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A b s t r a c t
A systematic approach for system identification is applied to experimental data of ethanol production from cellulo-
se. Special attention is given to the identification of model parameters, which can be reliably estimated from availa-
ble measurements. For this purpose, an identifiable parameter subset selection algorithm for nonlinear least squares 
parameter estimation is used. The procedure determines the parameters whose effects are unique and have a strong 
effect on the predicted (measurement variables) output variables. The system is described by a generic process mo-
del for the simultaneous saccharification and fermentation including three enzyme-catalyzed reactions. The process 
model is clearly over-parameterized. By applying the subset selection approach the parameter space is reduced to a 
reasonable subset, whose estimated parameters are still able to predict the experimental data accurately.
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S t r e s z c z e n i e
Systematyczne podejście do identyfikacji systemu stosowane jest wraz z doświadczalnymi danymi dotyczącymi 
wytwarzania etanolu z celulozy. Szczególną uwagę zwraca się na określanie parametrów modelu, które można 
wiarygodnie oszacować na podstawie ogólnodostępnych pomiarów. W tym celu zastosowano algorytm podzbioru 
parametru identyfikowalnego służący do nieliniowego szacowania parametrów metodą najmniejszych kwadratów. 
Procedura ta określa parametry, które dają niepowtarzalne efekty i wywierają silny wpływ na przewidywane 
zmienne zdolności produkcyjnej (zmienne pomiarów). System ten opisywany jest przez rodzajowy model procesu 
jednoczesnego scukrzania i fermentacji, wliczając w to trzy reakcje katalizowane enzymowo. Model procesowy jest 
nadmiernie sparametryzowany. Przy zastosowaniu opisywanego podejścia dana przestrzeń zostaje ograniczona do 
uzasadnionego podzbioru, którego szacowane parametry pozwalają nadal celnie przewidywać dane doświadczalne.
Słowa kluczowe: analiza identyfikowalności, podzbiór, metoda najmniejszych kwadratów, bioetanol, pozostałość, 
scukrzanie i fermentacja
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1. Introduction

Parameter estimation in biochemical models often means the determination of a rela-
tively high number of kinetic parameters compared to the number of measured process var-
iables. Moreover, due to the nonlinearity of kinetic models the parameter estimation prob-
lem most likely contains multiple local minima. The solution of interest is the global mini-
mum, which hopefully also provides the biologically most reasonable parameters. However, 
due to the existence of multiple minima good initial estimates of the parameters are crucial 
to ensure that the obtained solution is close to a physiologically reasonable minimum. When 
a solution is found for the estimation problem it should be checked how robust the minimum 
is by re-running the estimation routine with the new parameter set as initial guesses. Fur-
thermore the robustness may be evaluated by starting from different but also physiologically 
reasonable initial values. However, correlation between model parameters constitutes an ob-
stacle to determining a unique minimizing parameter set [1].

In this paper, a methodology for identifying kinetic parameters in structured growth 
models is presented. The methodology is applied to a case study where kinetic parame-
ters of a bio-ethanol production process are estimated. The focus lies on the identifiabi-
lity analysis for the determination of model parameters, θ	∈ RNp, which can be reliably es-
timated from available measurements. For this purpose, an identifiable parameter Subset 
Selection (SsS) algorithm for nonlinear least squares parameter estimation is used, which 
is based on the ill-conditioned parameter selection [2, 3]. By fixing the ill-conditioned pa-
rameters at prior estimates, a reduced-order and well-conditioned parameter estimation 
problem is then solved where the remaining parameters are determined. In the subset se-
lection algorithm, the sensitivity matrix (S) of the least squares problem is considered 
and a Singular Value Decomposition (SVD) is applied as rank-revealing factorization [4] 
within the algorithm of [2, 3]. The procedure permits to determine the parameters whose 
effects are unique (linear independent parameter sensitivities) and have a strong effect on 
the predicted measurement variables.

2. Case study – bio-ethanol production

Experimental data used in this case study was taken from bio-ethanol production in 
a saccharification and fermentation (SSF) process (see [5]). Experiments were carried out in 
a two-liter fermentor with a working volume of 0.6 l. The initial suspension contained dry 
weight solid content of 20% (w/w) considering a content of cellulose of 67% (w/w). Prior to 
the SSF process, an enzymatic pre-hydrolysis of 12 h at 47°C was realized to allow for the 
build-up of fermentable glucose. A commercial cellulase preparation was used with an en-
zymatic load of 26 FPU/ gram of solid of GC 220 – Genencor and 17 UI/ gram of solid of 
β-glucosidase with activities of 104 FPU/ml and 439 IU/ml, respectively. The concentration 
of protein per ml of GC 220 was 109 mg/ml and 127 mg/ml of ß-glucosidase. After 12 h, 6 g 
of microorganism/l was added and the process was continued at 37°C until completing 50 h. 
The micro-organism was a commercially available Saccharomyces cerevisiae.

The SSF is described by a generic model taken from [6–8] which considers the four main 
influencing factors for the kinetics of SSF: cellulosic substrate, cellulase and b-glucosidase 
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enzyme system, substrate-enzyme interaction and enzyme-yeast interaction. The simpli-
fied reaction mechanisms are presented in Fig. 1, where cellulose is simultaneously hydro-
lyzed to cellobiose (v1) and glucose (v3), cellobiose is converted to glucose (v2), and glucose 
is catabolized to ethanol, cell mass, and carbon dioxide by the fermentative microorganism. 
Yeast growth and glucose consumption rate are expressed by v4 and v5, respectively. The hy-
drolysis model is presented in Eq. 1–2, in which the effects of ethanol on cellulase are in-
cluded [6]. For modeling glucose consumption and biomass formation, standard Monod ki-
netics were assumed, expanded to include ethanol inhibition on yeast [6]. Yeast growth rate 
and substrate consumption rate are in Eq. 3–4.

For reactions with cellulose as a substrate v1 and v3 (Eq. 1), the active amount of enzyme 
is assumed to be determined by enzyme adsorption onto the cellulose substrate (adsorption 
constant KL). Inhibition by glucose to cellulase and ß-glucosidase was assumed through K1,G 
and K2,G. For all three reactions, the zero-order rate constant is given as a function of tem-
perature (activation energy Ea); in addition, all enzyme activity is assumed to be subject to 
thermal inactivation (KD). The nature of the cellulose substrate is assumed to be conversion- 
dependent such that a recalcitrance constant Krec was used. On the other hand, ethanol in-
hibition is assumed to affect the rates of reactions v1 and v3 by inhibition constant K1,EtOH [6] 
and reaction (Eq. 2) by inhibition constant K2,EtOH [7].

For the cellulase adsorption to cellulose, within v1 and v2, it is not considered that sub-
strate surface area is proportional to cellulose concentration [7], but it is considered as a con-
stant lumped in the maximum specific rates of cellulose hydrolysis to cellobiose and glucose 
(kmax,1 and kmax,3, respectively). Thermal inactivation constant (KD) follows an Arrhenius type 
relationship, KD(T) = AD e-∆H/T.

Fig. 1. Simplified reaction mechanisms in SSF processes [6]

Rys. 1. Uproszczone mechanizmy reakcji w procesach scukrzania i fermentacji [6]
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3. Parameter identification: subset selection algorithm

The model parameter are determined solving the parameter estimation (PE) problem:

where  is an unbiased estimator containing the best currently available estimate of the true 
parameter vector θ*, Ym ∈ RNy.Nm is the experimental data vector, Ny is the number of measure-
ment variables and Nm is the discrete set of instances tk when yi

m ∈	Ym is measured; the collec-
tion of the predicted response variables Y ∈ RNy.Nm are calculated in each tk. The analysis of the 
identifiability of model parameters is done here based on the sensitivity matrix S ∈ RNy.Nm x Np:
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To account for significant differences in the magnitude of parameter values to be ana-
lyzed, the sensitivity matrix must be normalized, such that

where θtrsh and ytrsh are the machine tolerance. All corresponding criteria for the SsS are 
adapted from the ill-conditioned parameter selection approach presented in [2, 3] and based 
on the analysis of the Hessian matrix Hθ = STS. Generally, all parameters with low or non-
existing sensitivities (columns of S with values equal or near to zero), or linearly dependent 
parameters are not identifiable. In both cases S is singular or “almost” singular from a nu-
merical point of view. This situation is undesirable, because it reflects near indeterminacy 
in the parameter estimates, caused by having more parameters than can be reliably esti-
mated from available measurements. Thus, applying the parameter subset selection, ill-con-
ditioned parameters are fixed at prior estimates and reduced-order and well-conditioned PE 
is considered for the determination of the active parameters.

A rank-revealing factorization is done by the Singular Value Decomposition (SVD) of 
S = UΣVT, where U ∈ RNy.Nm x Ny.Nm is a real or complex unitary matrix, VT ∈ RNp x Np the conju-
gate transpose of V is a real or complex unitary matrix, and Σ ∈ RNy.Nm x Np is a rectangular di-
agonal matrix with nonnegative real numbers on the diagonal. The diagonal entries Σi,i are the 
singular values 	σi > 0 of matrix S such as 	σ1 > σ2 > … > σNp. A criterion for the nearness to 
singularity of S is the condition number κ(S) = σ1/σNp. A “very high” condition number of S 
indicates an almost singular sensitivity matrix. According to [3], an upper bound κmax ≅ 1000 
is defined and parameter identifiability either of the original or a reduced problem is given, 
when κ ≤ κmax holds. Additionally, the Collinearity Index γ = 1/σNp is considered as singularity 
measurement. γ equals one, if the columns of S are orthogonal and reaches infinity if the col-
umns are linearly dependent. In [9] an empirically found threshold of γmax ≅ 10–15 has been 
named. Thus, if γ > γmax the corresponding parameter set is considered as poorly identifiable.

Steps within the SsS algorithm are: 1) For the current parameter set θ	, compute the SVD 
of S(θ). 2) Evaluate singularity measurements based on the condition number κ(S), and all 
sub-condition numbers κj = σj/σNp, with j = 1, ..., Np-1 for each σj available in the diagonal 
matrix S found in the above step. Calculate the collinearity index γ. If κ(S) ≤ κmax and γ ≤ γmax 
the parameter set is identifiable and the algorithm finishes, if not, go to the next step. 3) De-
termine r as set dimension of Γ	= {σj κj ≤ κmax }, such that a maximum number of r singular 
values σj, with j = 1,…,r, are found, for which κj ≤ κmax. 4) Determine a permutation matrix 
P by constructing a QR decomposition with column pivoting (QRP) for S ∈ RNy.Nm x Np such 
that SP = QR, where Q ∈ RNy.Nm x Ny.Nm is an orthogonal matrix, R ∈ RNy.Nm x Np is an upper tri-
angular matrix with decreasing diagonal elements and P ∈ RNp x Np is a permutation matrix 
which orders the columns of S according to linear independency, it means that the first col-
umns of SP are the largest independent set of columns of S. 5) Use P to re-order the param-
eter vector θ according to  .TPθ = θ  6) Make the partition with 
containing the first r elements of . 7) Fix  to a priori estimate. 8) Solve reduced-or-
der parameter estimation problem, considering only.

(9)
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4. Determination of model parameters

Generally, the parameter estimation procedure is divided in six steps. First, initial 
guesses for the parameters have to be obtained either from literature or by performing sim-
ple model calculations using selected sets of experimental data. Secondly, identifiable subset 
selection of the parameters must be performed; thirdly, the parameters selected by parame-
ter SsS procedure must be removed of the estimation problem by fixing them to appropriate 
values; fourthly, the new reduced parameter estimation problem must be run along with the 
new evaluation of the system identifiability (SsS algorithm). Fifthly, singularity measure-
ments (κ and γ, see section 4) must be monitored to assure that the new reduced problem is 
well-conditioned; if the corresponding conditions are not fulfilled (thresholds are exceeded), 
the problem must be reduced again by fixing the ill-conditioned parameters found by SsS to 
the values calculated in the current optimization; this iterative process must be repeated un-
til the singularity measurements do not exceed their corresponing thresholds. Finally, a sta-
tistical result analysis can be performed, e.g. analysis of the parameter accuracy by assess-
ing their standard deviations using the covariance matrix of the estimates.

5. Results

Nonlinear regression in Eq. 8 was used based on the Levenberg-Marquardt least squares 
minimization algorithm, which is a hybrid of the Gauss-Newton and the steepest descent 
methods [7]. In Table 1 are the complete parameters for this differential algebraic equation 
system (DAE), where the parameter vector to be estimated is θ = [kmax,1 kmax,2 kmax,3 KL K1,G 
Krec Km K2,G Kiy,EtOH ms Yxg µmax KG K1,EtOH K2,EtOH] with Np = 15. The rest of parameters in 
Table 1 were maintained constants according to literature values in [6] taking to account 
these parameters did not exhibit changes according to previous sensitivity analysis. Meas-
ured variables in the experiment realized by [5] were Cellobiose (Ccb), Glucose (CG) and Eth-
anol (CEtOH) concentrations such that the experimental data vector was Ym = [Ccb

m CG
m CEtOH

m] 
with Ny = 3. Ccb

m, CG
m, and CEtOH

m were sampled in time range of 0 to 50 h until having 17 
measurements point (Nm = 17).

Following the procedure described in section 5, the first step was to find good initial pa-
rameter guesses for the nonlinear least squares algorithm. Four different initial estimates 
(IE) are depicted in Table 1; IE1 and IE2 make reference to literature parameters calculated 
by [6, 8] respectively; IE3 is a set of parameter guesses, which were obtained by an inde-
pendent consideration of the cellulose hydrolysis and glucose fermentation step and a sepa-
rate solution of these problems along with subsequent re-optimizations until finding a stable 
initial estimate for future parameter estimations. IE4 was created by changing the value of 
Km reported in [8] and taking into account that this parameter demonstrates the most sensi-
tive parameter in all calculations done in this work. In Table 1 the objective function values 
(OF) obtained when running the parameter estimation from each IE. The best fit of the ex-
perimental data was found for IE4 with OF = 157. Accordingly, all subsequent computations 
the values in IE4 were used as initial guess.

As second step, identifiable subset selection of the parameters is performed using the nor-
malized sensitivity matrix (see section 4). In Table 2, the columns “Estimated Parameter” 
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show parameter values that minimize Eq. 8, columns named “Sensitivity measure dj” show 
the Euclidean Norm of sensitivity matrix columns, and columns named “Identifiability 
Order” contain the order of the new parameter vector whose first r elements correspond to 
the identifiable parameter vector . In Table 2, OPT1 makes reference to the problem with 
the original parameter vector θ1 = θ and Np1 = 15, with rank of sensitivity matrix r1 = 9, objec-
tive function OF1 = 159.78, condition number κ1 = 1.8 x 107 and collinearity index γ1 = 726.88. 
From this is becomes clear that the estimation problem is ill-conditioned. despite of the good 
fitting of the experimental data (same values of OF1 for all results OPT1-OPT3); strong correla-
tion between the parameters of OPT1 are indicated by high values of κ and γ. A SsS step gives 
9 parameters θ1	(r

1
) = [kmax,1 kmax,2 KL K1,G Km Kiy,EtOH Yxg K1,EtOH K2,EtOH] which are identifiable, 

the remaining 6 parameters θ1(Np-r
1
) = [kmax,3 Krec K2,G ms µmax KG] are discarded in the next step.

T a b l e  1

Selection of the best Initial Estimate

PARAMETER UNIT IE1 IE2 IE3 IE4

1 kmax,1 h-1 0.0827 0.081 9.480 9.480
2 kmax,2 gU-1h-1 0.00406 0.0108 8.161E-02 8.161E-02
3 kmax,3 h-1 0.0834 0.058 0.001 0.001
4 KL FPUL-1 544.89 18.2 1386 1386
5 K1,G gL-1 53.16 6.3 1486.1 1486.1
6 Krec - 2.8* 2.8 1.719 1.719
7 Km gL-1 10.56 100** 1410 10.56
8 K2,G gL-1 0.62 0.54 39.17 39.17
9 Kiy,EtOH gL-1 50 50 55.19 55.19
10 ms h-1 0 0.02 1.150x10-5 1.150x10-5

11 Yxg gg-1 0.113 0.11 1.809x10-4 1.809x10-4

12 µmax h-1 0.19 0.25 6.914x10-2 6.914x10-2

13 KG gL-1 0.000037 0.0252 15262.7 15262.7
14 K1,EtOH gL-1 50.35 95 17.43 17.43
15 K2,EtOH gL-1 500* 500* 31.8 31.8

OF 39490 446 159 157
* Parameter added to original model proposed by Authors

**Heuristic parameter value in order to overcome convergence problems

Thirdly, the 6 non-identifiable parameters from the last step were removed from pa-
rameter estimation problem by fixing them to values found in OPT1. Fourthly, the new re-
duced estimation problem was run and again a SsS was performed; in Table 2 this new prob-
lem is referenced as OPT2, in which θ2  = θ1	(r1

), with Np2 = 9, r2 = 7, OF2 = 157.54, κ2 = 8081 
and γ2 = 84.23. The obtained reduction in the singularity measurements (κ2 and γ2) indicate 
that the current reduced problem is better conditioned than the original one (OPT1) but still 

θ
( )rθ
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there are two parameters which are not identifiable, indicated by the rank of the sensitivity 
matrix r2 = 7 and since κ2 > κmax and γ2 > γmax. The identifiable parameter vector for OPT2 
was θ2	(r

2
) = [kmax,1 kmax,2 Km Kiy,EtOH Yxg K1,EtOH K2,EtOH], and the vector of parameters to fix was 

θ2	(Np-r
2
) = [KLK1,G]. The last reduced estimation problem and SsS is OPT3, in which θ3 = θ2	(r

2
), 

with Np3 = 7, r3 = 7, OF3 = 157.51, κ3 = 560 and γ3 = 9.03. For this estimation, the condition 
number and the collinearity index do not exceed the defined thresholds, with κ3 < 1000 and 
γ3 < 10 and all parameters in θ3

 were identified r3 = Np3. At this point, the parameter estima-
tion has been stopped and the obtained parameters were statistically analyzed by calculat-
ing confidence intervals using the covariance matrix of the estimates.

T a b l e  2

Application of Subset Selection Algorithm

θj

Estimated Parameter Sensitivity measure dj Identifiability Order

OPT1 OPT2 OPT3 OPT4 OPT1 OPT2 OPT3 OPT1 OPT2 OPT3

kmax,1 9.51 11.07 11.08 11.08 1.19 1.13 34.38 1 7 7

kmax,2 0.2479 0.0773 0.0498 0.033 2.56 1.20 0.68 7 2 2

kmax,3 0.3218 F F F 0.09 - - 15 - -

KL 5915 8121  F F 0.36 0.43 - 5 8 -

K1,G 386.2 286.9  F F 0.12 0.15 - 8 9 -

Krec 0.1687 F  F F 0.05 - - 14 - -

Km 895.7 286.7 184.4 111.5 8.02 26.43 12.81 6 1 4

K2,G 5.389 F  F F 0.54 - - 13 - -

Kiy,EtOH 72.37 74.09 74.26 74.31 0.23 0.22 0.22 4 6 3

ms 5.5x10-6 F  F F 0.00 - - 11 - -

Yxg 4x10-4 4x10-4 4x10-4 4x10-4 0.70 0.69 0.69 9 3 1

µmax 0.0533 F F F 0.71 - - 12 - -

KG 5722 F F F 0.70 - - 10 - -

K1,EtOH 14.66 14.92 14.92 14.93 0.51 0.47 27.35 2 4 6

K2,EtOH 23.14 25.72 25.75 25.74 0.34 0.33 0.33 3 5 5
F Parameter fixed to previous optimum which was not estimated 

in current reduced parameter estimation problem

From the comparison with the results from the original problem (OPT1) with Np = 15 
parameters with the first and second reduced problems (OPT2 and OPT3) with Np = 9 and 
Np = 7, respectively, enormous improvements in the parameter accuracy, validated by re-
ductions in confidence intervals, were observed. For further improvements of the esti-
mation in OPT3 (further reduction in StDev for each parameter), a last optimization run 

ˆ
jθ
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(OPT4) was performed, which used kmax,2 = 4x10-6 and Km = 124 as initial estimates along 
with the other values of IE4. The parameters obtained from OPT4 are considered to be the 
most accurate parameter estimates in this research, with an improvement in the maximum 
relative standard deviation of the most uncertain problem parameter kmax,2 and Km from 
400% to 14%.

6. Conclucions

A systematic approach to parameter identifiable subset selection based on the sensitivity 
matrix, Singular Value Decomposition (SVD) as a rank-revealing factorization and QR de-
composition with column pivoting (QRP) has been successfully applied to a biological sys-
tem within a least square parameter estimation problems.

Besides the proper normalization of the sensitivity matrix, it is of importance to gener-
ate an appropriate initial parameter guess for estimation, which is sufficiently close to the 
optimal parameter set in order to provide a subset selection that does not differ significantly 
from the one based on the sensitivity matrix evaluated at the optimal estimate. If this is not 
possible, an iterative proceeding as discussed in this paper should be followed.

S y m b o l s

AD – Type Arrhenius constant [h-1]
Cc – Cellulose Concentration [gL-1]
Ccb – Cellobiose Concentration [gL-1]
CE – Enzyme Concentration [FPUL-1]
CEtOH – Ethanol Concentration [gL-1]
CG – Glucose Concentration [gL-1]
Cx – Yeast Concentration [gL-1]
eT – Total protein (cellulase and b-glucosidase) concentration per liter reaction

volume [gL-1]
eg – b-glucosidase activity per g of protein in the enzyme preparation [IUg-1]
Ea – Activation Energy for enzymatic activity [Jmol-1]
KD – Specific rate of cellulose [h-1]
KG – Glucose saturation constant for yeast [gL-1]
K1,EtOH – Inhibition constant of cellulase by ethanol [gL-1]
K2,EtOH – Inhibition constant of ß-glucosidase by ethanol [gL-1]
Kiy,EtOH – Inhibition constant of ethanol on yeast [gL-1]
KL – Langmuir adsorption constant (cellulase adsorption saturation constant

[FPUL-1]
K1,G  – Inhibition constants of cellulase by glucose [gL-1]
K2,G – Inhibition constants of b-glucosidase by glucose [gL-1]
kmax,1 – Maximum specific rate of cellulose hydrolysis to cellobiose [h-1]
kmax,2 – Specific rate of cellobiose hydrolysis to glucose [gU-1h-1]
kmax,3 – Maximum specific rate of cellulose hydrolysis to glucose [h-1]
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Km – Michaelis constant for b-glucosidase for cellobiose [gL-1]
Krec – Recalcitrance constant [-]
ms – Maintenance requirement for yeast [h-1]
OF – Objective Function value of parameter estimation 
v1 – Production rate of cellobiose from cellulose by cellulase [gL-1h-1]
v2 – Production rate of glucose from cellobiose by b-glucosidase [gL-1h-1]
v3 – Production rate of glucose from cellulose by cellulase [gL-1h-1]
v4 – Production rate of biomass [gL-1h-1]
v5 – Consumption rate of glucose by yeast [gL-1h-1]
Yxg – Anaerobic yield of cell mass on glucose (yield coefficient of cell mass from

glucose) [gg-1]
∆H – Deactivation Enthalpy [Jmol-1]
µmax – Maximum growth rate (maximum specific growth rate of the microorganism

[h-1]
Ym – Experimental data vector 
Y – Predicted response variables by model 
Nm – Number of sample times 
Np – Number of parameters 
Ny – Number of measurement variables 
S – Sensitivity matrix 
Hθ	 – Hessian matrix 
U – Real or complex unitary matrix of SVD 
V – Real or complex unitary matrix of SVD 
Σ	 – Rectangular diagonal matrix with nonnegative real numbers on the diagonal
  of SVD 
r – Rank of the sensitivity matrix 
Q – Orthogonal matrix of QR decomposition with column pivoting (QRP) 
R – Upper triangular matrix with decreasing diagonal elements of QRP 
P – Permutation matrix of QRP 
σj – Singular value j 
dj – Sensitivity measure of column j of sensitivity matrix 
κ	 – Condition number of parameter estimation problem 
κmax – Condition number threshold to guarantee nonlinear dependence between 
  parameters 
γ	 – Collinearity index 
γmax – Collinearity index threshold to guarantee nonlinear dependence between
  parameters 
Γ	 – Set of singular values j with κj≤ κmax 

θ	 – Parameter vector 
θ(Np-r) – Unidentifiable parameter vector after SsS algorithm 
θ(r) – Identifiable parameter vector after SsS algorithm 
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