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HOMOGENIZACJA LOKALNA W MODELOWANIU 
MATERIAŁÓW NIEJEDNORODNYCH 

A b s t r a c t  
This paper presents the concept of local homogenization method that can be applied to modeling 
of various heterogeneous materials. Our ultimate goal is to apply it to modeling of asphalt 
pavement structures and this paper focuses mainly on verification of accuracy and reliability of 
the method. After a brief characteristic of asphalt properties, the idea of computer 
homogenization is described. Especially ,the local homogenization is presented in details. 
Several computational examples (1D and 2D) solved by local homogenization are presented. 
They are compared with solutions obtained either in analytical way or using directly FEM 
approach with “full” consideration of heterogeneities in microscale. A few prospective 
applications of the presented method in context of asphalt pavement structures are depicted. 
Keywords: numerical homogenization, heterogeneous media, modeling of asphalt pavement 

structures 

S t r e s z c z e n i e  
Artykuł przedstawia koncepcję metody homogenizacji lokalnej, która może być wykorzystana 
do modelowania różnych materiałów niejednorodnych. Naszym celem jest zastosowanie jej do 
modelowania konstrukcji nawierzchni asfaltowych, ten artykuł dotyczy głównie sprawdzenia 
dokładności i wiarygodności metody. Po krótkiej charakterystyce warstw asfaltowych opisano 
ideę homogenizacji komputerowej. Przedstawiono szczegółowo zwłaszcza homogenizację lo-
kalną. Zaprezentowano kilka przykładów obliczeniowych (1D i 2D) rozwiązanych z wykorzy-
staniem homogenizacji lokalnej. Wyniki porównano z rozwiązaniami otrzymanymi w sposób 
analityczny lub poprzez bezpośrednie wykorzystanie MES (z pełnym uwzględnieniem niejedno-
rodności w mikroskali). Przedstawiono kilka perspektywicznych zastosowań prezentowanej 
metody w kontekście konstrukcji nawierzchni asfaltowych. 
Słowa kluczowe: homogenizacja numeryczna, ośrodki niejednorodne, modelowanie 

konstrukcji nawierzchni asfaltowych 
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Denotations 

l – microscale characteristic dimension 
L – macroscale characteristic dimension 
K, u, f – microscale stiffness matrix, degrees of freedom vector, load vector 

ˆˆ ˆ, ,K u f  – macroscale stiffness matrix, degrees of freedom vector, load vector 
†X  – Moore–Penrose pseudoinverse of matrix X  

trace(X) – sum of matrix X diagonal elements 
|| X ||2F, B – Frobenius norm of matrix X weighted with B 

1. Introduction 

Development of engineering sciences enables us to create new materials with very good 
characteristics, designed for respective applications. These materials should possess much 
better features than conventional ones, e.g. stone, wood. They should also provide greater 
bearing capacity and durability of the structure. Such composite materials are obviously not 
homogeneous. They consist of several “basic” components, which bound together create 
a new material possessing much better features than any of the components separately. Due 
to the complex topology of such composites their direct numerical analysis may be very 
time consuming. Therefore, a computer homogenization must be used. We intend to use the 
local homogenization [3, 4] to model asphalt pavement structures which is shown 
schematically in tab. 1. The paper focuses on verification of this approach by its application 
to analysis of simple benchmark problems (heat flow and plain strain). 

T a b l e  1 

Typical asphalt pavement structure (flexible or semi – rigid type) 

Pavement 

Wearing course Wearing course 
Binder course Binder course 

Base course 
Roadbase 
Subbase 

Improved subgrade 
 
In numerical analysis asphalt mix should be treated as visco – elasto – plastic material. 

Moreover, various asphalt layers (e.g. wearing course vs. binder course) may differ 
significantly even within the same pavement structure. They usually have different 
thickness and they are made of different components. That is why, writing “asphalt layer” 
we don’t mean any specific one but this composite type in general.    

2. Local homogenization 

Let us assume that we analyse an asphalt layer at two separate scales: micro and macro. 
Both of them are described by respective characteristic dimensions. The idea of computer 
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homogenization has already been applied to multiscale modeling of asphalt layers [1]. 
However, it was done by classical approach based on representative volume elements 
(RVE) [2]. However, the condition of scale separation has to be satisfied – ratio of micro- 
(l) and macroscale (L) characteristic dimensions should be much less than 1 

 1l
L
<<   (1) 

It is assumed that the RVE based approach of computer homogenization can be used if 
above ratio is equal to or less than 0.1. Regarding wearing and binder course, this condition 
cannot be fulfilled due to their small thickness and respective dimensions of the aggregate. 
Thus, in paper [1] this approach was applied to asphalt mix represented by one thick layer. 
Numerical modeling of whole asphalt pavement structure requires a different approach. 

The local homogenization method, described in detail in [3], is presented below. In the 
classical approach FEM mesh is created on the basis of material features in respective 
subareas. It should consider material discontinuities. In local homogenization we do exactly 
the opposite. Firstly, the coarse mesh, which covers the whole analyzed region, is 
generated. Secondly, this mesh is refined inside each element to match the discontinuities. 
In such a way we create the fine mesh that fully considers material heterogeneities. These 
two meshes are compatible then. Subsequently, homogenization is done within each 
element of the coarse mesh. We assess effective stiffness matrices on the basis of fine mesh 
stiffness matrices. In this approach fulfilment of the condition (1) is not required. Further 
analysis can be conducted using standard FEM. 

Let us focus on fine scale. Let K ∈ RN×N be a symmetric stiffness matrix. Local FEM 
equation can be written as follows 

 Ku f=  (2) 

and f ∈ RN is a non – zero load vector. The FEM solution of (2) is equal to 

 †
0u K f u= +  (3) 

Where K† denotes the Moore–Penrose pseudoinverse of K and u0 is an arbitrary vector in 
the null space of K.  

Let us consider the same problem in macroscale (coarse mesh). For M  ≤  N  let 
ˆ M MK R ×∈  be the effective stiffness matrix of coarse element. It is yet unknown.  

Load vector in coarse scale is defined as ˆ Tf A f= , where A ∈ RN×M is a chosen 
interpolation operator for a respective element. The FEM coarse – scale solution is equal to 

 †
0

ˆˆˆ ˆu K f u= +  (4) 

Where †K̂  denotes the Moore–Penrose pseudoinverse of K̂ , and 0û  is an arbitrary vector 

in the null space of K̂ . The difference between fine and coarse scale solution is equal then 

 † †
0 0

ˆˆ ˆ( ) ( )Tu Au K AK A f u Au− = − + −  (5) 
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Thus, the error e ∈ RN, up to a constant, is equal to 

 † †ˆ( )Te K AK A f= −  (6) 

For a non-zero load vector f, known symmetric stiffness matrices for fine mesh elements  
K ∈ RN×N, interpolation matrix A ∈ RN×M, positive – definite symmetric matrix B, 
dimensionless parameter ε > 0, we look for a symmetric matrix †K̂  that minimizes E, 
where 

 
2 2 2† † † † †

2,

1ˆ ˆ ˆ( ) ( )
2 2

T T

B F B
K K AK A f K AK A fε

Ε = − + −  (7) 

The first term of (7) measures the error of the local solution for a given local load f and is 
equal to 

 21 1
2 2

T

B
e e Be=  (8) 

The second term is defined as 

 2

,
( )T

F B
X trace X BX=  (9) 

This is the Frobenius norm “weighted with” B. The second term of (7) is a regularization 
term and is included to find a unique †K̂ . After obtaining matrix †K̂ , which minimizes (7), 
we can find desired matrix K̂ . Matrix †K̂  is unique and symmetric [3]. Using properties of 
pseudoinverse matrices we can state that also K̂  is symmetric. 

A special case of above presented approach is f = 0 or is unknown. Expression (7) 
simplifies then to 

 
2

† † †

,

1ˆ ˆ( )
2

T

F B
K K AK AΕ = −  (10) 

Minimization of (10) simplifies significantly the procedure of effective stiffness matrix 
obtaining. For B = I matrix K̂  can be expressed as 

 ( )†† † †ˆ ( )TK A K A=  (11) 

3. Examples of local homogenization application 

Local homogenization was used to solve below presented examples. Due to a large 
number of calculations only results with brief descriptions are shown. 
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3.1. 1D example  

Three springs with various spring constants ki [3]. were connected together as shown 
below (fig. 1). Only f1 is assumed to be non-zero. Our task is to find an effective constant 
keff of such a connection. 

 

 
Fig. 1. Three springs connected together “homogenized” as one effective spring 

Rys. 1. Homogenizacja trzech połączonych ze sobą sprężyn w jedną sprężynę 
o efektywnych własnościach 

Effective spring constant calculated by means of local homogenization is equal to 

hom 1 2 3

1 2 1 3 2 3

10
9 12 9eff

k k kk
k k k k k k

=
+ +

 

Whereas analytical solution is equal: 

1 2 3

1 2 1 3 2 3

analit
eff

k k kk
k k k k k k

=
+ +

 

3.2. 2D example 

Heat flow over rectangular shape is analysed in two ways: by means of classic FEM 
approach, fully considering heterogeneities in microscale and by means of local 
homogenization using expression (11). By “heterogeneities” we mean 10% of randomly 
chosen elements with significantly different conductivity constant (ki = 10 for inclusions,  
km = 1 for the matrix). Inclusions are marked with black in fig. 2. Upper edge of analysed 
area is heated by flux q = 100 W/m2, whereas temperature at bottom edge is set as zero. 
Results of computations are shown in fig. 3. 

 

 
Fig. 2. Matrix and inclusions 

Rys. 2. Matryca i inkluzje 
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Fig. 3. Temperature within rectangular shape 

Rys. 3. Rozkład temperatury wewnątrz prostokątnego obszaru 

3.3. 2D example (plain strain state) 

This example demonstrates how local homogenization can be applied to modeling of 
asphalt pavement structure assuming for the sake of simplicity only elastic deformation. A 
rectangular domain (3,5 m × 1,0 m – dimensions referring to average thickness and width 
of one road lane ) is loaded with wheel. Since the total load is equal to 100 kN/axis, it was 
divided into two and distributed over respective area reflecting the width of the real tyre. 
Location of inclusions (aggregate) is shown in fig. 4 (ν = 0.3 for both the matrix and the 
inclusions, E1 = 10 GPa for the inclusions and E2 = 20 GPa for the matrix). We analyse our 
 

 
Fig. 4. Scheme of the analyzed domain 

Rys. 4. Schemat analizowanego obszaru 
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problem in two ways. First, it was solved directly by FEM, considering all heterogeneities 
in microscale. Then it was solved using local homogenization. The plain strain state was 
assumed for this numerical test purposes. Results – vertical displacements along arbitrarily 
chosen cross-section A-A (~20 cm under the top of the domain)– are shown in fig. 5. Upper 
curve was obtained using standard FEM approach (4096 elements), whereas the lower one 
was obtained using local homogenization (1024 elements). These preliminary results 
confirm that local homogenization may be a reasonable method of efficient modeling of 
heterogeneous materials. 
 

 
Fig. 5. Vertical displacements along cross-section A-A 

Rys. 5. Przemieszczenia pionowe wzdłuż przekroju A-A 

4. Conclusions 

Concluding our experience with the local homogenisation method we may confirm that 
this is a promising approach to solution of difficult practical problems. In particular the 
following aspects should be pointed out: 
– separation of scale condition does not have to be satisfied, 
– whole pavement structure can be modeled, 
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– modeling error of the presented solutions is minimum in the sense of the selected norm, 
– fast algorithms for computation of pseudoinverses are necessary,  
– analysis of the heat flow conducted by application of local homogenization, 
– produces solution that significantly differs from the classic one. It is due to the too 

coarse meshes. 
Further analysis will concern modeling of 2D inelastic materials. Then 3D elastic (and 

subsequently inelastic) materials will be analysed. An experimental validation of the 
numerical modeling proposed in the paper will be also considered. 
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