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Abstract:
In this paper we summarize the results of our research concerned with the development,

implementation and evaluation of a software framework for wireless sensor networks
localization – High Performance Localization System (HPLS). The system can be used
to calculate positions of sensing devices (network nodes) in the deployment area, and
to tune and verify various localization schemes through simulation. It provides tools
for data acquisition from a workspace, estimation of inter-node distances, calculation
of geographical coordinates of all nodes with unknown position and results evaluation.
Received Signal Strength measurements are utilized to support the localization process.
Trilateration, simulated annealing and genetic algorithm are applied to calculate the
geographical coordinates of network nodes. The utility, efficiency and scalability of the
proposed localization system HPLS have been justified through simulation and testbed
implementation. The calculations have been done in parallel using the map-reduce
paradigm and the HPC environment formed by a cluster of servers. The testbed networks
were formed by sensor devices manufactured by Advantic Technology (clones of TelosB
platform). A provided case study demonstrates the localization accuracy obtained for
small-, medium- and large-size multihop networks.

Keywords: Wireless Sensor Networks, localization, positioning, stochastic optimization,
real life deployments, HPC, testbed verification.

1 Introduction

Advances in wireless communication and electronics
have enabled the design and development of tiny,
multifunctional and energy-aware devices providing
sensing, computing and communicating capabilities.
These devices can be standalone or can be integrated
and deployed to form a Wireless Sensor Network
(WSN) in support to a variety of civil, environmental
and military applications. Recently, it is observed
that monitoring and control of physical environments
become a hot spot in the technology landscape. New

sensing devices with different phenomena’s monitoring
capabilities are offered by a number of companies. They
are capable to communicate with each other and in a
multihop way propagate sensing information to a base
station that can play a role of the operation center.
While the set of challenges in sensor networks are
diverse, researches have mainly focused on fundamental
challenges, which include: planning, optimal sensor
deployment, localization, reliable and energy-aware
inter-node communication. In the last few years, wireless
sensor networking has been a very active research field
in both academia and the industry with a wide variety of
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applications and research projects. An extensive survey
of the state of the art in WSN programming approaches
and WSN applications is provided in literature Akyildiz
& Vuran (2010), Beutel (2005), Farooqi & Khan (2012),
Karl & Willig (2005), Rodrigues & Neves (2010), Wang
et al. (2010).

However, the performance of a WSN strongly
depends on the way sensor devices were positioned in
the area. Moreover, many applications of wireless sensor
networks, e.g., monitoring, target tracking, search, etc.,
require the correlation of sensor measurements with
physical locations. Even if the accessible knowledge
about positions of nodes is only approximate, there are
great opportunities for use of various network services,
location-based routing, data aggregation, etc. In general,
self-organization and localization capabilities are one of
the most important requirements in sensor networks.

The goal of localization is to assign geographical
coordinates to each node with unknown position in
the deployment area. The location of sensor devices
can be obtained in two ways: 1) recording data on
the geographical coordinates of sensors during their
deployment in a workspace, 2) fitting sensors with a
GPS system. Both methods have significant drawbacks.
Manually distributing and recording positions of each
sensor device is impractical for large networks. In many
applications, sensors are distributed randomly in ad
hoc fashion, which is cheaper, and in some cases the
only possible solution. Another approach is to use the
GPS system to collect data on the location of sensors.
Although this solution can be used in different types
of networks, it is very costly, both due to the price
of GPS, and to the increased power consumption that
may decrease the lifetime of a WSN. Moreover, adding
an extra device increases the size and weight of the
network node. Due to the drawbacks of both mentioned
solutions, numerous automated systems to localization
in WSN have been developed. With regard to limited
resources of a WSN all localization schemes have to
work with minimal energy requirements, scale to large
networks, and also achieve good accuracy in the presence
of interference and irregularities and give the solution in
the reasonable time.

The localization techniques can be classified
with respect to various criterion (see Niewiadomska-
Szynkiewicz (2012)). They differ on hardware’s
capabilities, nodes properties and deployment,
measurement and calculation methods, computing
organization and assumed precision, etc. Many
localization strategies estimate positions of nodes based
on merely partial knowledge of the location of the set
of nodes (anchors) in a network and measurements
of inter-node distances. An anchor (also known as
a beacon node) is defined as a node that is aware
of its own location, either through manual pre-
programming during deployment or the GPS system.
With regard to hardware’s capabilities of sensor devices
inter-node distances can be estimated based only on
connectivity information (range free localization) or

Euclidean distance calculated based on radio signal
strength measurements or angle estimates (range based
localization). The common range free methods are
hop-counting techniques. The range based methods
often require additional equipment such as antenna,
signal generator, etc. In accordance with the available
hardware they exploit angle of arrival (AoA), time of
arrival (ToA), time difference of arrival of two different
signals (TDoA) and received signal strength indicator
(RSSI). The survey of these technologies is provided
in Akyildiz & Vuran (2010), Barsocchi et al. (2009),
Benkic et al. (2008), Karl & Willig (2005), Motter et al.
(2011).

We focus on the range based techniques and
application of global optimization solvers to estimate
geographical coordinates assigned to network nodes. In
our approach the localization problem is formulated
as a nonlinear optimization problem. In this paper we
compare five localization systems utilizing algorithms:
Trilateration (T), Simulated Annealing (SA), Genetic
Algorithm (GA), and two hybrid schemes that use a
combination of a geometry of triangles, along with
a stochastic optimization – Trilateration & Simulated
Annealing (TSA) and Trilateration & Genetic Algorithm
(TGA).

The main contribution of the paper is to present
a software framework – High Performance Localization
System (HPLS) – that provides tools to localization
of wireless sensor devices that form various types of
networks. The system implements mentioned above
localization methods. It can operate in two modes. In
the on-line mode the system is used to calculate a
location of each device with unknown position in the
real life sensor network. In the off-line mode it can be
used to verify, evaluate and compare the performance of
various localization schemes that are integrated with the
framework.

In general, WSN localization is a complex task and
usually involves cumbersome calculations, especially
when consider large-size networks with hundreds
or thousands of nodes. Moreover, it was observed
(see Niewiadomska-Szynkiewicz & Marks (2009),
Niewiadomska-Szynkiewicz (2012)) that different
methods are suitable for different network topologies.
Therefore, development of high accuracy localization
system that can be applied to various networks requires
multiple execution of the localization schemes for
different values of parameters specific to the considered
algorithms and various test networks. Therefore, High
Performance Computing (HPC) techniques are employed
in the HPLS to speed up localization of WSNs.

The HPLS has been validated for a numerous
synthetic and real life wireless sensor networks. The
results of experiments show both the utility and
efficiency of the framework and accuracy and scalability
of the provided localization algorithms.

The paper is structured as follows. Section 2 gives
a short overview of localization methods and systems.
The localization problem formulation and description
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of techniques used to calculate inter-node distances are
presented in Section 3. In Section 4 an overview of the
HPLS is provided. The results of the HPLS performance
evaluation and the comparison of selected localization
schemes through simulation and testbed implementation
are described in Sections 5 and 6. Finally, conclusions
are drawn in Section 7.

2 Related Works

Numerous systems for WSNs localization have been
developed. An overview of various approaches and
attempts to classify different techniques is presented
in the literature: Akyildiz & Vuran (2010), Ji
(2011), Niewiadomska-Szynkiewicz (2012), Anderson
et al. (2007), Mao & Fidan (2009), Sarigiannidis
(2007). The localization strategies can generally be
divided into coarse-grained localization techniques
that consist of finding approximate coordinates of
nodes in a network and fine-grained strategies that
determine the exact positions of unknown nodes for
exact distance measurements but require much more
communication and computation. Various techniques
are used to estimate the geographical coordinates of
sensor devices. The commonly used simple methods are
geometrical techniques, i.e., triangulation, trilateration
and multitrilateration reported in Akyildiz & Vuran
(2010), Beutel (2005). A number of protocols and
location systems implementing these techniques have
been developed. The simple system implementing the
trilateration method is called Ad-hoc Positioning System
(APS), and is described in Niculescu & Nath (2001).
Two versions of APS – range free (DV-hop) and range
based (DV-distance) are proposed. Another systems
– Ad Hoc Localization System (AHLoS) described in
Savvides et al. (2001) and the system for dynamic indoor
localization described in Wessels et al. (2010) apply the
multitrilateration method to calculate the position of
nodes in a network.

Other popular range free and range based location
systems utilize Multidimensional Scaling (MDS) to the
localization of nodes. In general, MDS is a set of
data analysis techniques used for exploring similarities
or dissimilarities in data Mao & Fidan (2009). The
philosophy of localization techniques based on MDS is
to formulate a mathematical model to convert distance
information into the coordinate vector. A number of
MDS-based localization systems have been developed
and described in the literature Costa et al. (2006), Shang
et al. (2004), Vo et al. (2008). Some of them utilize
clustering techniques Medidi et al. (2006), Shu et al.
(2009).

Recently, popular approach to WSN localization is to
formulate an optimization problem, and solve it using
linear or nonlinear solvers. The standard formulation
is a nonconvex optimization problem with nonlinear
performance function. Various optimization techniques
are used to solve such optimization problem. The

most popular approaches are: quadratic, linear and
nonlinear programming. The first class of methods relax
the original nonconvex problem in order to obtain
a quadratic one. The range free localization system
OPDMQP using quadratic programming is described
in Lee et al. (2010). The widely used technique is
to transform the nonconvex problem into a standard
semidefinite programming (SDP) problem and use
the linear solvers to solve the relaxed problem. The
formulation of SDP localization problem is provided
in Biswas & Ye (2004). The SDP-based localization
systems are described in Tseng (2007), Wang et
al. (2008). The application of lagrangian multiplied
method to the localization problem is described
in Li et al. (2010). The common strategy is to
apply heuristics to solve the localization problem.
The localization systems employing deterministic and
stochastic heuristics such as: tabu search Shekofteh et al.
(2010), simulated annealing Niewiadomska-Szynkiewicz
& Marks (2009), Kannan et al. (2005, 2006), genetic
algorithm Niewiadomska-Szynkiewicz & Marks (2009),
evolutionary algorithm Sayadnavard et al. (2010),
Vecchio et al. (2012) and particle swarm optimization
Chuang & Wu (2008) have been developed.

Another solutions are hybrid schemes that combine
various methods for computing the coordinate vector.
In most approaches trilateration or multitrilateration is
used to calculate an initial solution, which is improved
in the second step, see Tam et al. (2006), Niewiadomska-
Szynkiewicz & Marks (2009). Optimization algorithms
are usually employed in this step to calculate the final
solution. Hybrid technique seems to be a good solutions
to speed up the calculation process without decreasing
the accuracy of the location estimation.

3 Range Based Localization

We have developed two hybrid schemes – two-phase
range based methods that combine trilateration, along
with a stochastic optimization for performing sensor
localization. The received signal strength measurements
are utilized to inter-node distances estimation. In
this section we present the formulation of our model
and describe calculation methods. We start from the
description of the network to be localized, and then
we present techniques applied to inter-node distances
estimation and geographical coordinates calculation
provided in the HPLS.

3.1 Network System Definition

Let us assume that the network is a physical system
modeled as a set Ss of wireless sensor devices (network
nodes) si, i = 1, . . . , I, each with position expressed as
l-dimensional coordinates si ∈ Rl. The set Ss consists of
two types of devices: M anchor nodes, each with known
position in a workspace expressed as l-dimensional
coordinates ak ∈ Rl, k = 1, . . . ,M , and N non-anchor
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nodes xj ∈ Rl, j = 1, . . . , N with unknown locations.
We can introduce an Euclidean inter-node distances
for all pairs of nodes in the network, i.e., dkj = ||ak −
xj || between anchors and non-anchors, and dij = ||xi −
xj || between two non-anchors, and i 6= j. In most
practical applications of range based methods, each
sensor emits a known signal that allows neighboring
nodes to estimate their distances. Therefore, we can
define sets of neighboring nodes as collections of nodes
located within radio ranges of given nodes. Hence, we
introduce the following sets for all anchor and non-
anchor nodes:

Nk = {(k, j) : dkj ≤ rk}, j = 1, . . . , I, (1)

Ni = {(i, j) : dij ≤ ri}, j = 1, . . . , I, (2)

where rk and ri denote the maximal transmission ranges
of k-th anchor node and i-th non-anchor node.

3.2 Inter-node Distances Calculation

The range based localization schemes use absolute inter-
node distance estimates or angle estimates in location
calculation. In real life applications the estimates d̃kj
and d̃ij of true physical distances dkj and dij are
produced by various measurement methods (see Akyildiz
& Vuran (2010), Barsocchi et al. (2009), Benkic et al.
(2008), Beutel (2005), Karl & Willig (2005), Motter
et al. (2011)). In case of devices equipped with the
radio transceiver the RSSI (Received Signal Strength
Indicator) can be successfully used to estimate distances.
Our localization system (HPLS) implements the RSSI
method due to low cost (no additional hardware),
easy configuration and deployment. The disadvantage
of this solution is low level of measurement accuracy
because of high variability of the RSSI value Benkic et
al. (2008), Ramadurai & Sichitiu (2003). Nevertheless,
many authors indicate that new radio transceivers can
give RSSI measurements good enough to be a reasonable
distance estimator Barsocchi et al. (2009), Srinivasan &
Levis (2006).

We have used the radio signal propagation model
outlined in Marks & Niewiadomska-Szynkiewicz (2011),
Rappapport (2002) to transform RSSI measurements
into inter-node distances. This model indicates that
received signal power decreases with a distance, both in
outdoor and indoor workspaces. Therefore, the power
of the signal received by a receiver P r at a distance d
between a sender and a receiver can be defined as follows:

P r(d)[dBm] = P t[dBm]− PL(d)[dB], (3)

where P t denotes power used by a sender to transmit
the signal and PL(d) (path loss) the average degradation
of a signal with a distance d. PL(d) in (3) is modeled
as a function of a distance d raised to an attenuation
constant n that indicates the rate, at which the path loss
increases with a distance:

PL(d)[dB] = PL(d0)[dB] + 10nlog

(
d

d0

)
, (4)

where d0 is a close-in reference distance (for IEEE
802.15.4 usually d0=1m). The formulas (3) and (4) can
be used to estimate the average distance d̃ij between
each pair of nodes (i, j) in a network. Hence, the estimate
of each inter-node distance is a function of the received
signal strength:

d̃ij = d0 · 10
Pt−PL(d0)

10n · 10−
Pr
ij

10n = η · 10θ·P
r
ij , (5)

where PL(d0) denotes the path loss at the reference
distance d0, P t output power of the transmitter, P rij
received signal strength measured for each pair (i, j) of

nodes, η = d0 · 10
Pt−PL(d0)

10n and θ = − 1
10n .

In summary, in on-line localization of real life
networks we can estimate the distances between each
pair of non-anchor nodes and distances between each pair
consisting of anchor and non-anchor node using RSSI.

3.3 Geographical Coordinates Calculation

The next step of our localization process is to calculate
the geographical coordinates. Hence, the general
localization problem statement is as follows. Given noisy
distance measurements d̃kj , d̃ij and positions of anchor
nodes ak ∈ Rl, k = 1, . . . ,M estimate the locations of
all nodes xj ∈ Rl, j = 1, . . . , N with unknown positions.
We can formulate the model of the optimization problem
that minimizes the sum of errors in sensor positions for
fitting the distance measurements. This model can be
described as follows:

min
x̂

{
J =

M∑
k=1

∑
j∈Nk

(||ak − x̂j ||2 − d̃kj)2

+

N∑
i=1

∑
j∈Ni

(||x̂i − x̂j ||2 − d̃ij)2
}
, (6)

where x̂i and x̂j denote estimated positions of nodes i

and j, d̃kj and d̃ij distances between pairs of nodes (k, j)
and (i, j) calculated according to the method described
in Section 3.2, Nk and Ni sets of neighbors of anchor and
non-anchor nodes defined in (2).

We propose to use SA or simple GA to solve the
problem (6). In case of hybrid schemes the optimization
algorithm is executed after preliminary trilateration.

4 Localization System Overview

The High Performance Localization System (HPLS)
is a parallel software framework to localization of
wireless sensor devices that form various types of
networks. Moreover, it is a powerful and scalable
platform for testing various localization schemes on
parallel computers or computer clusters. The current
version of the system implements several localization
schemes. Due to an open architecture the HPLS can be
easily extended with implementations of new approaches
to localization of nodes in a network.
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Figure 1 The components of the HPLS.

4.1 HPLS Architecture

The HPLS is composed of five main components (see
Fig. 1):

• RP: Runtime Platform.

• SDAM: Sensor Data Acquisition Module.

• NBM: Network Builder Module.

• DEM: Distance Estimation Module.

• PCM: Position Calculation Module.

The enumerated modules are described in the following
subsections. Moreover, two additional components are
provided: Database (DB) for recording data of all
examined networks and results of calculations and GUI
that provides tools for supporting the interaction with a
user.

4.2 Runtime Platform

The Runtime Platform (RP) is the system kernel
that manages calculations and communication between
running processes. RP provides an environment
for effective computing on a parallel computer or
a cluster of workstations. It is formed by two
components: Distributed Computing Manager (DCM)
and Computational Server (CS). The DCM module
is responsible for splitting each calculation task into
subtasks and allocating these subtasks into processors or
computers. Moreover, DCM is responsible for managing
the calculations, interprocess communication and load

Figure 2 Architecture of the Computational Server (CS).

balancing. Each DCM module can be used to manage
many computational servers.

The Computational Server (CS) is responsible for
managing the calculation of location of sensor devices
in a workspace. Sequentially, the following operations
are performed: all initial parameters specified to solvers,
and given WSN topology are loaded, next the module
responsible for location calculation is executed and the
results of calculations – estimated positions of nodes
are sent to GUI. To speedup the preliminary tuning
of a localization solver to a given WSN application,
and testing various localization schemes the multithread
computing is performed. Many CS modules can be
executed simultaneously, each on different, remote
machine. The number of threads should not exceed the
number of processor cores in the computing system. The
XML configuration file stores the information about a
number of available cores, a communication port and IP
address. Each CS module provides two local repositories
that contain a collection of localization methods and
the networks to be localized. The architecture of the
Computational Server is presented in Fig. 2.

The client-server communication model is used for
inter-node communication. The communication between
the DCS and each CS is based on TCP/IP and BSD
sockets. The communication protocol is implemented
in the XML scheme. The idea of this protocol was to
develop the simple mechanism that fulfills flexibility and
failure resistance.

4.3 Sensor Data Acquisition Module

The Sensor Data Acquisition Module (SDAM) is
responsible for data gathering from real life deployments
of sensor devices in a workspace. The following
measurements are necessary to determine positions of
nodes utilizing methods described in Section 3.2 –
geographical coordinates of anchor nodes and RSSI
measurements for all pairs of nodes. The SDAM operates
in two steps. In the first one – manual, the user
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Figure 3 Scheme of the data acquisition system.

has to provide some necessary data, i.e., number of
anchor nodes, coordinate vectors of anchor nodes (only
if the data are gathered from a network with anchor
nodes deployed manually). In the second step all RSSI
measurements are acquired automatically. The SDAM
collects data from the network through a selected sensor,
which plays a role of an edge router. The edge router
is connected to the HPLS via PPP protocol (over USB
connector) and has the capability to communicate with
other sensor nodes using the IEEE 802.15.4 protocol.
The data gathering process is depicted in Fig. 3.

The data collection protocol is based on BLIP 2.0
stack. BLIP 2.0 – Berkeley Low-power IP stack, is the
reimplementation in TinyOS of a number of IP-based
protocols including IPv6, RPL and CoAP. Detailed
description can be found in Silva et al. (2009), Rodrigues
& Neves (2010). It is assumed that each sensor node in
a network is responsible for exchanging packets with all
nodes in its neighbourhood and collecting a vector of
pairs neighbour id and RSSI measurement. Next, these
vectors are sent using multi-hop unicast transmission
to the edge router and then registered in the HPLS
database.

4.4 Network Builder Module

The aim of the Network Builder Module (NBM) is to
create and store a network to be localized. Two scenarios
are available due to possible applications of the HPLS.

In the first scenario, the real life wireless sensor
network may is mapped in the HPLS database. All
data about sensors deployments and measurements are
provided by the SDAM.

The second scenario is to create synthetic networks
for the purpose of simulations. The NBM implements
a network generator that is responsible for modeling
networks with various low-power topologies. A user
can add, remove and modify networks by selecting
appropriate topology, channel and radio parameters.
Low-power link modeling provided by HPLS is based on
Link Layer Model for MATLAB described in Zuniga &
Krishnamachari (2004). The user can define parameters
for generated networks concerning both channel and

Figure 4 Part of the HPLS GUI responsible for setting
simulation parameters.

radio modelling, as it can be find in Fig. 4. Channel
modelling is mostly dependant on the environment
where the WSN network is deployed. In our real-life
deployments (outdoor, on the ground/grass) we observed
typical pathloss for reference distance between 45 and
55 dB depending on altitude of sensor mounting and
such parameters can be applied for simulating network
with bigger number of nodes. The simulation module
allows on quite accurate radio behaviour modelling for
example we can generate networks with RSS receptions
characteristic for CC2420 radio chip used in our testbed
like power transmission equal -25 dBm and noise level
equal -95 dBm.

4.5 Distance Estimation Module

The Distance Estimation Module (DEM) transforms
RSSI measurements gathered by the SDAM into
inter-node distance estimates using the radio signal
propagation model presented in Section 3.2. Three
approaches to distance estimation are provided:
Ordinary Least Square Method (OLS), Weighted Least
Square Method (WLS) and Geometric Combined
Least Square Method (GCLS). Ale three methods
utilize stochastic optimization methods solving global
optimization problem with different formulations of
performance measures. They are described in details
and evaluated in Marks & Niewiadomska-Szynkiewicz
(2011).
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4.6 Position Calculation Module

The aim of the Position Calculation Module (PCM) is
to calculate the coordinates of non-anchor nodes in the
network using inter-node distances. The PCM provides
a library of methods that can be used to solve the
localization problem (6). The current version of this
library consists of five techniques: simple Trilateration
(T), Simulated Annealing (SA), Genetic Algorithm
(GA), Trilateration & Simulated Annealing (TSA) and
Trilateration & Genetic Algorithm (TGA).

The fastest and the most popular localization
technique is Trilateration. There are many attempts
in the literature how to use geometry of triangles to
locate the motes in the network, e.g. Niculescu & Nath
(2001). However it is obvious that the quality of such
solution is not especially good because of the noise in the
measurements. That is why more sophisticated methods
are provided like: SA, GA or hybrid techniques (TSA,
TGA). Although the evolutionary or genetic algorithms
are recognized as faster approaches we decided to
provide also simulated annealing as the structure of the
localization task is similar to travelling salesman problem
(TSP).

The general scheme of the SA algorithm described
in Mao et al. (2007) with some modifications was
implemented and is provided in the PCM library. In our
implementation the cooling process is slowed down w.r.t.
the basic SA algorithm. At each value of the coordinating
parameter T (temperature), not one but P ·N non-
anchor nodes are randomly selected for modification
(where P is a reasonably large number to make the
system into thermal equilibrium). The efficiency and
robustness of this algorithm strongly depend on control
parameters of the algorithm. All these parameters
influence the speed of convergence and accuracy of the
solution. To obtain the general purpose algorithm all
parameters have to be tuned up for diverse network
topologies.

The scheme of the GA algorithm presented in
Goldberg (1989) was implemented and is provided in the
PCM library. The abstract representations of candidate
solutions (chromosomes) are vectors of coordinates
of all non-anchor nodes: [x11, . . . , x

l
1, x

1
2, . . . , x

l
2, . . . ,

x1N , . . . , x
l
N ], xji ∈ R where i = 1, . . . , N , j = 1, . . . , l.

The initial population consists of a set of such
chromosomes. The fitness function is defined in (6).
The tournament selection of size equal two is used
at the reproduction stage. The crossover operator is
defined as discrete recombination similar to elements
exchanging applied to binary vectors. Both coordinates
are recombined simultaneously. The mutation operator
modifies the components of a given chromosome by
adding a vector of generated l ·N Gaussian random
variables. The elitist succession model is chosen. The GA
algorithm efficiency and robustness strongly depend on
a size of population and control parameters specific to
the genetic operators.

The PCM provides implementations of two hybrid
methods: TSA that combines multitrilateration
and simulated annealing and TGA that combines
multitrilateration and genetic algorithm. These
localization methods operate in two phases: 1) the
auxiliary solution (localization) is provided using the
geometry of triangles, 2) the results of initial localization
are refined using the stochastic optimization (simulated
annealing in TSA and genetic algorithm in TGA). The
additional functionality (correction) is introduced to
the second phase of the algorithm to remove incorrect
solutions involved by the distances measurement errors.
The detailed description of TSA and TGA methods is
provided in Niewiadomska-Szynkiewicz & Marks (2009).
The screenshot of Graphical User Interface illustrated
operation of Runtime Platform with distributed PCM
modules is presented in Figure 5.

Figure 5 The HPLS graphical user interface.

4.7 Workflow in the HPLS

Th HPLS provides framework whose main faces are:
the real data acquisition from a workspace, the network
model creation and calculation of positions of nodes
in a network. During an experiment performed under
the HPLS, one can distinguish two main stages: a
preparatory stage and an experimental stage. The
preparatory stage depends on the usage mode of
the HPLS. In case of the on-line localization process
all real data are gathered from the workspace and
a network model is created and displayed. In case
of the off-line testing and tuning of the localization
schemes on synthetic networks the network topologies
have to be generated. The user is asked to enter
parameters concerned with the whole network (size
of the deployment area, number of nodes, number of
anchor nodes and their positions, radio communication
range). Finally, the user is asked to configure the
experiment – choose the localization algorithm and
enter all parameters specific to this algorithm. The
experimental stage begins when all decisions regarding
the network system and the solvers are made and
saved in the HPLS database. The Distance Estimation
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Figure 6 Workflow in the HPLS.

Module (DEM) is executed. The results of calculations,
i.e., estimates of inter-node distances are stored in
the database. Next, the Position Calculation Module
(PCM) is executed. Final results of calculations, i.e.,
geographic coordinates of nodes with unknown location
are displayed and stored. The workflow in the HPLS is
depicted in Fig. 6.

5 Numerical Verification and Performance
Evaluation of HPLS

All localization schemes implemented in the HPLS
were validated through simulation. A number of tests
were performed to cover a wide range of network
system configurations including a size of a network
(a number of nodes), a number of anchor nodes, a
deployment of anchor nodes, a radio range and a
RSSI measurement error. The metric for evaluating
all considered localization schemes was the accuracy
of the location estimates versus the deployment and
computation cost. To compare the performance of the
tested algorithms we used the mean error between the
computed and the true location of each node in a
workspace, defined as follows

LE =
1

N
·
∑N
i=1((xi − x̂i)2 + (yi − ŷi)2)

r2
· 100% (7)

Table 1 Basic characteristics of test networks.

Network Net1 Net2 Net3 Net4 Net5

I 200 500 1000 2000 4000

N 20 50 100 200 400

CM 15.00 23.40 13.35 16.64 14.17

n 3.50 3.50 3.80 4.00 3.60

σ 3.20 3.20 3.20 3.50 4.00

d0 1 m 1 m 1 m 1 m 1 m

PL(d0) 55 dB 55 dB 55 dB 55 dB 55 dB

nf [dBm] -100 -100 -100 -100 -100

Pt[dBm] -3 -7 -3 -10 -7

area side 100 m 100 m 200 m 200 m 500 m

where (xi, yi) denote the true location of the sensor
node i, (x̂i, ŷi) is the estimated location of the sensor
node i and r denotes the radio range. The location error
LE is expressed as a percentage error. It is normalized
with respect to the radio range to allow comparison of
results obtained for networks formed by various number
of devices equipped with different transceivers.

The results of numerous experiments are presented
and discussed in Niewiadomska-Szynkiewicz & Marks
(2009), Niewiadomska-Szynkiewicz (2012). In this paper
we compare the performance of four localization
schemes: trilateration (T), simulated annealing (SA) and
two hybrid techniques TSA and TGA. The experiments
were performed for synthetic WSNs (Net1 - Net5)
consisting of 200 – 4000 nodes with randomly generated
positions (both anchor and non-anchor nodes) in a
square region. The networks were generated using NBM
module tuned up using parameters obtained in the
experimental field. Therefore n and σ parameters are on
the level characterizing our experiments done outdoor,
d0 and PL(d0) as well as the noise level are constant.
Since we considered much bigger networks then we
are able to deploy in our testbed we used square
side between 100 and 500 meters and transmission
power level (Pt) from values available for CC2420
radio chip (this radio chip offers 8 different levels of
transmitters power equal: 0, -1, -3, -5, -7, -10, -15 and
-25 dBm). Detailed characteristics of test networks, i.e.
all mentioned parameters plus number of nodes (I),
number of anchor nodes (M) and connectivity measure
(CM) are collected in Table 1. The connectivity measure
in Table 1 denotes the average number of connections
between nodes in a given network.

For the purpose of simulations values of distances
between neighboring nodes i and j in all synthetic
networks were calculated according to the scheme
described in section based on Low-power link modeling.

The averaged values of the localization errors LE
computed due to the formula (7) for Net1 – Net5, all
tested localization systems and five executions of all
tests are collected in Table 2. The results of calculations
show that all localization systems based on stochastic
optimization produce much more accurate localization
with respect to the simple trilateration. A localization
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Table 2 Localization error LE (various networks and
algorithms).

Network Net1 Net2 Net3 Net4 Net5

T 9.94 3.36 30.62 6.79 21.04

SA 5.53 0.70 3.69 1.32 1.54

TSA 0.78 0.41 0.76 0.44 0.83

TGA 3.44 0.56 0.55 0.44 0.70

Table 3 Calculation time in seconds (various networks
and algorithms).

Network Net1 Net2 Net3 Net4 Net5

T 0.01 0.03 0.14 0.52 2.36

SA 2.71 5.41 24.69 63.77 211.93

TSA 1.61 3.55 11.31 29.95 114.89

TGA 5.75 15.08 28.88 78.80 273.55

accuracy strongly depends on the applied optimization
solver – in our experiments the SA algorithm gave better
accuracy GA. The most promising approach seems to
be the hybrid scheme TSA. Regardless of network size
the localization error LE has not exceeded 1%. In some
tasks TGA allows us to obtain better accuracy, however
the results quality depends more on task structure.

The scalability of all considered localization systems
is depicted in Table 3. The times used to localization of
non-anchor nodes in five networks expressed in seconds
are collected. As it was expected the calculation time for
the simple trilateration scheme is almost unnoticeable as
it does not exceed few seconds for every network from the
testing set. The localization systems utilizing stochastic
optimization require more extensive calculations and are
thus much more time consuming. It is obvious that
the computation time strongly depends on the size of
given network and increases faster then linearly with the
number of nodes. The TSA method is the fastest one but
the differences between computation times of SA, TSA
and TGA decrease for higher dimension networks.

6 Testbed Validation

The simulation is commonly used technique to verify the
localization schemes and tune their parameters before
the application in a real network. Unfortunately, the
performance of the range based localization scheme
strongly depends on the accuracy of inter-node distances
estimation. Hence, it is very important to validate the
developed system in testbed networks.

Therefore, a testbed networks were built and set
up to facilitate tests of four localization schemes
utilizing four methods: T, SA, TSA and TGA. Six
testbed networks composed of 36 - 49 CM3000 motes
(http://www.advanticsys.com/shop/mtmcm3000msp-p-
6.html) manufactured by Advantic Technology (clone
of TelosB platform) and one base station were created.
The architecture of the CM3000 mote is presented
in Fig. 7. The operating system was TinyOS 2.1.2

Figure 7 The MTM-CM3000 mote architecture.

Figure 8 The Advantic CM3000 during deployment.

(www.tinyos.net/). It is an open source, highly portable
operating system that can be used to on-line operation
of WSN formed of real low-power wireless devices.

Photos from real-life deployments are presented in
Figures 8 and 9. All of the experiments were done
on a plain field 12m by 12m. The transmission power
was reduced to the lowest officially supported by Texas
Instruments CC240 radio chip value equal -25dBm.
Depending on experiment nodes were placed in a regular
manner on a grid or in a random way.

As it was mentioned in section 4.3 the data collection
procedure is based on Berkeley Low-power IP stack
(IPv6). All the nodes forming experimental networks
use the same image of operating system, which realizes
tasks in the event-triggered manner. It means that there
is no tasks to run periodically to send data to base
station. The aim of such implementation is the energy
conservation. As a consequence the base station needs
to query all other motes about their image of network
– how many neighbours do they have and how strength
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Figure 9 One of the tested topologies during outdoor
testbed experiments.

Table 4 Basic characteristics of testbed networks used for
validation.

Network Net6 Net7 Net8
I 36 36 49

M 6 6 7

CM 28.22 28.27 21.69

is the signal they are able to receive. This query can be
propagated through the whole network using restricted
flooding (flooding is restricted by setting appropriate
value of TTL field) technique, so there is no need to send
as many queries as there is motes in the network.

Each sensor node in a network which receives the
request about its network image is responsible for
exchanging packets with all nodes in its neighbourhood
and collecting the vector of pairs of values neighbour
id and RSSI measurement. RSSI readings are acquired
using Texas Instruments CC2420 built-in Received
Signal Strength Indicator providing a digital value that
can be read from the 8 bit register. Next, these vectors
are sent using multi-hop unicast transmission to the edge
router and finally base station. Next these values are
stored in the HPLS database.

Three testbed networks were selected in order to form
a training set, which was used to tune up localization
algorithms. Another three networks were used to validate
the algorithms and quality of proposed solutions. The
networks used for validation, with red stars marking the
TSA solutions, are presented in Figure 10.

Basic characteristics of testbed networks, defined like
in Table 1, are collected in Table 4.

The averaged values of the localization errors LE
computed due to the formula (7) for Net6 – Net8, TSA
localization system and five executions of all tests are
collected in Table 5. In the first row the localization
error for data acquired from real-life deployments are
presented. In the second row the localization errors for
the same topologies, but radio signals modelled using
NBM module are presented.

Figure 10 Real-life deployments used for localization
algorithms validation.

For all considered networks the LE don’t exceed one
percent, however the obtained results confirm that errors
in RSSI readings obtained from real life deployments are
greater than in case of radio signals modelling.
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Table 5 Localization error LE (TSA for various testbed
networks).

Network Net6 Net7 Net8

Testbed 0.74 0.67 0.94

Simulation 0.21 0.14 0.18

7 Summary and Concluding Remarks

In the paper we describe and evaluate an integrated
software framework High Performance Localization
System, which supports sensor node localization starting
from data gathering from real life deployments through
signal propagation modeling to geographic coordinates
calculation using various localization algorithms.
We validated the localization schemes provided in
the HPLS for various multihop network topologies
through simulation and testbed implementation in
our laboratory. The performance of all implemented
localization algorithms was compared and discussed.

As a final observation, we can point that heuristic
algorithms are efficient and versatile techniques that can
be successfully used to localization of a WSN formed
by physical devices. However, it is commonly known
that to obtain a robust and efficient solver for WSN
localization we have to tune all control parameters
specific to this solver. It is time consuming process.
The parallel implementation of the HPLS reduces the
computing time and increases system scalability and
robustness.

Although numerous localization systems are
described in the literature, development of robust and
scalable technique to estimate the location of sensor
devices with high accuracy, minimal hardware cost
and computational burdens is still a challenging task.
The HPLS can support the design, development and
evaluation of novel strategies and systems to localization
in wireless sensor networks.
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