TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE

FUNDAMENTAL SCIENCES NAUKI PODSTAWOWE

3-NP/2014

MAGDALENA GRZECH*

A NEW APPROACH TO BOUNDED LINEAR OPERATORS ON $C(\omega^*)$

DOMKNIETE OPERATORY PRZESTRZENI $C(\omega^*)$ Z NOWEJ PERSPEKTYWY

Abstract

We discuss recent results on the connection between properties of a given bounded linear operator of $C(\omega^*)$ and topological properties of some subset of ω^* which the operator determines. A family of closed subsets of ω^* , which codes some properties of the operator is defined. An example of application of the method is presented.

Keywords: retraction, projection, ultrafilter, Cech-Stone compactification

Streszczenie

Artykuł przedstawia metodę badania własności ograniczonego operatora liniowego na $C(\omega^*)$ poprzez badanie własności pewnej rodziny domkniętych pozbiorów ω* wyznaczonej przez ten operator. Przedstawiony został przykład zastosowania tej metody w przypadku projekcji.

Słowa kluczowe: retrakcja, projekcja, ultrafiltr, Cech-Stone compactification

The author is responsible for the language in all paper.

Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Poland; magdag@pk.edu.pl.

6

The Greek letter ω denotes the set of all natural numbers. We use the symbol *fin* for the ideal of finite subsets of ω . For $A, B \subseteq \omega$, the expression $A \subseteq *B$ denotes the relation $B \setminus A \in fin$; similarly A = *B if and olny if $A \div B \in fin$. The space $\omega^* = \beta[\omega] \setminus \omega$ is the growth (Čech-Stone compactification) of the discrete topological space ω . If $A \in P(\omega)/fin$, A^* is the set $A^{\beta[\omega]} \setminus A$. The space ω^* can be viewed as the space of all non-principal ultrafilters on ω . It is well known that $B(\omega^*)$, the algebra of all clopen subsets of ω^* , is isomorphic to $P(\omega)/fin$ (cf. [1]). Thus, for $A, B \in P(\omega)$, the condition A = *B is equivalent to $A^* = B^*$. An antichain in $B(\omega^*)$ is a family of pairwise disjoint subsets of ω^* . Recall that a set $A \subseteq \omega^*$ is said to have *ccc* (*countable chain condition*) if for every antichain $\{U_{\alpha}: \alpha \in I\} \subseteq B(\omega^*)$, there exists a finite or countable set $I_0 \subseteq I$ such that $A \cap U_{\alpha} = \emptyset$ for all $\alpha \in II_0$.

The space $C(\omega^*)$ consists of all continuous real-valued. functions on ω^* and it can be regarded as l_{ω}/c_0 i.e. the quotient space of l_{ω} by the following equivalence relation:

for
$$f_1, f_2 \in l_{\infty}, f_1 \approx f_2$$
 iff $\lim_{n \to \infty} (f_1(n) - f_2(n)) = 0$

Let f^* denote the equivalence class determined by f. Note that for $f_1, f_2 \in l_{\infty}$, we have $f_1 \approx f_2$ iff $f_1|\omega^* \approx f_2|\omega^*$, where $f_i: \beta[\omega] \to |\mathbb{R}$ is a continuous extension of $f_i(i = 1, 2)$. Thus, $f^* = f|\omega^*$. An equivalent definition of the (classical) norm on l_{∞}/c_0 is following:

$$||f^*||_* = \sup \{\lim_n |f|: p \in \omega^*\}$$

where the symbol $\lim_{p} |f|$ denotes, for an ultrafilter p, the limit to which a sequence $\{|f(n)|: n \in \omega\}$ converges with respect to the ultrafilter p. Thus, $C(\omega^*)$, equipped with the supremum norm, is isometric to $(l_{\omega}/c_{\omega} || . ||_{*})$.

The domain of function f is denoted by dom f, the range by ran f; supp f is the closure of the set of all elements $p \in \text{dom } f$, such that $f(p) \neq 0$.

The space $C(\omega^*)$. It is appropriate to recap on some elemetary properties of functions in space $C(\omega^*)$. Let $f: \omega^* \otimes |R|$. (To simplify notation, the sign * will be omitted):

- For every $r \in |\mathsf{R}$, the preimage $f^{-1}(r)$ is a closed G_{δ} set,
- If $f^{-1}(r) \neq \emptyset$, then int $f^{-1}(r) \neq \emptyset$,
- For arbitrary $\varepsilon > 0$, there exist clopen sets $U_1, U_2, ..., U_n \in B(\omega^*)$ and reals $r_1, r_2, ..., r_n$ such that;

$$\|f - \sum_{i \in \{1, \dots, n\}} r_i \chi U_i\| < \varepsilon,$$

where χU_{i} denotes the characteristic function of U_{i} .

Bounded linear operators on $C(\omega^*)$. Assume that $T: C(\omega^*) \to C(\omega^*)$ is linear and bounded, and its norm is equal to M.

Fix an ultrafilter $q \in \omega^*$ and define:

$$\mathcal{N}_{a} = \{ U \in \boldsymbol{B}(\omega^{*}) \colon V \forall \in \boldsymbol{B}(\omega^{*}) \; V \subseteq U \Rightarrow T(\boldsymbol{\chi}_{v})(q) = 0 \}, \; S_{a} = \omega^{*} \setminus \mathcal{N}_{a}.$$

 \mathcal{N}_q is an open set. Consider S_q . It is closed (by definition) and nowhere dense. To show this suppose that $int(S_q) \neq \emptyset$ and argue to a contradiction.

Let $U \in \mathbf{B}(\omega^*)$ and $U \subseteq int(S_q)$. Consider a family of pairwise disjoint sets $V_{\alpha} \subseteq U, \alpha < \omega_1$. By definition of S_q , for every $\alpha < \omega_1$ there exists $W_{\alpha} \subseteq V_{\alpha}, W_{\alpha} \in \mathbf{B}(\omega^*)$ such that $T(\chi_{W\alpha})(q) \neq 0$. Thus, for some $\varepsilon > 0$ there exists an uncountable set $\Gamma \subseteq \omega_1$ with:

$$\forall \alpha \in \Gamma |T(\chi_{W\alpha})(q)| > 0.$$

Moreover, we may assume that all the $T(\chi_{w\alpha})(q)$ are positive (or negative). Fix $k \in \omega$ such that $k \ge (M/\varepsilon) + 1$ and a finite set $\Gamma_0 \subseteq \Gamma$ which contains at least k elements. Since T is linear, it follows that:

$$|T(\sum_{\alpha \in \Gamma_0} \chi_{W\alpha})(q)| = |\sum_{\alpha \in \Gamma_0} T(\chi_{W\alpha})(q)| \ge k\varepsilon > \varepsilon \left[(M/\varepsilon) + 1 \right] > M,$$

this contradicts the assumption that *M* is the norm of *T*.

In a similar way we show that S_a has the c.c.c. **Lemma 1** Suppose that $f \in \mathbb{C}(\omega^*)$ and supp $f \cap S_q = \emptyset$. Then T(f)(q) = 0. **Proof.** Suppose that this is not true. Then, since \hat{T} is continuous, there exist clopen sets U_1 , $U_2, ..., U_n \subseteq$ supp f and reals $r_1, r_2, ..., r_n$ such that:

$$\|f - \sum_{i \in \{1, \dots, n\}} r_i \chi_{Ui}\| < \varepsilon,$$

for $\varepsilon < |T(f)|(q)/(2M)$. It follows that;

$$|T(f - \sum_{i \in \{1, ..., n\}} r_i \chi_{U_i})| < |T(f)|(q)/2$$

thus $|T(\sum_{i \in \{1, ..., n\}} r_i \chi_{U_i})| > |T(f)|(q)/2$. So, there exists $i \le n$ such that $|T(\chi_{U_i}) q)| > 0$. Therefore $U_i \setminus \mathcal{N}_q \neq \emptyset$. But it implies that $\emptyset \neq S_q \cap U_i \subseteq S_q \cap \text{supp } f = \emptyset$, a contradiction.

Note that the condition T(f)(q) = 0 does not imply that $S_q \cap \operatorname{supp} f = \emptyset$. Now an example of application of the notion S_a is presented.

Projections of $C(\omega^*)$ and retractions of ω^* . Assume that r: $\omega^* \otimes F \subseteq \omega^*$ is a retraction (i.e. r is continuous and $\mathbf{r} \circ \mathbf{r} = \mathbf{r}$). Recall how to define a projection P: $\mathbf{C}(\omega^*) \rightarrow V$ (i.e. a bounded linear operator such that $\mathbf{P} \circ \mathbf{P} = \mathbf{P}$) by using \mathbf{r} (cf. [2]). For $f \in \mathbf{C}(\omega^*)$, $q \in \omega^*$ put:

$$\mathbf{P}(f)(q) = f(\mathbf{r}(q))$$

P is linear and for every $f \neq \mathbf{C}(\omega^*)$, $\|\mathbf{P}(f)\| \leq ||f||$, thus **P** is bounded. Moreover:

$$\mathbf{P}(\mathbf{P}(f))(q) = \mathbf{P}(f)(\mathbf{r}(q)) = f(\mathbf{r}(\mathbf{r}(q))) = f(\mathbf{r}(q)) = \mathbf{P}(f)(q).$$

A retraction of ω^* induces a projection of $C(\omega^*)$. One can ask if a projection determines a retraction. In order to (partially) answer this question, an equivalence relation on ω^* can be defined:

$$p, q \in \omega^*, p \approx q$$
 iff for all $U \in \mathbf{B}(\omega^*), \mathbf{P}(\chi_U)(q) = \mathbf{P}(\chi_U)(p).$

Note that:

• if $p \approx q$ then $S_p = S_q$,

• the equivalence class $[p] = \bigcup_{U \in B(\omega^*)} (\mathbf{P}(\chi_U))^{-1} (\{P(\chi_U)(p)\})$ is a closed subset of ω^* . **Theorem 1** Assume that $\mathbf{P}: \mathbf{C}(\omega^*) \to V$ is a projection and the following assertion is satisfied:

for each $p \in \omega^*$ there exists $q_p \in [p]$ such that $S_p = \{q_p\}$.

Then $\mathbf{r}: \omega^* \ni p \to q_p \in \bigcup_{p \in \omega^*} S_p$ is a retraction.

Proof. Since $q_p \approx p$, $S_q = S_p = \{q_p\}$ and $r(q_p) = q_p$. Therefore $\mathbf{r} \circ \mathbf{r} = \mathbf{r}$. We shall show that \mathbf{r} is continuous. Let \tilde{U} be an open subset of $\mathbf{U}_{p \in \omega^*} S_p$. Fix $q_p \in \tilde{U}$. Thus, there exists a U open subset of ω^* and $V \in \mathbf{B}(\omega^*)$ such that $U \cap \mathbf{U}_{p \in \omega^*} S_p$ and $q_p \in V \subseteq U$.

Since $S_{ap} = \{q_p\}$, it follows that $\mathbf{P}(\chi_v)(q_p) = x_p \neq 0$. Assume that for some $s \in \omega$, $\mathbf{P}(\chi_v)(q_p) = x_p \neq 0$. Thus, $\{q_p\} \cap V = S_{qp} \cap V$, which implies that $q_s \in V$.

We showed that $q_s \in V \Rightarrow P(\chi_v)(q_s) \neq 0$. Put $W = (P(f))^{-1}(|\mathbb{R} \setminus \{0\})$. W is open and $r(W) \subseteq V \cap \bigcup_{p \in \omega^*} S_p$. This finishes the proof.

References

- [1] Comfort W.W., Negrepontis S., *The theory of ultrfilters*, Springer Verlag, New York 1974.
- [2] Drewnowski L., Roberts J.W., On the primariness of the Banach space l_∞/c₀, Proc. Amer. Math. Soc. 112, 1991.
- [3] Negrepontis S., *The Stone space of the saturated Boolean algebras*, Trans. Amer. Math. Soc. 13, 1981.
- [4] Pełczyński A., Projections in certain Banach spaces, Studia Math. 19, 1960.
- [5] Todorcevic S., *Partition problems in topology*, Contemporary Mathematics 84, Amer. Math. Soc., Providence, 1989.