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A b s t r a c t

We give an elementary proof of the following theorem on definability of Hausdorff limits of one 
parameter families of definable sets: let A n⊂ ×   be a bounded definable subset in o-minimal 

structure on ( , , ) + ⋅  such that for any y c c∈ ( , ), ,0 0>  the fibre A x y x Ay
n: { : ( , ) }= ∈ ∈  

is a Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim
y yA
→0

 exists 

and is definable.
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S t r e s z c z e n i e

W prezentowanej pracy przedstawiamy elementarny dowód następującego twierdzenia o de-
finiowalności granicy Hausdorffa jednoparametrowej rodziny zbiorów definiowalnych: niech 

A n⊂ ×   będzie ograniczonym zbiorem definiowalnym w strukturze o-minimalnej typu 

( , , ) + ⋅  takim, że dla dowolnego y c c∈ ( , ), ,0 0>  wókno A x y x Ay
n: { : ( , ) }= ∈ ∈  jest ko-

mórką Lipschitza ze staą L niezależną od y. Wtedy granica Hausdorffa lim
y

yA
→0

 istnieje i jest 

definiowalna.
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1. Introduction

In [1] Bröcker proved that for any family of semialgebraic sets Ay and any convergent 
sequence yv of parameters the Hausdorff limit of Ayν  exists and is semialgebraic. In [3] 
a short geometric proof of the generalization of Bröcker’s result to the case of sets definable 
in an o-minimal structure was given.

The aim of this paper is to present an elementary proof of the following one-parameter 
case of this result 

Theorem 1. Let A n⊂ ×   be a definable subset in an o-minimal structure on  

( , , ) + ⋅  such that for any y c c∈ ( , ), ,0 0>  the fibre A x y x Ay
n: { : ( , ) }= ∈ ∈  is a bounded 

Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim
y yA
→0

 exists and is  

definable.
For the convenience of the reader we present in Section 2 results on Hausdorff distance 

and o-minimal structure that we use in the proof of the main result. 

2. Preliminaries

2.1. Hausdorff distance.

Let (X, d) be a complete metric space, denote by (X) the space of all non-empty compact 
subsets in X.

Definition 1. For any two sets Y Y X1 2, ( )∈  we define Hausdorff distance as

 d Y Y d x y d x yH x Y y Y y Y x Y
( , ) max{max min ( , ),max min ( , )}1 2

1 2 2 1

=
∈ ∈ ∈ ∈

 

Remark 1. Hausdorff distance of two sets is the infimum of positive numbers ε > 0 such 
that each of them is contained in the ε-envelope of the other, i.e.
 d Y Y Y B Y Y B YH ( , ) inf{ ; ( , ) and ( , )}1 2 2 1 1 20= ⊆ ⊆ε ε ε>  

where
 B Z B zz Z( , ) ( , )ε ε= ∈  

for any Z X∈( ) and .ε> 0

Remark 2. Observe that the function d X X: ( ) ( ) × → +  defined by the following 
formula

  d Y Y d x Y x Y Y Y X( , ) : max{ ( , ) : }, , ( )1 2 2 1 1 2= ∈ ∈for  C  

where

 d x Y d x y y Y x X Y X( , ) : min{ ( , ) : }, , ( )= ∈ ∈ ∈for  C  
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cannot be used to define a metric on (X) as in general the function d  is not symmetric, 
we have only the following

 d Y Y d Y Y d Y Y YY XH ( , ) max{ ( , ), ( , )} ( ).1 2 1 2 2 1 1 2= ∈  for   

Example 2. Let Y1 = (0,15) and Y2:=[8,112] × {0}, then

  d Y Y d Y Y( , ) ( , ).1 2 2 117 113= = =  

By definition, in this example we have dH(Y1, Y2)=113.
We end this section with the following characterization of convergence in Hausdorff 

metric.
Theorem 3. Let X be a compact metric space, A A Xv, ( ), , , ,∈ = ν 1 2 3 . Then the 

sequence Av converges to A in Hausdorff metric ( )A Aν  →  iff the following two conditions 
hold

1) ( , , ) ,x A x x x A
k k kν ν ν ν ν ν∈  → ⇒ ∈0 1 2 3 0< < <

2) x A x A such that x x0 0∈ ⇒ ∃ ∈  →ν ν ν .

Proof. First we shall prove that conditions 1) and 2) are necessary for the convergence 
in Hausdorff metric.

Assume that A Aν  → ,  since X is a compact set we can find a sequence x A
k kν ν∈  

(with ν ν ν1 2 3< < <)  such that x x
kν  → 0  for some poin x0 ∈ X. We want to show that 

x0 ∈ A. Since the set A is compact and x A
k kν ν∈  there exists y A

kν ∈  such that

 d x y d x A d A A
k k k kH( , ) ( , ) ( , )ν ν ν ν= → £ 0  

Therefore d x y
k k

( , ) .ν ν  → 0  We shall show that d x A( , ) .0 0=  Observe that

 d x A d x y
k

( , ) ( , )0 0£ ν  

As y A
kν ∈  and consequently

 d x y d x x d x y
k k k kv( , ) ( , ) ( , ).0 0ν ν ν£ +  

Therefore d x A x A A( , ) .0 00= ∈ =and

Assume that A Aν  →  and x0 ∈ A. To prove that condition 2) is necessary fix a point 

xν ∈ Aν for v = 1, 2,… such that d x x d x A( , ) ( , ).0 0ν ν=   Then

 0 00 0 0£ £ £d x x d x A d x A d A AH( , ) ( , ) ( , ) ( , )ν ν ν ν=  →   

implies d(x0, xν) → 0.
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Now, we shall prove the opposite implication. Assume to the contrary that conditions 
1) and 2) hold while the sequence (Aν) does not converge to A. Then there exists ε > 0 such 
that dH(Aν, A) > ε for infinitely many ν. Consequently at least one of the inequalities

  d A A d A A( , ) ( , )ν νε ε> >or  

holds for infinitely many ν.

In the first case there exist ν ν ν1 2< < and x A
k

∈  such that d x A
k

( , ) ,ν ε>  since X is 

compact replacing x
kν

 by a subsequence we can also assume that x
kν

 converges to a point 

x0 ∈ X. From condition 1) we get x0 ∈ A which contradicts d x A
k

( , ) .ν ε>

In the second case for infinitely many v there exists yν ∈ A such that d y A( , ) ,ν ν ε>  

by compactness of A there exists a sequence ν ν1 2< <  such that d y A
k k

( , )ν ν ε>  and 

y x
kν  → 0  for some x0 ∈ A. By condition 2) there exists x A

k kvν ∈  such that x x
kν  → 0.  

In this situation we have

 ε ν ν ν ν ν ν< ≤ ≤d y A d y x d y x d x x
k k k k k k

( , ) ( , ) ( , ) ( , )0 0 0+  →  

which is a contradiction.


Remark 3. The above theorem does not hold without the assumption that X is a compact 
space.

Example 4. Let X be any non-compact complete space, fix x0 ∈ X, let xv ∈ X be a sequence 
that does not contain any convergent subsequence. Put A:= {x0}, Aν = {x0, xν}. Then conditions 
1) and 2) hold true but the sequence Aν does not converge in Hausdoff metric.

2.2. o-minimal structures.

We shall collect here the basic definitions and properties of o-minimal structures that 
are crucial for our further considerations. For a detailed exposition of o-minimal structures 
we refer the reader to [2].

Definition 2. A structure  on  consists of a collection n of subsets of n, for each 
n ∈ , such that
1. n is a boolean algebra of subsets of n,
2. n contains the diagonals d x x x x x x i j nn

n
i i( , {( , ) : } ,0 1 1 ∈ = for ≤ < ≤

3. if A ∈ n+1, then A ×  and  × A belong to n+1,
4. if A ∈ n+1, then π(A) ∈ n, where π: n+1 → n is the projection on  the first n  

coordinates.
We say that a set A ⊂ n is definable if and only if A ∈ n. A function f: A → m with 

A ⊂ n is called definable if and only if its graph is definable.



77

Definition 3. A structure  on  is o-minimal if and only if
1. {( , ) : } { } ,x y x y a a< ∈ ∈ ∈ 2 1and for each 
2. each set in  is a finite union of intervals ( , ), ,a b a b− +∞ ≤ < ≤ ∞  and points {a}.

A structure on ( , , ) + ⋅  is a structure on  containing the graphs of both addition and 
multiplication.

The main technical tool used in the studies of geometry of sets definable in o-minimal 
structures is the cell decomposition. The notions of a cell and that of a cell decomposition are 
defined inductively.

Definition 4. The cells in 1 exactly are points and open intervals.
A definable set C ⊂ n, where n > 1, is a cell if its image π(C) ⊂ n‒1 by the projection 

π : ( , , , ) ( , , ) n
n n n

nx x x x x∋  → ∈− −
−

1 1 1 1
1

   is a cell and C is one of the following two 
types:
either
 C f x x C x f xn n= = ′ ∈ × = ′Γ( ) {( , ) ( ) : ( )}π   

(and then C is called a graph)
or
 C g g x x C g x x g xn n= = ′ ∈ × ′ ′( , ) : {( , ) ( ) : ( ) ( )}1 2 1 2π  < <  

(and then C is called a band),

where f: π(C) →  is a continuous definable function (resp. g g C1 2, : ( )π →   are functions 
such that g1 < g2 on π(C) and, for each i ∈ {1, 2}, gi is either a continuous definable function 
gi: π(C) →  or gi is identically equal to ‒¥, or else gi is identically equal to +¥).

A cell C is called a k-cell (where k ∈  È {¥}), if π(C) is a k-cell and f (resp. gi, i = 1, 2 
if finite) is a k-function. Notice that every k-cell is a k-submanifold of n.

Definition 5. A cell decomposition of 1 is a finite collection of open intervals and points 
of the following form:
 {( , ), ( , ), , ( , ),{ }, ,{ }},− +¥ ¥a a a a a ak k1 1 2 1   

where a a ak1 2< < <  are real numbers.
A cell decomposition of n

 (n > 1) is a finite partition  of n into cells such that the set 
of all projections {π(C): C∈} is a cell decomposition of n‒1, where π: n → n‒1 is the 
projection on the first n ‒ 1 coordinates as in Definition 4.

Theorem 5. Let (X, d) be a compact metric space, fn: X →  be a sequence of Lipschitz 
continuous functions with a common Lipschitz constant M > 0. Then the sequence ( fn) 
converges uniformly to a function f0 if and only if their graphs converge to the graph of f0 
in Hausdorff metric.

Moreover,
 
f f

n n0 =
→
lim

¥
 is a Lipschitz function with the Lipschitz constant M.
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Proof. Let us notice that if f fn  0  then f0 is a Lipschitz function with constant M.

 f x f y f x f y M d x y M d x y
n n n n0 0( ) ( ) lim ( ) ( ) lim ( , ) ( , ).− = − ⋅ = ⋅

→ →∞ ∞
≤  

We will prove that

 d graph f graph f f f M d graph f graph fH n n H n( , ) ( ) ( , ).0 0 01£ £− + ⋅  

First we shall show the first of the inequalities:

 d graph f graph f f fH n n( , ) .0 0£ −  

 d graph f graph f d graph f graph f d graph f graH n n n( , ) max{ ( , ), ( ,0 0=   pph f0 )}  
As the inequality is symmetric with respect to f0 and fn, we may assume that 

 d graph f graph f d graph f graph fn n( , ) ( , )}0 0³  and then 

 

d graph f graph f d graph f graph f

x X d x f
H n n( , ) ( , )

max{ : (( , (
0 0

0

= =

= ∈



 xx graph f
x X d x f x x f x
x X f

n

n

)), )}
max{ : (( , ( )), ( , ( ))}
max{ :

£

£ ∈ =

= ∈
0

0 (( ) ( ) }x f x f fn n− = −0

 

Now we shall show that

 f f M d graph f graph fn H n− + ⋅0 01£ ( ) ( , )  

Fix x ∈ X and let y ∈ X such that

 
d graph f graph f d x f x y f y

d x y f x f
H n n( , ) (( , ( )), ( , ( ))

( , ) ( )
0 0

0

³  =

= + − nn ny d x f x graph f( ) (( , ( )), )³ 

0

 

Consequently

 

f x f x f x f y f y f x
M d x y d graph h f

n n n n

H

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( ,

− − + −

⋅ +
0 0

0

£ £

£ ggraph f
M d graph f graph f d graph f graph f
M

n

H n H n

)
( , ) ( , )

(

£

£ ⋅ + =

= +
0 0

1)) ( , )⋅d graph f graph fH n0

 

and taking the limits we conclude the proof.


3. Proof of the main result

Let us start with some technical results on extending Lipschitz functions
Lemma 6. Let F n: ( , )0 1 × →   be a bounded definable map such that for any  

y ∈ (0, 1) the restriction F x F y xy
n: ( , ) ∋  → ∈  satisfies the Lipschitz condition with 
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a constant  independent of y. Then for any a ∈ n the limit lim ( , )
( , ) ( , )y x a

F y x
→ 0

 exists and 

defines a definable extension of F to a function F n: [ , ) .0 1 × → 

Proof. For any a ∈ n the function ( , ) ( , )0 1 ∋  →y F y a  is definable, so there exists 

the limit F a F y a
y

( , ) : lim ( , ).0
0

=
→

 Now, F y x F a F y x F y a F y a( , ) ( , ) ( , ) ( , ) ( , )− − + − 0 £
 

 F a L x a F y a F a( , ) ( , ) ( , ) ,0 0£ − + −  hence the limit in question exists. Since, the graph 

of F  is the closure of graph (F), the function F  is definable.


Lemma 7 (Banach–McShane–Whitney extension theorem, [6]). Let f : S →  be 
L-lipschitz function on the subset S in a metric space X. Then the formula
 F x f x L d x x x S( ) : sup{ ( ) ( , ) : }= ′ − ⋅ ′ ′∈  

For x ∈ X defines the extension of the function f such that F: X →  is L-lipschitz.
Now, we are in a position to give the proof of our main result
Proof of Theorem 1. Induction with respect to n. For n = 0 it is obvious. Let A1 be the 

projection of A onto  × n‒1, by the inductive hypothesis the limit A A
y y0 0 1: lim ( )=

→
 exists 

and is definable. Without loss of generality we may assume that dim(A1)y and dim(Ay) is 
constant for y ∈ (0, c), so all cells Ay are of the same type (a graph or a band).

If all fibres are graphs, there exists a definable function F: A1 →  such that A = graph (F), 
for any y ∈ (0, c), the function Fy is Lipschitz with a constant L independent of y. Using 
lemmas 6 and 7 we can extend this function to a definable function F c n: [ , ) ,0 × →   set 
 F x F x0 0( ) : ( , ),=  for x ∈ n.

Let C graph F A: ( ),= 

0 0  we shall show lim .
y yA C

↔
=

0
 Let yv ∈ (0, c) be a sequence such 

that y x A x xyν ν νν
 → ∈  →0 0, ,let  be a convergent sequence, we shall prove that 

x ∈ C. Let x x x x x xn nν ν
ν= ′ = ′( , ) ( , ).and 0 0

0
 We have ( , ) ( ) , .y x A x Ayν ν ν

′ ∈ ′ ∈1 0 0so  By the 

definition F x F y x x xn n0 0
0( ) lim ( , ) lim ,′ = ′ = =→ →ν ν ν ν

ν
¥ ¥  hence x ∈ C.

Now, let x ∈ C and yv ∈ (0, c) be a sequence such that yν  → 0.  Since ′ ∈x A0 0 ,  
x F xn

0
0 0= ′ ( )  there is ′ ∈x A yν ν

( )1  such that ′  → ′x xν 0.  Put x F y xn n
ν

ν= ′( , ),  we get x Ayν ν
∈  

and x F y x F x F x xn n
ν

ν ν= ′  → ′ = ′ =( , ) ( , ) ( ) . 0 0 0 0
0  Consequently we have x xν  → 0  which 

proves lim .
y yA C

→
=

0

If  is a band for y ∈ (0, c) proceeding in a similar way, we have A = (G,H), where 
G H A, : 1  →   and define  G H0 0, .  We shall show that
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 C x x A G x x H xn
n:{ : , ( ) ( )}∈ ′∈ ′ ′ 0 0 0

 £ £  

is the Hausdorff limit of Ay as y y c → ∈0 0, ( , ).

Let yν ∈ (0, c) be a sequence such that y x A x xyν ν νν
 → ∈  →0 0, , .let  Let 

x x x x x xn
v

nν ν= ′ = ′( , ) ( , ).and 0 0
0  We have ( , ) ( ) , .y x A x Ayν ν ν

′ ∈ ′ ∈1 0 0so  By the definition 

 G x G y x G x G y xv0 0 0 0( ) lim ( , ), ( ) lim ( , )′ = ′ ′ = ′→ →¥ ¥ν ν ν ν ν  so

  G x x H xn0 0
0

0 0( ) ( )′ ′£ £  

and hence x0 ∈ C.
Now, fix x0 ∈ C and yν ∈ (0, c) such that yν  → 0.  We have ′ ∈x A0 0  and G x0 0( )′ £  

x H xn
0

0 0£  ( ).′  There exists ′ ∈x A yν ν
( )1  such that ′  → ′x xν 0.

If  G x H x0 0( ) ( )′ = ′  put x G y x H y xn
v = ′ ′1

2
( ( , ), ( , )).ν ν ν ν  If  G x H x0 0( ) ( )′ ′<  put 

x
x G x

H x G x
H y x G y x Gn

nν
ν ν ν ν=

− ′
′ − ′

′ − +
0

0 0

0 0 0 0



 

( )
( ( ) ( ))

( ( , ) ( , )) (yy xν ν, ).

Then x A x xyν νν
∈  →and 0.
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