
* MSc. Eng. Andrzej Opaliński, PhD. Eng. Wojciech Turek, Prof. Eng. Mirosław Głowacki, Department
of Applied Computer Science and Modelling, Faculty of Metals Engineering and Industrial Computer
Science, AGH University of Science and Technology.

ANDRZEJ OPALIŃSKI*, WOJCIECH TUREK*, MIROSŁAW GŁOWACKI*

INFORMATION MONITORING BASED
ON WEB RESOURCES

MONITORING INFORMACJI W OPARCIU
O ZASOBY SIECI WEB

A b s t r a c t

The paper summarizes the system for WEB resources monitoring based on defined query.
Experiment compares results returned by the proposed system to those provided by Google
Search and Google Alert services. Results indicate that the system could be solid base for
development and tests of pattern detection and information retrieval mechanism, while
providing more data than Google solutions. Drawback of system and further development plans
are also presented.

Keywords: crawling, WEB monitoring, information retrieval

S t r e s z c z e n i e

W artykule przedstawiono architekturę systemu monitorującego zasoby sieci WEB pod kątem
zdefiniowanego zapytania. Wyniki działania systemu porównano z prowadzonym w tym sa-
mym czasie monitoringiem za pomocą mechanizmów oferowanych przez Google. Rezultaty
wskazują, że system może być przydatną bazą do badania mechanizmów wykrywania wzor-
ców i wyszukiwania informacji, udostępniając więcej danych w porównaniu do mechanizmów
Googla. Wykazano też niedoskonałości aktualnej wersji systemu wynikające ze specyfiki źró-
deł danych i zaproponowano kierunki jego rozwoju.

Słowa kluczowe: crawling, monitoring Internetu, wyszukiwanie informacji

TECHNICAL TRANSACTIONS
MECHANICS

1-M/2013

CZASOPISMO TECHNICZNE
MECHANIKA

278

1. Introduction

The growth of the World Wide Web, which has been observed over last years, has resulted
in the greatest base of electronic data. It is even hard to estimate real size of the Web. The
WorldWideWebSize.com portal claims that the most popular search services index more than
50 billion Web pages [1]. In 2008 Google published an information, that the indexer found
1 trillion unique addresses [2]. These estimates definitely do not show the real size of the Web
because the indexers deliberately ignore particular fragments, like content generators, link
farms or pages with illegal content.

The features of the Web pose huge challenges for searching systems. The size itself
creates significant scalability and performance issues. What is more, it is very hard to acquire
information about a content which is really looked for by an user and detect pages containing
information needed by an user.

WEB crawling in information retrieval domain is well described issue, spread along with
the Internet development. Numerous summarized surveys were made in this topic [3,4].
Many researchers described information retrieval related problems, and presented their own
solutions to deal with it. Pandey used agent-based system to solve the problem of crawling
order [5], Manku et.al. focused on finding and eliminating duplicates in crawl process [6],
and Broder et.al. proposed efficient mechanism for url caching in this research area [7].

Mostly due to the scale problem, there are still many unresolved aspects in this area.
Publicly available Web search services offer access to very simple and fast ways of finding
pages. This method of finding information in the Web is used every day by each Internet user.
However, several significant drawbacks and limitations of the approach do exist. Firstly, if
several pages contain all specified words, ordering of results is imposed by the search engine.
Sorting is typically based on webpage’s popularity. This feature connected with the limit in
the number of found pages, results in inability of finding some pages. Secondly, the query
language is typically very simple. It is impossible to express advanced patters concerning
sentences or use of synonyms. It is even impossible to describe clearly the rules specifying
letters casing, distance between words or words ordering. Thirdly, low frequency of crawling
causes outdated results. The searchers often find pages which contain different content than
expected or no longer existing one.

These limitations encourage researchers to continue work on different ways of finding
valuable information in the Web. The subject of focused crawling has received significant
attention over the last few years. The idea of a crawler which can select pages relevant to
a specified topic [8] has been implemented using various techniques [9, 10]. Most obvious
application of a focused crawler is a topic-specific search service, which can provide more
accurate results.

Use of index-based search engines can successfully direct a user to potentially interesting
Web sites. However, when the content of the Web sites changes fast and the information
must be detected as soon as possible after it is published, indexing-based methods becomes
insufficient. When a user knows where to look for results, but it is impossible to watch the
Web sites continuously, a different approach to the problem of searching the Web is needed.

A lot of proprietary tools is offered for WEB crawling purposes. Even Microsoft released
this kind of software, called FAST Search Web crawler, as a part of Share Point Server 2010

279

[11]. There are also a few open sources solutions, compared by Girardi [12]. One of the most
popular is Heritix [13] and Websphinx [14]. Those tools allows to crawl and collect data from
specified domains, but scalability and more advanced modifications are the drawbacks. Many
companies offers such services, returning just a results, based on requested query. Of course
such a services are not free of charge, and providers does not present an algorithm of their
solutions. There is also one common free service of this type – Google Alert [15]. It offers
query monitoring and returns results as a link sent by an email.

In this paper, a system for crawling and monitoring selected fragments of the Web is
presented. It provides a service, which can monitor precisely specified fragments of the Web
and actively report when a particular pattern is found in newly-published content. Possible
applications of the system include monitoring auctions services or job advertisements. It can
also be used by law enforcement services for detecting illegal content quickly.

Monitoring of Polish Internet resources for query “shale gas energetics” is presented
as an experiment. Results returned by proposed system are compared to the results provided
by Google Search Engine and Google Alert service for the same time and query.

2. The architecture of the presented system

The architecture of the system is inspired by a Java-based general purpose Web crawler
with indexer presented in [16, 17]. The system can be deployed in three different ways. The
less hardware-expensive version is to deploy the system on single PC computer, where all
components are running on the machine. This configuration uses particular settings, that
significantly limit required system resources and can be used only for monitoring several
small Web domains. The second version is a sever based deployment, where a MySQL
database server and an JBoss application server are executed on a powerful machine. In this
configuration several users can use the same server. Tests showed that a single server can
process around 100 000 Web pages every hour. The most robust configuration is based on
cluster of servers. It could be used to monitor large data sources, because the performance of
processing in this configuration can be easily increased by adding new servers to the cluster.

Fig. 1. Abstract architecture of the Web Monitoring System
Rys. 1. Architektura systemu monitoringu informacji w oparciu o dane z sieci WEB

280

The abstract architecture of the system, which consists all main components is presented
in Figure 1. The Crawler component is a single processing thread. It contains a queue of
URLs to download and analyze. It is responsible for performing all operations needed to
process a Web Page – details on processing algorithms will be presented in the next section.
The most important result of the processing is URLs detection – the URLs are returned to
the Smith Component. The Client application uses provided Web Service interface. While
running configured on cluster of servers The Smith component controls multiple Crawler
threads. It starts specified number of Crawlers, manages URLs queues, receives found URLs
and communicates with the Node Manager. When running in cluster-based configuration each
node used by a system has a single Node Manager which is responsible for communication
with global System Manager. The System Manager is responsible for controlling nodes.
It collects and distributes found URLs, performs distributed search and provides access to
management interface of every node. It also provides a Web Service interface for clients
of the system.

3. Resources Processing Algorithm

The most important part of the system is implemented by the Crawler component.
It performs processing of Web pages content downloaded from the Internet. A diagram
of steps performed by the Crawler is shown in Figure 2. The process of crawling is controlled
by the Manager, which keeps a queue of URLs to process. All URLs found by the node are
stored in the Urls database. The Manager continuously executes the processing sequence,
that consists of the following steps:
– Resource downloading, which results in HTML source stored in a memory buffer,
– HTML parsing by the Lexer and the document model building,
– Changes detection algorithm, avoid storing already processed webpages,
– Content processing by various plugins.

Fig. 2. Processing performed by a single crawler component
Rys. 2. Proces przetwarzania pojedynczego crawlera

281

This sequence is being executed by every single URL which appears on the list of the
Manager. The following sections provide more details on the processing algorithms.

3.1. Parsing and Resource Model Building

The Lexer converts HTML source into a resource model. The model represents a tree
structure built of segments. Each segment represents a selected structural element of a Web
page (tables, paragraphs and lists). Segment can contains other segments, or can be leaf-
-segment, containing lists of words, special characters and HTML tags. Each element of
the HTML source is converted to an element of the tree structure or to a token. There are
three basic types of tokens: words, tags and special characters and each token has its unique
identifier. The content of each leaf segment is converted into a list of identifiers, making
following processing very efficient.

The dictionary of words is a very large data structure. Average Web page contains several
thousand words, however typically very few are new words. Nevertheless, the size of the
words dictionary can reach millions of entries after a few days of crawling. Therefore the
implementation uses large in-memory caches based on hash maps to make the word-to-
-identifier conversion as fast as possible.

3.2. Changes Detection Algorithm and Content Processing

The changes detection algorithm is based on hash codes calculated for analyzed content.
The hash code for a segment containing is calculated using tokens’ ids based on the idea used
by Java String class implementation. The hash codes are calculated for every leaf segment. If
the hash code has been found in any previous processing of the same Web page, the segment
is considered unchanged and is not processed any further.

To determine what values of hash codes have been already processed, the Content cache
database is used. It stores all hash codes of leaf segments found in the page content. Leaf
segments that are considered new or modified, are processed by all enabled plugins.

There is one plugin which is mandatory for proper functioning of the system. The URL
detector plugin must be enabled for continuation crawling process. It finds URLs in the
content of provided segments, searching for anchor HTML tags. The pattern detection plugin
used in the presented version of the system is based on the list of optional words, and required
match threshold. A segment will match the pattern if the number of specified words found in
the segment exceeds the threshold. This plugin can also use stems instead of words. Other
efficient methods for patterns detection could be applied by implementing further plugins.
This mechanism provide much more flexibility than the query languages provided by the
most popular publicly available search services.

4. Experiments and evaluation

To test the presented system an experiment was performed. The monitored query was
“shale gas energetics” and it was applied to the Google Search and and Google Alert services.
As a source for the proposed system, there were selected 7 websites of the Google Results list,

282

with highest rank by Alexa web metric [18]. It tends to be the most popular and dynamically
changing its content, while it’s expected to be the best source for an experiment. Results
of the test, which lasted for 70 hours are presented in Table 1.

T a b l e 1
Number of results returned by systems

Domains

Presented system Google

distinct
urls

urls with
content
changes

content
related

content related
after 9 hours

Google
Search “site:” “site:”+

duplic.
total
count

Google
Alert

1 680 1001 47 26 43 564 601 2010 2

2 619 4072 1165 871 11 523 603 3300 2

3 3402 4748 82 28 10 408 607 9660 0

4 3414 4411 21 11 7 632 684 37100 0

5 9268 24556 343 186 11 612 650 10500 1

6 59 82 1 0 6 305 333 1900 0

7 1 1 0 0 4 77 86 77 0

Domains: 1 – serwisy.gazetaprawna.pl, 2 – gazownictwo.wnp.pl, 3 – wyborcza.biz, 4 – forsal.pl, 5 – cire.pl,
6 – egospodarka.pl, 7 – energetyka.pl

Selected domains were crawled by presented system every 6 hours, with the average
single crawl time about 30 minutes. Match pattern threshold was set to 2 of 3 words. Results
of total crawl period for exemplary domain are presented in Figure 3. Over 90% of results
are collected after first crawl process. A logarithmic scale has to be apllied to present the
results. Table 1 contains results corresponding to each domain. Values in columns represents:
1 – domain ID, 2 – total number of distinct URLs containing pattern, 3 – total number of
URLs, including changing content, 4 – number of webpages with HTML title related to the
query, 5 – number of URLs including results after 9th hour of the test – that is comparable
to the Google Alert service results. Values in columns corresponding to Google part of
table are: 7 – number of urls from domain returned by default Google Search, 8 – number
of results with “domain:” option set (results just from specified domain), 9 – “domain:”
option including duplicates, 10 – declared number of results, 11 – number of results returned
by Google Alert service.

There are some interesting observations, that could be concluded by examination of those
results. At first, the number of results returned by default Google Search is just a minor
part (1–7%) of results from entire domain – obtained by “site”. Most default Google Search
results are links from static domains – only 15% comes from news portals, and only 11%
comes from domain that are later sources for Google Alerts. Google Search engine has
never returned more than 684 result links. It reported up to 37100 total results, but did not
returned links to the remaining part of results. Google Alert service returned just 6 results
during the experiment duration. It correspond to more than 1000 results returned by the
system presented in this article. Vast number of results is an effect of trivial content changes
algorithm, vulnerable to a dynamic add-keyword-tags systems, which are applied with
common keywords, that was a part of our query.

283

5. Conclusions and Further Work

The results of the tests highlighted presented system weaknesses and benefits. First is
the consequence of trivial content change detection algorithm – high rate of false positive
results number, based on tag-keywords html segments. It is very susceptible applied to
popular keywords. Advanced methods of content meaning recognition are also required for
application in information retrieval domain. Although the benefits of proposed architecture
are undeniable. It provides convenient base to testing and development algorithms for pattern
detection and information retrieval. It could be adopted to particular user needs, by specifying
advanced detection algorithm and provide large amount of data for further processing.
It grants an independence comparing to the usage of Google services, where user has very
limited influence of returned results. Also scalability is a great advantage, as the system could
be configured to be launch as low-cost or cluster-based configuration.

Where Google services are useful in simple and general use cases, presented system gives
the potential to by much more flexible and adaptable in more advanced purposes.

Further research should account implementing advanced techniques of subject detection
and dynamic tagging independence. Also methods for defining advanced content patterns
should be developed. The possibility of defining semantic meaning of the content or similarity
to a given text, rather than specifying a list of words, would be very useful.

R e f e r e n c e s

[1] Kunder M., WorldWideWebSize.com, 12.2012.
[2] Alpert J., Hajaj N., We knew the web was big... (http://tinyurl.com/crzays7‒25.07.2008).

Fig. 3. Results number for forsal.pl domain
Rys. 3. Liczba rezultatów w dla domeny forsal.pl

284

[3] Croft, W.B., Metzler D., Strohman T., Search  engines:  Information  retrieval  in  practice,
Addison-Wesley 2010.

[4] Kobayashi M., Takeda K., Information retrieval on the web, ACM Computing Surveys (CSUR),
32(2), 2000, 144-173.

[5] Pandey S.K., Mishra R.B., Intelligent Web mining model to enhance knowledge discovery on the 
Web, In Parallel and Distributed Computing, Applications and Technologies, 2006. PDCAT’06.
Seventh International Conference on, 339-343, IEEE.

[6] Manku G.S., Jain A. & Das Sarma A., Detecting near-duplicates for web crawling, In
Proceedings of the 16th international conference on WWW, 141-150, ACM, 2007.

[7] Broder A.Z., Najork M., Wiener J.L., Efficient URL caching for world wide web crawling, In
Proc. of the 12th international conf. on WWW, 679-689, ACM, 2003.

[8] Menczer F., Belew R.K., Adaptive Information Agents in Distributed Textual Environments,
Proc. of the 2nd Int. Conf. on Autonomous Agents, ACM, 1998, 157-164.

[9] Dong H., Hussain F.K., Chang E., State of the Art in Semantic Focused Crawlers, Computational
Science and Its Applications, Seoul, Korea, 2009, 910-924.

[10] Dorosz K., Korzycki M., Latent Semantic Analysis Evaluation of Conceptual Dependency
Driven Focused Crawling, Multimedia Communications, Services and Security, 5th International
Conference, MCSS 2012, Krakow 2012, 77-84.

[11] Crawling Web content with the FAST Search Web crawler, MS SharePoint library (http://technet.
microsoft.com/en-us/library/ff383271%28v=office.14%29.aspx).

[12] Mohr G., Stack M., Rnitovic I., Avery D., Kimpton M., Introduction to heritrix, In 4th International
Web Archiving Workshop, 2004.

[13] Miller R., Websphinx, a personal, customizable web crawler (http://www. cs. cmu. edu/~ rcm/
websphinx ‒ 2011-02-12).

[14] Girardi C., Ricca, F., Tonella, P., Web crawlers compared, International Journal of Web
Information Systems, 2(2), 2006, 85-94.

[15] Getting Started Guide – What are Google Alerts? (http://tinyurl.com/csr4z3b).
[16] Turek W., Opaliński A., Kisiel-Dorohinicki M., Extensible Web Crawler ‒ Towards Multimedia

Material Analysis, Multimedia Communications, Services and Security, 4th International
Conference, MCSS 2011, Krakow 2011, 183-190.

[17] Wilaszek K., Wójcik T., Opaliński A., Turek W., Internet Identity Analysis and Similarities
Detection, MCSS 2012, Krakow 2012, 369-379.

[18] Alexa – provider of global web metrics (http://www.alexa.com ‒ 01.2013).

