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The Greek letter ω denotes the set of all natural numbers. We use the symbol fin for the 
ideal of finite subsets of ω. For A, B ⊆ ω, the expression A ⊆ *B denotes the relation B\A ∈ fin; 
similarly A = *B if and olny if A÷B ∈ fin. The space ω* = b[w]\w is the growth (Čech-Stone 
compactification) of the discrete topological space ω. If A ∈ P(ω)/fin, A* is the set Ab[ω] \A. 
The space ω* can be viewed as the space of all non-principal ultrafilters on ω. It is well 
known that B(ω*), the algebra of all clopen subsets of ω*, is isomorphic to P(ω)/fin (cf. [1]). 
Thus, for A, B ∈ P(ω), the condition A = *B is equivalent to A* = B*. An antichain in B(ω*) 
is a family of pairwise disjoint subsets of ω*. Recall that a set A ⊆ ω* is said to have ccc 
(countable chain condition) if for every antichain {Ua: a ∈ I} ⊆ B(ω*), there exists a finite 
or countable set I0 ⊆ I such that A ∩ Ua = ∅ for all a ∈ I\I0.

The space C(ω*) consists of all continuous real-valued. functions on ω* and it can be 
regarded as l∞ /c0 i.e. the quotient space of l∞ by the following equivalence relation: 

	 for f1, f2 ∈ l∞,   f1 ≈* f2     iff lim     n→∞(f1(n) – f2(n)) = 0

Let f* denote the equivalence class determined by f. Note that for f1, f2 ∈ l∞, we have f1 ≈* f2 
iff f1|ω* ≈* f2|ω*, where fi: b[w] → |R is a continuous extension of fi (i = 1, 2). Thus, f* = f|ω*. 
An equivalent definition of the (classical) norm on l∞/c0 is following: 

	 ||f*||* = sup {limp |f|: p ∈ ω*}

where the symbol limp |f| denotes, for an ultrafilter p, the limit to which a sequence {|f(n)|:  
n ∈ ω} converges with respect to the ultrafilter p. Thus, C(ω*), equipped with the supremum 
norm, is isometric to (l∞/c0, || . ||*).

The domain of function f is denoted by dom f, the range by ran f; supp f is the closure of 
the set of all elements p ∈ dom f, such that f(p) ≠ 0.

The space C(ω*). It is appropriate to recap on some elemetary properties of functions in 
space C(ω*). Let f: ω*®|R. (To simplify notation, the sign * will be omitted):
•	 For every r ∈|R, the preimage f-–1(r) is a closed Gd set,
•	 If f–1(r) ≠ ∅, then int f–1(r) ≠ ∅,
•	 For arbitrary ε > 0, there exist clopen sets U1, U2, ..., Un ∈ B(ω*) and reals r1, r2, ..., rn 

such that;

	 ||f – Si ∈{1, ..., n} ri χ Ui
|| < ε,

where χ Ui
 denotes the characteristic function of Ui. 

Bounded linear operators on C(ω*). Assume that T: C(ω*) → C(ω*) is linear and 
bounded, and its norm is equal to M. 

Fix an ultrafilter q ∈ ω* and define: 

	 Nq = {U ∈ B(ω*): V ∀ ∈ B(ω*) V ⊆ U ⇒ T(cV)(q) = 0}, Sq = ω*\Nq.

Nq is an open set. Consider Sq. It is closed (by definition) and nowhere dense. To show this 
suppose that int(Sq) ≠ ∅ and argue to a contradiction. 

Let U ∈ B(ω*) and U ⊆ int(Sq). Consider a family of pairwise disjoint sets Va ⊆ U, a < w1. 
By definition of Sq, for every a < w1 there exists Wa ⊆ Va, Wa ∈ B(ω*) such that T(cWa)(q) ≠ 0. 
Thus, for some ε > 0 there exists an uncountable set G ⊆ w1 with:

	 ∀a ∈ G |T(cWa)(q)| > 0.
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Moreover, we may assume that all the T(cWa)(q) are positive (or negative). Fix k ∈ ω such 
that k > (M/e) + 1 and a finite set G0 ⊆ G which contains at least k elements. Since T is linear, 
it follows that:

	 |T(Sa∈G0 cWa})(q)| = |Sa∈G0 T(cWa)(q)| ≥ ke > e [(M/e) + 1] > M,	

this contradicts the assumption that M is the norm of T.
In a similar way we show that Sq has the c.c.c.

Lemma 1 Suppose that f ∈ C(ω*) and supp f ∩ Sq = ∅. Then T(f)(q) = 0. 
Proof. Suppose that this is not true. Then, since T is continuous, there exist clopen sets U1, 
U2, ..., Un ⊆ supp f and reals r1, r2, ..., rn such that:

	 ||f – Si∈{1, ..., n} ri cUi|| < e,

for e < |T(f)|(q)/(2M). It follows that;

	 |T (f – S i∈{1, ..., n} ri cUi)| < |T(f)|(q)/2

thus |T(Si∈{1, ..., n} ri cUi)| > |T(f)|(q)/2. So, there exists i ≤ n such that |T(cUi) q)| > 0. Therefore 
Ui \ Nq ≠ ∅. But it implies that ∅ ≠ Sq ∩ Ui ⊆ Sq ∩ supp f = ∅, a contradiction.

Note that the condition T(f)(q) = 0 does not imply that Sq ∩ supp f = ∅. Now an example 
of application of the notion Sq is presented. 

Projections of C(ω*) and retractions of ω*. Assume that r: ω*® F ⊆ ω* is a retraction (i.e. 
r is continuous and r ° r = r). Recall how to define a projection P: C(ω*) → V (i.e. a bounded 
linear operator such that P ° P = P) by using r (cf. [2]). For f ∈ C(ω*), q ∈ ω* put:

	 P(f)(q) = f(r(q).

P is linear and for every f ≠ C(ω*), ||P(f)|| ≤ \leq ||f||, thus P is bounded. Moreover:

	 P(P(f))(q) = P(f)(r(q)) = f(r(r(q))) = f(r(q)) = P(f)(q).

A retraction of ω* induces a projection of C(ω*). One can ask if a projection determines 
a retraction. In order to (partially) answer this question, an equivalence relation on ω* can 
be defined:

	 p, q ∈ ω*, p ≈ q iff for all U ∈ B(ω*), P(cU)(q) = P(cU)(p).

Note that:
•	 if p ≈ q then Sp = Sq,
•	 the equivalence class [p] = UU∈B(ω*) (P(cU))–1 ({P(cU)(p)}) is a closed subset of ω*. 
Theorem 1 Assume that P: C(ω*) → V is a projection and the following assertion is satisfied: 

	 for each p ∈ ω* there exists qp ∈ [p] such that Sp = {qp}.

Then r: ω* ∋ p → qp ∈ ∪ p∈ω* Sp is a retraction. 
Proof. Since qp ≈ p, Sq = Sp = {qp} and r(qp) = qp. Therefore r ° r = r. 

We shall show that r is continuous. Let U ̃ be an open subset of U p∈ω* Sp. Fix qp  ∈ U ̃. Thus, 
there exists a U open subset of ω* and V ∈ B(ω*) such that U ∩ Up∈ω* Sp and qp  ∈ V ⊆ U. 
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Since Sqp ={qp}, it follows that P(cV)(qp) = xp ≠ 0. Assume that for some s ∈ w, P(cV)(qp) = xp ≠ 0. 
Thus, {qp} ∩ V= Sqp ∩ V, which implies that qs ∈ V. 

We showed that qs ∈ V ⇒ P(cV)(qs) ≠ 0. Put W = (P(f))–1(|R\{0}). W is open and r(W) ⊆ 
V ∩ Up∈ω* Sp. This finishes the proof. 
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Boolean algebra P(ω)/fin plays an important role in the foundations of mathematics. Many 
mathematical problems can be reduced to questions on properties of P(ω)/fin. Notion, which is 
frequently used in investigation concerning P(ω)/fin is the notion of gap (cf. [1], [4]). 

Let us begin by reviewing some basic facts and definitions. By w the set of all natural 
numbers is denoted. The symbol fin stands for the ideal of all finite subsets of w. The ideal 
determines the following equivalence relation: 

	 For A, B ⊆ w, A =* B if and only if A÷B ∈ fin.

P(ω)/fin is its factor algebra. An order in P(ω)/fin is defined as usual, namely:

	 A ⊆* B  iff A\B ∈ fin.

Let λ, k be cardinals. A gap of type λ, k) in the P(ω)/fin is a pair:

	 ({Ag: g < λ}, {Bb: b < k})

of subsets of P(ω)/fin such that Ag ∩ Bb =* ∅. If for every g1 < g2 < λ, b1 < b2 < k Ag1 ⊆* Ag2 and 
Bb1 ⊆* Bb2, the gap is said to be increasingly ordered. An element C ⊆ w fills (separates) the 
gap if Ag ⊆* C and Bb ∩ C =* ∅ for every g < λ, b < k. If there is no such an element, the gap 
is called non-separable. One can ask gaps of what type exist in P(ω)/fin.

A research concerning gaps in (ω)/fin is an important and deep line of investigation. Let us 
recall basic facts. It is easily proved that there are no non-separable gaps of type (w, w). On the 
other hand Hausdorff constructed a non-separable gap of type (w1, w1) (cf. [2]). This gap, say 
L = ({Xa: a < w1}, {Yb: b < w1}), is increasingly ordered and {g < b: max Xg ∩ Yb < k} is finite 
for every b < w1 and k ∈ w. 

Under CH (the Continuum Hypothesis), there exist only gaps of type (w1, w1). If 2
w > 

w1 and MA (the Martin Axiom) holds the each increasingly ordered gap f type λ, k) with λ,  
k < 2w, λ ≠ w1 or k ≠ w1 is separated ([5]).

The smallest cardinal number for which there exists a non-separable gap in P(ω)/fin is the 
bounding number b (cf. [6]). Remind that b is the size of the smallest unbounded family in 
ww equipped with the following order: for f, g ∈ ww, f ≤* g iff {n: f(n) > g(n)}∈ fin. 

We present another construction of an (unordered) gap of type (2w, 2w). 
The set F consist of all finite sequences e = (e0, e1, ..., en) such that: 

	 e0 = 0, e2n+1 = 2 and e2n+2 ∈ {0, 1}, n ∈ w.

Let 

	 Fn= {e ∈ F: ℓ(e) ≤ 2n}

and 

	 Fe= {e ∈ F: ℓ(e) = 2n for some n ∈ w}.

Divide w into two disjoint, infinite subsets X and Y and fix two functions f and g such that: 

	 (*) f: F → X is a bijection and if e ⊆ r then f(e) ≤ f(r). 

	 (**) g: Fe × Fe → Y is an injection and if e1 ⊆ r1, e2 ⊆ r2 then 
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	 g(e1,e2) ≤ g(r1, r2). 

We define two families of finite subsets {A(e): e ∈ F }, {B(e): e ∈ F} by induction on the 
lenght of e. 

For e such that ℓ(e) = 1 or ℓ(e) = 2 put A(e) = B(e) = ∅. 
Assume that ℓ(e) = 3,4. Then:

	 A(0,2,0) ={f((0)), f((0,2)), f((0,2,0))}, A(0,2,1) ={f((0)), f((0,2)), f((0,2,1))}, 

	 B(0,2,0) ={f((0,2,1))}, B(0,2,1) ={f((0,2,0))}, 

	 A(0,2,0,2) = A(0,2,0) ∪ {f((0,2,0,2))}, A(0,2,1,2) = A(0,2,1) ∪ {f((0,2,1,2))} 

	 B(0,2,0,2) = B(0,2,0) ∪ {g((0,2,1,2), (0,2,0,2))}, B(0,2,1,2) = B(0,2,1) ∪ {g((0,2,1,2), (0,2,0,2))} 

Assume inductively that for n ≥ 2, we have defined families {A(e): e ∈ Fn} and {B(e):  
e ∈ Fn} satisfying the following conditions: 
1.	 A(e) ∩ B(e) = ∅ for every e ∈ Fn. 
2.	 If e, r ∈ Fn and e(k) ≠ r(k), for some k ≤ 2n , then 

	 A(e) ∩ B(r) ≠ ∅ and B(e) ∩ A(r) ≠ ∅.

3.	 If e, r ∈ Fn and e ⊆ r , then A(e) ⊆ A(r) and B(e) ⊆ B(r). 
4. If e, r ∈ Fn and e(k) ≠ r(k), let l  = min {k: e(k) ≠ r(k)}. Then max A(e) ∩ B(r) = f(e|l ), max 

B(e) ∩ B(r) = f(e|l –1), max A(e) ∩ A(r) = f(e|l –1).
For e ∈ Fn put: 

	 A(e ^ 0) = A(e) ∪ {f(e ^ 0)}, A(e ^ 1) = A(e) ∪ {f(e ^ 1)}, 

	 B(e ^ 0) = B(e) ∪ {f(e ^ 1)}, B(e ^ 1) = B(e) ∪ {f(e ^ 1)}, 

	 A(e ^ 02) = A(e ^ 0) ∪ {f(e ^02)}, A(e ^ 12) = A(e ^ 1) ∪ {f(e ^ 12)},

	B(e ^ 02) = B(e ^ 0) ∪ {g(e ^ 02, e ^ 12)}, B(e ^ 12) = B(e ^ 1) ∪ {g(e ^ 02, e ^ 12)}. 

It is obvious that the family Fn+1 satisfies conditions (1) and (3). 
For (2), let r, e ∈ Fn+1. If ℓ(r) = ℓ(e) or ℓ(r) = 2n + 1, ℓ(e) = 2n + 2, the condition follows 

from the definition. Suppose that ℓ(r) = k < 2n + 1 ≤ ℓ(e). Let l = min {k: ek ≠ rk}. Then 
s = e|l = r|l and ∅ ≠ A(s)^rl) ∩ B(s ^ el) = A(r) ∩ B(e). (The remaining cases can be 
checked in the same way.)

To check the assumption (4), note that A(e ^ i) ∩ B(e ^ j) = A(e ^ i2) ∩ B(e ^ j2), for i, 
j ∈ {0, 1}, i ≠ j. Since f satisfies the condition (*), it follows that max A(e ^ i) ∩ B(e ^ j) = 
f(e ^ i). Moreover A(e ^ i) ∩ A(e ^ j) = A(e ^ i2) ∩ A(e ^ j2) = A(e), thus 

	 max A(e ^ i) ∩ A(e ^ j) = f(e). 

If ℓ(r) = k < 2n + 1 ≤ ℓ(e) and s = e|l = r|l, rl ≠ el then
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	 max A(s ^ rl) ∩ B(s ^el) = max A(r) ∩ B(e) = f(r|l). 

(The remaining cases can be checked in the same way.) This finishes the inductive construction.
Let X be the family of all sequences x: w →{0, 1, 2} which satisfy the conditions: 

	 x(0) = 0, x(2n + 1) = 2, x(2n + 2) ∈ {0, 1}. 

Then 

	 A(x) = Un∈w A(x|n), B(x) = Un∈w B(x|n)

are infinite subsets of w. 
It is easy to check that for x, y ∈ X, if x ≠ y then:

	 A(x) ∩ B(x) = ∅, A(x) ∩ B(y) ≠ ∅, A(x) ∩ A(y) ∈ fin and B(x) ∩ B(y) ∈ fin.

Theorem 1 The gap L = ({A(x): x ∈ X}, {B(x): x ∈ X}) satisfies the following condition: for 
every uncountable set Y ⊆ X, LY = ({A(x): x ∈ Y}, {B(x): x ∈ Y}) is non-separable. 

Proof. Suppose that for Y = {xa : a < k} ⊆ X, w < k ≤ 2w, there exists a  C which separeates 
the gap LY. Let sa = A(xa)\C, ta = B(xa) ∩ C. 

Then sa, ta are finite subsets of w and since A(xa) ∩ B(xa) = ∅, it follows that sa ∩ ta = ∅. 
Δ-lemma implies that there exist an uncountable set G ⊆ k Γ ⊂ κ and finite sets s, t such that 
for all a ∈ g , sa = s and ta = t. 
If a, b ∈ Γ and a ≠ b then ∅ = sa ∩ tb = s ∩ t = sa ∩ ta = ∅, a contradiction. This finishes 
the proof.
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	 It is known that cardinality of the group of automorphisms of P(ω)/fin depends on some 
additional axioms of ZFC. Under CH (the Continuum Hypothesis) the cardinality of the 
group is the largest posssible – it is equal to2c, where c denotes the continuum (cf. [2]). On 
the other hand, there are models of ZFC in which the cardinality is equal to the continuum, 
for example, in the model constructed by Shelah in [3]. In [4] it was shown by Shelah and 
Steprans that the assertion PFA + c = w2 implies that all automorphisms of P(ω)/fin are trivial 
(i.e. induced by a bijection between co-finite subsets of ω). Velickovic [7] proved that the 
same thesis follows from OCA+MA. One of the methods of elimination an automorphim of 
P(ω)/fin is adding a new real which fills a non-separable gap in such a way that the image of 
the gap under that automorphism remains unfilled. It is known that each forcing which adds 
an element separating a Hausdorff gap collapses the to the ω. One can ask if the image of 
a Hausdorff gap under a automorphism must be a Hausdorff gap .

Basic facts and definitions. Byω we denote the set of all natural numbers (and the first 
infinite ordinal) and by fin the ideal of all its finite subsets.P(ω)/fin is the factor Boolean 
algebra and for A, B ∈ P(ω) we shall use the following notation: A =* B if A÷B ∈ fin, A ⊆* B 
if A \ B ∈ fin. 

Let λ, κ be ordinals. A gap of the type (λ, κ) in a Boolean algebra (A,+,·,0,1) is a pair 
({ag: g     < λ},{bb: b < k}) of subsets of A such that ag · bb = 0. If for every g1 < g2 < λ, b1 < b2 
< k, ag1· ag2 = ag1 and b b1· b b2 = b b1 the gap is said to be incresingly ordered. Elementc ∈ A 
fills (separates) the gap if ag · c = ag  and bb  · c = 0 for every g < λ, b < k. If there is no such 
an element, the gap is called non-separable. A (strictly) decreasing sequence (ab: b < g) of 
elements of the A of the lengthg is called g-limit if there is no non-zero element a ∈ A such 
that for every b < g, a · ab = a.

Assume that L = ({Xa: a < w1},{Yb: b                            < w1) is an increasingly ordered gap in P(ω)/fin. L is 
a Hausdorff gap if {g < b: max Xg  ∩ Yb  < k} = *∅ for every b   < w1 and k ∈ w.
It is known that 
1.	 In the algebra P(ω)/fin every countable gap (i.e. card(λ) = card(k) = w is filled. 
2.	 There is no ω-limits (i.e.γ-limits with card (g) = w in the P(ω)/fin. 
3.	 A Hausdorff gap is non-separable (thus there exist non-separable gaps of the type (w1, w1) 

in the P(w)/fin. 
In the following construction we shall apply the Sikorski’s theorem (to define a required 

automorphism). 
Theorem 1 (Sikorski [5, 6]) Let A, B be Boolean algebras, A0 a subalgebra of A and a0 ∈ A\
A0. Assume that T: A0 → B is a homomorphism. If there exists an element b ∈ B which fills 
a gap:

	 L =({T(x): x ∈ A0, x ≤ a0}, {T(x): x ∈ A0, x · a0 = 0}), 

then T can be extended to a homomorphism T*: A1 → B (where A1 is a subalgebra generated 
by A0 ∪ {a0} with T*(a0) = b.

Moreover if T is monomorphism then T* is monomorphism if and only if the following 
condition holds: 

	 (*) for all x, y ∈ A0 [ (x ≤ a0 ⇔ T(x) ≤ b)     and     (y ≥ a0 ⇔ T(y) ≥ b)].

Thus, in order to extend a monomorphism, we have to ensure that an image of a (separeted) 
gap under the monomorphism satisfies the condition (*). Let us remind a  (well known) 
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method how to find the required (in the (*)) element in the range of the monomorphism. 
Although the method can be applied in the case of Boolean algebras in which there are no 
countable gaps nor countable limits, we present it in the particular case of P(ω)/fin.

Claim 1 (cf. [6]) Let T: A → B be a monomorphism of countable subalgebras of P(ω)/fin and 
let G ∈ P(ω)/fin\A. Then there is a gap in B such that any element which fills the gap satisfies 
the condition (*).

Proof: Let J = {Zn: n ∈ w} be an enumeration of all elements Z ∈ A with Z ∩  G ≠* ∅  
and Z \G ≠* ∅. Fix n ∈ w. For a Zn ∈ J and X, Y ∈ A we have:

If Y ∩ G =* ∅ then Zn ∩ Y ∩ G =* ∅. Since Z ∩ G ≠* ∅, it follows that Zn\Y ≠* ∅. T is 
a monomorphism thus we have T(Zn)\T(Y) ≠* ∅. In a similar way we show that if X ⊆* G then 
T(Zn)\T(X) ≠* ∅.

Since A is countable, there exists an enumeration {Ym ∈ A: m ∈ w} of all elements which 
are almost disjoint with G. Thus:

	 {T(Zn)\(T(Y1) ∪....∪ T(Ym)): m ∈ w}

is a countable decreasing chain in P(ω)/fin. Since there are no countable limits in P(ω)/fin, we 
can choose an infinite subset S(Zn) = Sn which is almost contained in each

	 T(Zn)\(T(Y1) ∪...∪ T(Ym)).

In a similar way we can choose I(Zn) = In  ⊆* T(Zn)\(T(X1) ∪...∪ T(Xm)) for Xm ∈ A,    Xm 
⊆* G Consider the gap P = (M, O) where:

	 M = {T(X) ∈ A: X ⊆* G} ∪ {T(In): n ∈ w},

	 O = {T(Y) ∈ A: Y ∩ G =*∅} ∪ {T(Sn):     n ∈ w}.

Since P is countable, there exists element H which fills the gap. It is easy to see that such 
an element H satisfies the condition. 

Main theorem. We prove that:
Theorem 2 If CH holds then there exists an automorphism T of P(ω)/fin and two 

increasingly ordered gaps of the type (w1, w1):

	 LH = ({Xa: a < w1},{Yb: b < w1}),   L =({Aa: a < w1}, {Bb: b < w1})

such that 
1.	 for all b < w1 and every k ∈ w,  a set {a < b: max (Xa ∩ Yb) < k} is finite, 
2.	 if b = λ + w for some limit ordinal λ < w1 then there exists k ∈ w such that a set {a < b: 

max (Aa ∩ Bb) < k} is infinite, 
3.	 for every a, b < w1, T(Aa) = Xa, T(Bb) = Yb. 

Proof: We construct the required automorphism and gaps by using transfinite induction. 
Fix a set {Ga: a < w1} of generators of P(ω)/fin. At the step a = 0 fix two pairs of disjoint 
infinite subsets of w: A0, B0 and X0, Y0 such that both sets w\(A0 ∪ B0) and w\(X0 ∪ Y0) are 
infinite. Let:

	 T0(A0) = X0,     and     T0(B0) = Y0.
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Denote by D0 and P0 the Boolean algebras generated by {A0, B0} and {X0, Y0} (respectively) 
and extend T0 to the isomorphism from D0 onto P0. Consider the first generator G0 and the 
algebra D0. In the way described in the Claim find element Hr in the P0 and put T0(G0) = Hr. 
Then apply the claim to the G0, the algebra P0 and the T0

–1. Choose any element Hd which 
fills the obtained gap in D0 and define T0

–1(G0) = Hd. Then, using Sikorski’s theorem, extend 
the isomorphism T0 to an isomorphism from D0 (the subalgebra generated by {A0,    B0,    G0,    
T–1(G0)}) onto P0 (the subalgebra generated by {X0, Y0, G0, T0(G0)}). 

Assume inductively that for every b < a we have defined increasing sequences of 
subalgebras Db , Pb of P(ω)/fin, isomorphisms Tb: Db  → Pb and gaps 

	 L = ({Ag: g < a}, {Bg: g < a}) and LH = ({Xg: g < a}, {Yg: g < a})

such that 
1.	 For all b < a, Ab, Bb, Gb ∈ Db  and Xb, Yb, Gb ∈ Pb, 
2.	 L, LH are increasingly ordered gaps, 
3.	 For all b < a, Ab  ∩ Bb  = ∅ and Xb  ∩ Yb = ∅; both sets w\(Ab  ∪ Bb) and w\(Xb  ∪ Yb) are 

infinite, 
4.	 For all b < a and every k ∈ w, the set {g < b: max(Yb ∩ Xg) < k} is finite, 
5.	 If b < a  is equal to λ + w, for some limit ordinal λ, then there exists k ∈ w such that  

{g < b: max(Bb ∩ Ag) < k} is infinite, 
6.	 If b = λ + n, for some limit ordinal λ and a natural number n > 0, then 

	 (Uk ≤ n Aλ + k) ∩  (Uk ≤ n Bλ + k) = ∅.

7.	 For g < b < a, Tb|Dg  = Tg and T(Ab) = Xb , T(Bb) = Yb . 
Assume that a is a successor ordinal, a = b + 1. Then there exist a limit ordinal λ and 

a natural number n > 0 such that a = λ + n. Choose infinite and disjoint subsets A, B of w 
such that:

	 (Ab ∪ Bb) ∩ (A ∪ B) = ∅  and  w\(Ab  ∪ Bb  ∪ A ∪ B)  is infinite	

and both sets B ∩ Uk ≤ n Aλ + k and A ∩ (Uk ≤ n Bλ+ k) are empty. Put:

	 Aa = Ab ∪ A,    Ba = Bb  ∪ B.	

Let Da be subalgebra generated by Db and the elements Aa , Ba. Apply The Claim to 
choose candidates for images of Aa, Ba (and then Sikorski’s theorem to extend Tb ). Denote 
this extension by T*b. Note, that each of sets T*b(Aa) and T*b(Ba) separates LH and we may 
assume that they are disjoint. Define 

	 Xa = T*b (Aa),    Ya = T*b(Ba). 

Since Yb  ⊆* Ya  and for every natural number k, the set {g < b: max (Yb  ∩ Xg) < k} is 
finite, it follows that the set {g < a: max (Ya  ∩ Xg) < k} is finite as well. If Ga ∈ Da  then we 
add, in the same way, an image T*b (Ga). Let Pa be the subalgebra generated by Pb and the 
elements Xa, Ya and T*b (Ga). If Ga ∈ Pa , then a preimage T*b 

–1(Ga) of a generator Ga has to 
be added. We fix the preimage in the way described above. We conclude the successor step 
with definitions of Da and Pa. Da is a subalgebra generated by Db and Aa, Ba, Ga, T*b

–1(Ga) 
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while Pa is generated by Pb and Xa, Ya, Ga, T*b (Ga). Moreover Ta = T*b :Da → Pa. It is obvious 
that all inductive assumptions are satisfied.

Assume that a is a limit ordinal. Put:

	 Da = Ub < a Db,  Pa = Ub < a Pb,   T = Ub < a Tb. 

In order to construct elements Xa  and Ya we modify slightly Hausdorff argument 
(presented in [1]). The sequence (w\(Xb ∪ Yb): b < a) is countable and decreasing; it follows 
that there exists an infinite set D ⊆ w with D ⊆* w\(Xb  ∪ Yb) for all b < a. Thus Xb  ∪ Yb  ⊆* 
Dc = w\D. Since:

	 LH = ({Xg : g < a}, {Yg: g < a})

is countable, one can choose a set F which separates the gap i.e. for all b < a, Yb  ⊆* F and 
Xb  ∩ F =* ∅. Moreover, we may assume that F ⊆ Dc (replacing F with F ∩ D, if necessary). 
Applying the claim and Sikorski’s theorem we fix a $T–1(F), which fills the gap L. Note that 
for every b < a  and    k ∈ the set  {g < b: max (F ∩  Xg) < k} is finite however it does not 
follow that for each k ∈ w the set {g < a: max (F ∩ Xg) < k} is finite. In order to ensure that 
the assertion holds we have to enlarge the set F. For k ∩ w let 

	 Jk = {g < a: max (F ∩ Xg) < k}.

We define (inductively) a (countable) increasing sequence F = F0 ⊆ F1 ⊆ F2 ⊆ ... such that 
for every n, k ∈ w the set {g ∈ Jn: max (Fn+1 ∩ Xg) < k} is finite and Fn ∩  Xg  = *∅.

Assume that sets F = F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fn and their preimages under T have been 
defined. Denote by Pa, n+1 the subalgebra generated by Pa, n and Fn–1 and by Da, n+1 the subalgebra 
generated by Da, n and T–1 (Fn–1), for n > 0. 

If Jn+1 is finite, then Fn+1= Fn. So suppose that Jn+1 is infinite. Then Jn+1 can be increasigly 
enumerated with natural numbers and sup Jn+1 = a. Indeed, this is implied by the fact, that for 
each b < a the set b ∩ Jn+1 ={g < b: max (F ∩ Xg) < k} is finite. 

The subalgebra Pa, n is countable thus we can fix an enumeration {Ki: i ∈ w} of all elemets 
K ∈ Pa, n such that K ∩ Xg  =* ∅ for g < a.

Thus let Jn+1 ={l: l ∈ w},gl < gl+1. The sequence {Xg: g < a} is increasing, which implies 
that Xgl\(Xg0 ∪ Xg1 ∪...∪ Xgl–1) ≠ *∅. Moreover, Xgl ⊆* D

c, thus 

	 Dc ∩ [Xgl\(Xg0 ∪ Xg1 ∪...∪ Xgl–1)] ≠* ∅.

It follows that for every l ∈ w there exists a natural number 

	 jl ∈ Dc ∩ [Xgl\(Xg0 ∪ Xg1 ∪...∪ Xgl–1)] ∩  (w\Ui≤ l K_i)

with jl > l. Put 

	 Fn+1 = Fn ∪ {jl: l ∈ w}. 

It is easy to note that {jl: l ∈ w} ∩ Xgi is finite for every i ∈ w. Since the sequence {Xg: 
g < a} is increasing it follows that {jl: l ∈ w} ∩ Xg =_*∅ and Fn+1 ∩ Xg = *∅ for each g < a. 
Moreover for each k ∈ w the set {g ∈ Jn: max (Fn+1 ∩ Xg) < k}$ is finite. Extend the range of 
the isomorphism T in the following way: D = (M,O)
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	 M = {T–1(X) ∈ Da,n: X ⊆* Fn} ∪ {T–1(I(Z)): Z ∈ J},

	 O = {T–1(Y) ∈ Da,n: Y ∩ Fn =* ∅} ∪ {T–1(S(Z)): Z ∈ J},

where J = {Z ∈Pa, n+1: Z ∩ Fn ≠* ∅, Z\Fn ≠* ∅} and elements S(Z), I(Z) are defined for each Z 
∈ J in the way described in proof of the Claim.

Since D is countable, then there exist infinite sets Cn, Hn such that Cn separates the gap and 
Hn is almost disjoint with every element of the sets forming the gap. Note that since Fn ∩ Xb 
=*∅ and Yb ⊆* Fn then, by the Claim, Cn ∩ Ab =* ∅ and Cn ⊆* Bb, for b < a. If, for some limit 
ordinal λ, a = λ + w then, by inductive assumption, (Uk∈w Aλ+k) ∩ (Uk∈w Bλ+k) = ∅. Moreover, 
since for every L∈ Da, n with L ∩ Ag = *∅ there exists i ∈ w such that T(L) = Ki, it follows that 
Cn

 ∩ L = *∅. Thus we may assume that 

	 Cn ∩ Uk∈w Al+k = ∅. 

Put T^{–1}(Fn) = Cn. 
Since 

	 Un∈w Cn ∩ Uk∈w Aλ+k = ∅

then in the casea = λ + w, for some limit ordinal λ, we can choose Ba which fills the gap:

	 ({Bg : g < a} ∪ {Cn: n ∈ w}, {Ag: g < a})

and Ba  ∩ Aλ+k = ∅ for each k ∈ w. Apply the the Claim theorem to determine a Ya and Sikor-
ski’s theorem to extend the T. Note, that the element separates the gap 

	 P =({Fn: n ∈ w}, {Xg: g < a}).

We may assume that F ⊆ Ya  ⊆ Dc. We have to show that for each k ∈ w the set {g < a: 
max (Ya  ∩ Xg) < k} is finite. Assume to the contrary that for some k ∈ w the set is infinite. 
Since F ⊆ Ya  then {g < a: max (Ya ∩ Xg) < k} ⊆ Jk. The latter assumtion implies that the set 
I = {g ∈ Jk: max (Ya ∩ Xg) < k} is infinite as well. But since F ⊆ Ya, I ⊆ {g ∈ Jn: max Fn+1 ∩  
Xg < k} = *∅, a contradiction.

Put Xa = Dc\Ya. Now, apply the Claim to define Aa and using Sikorski’s theorem extend 
the T. 

Define Da (Pa) as the subalgebra generated by Un∈w Da, n, Aa and Ba (Un∈w Pa,n and Xa and 
Ya). The automorphism Ta is equal to the (extended) T: Da → Pa.

This finishes the the limit step of the construction.
After w1 steps each of algebras P = Ua<w1Pa and D = Ua<w1Da contains all of the generators 

Ga, thus P = D = P(w)/fin. T = Ua<w1 Ta is an isomorphism of P(ω)/fin. The gap 

	 LH = ({Xg : g < w1},{Yg: g < w1})

is a Hausdorff gap, while the gap 

	 L = ({Ag: g < w1} , {Bg: g < w1})

does not satisfy the condition.
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1. Introduction 
 
 
 Let us denote the set of all real-valued functions continuous on �� ��0;∞�	��	�����	. In paper [6] we investigated Szász-Mirakyan type operators 
defined as follows 
 

��� ��; �� � �∑ ��,�� ���� � ��
����∞��� ,				� � 0;

��0�,						� � 0
                                     (1) 

 
and 
 

��,�� ��� � 1
������

��������
2����Γ�� � 1�Γ�� � � � 1�, 

 
where   is the gamma function and I  the modified Bessel function defined by 
 

����� � � �����
2����Γ�� � 1�Γ�� � � � 1�

∞

���
. 

 
Approximation properties of these operators in exponential weight spaces were 
studied. Such spaces were denoted by 
 

�� � �� � ������	���	��	���������	����������	���	�������	��	���, 
 
where �� is the exponential weight function defined as follows 
 

����� � ����,			� � ��                                                   (2) 
 
for � � ��. 
In the spaces we introduced the norm 
 

‖�‖� � ����������������	� � ���                                         (3) 
 
and we established ([6], Theorem 2.1) that operators ���  are linear, positive, 
bounded and transform the space �� into ��. 
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In the present paper, we shall prove theorems giving a degree of 
approximation of functions from �� by these operators. We use the weighted 
modulus of continuity of the first and the second order defined as follows, 
 

���, ��� �� � ����‖Δ��‖��		� � ��, ���                                        (4) 
 
and 
 

����, ��� �� � ��� ��Δ������		� � ��, ���                                     (5) 
 
respectively, where 
 

Δ����� � ��� � �� � ����,					Δ������ � ��� � ��� � ���� � �� � ���� 
 
for �, � � ��. 

The note was inspired by the results of [8, 9] which investigate 
approximation problems for integral operators defined in weighted spaces. The 
considered method of proving the main theorems is also found in papers [1-4, 10]. 
 
 

2. Auxiliary results 
 
 

The preliminary results, which we immediately obtained from papers [5-7] 
and definition (1), are recalled below. 
Lemma 2.1 ([5], Lemma 8) 
For all � � �� there exists a positive constant ���� such that for all � � � and 
� � ��, we have 
 

��������������� � � ����,			�� ��������������� � �� � ����. 
 
Through elementary calculations we get 
Lemma 2.2 ([6], Lemma 2.2) 
For all � � �, �, � � �� and � � �� 

��� ��, �� � �,			��� ��, �� � ��
� � �

��������
������ , 

��� ���, �� � � ��
� � ��

� ��������
������ � ���

�� � ���
��������
������ , 
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��� �� � �� �� � � � �
� � �

��������
������ � ��� 

��� ��� � ���� �� � �� �� �
� � ��

� ��������
������ � ��

� � �
��������
������ � ��

� ���
�� � ���

��������
������ . 

 
Lemma 2.3 ([6], Lemma 2.5) 
For all �� � � �� there exists a positive constant ���� �� such that for all � � �, 
we have 
 

���� �� ��⁄ ������ � ���� ��. 
 

An obvious consequence of the above lemma and definition (3) is 
Theorem 2.4 ([6], Theorem 2.1) 
For all �� � � �� there exists a positive constant ���� �� such that for all � � � 
and � � ��, we have 
 

‖��� ������‖� � ���� ��‖�‖�. 
 
Applying Lemma 2.1 and Lemma 2.2, we obtain 
Lemma 2.5 
For all �� � � �� there exists a positive constant ���� �� such that for all � � � 
and � � ��, we have 
 

|��� ��� � ���� ��| � ���� �� ��� � ��
� . 

 
Lemma 2.6 ([6], Lemma 2.6) 
For all �� � � �� there exists a positive constant ���� �� such that for all � � � 
and � � ��, we have 
 

����� ���� �
�� � ���
����� � ��� � ���� �� ��� � ��

� . 
 
 
 
 
 
 



25

 
 
 

3. Approximation theorems 
 
 

The following theorems estimate the weighted error of approximation for 
functions belonging to the spaces ��� � �� � ��� �′� �′′� � � ���� � ���, where ���� 
is denoted the i-th derivative of �. 
Theorem 3.1 
For all ��� � � �� there exists a positive constant ���� �� such that for all � � �, 
� � �� and � � ���, we have 
 

��������� ��; �� � ����� � ���� ��‖��‖���
�� � ��
� . 

 
Theorem 3.2 
For all ��� � � �� there exists a positive constant ���� �� such that for all � � �, 
� � �� and � � ��, we have 

��������� ��; �� � ����� � ���� ��� ��� ��;��
�� � ��
� �. 

 
The proof for the above theorems is analogous to the proof of Theorem 4 and 
Theorem 5 which are detailed in paper [5]. 
Theorem 3.2 implies the following corollary. 
Corollary 3.3 
If ��� � � �� and � � ��, then for all � � �� 
 

lim������� ��; �� � ����� � �. 
 
Moreover, the above convergence is uniform on every set ���� ��� with � � �� ���. 
Remark 3.4 
The above result can be achieved in a different way; see [7] for more details. 
 
 Analogous with papers [8, 9], we define operators ��� to estimate the error 
of approximation by the second moduli of continuity (5). 
 

�����; �� � ��� ��; �������� ��; ��� � ����                                 (6) 
 

for �� � � ��, � � �� and �� � ��. By using Lemma 2.2 we obtain 
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������ �� � ��� ��� �� � � � ��

���
��������
������ � � ����. 

 
Observe that the operators are linear. Moreover, Lemma 2.2 allows us to write 
 

������ �� � ������������� � �� �� � �.                                      (7) 
 

Lemma 3.5  
For all �� � � �� there exists a positive constant ���� �� such that for all � � �, 
� � �� and � � ���, we have 
 

��|������ �� � ����| � ���� ��‖�′′‖� �
�� � ��
� . 

 
Proof. Let � � �� and � � ��� be fixed. Through the use of the Taylor formula we 
can write 
 

���� � ���� � �� � ���′��� � � �� � ���′′������
�

�
 

 
for � � �. By applying the linearity of ��� and (7) we derive 
 
|������ �� � ����| � |�������� � ����� ��| � ���� �� �� � ���′′������

� � ���.     (8) 
 
Furthermore, the definition of ��� implies 
 

��� �� �� � ���′′�����
�

�
� ��

� ��� �� �� � ���′′�����
�

�
� �� � � ���� ��� �� � ���′′�����

��� �����

�
 

 
Estimating (8), we have 
 
|������ �� � ����| 

� ��� ��� �� � ���′′������
� � � �� � �� ���� ��� �� � ���′′�������� �����

� �. 
 
Since 
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�� �� � ���′′�����
�

�
� � 1

2 ‖�′′‖��� � ������� � ����

and

�� ���� ��; �� � ���′′�����
��� ��;��

�
� � 1

2 ‖�′′‖����
� ��; �� � ������� � ����� ��;���

� 1
2 ‖�′′‖����

� �� � �; ��������1 � ����� ����;���
� 1
2���, ��‖�′′‖����

� �� � �; �������

we get 

�����|�����; �� � ����|
� 1
2 ‖�′′‖���

� ��� � ���; �� � 1
2 ‖�′′‖��������

� ��� � ���
����� ; ��

� 1
2���, ��‖�′′‖����

� �� � �; ����

Applying Hölder’s inequality to the term ��� �� � �; �� and Lemmas 2.5, 2.6, we 
obtain the desired estimation. 

Theorem 3.6 
For all �, � � �� there exists a positive constant ���, �� such that for all � � �, 
� � �� and � � ��, we have 

��|��� ��; �� � ����|

� ���, ���� ��, ��;��
�� � 1�
� � � ���, ��; |��� �� � �; ��|��

Proof. Let � � �� and �� be the second order Steklov mean of � � ��, i.e. 

����� � 4
�� � � �2��� � � � �� � ��� � 2�� � ����

�
�
�

����
�
�
�

,�������� � ��, � � ��

Notice that 
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���� � ����� � 4
�� � � Δ���� ��������

�
�
�

�
�
�

.

By definitions (3) and (5), we get the following estimations 

‖� � ��‖� � ����� ��; ��
and since 

������� �
1
�� �8Δ� �⁄� ���� � Δ�������

we can write 

‖����‖� �
9
�� �

���� ��; ��.

The above inequalities imply that the Steklov mean �� and ���� belong to ��.
Moreover, by linearity of ���  and connection (6), we have 

|��� ��; �� � ����|
� ����|� � ��|; �� � |���� � �����| � |������; �� � �����|
� ������ ��; ��� � �����.

Applying the above estimation, Theorem 2.1 and Lemma 3.5, we conclude that 

�����|��� ��; �� � ����|
� ���������|� � ��|; �� � �����|���� � �����|
� �����|������; �� � �����| � ����������� ��; ��� � �����
� ���� ��‖� � ��‖� ����� ��‖����‖� �

�� � 1�
�

� ����������� ��; ��� � �����
� ���� ������� ��; �� �1 � 1

��
��� � 1�

� �
� ���� ��; |��� �� � �; ��|��

where ��� �� � �; �� � � ��������
������ � �. Substituting � � �������

� , we get the assertion 

of our theorem. 

The author would like to thank the referees for their helpful remarks which greatly improved the 
exposition of the paper. 
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1. Introduction

Let 1≤ ≤ ∞p , we denote by Lp(R2) the set of all the Lebesgue measurable functions f 

defined on R2 such that 
−∞

∞

−∞

∞

∫ ∫ < ∞| ( , ) |1 2 1 2f t t dt dtp  if 1≤ < ∞p , and if p = ∞  we require f 

to be bounded almost everywhere on R2. 
In this paper, we present approximation properties of the Poisson integral A  in the space 

Lp(R2), 1≤ ≤ ∞p  defined by:

	 A f r y y rK r y z K r y z f z z dz dz( ; , , ) = ( , , ) ( , , ) ( , ) , 01 2 1 1 2 2 1 2 1 2
−∞

∞

−∞

∞

∫ ∫ << < 1,r

where:
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
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
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−
exp

and Hn is the n th Hermite polynomial (see [11]). The norm in Lp(R2) is given by:

	 || ||
s

f
f t t dt dt p

p

p
p

t t

=
| ( , ) | , 1 < ,1 2 1 2

1

( 1, 2 ) 2
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∞
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∞
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∫ ∫




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≤ ∞

R

uup ess f t t p| ( , ) |, = .1 2 ∞




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





Some convergence theorems, the Voronovskaya formula, and a boundary value problem 
for the integral A  were presented in [5]. The following result was proved (see [5]):
Theorem 1 Let y y y= ∈( , )1 2

2R  and f f f= +1 2 , where f L1
1 2( )∈ R , f L2

2( )∈ ∞ R .  If f is 
continuous at y,  then:

	 lim ( ; , ) ( ),
( , ) ( , )r y y

A f r y f y
→ −

=
1

 y y y= ( , ).1 2

In this paper we shall give an order of approximation of functions belonging to Lp(R2) by 
the operator A . It is worth mentioning that approximation properties of Poisson integrals for 
orthogonal expansions and their various modifications were also studied in [4, 12, 6–10], in 
one and two dimensions.

Some auxiliary results, which will be needed in the next part of this paper, are now 

presented. It is clear that A f r y y rA f r y A f r y( ; , , ) = ( ; , ) ( ; , )1 2 1 1 2 2  for f f Lp1 2, ( )∈ R  and such 

that f z z f z f z( , ) = ( ) ( )1 2 1 1 2 2 , where A f r y A f r y K r y z f z dz r( )( , ) = ( ; , ) = ( , , ) ( ) , 0 < < 1.
−∞

∞

∫
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The operator A  is linear and positive. Basic facts on positive linear operators and its 
applications can be found in [2, 3].

In paper [7], we can find the following equalities: 

	 A r y
r

r
r
y(1; , ) = 2

1
1
2
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1

,2

1/2 2
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+
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m p

for 0 < r < 1, y R∈ ,  where [a] denotes the integral part of a R∈  and ϕm y
mz z y, ( ) = ( )− .

From the above, we have the following result in the bivariate case.

Lemma 1 Let ϕn yi i i
nz z z y, 1 2( , ) = ( )− ,  y z Ri i, ∈ ,  i = 1, 2, n N∈ .  It holds 
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y 	 (1)

for 0 < r < 1.
Proof. Using Hölder’s inequality, we get:

	 A r y y rK r y z K r y z dz dzyφ1, 1 1 2 1 1 2 2 1 2; , , ( , , ) ( , , )( ) ≤ 
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		  (2)

for ( , )1 2
2y y R∈  and 0 < r < 1. We have (see [5]):
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i = 1, 2.

From this and (2) we obtain (1) for i = 1. Analogously, we calculate (1) for i = 2.
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2. Rate of convergence

In this section, we give an order of approximation of function of two variables in the 
space Lp. 

We achieve this using the modulus of continuity ω δ δ( ; , )1 2f ,  δ δ1 2, > 0  of f L Rp∈ ( )2  
defined as follows:

	
ω δ δ

δ
δ

( ; , ) = ( , )1 2
0< 1 1
0< 2 2

( 1, 2 ) 2
1 1 2 2f f y h y h f

h
h

y y≤
≤

∈
{ + + −sup sup

R

(( , ) .1 2y y }

First, we prove the following lemma, which we will use in the proof of the approximation 
theorem. 

We shall apply the method used in [12].

Lemma 2 Let f C R L Rp∈ ∩1 2 2( ) ( ) , 1≤ ≤ ∞p .  Therefore 
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for 0 < r < 1 and all  ( , )1 2
2y y R∈ .

Proof. Let ( , )1 2
2y y R∈ .  be a fixed point and f C R L Rp∈ ∩1 2 2( ) ( ).  We have:
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From (3) and Lemma 1, we obtain:
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and the proof of the lemma is completed.
We are now in a position to prove the approximation theorem.
 

Theorem 2 Let f C R L Rp∈ ∩( ) ( )2 2 ,  1≤ ≤ ∞p . Therefore 
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for 0 < r < 1 and all ( , )1 2
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Proof. Let ( , )1 2
2y y ∈R . be a fixed point and fδ δ1, 2  be the Steklov mean defined by:
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Using (4) we have:
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we obtain the desired estimation for A .
From Theorem 2, we can derive the following result.
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1. Introduction

An option is a contract between a buyer (holder) and a seller (writer) that gives the buyer 
the right, but not the obligation, to buy or to sell the underlying asset at an agreed price at 
a later date. The agreed price in the contract is called the strike price; the date is referred to as 
the expiration date. There are two basic kinds of options – calls and puts. A call stock option 
gives the holder the right to buy a specified quantity of stock at the strike price on or before 
the expiration date. The writer of the call option has the obligation to sell the underlying 
asset if the holder of the call option decides to exercise his right to buy. A put option gives 
the holder the right to sell a specified quantity of the underlying stock at the strike price 
on or before the expiration date. The writer of the put option has the obligation to buy the 
underlying asset at the strike price if the holder decides to exercise his right to sell. The style 
of an option refers to when that option is exercisable. An American option may be exercised 
at any time prior to the expiration date. A European option may be exercised only at the 
expiration date. The Monte Carlo simulation is a valuable and flexible computational tool in 
financial theory and practice [3, 4]. In this paper, we demonstrate how it can be applied to 
analyse chooser options. We price the options using Monte Carlo methods combined with the 
analytical Black-Scholes solution, relating to the case of the European call option, available 
through the MAPLE command. Using crude Monte Carlo, the distribution of the rate of 
return from investments in chooser options is examined. The simulations are performed using 
MAPLE. We use the Black-Scholes model to describe the price of the underlying asset. The 
following assumptions were made to derive the Black-Scholes model: there are no riskless 
arbitrage opportunities; there are no transaction costs; there are no dividends during the life 
of an option; security trading is continuous; the risk-free rate of interest and the stock price 
volatility are constant; the price of the underlying asset follows a geometric Brownian process

2. Model description

The Black-Scholes model is used, this is the most popular valuation model for options. 
The model is based on the assumptions that markets are arbitrage free and the price S of the 
underlying asset follows a geometric Brownian motion:

	 S S r t W t Tt t= −





 +









 ∈[ ]0

21
2

0exp , , ,σ σ  	 (1)

where:
W W t Tt= ∈[ ]{ }, ,0 	 – 	a standard Brownian motion under the risk-neutral probability 

P, r denotes the risk-free interest rate,
S0 	 – 	 the stock price at time 0, 
T 	 – 	 the time to maturity of the option (expiry date),
s > 0 	 – 	 the stock price volatility. 

An estimation of future volatility s can be obtained from historical prices of stocks as the 
standard deviation of the stock return, by assuming that the recent realized level of volatility 
will continue in the future. Another estimation can be computed from current option prices 
(implied volatility). The estimation of s has been widely studied in [1] and is not discussed 
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in this paper. Volatility is expressed in the percentage of the underlying asset price, and for 
stocks, it is typically between 15% and 60%.

Under the assumption of no arbitrage, the price of a generic derivative security can be 
expressed as the expected value of its discounted payouts. This expectation is taken with 
respect to the risk-neutral measure. Then today’s price of a stock option that pays at some 
time t according to a Ft – measurable payoff function f(t), is:

	 E e f trt−( )( )  	 (2)

Let ST denote the price of the underlying asset at the expiry date T, and K denote the strike 
price. The pay-off is given by:

f T S K C S K TT( ) , ,= −( ) = ( )+
0  

for a call option, and by:

f T K S P S K TT( ) , ,= −( ) = ( )+
0  

for a put option. A closed form formula for pricing the above options is the Black-Scholes 
formula:

c S N d Ke N drT= ( ) − ( )−
0 1 2 ,  

p Ke N d S N drT= − − −−( ) ( ) ( ),2 0 1  

where d
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c is the price of a call option, p is the price of a put option and N is the cumulative probability 
function for a standard normal distribution [6].

Analytical solution	
The call option price can be computed in MAPLE, as the analytical solution, based on the 

Black-Scholes model. It is available through MAPLE command:
> with (finance):
S0 := 50 : K := 49 : r := 0.07 : s := 0.3 : t := 199:

c := evalf blackscholes S K r0
365

, , , , ;τ
σ
















  

where t denotes 199 days to maturity.
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Monte Carlo Simulation
For the purpose of introduction, the evaluation of the price by the Monte Carlo simulation 

is also presented. Moreover, we compare the computed result with the analytical solution 
presented above.

Independent replications ST
i( )  of the terminal stock price under the risk–neutral measure 

can be generated from formula (1). By the Strong Law of Large Numbers we have:

1

1n
f S E f T n a s

i

n

T
i

=
∑ ( )→ ( ) → ∞( ) ( ) , , . .  

An unbiased estimator of the price of European call option is given by:

	 C
n

e S K
i

n
rT

T
i= −

=

−∑1 0
1

max( , ),�( )  	 (3)

where:

	 S S r T x i nT
i

i
( ) exp , ,= −






 +









 = …0

21
2

1σ σ  	 (4)

T is the option’s maturity and {xi} are independent samples from the normal distribution 
with mean 0 and standard deviation T .

As we can see below, the difference between the exact and Monte Carlo results is about 
0.01:

d r: exp := −
⋅








τ
365

N := 105

X Random Variable Normal: , :=


















0

365
τ

 
x := Sample (X, N):
L:= 0:
for i to N do

p i S
r

x i K[ ] : max exp [ ] ,= ⋅
− ⋅
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 ⋅
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


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:

L := L + p[i]
end do:

c d L
N

: ;=
⋅

Monte Carlo simulations are never exact and one always has to take the sample standard 
deviation into account. With 100 independent Monte Carlo calculations of c, the standard 
deviation of the price sample and mean are around 0.03 and 5.8514 respectively. Hence 
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5.8514±0.006 forms the boundary for the 95% confidence interval for the price. We present 
a histogram of the sample of c, based on 100 simulations:

Fig. 1. Histogram of price of European 
call option based on 100 simulations

3. Analysis of simple chooser options

In this paper, the main attention is focused on the analysis of simple chooser options. The 
Monte Carlo simulation aimed at the pricing of simple chooser options and the examination 
of the distribution of the rate of return from the options is described. Chooser options have 
been traded since July 1990 with the initial contracts traded by Bankers Trust [5]. They are 
purchased in the present, but are chosen to be either put or call at some specified future 
date. Their holder has the right to decide at some specific point in time t(t < T), whether the 
options will finally be put or call. Hence they are sometimes named ‘you-choose’ or ‘as-you-
like’ options. Chooser options are suitable when strong volatility of the underlying asset is 
expected but investors are not certain about the direction of the change. In the case of a rising 
value of the underlying asset over a period of time, the holder of the option will choose the 
call option because it will have a higher value than the put option. When the underlying 
asset falls up, the choice will be the put option. Once this choice has been made at time t, the 
option stays as either a call or a put to maturity. If the strike prices of the call and the put are 
the same, just as their expirations, such an option is referred to as a simple chooser. We will 
continue to call them briefly as chooser options. 

3.1. Pricing chooser options

Let us denote:
T – t time to maturity,
St stock price at t, 
C S K T tt ,� ,� −( )  premium of European call option,

P S K T tt ,� ,� −( )  premium of European put option.
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At time t, the investor will choose the call option if:

C S K T t P S K T tt t,� ,� ,� ,� ,−( ) > −( )

otherwise, he will choose the put option [2].
By the put-call parity:

C S K T t P S K T t S K r T tt t t, , , , exp−( ) − −( ) = − − −( )   

the above inequality is equivalent to:

S K r T tt > − −( ) exp .  

Hence the value of the chooser option at time t equals:

ch t C S K T t P S K T tt t( ) max , , , , ,= −( ) −( )( ) =

	 C S K T t K r T t St t, , max exp , .−( ) + − −( )  −( )0  	 (5)

The value of the option at time 0, when the choosing time is t, is equal to:

	 v t rt E C S K T t K r T t St t( ) , , max exp , .= −( ) −( ) + − −( )  −( )



exp 0  	 (6)

In [5], the relationships between the choice date and the chooser price, and between the 
chooser price and its strike price were examined.

Applying (6), we can price the European simple chooser option by simulation.

Example. Here we use the Monte Carlo method with n = 100000 simulations to price the 
chooser option where a maturity T is one year, the underlying asset price S0 is 50, r = 10%,  
s = 20%, k = 50 and t = 0.25 and t = 0.25. We simulate values of St and use the analytical 
result for C(St, K, T – t) calculated by MAPLE command blackscholes (St, K, r, T – t, s). We 
obtain the price n(t) = 7.01983862. The algorithm is as following:
Set sum = 0 
for I = 1 to i = 1 to n 
generate St
set sum = sum + C(St, K, T – t) + max(Kexp(–rt) – St, 0)
end
set v t n rt( ) = ( ) −( )sum exp/  

3.2. Rate of return

Using the Monte Carlo method, we can also analyse the profit function, which determines 
the profit for the holder of a chooser option on the expiry date. To obtain this goal, we have 
to know the values of the payoff function. We express a payoff function of the option in the 
following way:
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	 f T S K K SA T B T( ) = −( ) + −( )1 0 1 0max , max ,  	 (7)

where A S K r T t B S K r T tt t= > − −( ) { } = < − −( ) { }exp , exp .

Let U and W be independent, normally distributed random variables with mean 0 and 
variance t and T – t respectively:

X S r t U Y r T t W= −
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 +


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 −( ) +
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2 21
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exp , expσ σ σ σ
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
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By (1) we have St = XY. Independent samples X and Y are generated. By definition 
of chooser options, if X K r T t> − −( ) exp  then f T S KT( ) = −( )max , ,0  lse 
f T K ST( ) = −( )max , .0  Independent replications f T i ni( ) ( ) = …, 1  give us not only the 

estimation of the chooser price:

ch T rT
n

f T
i

n
i( ) = −( ) ( )

=

( )∑exp 1

1

 

at t = 0,  but also the sample of rate of return R, expressed in percentage:

R T
rT f T ch T
ch T

i ni
i

( )
( )

* %, , , .( ) =
−( ) ( ) − ( )

( )
= …

exp
100 1  

3.3. Simulation of rate of return

Figure 2 presents eight different histograms and medians of the rate of return dependent 
on K, based on n = 104 simulations each case, where a maturity T is one year, the underlying 
asset price S0 is 50, r = 10%, s = 30%, t = 0.6. The mean is equal to 0 each case.

As can be seen, a data set of the rate of return is unimodal and positively skewed, the 
long tail is on the right-hand side, when K ≤ S0. The situation reverses when K > S0. A data 
set of the rate of return is bimodal. The right-hand tail of the distribution decreases with an 
increased K. Figure 3 plots the median of rate of return against the strike price. 

From the investor’s point of view, the most interesting case is when the median rate of 
return is the biggest. As can be seen in Figure 3, the worst case is for K = 50 and the best is 
for K = 90. Let us compare the probabilities corresponding to different value ranges of the 
rate of return R. The simulation results are presented in Table 1. 

Let us observe that in the case of strike price K = 50, the probability of relative loss 
exceeding 50% is equal to 0.39 while in the case where K = 90,  the probability equals only 
0.15. Interestingly, for K = 50, the probability that relative gain exceeds 50% is equal to 
0.25, while for K = 90 it is only 0.12. Hence, for K = 50, large gains and large losses have 
the highest probabilities. The opposite situation occurs in the case of K = 90, the highest 
probabilities have small gains and small losses. As presented, the Monte Carlo simulation 
proves to be very useful for the analysis of the investment risk. 
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K = 10, Median = –5.05

K = 40, Median = –21.09

K = 60, Median = –8.21

K = 80, Median = 4.86

K = 30, Median = –9.9

K = 50, Median = –22.66

K = 70, Median = 1.05

K = 90, Median = 5.83
Fig. 2. Histograms and medians of rate of return
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Fig. 3. Median of rate of return 

T a b l e  1

Approximated distributions of rates of return for strike price K = 50 and K = 90

K = 50 K = 90

P (R ≤ –75%) 0.3 0.08

P(–75% < R ≤ –50%) 0.09 0.07

P(–50% < R ≤ –25%) Wpisz tutaj 
równanie. –25%)

0.1 0.12

P (–25% < R ≤ 0%) 0.1 0.18

P (0% < R ≤ 25%) 0.09 0.23

P (25% < R ≤ 50%) 0.07 0.2

P (50% < R ≤ 75%) 0.06 0.1

P (R > 75%) 0.19 0.02

4. Conclusions

The Monte Carlo simulation is useful in determining the distribution of the rate of return 
from investments in options. Knowledge of this distribution helps in determining investment 
risk. As demonstrated in Figures 2 and 3, and in Table 1, in the case of chooser options, the 
distribution and consequently, the level of risk, is significantly dependent on the strike price.
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1. Introduction

The Ising model, named after Ernst Ising [1] and studied at least 5 years earlier (in early 
1920s) by Lenz [2], offers an excellent testing ground for studies of the physics of classical 
and quantum phase transitions. Despite being subject of numerous, brilliant and extensive 
research studies over nearly a century, the Ising model still poses some big challenges. For 
example, the analytical solution for the 2D Ising model with no field was obtained by Onsager 
[3, 4] in 1944, but up until now, an analytical solution has remained unknown for the case 
with an external magnetic field. Thus, in many cases, feasible ways to study the model include 
experiments with quantum simulators with hundreds of spins [5] and numerical methods 
(Monte Carlo simulations) for finite-size lattices with even more spins included [6–8]. The 
universality of the Ising model goes far beyond the modelling of purely physical phenomena 
such as: classical and quantum phase transitions; binary alloys; magnetic properties of 
condensed-matter materials; strong and long-range correlations; complex systems. Just to 
give an example, it has been shown by Bornholdt [6], that microscopic models based on the 
Ising model have a capacity of reproducing complex behavior of real financial and economic 
markets. Thus, it proves that this model allows for the genuine interdisciplinary research in 
physics, econophysics and also across other areas of fundamental and applied sciences.

The purpose of this paper is to investigate the two-dimensional (2D) Ising model by means 
of Monte Carlo simulations. In view of recent progress in engineering two-dimensional Ising 
interactions in a trapped-ion quantum simulator [5], an important research question arises. 
Namely, to what extent an uncertainty of the engineered interaction in a real experimental 
situation may influence the phase transition in the model. In order to provide at least a partial 
answer to this question, random Gaussian noise is introduced into the Ising interaction 
coupling constant. 

The paper is organized as follows. In the next section, the Ising model is briefly presented. In 
Section 3, the results are presented for the case of constant interaction coupling energy. This allows 
for some justification for the applied numerical implementation of the Metropolis algorithm, as 
such results are fairly standard in the literature. Then, a variant of the model is proposed for 
which the interaction may vary according to the normal distribution with the mean and standard 
deviation fixed. Finally, the results are summarized and some conclusions are drawn.

2. The Model

Let us consider 2D Ising model [1, 2, 4], where N = L2 spins σ = ±1 are located in regularly 
spaced sites of a square lattice L × L. In general, such spins can interact with each other 
with some coupling energy J (in principle, interactions and thus couplings could depend on 
interacting spin σij, σjk locations in the lattice). Apart from internal interactions within such 
an ensemble of spins, one could also take into account interactions of each spin with the 
external magnetic field. However, for the purpose of the following discussion, let us simplify 
the model considering the case with no magnetic field and include only equal interactions 
between nearest neighbors in the square lattice. Hence the Hamiltonian H of the system reads:

H J ij
ij kl

kl= − ∑ σ σ
{ , }
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where 
J	 – 	 the coupling between interacting nearest-neighbor spins , 
σij 	 –	  the spin σij = ±1 located in the site (i, j) of the lattice (1 ≤ 1, j ≤ L), 
{ij, kl}	 – 	 denotes summation only over pairs of the nearest-neighbor sites (i, j) and 

(k, l) of the lattice.
In the model studied, the usual periodic boundary conditions for the lattice are adopted. 

This means that any spin has 4 nearest neighbors in the square lattice and for example: σL+1,j 
≡ σ1,j or σi,L+1 ≡ σi,1 (the lattice is ‘wrapped around’).

It is well known that the 2D system exhibits a phase transition between the disordered 
phase (a paramagnetic state) and the ordered phase (a ferromagnetic state). The order 
parameter for this transition is simply the total system magnetization M per spin:

m M
N N i j

ij= = ∑1

,

σ  

For a system at a given temperature T, an expectation value <A> of any observable 
A in the system with spin micro-configurations σα on the lattice is evaluated according to 
probabilities P(σα), assigned by the canonical ensemble:

	 < > = =∑ −A P A P
Z
e E kBT( ) ( ) ( )  1

σ σ σα α
α

α
σα, ( )/( )

where:
Z 	 – 	the partition function, 
E(σα) 	 – 	the energy of the microstate σα, 
kB 	 – 	Boltzmann’s constant.

In the Monte Carlo numerical simulation, such expectation values could be obtained 
through the Metropolis algorithm (see e.g. [7, 8] for a description of details of the 
implementation of Metropolis algorithm’s).

It also transpires (see e.g. [7, 8]) that the magnetic susceptibility χ (a linear response of 
the magnetization to the magnetic field) is related to the total magnetization M fluctuations: 

χ = 1 2 2

Nk T
M M

B

−( )  

The critical temperature TC for the order-disorder transition in the 2D Ising model in 
the limit of an infinite lattice (the so-called thermodynamic limit, with a total spin number  
N → ∞), without an external magnetic field, can be found exactly analytically [3, 4]:

k T
J
B C =

+( ) ≈
2
1 2

2 2691853
ln

.  

An interesting issue is related to the so-called finite-size lattice scaling at the critical 
temperature [3, 7, 8]. A ratio of any two quantities which have the same finite-size scaling at 
TC should be lattice-size independent. Especially useful are the Binder ratios [8] defined in 
the following way (q is an integer):
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B
m

m
q

q

q=
2

2  

Therefore, once we have obtained expectation values of the square of the magnetization 
and the absolute value of the magnetization itself, the first Binder ratio B1 can be easily 
found.

3. Results

Monte Carlo simulations of the Ising model using the Metropolis algorithm were 
performed according to the implementation described by other authors (see [7, 8] for details). 
Typically, in the present simulations, 50000 Monte Carlo sweeps (MCS) were discarded for 
equilibration and there were 100 bins used, each with 50000 MCS to obtain expectation 
values of <m2>, <|m|> and χ with estimates of their errors. Figure 1 shows magnetic 
susceptibility dependence on temperature for lattice sizes L = 16, 32, 64, 128. The data for L 
= 128 have been obtained with only 20 bins, so Monte Carlo error bars are more pronounced 
near the critical temperature (its position is denoted by the dashed vertical line) than for 
smaller lattices studied here (where errors are comparable to data point sizes on the plot). The 
coupling here is taken to be constant (J = J0 = 1.0).

Fig. 1. The magnetic susceptibility χ versus temperature 
T. Note the logarithmic scale for χ. The dashed vertical 
line shows the position of the critical temperature TC. 

The inset shows the shape of the magnetic susceptibility 
χ for the lattice of size L = 128 for the given range of 

temperatures

The corresponding analysis of the Binder ratio is shown in Figure 2. Note, that as 
expected, the first Binder ratio B1 is independent of the lattice size at TC. The inset in Figure 

2 shows that in more detail. The horizontal dotted line represents the asymptotic value 
π
2  
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of B1 for temperatures T much greater than TC (T >> TC) (for evidence, see [7, 8]). Thus, the 
results discussed and illustrated in Figures 2 and 3 validate the numerical methods used for 
the present study to some extent.

Fig. 2. The Binder ratio B1 for the studied 2D Ising model 
(J = J0 = 1.0). The inset shows the Binder ratio scaling in 
the vicinity of the critical temperature (indicated by the 

dashed vertical line). The horizontal dotted line indicates 
the asymptotic value of the Binder ratio

Finally, let us now consider the influence of the Gaussian noise in the value of the 
interaction coupling. It is assumed that the coupling J = J0 is known with some uncertainty 
∆J0 (J = J0 ± ∆J0). In the Monte Carlo simulations, the values of coupling energy are now 
allowed to vary slightly with subsequent MCS (but at any given MCS, they are fixed). The 
coupling energies are randomly drawn from the Gaussian (normal) distribution with the 
mean J0 and the standard deviation ∆J0, so that J = J0 ± ∆J0 = 1.0 ± 0.1 (this corresponds to 
a relative uncertainty of 10% in the value of the coupling energy). The results for the Binder 
ratio are shown in Figure 3 – note the shift in the value of the effective critical temperature 
with respect to the previously discussed case (Fig. 2). The new value of the effective critical 
temperature ′TC  of the phase transition in the noisy system is significantly lower than in the 
case of noise absence, and in rescaled units, it equals approximately:

k T
J
B C

'
. .

0
2 22≈  

In order to understand this phenomenon at least qualitatively, one may regard noise in the 
coupling energy to be equivalent to the thermal energy in the system with no external field. 
This additional thermal energy allows for the system to undergo a phase transition at a lower 
temperature, which otherwise would be too low for the system with no noise (uncertainty) in 
the spin coupling interaction. 
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Fig. 3. The Binder ratio B1 for the studied 2D Ising model 
with randomly varied coupling J, which is drawn from 
Gaussian probability distribution with average J0 and 

standard deviation ∆J0 = 1.0 

4. Conclusions

In this paper, the 2D Ising model on a square lattice with no external field was considered 
for various lattice sizes and spin numbers, ranging up to N = 1282 = 16 384 spins in the 
complex system. The results of present Monte Carlo simulations are in good agreement 
with earlier studies and some analytical, exact results. A novel approach has been put 
forward to consider the influence of the uncertainty of the spin coupling interaction on the 
effective critical temperatures in the system. This may have an application when comparing 
experimental results with some phase transition theory predictions. In particular, the results 
obtained in the present study give some indication regarding possible effects which may 
arise due to uncertainties of the system parameters in real experimental situations. Another 
possible application of this noisy 2D Ising model with Gaussian noise adopted would be to 
represent some many-body corrections or long-range spin correlations which are beyond the 
description within the standard Ising model, where only the interactions of pairs of spins are 
taken into account.

The author would like to acknowledge the use of the services and computer resources provided by 
the Academic Computer Center CYFRONET AGH in Kraków (Akademickie Centrum Komputerowe 
CYFRONET AGH, Grant No. MNiSW/IBM_BC_HS21/PK/033/2014, “Teoria złożoności rynków finan-
sowych”).
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RELAXATION CURRENTS IN THE NON-MORPHOTROPIC 
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PRĄDY RELAKSACYJNE W OBSZARZE 
POZAMORFOTROPOWYM FERROELEKTRYCZNEJ 

CERAMIKI PZT-PFS 

A b s t r a c t 

Studies on the dielectric relaxation currents in the non-morphotropic region of PZT-PFS are 
presented. Transient polarization and depolarization currents were measured at different poling 
fields (0.02–20 kV/cm) and different temperatures (77–473 K). The activation energies were 
calculated. The defect dipole complex (FeTiZr–VÖ) and reorientation cluster dipole models are 
proposed to explain the observed relaxation behaviour in PZT-PFS. 

Keywords: ferroelectric ceramics, PZT-PFS, relaxation currents 

S t r e s z c z e n i e 

W artykule przedstawiono badania prądów realaksacji dielektrycznej w PZT-PFS dla składów 
leżących poza morfotropową granicą faz. Zostały zmierzone prądy polaryzacji i depolaryzacji 
dla różnych wartości pola polaryzacji (0.02–20kV/cm) i temperatur (77–473 K). Wyznaczo-
no energie aktywacji dla różnych próbek. Dla wyjaśnienia relaksacyjnego charakteru zjawisk 
w PZT-PFS został zaproponowany model oparty o zespoły defektów dipolowych (FeTiZr–VÖ) 
i reorientacje klasterów dipoli.
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1. Introduction 

Study of transient decaying currents is a very useful method for the determination of slow 
polarization and depolarization processes in ferroelectric materials. Such a study provides 
some insights into the microscopic mechanisms of polarization and depolarization processes 
and can explain aging, memory effects, domain wall motion, and the dynamics of dipoles, 
ions and electrons [1–4].

The results of measurements of the polarization and depolarization currents in the 
morphotropic region have previously been described in [5]. The present paper reports some 
additional studies on depolarization currents in the non-morphotropic region. Details of the 
experimental procedure and sample characterization are presented in [5].

Samples with circular silver electrodes with an area of 0.36 cm2 and thickness 0.5 mm are 
used in all experiments. The samples Pb[(Fe1/3Sb2/3)xTiyZrz]O3 with x + y + z = 1, x = 0.1 and  
y = 0.43 and y = 0.47 compositions were subjected to an electric field and the decaying current 
was measured under different strengths of the applied field. After poling, the applied field 
was removed and the sample was short circuited via a current-measuring 6517A Keithley 
electrometer until the reverse depolarization current had decayed.

2. Results

The relaxation behavior in PZT+PFS was studied for various poling fields, polarization 
times and temperatures. Fig. 1 shows the time dependence of the depolarization currents 
which were recorded after various poling times, i.e. 102, 103 and 104 s. The results are shown 
as the log-log scale plots. Initially, there was little difference between the curves, but at 
longer times, that difference increased. The depolarization current curves for polarization 
times 104 s and longer have tendency to coincident.

In Fig. 2a, the depolarization current for different poling field measured at 298 K, are 
plotted. It is evident that at a low poling field, one observes a linear dependence relaxation 
current in the probe field, whereas for higher poling fields, a rapid increase of nonlinearity 
appears and, simultaneously, the depolarization time becomes longer than 104 s. In Fig. 2b, 
the time dependences of depolarization currents, measured at 77 K, are shown. At lower 
poling fields, the depolarization currents are proportional to the electric field strength, but 
at higher fields, a non-linear behaviour is observed. However, the onset of the non-linear 
dependence begins at lower poling fields than in the case of higher temperature (298 K).

In Fig. 3, the polarization Jp, steady state Js and depolarization Jd currents are presented 
for sample with y = 0.47. The charging currents at any time are the sum of the current due to 
both the decaying polarization current and the steady state conduction current:

	 Jc = Jp + Js	 (1)

At 298 K, the decaying currents are given for poling fields 0.02 (plot C) and 5 kV/cm 
(plot A). For low poling fields (0.02 kV/cm), the polarization and depolarization currents have 
approximately the same values at the same time (see Fig. 3, plot C, curves Jp and Jd). Whereas 
for higher fields 5 kV/cm, the depolarization current is lower than the polarization current 
(see Fig. 3, plot A curves Jp and Jd). At higher temperature (453 K), for the 0.02 kV/cm poling 
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field, the decaying polarization and depolarization currents have almost equal values at the 
same time (see Fig. 3, plot B, curves Jp and Jd) and the observed curves are mirror images 
of each other. Typical examples of the depolarization currents, measured under a low poling 
field (0.02 kV/cm) over the time period 1–104 s for selected temperatures for samples y = 0.43  
and y = 0.47, are shown in Figs. 4a and 4b, respectively. The shape of the relaxation currents 
presented in Figs. 4a and 4b indicates the existence of two time-dependent relaxation processes, 
both obeying the well-known Jonscher-Dissado-Hill fractional power law:

	
J t

A t
n m( ) =

( )








 +











τ
τ

τ
τ0 0

 	 (2)

where τ ω0 0
1= −  is the relaxation time for which the loss peak appears. 

The relaxation of depolarization currents proceed faster, i.e. over a time shorter than the 
relaxation time τ0 with the form t–n and slower at times longer than τ0 with the form t–m [7]. 
Values of the exponents n and m, depending on temperature, are listed in Table 1. The insets 
in Figs. 4 a and b show the temperature dependence of the log τ0

1−  vs 1000/T. The activation 
energies calculated from the slop slope of this dependence are listed in Table II, along with 
the activation energies obtained from the electric conduction. 

3. Discussion

1. The polarization and depolarization current decays at low (~0.02 kV/cm) and high 
poling fields (~20 kV/cm) as well as for different poling time were measured. The results 
presented in Fig. 1 show that, for a short poling time, only relaxation processes with short 
relaxation times are developed. Poling times of at least the order 104 s are needed to initiate all 
various polarization processes with long relaxation times, both at high and low temperatures. 
For a weak poling field (~0.2 kV/cm), there is no difference between polarization and 
depolarization currents, as shown in Fig. 3, plots B and C. This means that the reorientation 
of dipoles and domain wall motion is reversible and that the ferroelectric under study behaves 
as a linear dielectric. The onset of irrevertiable motion of the domain walls begins at higher 
fields [8]. In this range of poling field, the depolarization current at any time is less than the 
polarization current (see Fig. 3, plot A) and the remnant polarization is induced. At very 
high poling fields (20 kV/cm; Fig. 2a), the space charge appears providing an additional 
contribution to the total discharge current [5, 6].

2. The properties of the PZT compounds are strongly altered by point defects. In the case 
of Pb(Zr,Ti)O3 modified by FeSb ions, randomly distributed Ti4+, Zr4+, Fe3+ ions on the B 
site of the perovskite structure are created. The group of octahedrons with identical B site 
ions (BO6)n gives rise to a micro-region (cluster) with a large number of locally interacting 
dipoles. The nanometer size clusters with various composition have dipole moments 
undergoing the thermal fluctuation between equivalent positions. Between clusters, some 
coupling interaction occurs leading to partial long-range regularity. Longer relaxation times 
are associated with relaxation due to the cooperative motion of the group of clusters (micro-
regions) [10, 11]. The observed, in initial time, the power law dependence Jp(t)~t–n may be 
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explained take into account dipol-dipol and ion-ion interactions. As it was shown in paper 
[12] such interaction leads to the generation low-energy correlated states. The density of this 
low-energy excitation gives rise to the infrared divergence response function t–n.

3. In the case of PZT with Fe3+ ions, three FeTiZr–VÖ defect complexes could be formed 
depending on whether the oxygen atoms were removed or not [13, 14]. The energy barriers 
for reorientation of these defect complexes depend on the position of oxygen vacancies with 
respect to iron atoms [13, 14]. In the tetragonal phase of the PZT, there are two types of 
oxygen atoms – the oxygen atoms bonded to two Ti atoms in ab planes [O(2)] and the oxygen 
atoms in the O-Ti-O chains in c directions [O(1)]. Therefore, one may expect three kinds 
of defect complexes. The Debye-type relaxation peaks (see Figs. 4a and b), observed, in 
both samples, can be attributed to the reorientation defect complexes formed by the oxygen 
vacancies. Activation energies obtained from relaxation times (see Table 2) approximately 
equals to the energy barrier of the defect dipole rotation calculated in paper [13, 14]. 

T a b l e  1

Values of power exponents n and m for samples with y = 0.43 and y = 0.47 

y = 0.43 y = 0.47
T [K] n m T [K] n m
298 0.72 1.17 298 0.73 1.19
343 0.68 1.18 423 0.72 1.22
398 0.62 1.19 473 0.70 1.28

T a b l e  2

Activation energies obtained from the measurements  
of relaxation times Er and electrical conduction Ec [15]

composition Er [eV] Ec [eV]
y = 0.43 0.34 0.37
y = 0.47 0.16 0.17

Fig. 1. Time-dependence of depolarization 
currents (Jd) for various poling times (tp) 

measured at 298 K for sample with  
y = 0.47. Poling field: 0.02 kV/cm
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Fig. 2. Depolarization currents (Jd) for different 
poling fields for sample with y = 0.47 measured 

at 258 K (a) and 77 K (b)

Fig. 3. Charging (Jc), polarization (Jp) and 
depolarization (Jd) current densities for sample 

with y = 0.47. Plot A: temperature 298 K, poling 
field 5 kV/cm; plot B: temperature 453 K, poling 

field 0.02 kV/cm; plot C: temperature 298 K, 
poling field 0.02 kV/cm

a)

b)
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Fig. 4. Depolarization current density (Jd) under low 
poling field (0.02 kV/cm) at different temperatures for 
samples with y = 0.47 (a) and y = 0.43 (b). The insert 

shows the log1/τp vs. 1000/T dependence

a)

b)
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OPTIMAL INVESTMENT HORIZONS FOR THE MAIN 
INDICES OF THE WARSAW STOCK EXCHANGE 

OPTYMALNE HORYZONTY INWESTYCYJNE  
DLA GŁÓWNYCH INDEKSÓW WARSZAWSKIEJ GIEŁDY 

PAPIERÓW WARTOŚCIOWYCH 

A b s t r a c t 

The investment horizon is the smallest time interval when an asset crosses a fixed value of the 
return level. For a given return level, the investment horizon distribution is created by putting 
the investment horizons into a histogram. We fit probability distribution function to the histo-
gram. The maximum of the function is called the optimal investment horizon. We performed the 
analysis of some indices of the Warsaw Stock Exchange for WIG, WIG20, mWIG40 and shares 
of KGHM and MBK. For these assets, we found the coefficients of linear proportion between 
the optimal investment horizons and the logarithm of their return levels.

Keywords: econophysics, financial markets, inverse statistics 

S t r e s z c z e n i e 

Horyzont inwestycyjny jest najmniejszym odcinkiem czasu, w którym dana inwestycja prze-
kroczyła ustalony poziom zwrotu. Dla danego poziomu zwrotu tworzymy rozkład horyzontu 
inwestycyjnego, składając horyzonty inwestycyjne w histogram. Maksymalna wartość dopa-
sowanej funkcji rozkładu prawdopodobieństwa jest optymalnym horyzontem inwestycyjnym. 
Przeprowadziliśmy analizę dla niektórych indeksów Warszawskiej Giełdy Papierów Warto-
ściowych WIG, WIG20, mWIG40, sWIG80 oraz akcji KGHM i MBK. Dla wymienionych 
instrumentów finansowych wyznaczyliśmy współczynniki proporcji liniowej pomiędzy opty-
malnymi horyzontami inwestycyjnymi i logarytmami poziomów zwrotu.
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1. Introduction 

The character of price movements was described quantitatively by the random walk hypothesis 
proposed by Bachelier [1]. However, the nature of these movements better reflects the random 
walk hypothesis for the logarithm of the price s(t) = ln(S(t)) [2]. According to this assumption, 
the distribution of the returns of an asset is effectively described by a Gaussian distribution [3–5].

A large amount of financial data is recorded for financial studies and benchmarking. An 
important and common task in studying the data is calculating the distribution of returns over 
a fixed time period Δt. The distribution measures gains or losses at time t + Δt produced by 
the investment made at time t.

Many empirical studies for small values of Δt argue that the price changes are much larger 
than expected from the Gaussian distribution. The distributions have so-called fat tails [3–6]. 
For larger values of Δt the distribution of returns converges to the Gaussian distribution 
[7–10]. The analogue distribution is found for turbulence in air and fluids [11]. The statistics 
of financial markets were compared with turbulent fluids [4, 12–14].

The inversion of the standard return-distribution problem was proposed by Simonsen, 
Jensen and Johansen [15–17]. They studied the probability distribution of waiting times 
needed to reach a fixed return value ρ for the first time [11].

Another kind of investigation on waiting times and price movements was proposed in [18]. 
There were studied the frequency of occurrences of subsequent movements’ proportions 
in price and time. Their proportions are effectively described by the generalized Gamma 
probability distribution.

2. Investment horizons 

The first passage time problem was described in [19]. The solution to the Brownian 
motion problem is analytically provided by the Gamma distribution in [20, 21]:

	 p t
a
t

e a t( ) /
/= −1

3 2

2

π
,	 (1)

where a is proportional to the return level ρ.
The overall growth of the economy modulated with times of recession influences financial 

time series s(t) with a positive drift over long time scales. In the presence of such a drift, we 
cannot use the Brownian motion model to describe these series. For this reason, we should 
use so-called deflated asset prices s t( )  for reducing the effect of this drift. The drift d(t) we 
describe with a 1000-day moving average for stock indices and a 250-day moving average for 
shares due to their higher volatility. These two periods naturally correspond to four calendar 
years and one calendar year respectively. For our analysis, we use logarithmic prices with 
subtracted drift s t s t d t( ) ( ) ( )= − . The prepared data for the WIG index and the MBK shares 
is depicted in Fig. 1. and Fig. 2.

The log-return over a time interval Δt of an asset of price S(t) at time t reads:

	 r t
S t t
S tt∆

∆
( )

( )
=

+( )
ln ,	 (2)
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Fig. 1. Daily logarithmic closure prices of the WIG index 
over years 1991–2013

Fig. 2. Daily logarithmic closure prices of the MBK 
shares over years 1991–2013

For a return level ρ at time t, the investment horizon τp(t) is the smallest time interval ∆t  
that satisfies the relation r∆t(t) ≥ ρ. For a fixed return level, we put the investment horizons 
in the histogram. In this way, we obtain the investment horizon distribution p(τp). Due to 
the empirical logarithmic stock price process is not the Brownian [3–6], we fit generalized 
Gamma distribution to the histogram:

	 p t
t t t t
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/
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The distribution (3) reduces to the Gamma distribution (1) for parameters α = β = 0.5,  
ν = 1 and t0 = 0.

The maximum of the distribution (3) defines the optimal investment horizon:

	 τ β
ν

αρ

ν
* =

+




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−2
1

01

/

t  	 (4)

According to (1) for geometric Brownian processes we have relation τ ρρ
* .

2  The 
empirical data generate slightly different dependence, as we will see in the next section.
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3. Discussion and results 

The analysis was performed originally by Simonsen et al. in [15], it was also used for 
the WIG and some stock companies quoted in the Warsaw Stock Exchange (WSE) [22–24]. 
In this paper, we continue the investigation described in [25] for indices and companies 
quoted in the WSE. For the return level ρ = 0.10 in Fig. 3 and Fig. 4, we present p(τρ) – the 
probability distribution function (pdf) of the investment horizons measured in trading days 
τρ. As one can expect from the higher volatility of the share prices of MBK compared to 
WIG, the optimal investment horizon was τρ

* .= 4 52  for MBK and τρ
* .= 11 33 for WIG. The 

probability of reaching the return level for MBK is two times larger than for the WIG index 
in the area of the optimal investment horizon. The values of the optimal investment horizons 
for indices and shares we analyzed are placed in Table 1.

Fig. 3. The probability distribution function of the 
investment horizons of WIG measured in trading days,  

for the return level ρ = 0.10 

Fig. 4. The probability distribution function of the 
investment horizons of MBK measured in trading days, 

for the return level ρ = 0.10

We compare results with the DJIA index, which has a few times larger values of τρ
*  in 

comparison with indices quoted in WSE. This higher volatility is a feature of the WSE, rather 
than of emerging stock markets [22]. Among the main indices on the WSE, mWIG40 has the 
highest value of the optimal investment horizon. mWIG40 is composed of 40 medium-sized 
companies.
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We also analyzed KGHM, the company with the highest capital in WIG20. Another 
company is MBK (former BRE Bank), which has been quoted in WIG20 since its beginning. 
Companies have much shorter values of τρ

*  than indices. The reason for this is in their higher 
volatility than the volatility of indices. The index is a weighted sum of the companies and 
every price movement of each company is only partially reflected in the change of the index.

T a b l e  1

Optimal investment horizons for return levels ρ = 0.05, 0.10, 0.15 and the exponent  
of the return level γ 

Name ρ = 0.05 ρ = 0.10 ρ = 0.15 γ

DJIA 10.97 36.15 63.04 1.55

WIG 4.33 11.33 18.23 1.25

WIG20 3.33 9.66 15.27 1.34

mWIG40 6.82 20.27 40.07 1.60

sWIG80 4.82 12.93 22.21 1.35

KGHM – 5.55 11.51 1.52

MBK – 4.52 8.60 1.57

Fig. 5. The optimal investment horizon of two main indices  
on the WSE as a function of the log-return level ρ

Another important feature we investigate is the proportion:

	 τ ρρ
γ*

  	 (5)

The Brownian motion model with γ = 2 is inconsistent with empirical results [15]. For 
higher return values ρ, we fitted γ parameter as in Fig. 5. and Fig. 6. We find γ < 2 in the range 
1.35–1.60 as shown in Table 1. For smaller return values ρ, we observed higher values of τρ

*  
(not shown in the picture) than we could expect from (5).
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Fig. 6. The optimal investment horizon of two companies 
as a function of the log-return level ρ.

4. Conclusions 

In this work, we analyzed the main indices quoted in the WSE which constitute 
the benchmark for some capital funds. The distributions and the optimal investment horizons 
can be applied for estimating the most probable time period for realization of the return level. 
The analogue passage time distributions are applied in turbulence of fluids, where they are 
called inverse structure functions.

The lower values of γ parameter indicate that the prices are more stable and connected 
with the real value of the asset than the expectation of the geometrical Brownian hypothesis 
which is generally accepted for capital markets [3, 4].

R e f e r e n c e s

[1]	 Bachelier L., Théorie de la Spéculation, Annales de l’Ecole normale superiure, 1900. 
[2]	 Samuelson P., Economics: The Original 1948 Edition, McGraw-Hill/Irwin. 
[3]	 Bouchaud J.P., Potters M., Theory of Financial Risks: From Statistical Physics to Risk 

Management, Cambridge University Press, Cambridge, 2000. 
[4]	 Mantegna R.N., Stanley H.E., An Introduction to Econophysics: Correlations and 

Complexity in Finance, Cambridge University Press, Cambridge, 2000.
[5]	 Hull J., Options, Futures and other Derivatives, Prentice-Hall, London 2000. 
[6]	 Mandelbrot B.B., J. Business, vol. 36 No. 4, 1963, 394-419. 
[7]	 Drożdż S., Kwapień J., Grümmer F., Ruf F., Speth J., Acta Phys. Pol. B, vol. 34, 2003, 

4293-4306.
[8]	 Rak R., Drożdż S., Kwapień J., Physica A, vol. 374, 2007, 315-324.
[9]	 Drożdż S., Forczek M., Kwapień J., Oświęcimka P., Rak R., Physica A, vol. 383, 2007, 

59-64.
[10]	 Kwapień J., Drożdż S., Physics Reports, vol. 515, 2012, 115-226.
[11]	 Jensen M.H., Phys. Rev. Lett., vol. 83, 1999, 76-79.
[12]	 Mantegna R.N., Stanley H.E., Nature, vol. 383, 1996, 587-588.
[13]	 Ghashghaie S., Breymann W., Peinke J., Talkner P., Dodge Y., Nature, vol. 381, 1996, 

767-770.
[14]	 Friedrich R., Peinke J., Renner Ch., Phys. Rev. Lett., vol. 84, 2000, 5224-5227.



73

[15]	 Simonsen I., Jensen M.H., Johansen A., Eur. Phys. J. B, vol. 27, No. 4, 2002, 583-586.
[16]	 Jensen M.H., Johansen A., Simonsen I., Physica A, vol. 234, 2003, 338-343.
[17]	 Jensen M.H., Johansen A., Petroni F., Simonsen I., Physica A, vol. 340, 2004, 678-684.
[18]	 Szmagliński A., Acta Phys. Pol. A, vol. 123, 2013, 621-623.
[19]	 Redner S., A Guide to First Passage Process, Cambridge, New York 2001.
[20]	 Ding M., Yang W., Phys. Rev. E, vol. 52, 1995, 207-213.
[21]	 Rangarajan G., Ding M., Phys. Lett. A, vol. 273, 2000, 322-330.
[22]	 Karpio K., Załuska-Kotur M., Orłowski A., Physica A, vol. 375, 2007, 599-604.
[23]	 Załuska-Kotur M., Karpio K., Orłowski A., Acta Phys. Pol. B, vol. 37, 2006, 3187-3192.
[24]	 Grudziecki M., Gnatowska E., Karpio K., Orłowski A., Załuska-Kotur M., Acta Phys. 

Pol. A, vol. 114, 2008, 569-574.
[25]	 Czajkowski G., Eng. Th. Investment Horizon Distribution for Main Indices of Warsaw 

Stock Exchange, Kraków 2014.





*	 Institute of Physics, Faculty of Physics, Mathematics and Computer Science, Cracow University of 
Technology, Poland; puwojcik@cyf-kr.edu.pl.

WŁODZIMIERZ WÓJCIK*

THE STRUCTURE OF NEUTRON STARS  
WITH LOCALIZED PROTONS 

STRUKTURA GWIAZD NEUTRONOWYCH  
ZE ZLOKALIZOWANYMI PROTONAMI

A b s t r a c t

Strongly asymmetric nuclear matter becomes unstable with respect to proton localization above 
a specific critical nuclear density. For equation of state of Akmal, Pandharipande and Ravenhall 
the Tolman-Oppenheimer-Volkoff equations were solved and the radius of the spherical shell of 
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1. Introduction

The structure of neutron stars is both interesting and complex and is a problem to be 
solved. A few years ago, the model with star matter having localized protons was proposed 
[1–5]. In high-density matter with a low proton fraction, the coupling of proton impurities 
with the density waves in neutron matter could lead to the localization of protons in the 
potential wells associated with the neutron density inhomogeneities. Such instability is a 
universal phenomenon in high density matter, although the proton localization threshold 
density depends on the equation of state [6].

This paper is organized as follows. In Section 2, there is a brief discussion of some of the 
features of the Akmal-Pandharipande-Ravenhall (APR) Hamiltonian [7] and the ingredients 
involved in their construction. In Section 3, the Tolman-Oppenheimer-Volkoff equations [8] 
are presented. In Section 4, these are solved with the APR equation of state and the radius of 
the shell below which protons in neutron stars are localized is calculated.

2. Akmal-Pandharipande-Ravenhall equation of state

The A18+δv+UIX* parametrization of the APR equation of state was chosen for nuclear 
interaction. In this approach, the Jastrow wave function is assumed and the expectation 
value of the Hamiltonian is cluster-expanded. Subsequently, parts of the higher-order cluster 
terms are resummed up by the Fermi Hypernetted Chain (FHCN) method [9]. Akmal, 
Pandharipande and Ravenhall performed the FHCN calculation [8] with Argonne v18 (Av18) 
two-body potential [10] and the Urbana IX* (UIX*) three-body potential [11] with boost 
correction. The obtained energy density reads:
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where the neutron and the proton densities fulfil the following conditions nN + nP > p19 or:
nN + nP > p20. The parameters have the following values: p1 = 337.2 MeVfm3; 
p2 = –382.0 MeVfm6; p3 = 89.8 MeVfm5; p4 = 0.457 fm3; p5 = –59.0 MeVfm5;
p6 =19.1 MeVfm9; p7 = 214.6 MeVfm3; p8 = –384.0 MeVfm6; p9 = 6.4 fm3;
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p10 = 69.0 MeVfm3; p11 = –33.0 MeVfm6; p12 = 0.35 MeV; p13 = p14 = p21 = 0; 
p15 = 287.0 MeVfm6; p16 = –1.54 fm3; p17 = 157.0 MeVfm6; p18 = –1.45 fm3; 
p19 = 0.32 fm–3; p20 = 0.195fm–3.

3. Tolman-Oppenheimer-Volkoff equations

The structure of spherically symmetrical non-rotating neutron stars is described by the 
celebrated the Tolman-Oppenheimer-Volkoff (TOV) equations [12], which form a coupled 
set of first-order differential equations of the following form:
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dm
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r= 4 2π ρ, 	 (3)

where:
P(r) 	 – 	denotes the pressure (at radius r), 
ϱ(r) 	 – 	mass density, 
m(r) 	 – 	the mass enclosed within the radius r, 
G 	 – 	the gravitational constant,
c 	 – 	the speed of light. 

For a given fluid element in the star, hydrostatic equilibrium is attained by adjusting the 
pressure gradient to exactly balance the gravitational pull. 

The second equation defines the total mass contained in the sphere of radius r. Thus at  
r = 0, m must be zero and at r = R, m is the total mass M of the star. The unknowns in these 
two equations are ϱ, P and m – hence, a third equation is needed to close the system. This 
third equation is the equation of state (EOS) P = P(ϱ). Thus, the input to the calculations 
is the EOS and the output yields the masses of neutron stars as a function of their radius for 
a given central density. Given the stellar radius R, which is defined by zero pressure at the 
stellar surface, the gravitational mass is as follows: 

 	 M R r r dr
R

( ) = ( )∫4
0

2π ρ .  	 (4) 

In hydrostatic equilibrium the neutron star is perfectly balanced by the action of two 
forces - gravity and pressure. The pressure gradient is negative so the pressure decreases 
monotonically with distance until it vanishes at the edge of the star. The pressure at the center 
must be enormous in order to be able to support the full weight of the star. This implies that 
models of the EOS will have to encompass high and low density ranges. This is an example 
of how the microscopic physics (EOS) can potentially be ‘observed’ from astrophysical data, 
namely from the mass and radius of the star.
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4. The results 

The aim of this work was to compare the energies of two phases. The energetically 
favorable ground state of matter is found by comparing the energy of a normal phase E0 
with uniform density and a phase with localized protons EL. Based on our papers [ 1–5] we 
calculate ∆E = EL – E0 versus neutron density nN (Fig. 1) and we establish that above nL = 
0.819 fm–3, protons in neutron matter for the A18+δv+UIX* potential are localized. 

Fig. 1. Difference ΔE = EL – E0 versus neutron 
density for the A18+δv+UIX* parametrization

Fig. 2. Mass-central density relation for the 
A18+δv+UIX* equation of state

The TOV equations are solved with the A18+δv+UIX* parametrization introduced in Section 
2. Fig. 2 presents the dependence of neutron star masses on the logarithm of central density. For 
central density above 1015 g cm–3, we have neutron stars with masses higher than the solar mass 
(M


). It transpires that the mass of the neutron star has a maximum value (Fig. 2) as a function 

of central density, above which the star becomes unstable and collapses to a black hole. The 
value of the maximum mass depends on the nuclear EOS. The considered solutions of the 
TOV equations with the A18+δv+UIX* equation of state is compatible with the largest mass 
observed up until now, which is measured to be 2.01 ± 0.04 M

 [13]. 
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We have also plotted (Fig. 3) the density versus the distance from the centre of the neutron 
star for a given central density (log ϱc = 15.4) and found that the radius of the neutron star 
equals approximately 10 km. The obtained value is compatible with the observed radii of 
neutron stars [12]. 

Fig. 3. Density of neutron star versus distance from 
centre for log ϱc = 15.5 

Fig. 4. Baryon number density versus distance from 
the centre of the neutron star. The curves are labelled 

by the logarithm of the central density of the star. 
The straight line indicates the threshold density of 

localization

Next, the density profiles of neutron stars were calculated. For the various central densities, 
changes of neutron star matter density versus distance from its centre for the A18+δv+UIX* 
equation of state were calculated (Fig. 4). Comparing the profile shape with the value of 
proton localization threshold (straight line on Fig. 1) nL = 0.819 gives a radius of spherical 
shell rL within which proton localization takes place. The curves are labelled by the logarithm 
of the central densities. In our case, for log ϱc = 15.3 we have rL = 4.4 km (for neutron star 
radius R equals 10.4 km) and for log ϱc= 15.4 we have rL = 5.6 km (R = 10.9 km). 
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5. Concluding remarks 

The solution of the Tolman-Oppenheimer-Volkoff equations with the A18+δv+UIX* 
equation of state indicates that the structure of neutron stars is inhomogeneous - in the 
central area, up to rL protons are localized and above rL to R (radius of neutron star) protons 
and neutrons are delocalized. 

The phase with localized protons inside neutron star cores has profound astrophysical 
consequences. As has been shown [14], the cooling of neutron stars proceeds in quite 
different ways for localized and delocalized phases. The presence of such a localized proton 
phase results in more satisfactory fits of the observed temperatures of neutron stars. 
Further studies applying other equations of state are in progress.
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This paper investigates thermal properties of nuclear matter using the Friedman-Pandharipande-
Ravenhall equation of state. Thermodynamic quantities such as internal energy, entropy and 
free energy are calculated both for symmetric and asymmetric nuclear matter for temperatures 
ranging up to 30 MeV. A change of free energy curvature indicates the liquid-gas phase 
transition in nuclear matter. 
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1. Introduction

 Thermodynamic properties of nuclear matter play an important role in studies of high-
energy astrophysical phenomena. The nuclear equation of state at zero temperature governs 
the structure of cold neutron stars, whereas the equation of state for finite temperatures is 
necessary for studies of many processes e.g. core collapse of supernovae, black hole formation 
and neutron star cooling, to name but a  few. Knowledge of thermodynamic quantities is 
required when considering an extremely wide range of densities, temperatures and proton 
fractions. In order to better understand the properties of dense nuclear matter changes of 
thermodynamic functions such as internal energy, entropy and free energy with densities, 
temperatures and degree of asymmetry were evaluated. 

This paper is organized as follows. In Section 2, there is a discussion on some of the 
features of the Friedman-Pandharipande-Ravenhall (FPR) equation of state (EOS) and 
explicit expressions for thermodynamic functions are given, which are presented in Section 
3 for symmetric and asymmetric nuclear matter.

2. Thermodynamics of dense matter with the Friedman-Pandharipande-Ravenhall 
equation of state

The EOS of dense nuclear matter is an essential ingredient in modelling neutron stars. 
Knowledge of the EOS, particularly with arbitrary isospin asymmetry, i.e. different proton 
and neutron fractions, is of fundamental importance for both nuclear physics and astrophysics. 
The saturation density and the energy per particle of nuclear matter can be used to test 
properties of finite nuclear systems extrapolated to the thermodynamic limit. Moreover, the 
study of the EOS of asymmetric matter allows us to shed some light on the behavior of the 
isospin asymmetry energy. In our approach, we use the FPR model in which the density of 
energy as a function of neutron nN and proton nP densities reads [1]:
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The effective proton mass is as follows:
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b nN
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The parameters in (1) are: a1 = 1054.0 MeV fm3; a2 = –1393.0 MeV fm3; a3 = –2316.0 MeV fm3; 
a4 = 2859.0 MeV fm3; a5 = –1.78; a6 = –52.0 MeV fm3; a7 = 5.5 MeV; a8 = 197.0 MeV fm3; 
a9 = 89.8 MeV fm5; a10 = –59.0 MeV fm5; b1 = 0.284 fm3; b2 = 42.25 fm6; b3 = 0.457 fm3.

A major advantage of the above effective interactions is that they can be used 
straightforwardly to make finite-temperature calculations. In our approach, it is assumed that 
the kinetic energy densities and baryon matter densities are the only quantities that exhibit 
dependence on temperature [2]:
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where η
µ

i
i

kT
=  (mi the chemical potential of neutrons or protons) can be derived from the 

baryon number density:
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Eqs. (3) and (4) are written in terms of Fermi integrals:
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Calculated entropy per baryon is:
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where:

mi
*  – the effective nucleon masses of neutrons and protons. 

While studying the thermodynamics of dense matter, it is convenient to choose the 
Helmholtz free energy. From Eqs. (1) and (6), the expression for the free energy per baryon 
reads:

	 F n n T T n S n S nN P N N P P B= ( ) − +( )( , , ) /ε ,	 (7) 

where the energy density e(nN, np, T) depends on temperature. In the next section, we discuss 
the properties of internal energy, entropy and free energy in the FPR model.
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3. Properties of symmetric and asymmetric nuclear matter at finite temperatures

At finite temperatures, the nuclear matter structure and properties are not as well settled 
as at zero temperature. In this paper, the thermodynamic properties of dense matter for 
the FPR equation of state are discussed. To make the discussion complete, the energy per 
particle, the entropy per particle and the free energy per particle are computed. Based on the 
calculated free energy, all other thermodynamic quantities may be obtained from standard 
thermodynamic relations.

In Fig. 1, the FPR equation of state for symmetric nuclear matter (proton fraction  
x = 0.50) are displayed for different temperatures T = 0, 10, 20 and 30 MeV.

Fig. 1. Energy per nucleon versus baryon 
density for symmetric nuclear matter at 

different temperatures

For very small densities (below 0.02 fm–3), one obtains the behavior of a  free Fermi 
gas with linear temperature dependence and for increasing density, quadratic temperature 
dependence [3]. The entropy per baryon and the free energy per baryon for symmetric matter 
are shown in Fig. 2 and Fig. 3 for different temperatures. For symmetric nuclear matter, the 
entropy behaviour (Fig. 2) agrees very closely with the experimental results [4].

Fig. 2. Entropy per nucleon versus baryon 
density for symmetric nuclear matter at 

different temperatures
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Fig. 3. Free energy per nucleon versus 
baryon density for symmetric nuclear matter 

at different temperatures

In Fig. 3, the free energy per nucleon versus baryon density exhibits an unstable region of 
negative curvature for lower densities below T = 20 MeV (cf [5]). Non-convexity of F(nB,T) 
with respect to nB at a fixed temperature implies a negative isothermal compressibility KT 
which violates the stability relation KT > 0. In this region, the physical equation of state 
can be obtained by performing the Maxwell construction. This signifies the presence of 
a first-order phase transition. The existence of a critical temperature for nuclear matter is 
extremely strong evidence that, under appropriate conditions, there should be a  transition 
between a  nuclear ‘liquid’ and nuclear ‘gas’. The physics of nuclear matter is therefore 
a crossover from a gas of nucleons to homogeneous matter, where nuclei and larger clusters 
coexist with the nucleon gas over a wide range of intermediate densities. At temperatures  
(T ~ 20 MeV) and high densities, a  liquid-gas type of phase transition was first predicted 
theoretically by A.L. Goodman [6] and later observed experimentally in a  nuclear multi-
fragmentation phenomenon [7]. 

The case of asymmetric matter is more complex to study since there is an additional 
degree of freedom to consider - the isospin asymmetry, i.e. different neutron and proton 
fractions. Such matter plays an essential role in astrophysics, where neutron-rich systems are 
involved in neutron stars and type-II supernovae evolution [8].

Fig. 4. Energy per nucleon versus baryon 
density for asymmetric nuclear matter  

(x = 0.10) at different temperatures 



86

Fig. 5a presents the entropy density S versus baryon density for asymmetric matter  
(x = 0.10). This quantity is the sum of two contributions - the first from neutron entropy 
(Fig. 5b), and the second from proton entropy (Fig. 5c). In asymmetric nuclear matter, the 
contribution of SP to total entropy is much greater than SN - as follows clearly from relation (7).

The dependence of free energy of asymmetric nuclear matter versus baryon density 
(Fig. 6) shows non-convexity at temperatures below T = 10 MeV for proton fraction equaling  
x = 0.10. It indicates that in asymmetric nuclear matter, the phase transition occurs in much 
lower temperatures than in symmetric one.

Fig. 5 a) Entropy per nucleon versus baryon 
density for asymmetric nuclear matter  

(x = 0.10) at different temperatures; b) neutron 
entropy contribution; c) proton entropy 

contribution

a)

b)

c)
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Fig. 6. Free energy per nucleon versus baryon 
density for asymmetric nuclear matter  

(x = 0.10) at different temperatures

In Fig. 7, changes of the free energy with densities at constant temperature T = 10 MeV 
for different asymmetry of nuclear matter are also shown. It was observed that phase 
transition in asymmetric nuclear matter takes place for lower densities than in symmetric 
nuclear matter.

Fig. 7. Free energy per nucleon versus baryon 
density at T = 10 MeV from fully asymmetric 
(x = 0) to symmetric (x = 0.50) nuclear matter

4. Conclusions

The thermodynamic properties of hot, dense nuclear matter employing the Friedman-
Pandharipande-Ravenhall model of nuclear interaction were investigated. Evidence of the 
liquid-gas phase transition both in symmetric and asymmetric nuclear matter was observed. As 
this paper shows the critical temperature strongly decreases with nuclear matter asymmetry. 
The results presented here lead to better understanding of phase diagram of nuclear matter.
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1. Introduction

We have shown in the earlier papers [1, 2] that in asymmetric nuclear matter, protons 
are localized in the core of neutron stars for realistic nuclear models. Protons that form the 
admixture tend to be localized above the threshold density nloc depending on the model used. 
The localization effect occurs as a  result of the interaction of protons with small density 
oscillations of the neutron background [2]. In paper [3], we have extended the effect of proton 
localization to finite temperatures for the Friedman-Pandharipande-Ravenhall potential. 
Here, the influence of temperature on the proton localization for another nuclear model, the 
Skyrme nuclear interaction, is investigated.

The plan of this paper is as follows. In Section 2, some of the features of the Skyrme 
forces are briefly discussed. In Section 3, model of proton admixture in neutron model is 
presented. In Section 4, the process of calculating entropy and free energy of nuclear matter 
is described. Numerical results are discussed in Section 5. 

2. Skyrme forces parametrization

It was chosen to work with the Skyrme forces [4] to calculate the properties of the 
asymmetric nuclear matter. The Skyrme potential reads: 
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where nB = nN + nP (the density of baryon) and masses of nucleons are mP = 4.7549 fm–1 and 
mN = 4.7615 fm–1 . 

The local kinetic energy densities of neutrons and protons for plane waves become: 

	 τ πi in i N P= ( ) =
3
5

3 2 2 3 5 3/ / , , . 	 (2)

In our calculations, the following Skyrme force parameters were used: t0 = –1057.3 
MeVfm3; t1 = 235.9 MeVfm5; t2 = –100.0 MeVfm5; t3 = 14463.5 MeVfm3 + 3γ; x0 = 0.2885;  
x1= x2 = 0; x3 = 0.2257; γ = 1. These are the Vautherin and Brink [5] parameters modified as 
described in [6]. 
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3. Proton admixture in neutron matter

Protons in strong asymmetric nuclear matter tend to localize [1, 2] in potential wells which 
correspond to neutron matter inhomogeneities created by the protons in neutron medium. The 
energetically favorable ground state of asymmetric nuclear matter was found by comparing the 
energy of two phases: a normal phase (in Wigner-Seitz approximation) and a phase with localized 
protons. The cells are assumed to be spherical and the volume is V = 1/nP, where the proton 
density nP = xnN for a small proton fraction x. In normal phase, protons are not localized and 
their wave functions are plane waves. The energy of the cell reads: 

	 E V n nN P0 = ( )ε , , 	 (3)

where ε(nN , nP) is the energy density. In the phase with localized protons, the energy of the 
Wigner-Seitz cell Eloc is [7]:
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The first term is the energy of the proton confined to an effective potential well  
veff = mP(n(r)). The two other terms in eq. (4) describe the contributions to the energy arising 
from local change of the neutron Fermi momentum and the gradient of the neutron distribution, 
respectively, in the Thomas-Fermi approximation. Here, ε(n(r)) is the local neutron matter 
energy per unit volume. The parameter BN is the curvature coefficient for pure neutron matter. 

We assume a simple trial form of the proton wave function:
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where RP is the root mean square (r.m.s.) radius of the localized proton probability distribu-
tion. We treat this quantity as a variational parameter and minimize ΔE = Eloc – E0. The results 
are presented in Section 5. 

4. Entropy and free energy of nuclear matter

The internal energy density of uniform nuclear matter is given by eq. (1) and 
inhomogeneities one by eq. (4). The entropy densities Si reads:

	 S k n n n ni B i i i i= − + − −( )( )∑
α

α α α α, , , ,log ( ) log1 1 . 	 (6)

Here, nα,i are the occupation numbers of the simple-particle orbitals Φα,i (x) and i = N or P. 
Upon integration by parts, the entropy per baryon has the particularly simple form 
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where mi
*  denotes the effective nucleon masses i = N, P. The quantity hi is calculated from 

the relation:
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where Fermi integrals are defined as follows:
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Knowing the internal energy ε and the entropy per baryon Si the free energy per baryon is:

	 F n n T T n S n S nN P N N P P B= ( ) − +( )( , , ) /ε . 	 (10) 

At finite temperatures, the ground state is found by minimizing the free energy.

5. Proton localization in finite temperatures 

The internal energy difference between the localized state of protons and the state with 
uniform matter ΔE = Eloc – E0 for the Skyrme forces was calculated. The difference ΔE as the 
function of variational parameter RP for various neutron density at T = 0 is shown in Fig. 1. 

The curves are labelled with the neutron matter density nN. One can notice that for the 
Skyrme (Sk) interaction, a  local minimum above a  certain density for the proton r.m.s. 
radius RP appears to strongly decrease with neutron density (Fig. 2). With increasing neutron 
matter density nN, the depth of the minimum ΔE increases. Above the threshold density, the 
energy difference becomes negative. The negative value ΔE < 0 means that the energy of 

Fig. 1. The energy difference ΔE = Eloc – E0 
as a function of the proton r.m.s. radius 
RP for various neutron densities at zero 

temperature for the Skyrme forces
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the localized proton is lower than the energy of a non-localized proton. This means that the 
localized proton state is preferred energetically for n > nloc .

To investigate the influence of temperatures on proton localization, we calculate the free 
energy difference ΔF = Floc – F0  in the same manner as in Section 2 using eq. (10). The 
relation ΔF versus proton radius presents Fig. 3.

Fig. 2. The r.m.s. radius of proton wave 
function at zero temperature as the function 

of density

Fig. 3. The difference of free energy 
between the localized and delocalized 

states as a function of proton radius at fixed 
baryon density and for various temperatures 

Fig. 4. The free energy difference at the 
minimum ΔE as a function of density at 
different temperatures for the Skyrme 

nuclear forces



94

When the temperature increases, the minimum value of ΔF as a function of the average 
neutron number density is shown in Fig. 4. A value of zero corresponds to the threshold 
density nloc above which the state with localized proton occurs. 

A strong influence of temperatures on proton localization was observed (Fig. 5). 
Temperature inclusion lowers the localization threshold density and diminishes the size of 
the proton wave function (Fig. 2). Thus, the localization is present even in the case of very 
high temperature. This means that temperature and baryon density cooperate to achieve 
proton localized state in dense asymmetric nuclear matter.

Fig. 5. The threshold density nloc above 
which the localization is occurred as 

a function of the temperature of neutron 
matter 

5. Conclusions

Finally, the results show that for low values of x, the state with localized single protons 
has a lower energy than a uniform configuration for n > nloc, even for high temperatures. We 
have also found that the threshold localization temperature relationship for the Friedman-
Pandharipande-Ravenhall parametrization [3] turns out to be surprisingly close to that which 
was obtained in our calculation for the Skyrme forces. This fact indicates universal character 
of temperature influence on the proton localization in dense nuclear matter. 
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1. Introduction 

The approximation of multivariate functions is a remarkably hard problem due to the 
so-called ‘curse of dimensionality’ [1]. However, the effective approximation of high-
dimensional functions is the only solution in numerous practical problems from virtually 
all branches of science and technology. In particular such an approximation is an essential 
element of the so-called metamodelling [2, 3] (see also [4] for a discussion of metamodelling 
of high-dimensional problems, [5] for a comparison of a few metamodelling techniques and 
[6] for an example of the usage of sparse grids in metamodelling).

Examples of the application of high-dimensional approximation in science and engineering 
include ionosphere modelling [7], quantum mechanics [8], materials science [9], structural 
engineering [10], electrochemistry [11] and nuclear reactor modelling [12].

Sparse grids offer a method of function approximation where instead of one dense grid, 
we have a number of sparser grids and a linear combination is used [13]. The method is also 
known under other names such as the (discrete) blending method [14], the Boolean method 
[15] and hyperbolic cross approximation [16].

HDMR (High Dimensional Model Representation) approximation is a different approach 
that hinges on the fact that many high-dimensional functions can be efficiently approximated 
by sums of low-dimensional functions. The concept is attributed to Sobol [17]. The method 
is described in [18, 19]. Reference [20] describes many variants of HDMR approximation.

This paper compares the above two methods for the approximation of multivariate functions. 
In Section 2, a basic theory of sparse grid and cut-HDMR methods is described. Section 3 
describes the performed numerical experiments. Section 4 summarizes the obtained results.

2. Theory of sparse grids and cut-HDMR 

2.1. Sparse grids 

Let us start with a one-dimensional interpolation. Consider a function f M: ,0 1[ ] →  .  

We need a sequence Ui
i

{ }
=

∞

1
 of interpolating operators, each one providing a better 

approximation than the previous one. The formula for operator Ui, which interpolates on 
nodes x x xi i

m
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i1 2, , , ,…{ }  can be written as

	 U f x f x a xi

j

m

j
i

j
i

i

( )( ) = ( ) ( )
=
∑

1

. 	 (1)

Functions a xj
i ( )  depend on the interpolation nodes and interpolation type. For Lagrange 
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An M-dimensional approximation corresponds to the tensor product of operators 
U U Ui i iM1 2, , ,  as follows: 
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(see [22]). The interpolating operator for a kth variable is Uik . The calculation of the inter-
polant requires computing the interpolated function at m m mi i iM1 2

  nodes. In polynomial 
or spline interpolation, we select a single grid corresponding to a single tensor product of 
operators. In sparse grid approximation, we combine multiple grids.

The central idea in sparse grid approximation is Smolyak’s formula [13]. This formula 
represents a linear combination of interpolants on many grids. The sparse grid interpolation 
operator is defined by a linear combination of operators from Eq. (3): 

	 A q M
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The operator (4) has two arguments: the first (q) describes the density of the grid and the 
second (M) is the number of variables. The sum of components of index i = …{ }i i iM1 2, , ,  is 

denoted by i =
=
∑
j

M

ji
1

.  Figure 1 shows two examples of two-dimensional sparse grids.

One can choose different approximation spaces for the sparse grid approximation. The 
simplest choice is a space constructed from so-called hat functions [23] but this space is 
rarely used in practice. Instead, commonly used sparse grids are based on polynomial or 
piecewise-polynomial functions.

One important feature of all sparse-grid methods is that one-dimensional basis functions  
ψi jj

x( )  are combined into M-dimensional basis functions ψi x( )  defined as:

	 ψ ψi x( ) = ( )
=
∏
j

M

i jj
x

1

. 	 (5)

In Eq. (5), j is the number of independent variables and ij is a parameter to distinguish 
different one-dimensional functions of that variable. A sparse grid approximant is constructed 
as a linear combination of the multivariate basis functions ψi x( )  for different values of 
i = …{ }i i iM1 2, , , .

A motivating feature of sparse grids with polynomial interpolation is the fact that formula 
A(M + k, M) exactly reproduces multivariate polynomials up to order k [22]. Full grid 
approximation by operators from Eq. (3) on the other hand, exactly reproduces monomial 
x x xm m

M
mi i iM

1 2
1 2

  of order m m mi i iM1 2
  but not monomial xmi1

11 +  of order mi1 1+ .
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(a) (b)

Fig. 1. Two-dimensional sparse grids with q equal to 3 (a) and 7 (b). Both examples use equidistant 
one-dimensional nodes

2.2. Cut-HDMR approximation 

An approximated M-variate function f(x) can be written as a sum of the constant term, 
functions of one variable, etc. 

	 f f f x f x x f x x
i M

i i
i j M

i j i j Mx( ) = + ( ) + ( ) +…+ …
≤ ≤ ≤ < ≤

…∑ ∑0
1 1

1 2 1 2, , , ,, , , ,, xM( ) .	 (6)

The choice of functions f0, fi, fi,j etc. is not unique. By retaining only a few initial terms 
in the expansion (6) one obtains an HDMR approximation. The maximum dimension of the 
domain of functions used in the approximation is called the order of the approximation, for 
example, the first-order approximation consist only of a constant f0 and one-dimensional 
functions fi.

In the cut-HDMR variant of the method, a reference point r is selected and used to 
determine the terms of expansion (6) in the following way: 

	 f0 = f(r),	 (7)

	 f x f x x r x x fi i i i i M( ) = … …( ) −− +1 1 1 0, , , , , , , 	 (8)

	 f x x f x x r x x r x x f xi j i j i i i j j j M i i, , , , , , , , , , , ,( ) = … … …( ) − (− + − +1 1 1 1 1 )) − ( ) −f x fj j 0 ,  	 (9)

etc.
For analytic functions f this approximation can be compared to the multidimensional 

Taylor expansion at point r: 

	 f f
f
x

x r
f
x x

x r
i

M

i
i i

i

M

j

M

i j
i ix r

r r
( ) = ( ) +

∂ ( )
∂

−( ) +
∂ ( )
∂ ∂

−
= = =
∑ ∑∑

1 1 1

2

(( ) −( ) +…x rj j , .	 (10)

a) b)
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Regrouping the terms in Eq. (10) gives expressions for the cut-HDMR terms. As each cut-
HDMR term corresponds to many Taylor expansion terms, cut-HDMR usually offers a better 
approximation than the Taylor expansion. The cut-HDMR approximation is, like the Taylor 
expansion, local. However, in certain subspaces, the approximation is exact (i.e. there is no 
error). They are called cut subspaces and depend solely on the expansion point (cut point, 
anchor point) and the order of the expansion. In agreement with Eqs. (7) to (9), first order cut 
subspaces are straight lines of the form 

	 { )( , , , , , , : },r r x r r x i Mi i i M i1 1 1 1… … ∈ ≤ ≤− + R � 	 (11)

and second order cut subspaces are planes described by

	 { )( , , , , , , , , , , : , },r r x r r x r r x x i j Mi i i j j j M i j1 1 1 1 1 1… … … ∈ ≤ < ≤− + − + R � .	 (12)

For the purpose of representing a cut-HDMR expansion on a computer, a method of 
interpolating the low-variate functions is necessary. Typically, first degree spline interpolation 
is used. The approximated function is calculated on grids spanning the cut subspaces. This is an 
improvement over interpolation in the whole M , as fewer values of the approximated function 
need to be known. The number N of values of function f, that need to be stored decreases from 
KM (assuming K interpolation nodes for each independent variable), to the value

	 N
M
l

K
M
l

K
M

Kl l=








 −( ) +

−








 −( ) +…+









 −( ) +− −1

1
1

1
1 11 2

	 (13)

for an lth order expansion. For each l the value N given by Eq. (13) is a polynomial in M. 
Equation (13) can be obtained by counting the number of points that lie in an lth order cut 
subspace, but not in an  l – 1st order cut subspace, adding points that lie in an l – 1st order cut 
subspace, but not in an l – 2nd order cut subspace etc. In this way no point is counted twice.

The choice of the cut point r is an important issue. Wang [24] proposed an automatic method 

of selecting the best cut point. A low-discrepancy sequence of points x xi i M

i

p
: ,∈[ ]{ }

=
0 1

1
 is 

selected and each point is taken tentatively as a cut point of the HDMR decomposition. The 
error of the expansion is calculated as

	 e f f
f
e f fL L, ,( ) =

( )
( )1

2 2
σ

	 (14)

where:
f 	 – 	the approximated function,
fL 	– 	the approximant. 

The point with the lowest error is finally selected as the cut point. The variance σ2(f) of 
function f is defined as [25]: 

	 σ2

0 1

2

0 1

2

f f d f d
M M

( ) = ( )( ) − ( )














[ ] [ ]

∫ ∫
, ,

x x x x 	 (15)

and the function e2 is given by
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	 e f f f f dL L
M

2

0 1

2,
,

( ) = ( ) − ( )( )
[ ]
∫ x x x . 	 (16)

It can be observed that since the variance is a constant positive number that does not 
depend on the approximation, the function fL minimizing e2(f, fL) minimizes e(f, fL) as well.

2.3. Theoretical comparison of sparse grids and cut-HDMR

Sparse grids and cut-HDMR method use two different approaches for the approximation 
of multivariate functions. Both of these methods try to overcome the curse of dimensionality. 
The cut-HDMR method approximates a given function by a number of low-dimensional 
functions. The sparse grids method combines the results of interpolation using a number of 
grids to give a better approximation.

The methods utilize different assumptions about an approximated function. The sparse 
grids method assumes that high-order terms of the Taylor expansion of an approximated 
function are negligible. Cut-HDMR approximation assumes that terms of the Taylor 
expansion involving more than a few (typically one or two) variables are negligible.

3. Numerical experiments 

A number of numerical experiments were carried out to compare the sparse grid 
approximation with the cut-HDMR approximation. Six functions defined on the cube [0, 1]M 
were selected for the experiments. Results presented below refer to the following functions f1 
to f4: 

	 f
x

M
i

M
i

1
1
2 1

2 1
x( ) =

+

 




+( )
=∑log

log
,	 (17)

	 f x
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M
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1

202 1x( ) = −( )
=
∑ ,  	 (18)

	 f x x
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M

j

M

i j3
1 1

10 10
2 1 2 1x( ) = −( ) −( )

= =
∑∑ , 	 (19)

	 f e x e xx

i

M
x

i
M i

4
2 1

1
1

1
2 1

1x( ) = +−

=

−
−

+∑ .	 (20)

For other functions, similar results were obtained.
The above test functions have been selected with the aim of objectively test both 

approximation methods, without favouring any one of them. Assuming the approximated 
function is analytical, sparse grids behave poorly when there are high degree terms in the 
Taylor expansion of the approximated function at a given point. The functions f1 and f4 fulfill 
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these requirements. On the other hand, cut-HDMR effectively approximates high degree 
terms as long as they are monomials of no more variables than the order of the expansion 
(functions f2, f3 and f4).

A few different one-dimensional node placements were tested for sparse grids:

•	 equidistant nodes x
k
m

k mk = −
= … −

1
0 1 1, , , , ,

•	 extrema of the Chebyshev polynomials together with endpoints

x k
m

k mk = −
−







 = … −0 5 0 5

1
0 1 1. . cos , , , , ,π

•	 roots of the Legendre polynomials P x
n
d
dx

xn n

n

n

n
( ) = −( )





1
2

12

!
 mapped to the interval 

[0, 1].
The first node placement was selected for its simplicity; the second, because it eliminates 

the Runge effect [26]. Their implementation was obtained from the code of the TASMANIAN 
sparse grid package [27]. The values of the parameter q in Eq. (4) that were used are 3, 4, 5, 
6, 7, 8 and 9.

Figure 2 shows the relationship between the absolute approximation error calculated as:

	 ERR f f G f fL G L, , max( ) = ( ) − ( )
∈x

x x ,	 (21)

and the number N of points at which the function needs to be calculated. Grid G, which is the 
third argument of the error function (21), is a Cartesian product of M sets of k equally spaced 
points between 0 and 1: 

	 G M k
k

k
kn

M

, , , , , ,( ) =
−

…
−
−







=

∏
1

0 1
1

2
1

1 	 (22)

In the experiments, M = 4 and k = 19 were assumed. The first and second order cut-
HDMR approximations were used. The error (21) was estimated on grid G(4, 8). The 
cut-HDMR approximation used a first order spline interpolation or a Hermitian piecewise 
cubic interpolation employing first function derivatives approximated by three-point finite 
differences to represent functions of one or two arguments.

The method proposed by Wang [24] was used to determine the best placement of the cut 
points by minimizing expression  (16). Sobol sequence [28] was used both for picking up 
candidates for the cut points and for the Quasi-Monte Carlo integration needed in Eq. (16). 
In both cases, 1000 points from the Sobol Sequence were taken. The coefficients needed for 
calculation of the Sobol sequence were obtained from the web page http://web.maths.unsw.
edu.au/~fkuo/sobol/new-joe-kuo-6.21201 (accessed 2014-04-01). The details of the Sobol 
sequence generation can be found in [29].

Plot (a) in Fig. 2 shows errors for a function that cannot be expressed as a sum of 
functions of at most two arguments. As a result, the error of the cut-HDMR expansion reaches 
a minimum of approximately 0.11 and cannot become lower. At the same time, the sparse 
grids can achieve much lower errors.
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(a) (b)

(c) (d)

Fig. 1. Absolute approximation error as dependent on the number N  of known values of function f 
employed by the approximation. Plot (a) – function f1, (b) – function f2, (c) – function f3 (d) – function 
f4. Notation: (■) – sparse grids with equidistant nodes and first-order spline interpolation, (◊) – sparse 
grids with equidistant nodes and third-order spline interpolation, (○) – sparse grids with nodes at the 
extrema of Chebyshev polynomials and with Lagrange interpolation, (●) – sparse grids with nodes at 
the roots of Legendre polynomials and with Lagrange interpolation, (Δ) – second order cut-HDMR 

with first-order spline interpolation, (▲) – second order cut-HDMR with piecewise  
third-order polynomial interpolation, (♦) – first order cut-HDMR with piecewise third-order 

polynomial interpolation
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Plot (b) in Fig. 2 shows errors for a function that can be expressed as a sum of functions 
of one argument. In this case, the error of the expansion (6) truncated to order 2 is zero so 
that only the interpolation error remains and cut-HDMR approximation can be arbitrarily 
accurate. The variant with a higher order of interpolating polynomials shows significantly 
lower errors than the one that uses only first-order spline interpolation. The variant of sparse 
grids using third-degree piecewise polynomial interpolation has the lowest error of all sparse 
grid methods. The cut-HDMR decomposing only to functions of 0 and 1 variable (using third-
degree piecewise polynomial interpolation) has the lowest error among all other methods.

Plot (c) in Fig. 2 shows errors for a function that can be expressed as a sum of functions of 
at most two variables. This function is characterized by high correlations between variables 
and is relatively fast-changing so that the error of the expansion (6) truncated to order 2 is 
zero again. The second-order cut-HDMR has the lowest errors in the range of N  where the 
logarithm of the error is lower than 0.

Plot (d) in Fig. 2 shows errors for a function that can be represented as a sum of functions 
of two arguments but is relatively slow-changing. In this case, two types of sparse grid 
approximation have the lowest errors.

4. Conclusions 

In this study, two methods of approximating multivariate functions were compared – sparse 
grids and cut-HDMR. The comparison regarded the accuracy of both methods defined as the 
maximum absolute error of approximation. In most cases, sparse grids appear more accurate than 
the cut-HDMR method that employs a comparable number of known values of the approximated 
function. However, the cut-HDMR approximation has lower errors when the function is fast-
changing and can be exactly represented as a sum of functions of at most one or two variables.

In conclusion, sparse grids are recommended over cut-HDMR for approximating 
multivariate functions. Cut-HDMR approximation should only be used when the sparse grids 
method cannot achieve desired accuracy using the assumed number of known values of the 
approximated function.
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A b s t r a c t

This paper presents a  method for the parallelization of the Levenshtein distance algorithm 
deployed on very large strings. The proposed approach was accomplished using .NET 
Framework 4.0 technology with a  specific implementation of threads using the System.
Threading.Task namespace library. The algorithms developed in this study were tested on a high 
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1. Introduction

The Levenshtein distance [6] between two strings of characters is equal to the minimum 
number of insertions, deletions and substitutions of characters required to convert one string 
into the second string. The Levenshtein distance has applications in many areas, e.g. text 
analysis (detection of plagiarism) [3, 13], spell-checking in text processors [7], web mining 
(search engine robots) [9, 10], bioinformatics (Levenshtein-Damerau distance for DNA 
structure analysis [8, 11]), etc.

The algorithm for Levenshtein distance calculation creates a  matrix (Levenshtein 
matrix) where its last element (Fig. 1) constitutes a solution. The asymptotic computational 
complexity of the algorithm assumes the order O(NM), where N and M denote the lengths of 
the text strings (i.e. the number of characters in each strings).

Difficulties occur when long strings have to be analyzed (e.g. millions of characters in 
one string). In such cases, the Levenshtein matrix is complex, and to attain the final results, 
more time is required. Moreover, it is more complicated to allocate such large matrices 
in standard development environments. The problem of analysis of very long strings may 
occur when, for example, the same fragments of a book (whole terms or words instead of 
consecutive characters in the original algorithm [2, 12]) have to be compared or when DNA 
chains (Levenshtein-Damerau distance [8, 11]) are analyzed.

In this experiment, it was decided to design both the Levenshtein as well as the 
Levenshtein-Damerau algorithms with Microsoft .NET Framework [14] and run developed 
applications under Linux OS with the use of Xamarin Mono Project [5]. Such project 
environments allowed for an additional validation of efficiency and of speed of the 
proposed algorithms. 

2. Description of the Levenshtein distance algorithm 

The Levenshtein distance K for two strings is the minimum number of operations –insertion, 
deletion and substitution required to convert one term (string) into the other. The Levenshtein 
distance K is equal to the d[M, N] element of  the so-called Levenshtein matrix d:

	 K = d[M, N] = LevenshteinDistance (String1, String2)

The main idea of the Levenshtein distance algorithm (LevenshteinDistance function) is 
described by the following pseudo-code:

input variables: char Text1[0..M-1], char Text2[0..N-1]
  declare: int d[0..M, 0..N]

	   for i from 0 to M
d[i, 0] := i

            for j from 0 to N
d[0, j] := j

            
  for i from 1 to M

                for j from 1 to N
       if substring of Text1 at (i – 1) = substring of Text2 at (j – 1) then



111
                    cost := 0 else cost := 1
                    d[i, j] :=
                        Minimum(d[i - 1, j] + 1,
                        d[i, j - 1] + 1,
                        d[i - 1, j - 1] + cost)
                end for (variable j)
            end for (variable i)

            
  return d[M, N];

where:
d 	 – 	 Levenshtein matrix of the size N+1, M+1, formed for two terms: 

Text1 and Text2,
M, N 	 – 	 lengths of two terms respectively,
d[i, j] – (i, j) 	 – 	 element of Levenshtein matrix d,
Minimum 	 – 	 a function to calculate a minimum of three variables,
cost 	 – 	 variable that gets values either 0 or 1.

The deference between the Levenshtein and the Levenshtein-Damerau distance algorithms 
is shown below as a part of the relevant pseudo-code with the definition of elements of the 
Levenshtein-Damerau matrix z:

   z[i, j] :=
        Minimum(d[i - 1, j] + 1,
        z[i, j - 1] + 1,
        z[i - 1, j - 1] + cost)
                    
   if i > 1 and j > 1 and substring of Text1 at (i-1) = substring 
of Text2 at (j – 2) and substring of Text1 at (i-2) = substring of 
Text2(j-1]) then 
        z[i, j] := Minimum(z[i, j], z[i - 2, j - 2] + cost)

The Levenshtein-Damerau distance D is the minimum number of operations (insertion, 
deletion, substitution) required to change one term into the other, this is similar to the 
standard Levenshtein procedure, but additionally, it is necessary to account for the number of 
transpositions of neighboring characters. Consequently, the Levenshtein-Damerau distance 
between two sequences D is equal to the z[M, N] element of the suitable Levenshtein-
Damerau matrix z:

	 D = z[M, N] = LevensteinDamerauDistance (Text1, Text2)

The figures below and the pseudo-codes above show that the value of element [i, j] of 
matrix d in the current iteration is calculated based on the values: d[i – 1, j], d[i, j – 1] and 
d[i – 1, j – 1] for the Levenshtein distance and additionally, z[i – 2, j – 2] for the Levenshtein-
Damerau distance. This means that each of these values must be calculated in the previous 
iterations of the algorithm.
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Fig. 1. Levenshtein matrix d, constructed for terms: yesterday and tomorrow1

Fig. 2. Levenshtein-Damerau matrix z, constructed for deoxyribonucleic acid (DNA) sequences: 
TCCAATA and GGCCTCC (where: T – thymine, A – adenine, G – guanine, C – cytosine)

T a b l e  1

Examples of Levenshtein distance between two strings

No. string 1 string 2 Levenshtein distance
1 Car Cars 1
2 University Universities 3
3 Tom is writing a letter Tom is writin letters 4

Table 1 shows an example of the results of calculations of the Levenshtein distances using 
the conventional algorithm. In the first example, we need to add one character in string1 
or remove one character in string2 to transform one string into the other. In the second 
example, we need to substitute one character and add two characters (string1) or substitute 

1	 The application for both Levenshtein and Levenshtein-Damerau matrices calculations is available 
from the web site: www.pk.edu.pl/~aniewiarowski/publ/levenMatrix.exe.
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one character and remove two characters (string2). In the last example, we need to remove 
four characters (‘g’, ‘a’, ‘s’ and space) in string1 or add four characters in string2.

3. Numerical implementation of parallelization algorithm2

As was depicted above, difficulties occur when strings of millions of characters have to be 
analyzed. In such cases, the Levenshtein matrix becomes very large and more time is required 
to compute all its elements. Table 2 shows examples of time consumption requirements in 
the case of complex Levenshtein matrices calculation (without any parallelization procedure 
implemented). The whole series of experiments was performed on a  computer with 
parameters: 32GB RAM; two physical processors (Intel(R) Xeon(R) CPU E5-2620 0 @ 
2.00GHz, 24 threads). 

T a b l e  2

Time consumption in the case of complex Levenshtein matrices calculation 

No. Length of 
string 1

Length of 
string 2

Number of elements of
Levenshtein matrix

Computation 
time [sec.] (high 

performance computer)

Computation 
time [sec.] 

(standard PC)1

1 5 000 5 000 25 000 000 0.724 3.385
2 10 000 10 000 100 000 000 2.520 13.400
3 30 000 30 000 900 000 000 22.020 105.502
4 32 000 32 000 1 024 000 000 25.040 172.879

5 40 000 40 000 1 600 000 000 out of memory 
exception

out of memory 
exception

In Fig. 3, a graphical interpretation of the proposed solutions for large strings is presented. 
One very large matrix is built from the smaller component matrices resulting from the 
structure of the analyzed substrings. Each component matrix (i.e. values from last column 
and last row) is calculated and some of their values are transmitted to the next small matrix 
where they become initial values. This procedure reiterates through all component matrices. 
Each component matrix is calculated by the parallelized threads (1, 2 .. n) with the use of an 
array of locks algorithm where a younger thread (e.g. n – 1) waits for an older one (e.g. n – 2). 
Matrices which will not be used anymore are removed from the memory.

The pseudo-code below Fig. 3 describes a part of the function LevDistDecomposition 
where the input strings Text1 and Text2 are decomposed for the smaller substrings. Based on 
two subsequent substrings the component matrices are calculated and their final boundary 
elements are collected in two one-dimensional arrays: arrVertical and arrHorizontal. Next, 
these arrays are transmitted to the new small matrix in which they stay as the initial values 
for further calculations. Finally, the algorithm returns the Levenshtein distance as the result.

2	 All the results for the described algorithms were calculated with the use of a 64-bit console applica-
tion (written in C# language) available on website: www.pk.edu.pl/~aniewiarowski/publ/ LevParal-
lelCS.exe.
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Fig. 3. Parallelization procedure of the Levenshtein distance matrix decomposition
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input variables: char Text1[0..M-1], char Text[0..N-1], number of 
parts, number of parallel threads
declare: part_rangeX[0..number of ranges of horizontal parts], part_
rangeY[0..number of ranges of vertical parts] as structure of int from 
and int to
declare: results_of_matrix[0..number of ranges of horizontal parts, 
0..number of ranges of vertical parts] as structure of int[] 
arrVertical[0..length of Text1] and int[] arrHorizontal[0..length of 
Text2]

for vm from 0 to M do arrVertical[vm]:=vm
for vn from 0 to N do arrHorizontal[vn]:=vn

for mx from 1 to number of ranges of horizontal parts (i.e. number of 
elements of part_rangeX)
    for my from 1 to number of ranges of vertical parts (i.e. number 
of elements of part_rangeY)
      results_from_matrix[mx, my] := 
        LevDistParallelParts(
        substring of Text1 at (part_rangeX[mx-1].from-1,
         part_rangeX[mx-1].to – part_rangeX[mx-1].from+1),
        substring of Text2 at (part_rangeY[my-1].from-1, 
         part_rangeY[my-1].to – part_rangeY[my-1].from+1),
        number of parallel Threads, 
        results_from_matrix[mx - 1, my].arrVertical, 
        results_from_matrix[mx, my - 1].arrHorizontal 
       )
       clear results_from_matrix[mx - 1, my].arrVertical        
       clear results_from_matrix[mx, my - 1].arrHorizontal      
end for (variable my)
end for (variable mx) 

return the last element of arrVertical (or arrHorizontal) of the last 
element of result_from_matrix 
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In the pseudo code-above, some designations are taken:
LevDistParallelParts – function for calculation of the component matrices,
results_from_matrix – two-dimensional array, collects elements of one-dimensional arrays: 
arrVertical and arrHorizontal,
part_rangeX, part_rangeY – one-dimensional arrays with elements representing the range of 
calculated component matrices,
arrVertical, arrHorizontal – one-dimensional arrays of results, input parameters for LevDi-
stParallelParts function.

Additional complex operations, required for the implementation of the parallelization 
procedure are presented precisely in the pseudo-code in appendix A.

4. Results

In the present research, the Microsoft .NET technology was used (C# language) [14]3. The 
proposed algorithm was tested with mono-project (cross platform, open source .NET development 
framework) [5] and OS Fedora Linux. The obtained results are presented in Fig. 4. The diagram 
shows the relationship between the length of analyzed strings (additionally described by the 
number of parts of the main matrix – right-hand legend in Fig. 4) and the number of parallel 

3	 Some details of .NET’s threads and parallel technologies are presented in [15].

Fig. 4. Correlations between length of strings and computation time for different  
numbers of parallel threads for one component matrix
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threads for one component matrix. As can be seen, the final computation time strongly 
depends on string sizes and on the number of parallel threads. In the presented examples, the 
best optimal results were obtained for about 100 threads applied for the component matrix in 
all cases of partitioning. For other numbers of threads, the parallelized parts of the component 
matrix were too large or too small and the procedure of threads construction was not cost-
effective. 

In Fig. 5, the relationship between the number of parts of a  large decomposed matrix 
(1·1012 elements) and the computation time is presented. The obtained results show that 
the speed of calculations strongly depends on the number of parts (i.e. sizes of component 
matrices) of the decomposed matrix as well. This effect influences the main decomposition 
algorithm (in function LevDistDecomposition), in which the one-dimensional array of results 
becomes the input data for the next iteration, and some old data are removed from memory. 
If there are too many parts, the transfer of partial results (and other operations) will be too 
frequent.

Fig. 5. Relationship between number of parts (blocks) of decomposed matrix  
and computation time for string size of 1·106 × 1·106

The results obtained for strings depicted with the Levenshtein matrix of 4·1012 elements, 
are presented in Tab. 3. It turns out that for parts 50 × 50 and 60 × 60, the component matrices 
were too large and the system could not allocate them in memory.

In Fig. 6, the consumption times of computations of the Levenshtein distance for very 
long strings with the use of optimized parameters (the best values of number of parallel 
threads for one component matrix and number of parts of decomposed main matrix) are 
presented. It is worth underlining that the calculation time versus the string’s length grows 
approximately according to the power function.
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Next, the calculation times of the Levenshtein distance for very long texts with or without 
the parallelization procedure were compared. Different length texts were analyzed and the 
obtained results are presented in Tab. 4 and Fig. 7.

T a b l e  3

Computation times for two long strings according to number of blocks of main matrix

String sizes
Number of parallel 

threads for component 
matrix

Number of parts 
of main matrix Computation time [sec.]

1 000 000 × 1 000 000 100 50 × 50 4 590.35

1 000 000 × 1 000 000 100 60 × 60 4 601.1

1 000 000 × 1 000 000 100 70 × 70 4 669.4

1 000 000 × 1 000 000 100 80 × 80 4 704.4

2 000 000 × 2 000 000 100 50 × 50 out of memory exception

2 000 000 × 2 000 000 100 60 × 60 out of memory exception

2 000 000 × 2 000 000 100 70 × 70 17 360.4

2 000 000 × 2 000 000 100 80 × 80 17 630.58

Fig. 6. Computation times of calculations for very long strings using matrix decomposition  
with the parallelization procedure



118

Fig. 7. Computation times of calculations of long strings using Levenshtein distance algorithm with 
and without parallelization for one decomposed matrix 

Based on Fig. 7, it can be seen that the parallelized Levenshtein distance algorithm is 
about 4–5 times faster than that without the parallelization procedure applied. 

T a b l e  4

Computation times of Levenshtein distance algorithm with or without parallel procedure

Chars in text A Chars in text B Comp. time [sec.] – with 
parallel procedure

Comp. time [sec.] – no parallel 
procedure

5 000 5 000 0.18 0.72

10 000 10 000 0.55 2.52

20 000 20 000 1.95 9.84

25 000 25 000 2.97 15.33

30 000 30 000 4.20 22.08

32 000 32 000 4.82 25.04

33 000 33 000 out of mem. exception out of mem. exception

Figure 8 presents the computation times of DNA sequences for one decomposed 
Levenshtein-Damerau matrix with the use of assumed (100) number of parallel threads. As 
can be seen, the parallelized algorithm is again about 4-5 times faster than the algorithm not 
being parallelized. DNA sequences consist of chars T, A, G, C (described in Fig. 2).
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Fig. 8. Computation times of calculations of DNA sequences using Levenshtein-Damerau  
algorithm with and without the parallelization procedure for one decomposed matrix 

5. Conclusions and further work

The research presented in this paper results in a  method for the parallelization of the 
Levenshtein distance algorithm. Its implementation allows for the improvement of the 
speed of calculating the similarity measure of two long strings. In the presented examples, 
a high efficiency of the proposed techniques was achieved and very good results on a high-
performance computer were confirmed [4].

The algorithm proposed in the paper was implemented in the mechanism of automatic 
selection of promotors and reviewers of diploma thesis within the system “Diplomas’ 
Manager”. This system was implemented at the Faculty of Physics, Mathematics and 
Computer Science of the Cracow University of Technology4 as a tool for diploma thesis 
management. The solution was also implemented within the anti-plagiarism system 
of “Diplomas’ Manager” and high efficiency in the case of searches for plagiarism was 
achieved.  

In our future research, efforts will be undertaken towards improving the Levenshtein-
Damerau algorithm for analyzing very long DNA sequences by decomposing the main 
matrix in accordance with the proposed algorithms. Moreover, the MPI technology will be 
implemented for computing each part of a  large matrix. Furthermore, the introduction of 
measures of the distance between text elements (terms) in the analyzed text documents to 
build its internal specific characteristic and document structure is also anticipated [1]. 

4	 System is available on web page: https://administracja.fmi.pk.edu.pl/~dyplomy.
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Appendix 1

The pseudo-code below describes part of the function LevDistParallelParts which 
provides the parallelization procedure of component matrix dpart. The procedure calls threads 
that are assigned to insert the one-dimensional array pth. For iteration of all elements of 
matrix dpart two loops for, loop in the line 16 and loop in the line 2, are required. The number 
of iterations within the loop in line 21 is restricted by the number of threads. Additionally, 
in line, 19 the automat of waiting mechanism is implemented and a loop with the array of 
locks point_lock is introduced. Based on this, the thread number p in loop for (line 16) waits 
for parallel thread number p-1 (line 19) until column i in thread p-1 has all values calculated. 
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39

input variables: number of parallel threads nTh, char fragText1[0..tM-
1] char fragText2[0..tN-1], initial values included in arrVertical and 
arrHorizontal arrays
declare: array of threads pth[0..nTh], array arrRanges[0..tN] of 
structure int form and
int to, array dpart (part of Levenshtein distance matrix)

calculate ranges for Y size of matrix dpart and save in arrRanges
for i from 0 to tM
        d[i, 0] := arrHorizontal[i]
for j from 0 to tN
        d[0, j] := arrVertical[j]

for p from 1 to nTh
 pth[p] := new Thread((num) of
 {
 int cost
 for i from 1 to tM
      
    point_lock[num] = i
    wait if i >= point_lock[num - 1]

    for j from arrRanges[num - 1].from to arrRanges[num - 1].to
         
    if substring of Text1 at (i – 1) = substring of Text2 at (j – 1) 
then 
    cost := 0  else  cost := 1
    
    dpart[i, j] := Minimum(
                   dpart[i - 1, j] + 1, 
                   dpart[i, j - 1] +1, 
                   dpart[i - 1, j - 1] +cost)

    end for (variable j) 
 end for (variable i) 
 increment +1 of point_lock[num]
 }
run thread pth[p]
end for (variable p)

wait for finish thread pth[nTh] (i.e. wait for all threads)
return structure of (array dpart[0..tM-1, tN-1], array dpart[tM-1, 
0..tN-1])
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In the pseudo code-above, some designations are taken:
pth – one-dimensional array of thread objects,
point_lock – one-dimensional array of locks,
arrRanges – one-dimensional array of calculated ranges of areas of component matrix,
num, p –thread number (i.e. number of part matrix),
dpart – component matrix of Levenshtein matrix x, 
LevDistParallelParts – the Levenshtein distance obtained with the parallelization procedure.
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S t r e s z c z e n i e 

W artykule wprowadzono nową koncepcję Paradygmatu Meta Modelowania Sterowanego Kontekstem 
(CDMM-P) oraz przedyskutowano jego własności. CDMM-P zmienia tradycyjny podział odpowiedzial-
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implementowania warstwy danych systemów softwerowych. Może być on stosowany do modelowania 
dziedzinowego aplikacji korporacyjnych i do modelowania dowolnego systemu pojęć (ontologii) z kon-
struowaniem języków modelowania i metamodelowania włącznie. CDMM-P stanowi podstawę szerokiej 
dziedziny Technologii Meta Modelowania Sterowanego Kontekstem (CDMM-T).
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1. Introduction 

There is a disparity between the UML’s (Unified Modeling Language) system of notions 
and its application to programming languages. This disparity has been known for many 
years. In particular, there is no the programming language that offers a built-in mechanism 
for management of life-time of objects, in the meaning of associative relationships defined 
in UML – the association, aggregation, containment. As the result, the management of an 
object’s life-time is traditionally assumed as the responsibility of applications implemented 
in these languages, thus it is the programmer’s responsibility.

One possible solution to this problem is the new concept of meta-modeling presented here. 
This concept offers several new and very useful opportunities for software construction. This 
solution, as well as its accompanying features, constitutes a new CDMM-P (Context-Driven 
Meta-Modeling Paradigm) for both software design and development. The considerations 
presented here apply to the software system’s data layer and the main focus of attention was 
the associative relationships and wide spectrum of applications of CDMM-P. 

The CDMM-P presented here plays an important role in software engineering – it allows for 
the breaking of limits in UML’s mapping of associative relationships into programming languages. 
Moreover, it helps to break limits characteristic of all known approaches to the modeling system 
of notions from any application domain, including the modeling of software systems.

2. State of the art

The topic of this paper overlaps software engineering and artificial intelligence. This is the 
first reason why the analyzed scientific literature is so differentiated. The second is the fact 
that domain modeling can refer to vertical domains as well as to the construction of modeling 
languages – meta-languages. The last reason is new and shows that, as a consequence of 
CDMM-P implementation, the same notions can be implemented in enterprise applications 
as well as being applied in meta-modeling.

The main idea of the proposed paradigm is that information about the interconnections of 
entity classes is moved out from these classes and put into separate entity relationship classes. 
This way, the new responsibility distribution to the data layer is applied. Furthermore, the 
literature is considered in the context of the data layer only from several perspectives.

2.1. Architectural perspective

Generally speaking, there is no literature on the CDMM-P approach as long as the 
presented problem is analyzed within the perspective of traditional software engineering. This 
observation is confirmed by the contents of [29] which discusses architectural approaches to 
the data layer – there is no parameterization of the data layer by model. Moreover, in all 
available publications, such models are constructed statically through explicit embedding 
of relationships in interrelated classes in the form of pointers or references. More general 
software engineering subject reviews like [5] or [23] also confirm this observation. The 
same conclusion results from the literature dedicated to more detailed problems. In [34], 
the ADOM-UML (Application-based DOmain Modeling) is used to enrich modeling in 
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order to fill the gap between domain and application models, while in [35], the SDM (Semi-
Automated Domain Modeling) concept is introduced to infer domain models from the former 
application models stored in a repository. In [28], the system for gathering information about 
modeling is introduced, but its meta-model has a fixed structure. In paper [7], the domain 
model is composed from many interrelated heterogenic project artifacts and the emphasis is 
put on the important role of the relationships performed in that approach. In [2], the challenge 
for the research is to make use of very large and very complex UML and Ecore meta-models 
[11]. In paper [13], the evolutionary introduction of changes to running software system 
without it stopping is shown. However, this goal is achieved through carrying out a priori off-
line analysis. Paper [14] presents information regarding how to mix interrelated ontologies in 
a direct and static way. In [25], the meta-model is inferred from several models.

2.2. Ontological perspective

The notion of ontology in its technical meaning originated from artificial intelligence 
research. In software engineering, it can be applied to end-user domain enterprise 
applications (the product), to the problems of modeling and meta-modeling or to the software 
development process. The analysis presented below addresses all of the above perspectives 
with the exception of processes.

Monograph [4] contains traces of references to the concepts of open ontology, but without 
references to software engineering. More references to ontology can be found in [15] and [16].

Paper [10] shows how to define the domain model with the aid of ontology. Then, with the 
application of technologies well suited for DSL (Domain-Specific Language) construction and 
Magic Potion [8] like Clojure/Lisp [19, 21, 22], the compilable and executable source code in 
the domain-specific language for making operations on this model is created. They refer to the 
Semantic Web which is a kind of open ontology and does not have a meta-models hierarchy 
above the model layer – this is typical of OMG (Object Management Group) approaches. 

Another very important publication is [24] which presents the system for ontology-
based application design. The access to object’s domain takes place through object-oriented 
paradigm, which is not new compare to [37, 30]. The cited work contains the whole IDE 
(Integrated Development Environment) named JOINT (Java Ontology Integrated Toolkit). It 
offers the ability of generating Java source code directly from the ontology.

Paper [33] is focused on the method of the application of ontology to the customization of 
the domain model for the needs of a particular software system. In this way, the ontology as 
an expression medium for OMG vertical standards is applied. In paper [12], ontology is used 
to infer a static class model, while in [26], a special ontology must be chosen to build OGML 
(Ontology Grounded MetaLanguage) meta-language on top of it.

The analysis of the “whole-part” relationship is presented in [32]. However, this analysis, 
based on [20], assumes that the WP (Whole-Part) relationship is defined as a class of property. 
This is why the analysis is so complex and needs dedicated frameworks.

In [9], the MOF-based (Meta Object Facility) MDA-compliant (Model Driven 
Architecture) meta-model is introduced for modeling ontologies, thus, software engineering 
and artificial intelligence are combined. While in paper [3], the proposed framework is 
integrated into several ontologies through their injection into the more general meta-
ontology.
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2.3. Paradigmatical perspective

Further we may analyze the literature from the paradigmatical perspective. In paper [8], 
the meta-modeling role, as a way of application of many paradigms at the same time, is 
presented, referring directly to [10]. A very interesting solution named “MagicPotion” which 
has already been discussed in section 2.2, is introduced there. 

According to [36], meta-programming is the old concept of “using programs to 
manipulate other programs” and in case of Java, the meta-programming concept is supported 
by annotations. This paper defines the requirements of meta-programming.

2.4. DSL perspective

DSL languages are always designed in the context of a particular application domain. 
This domain is usually limited to the operations executed on the data layer. This is why the 
approach to the construction of this layer results from the way in which the DSL is perceived. 
This conclusion also relate to presented work.

The work reviewed in [27] shows that, independently of the approach to DSL design, the 
closed character of the ontology is assumed at the very beginning. This publication describes 
the abstract syntax of DSL as a meta-meta-model or as an Abstract Syntax Graph (ASG)/
Abstract Syntax Tree (AST), but each of these approaches closes the ontology by MOF or 
by grammar respectively. In publication [31], localized in the area of Computer Supported 
Cooperative Work (CSCW), the appropriate DSL is constructed on the basis of close ontology 
(Ecore). Moreover, article [6] is focused on the embedding of abstractions into domain-driven 
approaches (DSML – Domain Specific Modeling Languages) to DSL construction. These 
abstractions can be reused in many application domains. The mapping between them, and 
particularly between modeling languages, is implemented in the form of annotations.

2.4. Mixed perspective

There are some papers dealing simultaneously with several of the perspectives pointed 
out above. In [38], DSL, ontology notions and UML modeling are joined and the idea of DSL 
construction based on fixed static entity classes structure is presented. Paper [18] presents an 
approach to the change of meta-model via the application of a universal ontology introduced 
in [17]. Combination of the ontological approaches with meta-modeling is shown in [1]. 
It is dedicated to providing a better transformation from modeling of general concepts in 
domain languages (ontology) to models/meta-models that are MDA-compliant. However, 
fixed entity models are used again.

3. Decomposition of data model responsibilities

The main goal of the CDMM-P is to take the responsibility for lifetime management 
of the objects, inter-related through associative relationships characteristic of the data 
layer. This goal can be achieved through the change of responsibilities, that is the typical 
solution implemented for design. It transpires that the entity classes encompass too many 
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responsibilities. On the one hand, they map application objects to their data source and on the 
other hand, they store relationships that in turn define how the lifetime of related objects must 
be managed. At the same time, entity classes or application codes are responsible for lifetime 
management. However, this should be the responsibility of relations because they know their 
own nature best. This is why the split of both responsibilities through the introduction of the 
notions of pure entity (in contrast to the established notion of entity) and entity relationship 
is. Such a decomposition was not considered in the literature till now. Pure entity classes are 
responsible for the representing of data while the entity relationships are responsible for the 
lifetime management of pure entity class instances involved in associative relationships. The 
sample data models of a class named Company for both traditional and new approaches are 
presented in Fig. 1. 

Fig. 1. Conceptual transformation from fixed entity model to context-driven entity model  
for sample Company model



128

With the introduction of this crucial modification, the application’s source code and 
(optionally) entity classes are released from the responsibility of representing relations. In 
effect, it leads to the weakening of dependencies on the following borders:
•	 pure entity class – pure entity class,
•	 entity relationship – entity relationship,
•	 pure entity class – entity relationship.

Maximal weakening of the above dependencies can be described by not measurable but 
intuitive quality criterion ‘weak coupling & strong-cohesion’ which is commonly accepted 
as good design practice in software engineering. This weakening plays the key role in the 
CDMM-P concept. Moreover, it constitutes the starting point for reaching and achieving the 
goals described below.

4. Influence of responsibilities shifting on the ease of change management

The elimination of circular dependencies as well as the limitation of dependencies 
were introduced as good practice in software engineering. In the context of the CDMM-P, 
significant weakening allows for the achieving of two succeeding goals:
•	 maximal limitation of the scope of introduced change,
•	 possibility of run-time data layer change.

The first goal is quite obvious – the introduction of change into the pure entity class does not 
impact the entity relationship. Similarly, introduction of change into the entity relationship does 
not influence pure entity classes involved in this. The second goal is however, not as clear. All 
classes introduced by the CDMM-P can be interconnected at run-time due to the fact that they 
are independent of each other. Specifically, all pure entity class objects may first be loaded, and 
then all entity relationships between them can be created. The point here is not, however, just to 
interconnect existing objects, but also to store information about their classes. These allows to:
•	 obtain information from each pure entity class about the entity relationship classes that 

the pure entity class is involved in,
•	 obtain information from each entity relationship class about the pure entity classes invo-

lved in this entity relationship.
An XML file describing both classes and relationships can be used as the source of 

information about both pure entity classes and their relationships. Such a file can be 
interpreted by the implementation of the CDMM-P, which can take the form of the framework 
named Context-Driven Meta-Modeling Framework (CDMM-F). Such a framework will be 
presented in further publications. As a result of this approach, all classes involved in the 

model can be run-time interconnected, as depicted in 
Fig. 2. The class objects can be created from the CDMM-
F’s client level through the API (Application Programming 
Interface) after loading the whole data layer model from 
the XML file mentioned above.

Fig. 2. Implementation-dependent context-driven entity 
model of a sample Company model from Fig. 1 with injected 

relationships
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5. Parameterization of data layer by its model

The authors noticed that in the data layers of software systems, like in UML, there is 
a strong asymmetry in the number of available entity classes (potentially infinite) and the 
number of available relationships among them (three associative relationships are usually 
sufficient) in most domain models. It thus allows for the introduction of predefined entity 
relationship classes and for further parameterization of the data layer through pure entity 
classes defined by the user of CDMM-P. Predefined entity relationship classes are independent 
of user-defined pure entity classes thanks to the maximal weakening of dependencies in the 
CDMM-P. At the same time, user-defined pure entity classes are independent of predefined 
entity relationship classes. As a result, the set of entity relationship classes can be modified 
independently of the set of pure entity classes. This means that in such a situation, the 
relationships between any set of classes can be shaped as needed without any limits – there 
is nothing that closes or limits these sets. Thus, the data model can be created according to 
the CDMM-P on the basis of its UML model. More specifically, this model can be loaded at 
run-time for the purpose of the dynamic creation of the application data layer as long as the 
CDMM-P is used. The application of the UML class model, as a widely accepted standard, 
is quite obvious, but the whole structure of the data layer can be loaded from any resource 
describing the whole structure both sufficiently and unambiguously.

The presented method of the dynamic loading of the data model into the application, 
based on CDMM-P, is possible because of the dependency weakening presented above. 
Consequently, there is no information in the entity classes about other entity classes. 
According to the CDMM-P, there are no property fields in pure entity classes that represent 
entity relationships just as in entity relationship classes, there are no fields representing pure 
entity classes. Pure entity classes interconnecting via entity relationships in the CDMM-P 
do not have compile-time character but have run-time only. As a result, the data layer is 
parameterized at run-time by the data model.

6. Reusability consequences

The data layer creation based on CDMM-P allows for any customization of previous data 
models being constructed in an IT enterprise. It also significantly improves the possibilities 
for the reuse of former pure entity classes (they may be used in any relationships context) 
as well as the reuse of specific entity relationship classes (they may be used in any context 
of pure entity classes). Thus, the approach presented here allows for unlimited changes of 
the context through introducing pure entity classes and entity relationship classes in the data 
model. Moreover, this context can be established at run-time. In the result, the pure entity 
classes can be run-time changed or replaced in the application containing them. Achieving 
any of the goals presented here with the application of traditional approaches to software 
engineering is not possible.
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7. Class-based perspective for non-class-based paradigm

The CDMM-P cannot be implemented in class-based versions of object-oriented 
technologies. Nevertheless, it should be taken into account that its potential users (developers) 
implement this approach only in the most popular class-based version of the object-oriented 
paradigm. In order to make the CDMM-P useful for the developers community, it should be 
matched to the way they make use of entity classes in the class-based variant of the object-
oriented manner. Thus, the next goal of the CDMM-P is the ability to offer its users class-
based access to CDMM-P’s specific notions – pure entity class objects and entity relationship 
objects. This goal can be achieved via introduction of the additional layer with both access to 
entity relationship objects through the pure entity objects perspective and access to pure entity 
objects through entity relationship objects being possible. Based on the introduced layer, the 
CDMM-P’s client application could not only see all objects available in the CDMM-P from 
the traditional class-based version of the object-oriented approach, but could also use any of 
the following graph data model scanning strategies:
•	 pure entity classes based strategy,
•	 entity relationship classes based strategy,
•	 mixed strategy adjusted to current needs.

Two first strategies are mutually symmetrical and can be used interchangeably.

8. Reflectiveness vs. static nature of data model

The construction of an application based on CDMM-P may have one of the following 
characters:
•	 static – it is assumed that the developer knows a priori the data model which is run-time 

loaded,
•	 dynamic – it is assumed that the developer does not know the data layer model.

In the first case, the application source code is simpler for implementation, but it does not 
allow for any change of static structure of the data model. In the second case, the developer 
can dynamically query the pure entity classes for their entity relationships. The developer can 
also query the entity relationship classes regarding their pure entity classes. The developer 
can then execute appropriate operations on objects of these classes. It is important from 
the CDMM-P perspective that there are no limitations for the choice between static and/or 
dynamic model of implementation of the application based on CDMM-P. Moreover, these 
two approaches can be mixed.

9. Standardization of CRUD operations on data layer

For the sake of the application of CDMM-P to the data layer, it is possible to limit the set 
of operations on the pure entity and entity relationship classes mentioned above to CRUD 
(Create, Read, Update and Delete) operations. Besides typical operations executed on entity 
classes in a traditional approach, here we may execute them not only on entities (operations 
on pure entity classes) but also on entity relationships. The proposition of a pre-defined set of 
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such operations is one of the goals of CDMM-P. For the purpose of the introduction of the set 
of predefined CRUD operations, the CDMM-P should itself give access to entity relationships 
visible to the client from the perspective set to the pure entity class. This mechanism is crucial 
for CDMM-P and distinguishes it from other potential solutions. It is possible to achieve this 
goal through the introduction of the ac*cessor notion. The accessor is responsible for putting 
the appropriate perspectives which were presented above. In the case of the standardization 
of CRUD operations described here, such an accessor should guarantee the ability of getting 
access to the entity relationship from the appropriate pure entity class. The accessor itself can 
be obtained through the following polymorphic operation:

BaseClass getAccessor(pure-entity-class, entity-relationship-
class)

where
BaseClass – base class for all data model elements
pure-entity-class – pure entity class
entity-relationship-class – entity relationship class
Thus, the set of standardized operations, which can be executed on the object accessor 

to the pure entity class visible from the perspective put on pure entity class, may have the 
following form in pseudo-code:

void add(relationship-container, relationship-element)
T get(relationship-container)
int count(relationship-container)
List<T> getAll(relationship-container)
T get(relationship-container, index)
int count(relationship-container, relationship-element-class)
T get(relationship-container, relationship-element-class, index)
List<T> getAll(relationship-container, relationship-element-class)

where
relationship-container – pure entity object its entity relationship with other 
pure entity objects are visible through; 
relationship-element – pure entity object bind to the entity relationship with 
pure entity object which gives access to object via the relationship obtained from 
entity;
relationship-element-class – information about the class of pure entity 
object 
index – index of the pure entity object in a collection

It is worth noting that each pure entity class may have many entity relationships, which 
in turn may cause difficulties in CDMM-P’s implementation in contemporary programming 
languages. Nevertheless, reaching this goal is possible.

10. Testing specificity

The two most important modifications of traditional approaches to testing are presented 
below. The first is related to unit testing of isolated classes and the second, to unit-like 
scenario tests responsible for testing class interconnections.
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10.1. Unit testing

One of the consequences of weakening of the dependency and making classes independent 
is making unit tests of these classes also independent. As a result, each pure entity class 
and entity relationship class can be tested in isolation. Looking from the perspective of 
reusability, it must be underlined that both pure entity and entity relationship classes can 
migrate between different projects together with their unit tests, as long as the projects are 
based on CDMM-P. These kinds of tests constitute the additional layer of tests responsible 
for methods testing all data layer classes. This test layer is not known in a traditional object-
oriented approach due to compilation dependencies between entity classes.

10.2. Semi-automatically generated scenario tests

For the sake of the dynamic run-time interconnecting of pure entity classes by entity 
relationship classes, the necessity for testing these classes in the context of their data model 
arises. It is however, worth pointing out here that scenario tests skeletons can be generated 
automatically from the same model as the CDMM-P classes are organized with the layer 
dynamically loaded. Thus, the proposed model plays the role of the parameter for both 
implementation and tests. The skeletons mentioned above could be implemented against 
unit testing frameworks. However, in order to generate these tests, the required objects of 
these classes must also be created on the basis of the association of the classes with their 
descriptions. Thus, such tests take the form of semi-automatic tests. The scenario test’s 
source code is generated automatically from the objects’ information that must be introduced 
by a developer. Based on this approach, the developer need not write the test code manually, 
but still keeps control over the test via the possibility of object initialization. Obviously, the 
CDMM-P does not eliminate the possibility of the implementation of manual scenario tests 
in any form, as well as introduction of modifications into already generated tests.

11. Conclusions

A new paradigm for software data layer design and implementation was introduced in this 
paper. The concept of the proposed approach was described at a general level to open new 
research fields leading to the implementation of the paradigm in different technologies. Such 
implementations will be presented in further research publications expanding the CDMM-P 
approach to the Java EE platform. 

 This paradigm can be used both for enterprise systems’ data layer design and 
implementation and for the construction of modeling languages. 

 Finally, it is worth underlining that the concept of the paradigm CDMM-P proposed here 
is based upon the open ontology approach.

All diagrams were prepared with the help of Visual Paradigm UML modeling tool according to the 
Academic Partner Program agreement signed with Cracow University of Technology.
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