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Abstract

The article is devoted to the application of the discrete dynamical models for the study of
some basic chemical processes. Basic approaches and general methodology for developing
models based on cellular automata are considered by the examples of heat and mechanical
energy transport processes. It is shown that in some cases these models can be an alternative
to the application of classical differential equations.
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Streszczenie

Artykul poswigcony jest zastosowaniu dyskretnych modeli dynamicznych do badania
wybranych procesow inzynierii chemicznej. Podstawowe metody i ogdélng metodologig
stosowania automatow komorkowych przedstawiono dla wybranych proceséw wymiany
ciepta i pedu. Wykazano, ze w niektorych przypadkach modele te moga by¢ alternatywa dla
stosowania klasycznych modeli opartych o réwnania rézniczkowe.

Stowa kluczowe: automaty komdrkowe, symulacja matematyczna, transport ciepla, odksztat-
cenie sprezyste
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1. Introduction

The classical approach to the processes simulation in continuous environments using the
fundamental transport equations and the equations of continuum mechanics is not always
convenient. Parabolic and hyperbolic differential equations used require correct setting of
several boundary conditions. Complexity increases when considering asymmetric areas or
curved boundaries. Consideration using classical approaches of processes in isotropic
materials as well as in the presence in the environment of the zones with different physical
characteristics becomes extremely difficult.

These problems significantly limit the application of continual analytic approaches to
studying basic processes of chemical technology. The application of numerical (finite
difference) methods in the classical formulation is also difficult, and may not always be
realized. The application of discrete dynamical systems and, in particular, cellular automata
may be one of the directions of these processes simulation.

2. The concept of cellular automata

A cellular automaton consists of a set of discrete elements (cells) which form a spatial
lattice. In general, lattices may be different both in dimension and shape of cells. Each cell
operates under the laws of abstract automaton. Therefore, it can be represented as a “black
box” that may have some internal states, to which input signals are transmitted and output
signals are read off. The main feature of a cellular automaton is that its behavior is
completely determined by local interaction of its elements.

Considering the operation of individual cell in terms of the finite automata theory it is
necessary to suppose the following. Each cell is connected by its inputs to the outputs of
neighboring elements. The output of each element is an input for the neighboring cell. Each
individual cell is an object that operates in discrete time 7) <, < ¢, < ... At any time point
the cell is in one of the potential states z(#;) and its inputs can receive input signals x(7).
With their input the cell state varies according to the one-step transition function:

z(t,)) =z(¢,,), X(¢,)] (1)

In simulation practice there also can be used multi-step transition functions, which in
contrast to (1) include the prehistory of the automaton:

z(1)) = o{[z(t,,),2(1,,),.., Jx (1))} (2)

In general, systems of cellular automata are characterized by the following properties

[i15:94:

1. The state space of the system is discrete.

2.The states of all cells in the system are changed at the same time by the same rules.
3.Particular cell can be influenced by neighboring cells only.

The last property is very important while simulating the transport processes. It shows
that the behavior of cellular automata is fully determined by local interactions of their
elements. The case is the same for a large class of continuous dynamical systems described
by partial differential equations. This makes it possible to recommend the cellular automata
to model the transport processes of matter and energy.
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3. Application of cellular automata for simulation of dynamic systems

Let us consider the basic approach and a common methodology for simulation
application of cellular automata [4].

First of all, the continuous model space is divided into cells (elements) on the functional
basis. Partitioning can be uniform with obtaining the same elements, but it is not
necessary, and it is often done only for the convenience of simulation. The main purpose of
space discretization is to obtain such cells of the space within which it is functionally
homogeneous. Sizes of these cells must be such that the parameters of the processes inside
them can be regarded independent of spatial coordinates. In this case the only independent
variable for describing the behavior of each cell is time.

Next, it is worth to describe the behavior of cells by means of expressions (1) + (2),
considering that the state of the cells is a discrete space-time function. For this purpose
general laws of the process under investigation are used. It is advisable to take the intensive
phase variables of the corresponding process (temperature, concentration, speed, etc) as the
states of the cells. In this case output signals of the cell (the automaton) will be extensive
state variables — heat flow, mass flow, mechanical strength, etc. Thus, after discretization of
the space one will obtain the interrelated array of cells the behavior of which over time (in
this case, discrete) will be subjected to the laws of the simulated process.

It should be noted that functions (1) + (2) used here must not always be determined and
in some cases may have a probabilistic nature.

4. Simulation of one-dimensional heat conduction problem

Let us consider the one-dimensional body of finite length, consisting of the elements of
the same size /# (Fig. 1). In this case the internal elements are connected with two
neighboring ones, and the cells located at the borders will have one neighboring that.

e
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Fig. 1. The scheme of one-dimensional cellular automaton model of heat transfer within the molecular
mechanism

Rys. 1. Schemat jednowymiarowego automatu komdérkowego dla molekularnego mechanizmu
przenikania ciepta

State of the element (cell) for a given physical system simulates its temperature. Signals
the cell — automaton simulate the transfer of heat between the system elements. Therefore,
the output signals of the element i will be the input for the elements i-1 and i+1. Therefore,
the state change function of each cell can be written as (1) like that

T(,.)=FIT(,),Y 4,()] 3)
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where T is temperature, °C; ¢ is specific heat flux, W/m’; n is the number of cell-
automaton inputs. Getting a specific form of the dependence (3) is possible by using the
following well-known principles of physics.

According to the law of the Fourier heat flux vector (quantity of energy passing in unit
time through unit area) is proportional to the temperature gradient. In considering each cell
as parallelepiped one can write the law of heat conduction in the integral form as follows:

:l-AT

4
E 4)

q

where A — coefficient of thermal conductivity, W/(m-°C); & — length of the parallelepiped
(step along the coordinate), [m].

Let us consider the heat balance of the i-th cell at time k.

The specific heat flux from cell i to cell i +1 for time step & in the discrete model can be
written as:

[T,([A ) o T;n(tk )]

qn,:+l(tk) = )\': hz

(5)

where ¢;;.1(f;) — heat flux from cell i to cell i +1; A; — thermal conductivity of the cell
i environment; Tj(#;) and T;(#;) — temperature of cells i and i+1 at time k.
The specific heat flux from cell i-1 cell i:

T .(t)-T(t
g 0k [_l(l()z—(k)] (6)
h
where A, is thermal conductivity of the cell i-1 environment.
Thus, the heat balance of the i-th cell:
2.9 =9.,() ~ 4, () +¥(t) =
(7

& {;\H g, )h— i A [T(z,) ;zTM(tk)]

il

where (1) is power density of heat sources located in the cell 7, W/m’;.
Transition function (3) for the considering processes can be explicitly written as
follows:

At
it =JI . 8
(1) =T )+ Ya ) (8)

where C; is specific heat capacity of i-th cell material, J/(kg:°C); p; is its density, kg/m’;
At — time step, s.

Reasoning similarly and giving the conditions at the boundaries of the modeled area it is
easy to obtain similar expressions for the cells at the boundary of the area.

Thus, we obtained local rules that allow determining the new state of each element of
the cellular automaton for each time step and make it possible to simulate one-dimensional
heat transfer process with a certain initial temperature distribution. Allowance of external
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threads and internal heat sources can be accomplished by introducing the necessary specific
values of temperature and flows for the corresponding elements of the modeled system. The
process of the thermal conductivity simulation is reduced to the determination of cellular
automaton elements states at each stage of discrete time using expressions (5) = (8).

Now let us consider the one-dimensional non-stationary problem of heat conduction,
where the object will be a uniform rod of finite length divided into 41 cells. Physical
properties of the rod material are the specific heat capacity of 700 J/(kg-°C), density of
1300 kg/m’. Parameters of simulations: spacing along the coordinate makes I mm, the time
step makes 0.1 s. It was assumed that in the middle of the rod (cell 20) at the initial time
heat momentum magnitude of 300 °C and duration of 1 model time step. The simulation
process is reduced to the determination of the cells states at each time step. In this case it
was used the transition function of the form (5) =+ (8) for internal cells, and for boundary
cells these dependences are modified based on the hypothesis of zero temperature gradient
in the boundary points (the equality of heat flows from the neighboring cells).

As an Example | let us take a simple case of heat transfer at a constant thermal
conductivity (linear problem) and the absence of internal heat sources. The results are
shown in Fig. 2. The value of thermal conductivity was assumed to be 2.5 W/(m-°C).

Data analysis shows that the heat is distributed along the rod from the warmer areas to
the less heated and the temperature (in the limit) tends to a steady value. It is a well-known
picture of the thermal conductivity.

To complicate the problem we consider Example 2, where we have the effect of
temperature on the value of thermal conductivity and an internal heat source with a non-
linear power change law. We assume the following [5].

D) = kTP ©)

MT) = Ay T0 (10)
Ilustration of Example 2 with k= 0.6; B = 1.3; a= 0.1 is given in Fig. 3.

Ternperature

5% 5y

Length
Fig. 2. The change of the temperature in Example 1

Rys. 2. Zmiana temperatury — przyklad 1
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Fig. 3. The change of temperature in Example 2

Rys. 3. Zmiana temperatury — przyktad 2

One may notice that the temperature in the central zone increases sharply and, what is
more important, heated areas are located and formed the temperature torch.

It should be said that the example can illustrate the process of burning, but only in the
initial stages, as an unlimited increase of temperature contradicts the physical picture of the
real process.

Let us investigate the process considering endothermic effects, which are often
presented in the real world. In Example 3 we introduce the following law of dependence
between source specific power and temperature:

WD) = kT—y (11)

Effect of temperature on the transport coefficients change will be consider by the
expression (10). The simulation results for £ = 0.25; y = 0.01; o. = -0.5 are shown on the
Fig. 4.

500

Fig. 4. The change of temperature in Example 3

Rys. 4. Zmiana temperatury — przyklad 3
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These data differ significantly from those given above. First of all, it is evident that the
temperature in the central region tends to a limiting value, and the distribution of heat has
a form similar to the wave, since it has quite a pronounced front. In real processes, this
situation can occur, for example, fuel burn up. It may be noted that these results obtained
using the discrete dynamical model are consistent with classical concepts on the flow of
these processes.

It is not difficult to extend the proposed methodology to two- and three-dimensional
space. In addition, this approach allows simulating the process in the objects of complex
shape with curved surfaces.

It should also be noted that deep analogy between the processes of heat and mass
transfer allows the use of the considered approach to modeling of diffusion processes.

5. Simulation of elastic solid deformation

Let us consider the simplest one-dimensional model of an elastic solid, which in general
is not homogeneous. Imagine a solid body as a chain of N unit cells of linear size h, each of
which has mass and elasticity (Fig. 5).

While formulation the problem in question, cell-automaton state is simulated by the
deformation (shift). The signals of neighboring automata simulate energy transfer process
of mechanical action between the elements of the system. What distinguishes this case from
the heat transfer considered above is the existence of a more complex function to calculate
the states of cellular automata. Since the process of energy transfer of mechanical
momentum is a wave shaped, the elements that simulate the behavior of the system should
have a "memory", i.e. they should be automata with aftereffect.

h

X

Fig. 5. The scheme of one-dimensional cellular automaton model of an elastic body

Rys. 5. Schemat jednowymiarowego automatu komérkowego dla ciata sprezystego

Therefore, the functional relationship for the calculation of the subsequent state will
have the form (2), since there must be considered not only a current state but also
a previous one:

u(r,.) = Elult)u(t, ),ix,(tk )] (12)

where u is cell shift, m; x is variable, which takes into account the flow of elastic energy
from neighboring cells.

Take into consideration # — cells deformation of the model of mechanical stress on the
body, provided that # << i (Fig. 6).
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Fig. 6. Deformation of the i-th element

Rys. 6. Odksztalcenie i-tego elementu

Mechanical stress in the i-th cell expressed in terms of absolute deformations (shifts) of
neighboring cells, for time step & will be of the form:

U, () —u () e Lt o =0G)

o (t)=E
s e e

(13)
where o is mechanical stress, Pa; E is modulus of elasticity of the element material, Pa; /4 —
step of the space discretization, m.

At the same time, one can write the following expression for the mechanical stresses in
integral form:

=a:-p:h (14)

where m is mass of cell, kg; V is volume of cell, m’; a is acceleration of the cell mass
centre, m/s’.
Therefore from (13) and (14) one can get:

U, () —u () e unt)su(n)
h2 il hz

€ =\Eip (15)

where C is speed of elastic waves in the material of cell, m/s.
If one assumes that u is discrete function of not only the coordinates x, but also the
time 7, then the expression for the transition (12) can be written explicitly:

u, (1) =2-u,(6,)—u, (t, )+ A - [p, (1) + p,.(2,)]

C,i] 5 [um(;k:) =l (tk )] P (tk) = C,zw : [u:—l (l’;:) = (tk )]

ar(tk ) = Ctil

(16)

PG =

In the analysis of the expression (16) one should aware that the variable p can be
interpreted as the value of the neighboring cell force impact per unit mass.

The dependences obtained are local rules allowing to determinate the new state of each
cell for each time step. Reasoning similarly one can obtain equations of conduct outer
(boundary) elements of the system. The external pressure is considered by introducing the
necessary concrete strain values (state) for one of the boundary elements of the system.
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Let us show the applicability of the proposed approach. First we consider a trivial
problem of momentum propagation in an isotropic thin rod. Take the rod of length 10 mm
from material having an elastic wave velocity of C= 5000 m/s, and divide it into 10
elements with a step # =1 mm. Set time step Az = 0.2 ps. To simulate the external influence
on the first (leftmost) element let set change of its deformation in the form of a single
momentum a time step duration and amplitude of 0.5 um. For clarity, we assume
a rectangular momentum shape.

Fig. 7 shows the simulation results in form of components i deformation values « for the
different moments of time k.

Fig.7. Momentum deformation movement along the rod

Rys. 7. Transport odksztalcenia wzdtuz preta

One can see that momentum is moving along the rod, reflecting from its ends and
moving in the opposite direction. This picture is consistent with the generally accepted
ideas. Since the material of the rod is taken ideal, momentum shape is not distorted and the
movement continues in time forever.

Let us turn to two-dimensional model. Imagine a solid as an array of MXN elements of
size Ax XAy, each of which has mass and elasticity. Fig. 8 shows the scheme of the discrete
two-dimensional model of the solid.

Fig. 8. The scheme of two-dimensional cellular automaton model of an elastic body

Rys. 8. Schemat dwuwymiarowego automatu komorkowego dla ciata sprezystego
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When considering the deformation process of two-dimensional body in a first
approximation we can consider the case of a uniaxial deformation. This allows to assume
that the impact on the body and, consequently, the deformation of the elements will be
directed strictly along one axis. Solving this problem one should aware that in this case the
two elastic waves — longitudinal and transverse — covered in the material. The approach
enables to obtain expressions for the simulation of each of the waves, which are formally
similar to equations (16). Using the superposition principle of waves, the total deformation
can be represented as the sum of the deformation caused by each wave separately.

The transition function (local rules) for the element with the indices i, j will be:

w6 ) =2, @) G el G rp . e, ) 0]

C‘:.‘l ;('\-)[“ul ,(fA )i u, /(,A )]
. : ; 1
Ax? P, (t)

C...@u, B)—u ()]
Ax’

P (t) =

(17)

Gli_“(_\-)[ztu,](tk V= ()] (f/ Ol )= 6]
- D) = ;

0, () = ,
Pijn Ay’ Ay’

where C;(x) is elastic wave velocity in the direction of the x-axis; C;; (») is the same in the
direction of the y-axis.

Iteration: 25 Iteration: 50

Iteration: 150

Iteration: 100

Fig. 9. The deformation picture in the plate at different times

Rys. 9. Zmiana deformacji plyty w czasie
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Below there are the results modeling of elastic wave propagation in a flat square-shaped
body. In simulation the main parameters was following: the size of the plate was
10x10 mm, the velocity of propagation of elastic waves in longitudinal and transverse
directions was assumed the same and equal to 5000 m/s, time step duration was 2:10° s,
step in the coordinates was 0.2 mm.

When simulation a periodic forcing on one of the cells located at the edge of the plate
was simulated. The results are listed in fig. 9. The cell deformation value was coded by
brightness of the corresponding point.

The results obtained show that in the process of propagation of elastic waves they
reflect from the edges of the plate increase and decrease each other; that corresponds to the
current views on the nature of the process.

6. Conclusion

Mathematical simulation of real processes can be performed using different approaches
and models. The author by no means to oppose the proposed approach to continuous
deterministic models based on differential equations. However, differential equations are
well known to be based on mathematical infinitesimals, which are a mathematical
abstraction. At the same time in nature there is no infinitesimals, but there are physical
quantities that can be extremely small, but remain finite. As the study of the microscopic
level and nano-level phenomena it is clear that such phenomena are not always sufficiently
well described by differential equations, and often require the application of other modeling
principles.

In the early development of the cellular automata theory attempts to use them to solve
differential equations were made. In this paper we consider the opposite approach — it is
shown that the transition function of cellular automata can be obtained using the rules of
local interaction and simple balance equations of the process. In turn, in particular cases,
these transition functions are identical to finite-difference analogues of the classical transfer
equations.

Thirty years ago, Academician A. N. Kolmogorov predicted that with the development
of modern computer technology it often will be wise to study real phenomena avoiding the
intermediate step of their stylization in the frameworks of mathematics of the infinite and
continuous, and will move straight to the discrete model [3]. Now, with the advent of
powerful computer support one can state that this prediction of the great Russian
mathematician comes true.

Literature

[1] Wolfram S.: Theory and applications of cellular automata, Singapore: World
Scientific, 1986.

[2] Toffoli T.,, Margolus N.: Cellular Automata Machines. Cambridge, Massa-
chusetts: The MIT Press, 1987.

[3] Kolmogorov A. N.: Mathematics — the science and profession. M.: Phiz.-math.
lit. 1988.



44
[4]

(5]

Bobkov S. P.:Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., V. 52. N 3,
(2009), 109-114.

Bobkov S. P, Voitko J. V.. Izv. Vyssh. Uchebn. Zaved. Khim. Khim.
Tekhnol., V. 52 N 11, (2009), 126-128.



