A NEW APPROACH TO BOUNDED LINEAR OPERATORS ON $C\left(\omega^{*}\right)$

DOMKNIĘTE OPERATORY PRZESTRZENI $C\left(\omega^{*}\right)$ Z NOWEJ PERSPEKTYWY

Abstract

We discuss recent results on the connection between properties of a given bounded linear operator of $C\left(\omega^{*}\right)$ and topological properties of some subset of ω^{*} which the operator determines. A family of closed subsets of ω^{*}, which codes some properties of the operator is defined. An example of application of the method is presented.

Keywords: retraction, projection, ultrafilter, Cech-Stone compactification

Streszczenie

Artykuł przedstawia metodę badania własności ograniczonego operatora liniowego na $C\left(\omega^{*}\right)$ poprzez badanie własności pewnej rodziny domkniętych pozbiorów ω^{*} wyznaczonej przez ten operator. Przedstawiony został przykład zastosowania tej metody w przypadku projekcji.

Słowa kluczowe: retrakcja, projekcja, ultrafiltr, Cech-Stone compactification
The author is responsible for the language in all paper.

[^0]The Greek letter ω denotes the set of all natural numbers. We use the symbol fin for the ideal of finite subsets of ω. For $A, B \subseteq \omega$, the expression $A \subseteq{ }^{*} B$ denotes the relation $B \backslash A \in$ fin; similarly $A={ }^{*} B$ if and olny if $A \div B \in$ fin. The space $\omega^{*}=\beta[\omega] \backslash \omega$ is the growth (Čech-Stone compactification) of the discrete topological space ω. If $A \in P(\omega) / f i n, A^{*}$ is the set $A^{\beta[\omega]} \backslash A$. The space ω^{*} can be viewed as the space of all non-principal ultrafilters on ω. It is well known that $\boldsymbol{B}\left(\omega^{*}\right)$, the algebra of all clopen subsets of ω^{*}, is isomorphic to $P(\omega) /$ fin (cf. [1]). Thus, for $A, B \in P(\omega)$, the condition $A={ }^{*} B$ is equivalent to $A^{*}=B^{*}$. An antichain in $\boldsymbol{B}\left(\omega^{*}\right)$ is a family of pairwise disjoint subsets of ω^{*}. Recall that a set $A \subseteq \omega^{*}$ is said to have $\boldsymbol{c c c}$ (countable chain condition) if for every antichain $\left\{U_{\alpha}: \alpha \in \boldsymbol{I}\right\} \subseteq \boldsymbol{B}\left(\omega^{*}\right)$, there exists a finite or countable set $\boldsymbol{I}_{0} \subseteq \boldsymbol{I}$ such that $A \cap U_{\alpha}=\varnothing$ for all $\alpha \in \boldsymbol{I} \boldsymbol{I}_{0}$.

The space $C\left(\omega^{*}\right)$ consists of all continuous real-valued. functions on ω^{*} and it can be regarded as l_{∞} / c_{0} i.e. the quotient space of l_{∞} by the following equivalence relation:

$$
\text { for } f_{1}, f_{2} \in l_{\infty}, f_{1} \approx * f_{2} \quad \text { iff } \lim \quad{ }_{n \rightarrow \infty}\left(f_{1}(n)-f_{2}(n)\right)=0
$$

Let f * denote the equivalence class determined by f. Note that for $f_{1}, f_{2} \in l_{\infty}$, we have $f_{1} \approx * f_{2}$ $\operatorname{iff} f_{1}\left|\omega^{*} \approx * f_{2}\right| \omega^{*}$, where $f_{i}: \beta[\omega] \rightarrow \mathbb{R}$ is a continuous extension of $f_{i}(i=1,2)$. Thus, $f^{*}=f \mid \omega^{*}$. An equivalent definition of the (classical) norm on l_{∞} / c_{0} is following:

$$
\left\|f^{*}\right\|_{*}=\sup \left\{\lim _{p}|f|: p \in \omega^{*}\right\}
$$

where the symbol $\lim _{p}|f|$ denotes, for an ultrafilter p, the limit to which a sequence $\{|f(n)|$: $n \in \omega\}$ converges with respect to the ultrafilter p. Thus, $C\left(\omega^{*}\right)$, equipped with the supremum norm, is isometric to $\left(l_{\infty} / c_{0},\|\cdot\|_{*}\right)$.

The domain of function f is denoted by dom f , the range by $\operatorname{ran} f ; \operatorname{supp} \mathrm{f}$ is the closure of the set of all elements $p \in \operatorname{dom} f$, such that $f(p) \neq 0$.

The space $\mathbf{C}\left(\omega^{*}\right)$. It is appropriate to recap on some elemetary properties of functions in space $C\left(\omega^{*}\right)$. Let $f: \omega^{*} ® \mid$ R. (To simplify notation, the sign * will be omitted):

- For every $r \in \mid \mathrm{R}$, the preimage $f^{-1}(r)$ is a closed G_{δ} set,
- If $f^{1}(r) \neq \varnothing$, then int $f^{1}(r) \neq \varnothing$,
- For arbitrary $\varepsilon>0$, there exist clopen sets $U_{1}, U_{2}, \ldots, U_{n} \in \boldsymbol{B}\left(\omega^{*}\right)$ and reals $r_{1}, r_{2}, \ldots, r_{n}$ such that;

$$
\left\|f-\Sigma_{i \in\{1, \ldots, n\}} r_{i} \chi U_{i}\right\|<\varepsilon,
$$

where χU_{i} denotes the characteristic function of U_{i}.
Bounded linear operators on $\mathbf{C}\left(\omega^{*}\right)$. Assume that $T: C\left(\omega^{*}\right) \rightarrow C\left(\omega^{*}\right)$ is linear and bounded, and its norm is equal to M.

Fix an ultrafilter $q \in \omega^{*}$ and define:

$$
\mathcal{N}_{q}=\left\{U \in \boldsymbol{B}\left(\omega^{*}\right): V \forall \in \boldsymbol{B}\left(\omega^{*}\right) V \subseteq U \Rightarrow T\left(\chi_{V}\right)(q)=0\right\}, S_{q}=\omega^{*} \backslash \mathcal{N}_{q} .
$$

\mathcal{N}_{q} is an open set. Consider S_{q}. It is closed (by definition) and nowhere dense. To show this suppose that $\operatorname{int}\left(S_{q}\right) \neq \varnothing$ and argue to a contradiction.

Let $U \in \boldsymbol{B}\left(\omega^{*}\right)$ and $U \subseteq \operatorname{int}\left(S_{q}\right)$. Consider a family of pairwise disjoint sets $V_{\alpha} \subseteq U, \alpha<\omega_{1}$. By definition of S_{q}, for every $\alpha<\omega_{1}$ there exists $W_{\alpha} \subseteq V_{\alpha}, W_{\alpha} \in \boldsymbol{B}\left(\omega^{*}\right)$ such that $T\left(\chi_{W_{\alpha}}\right)(q) \neq 0$. Thus, for some $\varepsilon>0$ there exists an uncountable set $\Gamma \subseteq \omega_{1}$ with:

$$
\forall \alpha \in \Gamma\left|T\left(\chi_{\mathrm{w} \alpha}\right)(q)\right|>0 .
$$

Moreover, we may assume that all the $T\left(\chi_{\mathrm{w} \alpha}\right)(q)$ are positive (or negative). Fix $k \in \omega$ such that $k>(M / \varepsilon)+1$ and a finite set $\Gamma_{0} \subseteq \Gamma$ which contains at least k elements. Since T is linear, it follows that:

$$
\left.\mid T\left(\Sigma_{\alpha \in \Gamma 0} \chi_{W \alpha}\right\}\right)(q)\left|=\left|\Sigma_{\alpha \in \Gamma 0} T\left(\chi_{W \alpha}\right)(q)\right| \geq k \varepsilon>\varepsilon[(M / \varepsilon)+1]>M,\right.
$$

this contradicts the assumption that M is the norm of T.
In a similar way we show that S_{q} has the c.c.c.
Lemma 1 Suppose that $f \in \mathbf{C}\left(\omega^{*}\right)$ and $\operatorname{supp} f \cap S_{q}=\varnothing$. Then $T(f)(q)=0$.
Proof. Suppose that this is not true. Then, since T is continuous, there exist clopen sets U_{1}, $U_{2}, \ldots, U_{n} \subseteq \operatorname{supp} \mathrm{f}$ and reals $r_{1}, r_{2}, \ldots, r_{n}$ such that:

$$
\left\|f-\Sigma_{i \in\{1, \ldots, \ldots\}} r_{i} \chi_{U i}\right\|<\varepsilon,
$$

for $\varepsilon<|T(f)|(q) /(2 M)$. It follows that;

$$
\mid T\left(f-\Sigma_{i \in\{1, \ldots, n\}} r_{i} \chi_{U i}|<|T(f)|(q) / 2\right.
$$

thus $\left|T\left(\Sigma_{i \in\{1, \ldots, n\}} r_{i} \chi_{U i}\right)\right|>|T(f)|(q) / 2$. So, there exists $i \leq n$ such that $\left.\mid T\left(\chi_{U i}\right) q\right) \mid>0$. Therefore $U_{i} \backslash \mathcal{N}_{q} \neq \varnothing$. But it implies that $\varnothing \neq S_{q} \cap U_{i} \subseteq S_{q} \cap \operatorname{supp} f=\varnothing$, a contradiction.

Note that the condition $T(f)(q)=0$ does not imply that $S_{q} \cap \operatorname{supp} f=\varnothing$. Now an example of application of the notion S_{q} is presented.

Projections of $C\left(\omega^{*}\right)$ and retractions of ω^{*}. Assume that r: $\omega^{*} ® F \subseteq \omega^{*}$ is a retraction (i.e. r is continuous and $\mathbf{r}^{\circ} \mathbf{r}=\mathbf{r}$). Recall how to define a projection $P: \mathbf{C}\left(\omega^{*}\right) \rightarrow V$ (i.e. a bounded linear operator such that $\mathbf{P}^{\circ} \mathbf{P}=\mathbf{P}$) by using \mathbf{r} (cf. [2]). For $f \in \mathbf{C}\left(\omega^{*}\right), q \in \omega^{*}$ put:

$$
\mathbf{P}(f)(q)=f(\mathrm{r}(q) .
$$

\mathbf{P} is linear and for every $f \neq \mathbf{C}\left(\omega^{*}\right),\|\mathbf{P}(f)\| \leq \backslash$ leq $\|f\|$, thus \mathbf{P} is bounded. Moreover:

$$
\mathbf{P}(\mathbf{P}(f))(q)=\mathbf{P}(f)(\mathrm{r}(q))=f(\mathbf{r}(\mathbf{r}(q)))=f(\mathbf{r}(q))=\mathbf{P}(f)(q) .
$$

A retraction of ω^{*} induces a projection of $\mathbf{C}\left(\omega^{*}\right)$. One can ask if a projection determines a retraction. In order to (partially) answer this question, an equivalence relation on ω^{*} can be defined:

$$
p, q \in \omega^{*}, p \approx q \text { iff for all } U \in \mathbf{B}\left(\omega^{*}\right), \mathbf{P}\left(\chi_{U}\right)(q)=\mathbf{P}\left(\chi_{U}\right)(p) .
$$

Note that:

- if $p \approx q$ then $S_{p}=S_{q}$,
- the equivalence class $[p]=\mathbf{U}_{U \in \boldsymbol{B}\left(\omega^{*}\right)}\left(\mathbf{P}\left(\chi_{U}\right)\right)^{-1}\left(\left\{P\left(\chi_{U}\right)(p)\right\}\right)$ is a closed subset of ω^{*}.

Theorem 1 Assume that $\mathbf{P}: \mathbf{C}\left(\omega^{*}\right) \rightarrow V$ is a projection and the following assertion is satisfied:

$$
\text { for each } p \in \omega^{*} \text { there exists } q_{p} \in[p] \text { such that } S_{p}=\left\{q_{p}\right\} .
$$

Then $\mathbf{r}: \omega^{*} \ni p \rightarrow q_{p} \in \cup_{p \in \omega^{*}} S_{p}$ is a retraction.
Proof. Since $q_{p} \approx p, S_{q}=S_{p}=\left\{q_{p}\right\}$ and $\mathrm{r}\left(q_{p}\right)=q_{p}$. Therefore $\mathbf{r}{ }^{\circ} \mathbf{r}=\mathbf{r}$.
We shall show that r is continuous. Let \tilde{U} be an open subset of $\mathbf{U}_{p \in \omega^{*}} S_{p}$. Fix $q_{p} \in \tilde{U}$. Thus, there exists a U open subset of ω^{*} and $V \in \mathbf{B}\left(\omega^{*}\right)$ such that $U \cap \mathbf{U}_{p \in \omega^{*}} S_{p}$ and $q_{p} \in V \subseteq U$.

Since $S_{q p}=\left\{q_{p}\right\}$, it follows that $\mathbf{P}\left(\chi_{V}\right)\left(q_{p}\right)=x_{p} \neq 0$. Assume that for some $s \in \omega, \mathrm{P}\left(\chi_{V}\right)\left(q_{p}\right)=x_{p} \neq 0$. Thus, $\left\{q_{p}\right\} \cap V=S_{q p} \cap V$, which implies that $q_{s} \in V$.

We showed that $q_{s} \in V \Rightarrow P\left(\chi_{V}\right)\left(q_{s}\right) \neq 0$. Put $W=(P(f))^{-1}(\mid \mathbf{R} \backslash\{0\})$. W is open and $r(W) \subseteq$ $V \cap \mathbf{U}_{p \in \omega^{*}} S_{p}$. This finishes the proof.

References

[1] Comfort W.W., Negrepontis S., The theory of ultrfilters, Springer Verlag, New York 1974.
[2] Drewnowski L., Roberts J.W., On the primariness of the Banach space l_{∞} / c_{0}, Proc. Amer. Math. Soc. 112, 1991.
[3] Negrepontis S., The Stone space of the saturated Boolean algebras, Trans. Amer. Math. Soc. 13, 1981.
[4] Pełczyński A., Projections in certain Banach spaces, Studia Math. 19, 1960.
[5] Todorcevic S., Partition problems in topology, Contemporary Mathematics 84, Amer. Math. Soc., Providence, 1989.

[^0]: * Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Poland; magdag@pk.edu.pl.

