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Abstract We give a description of compact conformally Kähler Einstein-Weyl manifolds
whose Ricci tensor is Hermitian.

0 Introduction

In this paper we shall investigate compact Einstein-Weyl structures (M, [g], D) on a complex
manifold (M, J ), dimM ≥ 4, which are conformally Kähler and whose Ricci tensor ρD is
Hermitian, i.e., ρD is J -invariant.

We give a complete classification of compact Einstein-Weyl structures (M, [g], D) with
dim M ≥ 4 such that (M, [g], J ) is conformally Kähler, i.e., there exists a metric g0 ∈ [g]
such that (M, g0, J ) is Kähler and whose Ricci tensor ρD is J -invariant, i.e.,

ρD(J X, JY ) = ρD(X, Y ).

Conformally Kähler Einstein manifolds were classified by Derdziński and Maschler in [4].
Compact Gray bi-Hermitian manifolds are partially classified in [10]. It is proved in [9] that
compact Einstein-Weyl manifolds are also Gray manifolds (see [8]). The compact Einstein-
Weyl 3-D manifolds are studied in [17]. The compact Einstein-Weyl manifolds on complex
manifolds compatible with complex structure are studied in [15,16,13,18]. In [6] there are
studied Riemannian manifolds (M, g) in four dimensions which are locally conformally Käh-
ler. The Einstein-Weyl conformally Kähler structures studied in [13,18] have the J -invariant
Ricci tensor ρD of the Weyl structure (M, [g], D). In the first section of the paper we recall
some facts from [9] and describe compact Einstein-Weyl manifolds with the Gauduchon
metric as Gray manifolds. In Sect. 2 we describe the Riemannian structure of Gray manifold
corresponding to Einstein-Weyl manifold with the Gauduchon metric. In Sect. 3 we prove that
compact Einstein-Weyl manifold with Hermitian Ricci tensor admits a holomorphic Killing
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vector field with special Kähler-Ricci potential and consequently M = CP
n or M = P(L⊕O)

where L is a holomorphic line bundle over Kähler–Einstein manifold. In Sect. 4 we prove
that if M = P(L ⊕ O) then L is a holomorphic line bundle over Kähler–Einstein manifold
with positive scalar curvature.

1 Einstein-Weyl geometry and Killing tensors

We start with some basic facts concerning Einstein-Weyl geometry. For more details see
[17,15,16].

Let M be a n-dimensional manifold with a conformal structure [g] and a torsion-free affine
connection D. This defines an Einstein-Weyl (E-W) structure if D preserves the conformal
structure, i.e., there exists a 1-form ω on M such that

Dg = ω ⊗ g (1.1)

and the Ricci tensor ρD of D satisfies the condition

ρD(X, Y )+ ρD(Y, X) = �̄g(X, Y ) for every X, Y ∈ T M

for some function �̄ ∈ C∞(M). Gauduchon proved ([7]) the fundamental theorem that if
M is compact then there exists a Riemannian metric g0 ∈ [g] for which δω0 = 0 and g0 is
unique up to homothety. We shall call g0 a standard metric of E-W structure (M, [g], D). Let
ρ be the Ricci tensor of (M, g) and let us denote by S the Ricci endomorphism of (M, g),
i.e., ρ(X, Y ) = g(X, SY ). We recall two important theorems (see [17,15]):

Theorem 1.1 A metric g and a 1-form ω determine an E-W structure if and only if there
exists a function � ∈ C∞(M) such that

ρ∇ + 1

4
(n − 2)Dω = �g (1.2)

where Dω(X, Y ) = (∇Xω)Y + (∇Yω)X + ω(X)ω(Y ) and n = dim M. If (1.2) holds then

�̄ = 2�+ divω − 1

2
(n − 2) ‖ ω� ‖2 (1.3)

Tod proved [17] that the Gauduchon metric admits a Killing vector field, more precisely
he proved:

Theorem 1.2 Let M be a compact E-W manifold and let g be the standard metric with the
corresponding 1-form ω. Then the vector field ω� dual to the form ω is a Killing vector field
on M.

By τ = trg ρ we shall denote the scalar curvature of (M, g). Compact E-W manifolds
with the Gauduchon metric are Gray manifolds. To define Gray manifolds we define first a
Killing tensor.

Definition A self-adjoint (1, 1) tensor on a Riemannian manifold (M, g) is called a Killing
tensor if

g(∇S(X, X), X) = 0

for arbitrary X ∈ T M .
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Remark The condition g(∇S(X, X), X) = 0 is equivalent to

CX,Y,Z g(∇S(X, Y ), Z) = 0

for arbitrary X, Y, Z ∈ X(M), where C denotes the cyclic sum.

Now we can give

Definition A Riemannian manifold (M, g) will be called a Gray A ⊕ C⊥ manifold if the
tensor ρ − 2τ

n+2 g is a Killing tensor.

In this paper, Gray A ⊕ C⊥ manifolds will be called for short Gray manifolds or A ⊕ C⊥
manifolds. Gray manifolds were first defined by Gray ([8]).

In the next two theorems, which are proved also in [9], we characterize compact E-W
manifolds (M, g) with the Gauduchon metric as Gray ([8]) manifolds and show that the
eigenvalues λ0, λ1 of the Ricci tensor satisfy the equation (n − 4)λ1 + 2λ0 = C0 = const
which we shall use later. We sketch the proofs of the theorems. Our motivation is to use the
structure of Gray manifolds to use ideas from [10], where we classified a different class of
Gray manifolds. From the above theorems it follows (see [9])

Theorem 1.3 Let (M, [g]) be a compact E-W manifold, n = dimM ≥ 3, and let g be the
standard metric on M. Then (M, g) is an A⊕C⊥-manifold. The manifold (M, g) is Einstein
or the Ricci tensor ρ∇ of (M, g) has exactly two eigenfunctions λ0 ∈ C∞(M), λ1 = �

satisfying the following conditions:

(a) (n − 4)λ1 + 2λ0 = C0 = const
(b) λ0 ≤ λ1 on M
(c) dim ker(S − λ0 I d) = 1, dim ker(S − λ1 I d) = n − 1 on U = {x : λ0(x) �= λ1(x)},
(d) λ1 − λ0 = n−2

4 ‖ ξ ‖2 where ξ = ω� ∈ iso(M).

In the addition λ0 = 1
n Scal D

g where Scal D
g = trgρ

D denotes the conformal scalar curvature
of (M, g, D).

Proof Note that ω(X) = g(ξ, X) where ξ ∈ iso(M) and the formula

ρ∇ + 1

4
(n − 2)ω ⊗ ω = �g (1.4)

holds. Thus, ∇X (ω ⊗ ω)(X, X) = 0. From (1.4) it follows that

(∇Xρ)(X, X) = (X�)g(X, X). (1.5)

It means that (M, g) ∈ A ⊕ C⊥ and d(� − 2
n+2 τ) = 0 ([9], Lemma 1.5) , where τ is the

scalar curvature of (M, g). From (1.5) it follows that the tensor T = S − �I d is a Killing
tensor. Note that ρ(ξ, ξ) = (� − 1

4 (n − 2) ‖ ξ ‖2) ‖ ξ ‖2 and if X ⊥ ξ then SX = �X .
Hence, the tensor S has two eigenfunctions λ0 = � − 1

4 (n − 2) ‖ ξ ‖2 and λ1 = �. This
proves (b). Note that

τ = λ0 + (n − 1)λ1 = n�− 1

4
(n − 2) ‖ ξ ‖2 .

and 2τ − (n + 2)� = C0 = const . Thus, C0 = (n − 2)� − 1
2 (n − 2) ‖ ξ ‖2. However,

(n − 4)λ1 + 2λ0 = (n − 2)�− 1
2 (n − 2) ‖ ξ ‖2 which proves (a). Note also that

1

n
s D

g = �− n − 2

4
‖ ξ ‖2= λ0 (1.6)

which finishes the proof. �
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In the next theorem we show that conversely every Gray manifold satisfying the above
conditions is in fact E-W manifold (see [9]).

Theorem 1.4 Let (M, g) be a compact A⊕C⊥ manifold. Let us assume that the Ricci tensor
ρ of (M, g) has exactly two eigenfunctions λ0, λ1 satisfying the conditions:

(a) (n − 4)λ1 + 2λ0 = C0 = const
(b) λ0 ≤ λ1 on M
(c) dim ker(S − λ0 I d) = 1, dim ker(S − λ1 I d) = n − 1 on U = {x : λ0(x) �= λ1(x)}.

Then there exists a twofold Riemannian covering (M ′, g′) of (M, g) and a Killing vector
field ξ ∈ iso(M ′) such that (M ′, [g′]) admits two different E-W structures with the standard
metric g′ and the corresponding 1-forms ω∓ = ∓ξ
 dual to the vector fields ∓ξ . In addition,
λ1 − λ0 = n−2

4 ‖ ξ ‖2. The condition (b) may be replaced by the condition
(b1) there exists a point x0 ∈ M such that λ0(x0) < λ1(x0).

Proof Note that τ = (n − 1)λ1 + λ0 and C0 = (n − 4)λ1 + 2λ0. It follows that

λ1 = 2τ − C0

n + 2
, λ0 = (n − 1)C0 − (n − 4)τ

n + 2
. (1.7)

In particular λ0, λ1 ∈ C∞(M). Let S be the Ricci endomorphism of (M, g) and let us define
the tensor T := S − λ1 I d . Since from (1.7) we have dλ1 = 2

n+2 dτ it follows that T is a
Killing tensor with two eigenfunctions:μ = 0 and λ = λ0 −λ1. Hence there exists a twofold
Riemannian covering p : (M ′, g′) → (M, g) and a Killing vector field ξ ∈ iso(M ′) (see [9],
th. 2.10) such that S′ξ = (λ0 ◦ p)ξ where S′ is the Ricci endomorphism of (M ′, g′). Note
also that ‖ ξ ‖2= |λ−μ| = |λ0 − λ1|. Let us define the 1-form ω on M ′ by ω = cξ
 where

c = 2
√

1
n−2 . It is easy to check that with such a choice of ω Eq. (1.4) is satisfied and δω = 0.

Thus (M ′, g′, ω) defines an E-W structure and g′ is the standard metric for (M ′, [g′]). Note
that (M, g′,−ω) gives another E-W structure corresponding to the field −ξ . �
Corollary 1.5 Let (M, g) be a compact simply connected manifold satisfying the assump-
tions of Th. 1.4. Then (M, [g]) admits two E-W structures with the standard metric g.

2 Killing tensors

In this section, we describe the Riemannian manifold (M, g) where g ∈ [g] is the standard
metric of E-W structure (M, [g], D).

We say, that a distribution (not necessarily integrable) D is totally geodesic, if ∇X X ∈
�(D) for every X ∈ �(D). Note that if (M, g) is a compact E-W manifold with the Gaudu-
chon metric then the distribution Dλ1 is totally geodesic since is orthogonal to the distribution
spanned by a Killing vector field.

We start with:

Lemma 2.1 Let S be a self-adjoint tensor on (M, g) with exactly two eigenvalues λ,μ. If
the distributions Dλ,Dμ are both umbilical, ∇λ ∈ �(Dμ),∇μ ∈ �(Dλ) and the mean
curvature normals ξλ, ξμ of the distributions Dλ, Dμ respectively satisfy the equations

ξλ = 1

2(μ− λ)
∇λ, ξμ = 1

2(λ− μ)
∇μ,

then S is a Killing tensor.

123



Ann Glob Anal Geom (2013) 43:19–29 23

Proof We have to show that g(∇S(Z , Z), Z) = 0 for arbitrary Z ∈ T M . Let Z = X + Y
where X ∈ Dλ, Y ∈ Dμ. Then

g(∇S(Z , Z), Z) = g(∇S(X, X), X)+ 2g(∇S(X, X), Y )+ g(∇S(Y, X), X)

+2g(∇S(Y, Y ), X)+ g(∇S(X, Y ), Y )+ g(∇S(Y, Y ), Y ).

Since ∇S(X, X) = (λ− μ)g(X, X)ξλ,∇S(Y, Y ) = (μ− λ)g(Y, Y )ξμ and

g(∇S(X, X), X) = 0, g(∇S(Y, Y ), Y ) = 0

one can easily check that g(∇S(Z , Z), Z) = 0. �

Remark We call here a vector field ξ the mean curvature normal of a umibilical distribution
D if for every X ∈ �(D) we have π(∇X X) = g(X, X)ξ where π is a projection on the
orthogonal complement of D. Note that D may not be integrable.

Proposition 2.2 Let (M, g) be a 2n-D Riemannian manifold whose Ricci tensor ρ has two
eigenvalues λ0(x), λ1(x) of multiplicity 1 and 2n − 1, respectively, at every point x of M.
Assume that the eigendistribution Dλ1 corresponding to λ1 is totally geodesic. Then (M, g)
is a Gray manifold if and only if 2λ0 + (2n − 4)λ1 is constant and ∇τ ∈ �(Dλ1).

Proof Let S0 be the Ricci endomorphism of (M, g), i.e., ρ(X, Y ) = g(S0 X, Y ). Let S be
the tensor defined by the formula

S0 = S + τ

n + 1
id . (2.1)

Then

tr S = − (n − 1)τ

n + 1
. (2.2)

Let λ0, λ1 be the eigenfunctions of S0 and let us assume that

2λ0 + (2n − 4)λ1 = C (2.3)

where C ∈ R. Note that S also has two eigenfunctions which we denote by λ′
0, λ

′
1, respec-

tively. It is easy to see that λ′
0 = − n−1

n+1τ + C 2n−1
2(n+1) , λ

′
1 = − C

2(n+1) and λ0 = − τ(n−2)
n+1 +

C 2n−1
2(n+1) , λ1 = τ

(n+1) − C
2(n+1) . Since the distribution Dλ0 is umbilical we have ∇X X |Dλ1

=
g(X, X)ξ for any X ∈ �(Dλ0) where ξ is the mean curvature normal of Dλ0 . Since the
distribution Dλ1 is totally geodesic we also have ∇X X |Dλ0

= 0 for any X ∈ �(Dλ1).
Let {E1, E2, E3, E4, ..., E2n−1, E2n} be a local orthonormal basis of T M such that Dλ0 =
span {E1} and Dλ1 =span {E2, E3, E4, ..., E2n}. Then ∇Ei Ei |Dλ0

=0 for i ∈{2, 3, 4, ..., 2n}
and

∇E1 E1|Dλ1
= ξ.

Consequently (note that ∇λ′
0|Dλ0

= 0 if and only if ∇τ|Dλ0
= 0),

trg ∇S =
n∑

i=1

∇S(Ei , Ei ) = −(S − λ0 id)(∇E1 E1)+ ∇λ0|Dλ0
(2.4)

= −(λ1 − λ0)ξ

123



24 Ann Glob Anal Geom (2013) 43:19–29

if we assume that ∇τ|Dλ0
= 0. On the other hand, trg ∇S0 = ∇τ

2 and trg ∇S = trg ∇S0− ∇τ
n+1 .

Consequently,

trg ∇S = (n − 1)∇τ
2(n + 1)

= −1

2
∇λ′

0. (2.5)

Thus, ξ = − 1
2(λ0−λ1)

∇λ′
0. From the Lemma it follows that (M, g) is an A ⊕ C⊥-mani-

fold if 2λ0 + (n − 4)λ1 is constant and ∇τ ∈ �(Dλ1). These conditions are also necessary
since ∇λ′

1 = 0 if (M, g) is an A ⊕ C⊥-manifold and Dλ1 is totally geodesic. Analogously
ξ = − 1

2(λ′
0−λ′

1)
∇λ′

0 and ∇λ′
0 = − n−1

(n+1)∇τ ∈ �(Dλ1), where ξ is the mean curvature normal

of the umbilical distribution Dλ0 , if (M, g) is an A ⊕ C⊥-manifold. �

3 Conformally Kähler E-W manifolds

Let g be the standard metric of (M, [g]). Now let us recall that ρD(X, Y ) = λ0g(X, Y ) +
n
4 dω(X, Y ). Let us assume that (M, J ) is complex and [g] is Hermitian i.e. g(J X, JY ) =
g(X, Y ). It follows that ρD is J -invariant if and only if dω is a (1, 1) form, dω(J X, JY ) =
dω(X, Y ). Since ω(X) = g(ξ, X) it follows that dω is a (1, 1) form iff ∇J X ξ = J∇X ξ .

Proposition 3.1 Let (M, J )be a compact complex manifold with conformal Hermitian struc-
ture [g]. Let us assume that [g] is conformally Kähler and f 2g is a Kähler metric on (M, J )
where g is the standard metric and f ∈ C∞(M). If (M, [g]) is E-W with J -invariant Ricci
tensor ρD then Jξ is colinear with ∇ f in U = {x : ξx �= 0} and ξ is a holomorphic Killing
field on (M, f 2g, J ).

Proof Let ∇ be a Levi-Civita connection of the standard metric g and ∇1 be a Levi-Civita
connection of the Kähler metric g1 = f 2g. Note that ξ is a conformal field on (M, g1),
Lξ g1 = Lξ ( f 2g) = 2ξ ln f g1 = σg1. Every conformal field on a compact Kähler manifold
is Killing (see [12]), hence consequently ξ f = 0 and ξ ∈ iso(M, g1). On a Kähler compact
manifold every Killing vector field is holomorphic (see [14]). Thus, ξ ∈ hol(M, J ). Note
that

∇X ξ = ∇1
X ξ − d ln f (X)ξ − d ln f (ξ)X + g1(X, ξ)∇1 ln f.

Thus,

∇J X ξ − J∇X ξ = −d ln f (J X)ξ − d ln f (ξ)J X + g1(J X, ξ)∇1 ln f

+d ln f (X)Jξ + d ln f (ξ)J X − g1(X, ξ)J∇1 ln f.

Hence, ∇J X ξ = J∇X ξ if

−d ln f (J X)ξ + g1(J X, ξ)∇1 ln f + d ln f (X)Jξ − g1(X, ξ)J∇1 ln f = 0.

Put X = ξ then we get g1(ξ, ξ)J∇1 ln f = −d ln f (Jξ)ξ . It follows that in U = {x ∈ M :
ξx �= 0} there exists a smooth function φ such that ∇1 f = φ Jξ . �

Let us recall the definition of a special Kähler-Ricci potential ([5,3]).

Definition A nonconstant function τ ∈ C∞(M), where (M, g, J ) is a Kähler manifold, is
called a special Kähler-Ricci potential if the field X = J (∇τ) is a Killing vector field and
at every point with dτ �= 0 all nonzero tangent vectors orthogonal to the fields X, J X are
eigenvectors of both ∇dτ and the Ricci tensor ρ of (M, g, J ).
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Now our aim is to prove

Theorem 3.2 Let us assume that (M, [g], J ) is a compact, conformally Kähler E-W mani-
fold with Hermitian Ricci tensor ρD which is not conformally Einstein. Then the conformally
equivalent Kähler manifold (M, g1, J ) admits a holomorphic Killing field with a Kähler-
Ricci potential. Thus, M = P(L ⊕ O) where L is a holomorphic line bundle over a compact
Kähler Einstein manifold (N , h) of positive scalar curvature or is a complex projective space
CP

n.

Proof Let ρ, ρ1 be the Ricci tensors of conformally related riemannian metrics g, g1 = f 2g.
Then

ρ = ρ1 + (n − 2) f −1∇1d f + [ f −1�1 f − (n − 1) f −2g1(∇1 f,∇1 f )]g1.

Note that for arbitrary X, Y ∈ X(M) we have ∇1d f (X, Y ) = g1(∇1
X∇1 f, Y ) = g1

(Xφ Jξ, Y )+ φg1(J∇1
X ξ, Y ). Thus for any X, Y ∈ X(M):

ρ(X, Y )− (n − 2) f Xφg(Jξ, Y ) = ρ1(X, Y )+ (n − 2) f −1φg1(J∇1
X ξ, Y )

+[ f −1�1 f − (n − 1) f −2g1(∇1 f,∇1 f )]
g1(X, Y ), (3.1)

where �1 f = trg1∇1d f .
We shall show that ξ has zeros on M . If ξ �= 0 on M then the function φ would be defined

and smooth on the whole of M . Since M is compact it would imply that there exists a point
x0 ∈ M such that dφ = 0 at x0. On the other hand, the eigenvalues λ0, λ1 of the Ricci tensor
ρ satisfy λ0 − λ1 = Cg(ξ, ξ) where C �= 0 is a real number. Since ξ �= 0 it follows that
the eigenvalues of ρ do not coincide at any point of M . In particular ρ is not J -invariant
at x0, a contradiction, since the right hand part of (3.1) is J -invariant. It implies that ξ is a
holomorphic Killing vector field with zeros and thus has a potential τ (see [11]), i.e., there
exists τ ∈ C∞(M) such that ξ = J∇1τ . Hence, d f = −φdτ and dφ ∧ dτ = 0. It implies
that dφ = αdτ . Thus, we have for arbitrary X, Y ∈ X(M):

ρ(X, Y )+ (n − 2) f −1αdτ(X)dτ(Y ) = ρ1(X, Y ) (3.2)

−(n − 2) f −1φH τ (X, Y )− [ f −1αQ + f −1φ�1τ + (n − 1) f −2φ2 Q]g1(X, Y ).

where Q = g1(ξ, ξ).
Note that the tensor ρ̃(X, Y ) = ρ(X, Y ) + (n − 2) f −1αdτ(X)dτ(Y ) is J -invariant.

In particular ρ̃(ξ, ξ) = λ0g(ξ, ξ) = λo
Q
f 2 . On the other hand, ρ̃(∇1τ,∇1τ) = λ1

Q
f 2 + (n −

2) f −1αQ2. Hence, (λ0 − λ1)
Q
f 2 = (n − 2) f −1αQ2. Since λ0 − λ1 = − 1

4 (n − 2) Q
f 2 we get

α = − 1
4 f 3 . Hence

dφ = − 1

4 f 3 dτ = 1

4 f 3

d f

φ
, (3.3)

and we get 8φdφ = −d( 1
f 2 ). Hence, d(4φ2 + 1

f 2 ) = 0 and 4φ2 + 1
f 2 = C = const.

Let us denote χ = (n−2) f −1φ, σ0 = f −1αQ + f −1φ�1τ+(n−1) f −2φ2 Q. Note also
that the vector field v = ∇1τ is holomorphic and consequently ivρ1 = − 1

2 d�1τ = − 1
2 dZ

where Z = �1τ . From the equation

ρ̃(X, Y ) = ρ1(X, Y )− (n − 2) f −1φH τ (X, Y )− (3.4)

[ f −1αQ + f −1φ�1τ + (n − 1) f −2φ2 Q]g1(X, Y ).
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valid for arbitrary X, Y ∈ X(M) we get

λ0

f 2 dτ = −1

2
dZ + 1

2
χdQ − σ0dτ,

and

dZ = χdQ − 2σdτ (3.5)

where σ = σ0 + λ0
f 2 . From (3.5) we obtain

dχ ∧ dQ − 2dσ ∧ dτ = 0 (3.6)

Since dχ = γ dτ we have dτ ∧ (γ dQ + 2dσ) = 0 which implies γ dQ + 2dσ = κdτ for a
certain function κ . Note that

dσ0 = f −1αdQ + f −1φdZ + (n − 1) f −2φ2dQ + hdτ =[
− 1

4 f 4 + (n − 1) f −2φ2
]

dQ + f −1φdZ + hdτ,

for a certain function h. On the other hand, λ0 = − (n−4)Q
4 f 2 + C0

n−2 . Hence, d( λ0
f 2 ) =

− (n−4)
4 f 4 dQ + kdτ and

dσ =
[
− 1

4 f 4 + (n − 1) f −2φ2 − (n − 4)

4 f 4

]
dQ + f −1φdZ + ldτ

for some functions k, l. Since dχ = (n − 2)d( f −1φ) = − (n−2)
4 f 4 (1 − 4φ2 f 2)dτ we have

γ = − (n−2)
4 f 4 (1 − 4φ2 f 2) and

[
−3n − 8

4 f 4 + (3n − 4)φ2

4 f 2

]
dQ + 2 f −1φdZ = mdτ, (3.7)

for a certain function m.
From Eqs. (3.5) and (3.7) it follows that

dQ ∧ dτ = dZ ∧ dτ = 0 (3.8)

on a dense subset of M and hence everywhere.
Define a distribution D = span{ξ, Jξ} and let D⊥ be an orthogonal (with respect to g so

also with respect to g1) complement to D. Both distributions are defined in an open dense
subset U = {x : ξx �= 0}. LetπD, πD⊥ be orthogonal projections on D,D⊥, respectively. Let
us define ωD(X, Y ) = g1(JπD X, Y ), ωD⊥(X, Y ) = g1(JπD⊥ X, Y ). Then ωD +ωD⊥ = �

where �(X, Y ) = g1(J X, Y ) is the Kähler form of (M, g1, J ). Note that ωD = 1
Q dτ ∧

dcτ . Since ξ is a holomorphic Killing field on (M, g1, J ) it follows that H τ (J X, Y ) =
1
2 ddcτ(X, Y ). Since ∇1

v v = − 1
2∇1 Q = cv it follows that D is an eigendistribution of both

ρ1 and ddcτ . We have (we denote the Ricci form also by ρ1)

ρ1 = λωD + ω1 (3.9a)
1

2
ddcτ = μωD + ω2, (3.9b)

where λ,μ are eigenvalues of ρ1, H τ corresponding to an eigen distribution D. The eigen-
value μ satisfies an equation μQ = H τ (∇1τ,∇1τ) = − 1

2 dQ(∇1τ) = − 1
2βQ where
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dQ = βdτ . Hence, μ = − 1
2β and dμ∧ dτ = 0. From (3.5) it is clear that also dλ∧ dτ = 0.

Now we have

ρ̃ = ρ1 − 1

2
χddcτ − σ0�, (3.10)

and consequently

λ0

f 2ωD = λωD − χμωD − σ0ωD (3.11)

and

λ1

f 2ωD⊥ = ω1 − χω2 − σ0ωD⊥ . (3.12)

From (3.11) we obtain λ− μχ = σ0 + λ0
f 2 . Hence,

ω1 − χω2 = (σ0 + λ1

f 2 )ωD⊥ = (λ− μχ + λ1 − λ0

f 2 )ωD⊥ = σ1ωD⊥ . (3.13)

From (3.9) we get

λdωD = −dω1, μdωD = −dω2.

Equation (3.13) implies that

dω1 − dχ ∧ ω2 − χdω2 = dσ1 ∧ ωD⊥ + σ1dωD⊥ ,

thus

(−λ+ μχ + σ1)dωD = dχ ∧ ω2 + dσ1 ∧ ωD⊥ .

Note that dωD = d( 1
Q dτ∧dcτ) = − 1

Q dτ∧ddcτ = − 2
Q dτ∧(μωD +ω2) = − 2

Q dτ∧ω2

and λ1 − λ0 = 1
4 (n − 2) Q

f 2 . Let us write dσ1 = ψdτ , then we obtain

dτ ∧
(

n − 2

4 f 4 (−1 − 4 f 2φ2)ω2 − ψωD⊥

)
= 0. (3.14)

From (3.14) it is clear that in U we have ω2 = κ2ωD⊥ for a certain function κ2 ∈ C∞(U ).
Hence, also ω1 = κ1ωD⊥ for a certain function κ1 ∈ C∞(U ). It follows that the function τ
is a Kähler-Ricci potential. The fact that the Einstein–Kähler manifold (N , h) has a positive
scalar curvature is proved below. It is easy to check that also for dimM = 4 the manifold
(N , h) has constant scalar curvature. The E-W structure on these manifolds is described in
[13], [18]. �

4 Eigenvalues of the Ricci tensor

In our construction we shall follow Bérard Bergery (see [1,10]). Let (N , h, J ) be a com-
pact Kähler Einstein manifold and dim N = 2m, s ≥ 0, L > 0, s ∈ Q, L ∈ R, and
g : [0, L] → R be a positive, smooth function on [0, L] which is even at 0 and L , i.e., there
exists an ε > 0 and even, smooth functions g1, g2 : (−ε, ε) → R such that g(t) = g1(t)
for t ∈ [0, ε) and g(t) = g2(L − t) for t ∈ (L − ε, L]. Let f : (0, L) → R be positive on
(0, L), f (0) = f (L) = 0 and let f be odd at the points 0, L . Let P be a circle bundle over
N classified by the integral cohomology class s

2 c1(N ) ∈ H2(N ,R) if c1(N ) �= 0. Let q be
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the unique positive integer such that c1(N ) = qα where α ∈ H2(N ,R) is an indivisible
integral class. Such a q exists if N is simply connected or dim N = 2. Note that every Kähler
Einstein manifold with positive scalar curvature is simply connected. Then

s = 2k

q
; k ∈ Z.

It is known that q = n if N = CP
n−1 (see [2], p. 273). Note that c1(N ) = { 1

2π ρN } =
{ τN

4mπ ωN } where ρN = τN
2mωN is the Ricci form of (N , h, J ), τN is the scalar curvature of

(N , h) and ωN is the Kähler form of (N , h, J ). We can assume that τN = ±4m. In the case
c1(N ) = 0 we shall assume that (N , h, J ) is a Hodge manifold, i.e., the cohomology class
{ s

2π ωN } is an integral class. On the bundle p : P → N there exists a connection form θ such
that dθ = sp∗ωN where p : P → N is the bundle projection. Let us consider the manifold
Us, f,g = (0, L)× P with the metric

k = dt2 + f (t)2θ2 + g(t)2 p∗h. (4.1)

It is known that the metric (4.1) extends to a metric on the sphere bundle M = P ×S1 CP
1 if

and only if a function g is positive and smooth on [0, L], even at the points 0, L , the function
f is positive on (0, L), smooth and odd at 0, L and additionally

f ′(0) = 1, f ′(L) = −1 (4.2)

Then, the metric (4.1) is bi-Hermitian (see [10]). Note that M = P(L⊕O)where L = P×S1 C

with S1 acting in a standard way on C and O is the trivial line bundle over N .
The metric k = k f,g extends to a metric on CP

n if and only if the function g is positive
and smooth on [0, L), even at 0, odd at L , the function f is positive, smooth and odd at 0, L
and additionally

f ′(0) = 1, f ′(L) = −1, g(L) = 0, g′(L) = −1. (4.3)

Let us assume that (N , h) is a 2(n − 1)-D Kähler–Einstein manifold of scalar curvature
4(n −1)ε where ε ∈ {−1, 0, 1}. Using the results in Sect. 3 and [10] we obtain the following
formulae for the eigenvalues of the Ricci tensor ρ of (Us, f,g, k f,g):

λ0 = −2(n − 1)
g′′

g
− f ′′

f
,

λ1 = − f ′′

f
+ 2(n − 1)

(
s2 f 2

4g4 − f ′g′

f g

)
,

λ2 = − g′′

g
+

(
s2 f 2

4g4 − f ′g′

f g

)
+ 2ε

g2 − 3s2 f 2

4g4 − (2n − 3)
(g′)2

g2 . (4.4)

We shall show that in fact ε = 1, i.e., the scalar curvature of the Einstein manifold (N , h, J )
is positive. From [9], p. 17, th. 3.8. it follows that the conformal scalar curvature of E-W
manifold and hence λ1 is nonnegative. We also have for the Gauduchon metric λ0 = λ2 and
λ1 + C2 f 2 = λ0 for a positive constant C . Since f (0) = 0 = f (L) it follows that f attains
a maximum at a point t0 ∈ (0, L). Then f ′(t0) = 0 and f ′′(t0) ≤ 0. Hence at t0 we have

λ1 = − f ′′

f
+ 2(n − 1)

s2 f 2

4g4 > 0

and

− g′′

g
+ 2ε

g2 − s2 f 2

2g4 − (2n − 3)
(g′)2

g2 = −2(n − 1)
g′′

g
− f ′′

f
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and hence

2ε

g2 = s2 f 2

2g4 + (2n − 3)
(g′)2

g2 − (2n − 3)
g′′

g
− f ′′

f
.

From (4.2) it follows that at t0

−2(n − 1)
g′′

g
= 2(n − 1)

s2 f 2

4g4 + C2 f 2 > 0

and consequently ε > 0.
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