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Abstract

We discuss recent results on the connection between properties of a given bounded linear ope-
rator of C(w*) and topological properties of some subset of ®* which the operator determines.
A family of closed subsets of ®*, which codes some properties of the operator is defined. An
example of application of the method is presented.
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The Greek letter ® denotes the set of all natural numbers. We use the symbol fin for the
ideal of finite subsets of ®. For 4, B C o, the expression 4 < *B denotes the relation B\4 € fin;
similarly 4 = *B if and olny if 4+B € fin. The space o* = B[®]\® is the growth (Cech-Stone
compactification) of the discrete topological space w. If 4 € P(w)/fin, A* is the set AP©I\A.
The space o* can be viewed as the space of all non-principal ultrafilters on ®. It is well
known that B(w*), the algebra of all clopen subsets of ®*, is isomorphic to P(w)/fin (cf. [1]).
Thus, for 4, B € P(o), the condition 4 = *B is equivalent to 4* = B*. An antichain in B(o*)
is a family of pairwise disjoint subsets of @*. Recall that a set 4  ®* is said to have ccc
(countable chain condition) if for every antichain {U : o€ I} < B(o™), there exists a finite
or countable set I, c I'suchthat A N U = forallove I

The space C(w*) consists of all continuous real-valued. functions on ©* and it can be
regarded as /_/c i.e. the quotient space of /_ by the following equivalence relation:

forf,f,el, fi=xf, ifflim  (f(n)—f,(n)=0

Let /* denote the equivalence class determined by f. Note that for f,, f, € [, we have f, =* [,
iff f|o* =+ f|o*, where f: B[w] — |R is a continuous extension of £,(i = 1, 2). Thus, /* = flo*.
An equivalent definition of the (classical) norm on / /¢, is following:

7#]. = sup {lim |f: p € 0%}

where the symbol limpm denotes, for an ultrafilter p, the limit to which a sequence {|f{(n)|:
n € o} converges with respect to the ultrafilter p. Thus, C(®*), equipped with the supremum
norm, is isometric to (/_/c, || . [[.).
The domain of function f'is denoted by dom f, the range by ran f; supp f is the closure of
the set of all elements p € dom f; such that f{p) # 0.
The space C(o*). It is appropriate to recap on some elemetary properties of functions in
space C(0*). Let £ ®*®|R. (To simplify notation, the sign * will be omitted):
* Forevery r € |R, the preimage f'(r) is a closed G, set,
o Iff'(r)# J, then int f'(r) # O,
* For arbitrary e > 0, there exist clopen sets U, U, ..., U € B(o*) and reals r, r,, ..., 7,
such that;

where y U denotes the characteristic function of U..

Bounded linear operators on C(0*). Assume that 7: C(0*) —» C(o*) is linear and
bounded, and its norm is equal to M.

Fix an ultrafilter ¢ € ®* and define:

N, = {Ue B(o*): V'V e B(o*) Vc U= T(x,)(q) = 0}, S, = w*\y\fq.

N, is an open set. Consider S, It is closed (by definition) and nowhere dense. To show this
suppose that int(Sq) # & and argue to a contradiction.

Let Ue B(o*)and U C int(Sq). Consider a family of pairwise disjoint sets ¥, € U, 0. < ®,.
By definition of S for every o < o, there exists W c V , W e B(o*) such that 7(x,, )(q) # 0.
Thus, for some € > 0 there exists an uncountable set I' o, with:

Voe T'T(%y )@ > 0.
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Moreover, we may assume that all the 7())(¢) are positive (or negative). Fix k € ® such
that k> (M/e) + 1 and a finite set I, € T" which contains at least k elements. Since T is linear,
it follows that:

1T o X DI = [Ze g Ty )(@)] 2 ke > € [(M/e) + 1] > M,

this contradicts the assumption that M is the norm of 7.
In a similar way we show that S, has the c.c.c.
Lemma 1 Suppose that f€ C(o*) and supp fN S, = @. Then T(f)(q) = 0.
Proof. Suppose that this is not true. Then, since 7" is continuous, there exist clopen sets U,
U, ..., U csupp fandrealsr, r,, ..., v, such that:

thus [T(X_,, w i Xl > 1T(HI(@)/2. So, there exists i < n such that |T(y,,) ¢)| > 0. Therefore
U\ N, # @. But it implies that & 5 NUCS N supp = &, a contradiction.

Note that the condition 7(f)(¢) = 0 does not imply that S, supp. f=. Now an example
of application of the notion S, is presented.

Projections of C(w*) and retractions of ®*. Assume that r: ©*® F < o* is a retraction (i.e.
r is continuous and r ° r =r). Recall how to define a projection P: C(o*) — ¥ (i.e. a bounded
linear operator such that P ° P = P) by using r (cf. [2]). For fe C(0*), ¢ € o* put:

P(/)(q) = fix(g).
P is linear and for every f'# C(o*), ||P(f)|| < \leq |/f]|, thus P is bounded. Moreover:

P(P()(q) = P(H(r(¢)) = Ar(r(9))) = Ar(9)) = P()(9).

A retraction of ®* induces a projection of C(®0*). One can ask if a projection determines
a retraction. In order to (partially) answer this question, an equivalence relation on ©* can
be defined:

p.q € 0¥ p=qiffforall Ue B(w*), P(x,)(q) = P(x,)(P).

Note that:
o if p=gqthen S,=S,
* the equivalence class [p] = U, _ N (P(x,) "' (1P(x,)()}) is a closed subset of w*.
Theorem 1 Assume that P: C(0*) — V'is a projection and the following assertion is satisfied.:

for each p € o* there exists q,€ [p] such that S = {qp}.

Thenr: ©* 3p — q,€ \J .. S, I a retraction.
Proof. Since g, = p, 5, =5 = {q,} and 1(q ) = g,. Therefore r °r=r. )

We shall show that r is continuous. Let U be an open subsetof U _ S, Fix q,€ U Thus,
there exists a U open subset of ®* and V' € B(w*) such that U N ljpem* S, and q,€ VcU.
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Since §  ={q,}, it follows that P(y )(g,) =x,# 0. Assume that for some s € , P(x,)(g,) =x,#O.
Thus, {q y N V=5, NV, which 1mp11es that g eV

We showed that q,€ V= P(x,)(g,)#0. Put W= (P(f))'(|R\{0}). W is open and (W)
VnU .S, This finishes the proof.

peEw*
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Boolean algebra P(w)/fin plays an important role in the foundations of mathematics. Many
mathematical problems can be reduced to questions on properties of P(w)/fin. Notion, which is
frequently used in investigation concerning P(®)/fin is the notion of gap (cf. [1], [4]).

Let us begin by reviewing some basic facts and definitions. By o the set of all natural
numbers is denoted. The symbol fin stands for the ideal of all finite subsets of ®. The ideal
determines the following equivalence relation:

For 4, Bc w, A =, B if and only if 4+B € fin.
P(w)/fin is its factor algebra. An order in P(w)/fin is defined as usual, namely:
Ac,.B iff A\B € fin.
Let A, ¥ be cardinals. A gap of type A, k) in the P(w)/fin is a pair:
({4; 7<A}, By B<x})

of subsets of P(w)/fin such that 4 N By =, . If for every v, <7, <A, B, <B,<x 4, c.4,and
By, c. By, the gap is said to be increasingly ordered. An element C < o fills (separates) the
gap if 4,.c. Cand B,n C=, & for every y<A, B <x. If there is no such an element, the gap
is called non-separable. One can ask gaps of what type exist in P(w)/fin.

A research concerning gaps in (®)/fin is an important and deep line of investigation. Let us
recall basic facts. It is easily proved that there are no non-separable gaps of type (®, ®). On the
other hand Hausdorff constructed a non-separable gap of type (,, ®,) (cf. [2]). This gap, say
L=({X;a<o}, {Y: B <w}), is increasingly ordered and {y <p: max X, N ¥ <k} is finite
for every <o and k € o.

Under CH (the Continuum Hypothesis), there exist only gaps of type (®,, ). If 2¢ >
o, and MA (the Martin Axiom) holds the each increasingly ordered gap ftype A, ¥) with A,
K<2°A#® or K# o, is separated ([5]).

The smallest cardinal number for which there exists a non-separable gap in P(®)/fin is the
bounding number b (cf. [6]). Remind that b is the size of the smallest unbounded family in
® equipped with the following order: for £, g € ©°, /<, g iff {n: fin) > g(n)}€ fin.

We present another construction of an (unordered) gap of type (2°, 2°).

The set F' consist of all finite sequences € = (g, €, ..., € ) such that:

g,=0,¢e, =2ande, € {0,1},ne .

2t
Let
F=1{ee F: l(e) <2n}
and
F={e e F: l(g) = 2n for some n € o}.

Divide o into two disjoint, infinite subsets X and Y and fix two functions fand g such that:

(*)f: F - Xis a bijection and if € c p then flg) < f(p).

(**) g: F,x F,— Yis an injection and if &' c p', €’ < p* then
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g(e'e) <g(p', p)).

We define two families of finite subsets {A(g): e € F }, {B(€): € € F} by induction on the

lenght of €.
For € such that £(g) = 1 or £(g) =2 put A(g) = B(g) = &.
Assume that £(g) = 3,4. Then:

A(o,z,o) ={f(0)), /(0,2)), ((0,2,0))}, A(O,Z,]) ={f((0)), f((0,2)), f(0,2,1))},
B 20 = (0,2,1))5, By, , =if((0,2,0))},
A(O‘Z,O»Z): A(O,Z,O) “ {f((0,2,0,2))}, A(O‘Z,I,Z) = A(o,2,1) o {ﬂ(0,2,1,2))}

B B(o)z,o) o {g((oazalaz)a (0729032))}3 B(0,2,1,2) = B(O,Z,l) o {g((0,2,1,2), (092)092))}

(0,2,0,2)
Assume inductively that for n > 2, we have defined families {4(g): € € F } and {B(g):

g € F } satisfying the following conditions:

1. A(e) " B(g) =D foreverye e F .

2. Ifg, p € F,and g(k) # p(k), for some k < 2n , then

A(€) N B(p) # @ and B(g) N A(p) # .

3. Ifg,pe F ande c p, then A(g) < 4(p) and B(g) < B(p).

4.1fe, p € F and g(k) # p(k), let [ = min {k: g(k) # p(k)}. Then max A(g) N B(p) = f(g],), max
B(g) N B(p) = flg|,. ), max A(g) N A(p) = Ag],.)-

Forge Fn put:

A€ 0)=A®) U {fle” 0)}, 4e ™ D=4 v {le ™ D},
Be” 0)=B@ v {fle™ D}, BEe™ ) =BE v {fle ™ D},
A" 02)=A(e ™ 0) L {fle M02)}, A€ ™ 12) =A(e ™~ D) U {fle * 12)},

Be”" 02)=BE" 0)U {ge " 02,e ™ 12)}, B 12) =B " 1) U {ge ™ 02,& ™ 12)}.

It is obvious that the family F  satisfies conditions (1) and (3).

For (2),letp,ge F_, . 1f €(p) = b(g) or L(p) =2n + 1, L(g) = 2n + 2, the condition follows
from the definition. Suppose that £(p) = k < 2n + 1 < {(g). Let I = min {k: g # p,}. Then
o =¢gll = p|l and @ # A(6)"p,) N B(c " g) = A(p) N B(g). (The remaining cases can be
checked in the same way.)

To check the assumption (4), note that A(e i) N B(e ™ j) = A(e ™ i2) N B(e ™ j2), for i,
j € {0, 1}, i #j. Since f'satisfies the condition (¥*), it follows that max A(g ™ i) N B(e ™ j) =
fle ™ i). Moreover A(E N i) N A ™ j) =A™ i2) N A(e ™ j2) = A(g), thus

max A€ N i) N A(e " j) = f(e).

If €(p) =k<2n+1<1{(e) and c = gll = p|l, p, # €, then



12
max A(c ™ p)) N B(c "g) = max A(p) N B(g) = flplD).

(The remaining cases can be checked in the same way.) This finishes the inductive construction.
Let X be the family of all sequences x: ® —{0, 1, 2} which satisfy the conditions:

x(0)=0,x2n+1)=2,x2n+2) e {0, 1}.
Then
Ax)=U _ Axln), B(x)=U _ B(x|n)

are infinite subsets of ®.
It is easy to check that for x, y € X, if x # y then:

Ax) N B(x) =D, A(x) N B(y) # D, A(x) N A(y) € fin and B(x) N B(y) € fin.

Theorem 1 The gap £ = ({4(x): x € X}, {B(x): x € X}) satisfies the following condition: for
every uncountable set Y € X, £, = ({4(x): x € Y}, {B(x): x € Y}) is non-separable.

Proof. Suppose that for Y= {x_: o<k} € X, ® <x <2° there exists a C which separeates
the gap £,. Lets = A(x )\C, ¢ = B(x ) N C.

Then s, ¢, are finite subsets of @ and since A(x ) N B(x ) = &, it follows thats "¢ =O.
A-lemma implies that there exist an uncountable set I' € ¥ I' C « and finite sets s, ¢ such that
foralloue y,s, =sandz =t
Ifo,Belanda#Bthen D=5, N, =sni=s,Ni, =, acontradiction. This finishes
the proof.
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It is known that cardinality of the group of automorphisms of P(w)/fin depends on some
additional axioms of ZFC. Under CH (the Continuum Hypothesis) the cardinality of the
group is the largest posssible — it is equal to2¢, where ¢ denotes the continuum (cf. [2]). On
the other hand, there are models of ZFC in which the cardinality is equal to the continuum,
for example, in the model constructed by Shelah in [3]. In [4] it was shown by Shelah and
Steprans that the assertion PFA + ¢ = o, implies that all automorphisms of P(w)/fin are trivial
(i.e. induced by a bijection between co-finite subsets of ®). Velickovic [7] proved that the
same thesis follows from OCA+MA. One of the methods of elimination an automorphim of
P(w)/fin is adding a new real which fills a non-separable gap in such a way that the image of
the gap under that automorphism remains unfilled. It is known that each forcing which adds
an eclement separating a Hausdorff gap collapses the to the ®. One can ask if the image of
a Hausdorff gap under a automorphism must be a Hausdorff gap .

Basic facts and definitions. Byo we denote the set of all natural numbers (and the first
infinite ordinal) and by fin the ideal of all its finite subsets.P(w)/fin is the factor Boolean
algebra and for 4, B € P(w) we shall use the following notation: 4 =, B if 4+B € fin, A c, B
if A\ B e fin.

Let A, k be ordinals. A gap of the type (A, ) in a Boolean algebra (A,+,9,0,1) is a pair
({a; v <A} {by: B <x}) of subsets of A such that @ b, = 0. If for every v, <v,<A, B, <P,
<K a0a,=a, and b[n' b[32 = b[31 the gap is said to be incresingly ordered. Elementc € A
fills (separates) the gap if aec=a, and b, e ¢ = 0 for every y< A, B < x. If there is no such
an element, the gap is called non-separable. A (strictly) decreasing sequence (ag: B<7v) of
elements of the A of the lengthy is called g-limit if there is no non-zero element @ € A such
that for every p<v, a ® a;=a.

Assumethat £L=({X :0a< ml},{YB:B <m,)isanincreasingly ordered gapin P(w)/fin. Lis
a Hausdorff gap if {y<f: max X N Y, <k} =*Dforevery} <w andke .

It is known that

1. In the algebra P(w)/fin every countable gap (i.e. card(A) = card(k) = o is filled.

2. There is no ®-limits (i.e.y-limits with card (y) = @ in the P(w)/fin.

3. A Hausdorff gap is non-separable (thus there exist non-separable gaps of the type (®,, ®,)
in the P(w)/fin.

In the following construction we shall apply the Sikorski’s theorem (to define a required
automorphism).

Theorem 1 (Sikorski [5, 6]) Let A, B be Boolean algebras, A a subalgebra of A and a e A\
A, Assume that T: A — B is a homomorphism. If there exists an element b € B which fills

a gap:

L=({Tx):xe A, x<ay, {T(x):xe A, x®a,=0}),
then 7 can be extended to a homomorphism 7*: A  — B (where A is a subalgebra generated
by A, U {a,} with T*(a ) = b.

Moreover if T is monomorphism then 7* is monomorphism if and only if the following
condition holds:

(*)forallx,ye A[(x<a,& T(x)<bh) and (y2a,< T(y)2b)].

Thus, in order to extend a monomorphism, we have to ensure that an image of a (separeted)
gap under the monomorphism satisfies the condition (*). Let us remind a (well known)
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method how to find the required (in the (*)) element in the range of the monomorphism.
Although the method can be applied in the case of Boolean algebras in which there are no
countable gaps nor countable limits, we present it in the particular case of P(w)/fin.

Claim 1 (cf. [6]) Let 7: A — B be a monomorphism of countable subalgebras of P(w)/fin and
let G € P(w)/fin\A. Then there is a gap in B such that any element which fills the gap satisfies
the condition (¥*).

Proof: Let J = {Z: n € ®} be an enumeration of all elements Ze€ A withZn G # O
and Z\G#, . Fixne w.ForaZ € Jand X, Y € A we have:

IfYNG=DthenZ N YN G=, Q. Since ZN G #, G, it follows that Z\Y #, &. T is
a monomorphism thus we have 7(Z )\T(Y) #, . In a similar way we show that if X ¢, G then
T(Z)\T(X) #,D.

Since A is countable, there exists an enumeration {Y, € A: m € ®} of all elements which
are almost disjoint with G. Thus:

(TZNT(Y) U...u T(Y)): m e o}

is a countable decreasing chain in P(w)/fin. Since there are no countable limits in P(w)/fin, we
can choose an infinite subset S(Z ) = S, which is almost contained in each

TZNT(Y,) U...0 T(Y)).

In a similar way we can choose /(Z) =1 <, T(Z)\(T(X) ..U T(X)) for X € A, X
. G Consider the gap = (M, O) where:

M={TX)e A:XC,G} U{T():ne w},
0={TMe AYNG=0} U{I(S) ne .

Since P is countable, there exists element H which fills the gap. It is easy to see that such
an element A satisfies the condition.

Main theorem. We prove that:

Theorem 2 If CH holds then there exists an automorphism 7 of P(w)/fin and two
increasingly ordered gaps of the type (o, ®,):

L= X o<o{Y:B<o}), £=({4;a<o}, {B:B<o})

such that

1. for all B < @ and every k € ®, aset {o <: max (X, N Yy) <k} is finite,

2. if p = A + o for some limit ordinal A < ®, then there exists k € o such that a set {ot < [3:
max (4, N By) <k} is infinite,

3. for every o, ﬁ <w,Td)=X, T(BB) = YB'

Proof: We construct the required automorphism and gaps by using transfinite induction.
Fix a set {G : o0 < o} of generators of P(w)/fin. At the step o = 0 fix two pairs of disjoint
infinite subsets of ®: 4, B, and X, Y, such that both sets w\(4, U B)) and o\(X, U Y)) are
infinite. Let:

T(4)=X, and Ty(B)=Y,
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Denote by D and P, the Boolean algebras generated by {4, B } and {X, Y} (respectively)
and extend 7} to the isomorphism from D, onto P . Consider the first generator G, and the
algebra D, In the way described in the Claim find element / in the P and put 7,(G)) = H..
Then apply the claim to the G, the algebra P and the 7. Choose any element /7, which
fills the obtained gap in D and define 7 '(G,) = H . Then, using Sikorski’s theorem, extend
the isomorphism 7} to an isomorphism from D, (the subalgebra generated by {4, B, G,
T'(G,)}) onto P, (the subalgebra generated by {X, Y, G, T,(G))}).

Assume inductively that for every B < o we have defined increasing sequences of
subalgebras Dﬁ, PB of P(w)/fin, isomorphisms 7' B DB - P[3 and gaps

L= ({AY: Y<o}, {BY: y<oj)and £, = ({XY: y<o}, {Yy: Y<o})

such that

1. Forall B<a, AB’ BB’ GB IS DB andXﬁ, YB’ Gﬁe PB’

2. L, £, are increasingly ordered gaps,

3. Forall < a, Ag N By = & and X,nY,= J; both sets co\(AB v Bﬁ) and co\(XB v YB) are
infinite,

4. Forall p <oand every k € o, the set {y < B: max(¥; n.X) <k} is finite,

5. If B <o is equal to A + w, for some limit ordinal A, then there exists k € ® such that
{Y<B: max(B; N A ) <k} is infinite,

6. If B =\ + n, for some limit ordinal A and a natural number n > 0, then

U< 4. )n U,_ B )=2

k<n
7. Fory<B<a, TD, =T and T(4y) = X, T(By) = Y.

Assume that o is a successor ordinal, oo = 3 + 1. Then there exist a limit ordinal A and
a natural number n > 0 such that oo = A + n. Choose infinite and disjoint subsets 4, B of ®
such that:

(Aﬁu BB) NAuUB)=Z and o)\(A[3 U B, U A U B) is infinite

and bothsets BNU,_ 4,  and4n (U _ B, ) areempty. Put:

k<n
A =4, 04, B =B,UB.
o i o i

Let D be subalgebra generated by D[3 and the elements 4_, B . Apply The Claim to
choose candidates for images of 4, B (and then Sikorski’s theorem to extend 7, 5 ). Denote
this extension by T *B' Note, that each of sets T *B(Aa) and T *B(Ba) separates £, and we may
assume that they are disjoint. Define

X, =T*(4,). Y,=T*(B,).

Since Y, <. Y, and for every natural number £, the set {y < [: max (Y[3 NX ) <k} is
finite, it follows that the set {y < o:: max (¥, N Xy ) <k} is finite as well. If G € D_ then we
add, in the same way, an image T*B(Ga). Let P_ be the subalgebra generated by PB and the
elements X, Y and T*B(Ga)' If G e P_, then a preimage T*Bfl(Ga) of a generator G _ has to
be added. We fix the preimage in the way described above. We conclude the successor step
with definitions of D and P_. D_ is a subalgebra generated by DB and 4, B, G, T*;{I(Ga)
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while P_is generated by P and X, Y, G, T*,(G,). Moreover T, = T, :D,— P _.Itis obvious
that all 1nduct1ve assumptlons are satisfied.

Assume that o is a limit ordinal. Put:

D, = UB<a DB’ P = Uﬁw PB’ T= UBW T,

In order to construct elements X and Y we modify slightly Hausdorff argument
(presented in [1]). The sequence ((x)\(XB v YB): B <o) is countable and decreasing; it follows
that there exists an infinite set D < w with D c, (,l)\(Xﬁ (] YB) for all B < o.. Thus XB ) Y[3 C.
D= \D. Since:

L,=({Xy<o}, {Yy<o})

is countable, one can choose a set F which separates the gap i.e. for all § < a, Y, F and
X, N F =, . Moreover, we may assume that F' < D (replacing F with F' " D, if necessary).
Applying the claim and Sikorski’s theorem we fix a $7"'(F), which fills the gap £. Note that
forevery B <a and ke the set {y<P: max (F N X, ) < k} is finite however it does not
follow that for each k£ € ® the set {y < a: max (F N X, ) <k} is finite. In order to ensure that
the assertion holds we have to enlarge the set /. For k£ n o let

= {y<o:max (FNX)<k}.

We define (inductively) a (countable) increasing sequence F'= F, ¢ I, € F,C ... such that
for every n, k € wthe set {ye J:max (F N Xy) <k} is finite and /| M X = 2.

Assume that sets F'= F, € F,C F, € ... € F, and their preimages under 7 have been
defined. Denoteby P the subalgebra generated by P,,andF _ andbyD_  thesubalgebra
generated by D, and 7' (F ), for n>0.

Ifyg,, is ﬁnlfe then F | Fn So suppose that 7, is infinite. Then J | can be increasigly
enumerated with natural nurnbers and sup 7, = o. Indeed, this is implied by the fact, that for
cach f <o the set p M 7, ={y < P: max (F N X)) <k} is finite.

The subalgebraP_ is countable thus we can ﬁx an enumeration {K: i € w} of all elemets
Ke P such thathX LD fory<o.

Thus lety, ={lile u)},yl< Y., The sequence {X Y <o} is increasing, which implies
that X \(X VX, UL LX, ) # *@. Moreover, X, c D thus

DN [X\X U X U X )] #* Q.
It follows that for every / € o there exists a natural number
Jjie D [XYI\(XYO UX, U XYH)] N (U, K i)
with j > 1. Put
F_ =F uljle o}
It is easy to note that {j: 1 € ®} N XW, is finite for every 7 € ®. Since the sequence {Xy :
Yy <o is increasing it follows that {j: [ € o} N Xy==*@ and F, NX = D for each y < o..

Moreover for each k € o the set {ye J: max (F,, N X, ) < k}$ is finite. Extend the range of
the isomorphism 7 in the following way: ® =(M,0)
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M={T'(X)e D, ;X F} {T'UZ): Ze J},

0={T"'(Y)e D, :YNF,= 3} U {TS2): Ze J3,

where J={ZeP  ZNF, #O, 2\F # O} and elements S(Z), [(Z) are defined for each Z
€ Jin the way described in proof of the Claim.
Since D is countable, then there exist infinite sets C , H such that C, separates the gap and
H_ is almost disjoint with every element of the sets formmg the gap. Note that since /* N X,
@ and Y ¢, F, then, by the Claim, C, N 4, =, and C, <, B, for § <o.. If, for some 11m1t
ordinal A, OL Ao then, by inductive assumptlon U, 4.) m ,.,B,.,) = D. Moreover,
since for every Le D with L N A= S there exists i € o such that 7(L) = K it follows that
C,.NL=.D. Thus we may assume that

Cn M Ukew"a” +k= @

Put TN{-1}(F)=C.
Since

Unem Cnm Uksu)AMk: @
then in the caseo. = A + o, for some limit ordinal A, we can choose B which fills the gap:
({By: y<oju{C:ne o, {Ay: Y<o})

and B, N A4, = for each k € . Apply the the Claim theorem to determine a ¥ and Sikor-
ski’s theorem to extend the 7. Note, that the element separates the gap

P=({F:ne o}, {Xy: Y<o}).

We may assume that /' Y < D°. We have to show that for each k£ € ® the set {y <o
max (¥, N X, ) < k} is finite. Assume to the contrary that for some k € o the set is infinite.
Since F ¢ Y, then {y<ou: max (¥, N X) <k} < J,. The latter assumtion implies that the set
I={ye jJ:max (¥, N Xy) <k} is infinite as well. Butsince FC ¥, /€ {ye J:max F, N
XY <k} = .9, a contradiction.

Put X = DY, . Now, apply the Claim to define 4 and using Sikorski’s theorem extend
the 7.

Define D (P ) as the subalgebra generated by U _ D_ .4 and B (U _ P_ and X and
Y ). The automorphism 7, is equal to the (extended) 7: Du'—> P. ’

This finishes the the limit step of the construction.

After o, steps each of algebras P = U(x<(u1 ,andD=U__ D_contains all of the generators
G, thus P =D = P(w)/fin. T=U__ 1 T is an isomorphism of P(w)/fin. The gap

L,=({X y<oj{Y:v<0})
is a Hausdorff gap, while the gap
L=({A v<0},{B;y<0})

does not satisfy the condition.
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1. Introduction

Let us denote the set of all real-valued functions continuous on R, =
[0;0) by C(Ry) . In paper [6] we investigated Szdsz-Mirakyan type operators
defined as follows

© v 2k .
B (i) = | S0 B f (555), x>0 1)
(), x=0
and
1 2k+v
Anr(x) = (nx)

I,(nx) 22T (k+ DI'(k+v + 1)

where I is the gamma function and /, the modified Bessel function defined by

e}

ZZk+v

I,(z) = kZO 22k+vP(k+ DIk +v + 1)

Approximation properties of these operators in exponential weight spaces were
studied. Such spaces were denoted by

E, = {f € C(Ry): wyf is uniformly continuous and bounded on ]R{O},
where w,, is the exponential weight function defined as follows
wp(x) =e7P¥, peR, )

forx € R,.
In the spaces we introduced the norm

I£1l, = sup{wy, ()If (X)]: x € Ro} €)

and we established ([6], Theorem 2.1) that operators L}, are linear, positive,
bounded and transform the space E), into Ej,.
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In the present paper, we shall prove theorems giving a degree of
approximation of functions from E,, by these operators. We use the weighted
modulus of continuity of the first and the second order defined as follows,

w(f,Ep; t) = sup{llanfll,: h € [0,t]} (4)

and
w?(f,Ep t) = sup{”Aif”p: h € [0, t]} (5)
respectively, where

Apf(x) =fle+h) = f(), AZf(x)=f(x+2h) = 2f(x +h) + f(x)

for x, h € R,.

The note was inspired by the results of [8, 9] which investigate
approximation problems for integral operators defined in weighted spaces. The
considered method of proving the main theorems is also found in papers [1-4, 10].

2. Auxiliary results

The preliminary results, which we immediately obtained from papers [5-7]
and definition (1), are recalled below.
Lemma 2.1 ([5], Lemma 8)
For all v € Ry there exists a positive constant M(v) such that for all n € N and
x € Ry, we have

Iy1(nx)
I, (nx)

Ly41(nx) _

< M(V), nx IV(TX)

1‘ < M(v).

Through elementary calculations we get
Lemma 2.2 ([6], Lemma 2.2)
ForallneN,v,p € Ryandx € R,

nx I nx
v(1,x) =1, L%(t,x) = v+1 (%)

n+p I,(nx)’
V(2 ) = nx \?I,,,(nx) 2nx I, (nx)
n(t52) = (07 I +p)? I ’
n+p/ L{nx) (n+p)? L,(nx)
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L’,’l(t—x,x)zx( n M 1),

n+p I,(nx) B
v D) — n \* 1,4, (nx) 2n I,44(nx)
LY ((t —x)%x) = x? <(n " p) T, (o) gy > L (n2) + 1)
2nx  I,41(nx)
(n+p)? L(nx)

Lemma 2.3 ([6], Lemma 2.5)
For all v,p € R, there exists a positive constant M(v,p) such that for all n € N,
we have

(1w ) < MG,

An obvious consequence of the above lemma and definition (3) is

Theorem 2.4 ([6], Theorem 2.1)

For all v,p € R, there exists a positive constant M(v,p) such that for all n € N
and f € Ey, we have

L (f5 Il < M, DIl

Applying Lemma 2.1 and Lemma 2.2, we obtain

Lemma 2.5

For all v,p € R, there exists a positive constant M(v,p) such that for all n € N
and x € Ry, we have

(= 0% 0] < My, p) 2D,

Lemma 2.6 ([6], Lemma 2.6)
For all v,p € R, there exists a positive constant M(v,p) such that for all n € N

and x € Ry, we have
m (ﬂ . x) XG4 D
"\ w0 '

wp (x) < M(v,p)
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3. Approximation theorems

The following theorems estimate the weighted error of approximation for
functions belonging to the spaces Ezlf = {f EE,f, " w f0) € Ep}, where f®
is denoted the i-th derivative of f.

Theorem 3.1
For all v,p € R, there exists a positive constant M (v, p) such that for all n € N,
x € Ry and g € EL, we have

, x(x+1)
wy ()L (g5 x) — g < M, p)llg'll, /T
Theorem 3.2

For all v,p € Ry there exists a positive constant M (v, p) such that for all n € N,
Xx€ERyandf € Ep, we have

wp CILY (5 %) = FOOI < M, p)w | f, Ep; /—x(x: =)

The proof for the above theorems is analogous to the proof of Theorem 4 and
Theorem 5 which are detailed in paper [5].

Theorem 3.2 implies the following corollary.

Corollary 3.3

If v,p € Ryand f € E,, then for all x € R,

lim {15, (f; ) = £ ()} = 0.

Moreover, the above convergence is uniform on every set [xq,x,] with 0 < x; <
Xy.

Remark 3.4

The above result can be achieved in a different way; see [7] for more details.

Analogous with papers [8, 9], we define operators Hy, to estimate the error
of approximation by the second moduli of continuity (5).

Hy (f;x) = Ly (f; )= f (Ly (&%) + f (%) (6)

forv,p € Ry, f € Ep and x € R,. By using Lemma 2.2 we obtain
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HY (5 0) = La(f; ) = f (522000 4 ().

n+p L(nx)
Observe that the operators are linear. Moreover, Lemma 2.2 allows us to write
HY(1;x) =1, Hy(t—x;x)=0. (7)
Lemma 3.5
For all v,p € R, there exists a positive constant M (v, p) such that for all n € N,

x € Ry and g € E2, we have

1
wplH2(g:) — 9GOl < MO llg Ty 20,

Proof. Let x € Ry and g € ES be fixed. Through the use of the Taylor formula we
can write

t
900 - 900 = (£ =g @) + [ (€= w)g"@) du
X
for t > 0. By applying the linearity of H;, and (7) we derive
|H (g; x) = g0 = |H3 (g(8) — g(x); )| = |1 (f1(t = wg"@du; )| (8)
Furthermore, the definition of H;, implies
t
HY, <f (t—uw)g"(w)du; x)
g t LY (t;x)
=Ly ( f (t— u)g”(u)du;X> - f (Ln(t;x) —w)g"(W)du
X X

Estimating (8), we have

|Hn (g; %) — g (0l

<13, (| ;e - wg @aul;x) + |f,f¥l(t;x)(L¥l(t: x) —u)g"(wdu.

Since
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1
< llg"llp(t— x)%(eP* + ePt)

t
f (t — u)g"(u)du
and

1 v
< 19"y (L6 2) = )% (e + ePHC)

LY (tx)
f (L4 ) — w)g"(w)du
X

IA

||g”||p(L’,’l(t —x; x))zepx(l + epL}’l(t—x;x))

M, p)llg"ll, (L4 (t — x; %)) P

IA
N| RN =

we get

wy, (%) |Hy (g5 %) — g ()|
1 1 — )2
< 5 19"l L ((t = 2% 2) + 5 1l llywy COLy <(twp (’3 ;x>

1 " v 2
+SM@,plg I, (Li(t — x; %))

Applying Holder’s inequality to the term LY (t — x; x) and Lemmas 2.5, 2.6, we
obtain the desired estimation.

Theorem 3.6
For all v,p € R, there exists a positive constant M(v,p) such that for all n € N,
X € Ry and f € E,, we have

wp|Ln (f; %) = f ()]

<MW, p)w?| f,E,; ’@ + o(f, Ep; ILY,(t — x; %)]).

Proof. Let x € R, and f;, be the second order Steklov mean of f € E,, i.e.

h h
frn(x) =%f2f2{2f(x+s+t)—f(x+2(s+t))}dsdt, x € Ry, h > 0.
0 Jo

Notice that
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h h
4 (2 (2 2
£ = o0 =33 | [ *2f s
o Jo
By definitions (3) and (5), we get the following estimations

If = fully < w?(f, Eps h)
and since

1
V00 = 15 (8852 (1) — A3 ()
we can write

9
1filly < = @?(f, Epi ).

The above inequalities imply that the Steklov mean fj, and f;" belong to E,,.
Moreover, by linearity of LY, and connection (6), we have

| (f5 %) — f ()]
< Hy(If = fuli ) + 1f () = fu GOl + [Hy (fn; X) = fr ()]
+|f(Lh (X)) = f(0)]-

Applying the above estimation, Theorem 2.1 and Lemma 3.5, we conclude that

wp ()| Ly (f5 %) = f ()]
< wpOHR(f = fal; ) + wyp (1 f () — fr(l
+wp ) H, (fns 2) = fu (Ol + wyp | f (L0 (85 6)) = £ ()|

1
SME,DIf = full, + M@, DI Il xc+ D)

+wp I (Lh(6:0) = )
< M(V, p)wZ(f’ Ep; h) <1 + l@)

h2
+o(f, Ep; IL%,(t = x;0)1),

L4 (nx) x(x+1)

Ly(nx)

where LY, (t — x;x) = x — x. Substituting h = , we get the assertion

of our theorem.

The author would like to thank the referees for their helpful remarks which greatly improved the
exposition of the paper.
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1. Introduction

Let 1< p <o, we denote by L7(R?) the set of all the Lebesgue measurable functions f

defined on R? such that .[ J. | f(#,0,) [P dtdt, <o if 1< p<eo,andif P=2 we require f

—c0—00

to be bounded almost everywhere on R2.

In this paper, we present approximation properties of the Poisson integral A inthe space
IP(R?), 1< p < oo defined by:

Z(f;r:ylvyz): J. J.rK(r,yl,ZI)K(r,yz,Zz)f(Zl,Zz)dZIde, 0<r<l,

—o0—co

where:

o :;GX _l.1+?‘2( 2+22)+2ryz
K(r,y,2)= 2r"h,(»)h,(2) - TP Ty Y -2
n=0 —-r

h(x) = (2" N )7 exp[—%szn (x)

and H is the n th Hermite polynomial (see [11]). The norm in Z7(R?) is given by:

(T]ﬁ|f(lpt2)|pdt1dtzJpa 1< p<eo,
I f1l,=

sup ess | f(t.5,)1, p=oe.
(1.17)eR?

Some convergence theorems, the Voronovskaya formula, and a boundary value problem
for the integral A were presented in [5]. The following result was proved (see [5]):
Theorem 1 Let ¥ =(3,,%,)€R? and f =/ + /2. where f, € L'(R*), /, € L"(R®). If fis
continuous at y, then:

lim  A(f;r,y) = f(P),
(r.)=>(17.5) (fir) =1 () y=00)-
In this paper we shall give an order of approximation of functions belonging to L?(R?) by

the operator 4 . It is worth mentioning that approximation properties of Poisson integrals for
orthogonal expansions and their various modifications were also studied in [4, 12, 6-10], in
one and two dimensions.

Some auxiliary results, which will be needed in the next part of this paper, are now

presented. It is clear that Z(fﬂ%)’p)’z) =rA(f;r, y)A(fy57,3,) for f,, f, € L7 (R) and such

that /(z,,2,) = /1(2)) /3(2,) ,where A(/)(r,y) = A(f3r,p) = ]QK(F,y,Z)f(Z)dz, 0<r<IL
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The operator A4 is linear and positive. Basic facts on positive linear operators and its

applications can be found in [2, 3].
In paper [7], we can find the following equalities:

2 V7 11-72 ,
A(L;r,y) = exp| ——- ,
( Y) (1+r2) P 2 1+r2y

2 )" 1 1-72

A ry)= exp| ——- 2

(q)m’y Y) (l-i—rzj p[ 2 1+r2y
[%] 2\? 2 \"2Zp
XZ m) (m—p)! 1-r _(1-r

=\p)m-2p)27 \1+77 1+ 7
for0 <r<1, y € R, where [a] denotes the integral part of @€ R and 9,,,(z) = (z—»)".

From the above, we have the following result in the bivariate case.

Lemma 1 Let 9,,,(z,2,)=(z,=3)", »,z,€R, i=1,2, ne N. It holds

- 2 (1-7%  (r=1* L) 11-7,,
A A5V Vi < . + i €X ey + 1
(. fi7231032) 1472 [1-&-1’2 A+ ) P2 bren)] o
forO<r<I.
Proof. Using Holder’s inequality, we get:

Z(|¢1,y1 |;r, yl,yz) < ( T TrK(r,yl,ZI)K(r,yz,zz)dzldzsz

oo oo Py 1 l
X(J. _[VK(V,J’VZJK(V,ystzHZl ) |2 ledzzjz Z(Z(lﬂ”ypyz))g (Z(q)Zyl §V’y1’y2))2
o @)

for (3,,¥,) € R* and 0 << 1. We have (see [5]):

- 2 11-7,,
A(l,r,yl,yz)—lJrr2 eXP(—E-Hrz (y1 +y2) ;

_ 2 (1= (r=1) 1172 .
Al0sm.51.01) = 1477 1+r2+<1+r2)2 y? |exp 2142 L) pi=12

From this and (2) we obtain (1) for i = 1. Analogously, we calculate (1) for i = 2.
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2. Rate of convergence

In this section, we give an order of approximation of function of two variables in the
space L”.

We achieve this using the modulus of continuity w(f3§,,5,), §,,8, >0 of f €L’ (R*)
defined as follows:

o(f;8,,8,) = sup{ sup | Sy +hyy +h)— ()|

OI=d1 (yy 1y)eR?
0<hp <8y

First, we prove the following lemma, which we will use in the proof of the approximation
theorem.
We shall apply the method used in [12].

Lemma 2 Let f € C'(R*)NL*(R*), 1< p < oo, Therefore

- - 2 11—
[A(/33002) = £ i) AL, ) SHVF exp(—g ﬁ(ﬁwﬁ))

y [ LDy J 0|, [ L= J U (31.3)
su sup |22
TN on y2)6R2| W | A+ ) el
for0<r<1andall (y,y,)€R".
Proof. Let (»,,,) € R*. be a fixed point and f € C'(R*) N L* (R*). We have:
Zl 6 22 a
SGm) =S = [ fz)dut [ == f )y
ou ov
N 2
for all (z,,z,) € R*. Let us denote:
Zl a Zz a
by (az) = [ - fnz)du, t, (2,2) = [ 2= 1Oy
N 2
Observe that:
i (y, o (1,,)
|7\.y1 (zl,zz)|s|zl -»| sup % |’cy2 (zl,zz)|<|z2 ¥,| sup % (3)
(1.32)eR od O1.32)eR? V2
From (3) and Lemma 1, we obtain:
= o (»1,1,)
A(|}\'y1|;r7yl’y2) (|('p1}1| r y1>y2) sup |-
2| dy
(1,2)eR 1




2r (r 1)4 22 1 1-r7,, , I (3,,)
< exp| ——- + sup \—— |
1+r2(l+r (1+r )2 P 2 1477 (yl y2> (11.12)eR? aJ’1
- 2r L= )'y; 2 11—/
ATy, i ys0) < exp| ——- P4y,
(| y2| : 2) 1+ (1+r (1+7%)? P 2 1477 (yl yz)
9
sup f(ylayz).
Gromer?| OV

Hence:

+
147 Nt

4 2 ) 4 2 )
X( LDy J wp [Y 02 ( LoDy ) up
L4772 (1+r ) (31.32)eR? | ayl | 147 (1+r ) (31.72)eR?

and the proof of the lemma is completed.
We are now in a position to prove the approximation theorem.

_ —_ 2
[A(fir3000) = )ALy < zrzexp[—l-l :(2 Z)J

af()’la)’2)
9y,

Theorem 2 Let f € C(R*)N L' (R*), 1< p<oo. Therefore

[ACf 57,315 32) = £ 0132 A5 7,313

2 4 2 4
r=-0n" 5 [I=r  (r=1)" ,
< 6w + , +
[f \/l+r (1+7%) i 1+ (1+77) 2

for0<r<1andall (y,y,) €R’.

Proof. Let (»,,¥,) € R? be a fixed point and I 5.8, be the Steklov mean defined by:

318y

1
Fos, 002) = 55 — [ [7 Oy +uy, +vydudy for  (3,,y,) € R*,5,,8, > 0.

200

From this definition, we conclude that:

818y
1
Jonos G2 = F01o32) = = [ [ A f 01,35 )eludly,
8,8, 9%
)

0 1
5 T 013 = 55 j (Mg f G 32) =g f (31,3 b,
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8y

f (8,5, /013 = A, 0 S (7)) s

0

fsl 5, (V1:32)

where

A S D) = f O+, yy +v) = f (7, 0))-
Hence, if f € C(R*)NL’(R?), then f55, € C'(R*)NL"(R*). Moreover

sup |f5152(y1,y2) f(Y1aJ’2)|<w(f 8,,8,),

1, yz)eR

<28'0(f;8,,8,),

sup
(.y2)€R

0
. a—ylj%l,sz(yl,yz)

for all §,,8, > 0. Observe that

|Z(f;r,y1,y2)—f(yl,yz)z(l;r,yl,yz)|

<[ACf = Fop oy 3730 0)| H AU 3705 93) = Foy 010 AL 7,31, 02)

+|f81,52 (J’1ay2)_f(ylaJ’z)|'A(l;’”a)ﬁa)’z)a (7>,) €R*,3,,8, >0.

From Lemma 2 and (4) we obtain
(A, 5037 310092) = Foy sy G 92) A7, 303,
1

5 . 1_ ) 1— 14 2 2
< eXp( (y1 +y2)] 2511(”(][;81’82)(1 2_’_(” ) J

T+ 2 1+r (1+7%)

(r 1)*y3 :
1+7 (1+r)

+28,'w(f;8,,9, )(

1

<20(£35,,5,) 51‘( +(r D'y 22J2+8 [ LDy ;JZ .
1+r (1+77%) 1+ (1+77%)

“4)
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Using (4) we have:
| foy50 G 92) = S 0o 9)|- AL, 1, 9,) S AL,y 3,)0(f38,,8,) S 0(f38,,8,)

and

|Z(f_f51,52;”,y|,yz)| S I J.VK(”aJ/le)K(’",yzszzﬂf(leZz)_fsl,sz (ZlaZQ) |dzldzz

—c0—00

< sup |J%1,52(y1,yz)—f(yl,y2)|fer(r,yl,zl)K(r,yz,Zz)dzldzz

(1,»2)€eR —oo—co

<AL, y,,0,)0(f38,,8,) S o(f38,,3,).

Finally, we get:

|Z(f;r,y1,yz)—f(yl,yz)z(l;r,yl,yz)|

1 1

<20(/38,.8,) 1+5;1(1‘r2+ (r=1)* yzj2+5_l( G l)zsz

1477 (14727 1+7° (1+r)

for all (;,»,) € R?,8,,8, >0. Choosing:

(r-=1) (r-1)
% = (1+r (1+r )zy]J > 8= (l+r (1+r )Zyzj

we obtain the desired estimation for 4 .
From Theorem 2, we can derive the following result.

Corollary 1 Let f € C(R*)NL'(R*), 1< p<eo. Then it holds

1477 (14732 e

| ACF 7 002) - f(yuyz)|<6w[f\/ Gl MY J:;m—n y2]

+ SO 0) | -|A(1;r,yl,y2)—1|

for0<r<1andall (3,y,)€R’.
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Abstract

This paper discusses Monte Carlo simulations of the Black-Scholes model. It is introduced
with the simple example of the pricing of European call options on a no-dividend stock and
the simulation results are compared with an analytical solution. Monte-Carlo methods are then
used to price simple chooser options. Moreover, it is shown that the distribution of rate of the
return from investment in simple chooser options is significantly dependent on the strike price.
The presented simulation is performed using MAPLE.

Keywords: simple chooser options, Black-Scholes model, Monte Carlo method

Streszczenie

W artykule rozwaza si¢ zastosowanie metody Monte Carlo do modelu Blacka-Scholesa. Wstep
stanowi przyktad wyceny europejskiej opcji kupna na akcje bez dywidendy i poréwnanie wy-
niku symulacji z rozwigzaniem analitycznym. Metoda Monte Carlo wyceniono opcj¢ simple
chooser. Pokazano istotng zalezno$¢ rozktadu prawdopodobienstwa stopy zwrotu z tych opcji
od ich ceny wykonania.

Stowa kluczowe: opcje simple chooser, model Blacka-Scholesa, metoda Monte Carlo
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1. Introduction

An option is a contract between a buyer (holder) and a seller (writer) that gives the buyer
the right, but not the obligation, to buy or to sell the underlying asset at an agreed price at
a later date. The agreed price in the contract is called the strike price; the date is referred to as
the expiration date. There are two basic kinds of options — calls and puts. A call stock option
gives the holder the right to buy a specified quantity of stock at the strike price on or before
the expiration date. The writer of the call option has the obligation to sell the underlying
asset if the holder of the call option decides to exercise his right to buy. A put option gives
the holder the right to sell a specified quantity of the underlying stock at the strike price
on or before the expiration date. The writer of the put option has the obligation to buy the
underlying asset at the strike price if the holder decides to exercise his right to sell. The style
of an option refers to when that option is exercisable. An American option may be exercised
at any time prior to the expiration date. A European option may be exercised only at the
expiration date. The Monte Carlo simulation is a valuable and flexible computational tool in
financial theory and practice [3, 4]. In this paper, we demonstrate how it can be applied to
analyse chooser options. We price the options using Monte Carlo methods combined with the
analytical Black-Scholes solution, relating to the case of the European call option, available
through the MAPLE command. Using crude Monte Carlo, the distribution of the rate of
return from investments in chooser options is examined. The simulations are performed using
MAPLE. We use the Black-Scholes model to describe the price of the underlying asset. The
following assumptions were made to derive the Black-Scholes model: there are no riskless
arbitrage opportunities; there are no transaction costs; there are no dividends during the life
of an option; security trading is continuous; the risk-free rate of interest and the stock price
volatility are constant; the price of the underlying asset follows a geometric Brownian process

2. Model description

The Black-Scholes model is used, this is the most popular valuation model for options.
The model is based on the assumptions that markets are arbitrage free and the price S of the
underlying asset follows a geometric Brownian motion:

1
S,:Soexp((r—zc2jz+cW,],te[O,T], (1)
where:
W= {W, ,1e[0,T ]} — astandard Brownian motion under the risk-neutral probability
P, r denotes the risk-free interest rate,
S, — the stock price at time 0,

T — the time to maturity of the option (expiry date),
c>0 the stock price volatility.

An estimation of future volatility ¢ can be obtained from historical prices of stocks as the
standard deviation of the stock return, by assuming that the recent realized level of volatility
will continue in the future. Another estimation can be computed from current option prices
(implied volatility). The estimation of ¢ has been widely studied in [1] and is not discussed
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in this paper. Volatility is expressed in the percentage of the underlying asset price, and for
stocks, it is typically between 15% and 60%.

Under the assumption of no arbitrage, the price of a generic derivative security can be
expressed as the expected value of its discounted payouts. This expectation is taken with
respect to the risk-neutral measure. Then today’s price of a stock option that pays at some
time ¢ according to a /', — measurable payoff function f{?), is:

E(e*” f(z)) )

Let S, denote the price of the underlying asset at the expiry date 7, and K denote the strike
price. The pay-off is given by:

f(T)=(Sy —K)" =C(S,.K.T)
for a call option, and by:

f(T)=(K-S;)" =P(Sy,K.T)

for a put option. A closed form formula for pricing the above options is the Black-Scholes
formula:

c=S,N(d,)-Ke""N(d,),

p= Ke(_rT)N(_dz )= SoN(=d)),

c is the price of a call option, p is the price of a put option and N is the cumulative probability
function for a standard normal distribution [6].

Analytical solution
The call option price can be computed in MAPLE, as the analytical solution, based on the
Black-Scholes model. It is available through MAPLE command:
> with (finance):
§0:=50:K:=49:r:=0.07:06:=0.3:7:=199:

¢ :=evalf | blackscholes SO,K,F,L,G ;
365

where T denotes 199 days to maturity.
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Monte Carlo Simulation

For the purpose of introduction, the evaluation of the price by the Monte Carlo simulation
is also presented. Moreover, we compare the computed result with the analytical solution
presented above.

(i)

Independent replications S;” of the terminal stock price under the risk—neutral measure
can be generated from formula (1). By the Strong Law of Large Numbers we have:

1S ) a0

An unbiased estimator of the price of European call option is given by:

1”7" i
c=;§} " max(S{" - K,0), 3)

i=1
where:

S}i)=SOexp([r—%cij+Gxij,i:1...n, “

T'is the option’s maturity and {x,} are independent samples from the normal distribution

with mean 0 and standard deviation \/T .
As we can see below, the difference between the exact and Monte Carlo results is about
0.01:

7T
d=e -—
XP( 365)

N:=10°

X = Random Variable (Normal {0, . fLD :
x := Sample (X, N): 365

L:=0:
for i to N do

pli]=max| S0-exp

L:=L+p[i]
end do:

d-L
c=—;
N
Monte Carlo simulations are never exact and one always has to take the sample standard

deviation into account. With 100 independent Monte Carlo calculations of ¢, the standard
deviation of the price sample and mean are around 0.03 and 5.8514 respectively. Hence
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5.851440.006 forms the boundary for the 95% confidence interval for the price. We present
a histogram of the sample of ¢, based on 100 simulations:

o
57 58 59 60

Fig. 1. Histogram of price of European
call option based on 100 simulations

3. Analysis of simple chooser options

In this paper, the main attention is focused on the analysis of simple chooser options. The
Monte Carlo simulation aimed at the pricing of simple chooser options and the examination
of the distribution of the rate of return from the options is described. Chooser options have
been traded since July 1990 with the initial contracts traded by Bankers Trust [5]. They are
purchased in the present, but are chosen to be either put or call at some specified future
date. Their holder has the right to decide at some specific point in time #(# < T), whether the
options will finally be put or call. Hence they are sometimes named ‘you-choose’ or ‘as-you-
like’ options. Chooser options are suitable when strong volatility of the underlying asset is
expected but investors are not certain about the direction of the change. In the case of a rising
value of the underlying asset over a period of time, the holder of the option will choose the
call option because it will have a higher value than the put option. When the underlying
asset falls up, the choice will be the put option. Once this choice has been made at time ¢, the
option stays as either a call or a put to maturity. If the strike prices of the call and the put are
the same, just as their expirations, such an option is referred to as a simple chooser. We will
continue to call them briefly as chooser options.

3.1. Pricing chooser options

Let us denote:
T — t time to maturity,
S, stock price at ¢,

C (S, K, T - t) premium of European call option,

P(S,,K,T —t) premium of European put option.
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At time ¢, the investor will choose the call option if:

C(S,.K,T-1t)>P(S,,K,T-1),

otherwise, he will choose the put option [2].
By the put-call parity:

C(S,,K.T—1)-P(S,,K,T—1)=5,~Kexp[ —r(T —1)]
the above inequality is equivalent to:
S, > Kexp| —(T-1)].
Hence the value of the chooser option at time ¢ equals:

ch(t) = max (C(S,,K,T~1),P(S,.K,T~1))=
C(S,,K,T—t)+max(Kexp[—r(T—t)J—S,,O). )
The value of the option at time 0, when the choosing time is 7, is equal to:
W(t) = exp(-rt) E[ C(S,, K, T~ )+ max (K exp[ (T -1)]-5,,0) | 6)

In [5], the relationships between the choice date and the chooser price, and between the
chooser price and its strike price were examined.
Applying (6), we can price the European simple chooser option by simulation.

Example. Here we use the Monte Carlo method with #» = 100000 simulations to price the
chooser option where a maturity 7 is one year, the underlying asset price S is 50, » = 10%,
0 = 20%, k=50 and ¢ = 0.25 and ¢ = 0.25. We simulate values of S, and use the analytical
result for C(S, K, T — ¢) calculated by MAPLE command blackscholes (S, K, r, T—t, ). We
obtain the price v(f) = 7.01983862. The algorithm is as following:

Set sum =0

forI=1toi=1ton

generate S

set sum = sum + C(S, K, T — t) + max(Kexp(-rt) — St, 0)
end

set v(t) = (sum/n)exp(—rt)

3.2. Rate of return

Using the Monte Carlo method, we can also analyse the profit function, which determines
the profit for the holder of a chooser option on the expiry date. To obtain this goal, we have
to know the values of the payoff function. We express a payoff function of the option in the
following way:
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f(T)=1,max(S; —K,0)+1; max (K —S;,0) (7)

where 4 = {Sz > K exp [—r(T—z)]},B = {S, < Kexp[—r(T —t)}}.

Let U and W be independent, normally distributed random variables with mean 0 and
variance ¢ and T — ¢ respectively:

X=5, exp((r—%czjt+GU], Y=exp((r—%62j(T—t)+GWj.

By (1) we have S, = XY. Independent samples X and Y are generated. By definition
of chooser options, if X >Kexp[—r(T—t)] then f(7)=max(S; -K,0), Ise
f(T)=max (K -S5;,0). Independent replications f(i)(T),i =1...n give us not only the
estimation of the chooser price:

n

ch(T)= exp(—rT)%Zf(i) (T)

i=1
at £ =0, but also the sample of rate of return R, expressed in percentage:

_ exp(—rT)f(i) (T)—ch(T)

*100%,i =1,...,n.
ch(T)

R® (T)

3.3. Simulation of rate of return

Figure 2 presents eight different histograms and medians of the rate of return dependent
on K, based on n = 10*simulations each case, where a maturity 7 is one year, the underlying
asset price S is 50, » = 10%, 6 = 30%, ¢ = 0.6. The mean is equal to 0 each case.

As can be seen, a data set of the rate of return is unimodal and positively skewed, the
long tail is on the right-hand side, when K < §,. The situation reverses when K > §. A data
set of the rate of return is bimodal. The right-hand tail of the distribution decreases with an
increased K. Figure 3 plots the median of rate of return against the strike price.

From the investor’s point of view, the most interesting case is when the median rate of
return is the biggest. As can be seen in Figure 3, the worst case is for K = 50 and the best is
for K = 90. Let us compare the probabilities corresponding to different value ranges of the
rate of return R. The simulation results are presented in Table 1.

Let us observe that in the case of strike price K = 50, the probability of relative loss
exceeding 50% is equal to 0.39 while in the case where K = 90, the probability equals only
0.15. Interestingly, for K = 50, the probability that relative gain exceeds 50% is equal to
0.25, while for K = 90 it is only 0.12. Hence, for K = 50, large gains and large losses have
the highest probabilities. The opposite situation occurs in the case of K = 90, the highest
probabilities have small gains and small losses. As presented, the Monte Carlo simulation
proves to be very useful for the analysis of the investment risk.
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Fig. 2. Histograms and medians of rate of return
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Fig. 3. Median of rate of return

Table 1

Approximated distributions of rates of return for strike price K = 50 and K = 90

K=50 K=90
P (R<-75%) 0.3 0.08
P(-75% < R < -50%) 0.09 0.07
P(-50% < R < -25%) Wpisz tutaj 01 0.12
réwnanie. —25%)

P (-25% < R < 0%) 0.1 0.18

P (0% <R <25%) 0.09 0.23

P (25% < R < 50%) 0.07 0.2

P (50% < R <75%) 0.06 0.1
P (R>75%) 0.19 0.02

4. Conclusions

The Monte Carlo simulation is useful in determining the distribution of the rate of return
from investments in options. Knowledge of this distribution helps in determining investment
risk. As demonstrated in Figures 2 and 3, and in Table 1, in the case of chooser options, the
distribution and consequently, the level of risk, is significantly dependent on the strike price.
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Abstract

The paper shows Monte Carlo simulations of the Ising model on a square lattice with no
external magnetic field. In particular, the uncertainty of the spin coupling interactions in the
Ising model has been considered. The influence on the phase transition of the Gaussian noise in
the spin coupling values has been demonstrated.

Keywords: Ising model, Monte Carlo simulations, Gaussian noise

Streszczenie

W artykule przedstawiono symulacje Monte Carlo modelu Isinga na sieci kwadratowej przy
braku zewngtrznego pola magnetycznego. W szczego6lnosci rozwazono niepewno$¢ wartosci
energii sprz¢zenia oddzialujacych spinow w modelu Isinga. Zademonstrowano wplyw na przej-
$cie fazowe obecnosci szumu gaussowskiego w warto$ciach statej sprzgzenia oddziatujacych
spinow.

Stowa kluczowe: model Isinga, symulacje Monte Carlo, szum gaussowski
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1. Introduction

The Ising model, named after Ernst Ising [1] and studied at least 5 years earlier (in early
1920s) by Lenz [2], offers an excellent testing ground for studies of the physics of classical
and quantum phase transitions. Despite being subject of numerous, brilliant and extensive
research studies over nearly a century, the Ising model still poses some big challenges. For
example, the analytical solution for the 2D Ising model with no field was obtained by Onsager
[3, 4] in 1944, but up until now, an analytical solution has remained unknown for the case
with an external magnetic field. Thus, in many cases, feasible ways to study the model include
experiments with quantum simulators with hundreds of spins [5] and numerical methods
(Monte Carlo simulations) for finite-size lattices with even more spins included [6—8]. The
universality of the Ising model goes far beyond the modelling of purely physical phenomena
such as: classical and quantum phase transitions; binary alloys; magnetic properties of
condensed-matter materials; strong and long-range correlations; complex systems. Just to
give an example, it has been shown by Bornholdt [6], that microscopic models based on the
Ising model have a capacity of reproducing complex behavior of real financial and economic
markets. Thus, it proves that this model allows for the genuine interdisciplinary research in
physics, econophysics and also across other areas of fundamental and applied sciences.

The purpose of this paper is to investigate the two-dimensional (2D) Ising model by means
of Monte Carlo simulations. In view of recent progress in engineering two-dimensional Ising
interactions in a trapped-ion quantum simulator [5], an important research question arises.
Namely, to what extent an uncertainty of the engineered interaction in a real experimental
situation may influence the phase transition in the model. In order to provide at least a partial
answer to this question, random Gaussian noise is introduced into the Ising interaction
coupling constant.

The paper is organized as follows. In the next section, the Ising model is briefly presented. In
Section 3, the results are presented for the case of constant interaction coupling energy. This allows
for some justification for the applied numerical implementation of the Metropolis algorithm, as
such results are fairly standard in the literature. Then, a variant of the model is proposed for
which the interaction may vary according to the normal distribution with the mean and standard
deviation fixed. Finally, the results are summarized and some conclusions are drawn.

2. The Model

Let us consider 2D Ising model [1, 2, 4], where N = L* spins 6 = +1 are located in regularly
spaced sites of a square lattice L x L. In general, such spins can interact with each other
with some coupling energy J (in principle, interactions and thus couplings could depend on
interacting spin 0,5 O, locations in the lattice). Apart from internal interactions within such
an ensemble of spins, one could also take into account interactions of each spin with the
external magnetic field. However, for the purpose of the following discussion, let us simplify
the model considering the case with no magnetic field and include only equal interactions
between nearest neighbors in the square lattice. Hence the Hamiltonian H of the system reads:

H=-J 2 GiiCu

{4k}



53

where
J — the coupling between interacting nearest-neighbor spins ,
o, — the spin o, = +1 located in the site (7, j) of the lattice (1 <1, <L),
{ij, kI} — denotes summation only over pairs of the nearest-neighbor sites (7, ) and

(k, I) of the lattice.

In the model studied, the usual periodic boundary conditions for the lattice are adopted.
This means that any spin has 4 nearest neighbors in the square lattice and for example: ¢
=0,,0rG,, =0, (the lattice is ‘wrapped around’).

It is well known that the 2D system exhibits a phase transition between the disordered
phase (a paramagnetic state) and the ordered phase (a ferromagnetic state). The order
parameter for this transition is simply the total system magnetization M per spin:

i.j

L+17%f

For a system at a given temperature 7, an expectation value <A4> of any observable
4 in the system with spin micro-configurations o, on the lattice is evaluated according to
probabilities P(c, ), assigned by the canonical ensemble:

1
<A> = ZP(G(X)A(Goc) , P(o,) = Ee—E(Ua)/(kBT)
o

where:
VA — the partition function,
E(c,) — the energy of the microstate c,
k, — Boltzmann’s constant.

In the Monte Carlo numerical simulation, such expectation values could be obtained
through the Metropolis algorithm (see e.g. [7, 8] for a description of details of the
implementation of Metropolis algorithm’s).

It also transpires (see e.g. [7, 8]) that the magnetic susceptibility y (a linear response of
the magnetization to the magnetic field) is related to the total magnetization M fluctuations:

=)o)

The critical temperature 7. for the order-disorder transition in the 2D Ising model in
the limit of an infinite lattice (the so-called thermodynamic limit, with a total spin number
N — o), without an external magnetic field, can be found exactly analytically [3, 4]:

kT, 2

J ln(1+\/§)

=2.2691853

An interesting issue is related to the so-called finite-size lattice scaling at the critical
temperature [3, 7, 8]. A ratio of any two quantities which have the same finite-size scaling at
T,. should be lattice-size independent. Especially useful are the Binder ratios [8] defined in
the following way (g is an integer):
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5 o 4m)

(s

Therefore, once we have obtained expectation values of the square of the magnetization
and the absolute value of the magnetization itself, the first Binder ratio B, can be easily
found.

3. Results

Monte Carlo simulations of the Ising model using the Metropolis algorithm were
performed according to the implementation described by other authors (see [7, 8] for details).
Typically, in the present simulations, 50000 Monte Carlo sweeps (MCS) were discarded for
equilibration and there were 100 bins used, each with 50000 MCS to obtain expectation
values of <m?>, <|m|> and y with estimates of their errors. Figure 1 shows magnetic
susceptibility dependence on temperature for lattice sizes L = 16, 32, 64, 128. The data for L
= 128 have been obtained with only 20 bins, so Monte Carlo error bars are more pronounced
near the critical temperature (its position is denoted by the dashed vertical line) than for
smaller lattices studied here (where errors are comparable to data point sizes on the plot). The
coupling here is taken to be constant (J =J, = 1.0).
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Fig. 1. The magnetic susceptibility y versus temperature
T. Note the logarithmic scale for . The dashed vertical
line shows the position of the critical temperature 7.
The inset shows the shape of the magnetic susceptibility
x for the lattice of size L = 128 for the given range of
temperatures

The corresponding analysis of the Binder ratio is shown in Figure 2. Note, that as
expected, the first Binder ratio B, is independent of the lattice size at T',.. The inset in Figure
i

2 shows that in more detail. The horizontal dotted line represents the asymptotic value 2
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of B, for temperatures T much greater than 7. (7 >> T,) (for evidence, see [7, 8]). Thus, the
results discussed and illustrated in Figures 2 and 3 validate the numerical methods used for
the present study to some extent.
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Fig. 2. The Binder ratio B, for the studied 2D Ising model
(J=J,= 1.0). The inset shows the Binder ratio scaling in
the vicinity of the critical temperature (indicated by the
dashed vertical line). The horizontal dotted line indicates
the asymptotic value of the Binder ratio

Finally, let us now consider the influence of the Gaussian noise in the value of the
interaction coupling. It is assumed that the coupling J = J, is known with some uncertainty
AJ, (J=J,+ AJ). In the Monte Carlo simulations, the values of coupling energy are now
allowed to vary slightly with subsequent MCS (but at any given MCS, they are fixed). The
coupling energies are randomly drawn from the Gaussian (normal) distribution with the
mean J; and the standard deviation AJ, so that J=J, = AJ = 1.0 = 0.1 (this corresponds to
a relative uncertainty of 10% in the value of the coupling energy). The results for the Binder
ratio are shown in Figure 3 — note the shift in the value of the effective critical temperature
with respect to the previously discussed case (Fig. 2). The new value of the effective critical
temperature 7. of the phase transition in the noisy system is significantly lower than in the
case of noise absence, and in rescaled units, it equals approximately:

@Q:zn.

Jo

In order to understand this phenomenon at least qualitatively, one may regard noise in the
coupling energy to be equivalent to the thermal energy in the system with no external field.
This additional thermal energy allows for the system to undergo a phase transition at a lower
temperature, which otherwise would be too low for the system with no noise (uncertainty) in
the spin coupling interaction.
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Fig. 3. The Binder ratio B, for the studied 2D Ising model
with randomly varied coupling J, which is drawn from
Gaussian probability distribution with average J; and
standard deviation AJ; = 1.0

4. Conclusions

In this paper, the 2D Ising model on a square lattice with no external field was considered
for various lattice sizes and spin numbers, ranging up to N = 1282 = 16 384 spins in the
complex system. The results of present Monte Carlo simulations are in good agreement
with earlier studies and some analytical, exact results. A novel approach has been put
forward to consider the influence of the uncertainty of the spin coupling interaction on the
effective critical temperatures in the system. This may have an application when comparing
experimental results with some phase transition theory predictions. In particular, the results
obtained in the present study give some indication regarding possible effects which may
arise due to uncertainties of the system parameters in real experimental situations. Another
possible application of this noisy 2D Ising model with Gaussian noise adopted would be to
represent some many-body corrections or long-range spin correlations which are beyond the
description within the standard Ising model, where only the interactions of pairs of spins are
taken into account.

The author would like to acknowledge the use of the services and computer resources provided by
the Academic Computer Center CYFRONET AGH in Krakow (Akademickie Centrum Komputerowe
CYFRONET AGH, Grant No. MNiSW/IBM_BC HS21/PK/033/2014, “Teoria ztozonosci rynkow finan-
sowych”).
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RELAXATION CURRENTS IN THE NON-MORPHOTROPIC
REGION OF PZT-PFS FERROELECTRIC CERAMICS

PRADY RELAKSACYJNE W OBSZARZE
POZAMORFOTROPOWYM FERROELEKTRYCZNEJ
CERAMIKI PZT-PFS

Abstract

Studies on the dielectric relaxation currents in the non-morphotropic region of PZT-PFS are
presented. Transient polarization and depolarization currents were measured at different poling
fields (0.02-20 kV/cm) and different temperatures (77473 K). The activation energies were
calculated. The defect dipole complex (Fe ,~V,) and reorientation cluster dipole models are
proposed to explain the observed relaxation behaviour in PZT-PFS.

Keywords: ferroelectric ceramics, PZT-PFS, relaxation currents

Streszczenie

W artykule przedstawiono badania pradéw realaksacji dielektrycznej w PZT-PFES dla sktadow
lezacych poza morfotropowa granicg faz. Zostaly zmierzone prady polaryzacji i depolaryzacji
dla r6znych wartosci pola polaryzacji (0.02—20kV/cm) i temperatur (77473 K). Wyznaczo-
no energie aktywacji dla réznych probek. Dla wyjasnienia relaksacyjnego charakteru zjawisk
w PZT-PFS zostat zaproponowany model oparty o zespoly defektéw dipolowych (Fe ,~V,)
i reorientacje klasteréw dipoli.

Stowa kluczowe: ceramika ferroelektryczna, PZT-PFS, prqdy relaksacji
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1. Introduction

Study of transient decaying currents is a very useful method for the determination of slow
polarization and depolarization processes in ferroelectric materials. Such a study provides
some insights into the microscopic mechanisms of polarization and depolarization processes
and can explain aging, memory effects, domain wall motion, and the dynamics of dipoles,
ions and electrons [1-4].

The results of measurements of the polarization and depolarization currents in the
morphotropic region have previously been described in [5]. The present paper reports some
additional studies on depolarization currents in the non-morphotropic region. Details of the
experimental procedure and sample characterization are presented in [5].

Samples with circular silver electrodes with an area of 0.36 cm? and thickness 0.5 mm are
used in all experiments. The samples Pb[(Fe, ,Sb, /3)xTierZ]O3 withx+y+z=1,x=0.1 and
y=0.43 and y = 0.47 compositions were subjected to an electric field and the decaying current
was measured under different strengths of the applied field. After poling, the applied field
was removed and the sample was short circuited via a current-measuring 6517A Keithley
electrometer until the reverse depolarization current had decayed.

2. Results

The relaxation behavior in PZT+PFS was studied for various poling fields, polarization
times and temperatures. Fig. 1 shows the time dependence of the depolarization currents
which were recorded after various poling times, i.e. 10?, 10* and 10* s. The results are shown
as the log-log scale plots. Initially, there was little difference between the curves, but at
longer times, that difference increased. The depolarization current curves for polarization
times 10* s and longer have tendency to coincident.

In Fig. 2a, the depolarization current for different poling field measured at 298 K, are
plotted. It is evident that at a low poling field, one observes a linear dependence relaxation
current in the probe field, whereas for higher poling fields, a rapid increase of nonlinearity
appears and, simultaneously, the depolarization time becomes longer than 10* s. In Fig. 2b,
the time dependences of depolarization currents, measured at 77 K, are shown. At lower
poling fields, the depolarization currents are proportional to the electric field strength, but
at higher fields, a non-linear behaviour is observed. However, the onset of the non-linear
dependence begins at lower poling fields than in the case of higher temperature (298 K).

In Fig. 3, the polarization J, steady state J_ and depolarization J, currents are presented
for sample with y = 0.47. The charging currents at any time are the sum of the current due to
both the decaying polarization current and the steady state conduction current:

J=J, 1 (1

At 298 K, the decaying currents are given for poling fields 0.02 (plot C) and 5 kV/cm
(plot A). For low poling fields (0.02 kV/cm), the polarization and depolarization currents have
approximately the same values at the same time (see Fig. 3, plot C, curves J and J ). Whereas
for higher fields 5 kV/cm, the depolarization current is lower than the polarization current
(see Fig. 3, plot A curves J and J,). At higher temperature (453 K), for the 0.02 kV/cm poling
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field, the decaying polarization and depolarization currents have almost equal values at the
same time (see Fig. 3, plot B, curves J, and J)) and the observed curves are mirror images
of each other. Typical examples of the depolarization currents, measured under a low poling
field (0.02 kV/cm) over the time period 1-10* s for selected temperatures for samples y = 0.43
and y = 0.47, are shown in Figs. 4a and 4b, respectively. The shape of the relaxation currents
presented in Figs. 4a and 4b indicates the existence of two time-dependent relaxation processes,
both obeying the well-known Jonscher-Dissado-Hill fractional power law:

A(t)

[BE8)]
- + -
To T

where T, = ®,' is the relaxation time for which the loss peak appears.

The relaxation of depolarization currents proceed faster, i.e. over a time shorter than the
relaxation time 7, with the form #” and slower at times longer than t, with the form ¢ [7].
Values of the exponents # and m, depending on temperature, are listed in Table 1. The insets

in Figs. 4 a and b show the temperature dependence of the log Tal vs 1000/T. The activation
energies calculated from the slop slope of this dependence are listed in Table II, along with
the activation energies obtained from the electric conduction.

3. Discussion

1. The polarization and depolarization current decays at low (~0.02 kV/cm) and high
poling fields (~20 kV/cm) as well as for different poling time were measured. The results
presented in Fig. 1 show that, for a short poling time, only relaxation processes with short
relaxation times are developed. Poling times of at least the order 10* s are needed to initiate all
various polarization processes with long relaxation times, both at high and low temperatures.
For a weak poling field (~0.2 kV/cm), there is no difference between polarization and
depolarization currents, as shown in Fig. 3, plots B and C. This means that the reorientation
of dipoles and domain wall motion is reversible and that the ferroelectric under study behaves
as a linear dielectric. The onset of irrevertiable motion of the domain walls begins at higher
fields [8]. In this range of poling field, the depolarization current at any time is less than the
polarization current (see Fig. 3, plot A) and the remnant polarization is induced. At very
high poling fields (20 kV/cm; Fig. 2a), the space charge appears providing an additional
contribution to the total discharge current [5, 6].

2. The properties of the PZT compounds are strongly altered by point defects. In the case
of Pb(Zr,Ti)O, modified by FeSb ions, randomly distributed Ti*", Zr*", Fe*" ions on the B
site of the perovskite structure are created. The group of octahedrons with identical B site
ions (BO,), gives rise to a micro-region (cluster) with a large number of locally interacting
dipoles. The nanometer size clusters with various composition have dipole moments
undergoing the thermal fluctuation between equivalent positions. Between clusters, some
coupling interaction occurs leading to partial long-range regularity. Longer relaxation times
are associated with relaxation due to the cooperative motion of the group of clusters (micro-
regions) [10, 11]. The observed, in initial time, the power law dependence Jp (H)~t" may be
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explained take into account dipol-dipol and ion-ion interactions. As it was shown in paper
[12] such interaction leads to the generation low-energy correlated states. The density of this
low-energy excitation gives rise to the infrared divergence response function #”.

3. In the case of PZT with Fe’* ions, three Fe ,—V, defect complexes could be formed
depending on whether the oxygen atoms were removed or not [13, 14]. The energy barriers
for reorientation of these defect complexes depend on the position of oxygen vacancies with
respect to iron atoms [13, 14]. In the tetragonal phase of the PZT, there are two types of
oxygen atoms — the oxygen atoms bonded to two Ti atoms in ab planes [O(2)] and the oxygen
atoms in the O-Ti-O chains in ¢ directions [O(1)]. Therefore, one may expect three kinds
of defect complexes. The Debye-type relaxation peaks (see Figs. 4a and b), observed, in
both samples, can be attributed to the reorientation defect complexes formed by the oxygen
vacancies. Activation energies obtained from relaxation times (see Table 2) approximately
equals to the energy barrier of the defect dipole rotation calculated in paper [13, 14].

Table 1
Values of power exponents n and m for samples with y = 0.43 and y = 0.47
y=0.43 y=0.47
T[K] n m T [K] n m
298 0.72 1.17 298 0.73 1.19
343 0.68 1.18 423 0.72 1.22
398 0.62 1.19 473 0.70 1.28
Table 2

Activation energies obtained from the measurements
of relaxation times E_and electrical conduction E, [15]

composition | E [eV] | E [eV]
y=0.43 0.34 0.37
y=10.47 0.16 0.17
10-931
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Fig. 1. Time-dependence of depolarization
currents (J,) for various poling times (tp)
measured at 298 K for sample with
y=0.47. Poling field: 0.02 kV/cm
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Fig. 3. Charging (J ), polarization (Jp) and
depolarization (J) current densities for sample
with y = 0.47. Plot A: temperature 298 K, poling
field 5 kV/cm; plot B: temperature 453 K, poling

field 0.02 kV/cm; plot C: temperature 298 K,
poling field 0.02 kV/cm
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Abstract

The investment horizon is the smallest time interval when an asset crosses a fixed value of the
return level. For a given return level, the investment horizon distribution is created by putting
the investment horizons into a histogram. We fit probability distribution function to the histo-
gram. The maximum of the function is called the optimal investment horizon. We performed the
analysis of some indices of the Warsaw Stock Exchange for WIG, WIG20, mWIG40 and shares
of KGHM and MBK. For these assets, we found the coefficients of linear proportion between
the optimal investment horizons and the logarithm of their return levels.

Keywords: econophysics, financial markets, inverse statistics

Streszczenie

Horyzont inwestycyjny jest najmniejszym odcinkiem czasu, w ktorym dana inwestycja prze-
kroczyta ustalony poziom zwrotu. Dla danego poziomu zwrotu tworzymy rozktad horyzontu
inwestycyjnego, sktadajac horyzonty inwestycyjne w histogram. Maksymalna wartos¢ dopa-
sowanej funkcji rozktadu prawdopodobienstwa jest optymalnym horyzontem inwestycyjnym.
Przeprowadzilismy analiz¢ dla niektorych indeksow Warszawskiej Gieldy Papierow Warto-
sciowych WIG, WIG20, mWIG40, sWIG80 oraz akcji KGHM i MBK. Dla wymienionych
instrumentow finansowych wyznaczylisSmy wspotczynniki proporcji liniowej pomigdzy opty-
malnymi horyzontami inwestycyjnymi i logarytmami poziomoéw zwrotu.

Stowa kluczowe: ekonofizyka, rynki finansowe, odwrocona statystyka
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1. Introduction

The character of price movements was described quantitatively by the random walk hypothesis
proposed by Bachelier [1]. However, the nature of these movements better reflects the random
walk hypothesis for the logarithm of the price s(f) = In(S(¢)) [2]. According to this assumption,
the distribution of the returns of an asset is effectively described by a Gaussian distribution [3-5].

A large amount of financial data is recorded for financial studies and benchmarking. An
important and common task in studying the data is calculating the distribution of returns over
a fixed time period Az. The distribution measures gains or losses at time ¢ + At produced by
the investment made at time 7.

Many empirical studies for small values of A¢ argue that the price changes are much larger
than expected from the Gaussian distribution. The distributions have so-called fat tails [3—6].
For larger values of Af the distribution of returns converges to the Gaussian distribution
[7-10]. The analogue distribution is found for turbulence in air and fluids [11]. The statistics
of financial markets were compared with turbulent fluids [4, 12—14].

The inversion of the standard return-distribution problem was proposed by Simonsen,
Jensen and Johansen [15-17]. They studied the probability distribution of waiting times
needed to reach a fixed return value p for the first time [11].

Another kind of investigation on waiting times and price movements was proposed in [18].
There were studied the frequency of occurrences of subsequent movements’ proportions
in price and time. Their proportions are effectively described by the generalized Gamma
probability distribution.

2. Investment horizons

The first passage time problem was described in [19]. The solution to the Brownian
motion problem is analytically provided by the Gamma distribution in [20, 21]:
e |a| —a*/t (1)

p (t ) = \/E 2‘37 ’
where a is proportional to the return level p.

The overall growth of the economy modulated with times of recession influences financial
time series s(f) with a positive drift over long time scales. In the presence of such a drift, we
cannot use the Brownian motion model to describe these series. For this reason, we should
use so-called deflated asset prices §(f) for reducing the effect of this drift. The drift d(¢) we
describe with a 1000-day moving average for stock indices and a 250-day moving average for
shares due to their higher volatility. These two periods naturally correspond to four calendar
years and one calendar year respectively. For our analysis, we use logarithmic prices with
subtracted drift 5(¢) = s(f)—d(t) . The prepared data for the WIG index and the MBK shares
is depicted in Fig. 1. and Fig. 2.

The log-return over a time interval A¢ of an asset of price S(¢) at time ¢ reads:

L S(t+ M) , 2)
() =1In ()
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Fig. 2. Daily logarithmic closure prices of the MBK
shares over years 1991-2013

For a return level p at time ¢, the investment horizon t (f) is the smallest time interval Az
that satisfies the relation », (¢) > p. For a fixed return level, we put the investment horizons
in the histogram. In this way, we obtain the investment horizon distribution p(rp). Due to
the empirical logarithmic stock price process is not the Brownian [3—6], we fit generalized
Gamma distribution to the histogram:

p(t)=r(v |B] exp _( p’ ) ) (3)

(X/V)(t+t0)u+l t+1,

The distribution (3) reduces to the Gamma distribution (1) for parameters o = § = 0.5,
v=1landz =0.
The maximum of the distribution (3) defines the optimal investment horizon:

1/v
T = (L) ~t, )

o+l

According to (1) for geometric Brownian processes we have relation T; ~p’. The
empirical data generate slightly different dependence, as we will see in the next section.
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3. Discussion and results

The analysis was performed originally by Simonsen et al. in [15], it was also used for
the WIG and some stock companies quoted in the Warsaw Stock Exchange (WSE) [22-24].
In this paper, we continue the investigation described in [25] for indices and companies
quoted in the WSE. For the return level p = 0.10 in Fig. 3 and Fig. 4, we present p(t ) — the
probability distribution function (pdf) of the investment horizons measured in trading days
T,- As one can expect from the higher volatility of the share prices of MBK compared to
WIG, the optimal investment horizon was r; =4.52 for MBK and ’C; =11.33 for WIG. The
probability of reaching the return level for MBK is two times larger than for the WIG index
in the area of the optimal investment horizon. The values of the optimal investment horizons
for indices and shares we analyzed are placed in Table 1.
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Fig. 3. The probability distribution function of the
investment horizons of WIG measured in trading days,
for the return level p=0.10
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Fig. 4. The probability distribution function of the
investment horizons of MBK measured in trading days,
for the return level p =0.10

We compare results with the DJTA index, which has a few times larger values of ’r; in
comparison with indices quoted in WSE. This higher volatility is a feature of the WSE, rather
than of emerging stock markets [22]. Among the main indices on the WSE, mWIG40 has the
highest value of the optimal investment horizon. mWIG40 is composed of 40 medium-sized
companies.
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We also analyzed KGHM, the company with the highest capital in WIG20. Another
company is MBK (former BRE Bank), which has been quoted in WIG20 since its beginning.

Companies have much shorter values of T; than indices. The reason for this is in their higher
volatility than the volatility of indices. The index is a weighted sum of the companies and
every price movement of each company is only partially reflected in the change of the index.

Table 1

Optimal investment horizons for return levels p = 0.05, 0.10, 0.15 and the exponent
of the return level y

Name p=0.05 p=0.10 p=0.15 v
DIIA 10.97 36.15 63.04 1.55
WIG 4.33 11.33 18.23 1.25

WIG20 3.33 9.66 15.27 1.34
mWIG40 6.82 20.27 40.07 1.60
sWIGS80 4.82 12.93 22.21 1.35
KGHM - 5.55 11.51 1.52
MBK - 4.52 8.60 1.57
WIG WIG20
Stlraight line fit I Stlraight line fit -
— T
2 2
= &
= 10 |-
10 + e
[} ! TR | 1

10 o

Fig. 5. The optimal investment horizon of two main indices

20
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on the WSE as a function of the log-return level p

Another important feature we investigate is the proportion:

.
Y
T, ~ P

The Brownian motion model with y = 2 is inconsistent with empirical results [15]. For
higher return values p, we fitted y parameter as in Fig. 5. and Fig. 6. We find y <2 in the range

1.35-1.60 as shown in Table 1. For smaller return values p, we observed higher values of T,
(not shown in the picture) than we could expect from (5).
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Fig. 6. The optimal investment horizon of two companies
as a function of the log-return level p.

4. Conclusions

In this work, we analyzed the main indices quoted in the WSE which constitute

the benchmark for some capital funds. The distributions and the optimal investment horizons
can be applied for estimating the most probable time period for realization of the return level.
The analogue passage time distributions are applied in turbulence of fluids, where they are
called inverse structure functions.

The lower values of y parameter indicate that the prices are more stable and connected

with the real value of the asset than the expectation of the geometrical Brownian hypothesis
which is generally accepted for capital markets [3, 4].
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THE STRUCTURE OF NEUTRON STARS
WITH LOCALIZED PROTONS

STRUKTURA GWIAZD NEUTRONOWYCH
ZE ZLOKALIZOWANYMI PROTONAMI

Abstract

Strongly asymmetric nuclear matter becomes unstable with respect to proton localization above
a specific critical nuclear density. For equation of state of Akmal, Pandharipande and Ravenhall
the Tolman-Oppenheimer-Volkoff equations were solved and the radius of the spherical shell of
a neutron star within which proton localization takes place was found.

Keywords: strongly asymmetric nuclear matter, proton localization, neutron stars

Streszczenie

Silnie asymetryczna materia jadrowa wykazuje niestabilno$¢ zwigzang z lokalizacjg protonu
powyzej krytycznej gestosci. Dla rownania stanu Akmala, Pandharipande i Ravenhalla zostaty
rozwigzane rownania Tolmana-Oppenheimera-Volkoffa i zostal wyznaczony promien powloki
gwiazdy neutronowej, wewnatrz ktorej ma miejsce lokalizacja protonow.

Stowa kluczowe: silnie asymetryczna materia jgdrowa, lokalizacja protonu, gwiazdy neutronowe
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1. Introduction

The structure of neutron stars is both interesting and complex and is a problem to be
solved. A few years ago, the model with star matter having localized protons was proposed
[1-5]. In high-density matter with a low proton fraction, the coupling of proton impurities
with the density waves in neutron matter could lead to the localization of protons in the
potential wells associated with the neutron density inhomogeneities. Such instability is a
universal phenomenon in high density matter, although the proton localization threshold
density depends on the equation of state [6].

This paper is organized as follows. In Section 2, there is a brief discussion of some of the
features of the Akmal-Pandharipande-Ravenhall (APR) Hamiltonian [7] and the ingredients
involved in their construction. In Section 3, the Tolman-Oppenheimer-Volkoff equations [8]
are presented. In Section 4, these are solved with the APR equation of state and the radius of
the shell below which protons in neutron stars are localized is calculated.

2. Akmal-Pandharipande-Ravenhall equation of state

The A18+8v+UIX* parametrization of the APR equation of state was chosen for nuclear
interaction. In this approach, the Jastrow wave function is assumed and the expectation
value of the Hamiltonian is cluster-expanded. Subsequently, parts of the higher-order cluster
terms are resummed up by the Fermi Hypernetted Chain (FHCN) method [9]. Akmal,
Pandharipande and Ravenhall performed the FHCN calculation [8] with Argonne v18 (Av18)
two-body potential [10] and the Urbana IX* (UIX") three-body potential [11] with boost
correction. The obtained energy density reads:

2 5

1 _ 3 <
H(nNs”p) = (%4‘((]93 +P5)”N +P3”P)e pA(nNMP)Jg(3“2)3 ny +

s 5

1 o(neins) |3 3
{(_Zm +((P3 +P5)”P +P3”N)e Pal+ P)Jg(3n2)3 np +4nynp (P1 +py(ny +np)+
P

—p2(ny+np)?
Dpe(ny +nP)2 +(pro + P (ny +np))e pa(ny-+np) )— (1

2 2
(ny —np)* Pz + Py + py(ny +np)+ pae POV |
ny +np
Anynp(ny +np = pio)(Pr7 + Py (ny +1p = pig ))epm(nNMP_pw) -

2 T
(ny =np)>(y +1p = Pag) (Prs + Pra(y +np = pyg))ele " P20,

where the neutron and the proton densities fulfil the following conditions n, + n,> p,, or:
n,+n,>p, . The parameters have the following values: p, = 337.2 MeVfm’;

P, =—382.0 MeVfmS; p, = 89.8 MeVfm’; p, = 0.457 fm’; p, = —59.0 MeVfm?;

P, =19.1 MeVfm’; p. = 214.6 MeVfim’; p, = -384.0 MeVfm®; p, = 6.4 fm’;
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P, = 69.0 MeVfm’; p, =-33.0 MeVim® p ,=0.35MeV; p,, =p,,=p, = 0;
P,s = 287.0 MeVimS; p - =—1.54 fm’; p - = 157.0 MeVim®; p . = —1.45 fm’;
Py, =0.32 fm?; p, = 0.195fm™.

3. Tolman-Oppenheimer-Volkoff equations

The structure of spherically symmetrical non-rotating neutron stars is described by the
celebrated the Tolman-Oppenheimer-Volkoff (TOV) equations [12], which form a coupled
set of first-order differential equations of the following form:

3 -1
2

dP:_Gp;m 1+ P2 lJr41tr2P (1_ G;nj ’ @)
dr r pc me rc

dm 2

— =4nrp, 3

& P €)

where:
P(r) — denotes the pressure (at radius r),

o(r) — mass density,
m(r) — the mass enclosed within the radius r,
G the gravitational constant,

¢ — the speed of light.

For a given fluid element in the star, hydrostatic equilibrium is attained by adjusting the
pressure gradient to exactly balance the gravitational pull.

The second equation defines the total mass contained in the sphere of radius r. Thus at
=0, m must be zero and at » = R, m is the total mass M of the star. The unknowns in these
two equations are @, P and m — hence, a third equation is needed to close the system. This
third equation is the equation of state (EOS) P = P(p). Thus, the input to the calculations
is the EOS and the output yields the masses of neutron stars as a function of their radius for
a given central density. Given the stellar radius R, which is defined by zero pressure at the
stellar surface, the gravitational mass is as follows:

R
M(R) = 4njp(r)r2dr. “)
0

In hydrostatic equilibrium the neutron star is perfectly balanced by the action of two
forces — gravity and pressure. The pressure gradient is negative so the pressure decreases
monotonically with distance until it vanishes at the edge of the star. The pressure at the center
must be enormous in order to be able to support the full weight of the star. This implies that
models of the EOS will have to encompass high and low density ranges. This is an example
of how the microscopic physics (EOS) can potentially be ‘observed’ from astrophysical data,
namely from the mass and radius of the star.
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4. The results

The aim of this work was to compare the energies of two phases. The energetically
favorable ground state of matter is found by comparing the energy of a normal phase £
with uniform density and a phase with localized protons £,. Based on our papers [ 1-5] we
calculate AE'= E, — E versus neutron density n, (Fig. 1) and we establish that above n, =
0.819 fm™, protons in neutron matter for the A18+8v+UIX" potential are localized.

0 T
< -10 - .
(]
=
o o20 .
< A18+8v+UIX*
30 - |
-40 ‘ \ w
0.8 0.9
ny [fm™]
Fig. 1. Difference AE = E, — E, versus neutron
density for the A18+3v+UIX" parametrization
2 [
o)
g *
s A18+5v+UIX

0 ! PR T S S S A S S
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log pe [g cm™]

Fig. 2. Mass-central density relation for the
A18+8v+UIX" equation of state

The TOV equations are solved with the A18+3v+UIX" parametrization introduced in Section
2. Fig. 2 presents the dependence of neutron star masses on the logarithm of central density. For
central density above 10" g cm, we have neutron stars with masses higher than the solar mass
(M,). It transpires that the mass of the neutron star has a maximum value (Fig. 2) as a function
of central density, above which the star becomes unstable and collapses to a black hole. The
value of the maximum mass depends on the nuclear EOS. The considered solutions of the
TOV equations with the A18+3v+UIX" equation of state is compatible with the largest mass
observed up until now, which is measured to be 2.01 + 0.04 M [13].
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We have also plotted (Fig. 3) the density versus the distance from the centre of the neutron
star for a given central density (log @, = 15.4) and found that the radius of the neutron star
equals approximately 10 km. The obtained value is compatible with the observed radii of
neutron stars [12].

3 \ \
log pc=15.4

11 A18+ov+UIX*

r [km]

Fig. 3. Density of neutron star versus distance from
centre for log g, = 15.5
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Fig. 4. Baryon number density versus distance from
the centre of the neutron star. The curves are labelled
by the logarithm of the central density of the star.
The straight line indicates the threshold density of
localization

Next, the density profiles of neutron stars were calculated. For the various central densities,
changes of neutron star matter density versus distance from its centre for the A18+dv+UIX*
equation of state were calculated (Fig. 4). Comparing the profile shape with the value of
proton localization threshold (straight line on Fig. 1) n, = 0.819 gives a radius of spherical
shell 7, within which proton localization takes place. The curves are labelled by the logarithm
of the central densities. In our case, for log o, = 15.3 we have r, = 4.4 km (for neutron star
radius R equals 10.4 km) and for log ¢ = 15.4 we have r,= 5.6 km (R = 10.9 km).
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5. Concluding remarks

The solution of the Tolman-Oppenheimer-Volkoff equations with the A18+3v+UIX"
equation of state indicates that the structure of neutron stars is inhomogeneous — in the
central area, up to r, protons are localized and above 7, to R (radius of neutron star) protons
and neutrons are delocalized.

The phase with localized protons inside neutron star cores has profound astrophysical
consequences. As has been shown [14], the cooling of neutron stars proceeds in quite
different ways for localized and delocalized phases. The presence of such a localized proton
phase results in more satisfactory fits of the observed temperatures of neutron stars.

Further studies applying other equations of state are in progress.

References

[1] Kutschera M., Wéjcik W., Proton impurity in the neutron matter: A nuclear polaron
problem, Phys. Rev. C47, 1993, 1077.

[2] Kutschera M., Woéjcik W., Magnetic properties of strongly asymmetric nuclear matter,
Phys. Lett. B223, 1989, 11.

[3] Kutschera M., Wojcik W., 4 Thomas-Fermi model of localization of proton impurities
in neutron matter, Acta Phys. Polon. B21, 1990, 823.

[4] Kutschera M., Wojcik W., Self-consistent proton crystallization in dense neutron-star
matter, Nucl. Phys. A581, 1995, 706.

[5] Szmaglinski A., Kutschera M., Stachniewicz S., Wojcik W., The structure of a neutron
star, Monograph 389, Cracow University of Technology, Cracow 2010.

[6] Szmaglinski A., Wojcik W., Kutschera M., Properties of localized protons in neutron
star matter for realistic nuclear models, Acta Phys. Polon. B37, 2006, 277.

[7] Akmal A., Pandharipande V.R., Ravenhall D.G., Equation of state of nucleon matter
and neutron star structure, Phys. Rev. C58, 1998, 1804.

[8] Oppenheimer J.R., Volkoff G.M., On massive neutron cores, Phys. Rev. 55, 1939, 374.

[9] Clark J.W., Variational theory of nuclear matter, Prog. Part. Nucl. Phys. 2, 1979, 89.

10] Wiringa R.B., Stocks V.G.J., Schiavilla R., Accurate nucleon-nucleon potential with

charge-independence breaking, Phys. Rev. C51, 1995, 38.

[11] Pudliner B.S., Pandharipande V.R., Carlson J., Wiringa R.B., Quantum Monte Carlo
calculations of A < 6 nuclei, Phys. Rev. Lett. 74, 1995, 4396.

[12] Shapiro S.L., Teukolsky S.A., Black Holes, White Dwarfs and Neutron Stars, John
Wiley & Sons, New York 1983; Glendenning N.K., Compact Stars: Nuclear Physics,
Particle Physics and General Relativity, Springer, New York 2000.

[13] Antoniadis J. et al., A massive pulsar in a compact relativistic binary, Science 340,
2013, 6131.

[14] Baiko D.A.,Haensel P., Cooling neutron stars with localized protons, Astron. Astrophys.
356, 2000, 171.



TECHNICAL TRANSACTIONS | CZASOPISMO TECHNICZNE
FUNDAMENTAL SCIENCES | NAUKI PODSTAWOWE

3-NP/2014

WLODZIMIERZ WOJCIK"

TEMPERATURE EVOLUTION OF THERMODYNAMIC
FUNCTIONS FROM SYMMETRIC TO ASYMMETRIC
NUCLEAR MATTER

TEMPERATUROWA EWOLUCJA FUNKCIJI
TERMODYNAMICZNYCH OD SYMETRYCZNEJ
DO ASYMETRYCZNEJ MATERII JADROWEJ

Abstract

This paper investigates thermal properties of nuclear matter using the Friedman-Pandharipande-
Ravenhall equation of state. Thermodynamic quantities such as internal energy, entropy and
free energy are calculated both for symmetric and asymmetric nuclear matter for temperatures
ranging up to 30 MeV. A change of free energy curvature indicates the liquid-gas phase
transition in nuclear matter.

Keywords: strongly asymmetric nuclear matter, proton localization, equation of state

Streszczenie

Dla réwnania stanu Friedmana-Pandharipande-Ravenhalla zbadano wtasnosci termiczne mate-
rii jadrowej. Dla symetrycznej i asymetrycznej materii jadrowej wyznaczono wielkos$ci termo-
dynamiczne, takie jak energi¢ wewngtrzna, entropi¢ i energi¢ swobodna dla temperatur do 30
MeV. Zmiana krzywizny energii swobodnej wskazuje na przejscie fazowe ciecz—gaz w materii
jadrowe;j.
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1. Introduction

Thermodynamic properties of nuclear matter play an important role in studies of high-
energy astrophysical phenomena. The nuclear equation of state at zero temperature governs
the structure of cold neutron stars, whereas the equation of state for finite temperatures is
necessary for studies of many processes e.g. core collapse of supernovae, black hole formation
and neutron star cooling, to name but a few. Knowledge of thermodynamic quantities is
required when considering an extremely wide range of densities, temperatures and proton
fractions. In order to better understand the properties of dense nuclear matter changes of
thermodynamic functions such as internal energy, entropy and free energy with densities,
temperatures and degree of asymmetry were evaluated.

This paper is organized as follows. In Section 2, there is a discussion on some of the
features of the Friedman-Pandharipande-Ravenhall (FPR) equation of state (EOS) and
explicit expressions for thermodynamic functions are given, which are presented in Section
3 for symmetric and asymmetric nuclear matter.

2. Thermodynamics of dense matter with the Friedman-Pandharipande-Ravenhall
equation of state

The EOS of dense nuclear matter is an essential ingredient in modelling neutron stars.
Knowledge of the EOS, particularly with arbitrary isospin asymmetry, i.e. different proton
and neutron fractions, is of fundamental importance for both nuclear physics and astrophysics.
The saturation density and the energy per particle of nuclear matter can be used to test
properties of finite nuclear systems extrapolated to the thermodynamic limit. Moreover, the
study of the EOS of asymmetric matter allows us to shed some light on the behavior of the
isospin asymmetry energy. In our approach, we use the FPR model in which the density of
energy as a function of neutron 7, and proton 7, densities reads [1]:

2
s(nN,nP) = [i+ BNJTN +[i+ Bpjrp +n [al +a2e’b'"5 +(%—xj (al +a2e’b'”3 )J+

N P
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nge as +agng + E—X (a; +agng) |,
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n
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The effective proton mass is as follows:

1 1 _
=——+agnge by

2m; Zmp

2

The parameters in (1) are: a, = 1054.0 MeV fm’; a, =-1393.0 MeV fm’; a, = -2316.0 MeV fm’;
a,=2859.0 MeV fm’; a, = -1.78; a, = -52.0 MeV fm’; a, = 5.5 MeV; a, = 197.0 MeV fim’;
a,=89.8 MeV fm’; a,,=—-59.0 MeV fm’; b, = 0.284 fm’; b, = 42.25 fm®; b, = 0.457 fm’.

A major advantage of the above effective interactions is that they can be used
straightforwardly to make finite-temperature calculations. In our approach, it is assumed that
the kinetic energy densities and baryon matter densities are the only quantities that exhibit
dependence on temperature [2]:

5

o (2mT) a5 (). i=NP. o
2

T

where n; = :—} (4, the chemical potential of neutrons or protons) can be derived from the

baryon number density:

(2m T)% g1 (m)- )

(2n)? 3

n;

Egs. (3) and (4) are written in terms of Fermi integrals:

9 v

x
J,(n)= J.dx pal ®)

1+e

0
Calculated entropy per baryon is:
51 1 2 1
S, ==——(2mT)2 J; (n;)—=n;, (6)
i 3?1[4712( i ) %(nz) 2‘11

where:

m; — the effective nucleon masses of neutrons and protons.

While studying the thermodynamics of dense matter, it is convenient to choose the
Helmholtz free energy. From Egs. (1) and (6), the expression for the free energy per baryon
reads:

F =(e(ny,np,T)=T(nySy +npSp))/ ng, (7)

where the energy density €(n,, n,T) depends on temperature. In the next section, we discuss
the properties of internal energy, entropy and free energy in the FPR model.
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3. Properties of symmetric and asymmetric nuclear matter at finite temperatures

At finite temperatures, the nuclear matter structure and properties are not as well settled
as at zero temperature. In this paper, the thermodynamic properties of dense matter for
the FPR equation of state are discussed. To make the discussion complete, the energy per
particle, the entropy per particle and the free energy per particle are computed. Based on the
calculated free energy, all other thermodynamic quantities may be obtained from standard
thermodynamic relations.

In Fig. 1, the FPR equation of state for symmetric nuclear matter (proton fraction
x =0.50) are displayed for different temperatures 7= 0, 10, 20 and 30 MeV.

200
T= 0 MeV
T=10 MeV ————
T=20 MeV - -
T=30 MeV -
3 100
=
o x=0.50
FPR
ol

0.0 0.5 1.0
ng [fm]

Fig. 1. Energy per nucleon versus baryon
density for symmetric nuclear matter at
different temperatures

For very small densities (below 0.02 fm), one obtains the behavior of a free Fermi
gas with linear temperature dependence and for increasing density, quadratic temperature
dependence [3]. The entropy per baryon and the free energy per baryon for symmetric matter
are shown in Fig. 2 and Fig. 3 for different temperatures. For symmetric nuclear matter, the
entropy behaviour (Fig. 2) agrees very closely with the experimental results [4].

2.0

15

05 |

0.0 : :
0.0 0.5 1.0 1.5

ng [fm™]

Fig. 2. Entropy per nucleon versus baryon
density for symmetric nuclear matter at
different temperatures
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/
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Fig. 3. Free energy per nucleon versus
baryon density for symmetric nuclear matter
at different temperatures

In Fig. 3, the free energy per nucleon versus baryon density exhibits an unstable region of
negative curvature for lower densities below 7'= 20 MeV (cf [5]). Non-convexity of F(n,,T)
with respect to n, at a fixed temperature implies a negative isothermal compressibility K,
which violates the stability relation K, > 0. In this region, the physical equation of state
can be obtained by performing the Maxwell construction. This signifies the presence of
a first-order phase transition. The existence of a critical temperature for nuclear matter is
extremely strong evidence that, under appropriate conditions, there should be a transition
between a nuclear ‘liquid’ and nuclear ‘gas’. The physics of nuclear matter is therefore
a crossover from a gas of nucleons to homogeneous matter, where nuclei and larger clusters
coexist with the nucleon gas over a wide range of intermediate densities. At temperatures
(T ~ 20 MeV) and high densities, a liquid-gas type of phase transition was first predicted
theoretically by A.L. Goodman [6] and later observed experimentally in a nuclear multi-
fragmentation phenomenon [7].

The case of asymmetric matter is more complex to study since there is an additional
degree of freedom to consider — the isospin asymmetry, i.e. different neutron and proton
fractions. Such matter plays an essential role in astrophysics, where neutron-rich systems are
involved in neutron stars and type-II supernovae evolution [8].

200
T= 0 MeV
T=10 MeV -
T=20 MeV -
T=30 MeV ——-—
% 100
=
o x=0.10
FPR
0
0.0 0.5 1.0

ng [fm™]

Fig. 4. Energy per nucleon versus baryon
density for asymmetric nuclear matter
(x=0.10) at different temperatures
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Fig. 5a presents the entropy density S versus baryon density for asymmetric matter
(x = 0.10). This quantity is the sum of two contributions — the first from neutron entropy
(Fig. 5b), and the second from proton entropy (Fig. 5¢). In asymmetric nuclear matter, the
contribution of S, to total entropy is much greater than S, — as follows clearly from relation (7).

The dependence of free energy of asymmetric nuclear matter versus baryon density
(Fig. 6) shows non-convexity at temperatures below 7= 10 MeV for proton fraction equaling
x =0.10. It indicates that in asymmetric nuclear matter, the phase transition occurs in much

lower temperatures than in symmetric one.

a)

b)

¢)

2.0

15|

10

05

FPR

T=10 MeV

T=20 MeV -

T=30 MeV
x=0.10

0.0
0.0

0.0

0.5

ng [fm”

1.0
3.
]

1.5

Fig. 5 a) Entropy per nucleon versus baryon

density for asymmetric nuclear matter

(x=0.10) at different temperatures; b) neutron

entropy contribution; ¢) proton entropy
contribution
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20 FPR x=0.10__~~

T= 0 MeV
T=10 MeV -
T=20 MeV -
T=30 MeV

00 0.1 02 03 04 05
ng [fm™]

Fig. 6. Free energy per nucleon versus baryon
density for asymmetric nuclear matter
(x=0.10) at different temperatures

In Fig. 7, changes of the free energy with densities at constant temperature 7= 10 MeV
for different asymmetry of nuclear matter are also shown. It was observed that phase
transition in asymmetric nuclear matter takes place for lower densities than in symmetric
nuclear matter.

FPR

00 0.1 02 03 04 05
ng [fm™]

Fig. 7. Free energy per nucleon versus baryon
density at 7= 10 MeV from fully asymmetric
(x = 0) to symmetric (x = 0.50) nuclear matter

4. Conclusions

The thermodynamic properties of hot, dense nuclear matter employing the Friedman-
Pandharipande-Ravenhall model of nuclear interaction were investigated. Evidence of the
liquid-gas phase transition both in symmetric and asymmetric nuclear matter was observed. As
this paper shows the critical temperature strongly decreases with nuclear matter asymmetry.
The results presented here lead to better understanding of phase diagram of nuclear matter.
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TEMPERATURE DEPENDENCE OF PROTON
LOCALIZATION FOR SKYRME NUCLEAR
INTERACTIONS

ZALEZNOSC TEMPERATUROWA LOKALIZACIJI
PROTONOW DLA ODDZIALYWAN SKYRME’A

Abstract

In this paper, our earlier approach to proton localization in neutron star matter to finite
temperatures is extended. The Skyrme forces were chosen to describe interactions in nuclear
matter. The dependence of threshold density on temperatures for proton localization was
obtained and these results were compared with those calculated earlier for the Friedman-
Pandharipande-Ravenhall potential.

Keywords: temperature dependence of proton localization, the Skyrme forces

Streszczenie

W artykule rozszerzono wcze$niejsze podejscie do lokalizacji protondw w materii gwiazdy
neutronowe;j do skonczonych temperatur. Wybrano sity Skyrme’a do opisu oddziatywan w ma-
terii jadrowej. Otrzymano zalezno$¢ gestosci progowej od temperatury dla lokalizacji protonow
i porownano te wyniki z wczesniejszymi obliczeniami dla potencjatu Friedmana-Pandharipan-
de-Ravenhalla.

Stowa kluczowe: temperaturowa zaleznos¢ lokalizacji protonu, sity Skyrme’a
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1. Introduction

We have shown in the earlier papers [1, 2] that in asymmetric nuclear matter, protons
are localized in the core of neutron stars for realistic nuclear models. Protons that form the
admixture tend to be localized above the threshold density n,  depending on the model used.
The localization effect occurs as a result of the interaction of protons with small density
oscillations of the neutron background [2]. In paper [3], we have extended the effect of proton
localization to finite temperatures for the Friedman-Pandharipande-Ravenhall potential.
Here, the influence of temperature on the proton localization for another nuclear model, the
Skyrme nuclear interaction, is investigated.

The plan of this paper is as follows. In Section 2, some of the features of the Skyrme
forces are briefly discussed. In Section 3, model of proton admixture in neutron model is
presented. In Section 4, the process of calculating entropy and free energy of nuclear matter
is described. Numerical results are discussed in Section 5.

2. Skyrme forces parametrization

It was chosen to work with the Skyrme forces [4] to calculate the properties of the
asymmetric nuclear matter. The Skyrme potential reads:

1 1 1 1 1
S(nN’nP):{E+Z[[1+Exljtl+(1+5x2jt2jn3+§((1+2x2)t2_(1+2x1)t1)anTN+
|11 (1+lx1]tl+(l+lx2jt2 nB+l((1+2x2)t2—(1+2x1)t1)np Tp

2m, 4\ 2 2 8

2 (3 1 ) 1 2((1 11 0
+ng gto +Et3n3 _Z(nN_nP) E+x0 t +g E+x3 Lng |,
@)
where n, = n, + n,(the density of baryon) and masses of nucleons are m, = 4.7549 fm' and

m,=4.7615 fm™ .
The local kinetic energy densities of neutrons and protons for plane waves become:

30,0\ s L
’ti—g(3Tc ) n'”, i=N,P. 2
In our calculations, the following Skyrme force parameters were used: ¢, = —1057.3

MeVfm’; t, = 235.9 MeVfm’; £, = —100.0 MeVfm’; 7, = 14463.5 MeVfm® **; x, = 0.2885;
x,=x,= 0;x,=0.2257; vy = 1. These are the Vautherin and Brink [5] parameters modified as
described in [6].
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3. Proton admixture in neutron matter

Protons in strong asymmetric nuclear matter tend to localize [1, 2] in potential wells which
correspond to neutron matter inhomogeneities created by the protons in neutron medium. The
energetically favorable ground state of asymmetric nuclear matter was found by comparing the
energy of two phases: a normal phase (in Wigner-Seitz approximation) and a phase with localized
protons. The cells are assumed to be spherical and the volume is V' = 1/n,, where the proton
density n, = xn,, for a small proton fraction x. In normal phase, protons are not localized and
their wave functions are plane waves. The energy of the cell reads:

E, :Va(nN,nP), 3)

where &(n,, n,) is the energy density. In the phase with localized protons, the energy of the
Wigner-Seitz cell £, _is [7]:

Epe = Id3r\u; (r)[—§+ Wp (n(r))]\pp (r)+J.d3rs(n(r))+ BNJ'd3r(Vn(r))2 . 4)

The first term is the energy of the proton confined to an effective potential well
v = M (n(r)). The two other terms in eq. (4) describe the contributions to the energy arising
from local change of the neutron Fermi momentum and the gradient of the neutron distribution,
respectively, in the Thomas-Fermi approximation. Here, &(n(r)) is the local neutron matter
energy per unit volume. The parameter B, is the curvature coefficient for pure neutron matter.
We assume a simple trial form of the proton wave function:

3
2 3r?

Yo (r) ( 3TERPJ p(—m], Q)
P

where R, is the root mean square (r.m.s.) radius of the localized proton probability distribu-
tion. We treat this quantity as a variational parameter and minimize AE= E,  — E,. The results
are presented in Section 5.

4. Entropy and free energy of nuclear matter

The internal energy density of uniform nuclear matter is given by eq. (1) and
inhomogeneities one by eq. (4). The entropy densities S, reads:

S; =—kp Z(”a,i logn, ; +(1-n, ;)log (1 T )) : ©

Here, n_, are the occupation numbers of the simple-particle orbitals @ _, (x) and i = N or P.
Upon 1ntegrat10n by parts, the entropy per baryon has the particularly 51mp1e form
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5 =21 L omrp s (n)- L
i_3”i ) i % N; 2"]1" (7

where ml* denotes the effective nucleon masses i = N, P. The quantity 7, is calculated from
the relation:

3

2 oo
"7 (2m,.T)2 J% (), (8)

n;

where Fermi integrals are defined as follows:

©)

s v
gy (n)= fatr——
0 I+

Knowing the internal energy € and the entropy per baryon S, the free energy per baryon is:
Fz(s(nN,nP,T)—T(nNSN+nPSP))/nB. (10)

At finite temperatures, the ground state is found by minimizing the free energy.

5. Proton localization in finite temperatures

The internal energy difference between the localized state of protons and the state with
uniform matter AE' = E, — E for the Skyrme forces was calculated. The difference AE as the
function of variational parameter R, for various neutron density at 7'= 0 is shown in Fig. 1.

The curves are labelled with the neutron matter density n,. One can notice that for the
Skyrme (Sk) interaction, a local minimum above a certain density for the proton r.m.s.
radius R, appears to strongly decrease with neutron density (Fig. 2). With increasing neutron
matter density n,, the depth of the minimum AE increases. Above the threshold density, the

energy difference becomes negative. The negative value AE < 0 means that the energy of

100
ol
100 [
200 [
300 [
400 [ |
500 [/ .

e
o 1 2 3 4

Rp [fm]

AE [MeV]

Fig. 1. The energy difference AE=E, —E,
as a function of the proton r.m.s. radius
R, for various neutron densities at zero

temperature for the Skyrme forces
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the localized proton is lower than the energy of a non-localized proton. This means that the
localized proton state is preferred energetically forn>n, .

To investigate the influence of temperatures on proton localization, we calculate the free
energy difference AF'= F, — F| in the same manner as in Section 2 using eq. (10). The
relation AF versus proton radius presents Fig. 3.

1.6

14 |
12
1+

Rp [fm]

0.8 -

06 -

0.4 _—
0.3 0.6 0.9

ny [fm]

Fig. 2. The r.m.s. radius of proton wave
function at zero temperature as the function
of density

A
nB=044fm'3

Sk

T=0 MeV
T=10 MeV -
T=20 MeV -
T=30 MeV -

AF [MeV]

Rp [fm]

Fig. 3. The difference of free energy
between the localized and delocalized
states as a function of proton radius at fixed
baryon density and for various temperatures

0.35 0.40
ny [fm™3]

Fig. 4. The free energy difference at the
minimum AF as a function of density at
different temperatures for the Skyrme
nuclear forces
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When the temperature increases, the minimum value of AF as a function of the average
neutron number density is shown in Fig. 4. A value of zero corresponds to the threshold
density n,  above which the state with localized proton occurs.

A strong influence of temperatures on proton localization was observed (Fig. 5).
Temperature inclusion lowers the localization threshold density and diminishes the size of
the proton wave function (Fig. 2). Thus, the localization is present even in the case of very
high temperature. This means that temperature and baryon density cooperate to achieve
proton localized state in dense asymmetric nuclear matter.

035 Bl

Sk

Nioe [

0.34 Bl

1 1
0 10 20 30
T [MeV]

Fig. 5. The threshold density n, above
which the localization is occurred as
a function of the temperature of neutron
matter

5. Conclusions

Finally, the results show that for low values of x, the state with localized single protons
has a lower energy than a uniform configuration for n > n, , even for high temperatures. We
have also found that the threshold localization temperature relationship for the Friedman-
Pandharipande-Ravenhall parametrization [3] turns out to be surprisingly close to that which
was obtained in our calculation for the Skyrme forces. This fact indicates universal character
of temperature influence on the proton localization in dense nuclear matter.
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MULTIVARIATE FUNCTION APPROXIMATION USING
SPARSE GRIDS AND HIGH DIMENSIONAL MODEL
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PRZY UZYCIU SIECI RZADKICH I HIGH DIMENSIONAL
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Abstract

Inmany areas of science and technology, there is aneed for effective procedures for approximating
multivariate functions. Sparse grids and cut-HDMR (High Dimensional Model Representation)
are two alternative approaches to such multivariate approximations. It is therefore interesting
to compare these two methods. Numerical experiments performed in this study indicate that
the sparse grid approximation is more accurate than the cut-HDMR approximation that uses
a comparable number of known values of the approximated function unless the approximated
function can be expressed as a sum of high order polynomials of one or two variables.

Keywords: Sparse Grids, Approximation, Numerical experiments, Metamodelling, Curse of
dimensionality

Streszczenie

W wielu obszarach nauki i technologii potrzebne sa efektywne metody aproksymacji funkcji
wielu zmiennych. Sieci rzadkie i cut-HDMR (High Dimensional Model Representation) sa
dwoma alternatywnymi podej$ciami do aproksymacji funkcji wielu zmiennych. Interesujace
jest zatem poréwnanie tych dwoch metod. Eksperymenty numeryczne przeprowadzone w ra-
mach niniejszych badan wskazuja, ze aproksymacja sieciami rzadkimi jest bardziej doktadna
niz aproksymacja cut-HDMR wykorzystujaca poréwnywalng liczbg znanych o ile aproksymo-
wana funkcja nie moze by¢ wyrazona jako suma wielomianéw wysokiego stopnia jednej lub
dwoch zmiennych.

Stowa kluczowe: Sieci Rzadkie. Aproksymacja, Eksperymenty numeryczne, Metamodelowanie,
Przeklenstwo wymiarowosci
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1. Introduction

The approximation of multivariate functions is a remarkably hard problem due to the
so-called ‘curse of dimensionality’ [1]. However, the effective approximation of high-
dimensional functions is the only solution in numerous practical problems from virtually
all branches of science and technology. In particular such an approximation is an essential
element of the so-called metamodelling [2, 3] (see also [4] for a discussion of metamodelling
of high-dimensional problems, [5] for a comparison of a few metamodelling techniques and
[6] for an example of the usage of sparse grids in metamodelling).

Examples of the application of high-dimensional approximation in science and engineering
include ionosphere modelling [7], quantum mechanics [8], materials science [9], structural
engineering [10], electrochemistry [11] and nuclear reactor modelling [12].

Sparse grids offer a method of function approximation where instead of one dense grid,
we have a number of sparser grids and a linear combination is used [13]. The method is also
known under other names such as the (discrete) blending method [14], the Boolean method
[15] and hyperbolic cross approximation [16].

HDMR (High Dimensional Model Representation) approximation is a different approach
that hinges on the fact that many high-dimensional functions can be efficiently approximated
by sums of low-dimensional functions. The concept is attributed to Sobol [17]. The method
is described in [18, 19]. Reference [20] describes many variants of HDMR approximation.

This paper compares the above two methods for the approximation of multivariate functions.
In Section 2, a basic theory of sparse grid and cut-HDMR methods is described. Section 3
describes the performed numerical experiments. Section 4 summarizes the obtained results.

2. Theory of sparse grids and cut-HDMR

2.1. Sparse grids

Let us start with a one-dimensional interpolation. Consider a function f :[O,I]M - R.

of interpolating operators, each one providing a better

o0
i=

We need a sequence {Ui} |

approximation than the previous one. The formula for operator U, which interpolates on

nodes {xl’ ,xé,. . .,xfn’_ }, can be written as
Uf(f)(x)zzf(x;)a; (x). (1)
j=1

Functions aj. (x) depend on the interpolation nodes and interpolation type. For Lagrange
interpolation, the functions are given by [21]:

; X—x
(= 11 —F @)
I<k<my kzj 0 Tk
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An M-dimensional approximation corresponds to the tensor product of operators
U",U",...,U™ as follows:

U ®..@U™ (f)(x.25....x Z Zf( b )l (x).a (xy) (3

= Ju=l

(see [22]). The interpolating operator for a kth variable is U % _The calculation of the inter-
polant requires computing the interpolated function at m; m; ...m; —mnodes. In polynomial

or spline interpolation, we select a single grid corresponding to a single tensor product of
operators. In sparse grid approximation, we combine multiple grids.

The central idea in sparse grid approximation is Smolyak’s formula [13]. This formula
represents a linear combination of interpolants on many grids. The sparse grid interpolation
operator is defined by a linear combination of operators from Eq. (3):

a(M-1) . )
(g M)= Y (—l)q"[ . jU’l ®..0U™. @
q M+]<‘ ‘<q q_|l|

The operator (4) has two arguments: the first (¢) describes the density of the grid and th

second (M) is the number of variables. The sum of components of index i = {ij,i,...,iy,} is
M

denoted by |l| = Zi ;- Figure 1 shows two examples of two-dimensional sparse grids.
j=1
One can choose different approximation spaces for the sparse grid approximation. The
simplest choice is a space constructed from so-called hat functions [23] but this space is
rarely used in practice. Instead, commonly used sparse grids are based on polynomial or
piecewise-polynomial functions.
One important feature of all sparse-grid methods is that one-dimensional basis functions

v (x j) are combined into M-dimensional basis functions y; (x) defined as:

Wi(x)=HWij (xj)' ®)

In Eq. (5), / is the number of independent variables and i, is a parameter to distinguish
different one-dimensional functions of that variable. A sparse grld approximant is constructed
as a linear combination of the multivariate basis functions W; (x) for different values of
i={i,iy,....0p .

A motlvatmg feature of sparse grids with polynomial interpolation is the fact that formula
AM + k, M) exactly reproduces multivariate polynomials up to order k£ [22]. Full grid
approximation by operators from Eq. (3) on the other hand, exactly reproduces monomial

m; . m; +1
X xy ™ L x of order m; m; ...m; ~butnot monomial x; " of order m; +1.
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Fig. 1. Two-dimensional sparse grids with ¢ equal to 3 (a) and 7 (b). Both examples use equidistant
one-dimensional nodes

2.2. Cut-HDMR approximation

An approximated M-variate function f{x) can be written as a sum of the constant term,
functions of one variable, etc.

x)=fo+ Zﬁ(xi)+ Z fj(x,,x )+ A S (XXX ) (©6)

1<isM I<i<j<m

The choice of functions f;, £, f etc. is not unique. By retaining only a few initial terms
in the expansion (6) one obtains an '"HDMR approximation. The maximum dimension of the
domain of functions used in the approximation is called the order of the approximation, for
example, the first-order approximation consist only of a constant f, and one-dimensional
functions f.

In the cut-HDMR variant of the method, a reference point r is selected and used to
determine the terms of expansion (6) in the following way:

Jo=A1), (7)
fi(xi):f(xl" s Xi 1515 Xjy1se 00X M)_fO’ (8)

f]<x xj) f(xl,...,xH,rl-,xm,...,xj 1,rj,x,+1,...,xM)—fi(xl-)—fj(xj)—fo, )

etc.
For analytic functions f this approximation can be compared to the multidimensional
Taylor expansion at point r:

f(x):f(’)JriaJ;ir)(xi—r +§:z axax (i =) (x; =)+ (10)
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Regrouping the terms in Eq. (10) gives expressions for the cut-HDMR terms. As each cut-
HDMR term corresponds to many Taylor expansion terms, cut-HDMR usually offers a better
approximation than the Taylor expansion. The cut-HDMR approximation is, like the Taylor
expansion, local. However, in certain subspaces, the approximation is exact (i.e. there is no
error). They are called cut subspaces and depend solely on the expansion point (cut point,
anchor point) and the order of the expansion. In agreement with Egs. (7) to (9), first order cut
subspaces are straight lines of the form

{(Hse s B X sy ) 1 X €REISTSM (11)
and second order cut subspaces are planes described by
(e s s X T s T X o e Ty ) 1 XX ERBIST< S M (12)

For the purpose of representing a cut-HDMR expansion on a computer, a method of
interpolating the low-variate functions is necessary. Typically, first degree spline interpolation
is used. The approximated function is calculated on grids spanning the cut subspaces. This is an

improvement over interpolation in the whole R as fewer values of the approximated function
need to be known. The number N of values of function f; that need to be stored decreases from
K (assuming K interpolation nodes for each independent variable), to the value

N :(7](1{-1)” +(1A:IJ(K—1)12 +...+(A14](1<—1)+1 (13)

for an /th order expansion. For each / the value N given by Eq. (13) is a polynomial in M.
Equation (13) can be obtained by counting the number of points that lie in an /th order cut
subspace, but not in an /— 1st order cut subspace, adding points that lie in an / — 1st order cut
subspace, but not in an / — 2nd order cut subspace etc. In this way no point is counted twice.

The choice of the cut point 7 is an important issue. Wang [24] proposed an automatic method

o P
of selecting the best cut point. A low-discrepancy sequence of points {x’ x' e [O,I]M} is

i=1
selected and each point is taken tentatively as a cut point of the HDMR decomposition. The
error of the expansion is calculated as

1

e(fst) (f)

== e ) (14)
where:
f — the approximated function,
J, — the approximant.
The point with the lowest error is finally selected as the cut point. The variance o*(f) of
function f'is defined as [25]:

o (f)= [ (F(x) de-| [ f(x)ax (15)
[o.]" [o.]"

and the function e, is given by
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e(fif)= [ (/(x)=f.(x)) ax. (16)
[0.)"

It can be observed that since the variance is a constant positive number that does not
depend on the approximation, the function f, minimizing e (f, f,) minimizes e(f, f,) as well.

2.3. Theoretical comparison of sparse grids and cut-HDMR

Sparse grids and cut-HDMR method use two different approaches for the approximation
of multivariate functions. Both of these methods try to overcome the curse of dimensionality.
The cut-HDMR method approximates a given function by a number of low-dimensional
functions. The sparse grids method combines the results of interpolation using a number of
grids to give a better approximation.

The methods utilize different assumptions about an approximated function. The sparse
grids method assumes that high-order terms of the Taylor expansion of an approximated
function are negligible. Cut-HDMR approximation assumes that terms of the Taylor
expansion involving more than a few (typically one or two) variables are negligible.

3. Numerical experiments

A number of numerical experiments were carried out to compare the sparse grid
approximation with the cut-HDMR approximation. Six functions defined on the cube [0, 1]¥
were selected for the experiments. Results presented below refer to the following functions f,

tof4:

log(zzlhi + 1)

= 1
A=) log(2M +1) w0
M
Z 2x —l (18)
i=1
M M 10 10
=D (2% -1)" (2x,-1) (19)
i=1 j=I
fi(x)=e""y +Z 2y (20)

For other functions, similar results were obtained.

The above test functions have been selected with the aim of objectively test both
approximation methods, without favouring any one of them. Assuming the approximated
function is analytical, sparse grids behave poorly when there are high degree terms in the
Taylor expansion of the approximated function at a given point. The functions f; and £, fulfill
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these requirements. On the other hand, cut-HDMR effectively approximates high degree
terms as long as they are monomials of no more variables than the order of the expansion

(functions f,, f; and f)).
A few different one-dimensional node placements were tested for sparse grids:

k
* equidistant nodes x; = —l,k =0,1,....m—1,
m—

» extrema of the Chebyshev polynomials together with endpoints

X, :0.5—0.5cos( mk J,k =0,1,...,m—1,
m—1
. 1 4" 2 n .
* roots of the Legendre polynomials P, (x) = (x —1) mapped to the interval
[0, 1. 2"n! dx"

The first node placement was selected for its simplicity; the second, because it eliminates
the Runge effect [26]. Their implementation was obtained from the code of the TASMANIAN
sparse grid package [27]. The values of the parameter ¢ in Eq. (4) that were used are 3, 4, 5,
6,7,8and9.

Figure 2 shows the relationship between the absolute approximation error calculated as:

ERR(/ f,,G) =max|f (x)- /; (x)]. @1

and the number N of points at which the function needs to be calculated. Grid G, which is the
third argument of the error function (21), is a Cartesian product of M sets of k equally spaced
points between 0 and 1:

M k-2

G(M,k):H{O,ﬁ,...,ﬁ,l}, (22)

n=1

In the experiments, M = 4 and k£ = 19 were assumed. The first and second order cut-
HDMR approximations were used. The error (21) was estimated on grid G(4, 8). The
cut-HDMR approximation used a first order spline interpolation or a Hermitian piecewise
cubic interpolation employing first function derivatives approximated by three-point finite
differences to represent functions of one or two arguments.

The method proposed by Wang [24] was used to determine the best placement of the cut
points by minimizing expression (16). Sobol sequence [28] was used both for picking up
candidates for the cut points and for the Quasi-Monte Carlo integration needed in Eq. (16).
In both cases, 1000 points from the Sobol Sequence were taken. The coefficients needed for
calculation of the Sobol sequence were obtained from the web page http://web.maths.unsw.
edu.au/~fkuo/sobol/new-joe-kuo-6.21201 (accessed 2014-04-01). The details of the Sobol
sequence generation can be found in [29].

Plot (a) in Fig. 2 shows errors for a function that cannot be expressed as a sum of
functions of at most two arguments. As a result, the error of the cut-HDMR expansion reaches
a minimum of approximately 0.11 and cannot become lower. At the same time, the sparse
grids can achieve much lower errors.
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Fig. 1. Absolute approximation error as dependent on the number N of known values of function f
employed by the approximation. Plot (a) — function f,, (b) — function £, (c) — function f; (d) — function
/.- Notation: (m) — sparse grids with equidistant nodes and first-order spline interpolation, (0) — sparse

grids with equidistant nodes and third-order spline interpolation, (©) — sparse grids with nodes at the
extrema of Chebyshev polynomials and with Lagrange interpolation, () — sparse grids with nodes at
the roots of Legendre polynomials and with Lagrange interpolation, (A) — second order cut-HDMR
with first-order spline interpolation, (A ) — second order cut-HDMR with piecewise
third-order polynomial interpolation, (¢) — first order cut-HDMR with piecewise third-order
polynomial interpolation
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Plot (b) in Fig. 2 shows errors for a function that can be expressed as a sum of functions
of one argument. In this case, the error of the expansion (6) truncated to order 2 is zero so
that only the interpolation error remains and cut-HDMR approximation can be arbitrarily
accurate. The variant with a higher order of interpolating polynomials shows significantly
lower errors than the one that uses only first-order spline interpolation. The variant of sparse
grids using third-degree piecewise polynomial interpolation has the lowest error of all sparse
grid methods. The cut-HDMR decomposing only to functions of 0 and 1 variable (using third-
degree piecewise polynomial interpolation) has the lowest error among all other methods.

Plot (c) in Fig. 2 shows errors for a function that can be expressed as a sum of functions of
at most two variables. This function is characterized by high correlations between variables
and is relatively fast-changing so that the error of the expansion (6) truncated to order 2 is
zero again. The second-order cut-HDMR has the lowest errors in the range of N where the
logarithm of the error is lower than 0.

Plot (d) in Fig. 2 shows errors for a function that can be represented as a sum of functions
of two arguments but is relatively slow-changing. In this case, two types of sparse grid
approximation have the lowest errors.

4. Conclusions

In this study, two methods of approximating multivariate functions were compared — sparse
grids and cut-HDMR. The comparison regarded the accuracy of both methods defined as the
maximum absolute error of approximation. In most cases, sparse grids appear more accurate than
the cut-HDMR method that employs a comparable number of known values of the approximated
function. However, the cut-HDMR approximation has lower errors when the function is fast-
changing and can be exactly represented as a sum of functions of at most one or two variables.

In conclusion, sparse grids are recommended over cut-HDMR for approximating
multivariate functions. Cut-HDMR approximation should only be used when the sparse grids
method cannot achieve desired accuracy using the assumed number of known values of the
approximated function.
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This paper presents a method for the parallelization of the Levenshtein distance algorithm
deployed on very large strings. The proposed approach was accomplished using .NET
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Streszczenie

Artykut przedstawia metodg zroéwnoleglenia algorytmu analizy odleglosci edycyjnej Leven-
shteina dedykowang bardzo duzym ciggom tekstowym. Zaproponowane rozwigzanie zostato
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1. Introduction

The Levenshtein distance [6] between two strings of characters is equal to the minimum
number of insertions, deletions and substitutions of characters required to convert one string
into the second string. The Levenshtein distance has applications in many areas, e.g. text
analysis (detection of plagiarism) [3, 13], spell-checking in text processors [7], web mining
(search engine robots) [9, 10], bioinformatics (Levenshtein-Damerau distance for DNA
structure analysis [8, 11]), etc.

The algorithm for Levenshtein distance calculation creates a matrix (Levenshtein
matrix) where its last element (Fig. 1) constitutes a solution. The asymptotic computational
complexity of the algorithm assumes the order O(NVM), where N and M denote the lengths of
the text strings (i.e. the number of characters in each strings).

Difficulties occur when long strings have to be analyzed (e.g. millions of characters in
one string). In such cases, the Levenshtein matrix is complex, and to attain the final results,
more time is required. Moreover, it is more complicated to allocate such large matrices
in standard development environments. The problem of analysis of very long strings may
occur when, for example, the same fragments of a book (whole terms or words instead of
consecutive characters in the original algorithm [2, 12]) have to be compared or when DNA
chains (Levenshtein-Damerau distance [8, 11]) are analyzed.

In this experiment, it was decided to design both the Levenshtein as well as the
Levenshtein-Damerau algorithms with Microsoft NET Framework [14] and run developed
applications under Linux OS with the use of Xamarin Mono Project [5]. Such project
environments allowed for an additional validation of efficiency and of speed of the
proposed algorithms.

2. Description of the Levenshtein distance algorithm

The Levenshtein distance K for two strings is the minimum number of operations —insertion,
deletion and substitution required to convert one term (string) into the other. The Levenshtein
distance K is equal to the d[M, N] element of the so-called Levenshtein matrix d:

K=d[M, N] = LevenshteinDistance (Stringl, String2)
The main idea of the Levenshtein distance algorithm (LevenshteinDistance function) is

described by the following pseudo-code:

input variables: char Textl[0..M-1], char Text2[0..N-1]
declare: int d[0..M, 0..N]
for i from 0 to M

dri, 0] := 1
for j from 0 to N
aro, jl =3

for i from 1 to M
for j from 1 to N
if substring of Textl at (i - 1) = substring of Text2 at (j - 1) then
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cost := 0 else cost :=1
d[i, 3] :=
Minimum(d[i - 1, j] + 1,
d[i, 3 - 11 + 1,
d[i -1, j - 1] + cost)
end for (variable j)
end for (variable i)

return d[M, NJ];

where:
d — Levenshtein matrix of the size N+1, M+1, formed for two terms:
Textl and Text2,
M, N — lengths of two terms respectively,
dli,j1—(i,j) — element of Levenshtein matrix d,
Minimum — a function to calculate a minimum of three variables,
cost — variable that gets values either 0 or 1.

The deference between the Levenshtein and the Levenshtein-Damerau distance algorithms

is shown below as a part of the relevant pseudo-code with the definition of elements of the
Levenshtein-Damerau matrix z:

z[i, 3] =
Minimum(d[i - 1, 3] + 1,
z[i, 7 - 1] + 1,
z[i -1, §J - 1] + cost)
if 1 > 1 and j > 1 and substring of Textl at (i-1) = substring
of Text2 at (j - 2) and substring of Textl at (i-2) = substring of
Text2 (j-1]) then
z[i, j] := Minimum(z[i, 3], z[i - 2, 7 - 2] + cost)

The Levenshtein-Damerau distance D is the minimum number of operations (insertion,
deletion, substitution) required to change one term into the other, this is similar to the
standard Levenshtein procedure, but additionally, it is necessary to account for the number of
transpositions of neighboring characters. Consequently, the Levenshtein-Damerau distance

between two sequences D is equal to the z[M, N] element of the suitable Levenshtein-
Damerau matrix z:

D =z[M, N] = LevensteinDamerauDistance (Textl, Text2)

The figures below and the pseudo-codes above show that the value of element [, j] of
matrix d in the current iteration is calculated based on the values: d[i — 1, j], d[i, j — 1] and
d[i—1,j— 1] for the Levenshtein distance and additionally, z[i — 2, j — 2] for the Levenshtein-
Damerau distance. This means that each of these values must be calculated in the previous
iterations of the algorithm.
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Fig. 2. Levenshtein-Damerau matrix z, constructed for deoxyribonucleic acid (DNA) sequences:
TCCAATA and GGCCTCC (where: T — thymine, A — adenine, G — guanine, C — cytosine)

Table 1
Examples of Levenshtein distance between two strings
No. string 1 string 2 Levenshtein distance
1 Car Cars 1
2 University Universities 3
3 Tom is writing a letter Tom is writin letters 4

Table 1 shows an example of the results of calculations of the Levenshtein distances using
the conventional algorithm. In the first example, we need to add one character in stringl
or remove one character in string2 to transform one string into the other. In the second
example, we need to substitute one character and add two characters (stringl) or substitute

' The application for both Levenshtein and Levenshtein-Damerau matrices calculations is available
from the web site: www.pk.edu.pl/~aniewiarowski/publ/levenMatrix.exe.
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one character and remove two characters (string2). In the last example, we need to remove
four characters (‘g’, ‘a’, ‘s’ and space) in stringl or add four characters in string2.

3. Numerical implementation of parallelization algorithm?

As was depicted above, difficulties occur when strings of millions of characters have to be
analyzed. In such cases, the Levenshtein matrix becomes very large and more time is required
to compute all its elements. Table 2 shows examples of time consumption requirements in
the case of complex Levenshtein matrices calculation (without any parallelization procedure
implemented). The whole series of experiments was performed on a computer with
parameters: 32GB RAM; two physical processors (Intel(R) Xeon(R) CPU E5-2620 0 @
2.00GHz, 24 threads).

Table 2
Time consumption in the case of complex Levenshtein matrices calculation
Length of | Length of | Number of elements of .ComputatIO.n C(?mputatlon
No. string 1 string 2 Levenshtein matrix time [sec.] (high time [sec ]
& & performance computer) | (standard PC)!
1 5000 5000 25 000 000 0.724 3.385
2 10 000 10 000 100 000 000 2.520 13.400
3 30 000 30 000 900 000 000 22.020 105.502
4 32 000 32 000 1 024 000 000 25.040 172.879
5 | 40000 | 40000 1600 000 000 outof memory | out of memory
exception exception

In Fig. 3, a graphical interpretation of the proposed solutions for large strings is presented.
One very large matrix is built from the smaller component matrices resulting from the
structure of the analyzed substrings. Each component matrix (i.e. values from last column
and last row) is calculated and some of their values are transmitted to the next small matrix
where they become initial values. This procedure reiterates through all component matrices.
Each component matrix is calculated by the parallelized threads (1, 2 .. n) with the use of an
array of locks algorithm where a younger thread (e.g. n — 1) waits for an older one (e.g. n —2).
Matrices which will not be used anymore are removed from the memory.

The pseudo-code below Fig. 3 describes a part of the function LevDistDecomposition
where the input strings 7ext/ and Text2 are decomposed for the smaller substrings. Based on
two subsequent substrings the component matrices are calculated and their final boundary
elements are collected in two one-dimensional arrays: arrVertical and arrHorizontal. Next,
these arrays are transmitted to the new small matrix in which they stay as the initial values
for further calculations. Finally, the algorithm returns the Levenshtein distance as the result.

2 All the results for the described algorithms were calculated with the use of a 64-bit console applica-
tion (written in C# language) available on website: www.pk.edu.pl/~aniewiarowski/publ/ LevParal-
lelCS.exe.
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Fig. 3. Parallelization procedure of the Levenshtein distance matrix decomposition

input variables: char Textl[0..M-1], char Text[0..N-1], number of
parts, number of parallel threads

declare: part rangeX[O0..number of ranges of horizontal parts], part_
rangeY[0..number of ranges of vertical parts] as structure of int from
and int to

declare: results of matrix[0..number of ranges of horizontal parts,
0..number of ranges of vertical parts] as structure of int[]
arrVertical[0O..length of Textl] and int[] arrHorizontal[O..length of
Text2]

for vm from 0 to M do arrVertical [vm]:=vm
for vn from 0 to N do arrHorizontal[vn]:=vn

for mx from 1 to number of ranges of horizontal parts (i.e. number of
elements of part rangeX)
for my from 1 to number of ranges of vertical parts (i.e. number
of elements of part rangeY)
results from matrix([mx, my] :=
LevDistParallelParts (
substring of Textl at (part rangeX[mx-1].from-1,
part_rangeX[mx-1].to - part rangeX[mx-1].from+l),
substring of Text2 at (part rangeY[my-1].from-1,
part_rangeY[my-1].to - part rangeY[my-1].from+l),
number of parallel Threads,
results from matrix[mx - 1, my].arrVertical,
results from matrix[mx, my - 1].arrHorizontal
)
clear results from matrix[mx - 1, my].arrVertical
clear results from matrix[mx, my - 1].arrHorizontal
end for (variable my)
end for (variable mx)

return the last element of arrVertical (or arrHorizontal) of the last
element of result from matrix
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In the pseudo code-above, some designations are taken:
LevDistParallelParts — function for calculation of the component matrices,
results_from matrix — two-dimensional array, collects elements of one-dimensional arrays:
arrVertical and arrHorizontal,
part_rangeX, part rangeY — one-dimensional arrays with elements representing the range of
calculated component matrices,
arrVertical, arrHorizontal — one-dimensional arrays of results, input parameters for LevDi-
stParallelParts function.

Additional complex operations, required for the implementation of the parallelization
procedure are presented precisely in the pseudo-code in appendix A.

4. Results

In the present research, the Microsoft .NET technology was used (C# language) [14]%. The
proposed algorithm was tested with mono-project (cross platform, open source .NET development
framework) [5] and OS Fedora Linux. The obtained results are presented in Fig. 4. The diagram
shows the relationship between the length of analyzed strings (additionally described by the
number of parts of the main matrix — right-hand legend in Fig. 4) and the number of parallel
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Fig. 4. Correlations between length of strings and computation time for different
numbers of parallel threads for one component matrix

3 Some details of NET’s threads and parallel technologies are presented in [15].
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threads for one component matrix. As can be seen, the final computation time strongly
depends on string sizes and on the number of parallel threads. In the presented examples, the
best optimal results were obtained for about 100 threads applied for the component matrix in
all cases of partitioning. For other numbers of threads, the parallelized parts of the component
matrix were too large or too small and the procedure of threads construction was not cost-
effective.

In Fig. 5, the relationship between the number of parts of a large decomposed matrix
(1-10'? elements) and the computation time is presented. The obtained results show that
the speed of calculations strongly depends on the number of parts (i.e. sizes of component
matrices) of the decomposed matrix as well. This effect influences the main decomposition
algorithm (in function LevDistDecomposition), in which the one-dimensional array of results
becomes the input data for the next iteration, and some old data are removed from memory.
If there are too many parts, the transfer of partial results (and other operations) will be too
frequent.

4720
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7550035
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Fig. 5. Relationship between number of parts (blocks) of decomposed matrix
and computation time for string size of 1-10¢ x 1-10°

The results obtained for strings depicted with the Levenshtein matrix of 4-10'? elements,
are presented in Tab. 3. It turns out that for parts 50 x 50 and 60 x 60, the component matrices
were too large and the system could not allocate them in memory.

In Fig. 6, the consumption times of computations of the Levenshtein distance for very
long strings with the use of optimized parameters (the best values of number of parallel
threads for one component matrix and number of parts of decomposed main matrix) are
presented. It is worth underlining that the calculation time versus the string’s length grows
approximately according to the power function.
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Next, the calculation times of the Levenshtein distance for very long texts with or without
the parallelization procedure were compared. Different length texts were analyzed and the
obtained results are presented in Tab. 4 and Fig. 7.

Table 3

Computation times for two long strings according to number of blocks of main matrix

Number of parallel
L Number of parts o
String sizes threads for component . . Computation time [sec.]
. of main matrix
matrix

1 000 000 x 1 000 000 100 50 x 50 4590.35
1 000 000 x 1 000 000 100 60 x 60 4601.1
1 000 000 x 1 000 000 100 70 x 70 4669.4
1 000 000 x 1 000 000 100 80 x 80 4704.4
2 000 000 x 2 000 000 100 50 x 50 out of memory exception
2 000 000 x 2 000 000 100 60 x 60 out of memory exception
2 000 000 x 2 000 000 100 70 x 70 17 360.4
2 000 000 x 2 000 000 100 80 x 80 17 630.58
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Fig. 6. Computation times of calculations for very long strings using matrix decomposition
with the parallelization procedure
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Fig. 7. Computation times of calculations of long strings using Levenshtein distance algorithm with
and without parallelization for one decomposed matrix

Based on Fig. 7, it can be seen that the parallelized Levenshtein distance algorithm is
about 4-5 times faster than that without the parallelization procedure applied.

Table 4

Computation times of Levenshtein distance algorithm with or without parallel procedure

Chars in text 4 | Chars in text B CO];?:r';ilréllep[rsoeCCii;rZVith Comp. timgrgf:a]u;eno parallel
5000 5000 0.18 0.72
10 000 10 000 0.55 2.52
20 000 20 000 1.95 9.84
25000 25000 2.97 15.33
30 000 30 000 4.20 22.08
32 000 32 000 4.82 25.04
33 000 33 000 out of mem. exception out of mem. exception

Figure 8 presents the computation times of DNA sequences for one decomposed
Levenshtein-Damerau matrix with the use of assumed (100) number of parallel threads. As
can be seen, the parallelized algorithm is again about 4-5 times faster than the algorithm not
being parallelized. DNA sequences consist of chars T, A, G, C (described in Fig. 2).



119

35

~@-original algorithm

31,68
30 == parallel algorithm /

27,88

\

n
o

/ 19,34
124 A

computation time (sec.)

= =
o w

number of elements of matrix

Fig. 8. Computation times of calculations of DNA sequences using Levenshtein-Damerau
algorithm with and without the parallelization procedure for one decomposed matrix

5. Conclusions and further work

The research presented in this paper results in a method for the parallelization of the
Levenshtein distance algorithm. Its implementation allows for the improvement of the
speed of calculating the similarity measure of two long strings. In the presented examples,
a high efficiency of the proposed techniques was achieved and very good results on a high-
performance computer were confirmed [4].

The algorithm proposed in the paper was implemented in the mechanism of automatic
selection of promotors and reviewers of diploma thesis within the system “Diplomas’
Manager”. This system was implemented at the Faculty of Physics, Mathematics and
Computer Science of the Cracow University of Technology* as a tool for diploma thesis
management. The solution was also implemented within the anti-plagiarism system
of “Diplomas’ Manager” and high efficiency in the case of searches for plagiarism was
achieved.

In our future research, efforts will be undertaken towards improving the Levenshtein-
Damerau algorithm for analyzing very long DNA sequences by decomposing the main
matrix in accordance with the proposed algorithms. Moreover, the MPI technology will be
implemented for computing each part of a large matrix. Furthermore, the introduction of
measures of the distance between text elements (terms) in the analyzed text documents to
build its internal specific characteristic and document structure is also anticipated [1].

4 System is available on web page: https://administracja.fmi.pk.edu.pl/~dyplomy.
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Appendix 1

The pseudo-code below describes part of the function LevDistParallelParts which
provides the parallelization procedure of component matrix dpart. The procedure calls threads
that are assigned to insert the one-dimensional array pth. For iteration of all elements of
matrix dpart two loops for, loop in the line 16 and loop in the line 2, are required. The number
of iterations within the loop in line 21 is restricted by the number of threads. Additionally,
in line, 19 the automat of waiting mechanism is implemented and a loop with the array of
locks point lock is introduced. Based on this, the thread number p in loop for (line 16) waits
for parallel thread number p-/ (line 19) until column i in thread p-/ has all values calculated.

1 input variables: number of parallel threads nTh, char fragTextl[O..tM-

2 1] char fragText2[0..tN-1], initial values included in arrVertical and
arrHorizontal arrays

3 declare: array of threads pth[0..nTh], array arrRanges[0..tN] of
structure int form and

4 int to, array dpart (part of Levenshtein distance matrix)

6 calculate ranges for Y size of matrix dpart and save in arrRanges
for i from 0 to tM

7 d[i, 0] := arrHorizontall[i]

8 for j from 0 to tN

9 d[0, j] := arrVerticallj]

10

11 for p from 1 to nTh

12 pth[p] := new Thread((num) of

13 {

14 int cost

15 for i from 1 to tM

16

17 point lock[num] = i

18 wait if i >= point lock[num - 1]

19
20 for j from arrRanges[num - 1].from to arrRanges[num - 1].to
21
22 if substring of Textl at (i - 1) = substring of Text2 at (j - 1)
23 then

cost := 0 else cost :=1

24
25 dpart[i, j] := Minimum(
26 dpart[i - 1, j] + 1,
27 dpart([(i, j - 11 +1,
28 dpart[i - 1, j - 1] +cost)
29

30 end for (variable 7j)

31 end for (variable i)

32 increment +1 of point lock[num]

33 }

34 run thread pthlp]

35 end for (variable p)

36

37 wait for finish thread pth[nTh] (i.e. wait for all threads)

38 return structure of (array dpart([0..tM-1, tN-1], array dpart[tM-1,
39 0..tN-11)
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In the pseudo code-above, some designations are taken:
pth — one-dimensional array of thread objects,
point_lock — one-dimensional array of locks,
arrRanges — one-dimensional array of calculated ranges of areas of component matrix,
num, p —thread number (i.e. number of part matrix),
dpart — component matrix of Levenshtein matrix x,
LevDistParallelParts — the Levenshtein distance obtained with the parallelization procedure.
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Abstract

The paper introduces a novel Context-Driven Meta-Modeling Paradigm (CDMM-P) and discusses its
properties. The CDMM-P changes the traditional division of responsibilities within the data layer in
software systems. It facilitates the interchangeable usage of both objects representing data and objects
representing relationships. The decomposition of specific responsibilities results in the weakening of
internal data model dependencies. This in turn allows for run-time construction of the whole data model.
The proposed paradigm facilitates exceptional flexibility in the implementation of the data layer in software
systems. It may be applied to domain modeling in enterprise applications as well as to the modeling of
any ontology, including the construction of modeling and meta-modeling languages. As such, CDMM-P
underpins a broad domain of Context-Driven Meta-Modeling Technology (CDMM-T).
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Streszczenie

W artykule wprowadzono nowa koncepcj¢ Paradygmatu Meta Modelowania Sterowanego Kontekstem
(CDMM-P) oraz przedyskutowano jego wlasnosci. CDMM-P zmienia tradycyjny podziat odpowiedzial-
nosci w warstwie danych systemow softwerowych. Utatwia wymienne stosowanie zar6wno obiektow re-
prezentujacych dane, jak i obiektow reprezentujacych relacje. Podziat tych specyficznych odpowiedzialno-
$ci skutkuje ostabieniem wewnetrznych zaleznosci modelu danych. Pozwala to z kolei na konstruowanie
calej warstwy danych w czasie wykonania. Proponowany paradygmat zapewnia wyjatkowa elastycznos¢
implementowania warstwy danych systemow softwerowych. Moze by¢ on stosowany do modelowania
dziedzinowego aplikacji korporacyjnych i do modelowania dowolnego systemu poje¢é (ontologii) z kon-
struowaniem jezykow modelowania i metamodelowania wtacznie. CDMM-P stanowi podstawe szerokiej
dziedziny Technologii Meta Modelowania Sterowanego Kontekstem (CDMM-T).

Stowa kluczowe: warstwa danych, warstwa modelu, paradygmat, parametryzacja modelem, UML, klasa
encyjna, klasa czysto encyjna, klasa relacji encyjnej, model dziedzinowy, meta model,
meta programowanie, meta jezyk
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1. Introduction

There is a disparity between the UML’s (Unified Modeling Language) system of notions
and its application to programming languages. This disparity has been known for many
years. In particular, there is no the programming language that offers a built-in mechanism
for management of life-time of objects, in the meaning of associative relationships defined
in UML — the association, aggregation, containment. As the result, the management of an
object’s life-time is traditionally assumed as the responsibility of applications implemented
in these languages, thus it is the programmer’s responsibility.

One possible solution to this problem is the new concept of meta-modeling presented here.
This concept offers several new and very useful opportunities for software construction. This
solution, as well as its accompanying features, constitutes a new CDMM-P (Context-Driven
Meta-Modeling Paradigm) for both software design and development. The considerations
presented here apply to the software system’s data layer and the main focus of attention was
the associative relationships and wide spectrum of applications of CDMM-P.

The CDMM-P presented here plays an important role in software engineering — it allows for
the breaking of limits in UML’s mapping of associative relationships into programming languages.
Moreover, it helps to break limits characteristic of all known approaches to the modeling system
of notions from any application domain, including the modeling of software systems.

2. State of the art

The topic of this paper overlaps software engineering and artificial intelligence. This is the
first reason why the analyzed scientific literature is so differentiated. The second is the fact
that domain modeling can refer to vertical domains as well as to the construction of modeling
languages — meta-languages. The last reason is new and shows that, as a consequence of
CDMM-P implementation, the same notions can be implemented in enterprise applications
as well as being applied in meta-modeling.

The main idea of the proposed paradigm is that information about the interconnections of
entity classes is moved out from these classes and put into separate entity relationship classes.
This way, the new responsibility distribution to the data layer is applied. Furthermore, the
literature is considered in the context of the data layer only from several perspectives.

2.1. Architectural perspective

Generally speaking, there is no literature on the CDMM-P approach as long as the
presented problem is analyzed within the perspective of traditional software engineering. This
observation is confirmed by the contents of [29] which discusses architectural approaches to
the data layer — there is no parameterization of the data layer by model. Moreover, in all
available publications, such models are constructed statically through explicit embedding
of relationships in interrelated classes in the form of pointers or references. More general
software engineering subject reviews like [5] or [23] also confirm this observation. The
same conclusion results from the literature dedicated to more detailed problems. In [34],
the ADOM-UML (Application-based DOmain Modeling) is used to enrich modeling in
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order to fill the gap between domain and application models, while in [35], the SDM (Semi-
Automated Domain Modeling) concept is introduced to infer domain models from the former
application models stored in a repository. In [28], the system for gathering information about
modeling is introduced, but its meta-model has a fixed structure. In paper [7], the domain
model is composed from many interrelated heterogenic project artifacts and the emphasis is
put on the important role of the relationships performed in that approach. In [2], the challenge
for the research is to make use of very large and very complex UML and Ecore meta-models
[11]. In paper [13], the evolutionary introduction of changes to running software system
without it stopping is shown. However, this goal is achieved through carrying out a priori oft-
line analysis. Paper [14] presents information regarding how to mix interrelated ontologies in
a direct and static way. In [25], the meta-model is inferred from several models.

2.2. Ontological perspective

The notion of ontology in its technical meaning originated from artificial intelligence
research. In software engineering, it can be applied to end-user domain enterprise
applications (the product), to the problems of modeling and meta-modeling or to the software
development process. The analysis presented below addresses all of the above perspectives
with the exception of processes.

Monograph [4] contains traces of references to the concepts of open ontology, but without
references to software engineering. More references to ontology can be found in [15] and [16].

Paper [10] shows how to define the domain model with the aid of ontology. Then, with the
application of technologies well suited for DSL (Domain-Specific Language) construction and
Magic Potion [8] like Clojure/Lisp [19, 21, 22], the compilable and executable source code in
the domain-specific language for making operations on this model is created. They refer to the
Semantic Web which is a kind of open ontology and does not have a meta-models hierarchy
above the model layer — this is typical of OMG (Object Management Group) approaches.

Another very important publication is [24] which presents the system for ontology-
based application design. The access to object’s domain takes place through object-oriented
paradigm, which is not new compare to [37, 30]. The cited work contains the whole IDE
(Integrated Development Environment) named JOINT (Java Ontology Integrated Toolkit). It
offers the ability of generating Java source code directly from the ontology.

Paper [33] is focused on the method of the application of ontology to the customization of
the domain model for the needs of a particular software system. In this way, the ontology as
an expression medium for OMG vertical standards is applied. In paper [12], ontology is used
to infer a static class model, while in [26], a special ontology must be chosen to build OGML
(Ontology Grounded MetalL.anguage) meta-language on top of it.

The analysis of the “whole-part” relationship is presented in [32]. However, this analysis,
based on [20], assumes that the WP (Whole-Part) relationship is defined as a class of property.
This is why the analysis is so complex and needs dedicated frameworks.

In [9], the MOF-based (Meta Object Facility) MDA-compliant (Model Driven
Architecture) meta-model is introduced for modeling ontologies, thus, software engineering
and artificial intelligence are combined. While in paper [3], the proposed framework is
integrated into several ontologies through their injection into the more general meta-
ontology.



126

2.3. Paradigmatical perspective

Further we may analyze the literature from the paradigmatical perspective. In paper [8],
the meta-modeling role, as a way of application of many paradigms at the same time, is
presented, referring directly to [10]. A very interesting solution named “MagicPotion” which
has already been discussed in section 2.2, is introduced there.

According to [36], meta-programming is the old concept of “using programs to
manipulate other programs” and in case of Java, the meta-programming concept is supported
by annotations. This paper defines the requirements of meta-programming.

2.4. DSL perspective

DSL languages are always designed in the context of a particular application domain.
This domain is usually limited to the operations executed on the data layer. This is why the
approach to the construction of this layer results from the way in which the DSL is perceived.
This conclusion also relate to presented work.

The work reviewed in [27] shows that, independently of the approach to DSL design, the
closed character of the ontology is assumed at the very beginning. This publication describes
the abstract syntax of DSL as a meta-meta-model or as an Abstract Syntax Graph (ASG)/
Abstract Syntax Tree (AST), but each of these approaches closes the ontology by MOF or
by grammar respectively. In publication [31], localized in the area of Computer Supported
Cooperative Work (CSCW), the appropriate DSL is constructed on the basis of close ontology
(Ecore). Moreover, article [6] is focused on the embedding of abstractions into domain-driven
approaches (DSML — Domain Specific Modeling Languages) to DSL construction. These
abstractions can be reused in many application domains. The mapping between them, and
particularly between modeling languages, is implemented in the form of annotations.

2.4. Mixed perspective

There are some papers dealing simultaneously with several of the perspectives pointed
out above. In [38], DSL, ontology notions and UML modeling are joined and the idea of DSL
construction based on fixed static entity classes structure is presented. Paper [ 18] presents an
approach to the change of meta-model via the application of a universal ontology introduced
in [17]. Combination of the ontological approaches with meta-modeling is shown in [1].
It is dedicated to providing a better transformation from modeling of general concepts in
domain languages (ontology) to models/meta-models that are MDA-compliant. However,
fixed entity models are used again.

3. Decomposition of data model responsibilities

The main goal of the CDMM-P is to take the responsibility for lifetime management
of the objects, inter-related through associative relationships characteristic of the data
layer. This goal can be achieved through the change of responsibilities, that is the typical
solution implemented for design. It transpires that the entity classes encompass too many
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responsibilities. On the one hand, they map application objects to their data source and on the
other hand, they store relationships that in turn define how the lifetime of related objects must
be managed. At the same time, entity classes or application codes are responsible for lifetime
management. However, this should be the responsibility of relations because they know their
own nature best. This is why the split of both responsibilities through the introduction of the
notions of pure entity (in contrast to the established notion of entity) and entity relationship
is. Such a decomposition was not considered in the literature till now. Pure entity classes are
responsible for the representing of data while the entity relationships are responsible for the
lifetime management of pure entity class instances involved in associative relationships. The
sample data models of a class named Company for both traditional and new approaches are
presented in Fig. 1.

Company PurelEntities
<<pentity>>
Company
<<pentity>> <<pentity>>
Department OfficeAddress
Company Entities
<<entity>> 1 <<pentity>>
Company StaffMember
1
1.* 1
<<entity>> <<entity>>
Department OfficeAddress
I
1.*
1 ..* —|
<<entity>> - - -
StaffMember Company EntitylRelationships

<<relation>>
Aggregation

<<relation>>
Association

Fig. 1. Conceptual transformation from fixed entity model to context-driven entity model
for sample Company model
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With the introduction of this crucial modification, the application’s source code and
(optionally) entity classes are released from the responsibility of representing relations. In
effect, it leads to the weakening of dependencies on the following borders:

* pure entity class — pure entity class,
» entity relationship — entity relationship,
* pure entity class — entity relationship.

Maximal weakening of the above dependencies can be described by not measurable but
intuitive quality criterion ‘weak coupling & strong-cohesion’ which is commonly accepted
as good design practice in software engineering. This weakening plays the key role in the
CDMM-P concept. Moreover, it constitutes the starting point for reaching and achieving the
goals described below.

4. Influence of responsibilities shifting on the ease of change management

The elimination of circular dependencies as well as the limitation of dependencies
were introduced as good practice in software engineering. In the context of the CDMM-P,
significant weakening allows for the achieving of two succeeding goals:

* maximal limitation of the scope of introduced change,
* possibility of run-time data layer change.

The first goal is quite obvious — the introduction of change into the pure entity class does not
impact the entity relationship. Similarly, introduction of change into the entity relationship does
not influence pure entity classes involved in this. The second goal is however, not as clear. All
classes introduced by the CDMM-P can be interconnected at run-time due to the fact that they
are independent of each other. Specifically, all pure entity class objects may first be loaded, and
then all entity relationships between them can be created. The point here is not, however, just to
interconnect existing objects, but also to store information about their classes. These allows to:
» obtain information from each pure entity class about the entity relationship classes that

the pure entity class is involved in,

» obtain information from each entity relationship class about the pure entity classes invo-
lved in this entity relationship.

An XML file describing both classes and relationships can be used as the source of
information about both pure entity classes and their relationships. Such a file can be
interpreted by the implementation of the CDMM-P, which can take the form of the framework
named Context-Driven Meta-Modeling Framework (CDMM-F). Such a framework will be
presented in further publications. As a result of this approach, all classes involved in the
model can be run-time interconnected, as depicted in

1/1 m Fig. 2. The class objects can be created from the CDMM-
<<pentity>> F’s client level through the API (Application Programming
Company N
<<relation>> Interface) after loading the whole data layer model from
1 :Association .
] the XML file mentioned above.
Fig. 2. Implementation-dependent context-driven entity
;:i‘:’:g:; ! 1| srelation>> model of a sample Company.mod(?l from Fig. 1 with injected
relationships
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5. Parameterization of data layer by its model

The authors noticed that in the data layers of software systems, like in UML, there is
a strong asymmetry in the number of available entity classes (potentially infinite) and the
number of available relationships among them (three associative relationships are usually
sufficient) in most domain models. It thus allows for the introduction of predefined entity
relationship classes and for further parameterization of the data layer through pure entity
classes defined by the user of CDMM-P. Predefined entity relationship classes are independent
of user-defined pure entity classes thanks to the maximal weakening of dependencies in the
CDMM-P. At the same time, user-defined pure entity classes are independent of predefined
entity relationship classes. As a result, the set of entity relationship classes can be modified
independently of the set of pure entity classes. This means that in such a situation, the
relationships between any set of classes can be shaped as needed without any limits — there
is nothing that closes or limits these sets. Thus, the data model can be created according to
the CDMM-P on the basis of its UML model. More specifically, this model can be loaded at
run-time for the purpose of the dynamic creation of the application data layer as long as the
CDMM-P is used. The application of the UML class model, as a widely accepted standard,
is quite obvious, but the whole structure of the data layer can be loaded from any resource
describing the whole structure both sufficiently and unambiguously.

The presented method of the dynamic loading of the data model into the application,
based on CDMM-P, is possible because of the dependency weakening presented above.
Consequently, there is no information in the entity classes about other entity classes.
According to the CDMM-P, there are no property fields in pure entity classes that represent
entity relationships just as in entity relationship classes, there are no fields representing pure
entity classes. Pure entity classes interconnecting via entity relationships in the CDMM-P
do not have compile-time character but have run-time only. As a result, the data layer is
parameterized at run-time by the data model.

6. Reusability consequences

The data layer creation based on CDMM-P allows for any customization of previous data
models being constructed in an IT enterprise. It also significantly improves the possibilities
for the reuse of former pure entity classes (they may be used in any relationships context)
as well as the reuse of specific entity relationship classes (they may be used in any context
of pure entity classes). Thus, the approach presented here allows for unlimited changes of
the context through introducing pure entity classes and entity relationship classes in the data
model. Moreover, this context can be established at run-time. In the result, the pure entity
classes can be run-time changed or replaced in the application containing them. Achieving
any of the goals presented here with the application of traditional approaches to software
engineering is not possible.
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7. Class-based perspective for non-class-based paradigm

The CDMM-P cannot be implemented in class-based versions of object-oriented
technologies. Nevertheless, it should be taken into account that its potential users (developers)
implement this approach only in the most popular class-based version of the object-oriented
paradigm. In order to make the CDMM-P useful for the developers community, it should be
matched to the way they make use of entity classes in the class-based variant of the object-
oriented manner. Thus, the next goal of the CDMMS-P is the ability to offer its users class-
based access to CDMM-P’s specific notions — pure entity class objects and entity relationship
objects. This goal can be achieved via introduction of the additional layer with both access to
entity relationship objects through the pure entity objects perspective and access to pure entity
objects through entity relationship objects being possible. Based on the introduced layer, the
CDMM-P’s client application could not only see all objects available in the CDMM-P from
the traditional class-based version of the object-oriented approach, but could also use any of
the following graph data model scanning strategies:

e pure entity classes based strategy,
* entity relationship classes based strategy,
* mixed strategy adjusted to current needs.
Two first strategies are mutually symmetrical and can be used interchangeably.

8. Reflectiveness vs. static nature of data model

The construction of an application based on CDMM-P may have one of the following
characters:

« static — it is assumed that the developer knows a priori the data model which is run-time
loaded,
* dynamic — it is assumed that the developer does not know the data layer model.

In the first case, the application source code is simpler for implementation, but it does not
allow for any change of static structure of the data model. In the second case, the developer
can dynamically query the pure entity classes for their entity relationships. The developer can
also query the entity relationship classes regarding their pure entity classes. The developer
can then execute appropriate operations on objects of these classes. It is important from
the CDMM-P perspective that there are no limitations for the choice between static and/or
dynamic model of implementation of the application based on CDMM-P. Moreover, these
two approaches can be mixed.

9. Standardization of CRUD operations on data layer

For the sake of the application of CDMM-P to the data layer, it is possible to limit the set
of operations on the pure entity and entity relationship classes mentioned above to CRUD
(Create, Read, Update and Delete) operations. Besides typical operations executed on entity
classes in a traditional approach, here we may execute them not only on entities (operations
on pure entity classes) but also on entity relationships. The proposition of a pre-defined set of
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such operations is one of the goals of CDMM-P. For the purpose of the introduction of the set
of predefined CRUD operations, the CDMM-P should itself give access to entity relationships
visible to the client from the perspective set to the pure entity class. This mechanism is crucial
for CDMM-P and distinguishes it from other potential solutions. It is possible to achieve this
goal through the introduction of the ac*cessor notion. The accessor is responsible for putting
the appropriate perspectives which were presented above. In the case of the standardization
of CRUD operations described here, such an accessor should guarantee the ability of getting
access to the entity relationship from the appropriate pure entity class. The accessor itself can
be obtained through the following polymorphic operation:

BaseClass getAccessor (pure-entity-class, entity-relationship-
class)

where

BaseClass — base class for all data model elements

pure-entity-class — pure entity class

entity-relationship-class — entity relationship class

Thus, the set of standardized operations, which can be executed on the object accessor
to the pure entity class visible from the perspective put on pure entity class, may have the
following form in pseudo-code:

void add(relationship-container, relationship-element)

T get(relationship-container)

int count(relationship-container)

List<T> getAll (relationship-container)

T get(relationship-container, index)

int count(relationship-container, relationship-element-class)

T get(relationship-container, relationship-element-class, index)
List<T> getAll (relationship-container, relationship-element-class)

where
relationship-container —pure entity object its entity relationship with other
pure entity objects are visible through;
relationship-element — pure entity object bind to the entity relationship with
pure entity object which gives access to object via the relationship obtained from
entity;
relationship-element-class — information about the class of pure entity
object
index — index of the pure entity object in a collection
It is worth noting that each pure entity class may have many entity relationships, which
in turn may cause difficulties in CDMM-P’s implementation in contemporary programming
languages. Nevertheless, reaching this goal is possible.

10. Testing specificity

The two most important modifications of traditional approaches to testing are presented
below. The first is related to unit testing of isolated classes and the second, to unit-like
scenario tests responsible for testing class interconnections.
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10.1. Unit testing

One of the consequences of weakening of the dependency and making classes independent
is making unit tests of these classes also independent. As a result, each pure entity class
and entity relationship class can be tested in isolation. Looking from the perspective of
reusability, it must be underlined that both pure entity and entity relationship classes can
migrate between different projects together with their unit tests, as long as the projects are
based on CDMM-P. These kinds of tests constitute the additional layer of tests responsible
for methods testing all data layer classes. This test layer is not known in a traditional object-
oriented approach due to compilation dependencies between entity classes.

10.2. Semi-automatically generated scenario tests

For the sake of the dynamic run-time interconnecting of pure entity classes by entity
relationship classes, the necessity for testing these classes in the context of their data model
arises. It is however, worth pointing out here that scenario tests skeletons can be generated
automatically from the same model as the CDMM-P classes are organized with the layer
dynamically loaded. Thus, the proposed model plays the role of the parameter for both
implementation and tests. The skeletons mentioned above could be implemented against
unit testing frameworks. However, in order to generate these tests, the required objects of
these classes must also be created on the basis of the association of the classes with their
descriptions. Thus, such tests take the form of semi-automatic tests. The scenario test’s
source code is generated automatically from the objects’ information that must be introduced
by a developer. Based on this approach, the developer need not write the test code manually,
but still keeps control over the test via the possibility of object initialization. Obviously, the
CDMM-P does not eliminate the possibility of the implementation of manual scenario tests
in any form, as well as introduction of modifications into already generated tests.

11. Conclusions

A new paradigm for software data layer design and implementation was introduced in this
paper. The concept of the proposed approach was described at a general level to open new
research fields leading to the implementation of the paradigm in different technologies. Such
implementations will be presented in further research publications expanding the CDMM-P
approach to the Java EE platform.

This paradigm can be used both for enterprise systems’ data layer design and
implementation and for the construction of modeling languages.

Finally, it is worth underlining that the concept of the paradigm CDMM-P proposed here
is based upon the open ontology approach.

All diagrams were prepared with the help of Visual Paradigm UML modeling tool according to the
Academic Partner Program agreement signed with Cracow University of Technology.
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