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1. HISTORICAL CONTRIBUTIONS 
TO THE CURVE OF PRESSURE

In a plane arch the polygon of pressure is the funicular 
polygon of the forces, which has as fi rst and last side the re-
straint reactions. In a generic section across a point P on the 
geometric axis of the beam (see Fig. 1), the side of the polygon 
(Ci-1-Ci) coincides with the vector resultant of the forces situ-
ated at right, the opposite of the forces situated at left.

Therefore, if vectors e1, e2 and e3 are the intrinsic triad of 
the arch, the side of the funicular polygon, projected onto e3 
and e2, gives respectively the normal stress and the shear, while 
the moment referred to e1 is the bending moment.

The origin of the polygon of pressure is related to both M. 
Varignon [1], who introduced the funicular polygon in 1687 
(to fi nd the catenary given the applied forces), Fig. 2, and to 
the studies of Huygens, Johan Bernoulli and Leibnitz, who 
independently solved the catenary (the curve of equilibrium 
of a heavy fl exible and inextensible cable), in 1691.

Separately, the English mathematician W. Emerson, 1773, 
[2], in his Principles of Mechanincs enounced the following 
proposition LXVI: If several beams AB,BC,CD, etc. be joined 
together at B,C,D, and moveable about the points A,B,C,D be placed 
in a vertical plane, the points A,F, being fi xt and through B,C,D, 
drawing ri, sm, tp perpendicular to the horizon. And if several weights 
be laid on the angles B,C,D etc. so that the weight on any angle C may 
be as than all the beams will be kept in equilibrium by these weights.

Fig. 3 Emerson’s proposition LXVI

Applying Stevin’s rule (Fig. 3), the fi rst force Bi is de-
composed along the direction g and h in BA and BC. For the 
equilibrium of the beam we have Bh = Ch. Applying the sinus 
theorem, after some algebra, Emerson fi nds the proportion 
among the equilibrating forces:

  (1)

G is the value of the constant ratio of  (1). 

Fig. 1 Polygon of pressure in an arch

Fig. 2 Varignon’s funicolar polygon
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We note that, curiously, this problem (to fi nd the applied 
equlibrating forces given the catenary) is the inverse of that of 
determining the funicular polygon of a plane system of forces 
already solved by Varignon in 1687 and that no reference is 
made to Varignon: they differ for an important detail: the fi rst 
as a degree of freedom, the second three degrees.

The continuous problem of Emerson preposition is solved 
by Charles Hutton, 1773 [3]. In Section II, “Of the arches”, of 
his essay “Principles of Bridges”, in the proposition III Hutton 
applies Emerson’s preposition LXVI to the bridges: his purpose 
is To fi nd the proportion of the height (h) of the wall above every part 
of an arch of equilibration. He fi nds (Fig. 4):

Fig. 4 AD curve of pressure, GK loading arch, according to Hutton

  (2)

Note that in a Cartesian reference system, vertically ori-
ented, y(x) is the curve of pressure, that Hutton names arch of 
equilibration [4],  γ  is the specifi c load of the material. Though 
not explicitly stated by Hutton, G represents the horizontal 
thrust in the arch, defi ned by H in (7).

The question raised by Hutton proved to be answer to the 
needs of the arch builders, but his name was rapidly forgot-
ten and outside Great Britain completely unknown. In the 
continental Europe Coulomb was the leading author for the 
next hundred years.

Coulomb, 1773, [5] considers two types of collapse 
mechanisms of a symmetrical voussoir arch. The Fig. 5-Fig. 35, 
from the original picture from Navier [6], shows the collapse 
mechanism for the sliding down of the central part of the arch: 
this fact widens the arch at its bases.

The Fig. 5-Fig. 36 shows the collapse mechanism for the 
sliding up of the central area of the arch. The Fig. 5-Fig. 37 
shows a collapse mechanism for the formation of fi ve (given 
the symmetry of the arch) hinges respectively on key extrados, 
on the intrados at about forty-fi ve degrees and on the extrados 
abutments. The Fig. 5-Fig. 38 shows a collapse mechanism 

for formation of fi ve hinges on key intrados, on the extrados 
at about forty-fi ve degrees and on the intrados abutments. 
Coulomb states that the collapse of the arch for sliding is an  
unlikely hypothesis in practical cases, given the high friction 
coeffi cient of the materials used. If H is the trust in the key, 
he determines Hmin for the mechanism of Fig. 37 and Hmax for 
the mechanism of Fig. 38. So for the equilibrium of the arch: 
Hmin < H < Hmax.

Navier, 1823, [7] considers the case of a cable supported 
in A (Fig. 6) by two forces, a horizontal one H and a vertical 
one P, submitted to a system of vertical forces function of 
the place, and the stress T. A Cartesian orthogonal reference 
system x, y has its origin in A.

Fig. 6 Equilibrium of a suspension bridge

Navier deals with the suspended bridges, hypothesizing 
that the forces p are equally distributed on the horizontal axis, 
ignoring the curvature of the arch and the weights of guys. 
Equilibrium yields:

  (3)

  (4)

Substituting (3) in (4) and deriving, he obtains, fi rst:

  (5)

the “funicular curve of a vertical load p” very similar to (2).
The fi rst author that explicitly defi nes the curve of pres-

sure (Line of Pressure), is Moseley, 1843, [8]. The historians 
of the second half of XIX century, like Culmann attribute the 
paternity of the concept of “curve of pressure” to Moseley 
(Der erste, der den Unterschied zwischen Druck- und Stütz-Linie 
klar und scharf hervorgehoben hat, ist, so viel uns bekannt, Moseley). 

The author of the core of inertia, Culmann 1866, [9] sug-
gests to keep the curve of the pressure inside the core to have 
an arch fully compressed.

After Culmann a period of more than 100 years of neglect 
of voussoir arches begins; it was due to the new technologies 
(steel and reinforced concrete), so that, beginning from Cul-
mann himself (the theory of ellipse of elasticity) and Castigli-Fig. 5 Mechanism of collapse a stone arch according to Coulomb



20  Wiadomości Konserwatorskie • Journal of Heritage Conservation • 34/2013

ano [10], research was devoted to linear elastic arch. Especially 
after the second half of the XX century the neglect was caused 
by the progressive abandon of arches, in relation to the more 
economical pre-stressed concrete beams. Heyman [11] has 
revived the old approach of Coulomb to the voussoir arch, 
reinterpreting it through a rigid-plastic mechanical model. The 
hypothesis placed by Heyman, essentially identical to those of 
Coulomb, are the following:

– The sliding collapse between voussoirs can not occur
– The masonry has no tensile strength  
– The masonry has an infi nite compressive strength  
The third hypothesis is not explicitly contained in Cou-

lomb’s memory, but he himself had testifi ed that in specifi c 
cases the working stress is much smaller than crashing one. 
The collapse of the masonry happens by rotation around the 
extremities of a voussoir, with the formation of a hinge. If N 
is the normal stress transmitted from the hinge (which would 
lead to tensions of infi nite value), the moment is (Fig. 7):

Fig. 7 Heyman’s plastic hinge

 M = ±Nh  (6)

The limit domain in the plane MN is thus represented 
in Fig. 7.

It follows that it is statically allowable any point within 
the domain and then, in agreement with the statements of 
Coulomb, the curve of pressure must be within the masonry. 
Heyman continues with the statement of Lower Bound Theo-
rem: if you can fi nd a curve of pressure that lies wholly within the 
masonry, the arch is safe.

Unlike the collapse mechanisms applied to ductile struc-
tures, which provide a multiplier of loads, and thus introduce 
a safety factor with respect to load, Heyman suggests a safety 
geometric factor: the amount by which the actual arch must shrunk 
to reach its thinnest possibile state, such that the curve of pressure 
is still contained within the arch.

2. THE EQUATION OF THE CURVE 
OF PRESSURE

We derived, 2010, [4] the vector equation of the funicular 
curve of a system of forces applied to a plane curve, named 
“arch”, connecting two points called the “supports”. The arch, 
Fig. 7, is loaded by forces represented by plane vectors fi, ap-
plied in the points Pi and the reactions fA and fB.

The restraints, A and B, are such to assure the rigidity of 
the system and the unique determination of the reactions, 
represented by two vectors fA and fB. For instance, B may be 
a fi xed hinge and A a shifting hinge.

If we consider the point C of the axis and the system of 
forces fB, f1+1 …,f1, whose resultant is the vector (Ci – Ci-1) 
it is clear that:

  (7)

that is to say, “the resultant moment of the applied forces about 
any point of the funicular polygon is zero”. 

In the continuous case the equilibrium of  an arch ele-
ment included between the point P and P+dP is described 
by the equations:

 d f + p ds = 0,    d m + (P – O) × p ds = 0 (8)

From (7) the vector equation defi ning the funicular, or 
more properly, the “curve of pressure” is 

 (C – O) × f = m (9)

Fig. 8 Equilibrium of an arch

Let us consider the points P and P+dP and the corre-
sponding points on the curve C and C+dC. Differentiating 
(9) and using (8), we obtain

 d C × f = 0 (10)

Then vectors dC and f are parallel. Developing the vector 
product we obtain, in the Cartesian reference O,i,j (Fig. 1), 
the equation

  (11)

Differentiation of (11) yields:

  (12)

If px=0 and py=py(x) we obtain:

  (13)
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where

 fx = H (14)

the thrust of the arch, the horizontal constant component 
of the resultant f in each point P of the arch: with the above 
hypothesis the curve of pressure is independent from the 
shape of the arch.

This demonstration shows the relationship between the 
equilibrium equation (8) and (13).

3. VERTICALLY LOADED ARCHES

Equation (13) was used mostly in relation to statics of 
cables, see for instance [12]. Let us show here how struc-
tures can be analysed by (13), an equation consequence 
of (8). The range of integration does not include internal 
constraints, static or geometric discontinuities, points where 
boundary conditions must be assigned. If therefore n is the 
number of ranges of integration, the unknowns are 2n+1, 
the number 1 takes into account the static unknown H, 
which is unique. Therefore we have determinate and inde-
terminate structures or structures in which the equilibrium 
is impossible.

Let us consider Fig. 9, which renders the vertically loaded 
arch c– and its corrispondent curve of pressure c. P and P– are the 
corrispondent points on c and c– respectively. If r is the resultant 
of forces in P– and H is the horizontal constant component of 
it, the relations are the followings:

Fig. 9 Curve of pressure c, and curve of applied vertical loads c–

 d = h cosφ = (   y– – y) cosφ (15)

 H = r cosφ (16)

 M = rd = rd cosφ = hH (17)

So in vertically loaded arches, the curve of pressure is the diagram 
of the bending moment M.

Note also the similarity between Fig. 8 and Fig. 4: this is 
not surprising because for Hutton the load is proportional to 
h, that is natural for the voussoir arch of the XVIII century.

3.1. Rigid arch

Let us examine for example the arch of Fig 10. The integra-
tion of the equation in two intervals on the right and on the left 
of the hinge C leads to four constants which are determined 
by four conditions, passage for three hinges, so that the curve 
of pressure is divided into two lines drawn in Fig. 10:

 y = ±   x + r (18)

The fi fth unknown H is determined by the static boundary 
conditions in the hinge C, taking into account the inclination 
of the two lines. So:

  (19)

Fig. 10 Three hinges arch

3.2. Linear elastic arch

In linear elastic structures the indeterminate constants 
are determined by congruency conditions. In the following 
the relations are shown to fi nd rotations Δφ, vertical Δη and 
horizontal Δξ displacements, neglecting the deformation due 
to normal stress and shear:

  (20)

Note that in (20) h0 is the centroid of scalars , associated 
to parallel vectors h.

   

  (21)

  (22)

If  EI=cost:

   (23)

In this case, the relative rotation ΔφAB is proportional to the area 
included by the curve and its curve of pressure.

In the two hinged arch, Fig. 11,  the curve of the pressure 
is divided into two straight lines drawn in the fi gure, whose 
equations are:

  (24)
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while it is unknown the distance a. The condition of congru-
ency (no elongation along the diameter AB) can be written 
as follows, considering (17) the distance of the points of the 
arch from the curve:

  (25)

  (26)

and with the boundary conditions in C:

  (27)

Equation (25) represents the product of inertia of elastic loads 
with respect to the lines AO and AF.

3.3. Rigid-plastic arch

mp is the plastic moment of a generic section of the arch 
(Fig. 12). The collapse multiplier μ is determined by the 
equilibrium condition.

  (28)

and is minimum in the section  and its symmetric. 
In these points the curves are discontinous and have a jump, 
mantaining their direction.

3.4. Coulomb-Heyman arch

With reference to the three hinges arch of Fig. 10 the upper 
bound of intrados of arch is the line CA and the symmetric 
line  CB.

Abstract
This paper is dedicated to the curve of pressure: after a 

review of its historical contributions, we will show how to 
analyse structures by its equation.
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Fig. 12Fig. 11 Two hinges elastic arch


