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Abs t r a c t

The aim of this paper is to give two theorems on the existence and uniqueness of mild and
classical solutions of a nonlocal semilinear integro-differential evolution Cauchy problem for
the first order equation. The method of semigroups, the Banach fixed-point theorem and the
Bochenek theorem are applied to prove the existence and uniqueness of the solutions of the
considered problem.
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S t r e s z c z e n i e

W artykule udowodniono dwa twierdzenia o istnieniu i jednoznaczności rozwiązań całkowych i
klasycznych nielokalnego semiliniowego całkowo-różniczkowego ewolucyjnego zagadnienia Cau-
chy’ego dla równania rzędu pierwszego. W tym celu zastosowano metodę półgrup, twierdzenie
Banacha o punkcie stałym i twierdzenie Bochenka.
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1. Introduction

In this paper, we give two theorems on the existence and uniqueness of mild and
classical solutions of semilinear integro-differential evolution nonlocal Cauchy problem
for the first order equation. To achieve this, the method of semigroups, the Banach
fixed point theorem and the Bochenek theorem will be used.

Let E be a real Banach space with norm ||·|| and let A : E → E be a closed
densely defined linear operator. For the operator A, let D(A), ρ(A) and A∗ denote its
domain, resolvent set and adjoint, respectively.

For the Banach space E, C(E) denotes the set of closed linear operators from E
into itself.

We will need the class G(M̃, β) of operators A satisfying the conditions:
There exist constants M̃ > 0 and β ∈ R such that

(C1) A ∈ C(E), D(A) = E and (β,+∞) ⊂ ρ(−A),

(C2)
∣∣∣∣(A+ ξ)−k

∣∣∣∣ 6 M̃(ξ − β)−k for each ξ > β and k = 1, 2, . . .

It is known (see [4], p. 485 and [5], p. 20) that for A ∈ G(M̃, β), there exists
exactly one strongly continuous semigroup T (t) : E → E for t > 0 such that −A is
its infinitesimal generator and

||T (t)|| 6 M̃eβt for t > 0.

Throughout this paper, we shall use the notation:

J := [t0, t0 + a], where t0 > 0 and a > 0,

∆ := {(t, s) : t0 6 s 6 t 6 t0 + a},
M := sup{||T (t)|| , t ∈ [0, a]}

and
X := C(J , E).

The Cauchy problem considered here is of the form:

u′(t) +Au(t) = f(t, u(t), u(b(t))) +

∫ t

t0

f1(t, s, u(s))ds+

+

∫ t0+a

t0

f2(t, s, u(s))ds, t ∈ (t0, t0 + a], (1)

u(t0) + g(u) = u0, (2)

where f , fi (i = 1, 2), g and b are given functions satisfying some assumptions and
u0 ∈ E.

The results obtained in the paper are a continuation of those given in [3] and they
are based on those from [1] – [6].
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2. The Bochenek theorem

The results of this section were obtained by J. Bochenek (see [2]).
Let us consider the Cauchy problem

u′(t) +Au(t) = k(t), t ∈ J \ {t0}, (3)
u(t0) = x. (4)

A function u : J → E is said to be a classical solution of problem (3)–(4) if

(i) u is continuous and continuously differentiable on J \ {t0},

(ii) u′(t) +Au(t) = k(t) for t ∈ J \ {t0},

(iii) u(t0) = x.

Assumption (Z). The adjoint operator A∗ is densely defined in E∗, i.e. D(A∗) =
E∗.

Theorem 2.1. Let conditions (C1), (C2) and Assumption (Z) be satisfied. More-
over, let k : J → E be Lipshitz continuous on J and x ∈ D(A).

Then u given by the formula

u(t) = T (t− t0)x+

∫ t

t0

T (t− s)k(s)ds, t ∈ J (5)

is the unique classical solution of the Cauchy problem (3)–(4).

3. Theorem about a mild solution

A function u : J → E satisfying the integral equation

u(t) = T (t− t0)u0 − T (t− t0)g(u) +

∫ t

t0

T (t− s)
(
f(s, u(s)), u(b(s))) +

+

∫ s

t0

f1(s, τ, u(τ))dτ +

∫ t0+a

t0

f2(s, τ, u(τ))dτ
)
ds, t ∈ J

is said to be a mild solution of the integrodifferential evolution nonlocal Cauchy
problem (1)–(2).

Arguing analogously as in [3] we can obtain, by the Banach fixed point theorem,
the following theorem:

Theorem 3.1. Assume that:

(i) the operator A : E → E satisfies conditions (C1) and (C2),
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(ii) f : J × E2 → E is continuous with respect to the first variable in J , fi : ∆×

E → E (i = 1, 2) are continuous with respect to the variables in ∆, g : X → E,
b : J → J are continuous and there exist positive constants L, Li (i = 1, 2)
and K such that

||f(s, z1, z2)− f(s, z̃1, z̃2)|| 6 L
2∑
i=1

||zi − z̃i||

for s ∈ J , zi, z̃i ∈ E (i = 1, 2),

||fi(s, τ, z)− fi(s, τ, z̃)|| 6 Li ||z − z̃|| (i = 1, 2)

for (s, τ) ∈ ∆, z, z̃ ∈ E
and

||g(w)− g(w̃)|| 6 K ||w − w̃||X for w, w̃ ∈ X.

(iii) M [a(2L+ aL1 + aL2) +K] < 1.

(iv) u0 ∈ E.

Then the integrodifferential evolution nonlocal Cauchy problem (1)–(2) has a unique
mild solution.

4. Theorem about a classical solution

A function u : J → E is said to be a classical solution of the nonlocal Cauchy
problem (1)–(2) on J if :

(i) u is continuous on J and continuously differentiable on J \ {t0},

(ii) u′(t) +Au(t) = f
(
t, u(t), u(b(t))

)
+
∫ t
t0
f1(t, s, u(s))ds+

+
∫ t0+a

t0
f2(t, s, u(s))ds for t ∈ J \ {t0},

(iii) u(t0) + g(u) = u0.

Theorem 4.1. Assume that:

(i) the operator A : E → E satisfies conditions (C1) and (C2), and Assumption
(Z).

(ii) f : J × E2 → E, g : X → E, for any (s, z) ∈ J × E and i = 1, 2 functions
fi(s, ·, z) : J 3 τ 7→ f(s, τ, z) ∈ E are continuous, b : J → J is continuous on
J and there exist positive constants C, Ci (i = 1, 2) and K such that:

||f(s, z1, z2)− f(s̃, z̃1, z̃2)|| 6 C
(
|s− s̃|+

2∑
i=1

||zi − z̃i||
)
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for s, s̃ ∈ J , zi, z̃i ∈ E (i = 1, 2),

||fi(s, τ, z)− fi(s̃, τ, z̃)|| 6 Ci(|s− s̃|+ ||z − z̃||)

for (s, τ), (s̃, τ) ∈ ∆, z, z̃ ∈ E
and

||g(w)− g(w̃)|| 6 K ||w − w̃||X for w, w̃ ∈ X.

(iii) M
(
a(2C + aC1 + aC2) +K

)
< 1.

Then the integrodifferential evolution nonlocal Cauchy problem (1)–(2) has a unique
mild solution (which is denoted by) u. Moreover, if u0 ∈ D(A), g(u) ∈ D(A) and if
there exists a positive constant H such that

||u(b(s))− u(b(s̃))|| 6 H ||u(s)− u(s̃)|| for s, s̃ ∈ J

then u is the unique classical solution of the problem (1)–(2).

Proof. Since all the assumptions of Theorem 3.1 are satisfied, it is easy to see that
problem (1)–(2) possesses a unique mild solution which according to the last assumption
is denoted by u.

Now we shall show that u is the classical solution of the problem (1)–(2). To this
end, observe that as in [3] u is Lipschitz continuous on J .

The Lipschitz continuity of u on J combined with the Lipschitz continuity of f on
J × E2 and fi (i = 1, 2) with respect to the first variables imply that the function

J 3 t 7→ f
(
t, u(t), u(b(t))

)
+

∫ t

t0

f1(t, s, u(s))ds+

∫ t0+a

t0

f2(t, s, u(s))ds

is Lipschitz continuous on J . This property of f together with the assumptions of
Theorem 4.1 imply, by Theorem 2.1 and Theorem 3.1, that the linear Cauchy problem:

v′(t) +Av(t) = f
(
t, u(t), u(b(t))

)
+

∫ t

t0

f1(t, s, u(s))ds+

+

∫ t0+a

t0

f2(t, s, u(s))ds, t ∈ J \ {t0},

v(t0) = u0 − g(u)

has a unique classical solution v and it is given by

v(t) = T (t− t0)u0 − T (t− t0)g(u) +

∫ t

t0

T (t− s)
(
f
(
s, u(s), u(b(s))

)
+

+

∫ s

t0

f1(s, τ, u(τ))dτ +

∫ t0+a

t0

f2(s, τ, u(τ))dτ
)
ds = u(t), t ∈ J .
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Consequently, u is the unique classical solution of the integrodifferential evolution

Cauchy problem (1)–(2) and, therefore, the proof of Theorem 4.1 is complete.
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