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A b s t r a c t
The well-known statistical tests have been developed on the basis of many additional assumptions, among which the normality 
of a data source distribution is one of the most important. The outcome of a test is a p-value which may is interpreted as an estimation 
of a risk for a false negative decision i.e. it is an answer to the question “how much do I risk if I deny?”. This risk estimation is a base 
for a decision (after comparing with a significance level α): reject or not. This sharp trigger – p-level greater than α or not – ignores 
the fact that a context is rather smooth and evolves from “may be” through “rather not” to “certainly not”. An alternative option 
for such assessments is proposed by a fuzzy statistics, particularly by Buckley’s approach. The fuzzy approach introduces a better 
scale for expressing decision uncertainty. This paper compares three approaches: a classic one based on a normality assumption, 
Buckley’s theoretical one and a bootstrap-based one.
Keywords:  statistical test, normality of distribution, fuzzy statistics, bootstrap

S t r e s z c z e n i e
Powszechnie znane testy statystyczne były opracowane przy wielu dodatkowych założeniach. Jednym z najważniejszych jest nor-
malność rozkładu populacji źródłowej. Wynikiem testu jest wartość p, która jest interpretowana jako ocena ryzyka decyzji fałszy-
wie negatywnej, tj. jest to odpowiedź na pytanie „ile ryzykuję jeżeli neguję?”. Ta ocena ryzyka jest podstawą do podjęcia decyzji 
(po porównaniu z krytycznym poziomem istotności α): odrzucić czy nie. Takie ostre przełączenie – wartość p większa od α czy też 
nie – ignoruje fakt, że kontekst jest raczej gładki i ewoluuje od „może tak” przez „raczej nie” do „zdecydowanie nie”. Alternatywą 
dla takich ocen jest statystyka rozmyta, a szczególnie podejście Buckleya. Podejście rozmyte wprowadza lepszą skalę do wyra-
żenia niepewności decyzji. Niniejszy artykuł porównuje trzy podejścia: klasyczne zakładające normalność, teoretyczne Buckleya 
i bootstrapowe.
Słowa  kluczowe:  test statystyczny, normalność rozkładu, statystyka rozmyta, bootstrap
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1.  Introduction

The typical statistical approach leads from a certain knowledge about a sample to an 
uncertain knowledge (more precisely: hypothesis) about a general population from which 
the sample was taken. The non-parametric test is the first step, the parametric test for the 
selected and previously not rejected distribution is the second step. Computed estimators 
define the most probable distribution and its value is the limit to which a long series frequency 
goes. This definition involves simultaneously Kolmogorov axiom-based probability [1] 
and von Mises frequency-based probability [2].

As the beginning of a fuzzy approach to statistical problems, statistical hypothesis 
testing, in particular, the article of Casals and Giles [3] may be recognized. They generalized 
Neymann-Pearson lemma, where a concept of a fuzzy information system proposed by 
Tanaka et al. [4] was utilized. It allowed to construct the uniformly most powerful test for 
point-based hypotheses with the assumed precise significance level. It is characteristic of 
this approach that a fuzzy event taken from a limited set of fuzzy observations is considered 
and values of a membership for all considered events must sum to strict 1. In  2004, 
Buckley [5] proposed and then in 2006 [6] extended a different approach introducing 
fuzzy  conditions, particularly fuzzy significance level. In 2006 Grzegorzewski [7] 
proposed  a  general classification of  a possible fuzzy generalization for the classic theory 
of a statistical hypothesis testing, where three main elements constituting a decision system 
were distinguished. The theory of a statistical hypothesis testing is only the specific element 
of the system. The three main elements are: data, hypothesis and conditions. Each of these 
elements may be described precisely or imprecisely. The traditional theory requires the 
precise description for each of these elements, however all possible combinations are eight.

In the terms of Grzegorzewski’s model, the Casals and Giles’s proposal may be described 
as the triplet: fuzzy data, crisp hypothesis and crisp conditions. Buckley’s proposal may be 
treated as: crisp data, crisp hypothesis and fuzzy conditions. To authors’ knowledge, other 
combinations have not been proposed until now (Table 1).

In the further section, the authors evaluate the test for the equal of means and compare 
the results from classic, Buckley’s and bootstrap approaches.

T a b l e  1
Triplets of possible crisp/fuzzy combinations of Grzegorzewski’s model

HYPOTHESIS

crisp fuzzy

DATA DATA

CONDITIONS crisp fuzzy crisp fuzzy

crisp classic Casals & Giles not known not known

fuzzy Buckley not known not known not known
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2.  Materials and Methods

2.1.  Raw Data 

The raw data was taken from the biochemistry investigation [8]. The dataset was 
divided into two subsets, each of 20 values (Table 2). 

T a b l e  2
The raw data 

Data source Values

Series H 4.50; 3.96; 4.11; 5.01; 4.87; 4.31; 3.20; 5.09; 4.61; 4.70
4.49; 3.51; 3.19; 3.29; 2.55; 3.10; 4.11; 3.10; 3.21; 4.67

Series M 4.00; 3.06; 5.90; 4.86; 5.70; 5.21; 3.51; 4.29; 4.61; 5.49
4.30; 4.90; 5.51; 4.39; 4.01; 3.90; 3.70; 2.81; 5.42; 3.50

The data are values of the callus tissue growth factor related to two variants H and M of 
the special medium modified with various additives. The test of means equality should detect 
possible differences between effects of these two variants.

2.2.  Classic test

The means and the standard deviations for both variants were calculated using classic 
formulas:
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The test for the equality of means with an unknown but mutually equal variances was 
performed with test statistic t calculated from the formula:
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where distribution of t goes asymptotically to t Student distribution with (nH  +  nM  –  2) 
degree of freedom.

2.3.  Buckley’s approach

The detailed calculations related to the above-mentioned data were described by Pietraszek 
and Skrzypczak-Pietraszek [9]. In short, the test statistic has been fuzzified according to 
formula:
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where both variances and the means difference are of specific triangular form. It should 
be noted that Eq. 4 is specifically designed for unknown means and known variances 
but  unfortunately Buckley did not a present formula for the variant with the unknown 
variances.

2.4.  Bootstrap approach

The bootstrap procedure was conducted according to Shao and Tu [10] instructions. 
Both of the raw subsets were treated as sources for bootstrap draw, i.e. both subsets were 
randomly replicated and the test statistic t was evaluated from (Eq. 3) and then collected. 
After 40  000 draws, the collected values were transformed into descriptive statistics and 
a histogram.

3.  Analysis

3.1.  Classic approach 

The descriptive statistics were evaluated for both subsets (Table 3). The test statistic t 
has the value of 1.789 at 38 degrees of freedom. It led to the p-value of 0.082.

T a b l e  3
The descriptive statistics for raw data series 

Data source Mean Variance Standard deviation Sample size

Series H 3.98 0.59 0.77 20

Series M 4.45 0.82 0.90 20

3.2.  Buckley’s approach

The fuzzified estimators of descriptive statistics were calculated for both the subsets. 
Next, the fuzzified estimator of the test statistic t was calculated according to Eq. 4. The result 
is presented in Fig. 1. as a triangular-like form of the fuzzy number.
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3.3.  Bootstrap approach

The bootstrap approach was made in the following manner: the draws were made 
from both subsets creating new subsampled bootstrap subsets. Then, the test statistic t 
was evaluated based on descriptive statistics calculated for both subsets. The value of the 
test statistic was collected and next iteration of the bootstrap process was initiated. After 
40  000  iteration, the test statistic t collection was processed and its descriptive statistics 
(Table 4) and the histogram (Fig. 2) were created. The p-value evaluated from the bootstrap 
was 0.067.

Fig.  1.  Fuzzy estimator of test statistic t obtained for the fuzzified test of means equality

Fig.  2.  Distribution of the test statistic t obtained from the bootstrap approach
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T a b l e  4
The descriptive statistics for the bootstrapped distribution  

of the test statistic T

Statistic Value

Minimum –2.72

Maximum 7.74

Mean 1.85

Median 1.83

Variance 1.06

4.  Conclusion

The main characteristics of all approaches are consistent and the decisions which may 
be made on these results are the same: do not reject equality of the data subset means. 
On  the contrary, the contexts of these approaches are different. The classic one assumes 
the normality of data and asymptotic equality of the test statistic t with Student distribution. 
The  bootstrap approach is non-parametric and reveals the shape of distribution derived 
from raw data without additional assumptions. The Buckley’s fuzzy approach expresses 
the subjective opinion about the possibility of such a value for the test statistic t. While 
the classic and the bootstrap approaches have the same deeper foundations, the Buckley’s is 
far more different because of subjective foundations. The Buckley’s approach appears to be 
useful if the description of data is vague.
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