TECHNICAL TRANSACTIONS FUNDAMENTAL SCIENCES 3-NP/2014

MAGDALENA GRZECH*

SOME REMARKS ON NON-SEPARABLE GAPS IN $\boldsymbol{P}(\omega) / \boldsymbol{F} \boldsymbol{N}$

KILKA UWAG O LUKACH HAUSDORFFA I AUTOMORFIZMACH $P(\omega) / F I N$

Abstract

The Hausdorff gap is the well known example of a non-separable, increasingly ordered gap in $P(\omega) / f i n$. In this paper new construction of a non-separable gap in $P(\omega) / f i n$ is presented.

Keywords: Boolean algebra, Cech-Stone compactification, gap

Streszczenie

W artykule została przedstawiona nowa konstrukcja nierozdzielalnej luki w $P(\omega) / f i n$.
Stowa kluczowe: algebra Boole 'a, uzwarcenie Cecha-Stone'a, luka

The author is responsible for the language in all paper.

[^0]Boolean algebra $P(\omega) /$ /fin plays an important role in the foundations of mathematics. Many mathematical problems can be reduced to questions on properties of $P(\omega) /$ /fin. Notion, which is frequently used in investigation concerning $P(\omega) /$ fin is the notion of gap (cf. [1], [4]).

Let us begin by reviewing some basic facts and definitions. By ω the set of all natural numbers is denoted. The symbol fin stands for the ideal of all finite subsets of ω. The ideal determines the following equivalence relation:

$$
\text { For } A, B \subseteq \omega, A==_{*} B \text { if and only if } A \div B \in \text { fin. }
$$

$P(\omega) /$ fin is its factor algebra. An order in $P(\omega) /$ fin is defined as usual, namely:

$$
A \subseteq_{*} B \text { iff } A \backslash B \in \text { fin. }
$$

Let λ, κ be cardinals. A gap of type $\lambda, \kappa)$ in the $P(\omega) /$ fin is a pair:

$$
\left(\left\{A_{\gamma}: \gamma<\lambda\right\},\left\{B_{\beta}: \beta<\kappa\right\}\right)
$$

of subsets of $P(\omega) /$ fin such that $A_{\gamma} \cap B_{\beta}={ }_{*} \varnothing$. If for every $\gamma_{1}<\gamma_{2}<\lambda, \beta_{1}<\beta_{2}<\kappa A_{\gamma 1} \subseteq_{*} A_{\gamma^{2}}$ and $B_{\beta 1} \subseteq_{*} B_{\beta 2}$, the gap is said to be increasingly ordered. An element $C \subseteq \omega$ fills (separates) the gap if $A_{\gamma} \subseteq_{*} C$ and $B_{\beta} \cap C={ }_{*} \varnothing$ for every $\gamma<\lambda, \beta<\kappa$. If there is no such an element, the gap is called non-separable. One can ask gaps of what type exist in $P(\omega) /$ fin.

A research concerning gaps in (ω)/fin is an important and deep line of investigation. Let us recall basic facts. It is easily proved that there are no non-separable gaps of type (ω, ω). On the other hand Hausdorff constructed a non-separable gap of type (ω_{1}, ω_{1}) (cf. [2]). This gap, say $\mathcal{L}=\left(\left\{X_{\alpha}: \alpha<\omega_{1}\right\},\left\{Y_{\beta}: \beta<\omega_{1}\right\}\right)$, is increasingly ordered and $\left\{\gamma<\beta: \max X_{\gamma} \cap Y_{\beta}<k\right\}$ is finite for every $\beta<\omega_{1}$ and $k \in \omega$.

Under CH (the Continuum Hypothesis), there exist only gaps of type (ω_{1}, ω_{1}). If $2^{\omega}>$ ω_{1} and MA (the Martin Axiom) holds the each increasingly ordered gap f type λ, κ) with λ, $\kappa<2^{\omega}, \lambda \neq \omega_{1}$ or $\kappa \neq \omega_{1}$ is separated ([5]).

The smallest cardinal number for which there exists a non-separable gap in $P(\omega) / f i n$ is the bounding number \mathbf{b} (cf. [6]). Remind that \mathbf{b} is the size of the smallest unbounded family in ω^{ω} equipped with the following order: for $f, g \in \omega^{\omega}, f \leq_{*} g$ iff $\{n: f(n)>g(n)\} \in$ fin.

We present another construction of an (unordered) gap of type ($2^{\omega}, 2^{\circ}$). The set F consist of all finite sequences $\underline{\boldsymbol{\varepsilon}}=\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ such that:

$$
\varepsilon_{0}=0, \varepsilon_{2 n+1}=2 \text { and } \varepsilon_{2 n+2} \in\{0,1\}, n \in \omega .
$$

Let

$$
F_{n}=\{\underline{\varepsilon} \in F: \ell(\underline{\varepsilon}) \leq 2 n\}
$$

and

$$
F_{\mathrm{e}}=\{\underline{\varepsilon} \in F: \ell(\underline{\boldsymbol{\varepsilon}})=2 n \text { for some } n \in \omega\} .
$$

Divide ω into two disjoint, infinite subsets X and Y and fix two functions f and g such that:
(*) $f: F \rightarrow X$ is a bijection and if $\underline{\varepsilon} \subseteq \rho$ then $f(\underline{\varepsilon}) \leq f(\rho)$.
(**) $g: F_{e} \times F_{e} \rightarrow Y$ is an injection and if $\underline{\varepsilon}^{1} \subseteq \varrho^{1}, \underline{\varepsilon}^{2} \subseteq \varrho^{2}$ then

$$
g\left(\underline{\boldsymbol{\varepsilon}}^{1}, \underline{\boldsymbol{\varepsilon}}^{2}\right) \leq g\left(\boldsymbol{\rho}^{1}, \boldsymbol{\rho}^{2}\right) .
$$

We define two families of finite subsets $\{A(\underline{\varepsilon}): \underline{\varepsilon} \in F\},\{B(\underline{\varepsilon}): \underline{\varepsilon} \in F\}$ by induction on the lenght of $\underline{\varepsilon}$.

For $\underline{\varepsilon}$ such that $\ell(\underline{\varepsilon})=1$ or $\ell(\underline{\varepsilon})=2$ put $A(\underline{\varepsilon})=B(\underline{\varepsilon})=\varnothing$.
Assume that $\ell(\underline{\varepsilon})=3,4$. Then:

$$
\begin{gathered}
A_{(0,2,0)}=\{f((0)), f((0,2)), f((0,2,0))\}, A_{(0,2,1)}=\{f((0)), f((0,2)), f((0,2,1))\}, \\
B_{(0,2,0)}=\{f((0,2,1))\}, B_{(0,2,1)}=\{f((0,2,0))\}, \\
A_{(0,2,0,2)}=A_{(0,2,0)} \cup\{f((0,2,0,2))\}, A_{(0,2,1,2)}=A_{(0,2,1)} \cup\{f((0,2,1,2))\} \\
B_{(0,2,0,2)}=B_{(0,2,0)} \cup\{g((0,2,1,2),(0,2,0,2))\}, B_{(0,2,1,2)}=B_{(0,2,1)} \cup\{g((0,2,1,2),(0,2,0,2))\}
\end{gathered}
$$

Assume inductively that for $n \geq 2$, we have defined families $\left\{A(\underline{\varepsilon}): \underline{\varepsilon} \in F_{\mathrm{n}}\right\}$ and $\{B(\underline{\boldsymbol{\varepsilon}})$: $\left.\underline{\varepsilon} \in F_{n}\right\}$ satisfying the following conditions:

1. $A(\underline{\varepsilon}) \cap B(\underline{\varepsilon})=\varnothing$ for every $\underline{\varepsilon} \in F_{n}$.
2. If $\underline{\varepsilon}, \boldsymbol{\rho} \in F_{n}$ and $\underline{\varepsilon}(k) \neq \boldsymbol{\rho}(k)$, for some $k \leq 2 n$, then

$$
A(\underline{\boldsymbol{\varepsilon}}) \cap B(\underline{\mathbf{\rho}}) \neq \varnothing \text { and } B(\underline{\varepsilon}) \cap A(\underline{\mathbf{\rho}}) \neq \varnothing .
$$

3. If $\underline{\varepsilon}, \underline{\rho} \in F_{n}$ and $\underline{\varepsilon} \subseteq \rho$, then $A(\underline{\varepsilon}) \subseteq A(\underline{\rho})$ and $B(\underline{\varepsilon}) \subseteq B(\underline{\rho})$.
4. If $\underline{\varepsilon}, \underline{\rho} \in F_{n}$ and $\underline{\varepsilon}(k) \neq \underline{\rho}(k)$, let $\boldsymbol{\rho}=\min \{k: \underline{\varepsilon}(k) \neq \boldsymbol{\rho}(k)\}$. Then $\max A(\underline{\boldsymbol{\varepsilon}}) \cap B(\underline{\rho})=f\left(\left.\underline{\varepsilon}\right|_{f}\right)$, max
$B(\underline{\varepsilon}) \cap B(\underline{\rho})=f\left(\left.\underline{\varepsilon}\right|_{\epsilon-1}\right), \max A(\underline{\varepsilon}) \cap A(\underline{\rho})=f\left(\left.\underline{\varepsilon}\right|_{\epsilon-1}\right)$.
For $\underline{\varepsilon} \in F_{n}$ put:

$$
\begin{aligned}
& A\left(\underline{\varepsilon}^{\wedge} 0\right)=A(\underline{\varepsilon}) \cup\left\{f\left(\underline{\varepsilon}^{\wedge} 0\right)\right\}, A\left(\underline{\varepsilon}^{\wedge} 1\right)=A(\underline{\varepsilon}) \cup\left\{f\left(\underline{\varepsilon}^{\wedge} 1\right)\right\}, \\
& B\left(\underline{\varepsilon}^{\wedge} 0\right)=B(\underline{\varepsilon}) \cup\left\{f\left(\underline{\varepsilon}^{\wedge} 1\right)\right\}, B\left(\underline{\varepsilon}^{\wedge} 1\right)=B(\underline{\varepsilon}) \cup\left\{f\left(\underline{\varepsilon}^{\wedge} 1\right)\right\}, \\
& A\left(\underline{\varepsilon}^{\wedge} 02\right)=A\left(\underline{\varepsilon}^{\wedge} 0\right) \cup\left\{f\left(\underline{\varepsilon}^{\wedge} 02\right)\right\}, A\left(\underline{\varepsilon}^{\wedge} 12\right)=A\left(\underline{\varepsilon}^{\wedge} 1\right) \cup\left\{f\left(\underline{\varepsilon}^{\wedge} 12\right)\right\}, \\
& B\left(\underline{\varepsilon}^{\wedge} 02\right)=B\left(\underline{\varepsilon}^{\wedge} 0\right) \cup\left\{g\left(\underline{\varepsilon}^{\wedge} 02, \underline{\varepsilon}^{\wedge} 12\right)\right\}, B\left(\underline{\varepsilon}^{\wedge} 12\right)=B\left(\underline{\varepsilon}^{\wedge} 1\right) \cup\left\{g\left(\underline{\varepsilon}^{\wedge} 02, \underline{\varepsilon}^{\wedge} 12\right)\right\} .
\end{aligned}
$$

It is obvious that the family F_{n+1} satisfies conditions (1) and (3).
For (2), let $\underline{\rho}, \underline{\boldsymbol{\varepsilon}} \in F_{\mathrm{n}+1}$. If $\ell(\underline{\rho})=\ell(\underline{\varepsilon})$ or $\ell(\underline{\rho})=2 n+1, \ell(\underline{\boldsymbol{\varepsilon}})=2 n+2$, the condition follows from the definition. Suppose that $\ell(\underline{\rho})=k<2 n+1 \leq \ell(\underline{\boldsymbol{\varepsilon}})$. Let $\boldsymbol{l}=\min \left\{k: \underline{\boldsymbol{\varepsilon}}_{k} \neq \underline{\varrho}_{k}\right\}$. Then $\underline{\boldsymbol{\sigma}}=\underline{\boldsymbol{\varepsilon}} \boldsymbol{l}=\boldsymbol{\rho} \mid \boldsymbol{l}$ and $\left.\varnothing \neq A(\underline{\boldsymbol{\sigma}})^{\wedge} \boldsymbol{\rho}_{\boldsymbol{1}}\right) \cap B\left(\underline{\boldsymbol{\sigma}}^{\wedge} \underline{\boldsymbol{\varepsilon}}_{\boldsymbol{l}}\right)=A(\boldsymbol{\rho}) \cap B(\underline{\boldsymbol{\varepsilon}})$. (The remaining cases can be checked in the same way.)

To check the assumption (4), note that $A\left(\underline{\varepsilon}^{\wedge} i\right) \cap B\left(\underline{\varepsilon}^{\wedge} j\right)=A\left(\underline{\varepsilon}^{\wedge} i 2\right) \cap B\left(\underline{\varepsilon}^{\wedge} j 2\right)$, for i, $j \in\{0,1\}, i \neq j$. Since f satisfies the condition $\left(^{*}\right)$, it follows that $\max A\left(\underline{\varepsilon}^{\wedge} i\right) \cap B\left(\underline{\varepsilon}^{\wedge} j\right)=$ $f\left(\underline{\varepsilon}^{\wedge} i\right)$. Moreover $A\left(\underline{\varepsilon}^{\wedge} i\right) \cap A\left(\underline{\varepsilon}^{\wedge} j\right)=A\left(\underline{\varepsilon}^{\wedge} i 2\right) \cap A\left(\underline{\varepsilon}^{\wedge} j 2\right)=A(\underline{\varepsilon})$, thus

$$
\max A\left(\underline{\varepsilon}^{\wedge} i\right) \cap A\left(\underline{\varepsilon}^{\wedge} j\right)=f(\underline{\varepsilon})
$$

If $\ell(\underline{\rho})=k<2 n+1 \leq \ell(\underline{\boldsymbol{\varepsilon}})$ and $\underline{\boldsymbol{\sigma}}=\underline{\boldsymbol{\varepsilon}}|\boldsymbol{l}=\boldsymbol{\rho}| l, \boldsymbol{\rho}_{l} \neq \underline{\varepsilon}_{l}$ then

$$
\max A\left(\underline{\sigma}^{\wedge} \underline{\rho}_{l}\right) \cap B\left(\underline{\sigma}^{\wedge} \underline{\underline{\varepsilon}}_{l}\right)=\max A(\underline{\rho}) \cap B(\underline{\varepsilon})=f(\underline{\rho} \mid l) .
$$

(The remaining cases can be checked in the same way.) This finishes the inductive construction.
Let X be the family of all sequences $x: \omega \rightarrow\{0,1,2\}$ which satisfy the conditions:

$$
x(0)=0, x(2 n+1)=2, x(2 n+2) \in\{0,1\} .
$$

Then

$$
\underline{A}(x)=\mathbf{U}_{n \in \omega} A(x \mid n), \underline{B}(x)=\mathbf{U}_{n \in \omega} B(x \mid n)
$$

are infinite subsets of ω.
It is easy to check that for $x, y \in X$, if $x \neq y$ then:

$$
\underline{A}(x) \cap \underline{B}(x)=\varnothing, \underline{A}(x) \cap \underline{B}(y) \neq \varnothing, \underline{A}(x) \cap \underline{A}(y) \in \text { fin and } \underline{B}(x) \cap \underline{B}(y) \in \text { fin. }
$$

Theorem 1 The gap $\mathcal{L}=(\{\underline{A}(x): x \in X\},\{\underline{B}(x): x \in X\})$ satisfies the following condition: for every uncountable set $Y \subseteq X, \mathcal{L}_{Y}=(\{\underline{A}(x): x \in Y\},\{\underline{B}(x): x \in Y\})$ is non-separable.

Proof. Suppose that for $Y=\left\{x_{\alpha}: \alpha<\kappa\right\} \subseteq X, \omega<\kappa \leq 2^{\omega}$, there exists a C which separeates the gap \mathcal{L}_{Y}. Let $s_{\alpha}=\underline{A}\left(x_{\alpha}\right) \backslash C, t_{\alpha}=\underline{B}\left(x_{\alpha}\right) \cap C$.

Then s_{α}, t_{α} are finite subsets of ω and since $\underline{A}\left(x_{\alpha}\right) \cap \underline{B}\left(x_{\alpha}\right)=\varnothing$, it follows that $s_{\alpha} \cap t_{\alpha}=\varnothing$. Δ-lemma implies that there exist an uncountable set $\Gamma \subseteq \kappa \Gamma \subset \kappa$ and finite sets s, t such that for all $\alpha \in \gamma, s_{\alpha}=s$ and $t_{\alpha}=t$.
If $\alpha, \beta \in \Gamma$ and $\alpha \neq \beta$ then $\varnothing=s_{\alpha} \cap t_{\beta}=s \cap t=s_{\alpha} \cap t_{\alpha}=\varnothing$, a contradiction. This finishes the proof.

References

[1] Comfort W.W., Negrepontis S., The theory of ultrfilters, Springer Verlag, New York 1974.
[2] Hausdorff Summen von Mengen F_{1}, Fund. Math. 26, 1936, 241-255.
[3] Hechler S., On existence of certain cofinal subsets of, Axiomatic Set Theory, T. Jech (ed.), Proc. Symp. Pure Math. vol. 13 II, 1974, 155-173.
[4] Jech T., Set Theory, Academic Press, New York et al., 1978.
[5] Kunen K., Weak P-points in N^{*}, Colloq. Math. soc. Jano’s Bolyai 23, Topology, Budapest 1978, 741-749.
[6] Rothberger F., Une remarque concernant l'hipotése du continu, Fund. Math. 31, 1939, 224-226.

[^0]: * Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, Poland; magdag@pk.edu.pl.

