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A b s t r a c t

In this paper, an O(n) parallel algorithm is presented for unranking set partitions in Hutchinson’s 
representation. A simple sequential algorithm is derived on the basis of a dynamic programming paradigm. 
In the parallel algorithm, processing is performed in a dedicated parallel architecture combining certain 
systolic and associative features. The algorithm consists of two phases. In the first phase, a coefficient table 
is created by systolic computations. Then, n subsequent elements of a partition codeword are computed, in 
O(1) time each, through associative search operations.
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S t r e s z c z e n i e

W artykule przedstawiono równoległy algorytm o złożoności O(n) dla wyznaczania podziału zbioru  
{1, ..., n} w reprezentacji Hutchinsona na podstawie jego liczby porządkowej. Prosty algorytm sekwencyjny 
opiera się na paradygmacie programowania dynamicznego. Algorytm równoległy łączy w sobie cechy 
programowania systolicznego i asocjacyjnego. Algorytm składa się z dwóch kroków. W pierwszej 
kolejności, za pomocą obliczeń systolicznych, wyznaczana jest tablica współczynników, zwanych liczbami 
Williamsona. Następnie, przez asocjacyjne wyznaczanie maksimum zbioru liczb, obliczanych jest n 
kolejnych elementów reprezentujących podział, każdy w czasie O(1).

Słowa kluczowe:	 podział zbioru, algorytm konwersji liczby porządkowej w obiekt, algorytm asocjacyjny, 
równoległe programowanie dynamiczne
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1. Introduction

Listing, ranking and unranking of combinatorial objects is an important problem in 
computer science and engineering in many application areas [12, 13]. 

The most common application of unranking algorithms is ‘translation’ of randomly 
generated of integer ranks for a class of combinatorial objects into random objects, that are 
used in generation of instances used in software testing,  Monte Carlo algorithms etc. They 
can also be applied for the generation of ordered sequences of combinatorial objects, in 
adaptive parallel generation algorithms, and in task partitioning in optimization algorithms 
constructed on the basis of exhaustive search. Another application of ranking and unranking 
algorithms is enumerative coding in which selected classes of equiprobable messages are 
translated into classes of combinatorial objects, providing unique object’s indexing within 
the class. The assigned index and the code of the enumerative class represent the compressed 
data for the message [27]. Unranking algorithms can also be used for enumeration [3], 
crossover operations on chromosomes in genetic algorithms [28], metaheuristics etc.

Partitions are widely used to solve optimization problems in bioinformatics, forensic 
science, and scheduling [7]. In computational molecular biology partitions play an important 
role in understanding the role of genes in determining global characteristics of species.  
In a multi-state distribution system, the overall quality of service can  be maintained by 
quick enumeration partitions of the variables used in decision diagrams that model the 
system [3]. 

The first known algorithm for generating (n, m)-partitions, 1 ≤ m ≤ n, i.e partitions of 
n-element set into at most m nonempty blocks is due to Hutchinson [8]. Over the following 
years, a number of sequential algorithms was developed [4, 6, 11, 22]. An increasing interest 
in parallel computing also resulted in the development of many parallel algorithms for the 
partition generation problem in various models of computations [5, 16, 19, 21, 25]. The 
structure of the set of partitions was investigated and new ranking/unranking techniques were 
developed satisfying some particular requirements [15, 29]. A fast hardware rank to partition 
converter has been proposed in [3]. 

Parallelization of the generation algorithm on the set of objects level is possible by 
means of an adaptive scheme. The linearly ordered sequence of objects is divided into k 
subsequences of equal size, where k is the number of available processors. An unranking 
algorithm is used for determining the first object of each subsequence. 

In the present paper, we propose a new parallel algorithm for unranking set partitions. 
The dynamic programming technique is used which was successfully applied in many 
application areas. So far a dynamic programming paradigm was used in a number of 
sequential algorithms for unranking combinations [17], partitions [15, 29], t-ary trees [20, 
22] and some other combinatorial objects [9, 10]. Although, in general, unranking problems 
are inherently sequential, a portion of  computations can be parallelized. However, many 
sequential algorithms are not suitable for parallelization. Until now, parallel algorithms were 
proposed for unranking combinations and t-ary trees [18, 20, 22]. 

The rest of the paper is organized as follows. The next section introduces a representation 
of set partitions. Then, a sequential algorithm for unranking of set partitions in Hutchinson’s 
representation is presented in section 3. Section 4 describes an associative algorithm 
developed on the basis of a parallel dynamic programming method. 
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2. Representation of set partitions

Let us introduce the basic notions used throughout this paper.
Let 〈Ai〉i∈I denote an indexed family of sets Ai = A, where: A = {1, ..., m}, I = {1, ..., n}, 

1 ≤ m, n. Any mapping f, which ‘chooses’ one element from each set A1, ..., An is called 
a choice function of the family 〈Ai〉i∈I [23]. With additional restrictions, we can model by 
choice functions various classes of combinatorial objects [9]. 

Below, we define choice functions ρ corresponding to partition codewords known from 
literature [8, 29] (see Table 1).

If additional conditions: 1. a1 = 1 and 2. ai ∈ {1, ..., max[a1, ..., ai–1] + 1}, for 2 ≤ i ≤ n, 
and i ∈ I, are satisfied, then any choice function ρ = 〈ai〉i∈I, that belongs to the indexed 
family 〈Ai〉i∈I, is called the partitioning choice function of this family (r-sequence). Set 
of all partitioning choice functions contains representations of all m-block partitions of 
the set A. In Hutchinson’s representation of partitions we deal in fact with indexed sets  
Ri = {1, ..., i} ⊆ Ai. 

T a b l e  1

Sequences of all (m, n)-partitions (1 ≤ m ≤ n = 4, B(n) = 15)

Rank r-sequence Rank r-sequence Rank r-sequence

1 1 1 1 1 6 1 2 1 1 11 1 2 2 3

2 1 1 1 2 7 1 2 1 2 12 1 2 3 1

3 1 1 2 1 8 1 2 1 3 13 1 2 3 2

4 1 1 2 2 9 1 2 2 1 14 1 2 3 3

5 1 1 2 3 10 1 2 2 2 15 1 2 3 4

The number of different m-block partitions of n-element set for m ≥ 2 is called the Stirling 
number of the second kind: 

		  (1)

where S(n, n) = 1, for n ≥ 0 and S(n, 0) = 0, for n > 0. The above formula describes construction 
of the Stirling triangle. 

Let us recall the concept of  Williamson numbers [15, 29]. The number of different at 
most m-block partitions of the n-element set ρ = 〈r1, ..., rn–ν, rn–ν+1, ..., rn〉 ∈  〈Ri〉i∈I with 
constant 〈r1, ..., rn–ν〉 and max{r1, ..., rn–ν} = μ is called Williamson number: 

	 	 (2)

where μ, ν ≥ 1, Wn
m(1, μ) = 1, for 1 ≤ μ ≤ m, and Wn

m(1, μ) = 0 for μ > m.
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The above recursive formula describes the construction of the Williamson triangle for 
a given value of m. In particular, when n = ν and μ = 1, the following equation holds: 

		  (3)

Table WT containing a part of the Williamson triangle, for n = m = 6, is shown in Table 2. 
Williamson numbers W6

6(ν, μ) are stored in elements WT[ν, μ] of the table WT. If  
n = m, then the number of all partitions of n-element set with at most n blocks is called 
Bell number Bn: 

		  (4)

The above formulas, (1)–(4) come from the literature. The terms ‘Williamson number’ 
and ‘Williamson triangle’ were first proposed by the author in [15]. Two-dimentional tables 
containing parts of Williamson triangle are used in dynamic programming unranking 
algorithms for set partitions.

T a b l e  2

Construction of the table WT for (m, n)-partitions 
(1 ≤ m ≤ n = 6, B(n) = 203)

j = 1 2 3 4 5 6

i =

1 1 1 1 1 1 1

2 2 3 4 5 6

3 5 10 17 26

4 15 37 77

5 52 151

6 203

Let us now introduce the lexicographic order of the set of all choice functions of the 
family 〈Ai〉i∈I. 

For the given choice functions ρ = 〈d1, ..., dk〉 and γ = 〈g1, ..., gk〉, we say that δ is less then 
γ according to the increasing lexicographic order, if and only if there exists i ∈ {1, ..., k}, 
satisfying di < gi, and dj = gj, for every j < i. 

For given choice functions δ = 〈d1, ..., dk〉 and γ = 〈g1, ..., gk〉, we say that δ is less than 
γ according to the decreasing lexicographic order, if and only if there exists i ∈ {1, ..., k} 
satisfying di > gi and dj = gj, for every j < i.
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3. Sequential dynamic programming algorithm

We will start from the construction of the sequential algorithm given in [15], which is 
a modification of the Williamson’s algorithm [29]. In the algorithm UnrankPart, the table WT 
is used, which includes a part of a modified Williamson Triangle (see Table 2). 

In the unranking algorithm given below, the table WT is already given. The following 
restrictions on pairs (i, j), k ≤ n should be taken into account during construction of this table 
(2 and 3 optionally):
1)	n ≤ nmax, where: nmax is any natural number (size of the triangle), 
2)	1 ≤ k ≤ kmax ≤ nmax (columns from 1 to kmax),
3)	0 ≤ n – k = r ≤ nmax – kmin (rows from 1 to r + 2).  

Algorithm UnrankPart

Input: n – number power of the set, Index – rank of the choice function ρ representing set 
partition (1 ≤ Index ≤ B(n), Table WT with elements WT[i, j] containing Williamson numbers 
Wn

n(i, j), for 1 ≤ j ≤ n. 
Output: Table R with choice function ρ. 
Method: Computations proceed with partitions ranks in increasing lexicographic order.  
In each step 6.1, the element mWT[i, j] with maximum m satisfying the given inequality is 
selected and next value R[n – i + 1] is obtained in step 6.1.2. After n iterations we obtain the 
partition ρ with given index.  

1-5 initialization phase
1. Index=Index–1;  
2. for i=1 to n do R[i]=1;
3. i=n–1; 
4. j=1; 
5. m=j;  
6. while Index > 0 do  
	 6.1. if mWT[i, j] ≤ Index 
	 then 
	 6.1.1. Index=Index–mWT[i, j]; 
	 6.1.2. R[n–i+1]=R[n–i+1]+m; 
	 6.1.3. if j < R[n–i+1] then j=R[n–i+1]; 
	 6.1.4. m=j; 
	 6.1.5. i=i–1; 
	 else  
6.1.6. m=m–1; 
7. return R.  

Example 1
For the input data given below compute table R using the algorithm UnrankPart.

Input: 
n=4, Index(R)=10.
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Solution: 
Index=9, R=[1,1,1,1], i=3, j=1, m=1.
Index=9 > 0, 1*WT[3,1]=5 ≤ 9, Index=4, R[2]=2, j=2, m=2, i=2.
Index=4 > 0, 2*WT[2,2]=6 > 4, m=1.
Index=4 > 0, 1*WT[2,2]=3 ≤ 4, Index=1, R[3]=2, j=2, m=2, i=1.
Index=1 > 0, 2*WT[1,2]=2 > 1, m=1.
Index=1 > 0, 1*WT[1,2]=1 ≤ 1, Index=0, R[4]=2, j=2, m=2, i=0.

Output: R=[1,2,2,2].

Theorem 1
Algorithm UrankPart is correct and its asymptotic computational complexity is O(n2).

Proof
The set of all B(n) partitions can be depicted in the form of a rooted ordered tree of height 

n (n + 1, when root is included). The structure of this tree reflects the recursive structure of 
the partition set (see Fig. 1). Each node of the tree is labeled by a Williamson number that is 
equal to the number of leaves of the subtree rooted in this node (labels 1 for leaves are omitted 
in Fig. 1). Nodes with isomorphic subtrees are labeled with the same Williamson numbers. 

Fig. 1. The rooted ordered tree of all B(4) = 15 partitions with edge and node labels

Edges connecting ancestors with their descendants are also labeled. The single edge coming 
from the root is labeled 1. The number of descendants of a given node exceeds by one the 
highest edge label on the path leading from the root to this node. Edges connecting a parental 
node with its children receive successive integers as their labels. A sequence of edge labels 
on a path leading from the root to a leave, represents a set partition. Traversing the tree in 
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preorder and listing all paths from the root to subsequent leaves – by sequences of edge labels 
– is equivalent to generation (enumeration) of all B(n) partitions in increasing lexicographic 
order. Let us assign to all such paths their ranks in lexicographic order. Unranking the object 
with the given rank is equivalent to finding in the tree the path corresponding to Index,  
1 ≤ Index ≤ B(n). We determine the path with rank Index by examining sizes of ordered 
subtrees on the consequtive levels starting from the root. In order to do this, the current relative 
Index of the choice function ρ is compared with mWn

n(i, j), where Wn
n(i, j) are node labels and  

1 ≤ m ≤ j. Maximum m satisfying inequality in step 6.1 of the algorithm UnrankPart is 
determined, Index is updated and the next item of the required object is obtained. In each level 
i, no more than j comparisons are made. Single iteration with complexity O(n) is repeated 
O(n) times. Hence, the total complexity of the algorithm is O(n2).

4. Parallel dynamic programming algorithm

The original contribution of the paper is parallelization of the sequential algorithm. In the 
first phase, the table WT is precomputed by systolic computations according to formula (2). 
Thus, the table WT contains coefficients used in our parallel dynamic algorithm suitable for 
a hardware acceleration in an associative computational structure.  

A simple parallel unranking algorithm implementing associative memory search 
operations (no greater then and maximum) may be sketched as follows:

Algorithm UnrankPart-Par

Input:  
n – number power of the set, Index – rank of the choice function ρ representing set partition 
(1 ≤ Index ≤ B(n), Table WT with elements WT[i, j] containing Williamson numbers  
Wn

n(i, j), for 1 ≤ j ≤ n. 
Output: Table R with choice function ρ.
Method: Computations proceed with partitions ranks in increasing lexicographic order.  
In order to determine elements of R, an associative search is used. In each step 5.1 all 
elements WT[i, m], 1 ≤ m ≤ j, satisfying the given inequality are selected. Then, element with 
maximum m  coordinate is selected and next value R[n–i+1] is obtained in step 5.4. After n 
iterations we obtain the partition ρ with given index.

1-4 initialization phase
1. Index = Index–1;
2. R[1]=1;
3. i=n–1; 
4. j=1;   
5. while Index > 0 do  
	 5.1. search in parallel for all m=j downto 0: mWT[i, j] ≤ Index; 
	 5.2. select maximum m;
	 5.3. Index = Index–mWT[i, j];
	 5.4. R[n–i+1]=R[n–i+1]+m+1; 
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	 5.5. if j < R[n–i+1] then j=R[n–i+1];
	 5.6. i=i–1;
6. return R.

Example 2
For the input data given below compute table R using the algorithm UnrankPart-Par.

Input: 
n=4, Index(R)=10.

Solution: 
Index=9, R[1]=1, i=3, j=1.
Index=9 > 0, 1*WT[3,1]=5 ≤ 9, m=1, Index=4, R[2]=2, j=2, i=2.
Index=4 > 0, 2*WT[2,2]=6 > 4, 1*WT[2,2]=3 ≤4, m=1, Index=1, R[3]=2, j=2, i=1.
Index=1 > 0, 2*WT[1,2]=2 > 1, 1*WT[1,2]=1 ≤1, m=1, Index=0, R[4]=2, j=2, i=0.

Output: R=[1,2,2,2].

Theorem 2
Algorithm UnrankPart-Par is correct and its asymptotic computational complexity  

is O(n).

Proof
The unranking algorithm is a parallel version of the algorithm UnrankPart. Correctness of 

the method results from the proof of Theorem 1. Parallel search in step 5.1 is organized in an 
associative manner. Value Index, which is a pattern register is simultaneously compared with 
all values mWn

n(i, j), 0 ≤ m ≤ j. This reduces the search time to O(1). The maximum value m in 
step 5.2 is computed associatively in O(1) time. Then, the next value R[n–i+1] is determined. 
Each iteration in step 5 has the time complexity O(1). Hence, the total complexity of the 
algorithm is O(n).

5. Concluding remarks

The presented algorithm UnrankPart-Par is the next in the line of unranking algorithms for 
classes combinatorial objects, developed by the author on the basis of parallel dynamic scheme 
and oriented on acceleration of the required computations by fast associative operations. 
It can be implemented in all cases when the time of unranking of (n, m)-partitions is of 
critical importance. Both systolic and associative components of the parallel computations 
are scalable. The O(n) parallel implementation improves the computational complexity of 
the sequential unranking algorithm for set partitions UnrankPart by factor n. The original 
contribution of the present paper are also Theorems 1 and 2 with proofs of algorithms’ 
finiteness and exactness.
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