TECHNICAL TRANSACTIONS FUNDAMENTAL SCIENCES

HAUSDORFF LIMITS OF ONE PARAMETER FAMILIES OF DEFINABLE SETS IN O-MINIMAL STRUCTURES

GRANICE HAUSDORFFA JEDNOPARAMETROWYCH RODZIN ZBIORÓW DEFINIOWALNYCH W STRUKTURACH O-MINIMALNYCH

Abstract

We give an elementary proof of the following theorem on definability of Hausdorff limits of one parameter families of definable sets: let $A \subset \mathbb{R} \times \mathbb{R}^{n}$ be a bounded definable subset in o-minimal structure on $(\mathbb{R},+, \cdot)$ such that for any $y \in(0, c), c>0$, the fibre $A_{y}:=\left\{x \in \mathbb{R}^{n}:(y, x) \in A\right\}$ is a Lipschitz cell with constant L independent of y. Then the Hausdorff limit $\lim _{y \rightarrow 0} \bar{A}_{y}$ exists and is definable.

Keywords: Hausdorff limit, definable sets, o-minimal structure

Streszczenie

W prezentowanej pracy przedstawiamy elementarny dowód następującego twierdzenia o definiowalności granicy Hausdorffa jednoparametrowej rodziny zbiorów definiowalnych: niech $A \subset \mathbb{R} \times \mathbb{R}^{n}$ będzie ograniczonym zbiorem definiowalnym w strukturze o-minimalnej typu $(\mathbb{R},+, \cdot)$ takim, że dla dowolnego $y \in(0, c), c>0$, wókno $A_{y}:=\left\{x \in \mathbb{R}^{n}:(y, x) \in A\right\}$ jest komórką Lipschitza ze staą L niezależną od y. Wtedy granica Hausdorffa $\lim _{y \rightarrow 0} \bar{A}_{y}$ istnieje i jest definiowalna.
Stowa kluczowe: granica Hausdorffa, zbiory definiowalne, struktury o-minimalne
DOI: 10.4467/2353737XCT.16.140.5751

[^0]
1. Introduction

In [1] Bröcker proved that for any family of semialgebraic sets A_{y} and any convergent sequence y_{v} of parameters the Hausdorff limit of $A_{y_{v}}$ exists and is semialgebraic. In [3] a short geometric proof of the generalization of Bröcker's result to the case of sets definable in an o-minimal structure was given.

The aim of this paper is to present an elementary proof of the following one-parameter case of this result

Theorem 1. Let $A \subset \mathbb{R} \times \mathbb{R}^{n}$ be a definable subset in an o-minimal structure on $(\mathbb{R},+, \cdot)$ such that for any $y \in(0, c), c>0$, the fibre $A_{y}:=\left\{x \in \mathbb{R}^{n}:(y, x) \in A\right\}$ is a bounded Lipschitz cell with constant L independent of y. Then the Hausdorff limit $\lim _{y \rightarrow 0} \bar{A}_{y}$ exists and is definable.

For the convenience of the reader we present in Section 2 results on Hausdorff distance and o-minimal structure that we use in the proof of the main result.

2. Preliminaries

2.1. Hausdorff distance.

Let (X, d) be a complete metric space, denote by $\mathcal{C}(X)$ the space of all non-empty compact subsets in X.

Definition 1. For any two sets $Y_{1}, Y_{2} \in \mathcal{C}(X)$ we define Hausdorff distance as

$$
d_{H}\left(Y_{1}, Y_{2}\right)=\max \left\{\max _{x \in Y_{1}} \min _{y \in Y_{2}} d(x, y), \max _{y \in Y_{2}} \min _{x \in Y_{1}} d(x, y)\right\}
$$

Remark 1. Hausdorff distance of two sets is the infimum of positive numbers $\varepsilon>0$ such that each of them is contained in the ε-envelope of the other, i.e.

$$
d_{H}\left(Y_{1}, Y_{2}\right)=\inf \left\{\varepsilon>0 ; Y_{2} \subseteq B\left(Y_{1}, \varepsilon\right) \text { and } Y_{1} \subseteq B\left(Y_{2}, \varepsilon\right)\right\}
$$

where

$$
B(Z, \varepsilon)=\bigcup_{z \in Z} B(z, \varepsilon)
$$

for any $Z \in \mathcal{C}(X)$ and $\varepsilon>0$.
Remark 2. Observe that the function $\tilde{d}: \mathcal{C}(X) \times \mathcal{C}(X) \rightarrow \mathbb{R}_{+}$defined by the following formula

$$
\tilde{d}\left(Y_{1}, Y_{2}\right):=\max \left\{\tilde{d}\left(x, Y_{2}\right): x \in Y_{1}\right\}, \quad \text { for } \quad Y_{1}, Y_{2} \in \mathcal{C}(X)
$$

where

$$
\tilde{d}(x, Y):=\min \{d(x, y): y \in Y\}, \quad \text { for } \quad x \in X, Y \in \mathcal{C}(X)
$$

cannot be used to define a metric on $\mathcal{C}(X)$ as in general the function \tilde{d} is not symmetric, we have only the following

$$
d_{H}\left(Y_{1}, Y_{2}\right)=\max \left\{\tilde{d}\left(Y_{1}, Y_{2}\right), \tilde{d}\left(Y_{2}, Y_{1}\right)\right\} \quad \text { for } \quad Y_{1} Y_{2} \in \mathcal{C}(X) .
$$

Example 2. Let $Y_{1}=(0,15)$ and $Y_{2}:=[8,112] \times\{0\}$, then

$$
\tilde{d}\left(Y_{1}, Y_{2}\right)=17=113=\tilde{d}\left(Y_{2}, Y_{1}\right) .
$$

By definition, in this example we have $d_{H}\left(Y_{1}, Y_{2}\right)=113$.
We end this section with the following characterization of convergence in Hausdorff metric.

Theorem 3. Let X be a compact metric space, $A, A_{v} \in \mathcal{C}(X), v=1,2,3, \ldots$. Then the sequence A_{v} converges to A in Hausdorff metric $\left(A_{v} \longrightarrow A\right)$ iff the following two conditions hold

1) $\left(x_{v_{k}} \in A_{v_{k}}, x_{v_{k}} \longrightarrow x_{0}, v_{1}<v_{2}<v_{3}<\ldots\right) \Rightarrow x_{0} \in A$,
2) $x_{0} \in A \Rightarrow \exists x_{v} \in A_{v} \quad$ such that $x_{v} \longrightarrow x_{0}$.

Proof. First we shall prove that conditions 1) and 2) are necessary for the convergence in Hausdorff metric.

Assume that $A_{v} \longrightarrow A$, since X is a compact set we can find a sequence $x_{v_{k}} \in A_{v_{k}}$ (with $v_{1}<v_{2}<v_{3}<\ldots$) such that $x_{v_{k}} \longrightarrow x_{0}$ for some poin $x_{0} \in X$. We want to show that $x_{0} \in A$. Since the set A is compact and $x_{v_{k}} \in A_{v_{k}}$ there exists $y_{v_{k}} \in A$ such that

$$
d\left(x_{v_{k}}, y_{v_{k}}\right)=\tilde{d}\left(x_{v_{k}}, A\right) \leq d_{H}\left(A_{v_{k}}, A\right) \rightarrow 0
$$

Therefore $d\left(x_{v_{k}}, y_{v_{k}}\right) \longrightarrow 0$. We shall show that $\tilde{d}\left(x_{0}, A\right)=0$. Observe that

$$
\tilde{d}\left(x_{0}, A\right) \leq d\left(x_{0}, y_{v_{k}}\right)
$$

As $y_{v_{k}} \in A$ and consequently

$$
d\left(x_{0}, y_{v_{k}}\right) \leq d\left(x_{0}, x_{v_{k}}\right)+d\left(x_{v_{k}}, y_{v_{k}}\right) .
$$

Therefore $\tilde{d}\left(x_{0}, A\right)=0$ and $x_{0} \in \bar{A}=A$.
Assume that $A_{v} \longrightarrow A$ and $x_{0} \in A$. To prove that condition 2) is necessary fix a point $x_{v} \in A_{v}$ for $v=1,2, \ldots$ such that $d\left(x_{0}, x_{v}\right)=\tilde{d}\left(x_{0}, A_{v}\right)$. Then

$$
0 \leq d\left(x_{0}, x_{v}\right)=\tilde{d}\left(x_{0}, A_{v}\right) \leq \tilde{d}\left(x_{0}, A_{v}\right) \leq d_{H}\left(A, A_{v}\right) \longrightarrow 0
$$

$\operatorname{implies} d\left(x_{0}, x_{v}\right) \rightarrow 0$.

Now, we shall prove the opposite implication. Assume to the contrary that conditions 1) and 2) hold while the sequence $\left(A_{v}\right)$ does not converge to A. Then there exists $\varepsilon>0$ such that $d_{H}\left(A_{v}, A\right)>\varepsilon$ for infinitely many v. Consequently at least one of the inequalities

$$
\tilde{d}\left(A_{v}, A\right)>\varepsilon \quad \text { or } \quad \tilde{d}\left(A, A_{v}\right)>\varepsilon
$$

holds for infinitely many v.
In the first case there exist $v_{1}<v_{2}<\ldots$ and $x_{v_{k}} \in A$ such that $\tilde{d}\left(x_{v_{k}}, A\right)>\varepsilon$, since X is compact replacing $x_{v_{k}}$ by a subsequence we can also assume that $x_{v_{k}}$ converges to a point $x_{0} \in X$. From condition 1) we get $x_{0} \in A$ which contradicts $\tilde{d}\left(x_{v_{k}}, A\right)>\varepsilon$.

In the second case for infinitely many v there exists $y_{v} \in A$ such that $\tilde{d}\left(y_{v}, A_{v}\right)>\varepsilon$, by compactness of A there exists a sequence $v_{1}<v_{2}<\ldots$ such that $\tilde{d}\left(y_{v_{k}}, A_{v_{k}}\right)>\varepsilon$ and $y_{v_{k}} \longrightarrow x_{0}$ for some $x_{0} \in A$. By condition 2) there exists $x_{v_{k}} \in A_{v_{k}}$ such that $x_{v_{k}} \longrightarrow x_{0}$. In this situation we have

$$
\varepsilon<\tilde{d}\left(y_{v_{k}}, A_{v_{k}}\right) \leq d\left(y_{v_{k}}, x_{v_{k}}\right) \leq d\left(y_{v_{k}}, x_{0}\right)+d\left(x_{0}, x_{v_{k}}\right) \longrightarrow 0
$$

which is a contradiction.

Remark 3. The above theorem does not hold without the assumption that X is a compact space.

Example 4. Let X be any non-compact complete space, fix $x_{0} \in X$, let $x_{v} \in X$ be a sequence that does not contain any convergent subsequence. Put $A:=\left\{x_{0}\right\}, A_{v}=\left\{x_{0}, x_{v}\right\}$. Then conditions 1) and 2) hold true but the sequence A_{v} does not converge in Hausdoff metric.

2.2. o-minimal structures.

We shall collect here the basic definitions and properties of o-minimal structures that are crucial for our further considerations. For a detailed exposition of \boldsymbol{o}-minimal structures we refer the reader to [2].

Definition 2. A structure \mathcal{S} on \mathbb{R} consists of a collection \mathcal{S}_{n} of subsets of \mathbb{R}^{n}, for each $n \in \mathbb{N}$, such that

1. \mathcal{S}_{n} is a boolean algebra of subsets of \mathbb{R}^{n},
2. \mathcal{S}_{n} contains the diagonals $d\left(x_{0}, x\left\{\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}^{n}: x_{i}=x_{i}\right\}\right.$ for $1 \leq i<j \leq n$,
3. if $A \in \mathcal{S}_{n+1}$, then $A \times \mathbb{R}$ and $\mathbb{R} \times A$ belong to \mathcal{S}_{n+1},
4. if $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_{n}$, where $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates.
We say that a set $A \subset \mathbb{R}^{n}$ is definable if and only if $A \in \mathcal{S}_{n}$. A function $f: A \rightarrow \mathbb{R}^{m}$ with $A \subset \mathbb{R}^{n}$ is called definable if and only if its graph is definable.

Definition 3. A structure \mathcal{S} on \mathbb{R} is o-minimal if and only if

1. $\{(x, y): x<y\} \in \mathcal{S}_{2}$ and $\{a\} \in \mathcal{S}_{1}$ for each $a \in \mathbb{R}$,
2. each set in is a finite union of intervals $(a, b),-\infty \leq a<b \leq+\infty$, and points $\{a\}$.

A structure on $(\mathbb{R},+, \cdot)$ is a structure on \mathbb{R} containing the graphs of both addition and multiplication.

The main technical tool used in the studies of geometry of sets definable in o-minimal structures is the cell decomposition. The notions of a cell and that of a cell decomposition are defined inductively.

Definition 4. The cells in \mathbb{R}^{1} exactly are points and open intervals.
A definable set $C \subset \mathbb{R}^{n}$, where $n>1$, is a cell if its image $\pi(C) \subset \mathbb{R}^{n-1}$ by the projection $\pi: \mathbb{R}^{n} \ni\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \longrightarrow\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ is a cell and C is one of the following two types:
either

$$
C=\Gamma(f)=\left\{\left(x^{\prime}, x_{n}\right) \in \pi(C) \times \mathbb{R}: x_{n}=f\left(x^{\prime}\right)\right\}
$$

(and then C is called a graph)
or

$$
C=\left(g_{1}, g_{2}\right):=\left\{\left(x^{\prime}, x_{n}\right) \in \pi(C) \times \mathbb{R}: g_{1}\left(x^{\prime}\right)<x_{n}<g_{2}\left(x^{\prime}\right)\right\}
$$

(and then C is called a band),
where $f: \pi(C) \rightarrow \mathbb{R}$ is a continuous definable function (resp. $g_{1}, g_{2}: \pi(C) \rightarrow \overline{\mathbb{R}}$ are functions such that $g_{1}<g_{2}$ on $\pi(C)$ and, for each $i \in\{1,2\}, g_{i}$ is either a continuous definable function $g_{i}: \pi(C) \rightarrow \mathbb{R}$ or g_{i} is identically equal to $-\infty$, or else g_{i} is identically equal to $+\infty$).

A cell C is called a \mathcal{C}^{k}-cell (where $k \in \mathbb{N} \cup\{\infty\}$), if $\pi(C)$ is a \mathcal{C}^{k}-cell and f (resp. $g_{i}, i=1,2$ if finite) is a \mathcal{C}^{k}-function. Notice that every \mathcal{C}^{k}-cell is a \mathcal{C}^{k}-submanifold of \mathbb{R}^{n}.

Definition 5. A cell decomposition of \mathbb{R}^{1} is a finite collection of open intervals and points of the following form:

$$
\left\{\left(-\infty, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{k},+\infty\right),\left\{a_{1}\right\}, \ldots,\left\{a_{k}\right\}\right\}
$$

where $a_{1}<a_{2}<\ldots<a_{k}$ are real numbers.
A cell decomposition of $\mathbb{R}^{n}(n>1)$ is a finite partition \mathcal{C} of \mathbb{R}^{n} into cells such that the set of all projections $\{\pi(C)$: $C \in \mathcal{C}\}$ is a cell decomposition of \mathbb{R}^{n-1}, where $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ is the projection on the first $n-1$ coordinates as in Definition 4.

Theorem 5. Let (X, d) be a compact metric space, $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of Lipschitz continuous functions with a common Lipschitz constant $M>0$. Then the sequence $\left(f_{n}\right)$ converges uniformly to a function f_{0} if and only if their graphs converge to the graph of f_{0} in Hausdorff metric.

Moreover, $f_{0}=\lim _{n \rightarrow \infty} f_{n}$ is a Lipschitz function with the Lipschitz constant M.

Proof. Let us notice that if $f_{n} \rightrightarrows f_{0}$ then f_{0} is a Lipschitz function with constant M.

$$
\left|f_{0}(x)-f_{0}(y)\right|=\lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{n}(y)\right| \leq \lim _{n \rightarrow \infty} M \cdot d(x, y)=M \cdot d(x, y)
$$

We will prove that

$$
d_{H}\left(\text { graph } f_{0}, \operatorname{graph} f_{n}\right) \leq\left\|f_{n}-f_{0}\right\| \leq(M+1) \cdot d_{H}\left(\text { graph } f_{0}, \operatorname{graph} f_{n}\right) .
$$

First we shall show the first of the inequalities:

$$
d_{H}\left(\text { graph } f_{0}, \text { graph } f_{n}\right) \leq\left\|f_{n}-f_{0}\right\| .
$$

$d_{H}\left(\right.$ graph $\left.f_{0}, \operatorname{graph} f_{n}\right)=\max \left\{\tilde{d}\left(\right.\right.$ graph $\left.f_{0}, \operatorname{graph} f_{n}\right), \tilde{d}\left(\right.$ graph $\left.\left.f_{n}, \operatorname{graph} f_{0}\right)\right\}$
As the inequality is symmetric with respect to f_{0} and f_{n}, we may assume that $\tilde{d}\left(\right.$ graph $\left.\left.f_{0}, \operatorname{graph} f_{n}\right) \geq \tilde{d}\left(\operatorname{graph} f_{n}, \operatorname{graph} f_{0}\right)\right\}$ and then

$$
\begin{aligned}
& d_{H}\left(\operatorname{graph} f_{0}, \operatorname{graph} f_{n}\right)=\tilde{d}\left(\text { graph } f_{0}, \text { graph } f_{n}\right)= \\
& \quad=\max \left\{x \in X: \tilde{d}\left(\left(x, f_{0}(x)\right), \operatorname{graph} f_{n}\right)\right\} \leq \\
& \quad \leq \max \left\{x \in X: d\left(\left(x, f_{0}(x)\right),\left(x, f_{n}(x)\right)\right\}=\right. \\
& \quad=\max \left\{x \in X:\left|f_{0}(x)-f_{n}(x)\right|\right\}=\left\|f_{0}-f_{n}\right\|
\end{aligned}
$$

Now we shall show that

$$
\left\|f_{n}-f_{0}\right\| \leq(M+1) \cdot d_{H}\left(\text { graph } f_{0}, \text { graph } f_{n}\right)
$$

Fix $x \in X$ and let $y \in X$ such that

$$
\begin{aligned}
& d_{H}\left(\text { graph } f_{0}, \operatorname{graph} f_{n}\right) \geq \tilde{d}\left(\left(x, f_{0}(x)\right),\left(y, f_{n}(y)\right)=\right. \\
& \quad=d(x, y)+\left|f_{0}(x)-f_{n}(y)\right| \geq \tilde{d}\left(\left(x, f_{0}(x)\right), \text { graph } f_{n}\right)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\mid f_{n}(x) & -f_{0}(x)\left|\leq\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f_{0}(x)\right| \leq\right. \\
& \leq M \cdot d(x, y)+d_{H}\left(\operatorname{graph} f_{0}, \operatorname{graph} f_{n}\right) \leq \\
& \leq M \cdot d_{H}\left(\text { graph } f_{0}, \operatorname{graph} f_{n}\right)+d_{H}\left(\operatorname{graph} f_{0}, \operatorname{graph} f_{n}\right)= \\
& =(M+1) \cdot d_{H}\left(\text { graph } f_{0}, \operatorname{graph} f_{n}\right)
\end{aligned}
$$

and taking the limits we conclude the proof.

3. Proof of the main result

Let us start with some technical results on extending Lipschitz functions
Lemma 6. Let $F:(0,1) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded definable map such that for any $y \in(0,1)$ the restriction $F_{y}: \mathbb{R}^{n} \ni x \longrightarrow F(y, x) \in \mathbb{R}$ satisfies the Lipschitz condition with
a constant independent of y. Then for any $a \in \mathbb{R}^{n}$ the limit $\lim _{(y, x) \rightarrow(0, a)} F(y, x)$ exists and defines a definable extension of F to a function $\tilde{F}:[0,1) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Proof. For any $a \in \mathbb{R}^{n}$ the function $(0,1)$ э $y \longrightarrow F(y, a)$ is definable, so there exists the limit $\tilde{F}(0, a):=\lim _{y \rightarrow 0} F(y, a)$. Now, $|F(y, x)-\tilde{F}(0, a)| \leq|F(y, x)-F(y, a)|+\mid F(y, a)-$ $\tilde{F}(0, a)|\leq L| x-a|+|F(y, a)-\tilde{F}(0, a)|$, hence the limit in question exists. Since, the graph of \tilde{F} is the closure of $\operatorname{graph}(F)$, the function \tilde{F} is definable.

Lemma 7 (Banach-McShane-Whitney extension theorem, [6]). Let $f: S \rightarrow \mathbb{R}$ be L-lipschitz function on the subset S in a metric space X. Then the formula

$$
F(x):=\sup \left\{f\left(x^{\prime}\right)-L \cdot d\left(x, x^{\prime}\right): x^{\prime} \in S\right\}
$$

For $x \in X$ defines the extension of the function f such that $F: X \rightarrow \mathbb{R}$ is L-lipschitz.
Now, we are in a position to give the proof of our main result
Proof of Theorem 1. Induction with respect to n. For $n=0$ it is obvious. Let A_{1} be the projection of A onto $\mathbb{R} \times \mathbb{R}^{n-1}$, by the inductive hypothesis the limit $A_{0}:=\lim _{y \rightarrow 0} \overline{\left(A_{1}\right)_{y}}$ exists and is definable. Without loss of generality we may assume that $\operatorname{dim}\left(A_{1}\right)_{y}$ and $\operatorname{dim}\left(A_{y}\right)$ is constant for $y \in(0, c)$, so all cells A_{y} are of the same type (a graph or a band).

If all fibres are graphs, there exists a definable function $F: A_{1} \rightarrow \mathbb{R}$ such that $A=\operatorname{graph}(F)$, for any $y \in(0, c)$, the function F_{y} is Lipschitz with a constant L independent of y. Using lemmas 6 and 7 we can extend this function to a definable function $\tilde{F}:[0, c) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, set $\tilde{F}_{0}(x):=\tilde{F}(0, x)$, for $x \in \mathbb{R}^{n}$.

Let $C:=\operatorname{graph}\left(\tilde{F}_{0} \mid A_{0}\right)$, we shall show $\lim _{y \leftrightarrow 0} A_{y}=C$. Let $y_{v} \in(0, c)$ be a sequence such that $y_{v} \longrightarrow 0$, let $x_{v} \in A_{y_{v}}, x_{v} \longrightarrow x_{0}$ be a convergent sequence, we shall prove that $x \in C$. Let $x_{v}=\left(x_{v}^{\prime}, x_{n}^{v}\right)$ and $x_{0}=\left(x_{0}^{\prime}, x_{n}^{0}\right)$. We have $\left(y_{v}, x_{v}^{\prime}\right) \in\left(A_{1}\right)_{y_{v}}$, so $x_{0}^{\prime} \in A_{0}$. By the definition $\tilde{F}_{0}\left(x_{0}^{\prime}\right)=\lim _{v \rightarrow \infty} F\left(y_{v}, x_{v}^{\prime}\right)=\lim _{v \rightarrow \infty} x_{n}^{v}=x_{n}^{0}$, hence $x \in C$.

Now, let $x \in C$ and $y_{v} \in(0, c)$ be a sequence such that $y_{v} \longrightarrow 0$. Since $x_{0}^{\prime} \in A_{0}$, $x_{n}^{0}=\tilde{F}_{0}\left(x_{0}^{\prime}\right)$ there is $x_{v}^{\prime} \in\left(A_{1}\right)_{y_{v}}$ such that $x_{v}^{\prime} \longrightarrow x_{0}^{\prime}$. Put $x_{n}^{v}=F\left(y_{n}, x_{v^{\prime}}\right)$, we get $x_{v} \in A_{y_{v}}$ and $x_{n}^{v}=F\left(y_{v}, x_{v}^{\prime}\right) \longrightarrow \tilde{F}\left(0, x_{0}^{\prime}\right)=\tilde{F}_{0}\left(x_{0}^{\prime}\right)=x_{n}^{0}$. Consequently we have $x_{v} \longrightarrow x_{0}$ which proves $\lim _{y \rightarrow 0} A_{y}=C$.

If is a band for $y \in(0, c)$ proceeding in a similar way, we have $A=(G, H)$, where $G, H: A_{1} \longrightarrow \mathbb{R}$ and define $\tilde{G}_{0}, \tilde{H}_{0}$. We shall show that

$$
C:\left\{x \in \mathbb{R}^{n}: x^{\prime} \in A_{0}, \tilde{G}_{0}\left(x^{\prime}\right) \leq x_{n} \leq \tilde{H}_{0}\left(x^{\prime}\right)\right\}
$$

is the Hausdorff limit of A_{y} as $y \longrightarrow 0, y \in(0, c)$.
Let $y_{v} \in(0, c)$ be a sequence such that $y_{v} \longrightarrow 0$, let $x_{v} \in A_{y_{v}}, x_{v} \longrightarrow x_{0}$. Let $x_{v}=\left(x_{v}^{\prime}, x_{n}^{v}\right)$ and $x_{0}=\left(x_{0}^{\prime}, x_{n}^{0}\right)$. We have $\left(y_{v}, x_{v}^{\prime}\right) \in\left(A_{1}\right)_{y_{v}}$, so $x_{0}^{\prime} \in A_{0}$. By the definition $\tilde{G}_{0}\left(x_{0}^{\prime}\right)=\lim _{v \rightarrow \infty} G\left(y_{v}, x_{v}^{\prime}\right), \tilde{G}_{0}\left(x_{0}^{\prime}\right)=\lim _{v \rightarrow \infty} G\left(y_{v}, x_{v}^{\prime}\right)$ so

$$
\tilde{G}_{0}\left(x_{0}^{\prime}\right) \leq x_{n}^{0} \leq \tilde{H}_{0}\left(x_{0}^{\prime}\right)
$$

and hence $x_{0} \in C$.
Now, fix $x_{0} \in C$ and $y_{v} \in(0, c)$ such that $y_{v} \longrightarrow 0$. We have $x_{0}^{\prime} \in A_{0}$ and $\tilde{G}_{0}\left(x_{0}^{\prime}\right) \leq$ $x_{n}^{0} \leq \tilde{H}_{0}\left(x_{0}^{\prime}\right)$. There exists $x_{v}^{\prime} \in\left(A_{1}\right)_{y_{v}}$ such that $x_{v}^{\prime} \longrightarrow x_{0}^{\prime}$.

If $\quad \tilde{G}_{0}\left(x^{\prime}\right)=\tilde{H}_{0}\left(x^{\prime}\right) \quad$ put $\quad x_{n}^{v}=\frac{1}{2}\left(G\left(y_{v}, x_{v}^{\prime}\right), H\left(y_{v}, x_{v}^{\prime}\right)\right) . \quad$ If $\quad \tilde{G}_{0}\left(x^{\prime}\right)<\tilde{H}_{0}\left(x^{\prime}\right) \quad$ put $x_{n}^{v}=\frac{x_{n}^{0}-\tilde{G}_{0}\left(x_{0}^{\prime}\right)}{\left(\tilde{H}_{0}\left(x_{0}^{\prime}\right)-\tilde{G}_{0}\left(x_{0}^{\prime}\right)\right)}\left(H\left(y_{v}, x_{v}^{\prime}\right)-G\left(y_{v}, x_{v}\right)\right)+G\left(y_{v}, x_{v}\right)$.

Then $x_{v} \in A_{y_{v}}$ and $x_{v} \longrightarrow x_{0}$.

References

[1] Bröcker L., Families of semialgebraic sets and limits, [in:] Real algebraic (Rennes, 1991), volume 1524 of Lecture Notes in Math., 145-162, Springer 1992.
[2] van den Dries L., Tame topology and o-minimal structures, Mathematical Society Lectures Notes, 248, Cambridge University Press, London 1998.
[3] Kocel-Cynk B., Pawłucki W., Valette A., A short geometric proof that Hausdorff limits are definable in any o-minimal structure, Adv. Geom., 14, no. 1, 2014, 49-58.
[4] Lion J.-M., Speissegger P., A geometric proof of the definability of Hausdorff limits, Selecta Math. (N.S.), 10, no. 3, 2004, 377-390.
[5] Łojasiewicz S., Ensembles semi-analytiques, IHES, 1965.
[6] McShane E.J., Extension of range of functions, Bull. Amer. Math. Soc., 40, 1934, 837-842.

[^0]: * Beata Kocel-Cynk (bkocel@pk.edu.pl), Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology.

