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TRAIN AXES SPACING INFLUENCE ON DYNAMICAL 
BEHAVIOUR OF A GIRDER BRIDGE 

WPŁYW ROZSTAWU OSI POCIĄGU 
NA DYNAMICZNE ZACHOWANIE MOSTU BELKOWEGO 

A b s t r a c t  

In the paper the influence of moving load spacing to dynamical behavior of an Euler- 
-Bernoulli beam was analyzed. The critical speed problem for forces moving along an elastic 
beam was defined and introduced. The analysis was carried out for three different mechanical 
models of load. 
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S t r e s z c z e n i e  

W niniejszym artykule przeprowadzono analizę wpływu rozstawu obciążeń prze-
mieszczających się wzdłuż belki Eulera-Bernoullego na jej zachowanie dynamiczne. Zdefini-
owano i przedstawiono pojęcie prędkości krytycznej dla przemieszczającej się siły. Analizę 
wpływu rozstawu przeprowadzono z uwzględnieniem różnych modeli mechanicznych 
obciążenia. 
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1. Introduction 

Permanent growth of conventional railway transport speeds causes need for assuring 
higher stability and smoothness of ride. What is more, the increase of speeds usually results 
in stronger dynamical effects in behavior of railway track and bridge structures. As a result 
it is very essential during the design process to take into account as many dynamical 
problems as possible. In this paper a numerical simulation of influence of load spacing 
(interpreted as car length) on a bridge structure was carried out.  

2. Mechanical model 

In this paper a simple, Euler-Bernoulli beam subjected to a series of loads moving with 
constant speed, is analyzed. In order to research critical speeds (Chapter 4) the load is modeled 
as a single force (fig. 1a), single mass (fig. 1b), or a single mechanical oscillator (fig. 1c). 
Further the influence of load spacing on the dynamical behavior of a girder bridge was analyzed. 
For this reason three following double load models and one triple load model were applied: 
a double force model (fig. 2a), a rigid body supported in two points model (fig. 2b), a double 
mechanical oscillator model (fig. 2c), and an equally spacing, triple force model (fig. 2d).  

 

x F=mv·g

x mv

x

mv

kvcv

a)

b)

c)
zk

y

y

y

 
Fig. 1. Critical speeds analysis load models 

Rys. 1. Modele obciążeń dla badania prędkości krytycznych 

The Euler-Bernoulli simple beam governing equation [3] 
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 (1) 

where: 
 m(x) – the beam mass per unit length, 
 y(x, t) – the beam deflection, 
 Cy(x) – the beam damping, 
 EI(x) – the beam bending stiffness,  
 Pb(x, t) – load. 
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Fig. 2. Loads spacing analysis load models 

Rys. 2. Modele obciążeń dla ustalania wpływu ich rozstawu na zachowanie belki 

The problem was simplified by assuming constant values of m(x), Cy(x), EI(x), what 
results in change of the (1) equation to 
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 Nv – number of loads, 
 tk – the k load time of approach of  the beginning of the bridge, 
 L – the bridge length, 
 v – speed of  moving load. 
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Each model differs from others in construction of the pk term. 

2.1. Single force model (fig. 1a) 

 and 1k vp m g k= ⋅ =  (7) 

where: 
 mv – the load mass, 
 g – gravitational acceleration. 

2.2. Single mechanical oscillator model (fig. 1c) 

 ( ) ( ) [ ]0 0 ( ) and 1k v v v vp m g k y z c y z m g z t k= ⋅ + ⋅ − + ⋅ − = ⋅ + =  (8) 

where: 
 z – vertical displacement of the bogie mass, 
 y0 – the current beam deflection under the load. 

In order to solve this problem an indirect- iterative method was applied. In the first step 
a force runs along the beam, what results in its deflecting. The acquired deformation history 
is further taken as the kinematic constraint in the second step, in which the vertical bogie 
mass movement history is obtained. In the third step the mechanical oscillator with a priori 
known vertical displacement history interacts with the beam as shown in (8). The second 
and the third steps compose an iteration, which may be repeated to achieve required 
accuracy. The iteration convergence is very fast, so for purposes of this paper it was 
assumed, that one iteration is precise enough to carry out the simulation reliably. 

2.3. Single mass model (fig. 1b) 

This model is the same as the single mechanical oscillator model, but the bogie stiffness 
is many times greater. 

2.4. Double force model (fig. 2a) 

This model is the same as the single force model, but: k = 1, 2 

2.5. Double mechanical oscillator model (fig. 2c) 

To solve this problem an iterative method, analogical to 2.2 was applied, but in this case 
the kinematic constraint obtained from the first step acts on a rigid mass with two degrees 
of freedom. 

 ( ) ( )0.5 and 1, 2ki v k k v k kp M g k y z c y z k= ⋅ ⋅ + ⋅ − + ⋅ − =  (9) 

where: 
 zk – vertical displacement of the rigid bogie mass k point, 
 yk – current deflection of beam under the k point. 
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2.6. Rigid body supported in two points model 

This model is the same as the double mechanical oscillator model, but bogies stiffness is 
many times greater. 

3. Numerical model 

The solution of the governing equation was assumed to be a sum of products of time 
functions and position functions [2].  

 
1
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N

T
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j
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=

= ϕ ⋅η = Φ ⋅Η∑  (10) 

where: 
 Φ(x) – vector of shape functions of first natural modes of the beam, 
 N – number of natural modes taken into account. 

Putting the (10) into (2), multiplying both sides by Φ(x) and integrating with respect to x 
variable gives 

( )

IV

0 0 0

0
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( , )

L L L
T T T

y

Nv

k k k
k

x m x dx t x C x dx t x EI x dx t

p v t t H t t
=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ ⋅ ⋅Φ Η + Φ ⋅ ⋅Φ Η + Φ ⋅ ⋅Φ Η⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − ⋅Φ − ⋅⎡ ⎤⎣ ⎦

∫ ∫ ∫

∑
(11) 

or as matrices 

 [ ] [ ] [ ]( ) ( ) ( ) ( )b b b bM t C t K t F t⋅Η + ⋅Η + ⋅Η =  (12)

 For a simple beam vector of first natural modes consists of following terms 

 2( ) sin , sin , ..., sinv v N vx
L L L
π⋅ π⋅ π ⋅⎧ ⎫Φ = ⎨ ⎬

⎩ ⎭
 (13) 

Matrices [Mb], [Cb], [Kb] are diagonal, so the system of equations (12) can be divided into N 
independent, linear, ordinary differential equations 

 ( ) ( ) ( ) ( )bj j bj j bj j bjM t C t K t F t⋅η + ⋅η + ⋅η =  (14)

 with initial conditions  

 (0) 0, (0) 0 1, 2, ...,j j j Nη = η = ∀ =  (15)
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Constant coefficients of these equations can be written as 
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This problem was solved with the Finite Difference Method (FDM) applied in Python 
enviroment program. For calculations following parameters were taken: 
dt = 0.0002 sec  the FDM time step 
N = 10 
Cy = 0 

4. Critical speeds of a load moving along a simple beam 

Loads acting on an Euler-Bernoulli beam cause deformations, which depend on the load 
position history and load value history. If the problem is simplified to only one constant 
force, moving along the beam with a constant speed, then one can find a particular value of 
speed, which the beam gets excited extremely for. The value of displacement of the point 
under the load is further treated as the degree of beam excitement.  

A simple beam with following mechanical parameters was analyzed: 
EI = 22e10 m4N/m2 
m = 60000 kg/m 
L = 40 m 

In most cases of dynamical analyses first natural mode is the most important element of 
dynamical behavior of a mechanical system. In this paper the first mode is the base for 
determining a particular value of the critical speed. If time, in which the moving force 
causes increase of deflection of the mid-span equals the time of uninterrupted increase of 
deflection in the first mode of natural vibration, than the beam gets excited extremely. 
Consequently- one should expect maximal degree of excitation if total time of passing the 
beam by the load equals period of the first natural mode, and the speed corresponding with 
this situation is called the critical speed. 

 kr

Lv
T

=  (20)
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Fig. 3. An example of deflection of the beam under load by v = 70 m/sec 

Rys. 3. Przykład ugięcia belki w punkcie pod obciążeniem dla v = 70 m/s 

For a simple beam the first mode angular frequency, frequency and period are as 
follows 

 2
1 4

11.812 rad/secEI
m L

ω = π =
⋅

 (21) 

 1
1 1.8799 Hz

2
f ω
= =

⋅π
 (22) 

 1
1

1 0.5319 secT
f

= =  (23) 

And finally – the critical speed 

 kr

m km75.20 270.7
sec h

v = =  (24) 

The above consideration was verified by a numerical analysis. The beam was exposed 
to loads moving with different speeds. All three models mentioned in the Chapter 2 were 
applied, and the mass value was set to 30000 kg. 

Table 1 shows results for different values of speeds, and for each of them a maximal 
value of deflection and maximum deflection relative location. Although only first natural 
mode was taken into account, the simulation results correspond with expected value of 
critical speed, what may prove that this method is reliable. 
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T a b l e  1 

Comparison of numerical simulation results 

Speed [m/sec] 
Force model Oscillator model Mass model 

umax [mm] xmax/L umax [mm] xmax/L umax [mm] xmax/L 
50 2,66 0,499 2,65 0,499 2,67 0,504 
60 2,83 0,552 2,82 0,552 2,84 0,557 
70 2,86 0,592 2,85 0,590 2,86 0,595 
80 2,81 0,626 2,80 0,626 2,81 0,632 
90 2,68 0,659 2,67 0,659 2,67 0,664 

100 2,49 0,688 2,48 0,688 2,48 0,693 
 
Results 
In order to estimate influence of spacing on deflection of the analyzed beam, its 

behavior was studied in two variants of speeds: 60 m/sec and 70 m/sec, always under the 
last load. Ratio of maximal deflection and corresponding maximal static deflection 
(deflection excluding dynamical effects) was treated as the measure of influence of spacing. 

The biggest deformations are expected to appear for spacing d1, causing entering of 
loads with frequency equal to the first natural mode frequency, while the smallest 
deformations are expected to appear for spacing dopt, causing entering of loads with 
frequency twice as big, so even loads would excite the beam inversely to odd loads. 

4.1. Results for speed v = 60 m/sec 

d1 = 31.92 m 
dopt = 15.96 m 

4.1.1. Double loading 

T a b l e  2 

Deflection under the second load for v = 60 m/sec 

Spacing 
[m] 

Force model Oscillator model Rigid mass model Static 
deflection 
ustat [m] 

umax 
[mm] xmax/L umax/ustat

umax 
[mm] xmax/L umax/ustat

umax 
[mm] xmax/L umax/ustat 

9 4,81 0,470 1,508 4,78 0,470 1,498 4,87 0,476 1,527 3,19 
12 4,12 0,438 1,401 4,10 0,440 1,395 4,18 0,446 1,422 2,94 
15 3,32 0,395 1,248 3,31 0,396 1,244 3,37 0,399 1,267 2,66 
18 2,48 0,363 1,055 2,49 0,366 1,060 2,53 0,368 1,077 2,35 
21 1,74 0,474 0,861 1,76 0,474 0,871 1,75 0,468 0,866 2,02 
24 2,06 0,651 1,157 2,05 0,648 1,152 2,03 0,653 1,140 1,78 
27 2,67 0,647 1,500 2,64 0,647 1,483 2,65 0,651 1,489 1,78 
30 3,24 0,627 1,820 3,21 0,627 1,803 3,24 0,632 1,820 1,78 
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Fig. 4. An example of deflection of the beam under the second load by d = 15 m 

Rys. 4. Przykład ugięcia belki w punkcie pod drugim obciążeniem dla d = 15 m 

4.1.2. Triple loading 

T a b l e  3 

Deflection under the third load for v = 60 m/sec 

Spacing [m] 
Force model Static 

deflection 
ustat [m] umax [mm] xmax/L umax/ustat 

9 5,04 0,380 1,309 3,85 

12 3,32 0,357 1,099 3,02 

15 2,64 0,540 0,992 2,66 

18 3,12 0,530 1,328 2,35 

21 2,89 0,462 1,431 2,02 

24 2,03 0,348 1,140 1,78 

27 2,16 0,710 1,213 1,78 

30 3,65 0,666 2,051 1,78 
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Fig. 5. An example of deflection of the beam under the third load by d = 15 m 

Rys. 5. Przykład ugięcia belki w punkcie pod trzecim obciążeniem dla d = 15 m 

 

Fig. 6. An example of deflection of the beam under the third load by d = 30 m 

Rys. 6. Przykład ugięcia belki w punkcie pod trzecim obciążeniem dla d = 30 m 
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4.2. Results for speed v = 70 m/sec 

d1 = 37.24 m dopt = 18.62 m  

4.2.1. Double loading 

 

Fig. 7. An example of deflection of the beam under the second load by d = 18 m 

Rys. 7. Przykład ugięcia belki w punkcie pod drugim obciążeniem dla d = 18 m 

T a b l e  4 

Deflection under the second load for v = 70 m/sec 

Spacin
g [m] 

Force model Oscillator model Rigid mass model Static 
deflection 
ustat [m] 

umax 
[mm] xmax/L umax/ust

at 
umax 

[mm] xmax/L umax/ust

at 
umax 

[mm] xmax/L umax/ust

at 
 9 5,25 0,515 1,646 5,20 0,515 1,630 5,30 0,524 1,661 3,19 

12 4,64 0,475 1,578 4,61 0,475 1,568 4,70 0,482 1,599 2,94 

15 3,91 0,441 1,470 3,90 0,442 1,466 3,97 0,449 1,492 2,66 

18 3,11 0,399 1,323 3,10 0,399 1,319 3,16 0,406 1,345 2,35 

21 2,28 0,347 1,129 2,28 0,348 1,129 2,32 0,348 1,149 2,02 

24 1,55 0,254 0,871 1,55 0,258 0,871 1,58 0,252 0,888 1,78 

27 1,96 0,744 1,101 1,95 0,744 1,096 1,92 0,746 1,079 1,78 

30 2,70 0,715 1,517 2,67 0,715 1,500 2,67 0,722 1,500 1,78 
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4.2.2. Triple loading 

T a b l e  5 

Deflection under the third load for v = 70 m/sec 

Spacing [m] 
Force model Static deflection 

ustat [m] umax [mm] xmax/L umax/ustat 

 9 5,96 0,420 1,548 3,85 

12 3,98 0,354 1,318 3,02 

15 2,24 0,291 0,842 2,66 

18 2,67 0,582 1,136 2,35 

21 3,25 0,537 1,609 2,02 

24 3,04 0,440 1,708 1,78 

27 2,26 0,328 1,270 1,78 

30 1,72 0,803 0,966 1,78 

 

Fig. 8. An example of deflection of the beam under the third load by d = 18 m 

Rys. 8. Przykład ugięcia belki w punkcie pod trzecim obciążeniem dla d = 18 m 

Results proved correctness of above-mentioned assumptions of optimizing load spacing, 
and the correctness was as higher as more loads were applied. Results for analyzed models 
differ from each other, but difference is not significant. Finally this approach could be used 
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for designing bridge structures with minimizing dynamical effects of loading with high 
speed trains, after verification of this simulation with existing bridges measurements. 

R e f e r e n c e s  

[1] F r ý b a  L., A rough assessment of railway bridges for high speed trains, Engineering 
Structures 23, 2001, 548-556. 

[2] W a n g  J.F., L i n  C.C., C h e n  B.L., Vibration suppression for high-speed railway 
bridges using tuned mass dampers, International Journal of Solids and Structures 40, 
2003, 465-491. 

[3] D e n  H a r t o g  J. P., Drgania mechaniczne, Warszawa 1971. 
[4] K r y l o v  V.V., Noise and vibration from high-speed trains, London 2001. 
[5] B o g a c z  R., B a j e r  Cz., Active control of beams under a moving load, Journal of 

Theoretical and Applied Mechanics 3, 38, 2000. 
 


