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Geometric approach to nuclear pasta phases

Sebastian Kubis* and Włodzimierz Wójcik
Cracow University of Technology, Institute of Physics, Podchorążych 1, 30-084 Kraków, Poland
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By use of the variational methods and differential geometry in the framework of the liquid drop model we
formulate appropriate equilibrium equations for pasta phases with imposed periodicity. The extension of the
Young-Laplace equation in the case of charged fluid is obtained. The β equilibrium and virial theorem are also
generalized. All equations are shown in gauge invariant form. For the first time, the pasta shape stability analysis
is carried out. The proper stability condition in the form of the generalized Jacobi equation is derived. The
presented formalism is tested on some particular cases.
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I. INTRODUCTION

The crust-core transition region in a neutron star represents
a place where the lattice of neutron-rich nuclei must have
been replaced by the homogeneous npe matter. On the bulk
level, the thermodynamical considerations allow to determine
the density where the homogeneous phase is unstable against
the charge density perturbation and the two-phase system is
formed [1]. The two phases have different charges and they
are separated by the phase boundary with nonzero surface
tension. The competition between the surface and Coulomb
energy leads to a formation of structures with various shapes,
dependent on the average density of the system. In this way,
the infinitely long structures, usually called pasta phases, are
formed and interpolate between the homogeneous matter and
the lattice of spherical nuclei. On the scale larger than the
size of those structures the npe matter is neutral, so it is
convenient to introduce a Wigner-Seitz (WS) cell containing
the two phases in thermodynamic equilibrium with different
charges to ensure the neutrality of the cell. In principle, the WS
cells should be periodically placed in space, which imposes
the periodic boundary condition on it. However, for most of
the applications and because of the simplicity, the periodicity
is abandoned and the WS cells are represented by the isolated
sphere, cylinder, or slab leading to names referring to Italian
cooking like: gnocchi, spaghetti, and lasagna phases. Such a
scheme was proposed in [2,3] and subsequently developed
by many authors. The simplified geometry allows easily to
determine the energy minimum for the WS cell with respect
to the size of the cell and the size of the cluster. However,
such simplification does not allow to examine the stability of
such structures and find properties of the lattice which they
should form. Some remarks on stability of proton spherical
clusters in neutron gas were presented in [4]. However, one
must note that a true analytic stability analysis of pasta phases
was never done. In the work [5] structures taking shape
of periodic labyrinths (gyroid, double gyroid, diamond-like)
were explored in the framework of the liquid drop model.
Introduction of such structures was motivated by their presence
in block copolymers. The existence of pastas with different
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shapes with included periodicity was shown in terms of
other approaches like the Thomas-Fermi approximation [6],
Hartree-Fock calculations [7], or molecular dynamics [8].

The aim of this work is to analyze the existence of the
pasta phase shapes by geometrical methods in a more rigorous
way than it was done previously. We start here from the
compressible liquid drop model (CLDM) that means the proton
clusters are immersed in the electron-neutron gas in thermo-
dynamic equilibrium. We do not make any assumptions on the
cluster shape except the periodic boundary conditions required
for the correct description of such system. In Sec. II we
derive the equations governing the pasta’s shape and show the
relations between the various physical quantities like chemical
potentials, pressure, etc. In Sec. III the stability considerations
with respect to the cluster shape were carried out.

II. VARIATIONAL ANALYSIS

Our two phase system consists of the proton (p + n + e)
and neutron (n + e) phase. On the phase boundary the surface
tension σ is present and it leads to formation of a proton
cluster P , see Fig. 1. The charge density of the proton cluster
is positive ρ+ = e(np − ne), whereas in the neutron phase
N is negative ρ− = −ene, where ni is the number density
of i particle. When the proton clusters form a periodic lattice
(one, two, and three dimensional) it is convenient to introduce
a unit cell C obeying periodic boundary conditions. In general
the unit cell is a parallelepiped. For illustrative purposes,
we refer to the rectangular unit cell (cuboid), but we must
emphasize that the whole further reasoning is also valid for the
nonrectangular unit cell—the only property which is essential
is the periodicity of physical quantities describing the two
phases. In our analysis we do refer neither to the primitive
cell (by definition containing only one lattice point) nor to
the Wigner-Seitz cell which is a specific case of the primitive
cell. We would like to note that WS cell, defined by the locus
of points that are closer to a given lattice point than to any
of the other lattice points, should not be confused with the
so-called Wigner-Seitz approximation which is based on the
isolated cell devoid periodicity. By its construction, the WS
cell for typical 3D lattices like fcc, bcc, or 2D lattices such as
the triangular one, takes the form of complicated polyhedra.
However, all of these typical lattices occurring in the pasta
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FIG. 1. Schematic view of rectangular cell with one proton cluster
P . The surface tension is associated with its boundary ∂P .

phases can be described by the use of rectangular unit cells
with a higher number of lattice points (proton clusters).

The charge separation between the phases generates the
electrostatic potential �. For cuboid cell a × b × c the
periodicity of the electrostatic potential �(x) is expressed by
the following conditions:
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Proton cluster P occupies volume VP whereas the cell has
volume VC = abc. The cell is neutral as a whole, which means
Np = Ne or for particle densities

VP
VC

np − ne = 0. (2)

In the P phase, both nucleon number densities np and nP
n do

not vanish, while in the N phase only the neutron density
nN

n is nonzero. Electrons are treated as being homogeneously
distributed in the whole cell, because their screening length is
much larger than the cell size [1]. On the scales larger than the
cell size, the matter has an average baryon number density n̄.
The baryon number conservation leads to the relation between
those densities:

n̄ = VP
VC

(
np + nP

n

) +
(

1 − VP
VC

)
nN

n . (3)

The total energy density for an individual cell is a function
of particle densities in both phases, the shape of the cluster
surface ∂P , and cell sizes:
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+ εe(ne) + εS + εCoul, (4)

where the surface energy density is determined by the nonzero
surface tension σ ,

εS = σ

VC

∫
∂P

dS, (5)

and the Coulomb energy density is

εCoul = 1

2VC

∫
C
�(x) ρ(x) d3x. (6)

The charge density distribution ρ(x) takes the step function
form

ρ(x) =
{
ρ+ = e(np − ne) for x ∈ P
ρ− = −ene for x ∈ N (7)

and the electrostatic potential is solution of the Poisson
equation with periodic boundary condition for the charge
density given by Eq. (7):

∇2�(x) = −4πρ(x). (8)

In the thermodynamic equilibrium the energy takes minimum
with respect to the eight variables, see Eq. (4) under the two
constraints: the first one coming from the neutrality of the
individual cell Eq. (2) and the second one from the baryon
number conservation Eq. (3). The convenient way is to make
use of Lagrange multipliers

ε̃ = ε + λQ

(
VP
VC

np − ne

)

+ λB

(
n̄ − VP

VC

(
np + nP

n

) −
(

1 − VP
VC

)
nN

n

)
. (9)

Minimization against the neutral particle densities nN
n ,nP

n

corresponds to the vanishing of partial derivatives ∂ε̃
∂nN

n
and

∂ε̃
∂nP

n
which lead to the Gibbs conditions for neutron chemical

potentials in both phases

λB = μP
n = μN

n ≡ μn, (10)

where the chemical potentials of the neutron are the derivative
of nuclear contribution to the total energy density ∂εnuc(np,nn)

∂nn

taken at the appropriate phase densities. For further conve-
nience we use only one μn.

Any variation of charged particles density (ne,np) and
proton cluster shape ∂P will make a variation of the potential
δ� and requires more attention. Potential variation δ� is
linearly dependent on the charge variation δρ by the Poisson
equation

∇2δ�(x) = −4πδρ(x). (11)

Just as �, the perturbation δ� obeys periodic boundary
conditions of type Eq. (1). It may be expressed by the Green
function

δ�(x) =
∫
C
GP (x,x′)δρ(x′)d3x ′. (12)
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The Green function must obey periodic boundary conditions.
For instance, in the case of the cuboid cell it takes the form [9]

GP (x,x′) = 4π

abc

′+∞∑
m,n,k=−∞

exp(i Kmnk · (x − x′))
K2

mnk

, (13)

where the vector Kmnk = 2π ( n
a
,m

b
, k
c
) and the prime sign

means that the summation excludes the m=n=k=0 term. For
a nonrectangular (a general parallelepiped) unit cell the Green
function takes a different form. However the only property
we require is its periodicity. Because the periodicity of the
Green function ensures a vanishing of the surface integral on
the cell boundary ∂C which in principle should appear in the
expression for the Poisson equation solution [10]. First-order
variation of the expression determining the Coulomb energy

δ(1)
∫
C
�ρ d3x =

∫
C
δ(1)� ρ d3x +

∫
C
� δ(1)ρ d3x (14)

may be simplified by use of the reciprocity theorem (the proof
is given in Appendix A)∫

C
δ� ρ d3x =

∫
C
� δρ d3x. (15)

Then the variation of the Coulomb energy density in the first
order may be derived as the doubled charge variation times the
unperturbed potential

δ(1)εCoul = 1

VC

∫
C
� δ(1)ρ d3x. (16)

Equation (15) appears to be very useful—it allows to avoid
the calculation of potential variation δ� as long as we are
interested in a first-order variation of the energy. The first-order
potential perturbation will have to be calculated explicitly only
in the second-order variation of energy.

The variation with respect to electron number density dne

corresponds to δρ(x) = dne for all x ∈ C whereas the proton
number change dnp corresponds to δρ(x) = dnp only for
x ∈ P . Then we get two relations, one coming from ∂ε̃

∂ne
= 0,

μe − λQ − e

VC

∫
C
� d3x = 0, (17)

and the second from ∂ε̃
∂np

= 0,

VP
VC

(μp − λB + λQ) + e

VC

∫
P

� d3x = 0. (18)

By eliminating the Lagrange multipliers and making use of
the neutrality condition Ne = Np one gets the well-known β
equilibrium condition, here, however, modified by the presence
of the Coulomb energy

μn − μp − μe = 2ECoul

Ne

. (19)

The Coulomb energy ECoul = 1
2

∫
C �ρ d3x enters into the

β equilibrium condition as a consequence of long-range
electrostatic interactions between protons and electrons. It is
indeed the β equilibrium condition if one only remembers that
proper chemical potential μ̃i includes all forms of the energy

FIG. 2. The infinitesimal deformation of the proton cluster
described by the normal component ε.

concerning the i particle. Then for charged particles (protons
and electrons) their proper chemical potential is

μ̃p = μp + E(el)
p , μ̃e = μp + E(el)

e , (20)

where μp,μe are appropriate derivatives of εnuc,εe, and E
(el)
1

represents the one-particle electrostatic energy. The measure of
the energy is the total Coulomb energy of the cell per charged
particle ECoul

Np
,ECoul

Ne
. Remembering that Ne = Np one gets the

standard β equilibrium equation:

μ̃n − μ̃p − μ̃e = 0. (21)

The inspection of the variation with respect to the proton
cluster shape requires the methods of differential geometry
[11,12]. Let us assume that vector valued function r(u,v)
represents a parametrization of the cluster surface ∂P . Next
consider an infinitesimal deformation of ∂P

r ′(u,v) = r(u,v) + δr(u,v). (22)

Any changes in surface area or volume of the cluster depend
only on the normal component of the δr , Fig. 2. Then, in order
to consider changes in the energy it is enough to take only
its normal component of deformation, described by one scalar
function ε(u,v):

δr(u,v) = ε(u,v)n, (23)

where n is an outwardly directed normal vector to the
unperturbed surface. The change in the cluster shape makes
the charge perturbation δ(1)ρ, up to the first order in the ε may
be expressed in terms of surface δ function

δ(1)ρ(x) = �ρ ε δ∂P (x), (24)

where �ρ is the charge contrast, i.e., �ρ = ρ+ − ρ− = enp.
An illustrative example showing how the shape deformation
leads to surface integrals is given in Appendix B. Finally,
thanks to Eq. (16) and the expression for the charge pertur-
bation, Eq. (24), the change in the Coulomb energy takes the
form of surface integral

δ(1)εCoul = 1

VC

∫
∂P

�(r(u,v)) �ρ ε(u,v) dS. (25)
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The change of the surface energy, in the first order of ε, is
connected to the mean curvature H of cluster surface and is
expressed by the integral [11]

δ(1)εS = − 2

VC
σ

∫
P

H (u,v) ε(u,v)dS. (26)

The mean curvature H is given by

H = 1
2 (κ1 + κ2), (27)

where κi are the principal curvatures. Here we keep the
convention commonly used in mathematics that H is negative
for a convex surface, i.e., such surface that bends toward the
region which is surrounded by the surface. That is the reason
of the presence of the minus sign in Eq. (26). For example, in
this convention, for a spherical proton cluster H = − 1

R
, for a

cylindrical H = − 1
2R

. As we want to find a variation of ε̃ we
also need the variation in the cluster volume VP , which is

δ(1)VP =
∫
P

ε(u,v) dS. (28)

Using Eqs. (25), (26), (28) for a functional of the energy ε̃ and
eliminating again the Lagrange multipliers λB,λQ one gets the
equation for the surface curvature

P P − PN = −2σH + �ρ (� − 〈�〉P ). (29)

This equation is an extension of the Young-Laplace equation
for the relation between the pressure difference [13] between
the two regions separated by a layer with surface tension σ .
The last term in the right-hand side (RHS) of Eq. (29) is the
average of the electric potential taken on the volume of proton
cluster

〈�〉P = 1

VP

∫
P

� d3x. (30)

Thanks to the difference � − 〈�〉P , Eq. (29) is gauge invariant,
i.e., does not change its form after the transformation � →
� + c, where c is any constant. One should expect such
behavior as the potential itself is not an observable.

Equation (29) is an equation for two unknown functions:
curvature H and �, where H is defined only for the surface
P , whereas the potential is defined for the whole cell and
fulfills the Poisson equation (8). It implies one important
conclusion that the cluster surface is not, in general, a surface
with constant mean curvature (CMC surface). It is rather the
surface with prescribed curvature. The surface curvature H
becomes a function determined by the potential � and pressure
difference. In the commonly used Wigner-Seitz approximation
for a spherical or cylindrical isolated cell the periodicity is
abandoned. However in this case one may repeat the above
calculations if the periodic boundary conditions are replaced
by the Neumann condition, i.e., a normal derivative of the
potential at the cell boundary vanishes, ∂n�|C = 0. Then one
of the equipotential surfaces coincides with the cluster surface
and in fact it is a CMC surface—sphere or cylinder. In this
manner Eq. (29) reproduces the results presented earlier in
[14,15].

The last variation which must be considered is the change
in the sizes of cell a → a + da and similarly for the rest of
walls b and c, Fig. 3. Such an increase in cell sizes again leads

FIG. 3. Schematic view of the cell size variation.

to a change in the charge distribution. Similarly like in the
case of cluster shape variation the δρ could be expressed by
the Dirac δ function for subsequent walls:

δaρ(x) = ρ−
da

2

(
δ

(
x − a

2

)
+ δ

(
x + a

2

))
, (31)

δbρ(x) = ρ−
db

2

(
δ

(
y − b

2

)
+ δ

(
y + b

2

))
, (32)

δcρ(x) = ρ−
dc

2

(
δ

(
z − c

2

)
+ δ

(
z + c

2

))
. (33)

Once more the charge variation leads to the change in the
potential which can be removed by the reciprocity theorem,
Eq. (15), and one gets a useful expression for the variation of
Coulomb energy

δ(1)
a ECoul = da

2
ρ−

∫
±a/2

� dS, (34)

where the integration is over the area of the two sides, left: x =
−a/2 and right: x = a/2 and dS = dy dz. The same form we
get for the other two pairs of walls at y = ±b/2 and z = ±c/2.
By writing down the variation of ε̃ with respect to da,db,dc
and eliminating the Lagrange multipliers one gets the three
equations

2VPσH + Es = −ECoul + eNe�|∂P − eNea

2VC

∫
±a/2

�dS,

2VPσH + Es = −ECoul + eNe�|∂P − eNeb

2VC

∫
±b/2

�dS,

2VPσH + Es = −ECoul + eNe�|∂P − eNec

2VC

∫
±c/2

�dS.

(35)

Those three equations are not independent. Equations (35)
include integrals which are surface integral only on pairs of
the opposite sides of the cell. By taking the linear combination
of them we may get more a compact relation

2VPσH + Es = −ECoul + eNe(�|∂P − 〈�〉∂C), (36)
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where the last term in the RHS is the average of the potential
taken on the whole boundary of the cell

〈�〉∂C = 1

2(ab + ac + bc)

∫
∂C

�dS. (37)

Equation (36) represents a generalization of the so-called
“virial” theorem known from previous works [1,14] where
the relation between Es and Ec was shown for an isolated
Wigner-Seitz cell. For such kinds of cell which are constructed
without periodic boundary conditions Eq. (36) may still be
used. This comes from the fact that such an isolated cell, when
neutral, obeys the Neumann boundary condition, ∂�

∂n
|
∂C = 0,

and then all of our calculations may be repeated. The crucial
point is the reciprocity theorem, Eq. (15), which is valid both
for the periodic potential and for the potential with Neumann
BC (see Appendix A). It may easily checked that Eq. (36) for
the simplified geometry of pastas (gnocchi, spaghetti, lasagna)
takes the form

Es = 2ECoul. (38)

However, one must remember that Eq. (38) is fulfilled only in
cases with such high symmetry (spheres, cylinders, or slabs)
and in general do not need to be true and the general virial
theorem is represented by Eq. (36).

III. LIMITED STABILITY CONSIDERATION

The set of equations (10), (19), (29), (35) comes form the
first-order analysis and represents the necessary condition for
a minimum of the energy. Equations (10), (19) correspond
to chemical equilibrium, Eq. (29) represents the extension of
the Young-Laplace equation for charged fluid, and Eqs. (35)
stand for the generalization of the virial theorem. In the next
step it would be desirable to test the energy change up to the
second order of all relevant variables, that means densities
np,ne,n

P
n ,nN

n , cell sizes a,b,c, and the change of the cluster
shape ε(u,v). For that reason the second-order variation of
energy ε̃ would be an 8 × 8 matrix. Here we constrain only to
the analysis with respect to the shape variation ε. It does not
present the full analysis of stability, nevertheless we would like
to show it as it is the most complicated part of the second-order
energy variation and leads to an interesting result. Physically,
such analysis corresponds to testing the shape stability when
all particle densities and cell sizes are kept constant.

The variation of the surface energy with respect to the
second order in the shape change ε(u,v) is expressed by the
integral over the cluster surface [11]

δ(2)εS = σ

2VC

∫
∂P

((∇ε)2 + 2Kε2) dS, (39)

where K is the Gauss curvature K = κ1κ2. The second-order
change in the volume of the cluster takes the form

δ(2)VP = −
∫

∂P
Hε2dS. (40)

In order to find the variation of the Coulomb energy we must
know the charge distribution variation caused by the change in
the proton cluster up to the second order in normal deformation
ε. It is convenient to describe the charge variation by the

surface δ function [12]

δ(2)ρ(x) = 1
2�ρ ε2 (∂n − 2H ) δ∂P (x), (41)

where ∂n = n ◦ ∇ is the normal derivative operator acting on
the potential � at the cluster surface ∂P .

The second-order variation of the Coulomb energy depends
not only on the δρ and δ� in second order but also on the
first-order variation of potential and charge distribution

δ(2)εCoul = 1

2VC

∫
C
(δ(2)� ρ + � δ(2)ρ + δ(1)� δ(1)ρ) d3x.

(42)

We do not need to calculate the second-order variation of the
potential δ(2)�, as it may be removed by use of reciprocity
theorem ∫

C
δ(2)� ρ d3x =

∫
C
� δ(2)ρ d3x. (43)

The last term in Eq. (42) requires a derivation of the first-order
variation of the potential δ(1)�:

δ(1)�(x) =
∫
C
GP (x,x′) δ(1)ρ(x′) d3x ′. (44)

Using the above expressions for the charge and potential
variation one gets the second-order variation of the Coulomb
energy

δ(2)εCoul = 1

2VC

∫
∂P

(�ρ (∂n� − 2H�) ε + δε�)ε dS,

(45)

where we denoted the first-order variation of the potential by
δε�(x),

δε�(x) = δ(1)�(x) =
∫

∂P
�ρ GP (x,x′) ε(x′)dS ′, (46)

to indicate it is the linear functional of deformation ε.
Collecting together all parts of ε̃ and eliminating Lagrange
multipliers by use of the equation coming from the first-order
analysis, Eqs. (10), (17), (18) we get the second-order variation
of the constrained energy

δ(2)ε̃ = 1

2

∫
∂P

(σ ((∇ε)2 − B2ε2)

+�ρ (∂n� ε2 + δε� ε)) dS, (47)

where B2 is the sum of squared principal curvatures

B2 = 4H 2 − 2K = κ2
1 + κ2

2 . (48)

The positivity of δ(2)ε̃ stands for the sufficient condition for the
minimum of total energy with imposed constraints, Eqs. (2),
(3). However one must remember that δ(2)ε̃ must be positive not
for any shape variation but for a variation consistent with the
constraints. Here it means we may take into account only the
volume-preserving variation. Finally, the stability condition
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states

σ ((∇ε)2 − B2ε2) + �ρ (∂n� ε2 + δε� ε) > 0 (49)

for any ε such that
∫

∂P
ε dS = 0.

Let us comment on the subsequent parts of the δ(2)ε̃. The
squared deformation gradient (∇ε)2 gives an always positive
contribution as it corresponds to the increase of the surface area
caused by deformation. Always negative, the curvature term
−B2ε2 pictures the tendency of the surface to contract locally.
The competition of these two terms leads to the well-known
Rayleigh-Plateau instability for a cylindrical spurt of fluid [16].
The two other terms come from the presence of charged phases
in the system. The first one of them, ∂n� ε2, is always negative,
because ∂n� = −n ◦ E and the electric field E for a positively
charged cluster is directed outward, like the normal vector n.
For the last term, the potential variation δε�, it is difficult to
determine its sign. Then we cannot say clearly what its effect
is on the stability. From that it is an open question whether the
presence of charge in the system makes the cluster stable or
not.

The second-order variation allows to find an equation,
being the condition for breaking the stability. The divergence
theorem applied to ε on the cluster surface [11] allows to
replace the squared gradient of ε by its Laplacian. So, we get
the expression for the second-order variation of ε̃:

δ(2)ε̃ = 1

2

∫
∂P

(−σ (∇2ε + B2ε) + �ρ (∂n� ε + δε�))ε dS.

(50)

If there exist any ε making the cluster unstable, then the energy
variation has to change its sign and the following equation must
be fulfilled:

−σ (∇2ε + B2ε) + �ρ (∂n� ε + δε�) = 0. (51)

In the absence of electrostatic interactions (�ρ → 0) the above
equation becomes the well-known Jacobi equation

∇2ε + B2ε = 0, (52)

appearing in the stability analysis of surface with a given
curvature [11]. Equation (51) represents a generalization of
the Jacobi equation in the presence of electrostatic forces. One
must mention that by the potential variation δε�, given by the
integral Eq. (46), now, the extended Jacobi equation becomes
an integrodifferential equation.

The stability condition in the form of Eq. (49) appears
to be quite general. It may be also applied to the stability
consideration for the liquid drop model of an isolated nucleus.
The only difference in comparison to our analysis is that
instead of the periodic Green function one should use the
vacuum Green function Gvac(x,x′) = 1/|x − x′|. The crucial
point is that for potential variation the reciprocity theorem is
still valid. Then the whole previous considerations could be
applied also in this case.

Let us consider the spherically symmetric nucleus with
charge Ze, radius R, and surface tension σ . The quadrupole

deformation in spherical coordinates takes the form

ε(θ,φ) = εP2(cos θ ). (53)

Here, ε is any number and P2 is Legendre polynomial. Such
deformation preserves volume in the first order as it is required
in Eq. (49). The charge contrast is �ρ = 3Ze

4πR3 and subsequent
terms are B2 = 2/R2, ∂n� = −Ze/R2, and δε� = 4π

5 �ρRε.
Putting those terms into Eq. (49) and remembering that nucleus
radius scales with mass number as R = r0A

1/3, one gets the
well-known Bohr-Wheeler condition for nuclear fission by
quadruple deformation of nucleus [17]

Z2

A
>

40πσr3
0

3e2
. (54)

IV. SUMMARY

In this work, for the first time, the equilibrium equations for
pasta phases were derived in a more rigorous treatment. We
abandon the idea of an isolated Wigner-Seitz cell. Assuming
that pastas should form periodic structures, the periodic
boundary conditions were imposed without any assumptions
on the geometry of the phases. The most relevant conclusion
is that the shape of the proton cluster P is determined by the
pair of equations

P P − PN = −2σH + �ρ (� − 〈�〉P ),

∇2�(x) = −4πρ(x).

The first is the generalized Young-Laplace equation which
connects the mean curvature H (x),x ∈ ∂P with periodic
electrostatic potential �(x). The potential itself depends on
the cluster shape, as the charge distribution is determined by
the cluster surface. Now, the cluster surface belongs to the
class of surfaces with prescribed mean curvature

H (x) = C + f (x), (55)

where C is a constant and f (x) is scaled electrostatic potential.
Finding the surface with the prescribed curvature presents

a highly nonlinear problem. Some general results based on
complex analysis are known [18] but in our case numerical
solving of the equations seems to be unavoidable. Various
numerical methods like the finite-element [19] or level-set
approach [20] could be applied. As the aim of this work was
to present the mathematically rigorous approach to periodic
structures of pasta phases the concrete results coming from
numerical calculations are going to be presented in a future
work.

We also generalized other equations governing the state of
the charged two-phase system. The β equilibrium

μn − μp − μe = 2ECoul

Ne

and virial theorem

2VPσH + Es = −ECoul + eNe(�|∂P − 〈�〉∂C).

Stability of pasta phases was never considered, up to now.
The idea of an isolated cell in the Wigner-Seitz approximation
strongly limits the inspection of this issue. Introduction of
a unit cell with periodic boundary conditions makes stability
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analysis more reliable. The full stability analysis would require
testing the second-order variation of energy with respect to
all variables. In this work we restrict ourselves to the most
interesting one—the cluster shape changes. As a result we
obtained an extension of the Jacobi equation

−σ (∇2ε + B2ε) + �ρ (∂n� ε + δε�) = 0

which allows for seeking the deformation ε which breaks the
stability.

The work opens new ways to a better understanding and
analysis of properties of pasta phases appearing in neutron
stars. It is worth it to mention the results presented here use
general conceptions of charged phases with surface tension
and as such could be also relevant for any system containing
charged fluid like in the electrowetting phenomena [21].

APPENDIX A: RECIPROCITY THEOREM

Here we show the reciprocity theorem in the case of periodic
potential and its variation. Let us write down the Green identity
for � and δ�:∫
C
(� ∇2δ� − δ� ∇2�) d3x =

∫
∂C

(� ∂nδ� − δ� ∂n�) dS.

Both the potential and its variation are solutions of the periodic
Poisson equation

− 4π

∫
C
(� δρ − δ� ρ) d3x =

∫
∂C

(� ∂nδ� − δ� ∂n�) dS.

(A1)

The left-hand side (LHS) of the above equation is 0 because
the contribution from the normal derivative of � or δ� taken
for opposite sides of the cell are canceled, for example for the
side perpendicular to the x axis

∂n�|x=−a/2 = −∂n�|x=a/2 (A2)

and similarly for the other cell sides. In the case of an isolated
cell (sphere, cylinder) instead of periodic boundary conditions
the potential and its variation obeys the Neumann boundary
condition

∂n�|∂C = 0 (A3)

and again the LHS of Eq. (A1) vanishes.

APPENDIX B: SHAPE DEFORMATION AND
SURFACE INTEGRALS

Here we illustrate how the charge variation δρ caused by
the change in cluster shape ε may be expressed by the surface
integral on an unperturbed cluster surface. As an example let
us consider a cylindrical cluster with radius R perturbed by a
deformation ε, see Fig. 4. The deformation ε(z,φ) is a function
defined on the cylinder surface r =R.

In cylindrical coordinates r,φ,z the charge distribution,
before and after deformation, is given by

ρ(r,φ,z) = ρ− + (ρ+ − ρ−) θ (R − r), (B1)

ρ ′(r,φ,z) = ρ− + (ρ+ − ρ−) θ (R + ε − r). (B2)

(a)

(b)

FIG. 4. (a) The axially symmetric deformation of cylindrical
cluster. (b) shows the charge density profile for a fixed φ,z.

By use of the Taylor expansion in powers of ε(z,φ) one gets

δρ(r,φ,z) = �ρ δ(R − r) ε(z,φ) − 1
2�ρ δ′(R − r) ε(z,φ)2.

(B3)

The expression for electrostatic energy or perturbed potential
is always represented by a linear functional of δρ integrated
with some function f [Eqs. (16), (42), (44)], which in our
example appears to be
∫
C
f δρ d3x

= �ρ

∫
S

f (R,z,φ) ε(z,φ)R dφ dz

+ �ρ

2

∫
S

(
∂f

∂r
(R,z,φ) + 1

R
f (R,z,φ)

)
ε(z,φ)2R dφ dz.

(B4)

One may notice that in the second order, the integration of
δ′(r − R) with the volume element rdrdφ dz introduces the
doubled cylinder curvature (H = − 1

2R
). For the strict proof

see [12]. The resulting surface integral may again be written
down as the volume integral if one uses the surface δ function
δS(x) which is defined by the property

∫
R3

f (x) δS(x) d3x =
∫

S

f dS, (B5)

where S is any surface inside the three-dimensional space.
In this way it appears to be convenient to represent the charge
perturbation δρ in terms of the surface δ function as in formulas
(24), (41).
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