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Abstract

Reducing energy consumption for high end computing can bring various benefits such as, reduce operating costs, increase system
reliability, and environment respect. This paper aims to develop scheduling heuristics and to present application experience for
reducing power consumption of parallel tasks in a cluster with the Dynamic Voltage Frequency Scaling (DVFS) technique. In this
paper, formal models are presented for precedence-constrained parallel tasks, DVFS enabled clusters, and energy consumption.
This paper studies the slack time for non-critical jobs, extends their execution time and reduces the energy consumption without
increasing the task’s execution time as a whole. Additionally, Green Service Level Agreement is also considered in this paper. By
increasing task execution time within an affordable limit, this paper develops scheduling heuristics to reduce energy consumption
of a tasks execution and discusses the relationship between energy consumption and task execution time. Models and scheduling
heuristics are examined with a simulation study. Test results justify the design and implementation of proposed energy aware
scheduling heuristics in the paper.
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1. Introduction

Nowadays, high end computing facilities can consume a very
large amount of power albeit they provide high performance
computing solutions for scientific and engineering applications
[38]. For example, operating a middle-sized data center (i.e.,
a university data center) demands 80000kW power [39]. It is
estimated that computing resources consume around 0.5% of
the world’s total power usage [10], and if current demand con-
tinues, is projected to quadruple by 2020. Energy consump-
tion for high performance facilities thus contributes to a sig-
nificant electric bill. Additionally, high power consumption in
general results in higher cooling costs. Furthermore, to allow
computing facilities to operate on high power for a long time
will lead to high temperature of computing systems, which fur-
ther harms a system’s reliability and availability. Therefore,
reducing power consumption for high end computing becomes
a critical research topic.

Modern processors are equipped with the Dynamic Voltage
Frequency Scaling (DVFS) technique, which enables proces-
sors to be operated at multiple frequencies under different sup-
ply voltages. The DVFS technique thus gives opportunities to
reduce the energy consumption of high performance computing
by scaling processor supply voltages. Our research is devoted
to developing scheduling heuristics which reduce energy con-
sumption of parallel task execution by using the DVFS mech-

anism. A parallel task is a set of jobs with precedence con-
straints. Jobs in a parallel task may have some slack time for
their execution due to their precedence constraints.

This paper makes a study on scheduling policies and applica-
tion experiences to reduce power consumption of parallel tasks.
Our first research issue is to minimize task execution time as
well as reduce power consumption. The execution time of the
non-critical jobs in a parallel task can be extended, thus giving
an opportunity to scale down the supply voltages of processors.
Based on the analysis of DVFS on non-critical jobs, we de-
velop two power aware scheduling heuristics for parallel tasks,
the Power Aware List-based Scheduling (PALS) algorithm and
the Power Aware Task Clustering (PATC) algorithm.

Our second research objective is to make an study on en-
ergy and performance tradeoff for parallel task execution. The
green Service Level Agreement (SLA) is introduced in this re-
search. By negotiating with users via the green SLA, an energy-
performance tradeoff algorithm is developed to reduce energy
consumption with an affordable task execution time increase.
We develop a simulation study on the proposed scheduling
heuristics and make a performance evaluation.

We declare our contribution as follows:

• We develop formal models for parallel tasks and a power
aware cluster and we also define the task scheduling issue.

• We develop two power scheduling heuristics for parallel
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tasks: the PALS and the PATC.

• We present the green SLA use scenarios and propose a
new scheduling heuristics for energy aware parallel task
scheduling, which makes a study on the tradeoff between
the energy consumption and task execution time (perfor-
mance).

• We build a simulation study and performance evaluation
on the proposed heuristics. Test results justify our design
and implementation of energy aware heuristics.

The rest of this paper is organized as follows. Section 2 intro-
duces background and related work. Then Section 3 discusses
the models for parallel tasks, DVFS and compute clusters and
Section 4 formally define the research issue of energy aware
parallel task scheduling. Section 5 applies the DVFS tech-
nique on non-critical jobs of parallel tasks, which is the basis
of the PALS and the PATC. We describe the scheduling heuris-
tics of the PATC and the PALS in Section 6 and 7. Section 8
presents the Service Level Agreement with performance met-
rics of green computing and proposes the research issue of en-
ergy performance tradeoff for parallel task scheduling. Section
9 then presents the scheduling algorithm for the research issue
proposed in 9. The complexity analysis for the proposed algo-
rithms are presented in Section 10 and Section 11 describes a
simulation study on the proposed scheduling heuristics. Finally
this paper is summarized in Section 12.

2. Related Work

This section discusses background and related work of task
scheduling, DVFS, and power aware cluster computing.

2.1. Parallel task scheduling
Task scheduling techniques in parallel and distributed sys-

tems have been studied in great detail with the aim of making
use of these systems efficiently.

Task scheduling algorithms are typically classified into
two subcategories: static scheduling algorithms and dynamic
scheduling algorithms. In static task scheduling algorithms, the
task assignment to resources is determined before applications
are executed. Information about task execution cost and com-
munication time is supposed to be known at compilation time.
Static task scheduling algorithms normally are non-preemptive
– a task is always running on the resource to which it is as-
signed [25]. Dynamic task scheduling algorithms normally
schedule tasks to resources in the runtime to achieving load bal-
ance among PEs. are based on the redistribution [9, 41].

List scheduling algorithm is the most popular algorithm in
the static scheduling [23, 31]. List based scheduling algorithms
assign priorities to tasks and sort tasks into a list ordered in
decreasing priority. Then tasks are scheduled based on the pri-
orities. In this paper, we build a list based scheduling heuristic
for parallel tasks – the PALS algorithm. The task execution in-
formation, such as task execution cost and communication cost,
can be obtained by some profiling tools and compiler aides in
advance.

The task graph clustering technique [20, 42] is an effective
static scheduling heuristic for scheduling parallel tasks. Given
a task graph, “clustering” is the process of mapping task graph
nodes onto labeled clusters. All tasks of the same cluster are
executed in the same processor. In traditional task scheduling
heuristics, the process of clustering tasks is an optimization of
reducing the makespan of the scheduled graph. In this paper,
we proposed the PATC algorithm, whose process of clustering
tasks is guided by reducing the total power consumption of the
scheduled graph.

2.2. Energy reduction via DVFS techniques
Dynamic voltage and frequency scaling (DVFS) has been

proven to be a feasible solution to reduce processor power con-
sumption [17, 18]. By lowering processor clock frequency
and supply voltage during some time slots, for example, idle
or communication phases, large reductions in power consump-
tion can be achieved with only modest performance losses. A
DVFS-enabled cluster [38] is a compute cluster where com-
pute nodes can run at multiple power/performance operating
points. The DVFS techniques have been applied in the high
performance computing fields, for example, in large data cen-
ters, to reduce power consumption and achieve high reliability
and availability [14, 6, 7]. Popular DVFS-based software solu-
tions for high end computing include:

• Scientific applications can be modeled with Directed
Acyclic Graph (DAG) and the critical path is identified in
for applications. Thus, it is possible to reduce energy con-
sumption by leveling down the processor supply voltage
during non-critical execution of tasks [34].

• Some work [13] builds online performance-driven runtime
systems to automatically scale processor supply voltages.

• Some work applies DVFS during the communication
phases of high performance computing, for example MPI
[11, 24].

• In addition to parallel applications, virtual machine
scheduling can also use DVFS [38].

Our research in this paper falls into the first category:
scheduling DAGs on multiple processors in a cluster with
DVFS techniques.

2.3. Power aware task scheduling
A lot of work has developed DVFS for task scheduling. For

example, Yao et al [43] and Ali et al [29] discuss scheduling
independent tasks with DVFS on a single processor, Wei et al
[44] and Gruian et al [16] use DVFS to schedule dependent
tasks on multiple processors, Martin et al [30] and Luo et al
[27, 28] developed power aware task scheduling algorithm for
real time systems. As our work is devoted to developing power
aware scheduling algorithms for dependent tasks, we compare
our work with related research in this topic.

Zhang et al [45], Martin et al [30], Schmitz [32], and Luo
et al [28] schedule dependent tasks on real time, where the
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tasks normally are assigned with arrival time, deadline and max
power consumption. In our research of energy aware high end
computing, we don’t have these restrictions on the tasks to be
scheduled.

Zong et al [47] employ the similar DAG model and re-
source model with us and developed energy-aware duplication
scheduling algorithms. This work however did not use DVFS
technique to reduce power consumption, therefore their imple-
mentation certainly has some room to further reduce energy
consumption if DVFS technology is employed when scheduling
parallel tasks. Gruian et al [16] propose a list based low energy
scheduling algorithm – LEneS. It smartly introduces enhanced
task-graphs (ETG) and energy gain in the list based scheduling.
Martin et al [30] develop a hybrid global/local search optimiza-
tion framework for DVFS with simulated heating. LPHM [3]
is a low power scheduling of DAGs to minimize task execution
time. LPHM combines the heterogeneous earliest finish time
with the DVFS technique. Zong et al [46] develops two energy-
aware duplication scheduling algorithms for parallel tasks on
homogeneous clusters: EAD and PEBD. Lee et al [22] pro-
pose an energy-conscious scheduling (ECS) heuristic for par-
allel tasks on heterogeneous computing systems. Kimura et al
[21] use the same idea of extending task execution time by re-
claiming slack times for non-critical jobs.

Costa et al present a multi-facet approach to reduce energy
consumption in clouds and grids with users decisions consider-
ation [8] and SLA-aware management for management Cloud
resources [5], which enjoy similar ideas of user-defined and
SLA-based energy management.

Compared to the above related research, our PALS algorithm
not only considers minimizing the energy consumption in the
scheduling algorithm, but also uses the concept of slack time
for jobs in power Gantt chart to discuss the trade off between
energy consumption and scheduling length. The PALS algo-
rithm also concerns reducing voltages during the communica-
tion phases between parallel jobs. None of above research work
discusses this aspect.

We propose a novel power aware scheduling algorithm based
on task clustering – the PATC algorithm. The PATC algorithm
merges tasks by zeroing communication links aiming to reduc-
ing power consumption, which is different scheduling philoso-
phy from the list based heuristics.

3. System Model

This section provides the formal description for a DVFS-
enabled cluster, parallel tasks, and performance models, which
are employed as basis of the formal problem definition in Sec-
tion 4 and the scheduling algorithms in Section 6 and 7.

3.1. DVFS Model

A DVFS-enabled processor can be operated on a set of sup-
ply voltages V and a set of processor frequencies F.

V =
⋃

1≤m≤M

{vm} (1)

F =
⋃

1≤m≤M

{ fm} (2)

where,
vm is the m-th processor operating voltage;
fm is the m-th processor operating frequency;
vmin = v1 ≤ v2 ≤ ... ≤ vM = vmax;
fmin = f1 ≤ f2 ≤ ... ≤ fM = fmax;
1 ≤ m ≤ M, M is the total number of processor operating
points.

3.2. Energy Model
The energy consumption of modern processor for job execu-

tion, ξ, can be divided into two parts, dynamic energy consump-
tion ξdynamic, and static energy consumption ξstatic [19]. Static
power consumption arises from running, bias and leakage cur-
rents. Dynamic power consumption arises from the charging
and discharging of the circuit node capacitances found on the
output of every logic gate.

ξ = ξdynamic + ξstatic (3)

According to [12], the dynamic power consumption Pdynamic is
computed as follows:

Pdynamic = A ×C × v2 × f (4)

Where,
A is the percentage of active logic gates, which are charged
dynamically;
C is the total capacitance load;
v is the supply voltage;
f is the processor frequency.

Then, we have:

ξdynamic =
∑
4t

Pdynamic × 4t (5)

where,
Pdynamic is the dynamic power;
4t is a time period.

ξstatic is normally proportional to Edynamic [24]:

ξstatic ∝ ξdynamic (6)

Therefore the whole power consumption could be estimated as
follows:

ξ ∝ ξdyanmic (7)

In conclusion, we have the performance model:

ξ =
∑
4t

(δ × v2 × f × 4t) (8)

Where,
δ is a constant determined by the PE.
v is the processor operating voltage during 4t;
f is the processor operating frequency during 4t;
4t is a time period.
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3.3. Resource Model
A compute cluster normally contains multiple compute

nodes, which are formally termed as Processing Elements (PEs)
in a context of parallel computing. This paper makes a study
on homogeneous clusters: all PEs of the cluster have the same
processing speed or provide identical processing performance
in term of MIPS (Million Instruction Per Second). A homo-
geneous cluster, C, contains K PEs. The k-th PE pek has two
properties:

• pek.vop ∈ V is the processor operating voltage

• pek. f op ∈ F is the processor operating frequency

1 ≤ k ≤ K, K is the total number of PEs.
A cluster C is defined by its set of processing elements

C =
⋃

1≤k≤K

{pek} (9)

3.4. Parallel Task Model
A parallel task with precedence constrains is modeled as a

Directed Acyclic Graph (DAG) – T = (J, E):

• J: a set of jobs (nodes in a DAG)

J =
⋃

1≤n≤N

{ jobn} (10)

where,
jobn is a job in the parallel task J.
N is the total number of jobs.

A job, jobn, has 3 properties:

– weight is the instruction number of jobn.
– tst is the starting time of jobn.
– t is the execution time of jobn. if jobn is executed on

pek, the job execution time is calculated as follows:

jobn.t =
jobn.weight ×CPI

pek. f op (11)

where, CPI is the number of cycles per instruction
of pek. It is determined by both the hardware and
software of the cluster C, for example, computer ar-
chitecture and instruction set (ie, RISC or CISC).
jobn.t0 is the jobn’s execution time when PE is run-
ning with the maximum frequency fmax. Equation
11 calculates job execution based on PE’s operating
frequency.

– tend is the end time of jobn. We have:

jobn.tend = jobn.tst + jobn.t (12)

Based on Equation 11 and Equation 8, the energy con-
sumption to execute jobn can be calculated as follows:

ξn = γ × v2 × jobn.weight (13)

where, γ is a constant determined by the cluster C, and ir-
relevant with the parallel task T . v is the PE supply voltage
during the jobn’s execution.

• E: a set of precedence constraints (edges in a DAG)
E defines partial orders ( operational precedence con-
straints) on J. ei j is an edge between jobi and job j, it
means that jobi must be completed before job j can begin,
1 ≤ i, j ≤ N, jobi, job j ∈ J. ei j sometime can also be
represented jobi < job j.

e has one property:
ei j.cost ≥ 0, is the amount of data required to be trans-
ferred from jobi to job j, 1 ≤ i, j ≤ N, jobi, job j ∈ J. Data
are transferred from the PE where jobi is executed to the
PE where job j is executed.
As we are studying a homogeneous cluster, without loss
of generality, ei, j.cost can also be normalized as commu-
nication time. Now we discuss the relationship between
ei, j.cost and PE’s operating frequency. It shows in [24] that
the energy consumption and communication cost as pro-
cessor frequency varies for four common MPI calls when
different size of data are transferred among PEs. From the
experiment results we can see energy can be saved up to
31% with at most 5% communication time increase. In
this paper, we ignore the communication time increase. In
other words, when a PE’s supplied voltage is scaled down,
the data communication time remains unchanged.

4. Research Problem Definition

Here we firstly consider the best-effort scheduling research
problem. Without damaging the performance of parallel task
execution (task execution time), the best-effort scheduling al-
gorithm tries to reduce the energy consumption for task execu-
tion.

Before we bring up the formal definition of the above re-
search issues, the following term definitions are introduced.

• TS T : Task Starting Time of T

TS T = min
1≤n≤N

jobn.tst (14)

• T FT : Task Finish Time of T

T FT = max
1≤n≤N

jobn.tend (15)

• makespan: the schedule length of T

makespan = T FT − TS T (16)

• S chedule: Task Schedule
The schedulen of jobn is a mapping from jobn to a PE pek

with task starting time jobn.tst.

schedulen : jobn → (pek, jobn.tst) (17)
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The schedule of parallel task T , S chedule, is defined as:

S chedule =
⋃

1≤n≤N

schedulen (18)

A feasible schedule of parallel task T keeps the partial or-
ders between jobs in T .

Based on the above definitions, the best-effort scheduling is-
sue is defined as: given parallel task T and a cluster C, find
a feasible schedule S chedule, which 1) gives the minimum
schedule length makespanbest of T , and 2) reduce as much en-
ergy consumption as it can without increasing makespanbest.

5. Voltage scaling for non-critical jobs
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Figure 1: An example DAG
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Figure 2: An example Gantt chart
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Figure 3: Example power Gantt chart

This section discusses how to scale down non-critical jobs’
voltages with DVFS technique, which is the basis of the PATC
and the PALS presented in the next two sections. Figure 1 is
an example parallel task to be scheduled. In Figure 1, job IDs
and job execution costs are marked inside the jobs and the com-
munication costs are labeled on the links. The scheduled task
graph is shown in Figure 2 as a Gantt chart. The Dominant Se-
quence (DS) of a scheduled task graph in a Gantt chart is a set
of time slots of job execution and data communication from the
first job to the last job, of which the sum of computation costs
and communication costs is the makespan.

The DS in Figure 2 is “A → C → E → F”. It should be
aware that a DS may across multiple PEs. As the best-effort
scheduling algorithm does not extend the makespan, supplied
voltages of PEs during the time slots of task execution and data
communication in the DS is not changed. Supplied voltages of
other time slots in a Gantt chart are considered be scaled down.
For example, in Figure 2 jobs B and D have chance to extend
their execution time and scale down their supplied voltages.

To discuss the algorithm for scaling voltages on non-critical
time slots, we need to compute the slack time for a non-critical
job. We have jobn’s earliest start time is:

jobn.
←−
tst = max

{ jobm | jobm< jobn}
{ jobm.tend + em,n.cost} (19)

jobn’s latest finish time is:

jobn.
−−→
tend = min

{ jobl | jobl> jobn}
{ jobl.tst − el,n.cost} (20)

{ jobm| jobm < jobn} and { jobl| jobl > jobn} are jobn’s precursor
set and successor set respectively. Then jobn’s slack time can
be calculated as:

jobn.slack = jobn.
−−→
tend − jobn.

←−
tst (21)

We can find in Figure 2 the slack time of job B and D.
Assume jobn is a non-critical job and is executed on pek.

Then jobn’s execution time can be extended to jobn.slack with-
out violating precedence constraints (without changing the fin-
ish time of its precursors and the start time of its successors).
pek’s operating frequency can be scaled to pek. f op,

pek. f op = fmax ×
jobn.t0

jobn.slack
(22)

where, jobn.t0 is jobn’s execution time when pek is operated
with fmax. jobn.t0 is discussed in Section 3.4 and can be calcu-
lated in Equation 11.

Algorithm 1 shows how to scale down non-critical jobs. For
each PE, it scans all time slots (line 2–3). When the PE is idle
or transfers data in a time slot, Algorithm 1 scales the PE’s op-
erating frequency to the lowest (line 4–6). When a time slot
executes a non-critical job, it calculates its slack time, extends
the job’s execution time to the slack time, and scales down the
PE’s operating frequency to a proper value (line 7–9).

After we scale down the voltages of non-critical jobs in a
scheduled task graph, the total power consumption can be cal-
culated with the model defined in Section 3.2.

6. The PATC algorithm

We summarize several obvious rules to guide the design of
the PATC algorithm and the PALS algorithm.

1. Equation 13 shows that given a certain task, a PE’s supply
voltage could be scaled down to a proper voltage to reduce
the task’s energy consumption. Certainly, this action may
lead an increase of task execution time.
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Algorithm 1 Non-critical time slot voltage scaling algorithm
1 BEGIN
2 FOR each PE pek DO
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek is idle or it executes a communication phase THEN
5 scale down pek’s operating frequency to lowest
6 ENDIF
7 IF pek executes a non-critical job jobn THEN
8 calculate jobn.slack as Equation 21.
9 scale pek’s frequency to pek. f op as Equation 22.
10 ENDIF
11 ENDFOR
12 ENDFOR
13 END

2. Research in [24] indicates that during the communication
phase, the PE’s supply voltage should be scaled down to
the lowest level.

3. When a PE is idle (there is no task execution and data com-
munication), its supply voltage should be leveled down to
the lowest level.

This section presents the Power Aware Task Clustering
(PATC) algorithm for parallel task scheduling. Traditional task
clustering algorithm takes the following steps: 1) task cluster-
ing by zeroing edges, 2) cluster merging if the number of task
clusters is greater than the number of PE, 3) task execution or-
dering in each task cluster, 4) each task cluster is allocated with
a PE.

Traditional task clustering algorithm reduces the makespan
by zeroing edges of high communication costs. Our Power
Aware Task Clustering (PATC) algorithm, on the contrary,
guides the edge zeroing process with objective of reducing
power consumption. As shown in Algorithm 2, the PATC algo-
rithm firstly marks all edges as unexamined and allocate each
task a separate cluster. After sorting all edges in descending
order of communication time, the PATC algorithm repeatedly
merges tasks by zeroing the edges with high communication
cost if the total power consumption is not increased. How to
scale non-critical jobs’ voltage and calculate the power con-
sumption of a scheduled task graph have been discussed in Sec-
tion 5.

Inside each cluster, tasks are executed in the order of their
b level. b level is a normal priority assignment for jobs, which
is defined as the length of a longest path from that job to the
exit job. b level is calculated with Algorithm 3.

7. The PALS algorithm

This section presents the Power Aware List-based Schedul-
ing (PALS) algorithm for parallel tasks. The PALS algorithm
(shown in Algorithm 4) firstly employs the ETF (Earliest Task
First), a list-based scheduling algorithm (shown in Algorithm
5), to find the best-effort task response time for T . Then, it tries
to reduce the energy consumption with the following methods:

Algorithm 2 The PATC algorithm
1 BEGIN
2 Initially all edges are marked unexamined and each task forms
a separate cluster
3 Sort all edges in a descending order according to their com-
munication costs
4 REPEAT
5 Zero the highest unexamined edge in the sorted list if the
power consumption of the scheduled task graph does not in-
crease
6 Mark the edge examined
7 When two clusters are merged, the tasks are ordered accord-
ing to their b level.
8 UNTIL all edges are marked examined
9 END

Algorithm 3 b level calculation
1 BEGIN
2 r list ← a list of all jobs Jobi ∈ J sorted in a reversed partial
order
3 Initialize all jobs in rtopo list: b level(Jobi)← 0
4 FOR each Job Jobi ∈ rtopo list DO
5 max length← 0
6 FOR each immediate succeeding job Job j of job Jobi DO
7 length← b level(Job j) + ei, j.cost
8 IF (length > max length) THEN
9 max length← length
10 ENDIF
11 ENDFOR
12 b level(Ti)← Jobi.weight + max length
13 ENDFOR
14 END

• scale down PE’s voltages to a proper level, thus extending
the execution time of the non-critical jobs without affect-
ing the critical path.

• scale the PE’s voltage when it is idle or when it is in the
data communication phase.

Algorithm 4 The PALS algorithm
1. schedule tasks via the ETF scheduling algorithm 5
2. scale down PE’s voltages for all non-critical jobs with Al-

gorithm 1

Given a parallel task T , the ETF algorithm [33, 40] is de-
scribed in Algorithm 5. The Algorithm 5 allocates each job
with a priority which can be calculated via different methods,
for example, bottom level and top level [2]. In our implementa-
tion, we use the bottom level. The bottom level of a node (job)
in a DAG is the longest path beginning with the node and the
top-level is the longest path reaching the node. The length of a
path is defined as the sum of the weights of its nodes and edges.
Then, Algorithm 5 selects ready jobs with the highest priority
and schedules it on the PE with earliest task starting time.
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Algorithm 5 The ETF scheduling algorithm
1 jobn.level: priority of task jobn ∈ J
2 ready job list: list of jobs that are ready to be executed
3 PE list: list of PEs
4 pek.tavailable: PE’s available time.
5 BEGIN
6 FOR each job jobn ∈ J DO
7 compute jobn.level
8 ENDFOR
9 put all ready jobs into ready job list
10 sort all jobs jobn ∈ ready job list in decreasing order of
jobn.level
11 put all PEs into PE list
12 sort all PEs pek.tavailable = 0
13 REPEAT
14 IF (ready job list , ∅ ) THEN
15 get a job, jobn, from ready job list
16 get a PE, pek, which has the earliest available time
pek.tavailable

17 schedule jobn on pek

18 arrange the communicate phase, calculate starting time
and finish time of jobn on pek

19 delete the task from ready job list
20 update PE list with increasing order pek.tavailable

21 ENDIF
22 update ready job list
23 UNTIL (every job jobn ∈ J has been scheduled)
24 END

8. SLA management for Green Computing

In previous sections, we make a study on reducing power
consumption without increasing task execution time, which is
termed as the “best-effort scheduling issue”. This section we
analyze an interesting scenario: if a user is environmental re-
spect and want to reduce power consumption by increasing its
task execution time.

Green computing is a research topic to make computing
with environmental concerns [37], for example, reduced energy
consumption and reduced CO2 emissions. We develop power
aware scheduling for parallel task in the context of green SLA
(Service Level Agreement for Green Computing). Users can
specify not only performance requirements for computing ser-
vices, but users can also specify green computing requirements
for executing their jobs. We define the green SLA in three
phases:

• Green SLA contract definition
Our previous work [37] has summarized a number of green
computing metrics, such as Data Center Infrastructure
Efficiency (DCiE) [36], [4], Power Usage Effectiveness
(PUE) [4], Data Center energy Productivity (DCeP) [15],
Space Watts and Performance (SWaP) [1], storage, net-
work, and server utilization. The green SLA contract defi-
nition phase creates various green SLA templates based on
above green computing metrics. Typical metrics includes

task response time, CO2 emission, and power consump-
tion. This phase also contains green SLA template publi-
cation and discovery.

• green SLA negotiation & monitoring
Users develop their green SLA specification based on
SLA templates and make a negotiation with computing re-
sources, for example, a high performance cluster. Here are
some examples of green computing service specifications:

– Establish an execution service for x minutes if the
total carbon emission of the service is below y tons.

– I would like to accept z% task execution time in-
crease to reduce w energy consumption.

• green SLA enforcement
When a green SLA is reached, computing resources then
execute the specified green services. For example, sched-
ule tasks based on specified task execution time, CO2
emission and power consumption. We develop energy
aware scheduling algorithms for parallel tasks based on
user’s green SLA specifications.

Figure 4 shows the conceptual framework for green SLA
based on energy aware scheduling in a cluster. Before a re-
source consumer submits a parallel job to a cluster, she/he
firstly negotiates with a resource provider with normal perfor-
mance metrics, like job response time, as well as with green
metrics, for example, power consumption or CO2 emission. Af-
ter an agreement is reached, the user then submits his/her job to
the resource. The resource provider then schedules the incom-
ing job to an energy aware cluster to guarantee the green metrics
and computing performance.
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Figure 4: Concept framework for green SLA based energy aware scheduling in
a cluster

With the green SLA negotiation, users agree to accept a toler-
able performance loss, for example, additional 10% of task exe-
cution time, to reduce more energy consumption and make their
computing more green. In contrast to the best-effort scheduling
research problem, we term this research issue as the energy-
performance tradeoff scheduling issue, whose main objective is
to reduce energy consumption for task execution with an ac-
ceptable performance punishment.
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The energy-performance tradeoff scheduling issue can be de-
fined as:
given parallel task T , a cluster C, and the schedule length
makespanbest, of a best-effort schedule, find a feasible sched-
ule which tries to minimize energy consumption by giving Task
Execution Time makespan ≤ (1+η)×makespanbest. η > 0 is the
accepted task execution time extension, which is determined by
the green SLA negotiation.

9. Energy-Performance Tradeoff Scheduling Algorithm via
Green SLA

Now we discuss the energy-performance tradeoff problem:
if a user agrees to tolerate an increase of his/her job execu-
tion time, for example, η of schedule length of the best-effort
scheduling algorithm, how to schedule jobs to save more en-
ergy?

The energy-performance tradeoff algorithm is shown in Al-
gorithm 6. It firstly gets the best-effort scheduling length via
Algorithm 5. Then, it scales both the critical time slots in Al-
gorithm 7 and non-critical time slots in Algorithm 1.

Algorithm 6 Energy-performance tradeoff scheduling algo-
rithm
1. schedule tasks via the ETF scheduling algorithm 5
2. scale down PE’s voltages for critical jobs with Algorithm 7
3. scale down PE’s voltages for non-critical jobs with Algo-

rithm 1

The Algorithm 7 firstly extends the critical time slots. As-
sume jobn is a critical job and it is executed on pek. It
has been proved in [26] that distributing the free slack time
“evenly” (proportional to the original critical time) is optimal as
the power consumption is a convex function of PE frequency.
Therefore jobn’s slack time can be calculated as:

jobn.slack = jobn.t0 × η (23)

Where,
jobn.t0 is jobn’s execution time when pek is operated with fmax.
η is the agreed extension of parallel task’s execution time.

pek’s operating frequency can be scaled to pek. f op,

pek. f op = fmax ×
jobn.t0

jobn.slack
(24)
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Figure 5: Energy-performance tradeoff power Gantt chart

10. Algorithm complexity analysis

In this section, we present an analysis on the time complexity
of the algorithms discussed above.

Algorithm 7 Algorithm of voltage scaling for all time slots
1 BEGIN
2 FOR each PE pek DO
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek executes a critical job jobn THEN
5 calculate its jobn’s slack time as Equation 23
6 scale pek’s frequency to pek. f op as Equation 24.
4 ENDFOR
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek is idle or it executes a communication phase

THEN
5 scale down pek’s operating frequency to lowest
6 ENDIF
7 IF pek executes a non-critical job jobn THEN
8 calculate jobn.slack as Equation 21.
9 scale pek’s frequency to pek. f op as Equation 22.
10 ENDIF
11 ENDFOR
12 ENDFOR
13 END

10.1. Analysis of the PTAC Algorithm

10.1.1. Algorithm 1
Algorithm 1 scales the supply voltage of a PE. Assuming we

have K PE’s, with t time slots, line 2 will occur at most K times,
where as the inner loop starting at line 3 will occur t times. The
operations from lines 4 - 10 are constant time operations, thus
the upper bound of this algorithm is O(Kt).

10.1.2. Algorithm 2
This algorithm forms the task clusters. Line 2 is executed

|E| times. The sorting in line 3 can be done in |E|lg|E| time via
quicksort. Lines 5 and 6 are constant time operations, each of
which is part of a loop of |E| iterations. Line 7 issues a call
to Algorithm 3 when two clusters are merged. Since initially,
each Task forms a cluster, we have C clusters and a total of T
tasks. At most, Algorithm 3 will be called CT times. O(|E| +
|E|lg|E| + CT ∗ A3) where A3 represents the complexity of the
b level calculation, or Algorithm 3.

10.1.3. Algorithm 3
This algorithm computes the b level for a task. This algo-

rithm is called by Algorithm 2. The sorting of line 2 can be done
in |J|lg|J| time. Line 3 is an initialization that occurs |J| times.
Lines 4 and 6 are a double loop, however each loop inner loop
only iterates through a job J’s children. Thus, the total number
of iterations for lines 4-13 occurs |E| times. Thus, Algorithm 3’s
complexity is O(|J|lg|J|+ |J|+ |E|) Thus, our loose upper bound
for the PTAC algorithm is O(|E|+ |E|lg|E|+C(|J|lg|J|+ |J|+ |E|))

10.2. Analysis of the PALS Algorithm

10.2.1. Algorithm 4
Algorithm 4 simply executes algorithms 1 and 5. For exam-

ple, Algorithm 5 will be executed T times, where T represents
the total number of tasks.
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10.2.2. Algorithm 5
This algorithm schedules the jobs of a task on to the PEs.

Lines 1-4 are simply descriptions, or comments. Line 6-8 com-
pute the priority for each job in the task, and execute N times,
where N represents the number of jobs in the task. Line 9 is
also execute N times, and simply adds jobs to a list. The sort-
ing of the jobs in line 10 can be done in O(NlgN) time. Line
11 is linear complexity, like line 9, and simply places the PEs
into a list. This is done K times. The sorting in line 12 can be
done in KlgK time. The loop in lines 13-23 loops through each
job in the list. This is done N times. Each operation between
lines 13-23 can be considered to be done in constant time, for
example, retrieving a job from the list in line 15 is constant. The
complexity for Algorithm 5 is thus O(N + NlgN + K + KlgK).

10.2.3. Algorithm 6
Algorithm 6 represents the energy-performance tradeoff al-

gorithm. Line 1 makes T calls to algorithm 5, where T repre-
sents the number of tasks. Likewise, in lines 2 and 3, algorithm
6 calls algorithm 7 and algorithm 1 T times. Thus, the com-
plexity of algorithm 6 is O(T (Kt+N+NlgN+K+KlgK+A7))
where A7 represents the complexity of algorithm 7.

10.2.4. Algorithm 7
Algorithm 7 scales down the voltage for the critical path, thus

increasing the execution time of the task as a whole. The outer
loop on line 2 is executed K times for the K PEs. The first
inner loop on line 3 gets executed t times, where t represents
the number of time slots in the Gantt chart. Lines 4, 5, and 6
are constant time operations.

The second inner loop has t loops, for each time slot in the
Gantt chart. Thus, the complexity for the PALS algorithm is
O(Kt + Kt), or simply O(Kt)

11. Performance Study With Simulation

We make a simulation study on the proposed best-
effort scheduling algorithm and energy-performance tradeoff
scheduling algorithm. Several task sets are generated with the
Synthetic DAG generation tool [35]. We simulate a cluster with
multiple Turion MT-34 processors, whose operating points are
shown in Table 1.

Table 1: Operating points for the Turion MT-34 processor

Frequency (GHz) Supply Voltage (V)
1.8 1.20
1.6 1.15
1.4 1.10
1.2 1.05
1.0 1.00
0.8 0.90

In this simulation for best-effort scheduling, we are interested
how much energy is saved given various parallel tasks and PE

numbers in the cluster. We define the resource competition to
execute a parallel task, ζ(T ), in a cluster as follows:

ζ(T ) =
N
P

(25)

where, T is the parallel task, N is the job number of T , and P
is the PE number for executing T . Resource competition shows
the task execution situation, like how many precedences exist
between jobs, how many jobs are scheduled, and how many
jobs are executed on each PE.

Table 2: Comparison of energy savings between different energy aware
scheduling algorithm

Energy aware DAG Maximum
scheduling algorithm energy saving

EADUS & TEBUS [47] 16.8%
Energy Reduction Algorithm [21] 25%

LEneS [16] 28%
ECS [22] 38%

PATC 39.7%
PALS 44.3%

The PATC and the PALS can achieve up to 39.7% and 44.3%
energy saving respectively in the simulation. Table 2 compares
our algorithm with other energy aware DAG scheduling algo-
rithms in term of max energy saving. EADUS & TEBUS [47]
uses the duplication strategies for scheduling DAG based par-
allel tasks in a cluster to reduce power consumption. However,
EADUS & TEBUS do not use DVFS to reduce energy con-
sumption, thus leading less energy savings. Compared with
LEneS [16], Energy Reduction Algorithm [21], and ECS [22],
the PATC and PALS can achieve more energy saving as

• The PATC and PALS reduce the energy consumption dur-
ing the communication phase

• The PATC and PALS reduce power consumption when a
PE is idle, and

• The PATC and PALS try to extend job slack time whenever
it is possible.

Figure 6 shows the energy savings when running the PALS
algorithm in different scenarios of numbers of PEs and resource
competition. For a close view, Figure 7 and Figure 8 shows two
special cases of 1) Energy savings when running the PALS al-
gorithm with different scenarios of resource competition and
PE number is set as 50; 2) Energy savings when running the
PALS algorithm with different PE numbers and resource com-
petition is set as 6. From above figures we can see that the en-
ergy saved increases as the number of PEs increases. This can
be explained as follows: when the number of PEs increases,
intuitively there are less jobs executed in a PE, then the jobs
have more of a chance to scale their execution time and PE sup-
ply voltages. If we fix the number of PEs, the energy saving
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Figure 6: Energy savings of best-effort scheduling algorithm

!"!#$

%!"!#$

&!"!#$

'!"!#$

(!"!#$

)!"!#$

%$ &$ '$ ($ )$ *$ +$ ,$ -$ %!$

!"
#$
%&
'(
)*
+"
%'

,#-./$0#'1.23#44."'

!"#$&'-)*+"%'.5'6#-7'#8.$7'-09#:/;+"%');%.$+792'
<!'"/26#$'='>?'

Figure 7: Energy savings of best-effort scheduling algorithm (PE number =50)
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Figure 8: Energy savings of best-effort scheduling algorithm (Resource com-
petition = 6)

firstly increases, achieves it maximum value, and then it de-
ceases. This can be explained by the fact that the percentage
of jobs on the critical path firstly increases then decrease. The
length of critical path gives the limit that non-critical jobs can
extend to.

In the simulation for energy-performance tradeoff schedul-
ing, we are more interested in the relationship between the en-
ergy saved and the extended task execution time, as shown in
Figure 9. From Figure 9 we can see that:
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Figure 9: Energy savings vs. makespan extension

• When the makespan extension increases, the energy sav-
ings also increase.

• Then energy savings increase much when the makespan
extension is less then 30%.

These observations can conclude that the green SLA negotia-
tion is feasible. When users pay additional tolerant task execu-
tion time, which is less than 30%, less than 70% energy savings
can be achieved. This is a win-win game.

12. Conclusion and Future Work

Recently, the need for efficient algorithms to minimize
wasted server energy has become increasingly important. Dy-
namic voltage and frequency scaling (DVFS) technique has
proven to be a highly effective technique to achieve low power
consumption for high performance computing by dynamically
scaling processor speed. We develop our research on mini-
mizing energy for precedence-constrained parallel task execu-
tion. This paper proposes two scheduling algorithms in DFVS-
enabled clusters for executing parallel tasks: the PATC and
PALS. The proposed algorithms search the slack time for non-
critical jobs without increasing scheduling length. We also de-
velop green SLA based mechanism to reduce energy consump-
tion by return users tolerant increased scheduling makespans.
The proposed scheduling algorithm is examined via a simula-
tion study. Test results show that the scheduling algorithm is
efficient to reduce the power consumption of a DVFS-enabled
cluster. Future work includes the deployment of the power
aware scheduling algorithm in some real applications, for ex-
ample, the the sparse Cholesky decomposition.
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