns the cost of software licenses as some commonly used commercial FEM software 
used in design offices still lacks the option for such calculations) and time-consuming. 
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It is obvious that such a simplified approach as the one described above cannot be strictly 
valid at least for two reasons:

▶▶ Integration of the curvatures determined for non-uniform stiffness distribution must 
result in a different total displacement than in the case of uniform rigidity stiffness  
decrease;

▶▶ In the case of hyperstatic systems, the distribution of moments depends on the relative 
distribution of rigidity stiffness – if, in turn, distribution ofrigidity stiffness depends on the 
current distribution of moments, then the whole problem becomes non-linearly coupled.

It must also be stated clearly that the guidelines in the EC2 standard do not allow such 
an approach to be used. Despite this, it is still in use sometimes due to the simplicity of 
implementation in the calculation algorithms and due to its efficiency. The question that arises 
in this situation is whether the error occurring when using simplified approach mentioned 
above is acceptably small or not. It is often assumed that such an approach provides a “safe” 
solution, overestimating true deflection – as the problem is non-linear, such an assumption 
may at best be a plausible conjecture rather than a definite statement. However, as mentioned 
before, such an overestimation may emerge to be needless, unnecessarily expensive and – in 
some cases – even unacceptably dangerous: too large an amount of reinforcement may cause 
a situation in which the reinforcement steel is strained below yield strain and the concrete 
is compressed with a limit value. Such a situation is not allowed for bent elements as it may 
result in brittle destruction and sudden collapse. This might happen only in the case when the 
true load exceeds the design value, which should not take place at all; nevertheless, any over-
reinforcement is improper at least for economic reasons.

2.  Theoretical analysis

2.1.  Assumptions

General relations governing the problem of determination of deflection of a bent beam (or 
slab in a one-direction bending state) are:

Equilibrium relation:

		   d
dx

M x q x
2

2 ( ) = − ( ) 	 (2.1)

Constitutive relation:

 		
d
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w x

M x
B x

2

2 ( ) = − ( )
( )

	 (2.2)
where:

q 	 – 	external load, 
M 	 – 	bending moment, 
w 	 – 	deflection,
B 	 – 	bending stiffness.



134

We assume also that the bending stiffness is reduced due to cracking according to the 
EC2 formula, approved by the European Committee for Concrete (CEB) and based on the 
propositions by Rostasy, Koch and Leonhardt [5].
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where:

Ec 	 – 	the Young modulus of the concrete (mean or effective value, depending on 
the specific case), 

Mcr 	 – 	cracking moment, 
JI, JII 	 – 	cross-section’s second moment of area in uncracked and cracked state 

respectively,
β1, β2 	–	 are factors accounting for rebar contact stress and influence of long-term 

loading respectively.
This provides a non-linear system of ordinary differential equations with discontinuous 

coefficients. Attempts to find a general solution to such a problem should be doomed to fail 
in advance. The problem simplifies greatly if one assumes a quadratic moment distribution 
– an assumption, which is usually fulfilled in most typical design problems. This account 
for uniform load q(x) = q = const. and any boundary nodal displacements and point loads. 
Integration of equilibrium equations yields:
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where:
C1, C2 	– 	are constants. 

The whole problem reduces now only to double direct integration of (2.2) which may be 
carried out analytically. If cracking occurs, three cases must be considered:
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▶▶ CASE 2: 2 02 1
2C q C+ =    
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▶▶ CASE 3: 2 02 1
2C q C+ >   
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where:
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The sign of ∆= +2 2 1
2C q C  depends on the number of distinct real roots of (2.4). 

In the first case (Δ < 0), there are no real roots – when the load is applied downwards 
(gravitational load) such a situation is not likely to occur and for simple beams (single-
span, without overhangs) without nodal displacements it is impossible. The second 
case (Δ = 0) occurs when the extremum of moment distribution is at the same time 
the root of (2.4) – this happens, for example, at the end of a cantilever. The third case  
(Δ > 0) is the one which describes most typical situations.

Equations (2.5)–(2.7) describe the deformation of the beam axis in the cracked area. In 
the uncracked version, the deflection is described with a fourth order polynomial function. 
The range of the cracked zone is not known in advance. In the case of isostatic systems it may 
be easily determined as the interval in which x M x Mcr: ,( ) >{ }  since the distribution of 
moments is known. Solving the problem reduces now to just finding the integration constants 
as a solution of the linear algebraic system given by the boundary conditions and compatibility 
conditions for deflection and angle of rotation at the boundaries of cracked zone. In the case 
of hyperstatic systems, both range of cracked zone and reaction forces (i.e. constant C2) are 
unknown – finding them requires a solution to a complex non-linear algebraic system. For 
this reason, only two cases of isostatic systems are considered below.
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2.2.  Simply supported beam of length L under uniform load q

In a coordinate system with its origin in the middle of the beam span, the distribution of 

bending moments is given by the constants C C
qL

1 2

2

0
8

= =, .  The derivation of the solution 

is rather schematic, yet lengthy – let us present only the results. Let us denote EJ = Ec JI. 
Maximum deflection is as follows:
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where the range of the cracked zone (located symmetrically in the middle of span) equals:
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2.3.  Cantilever of length L under uniform load q

In a coordinate system with its origin at the distribution of bending moments is given by 
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Cracked zone length (located by support) is equal to:
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3.  Numerical analysis

3.1.  Range of variation of problem parameters

Let us write explicitly the formulae for the second moment of area of the uncracked and 
cracked rectangular cross-section:
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where:

h 	 – 	beam height, 
b 	 – 	beam width, 
d 	 – 	effective height, 
a2 	 – 	distance from compressed reinforcement centroid to the compressed edge, 
ρ1, ρ2 	 – 	index of stretched and compressed reinforcement respectively,
αe = Es/Ec	 – 	ratio of Young moduli of steel and concrete. 

We shall now consider what factors influence the result narrowing our considerations 
to single reinforced (ρ2 = 0) rectangular cross-sections. We may express effective height as  

d = 0.95h which is not precise but a fair and useful approximation. In this way, the ratio J
J

II

I

  

becomes independent of the h/b ratio. Introducing a generalized surface load p = q/b we may 
eventually consider our solution as dependent on four dimensionless factors:

▶▶ χ1 =
L
h

 (geometry of system),

▶▶ χ2 =
f
p
ct  (strength to load ratio),

▶▶ χ ρ3 1=  (reinforcement index),
▶▶ χ α4 = e  (steel to concrete stiffness ratio).

This is not a complete set of independent variables influencing the solution. We must 
also notice that αe is itself a function of the shape of the cross-section, concrete class etc. 
Anyway, these four factors may be used in order to estimate the quantitative influence of non-
uniformity of cracking on deflection. We shall now determine the range of variation of values 
of those parameters.

Considering the length-to-height ratio we may fairly assume that:

		  χ1 4 30∈ ;

The lower bound is determined by the limitation that shorter beams should be considered 
as membrane shells. The upper bound corresponds to typical values for plates. Considering 
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the strength-to-load ratio we may assume that typical RC structures are usually made 
nowadays of concrete of C20/25 up to C30/37 class. This corresponds with the scope of 
values of average tensile strength fct ≈ 2–3 MPa. Surface load (characteristic value) in turn may 
vary from 1.5 kPa (apartments – live load only) up to ca. 15 kPa (e.g. car park or mall live load 
+ dead load of flooring and 30 cm thick RC plate). This gives us:

		  χ2 130 2000∈ ;

The range of variation of the reinforcement index is limited the by the code requirements 
on maximal and minimal reinforcement:

		  χ3 0 0013 0 04∈ , ; ,

Possible values of αe factor range usually from ca. 7 (immediate elastic deflection) to ca. 30 
(final creep deflection):

		  χ4 7 30∈ ;

As the SLS most often concerns the final creep deflection, we will assume long-term 
load (β2 = 0.5). We will also assume ribbed reinforcement (β1 = 1.0) as the smooth one in 
practically almost out of use as a longitudinal reinforcement.

3.2.  Analysed cases

In order to verify the obtained theoretical formulae an iterative FEM script was written 
solving a single-span beam under uniform load. Four static schemes were considered:

▶▶ beam fixed at both ends,
▶▶ simply supported beam,
▶▶ cantilever,
▶▶ beam fixed at one end and pinned at the second one.

Fig. 1.	Flowchart of iteration algorithm used for solution of non-linear problem
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The loop end condition was a conjunction of three conditions: that last step increment 
in both deflection and extremal bending moment should be less than 1% of deflection or the 
extremal moment obtained in the previous step and that cracked zone in the last step should 
be the same as in the previous one. Additionally no fewer than 3 iterations must be performed. 
The beam was divided into 100 finite elements. After each iteration, each element’s stiffness 
was recalculated according to formula (2.3), in which the value of bending moment for the 
element was taken as equal to an average value of its end nodes’ bending moment values. 
A flowchart showing the general scheme of this algorithm is shown below.

16 basic cases were considered – each one corresponding with one combination of the 
extremal values of four factors introduced in previous sections. It is clear that such an “edge-
value” analysis does not account for possible local extrema unless the joint influence of all 
of them provides a solution that depends on those factors in a monotonic way. The results, 
discussed below, indicate, however, that every solution (except for cantilever) corresponding 
with each combination of extremal values is almost identical with the simplified solution 
based on the moment and αe factor determined for the uncracked system. For this reason, it 
may be supposed that no extremely distinct response of the system should be expected for 
any intermediate values. Such a supposition is of practical importance since any theoretically 
justified conclusions cannot be made in the case of such a complex, non-linear and self-
coupled problem. These cases referred to extremal values of influence factors as follows:

Table 1.	Edge-values of independent dimensionless parameters governing the problem for each analysed case

Case χ1 χ2 χ3 χ4 

1 30 2000 0.0013 30

2 30 130 0.0013 30

3 4 2000 0.0013 30

4 4 130 0.0013 30

5 30 2000 0.04 30

6 30 130 0.04 30

7 4 2000 0.04 30

8 4 130 0.04 30

9 30 2000 0.0013 7

10 30 130 0.0013 7

11 4 2000 0.0013 7

12 4 130 0.0013 7

13 30 2000 0.04 7

14 30 130 0.04 7

15 4 2000 0.04 7

16 4 130 0.04 7
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Beam width – which has no major qualitative effect on the results obtained – was set at 
a constant numerical value b = 1 [m]. Each case was calculated four times for different sets of 
basic parameters, namely: span length (6 m or 9 m), tension strength and Young modulus of 
concrete (respective for C30/37 and C20/25 classes):

Table 2.	Values of basic parameters governing the problem for each analysed sub-case

Case L
[m]

fct  
[MPa]

Ec
[GPa]

A 6 2.9 32

B 6 2.2 30

C 9 2.9 32

D 9 2.2 30

A total number of 64 cases for each static scheme were analysed.

3.3.  Results

The results obtained from the numerical solution were the same as those provided by 
the theoretical formulae. It emerged however that subcases A-D of any case 1–16 did not 
influence the result in any way. For most of the cases, there were only 3 iterations needed to 
fulfil the loop end conditions – maximum number of iterations needed in particular cases 
was 6. Cracking occurred only in cases 2, 6, 10 and 14 (long and low beam /thin plate/, small 
strength, strong load) and additionally for cantilever in cases 1, 5, 9, 13 (long and low beam /
thin plate/, high strength, small load).

In all the cases considered, extremal values for the bending moment after redistribution 
did not change more than 5.369% (beam fixed at both ends, case 10) of the respective 
value obtained from the linear solution – it may be stated that in typical design problems 
the influence of cracking on the distribution of bending moments is of minor importance.

Also the αk factor was calculated according to the formula:

		  αk
w B

M L
=

48
5 2

max

max

 	 (3.1)

Analytical values of αk for chosen static schemes are:
▶▶ beam fixed at both ends, αk  = 0.6
▶▶ simply supported beam, αk = 1.0
▶▶ cantilever, αk = 2.4 
▶▶ beam fixed at one end and pinned at the second one.

αk =
+

≈
55 33 39

420
0 73948.
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In all cases except for cantilever, the obtained αk values varied from those derived from 
the linear problem by less than 3.377% (beam fixed at both ends, case 10). For all schemes, 
the true maximum deflection was always smaller than the one obtained in the simplified 
approach.

An interesting conclusion emerges from the analysis of cases 1, 5, 9 and 13 for cantilever, 
which concern long and low beams (or thin plates) with high tensile strength under a small 
load. True maximal deflections were always smaller than those estimated with the simplified 
approach – in case 9, the reduction of deflection was as high as 54.174%. Such a situation 
occurs when the range of the cracked zone is very small, namely when the cantilever is only 
cracked at a short distance close to the support. The simplified approach assuming constant 
decrease of stiffness along whole beam must provide a considerable overestimation; however, 
it must be admitted that these cases correspond with very small absolute values of deflection 
(small load, high strength) – much smaller than the limit value.

In order to verify this result, a typical example of a balcony cantilever was analysed. 
We consider a 1.7 m long plate 20 cm thick, made of C20/25 class concrete. The load is 
5 kPa of live load and 6.25 kPa of dead load (with flooring). Assuming reinforcement with 
A-IIIN class steel with α1 = 3.5 cm the ULS requires ρ1 = 0.001755. The resultant final creep 
deflection (αe = 3.5) corresponds with (αk = 0.9437), which is more than 2.5 times as small as 
the 2.4 derived from the linear solution. In fact, the deflection obtained, equal to 2.81 mm, as 
well as the one estimated using the simplified approach, which equals 7.14 mm, are far smaller 
than the limit value L/150 = 11.33 mm. The cracked zone length is only 8.53 cm long, which 
is approximately 0.05 L.

Despite the fact that such a large overestimation concerns mostly those deflections which 
are very small, smaller than the limit permissible values (and thus may be fairly disregarded), 
it may be of interest to determine the conditions for which such overestimation occurs. This 
is the situation when the cracked zone length is very small. In the case of isostatic systems, the 
answer is obvious – it is when the bending moment exceeds the cracking value only slightly. 
A precise answer for hyperstatic systems is difficult to obtain due to the non-linearity of the 
problem. However, as the above analysis indicates, the distribution of bending moments 
corresponding with the linear solution is affected by cracking only to a small extent. For 
this reason, in the case of hyperstatic systems it may be stated that high overestimation of 
deflection, when using the simplified approach, occurs also when the bending moment 
(obtained for linear problem) exceeds the cracking value but is still very close to it. This may 
only be treated as a general guideline – any design process must verify the true deflection via 
numerical integration of the curvatures along the beam.

4.  Conclusions

The analysis performed indicates that in most typical design conditions (material, load, 
static scheme, geometry) the influence of non-uniformity of cracking has minor influence 
on both the deflection and distribution of the bending moments. Differences between the 
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solution obtained  by numerical integration of curvatures in non-uniformly cracked element 
and the solution assuming constant stiffness decrease along the element are not significant. 
In such situations, it is justified to use the simplified approach approximating deflection with 
formula (1.1) in which both the bending moment MSd and the αk factor are the same as in 
the linear solution (disregarding the influence of cracking) while only bending stiffness B 
accounts for cracking according to the EC2 formula (2.3). 

It must be noted that the above conclusions may be valid only in the case of typical designs 
– single span beams of average span length which are loaded uniformly with typical live load 
values and made of common materials. They were derived assuming that no qualitatively or 
quantitatively distinct response of the system occurs for intermediate values of parameters 
influencing the solution. As the problem is highly non-linear, such an assumption is – strictly 
speaking – not justified, yet it seems to be a probable supposition as the results obtained for 
combinations of “edge” (extreme) values do not differ one from another in a serious way. Any 
generalization of those statements for multiple-span beams or for two-way reinforced slabs is 
an extrapolation which requires numerical verification.
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