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W PROCESIE OBLICZE� NAUKOWYCH 

A b s t r a c t  

Rapid evolution of markets of computer games and computer animation means that graphic 
cards are created with the focus on processing large quantities of data necessary for rendering 
graphics in such applications. Thanks to the utilization of the NVIDIA CUDA software 
package, it is possible to take advantage of the processing units available on graphic cards, i.e. 
GPU (Graphic Processing Unit) in scientific calculations. This work presents also the 
potential of utilization of the processing power of NVIDIA series graphic cards for scientific 
purposes. It also contains a description of the software environment, which must be met, and 
presents limitations, which are imposed onto target software under development. 
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S t r e s z c z e n i e  

Szybko rozwijaj�ce si� rynki gier oraz animacji komputerowych sprawiły, �e karty graficzne 
s� tworzone z my�l� o przetwarzaniu du�ej ilo�ci danych na potrzeby renderowania grafiki 
w tych zastosowaniach. Korzystaj�c z pakietu NVIDIA CUDA istnieje mo�liwo�� zaanga�o-
wania do procesu oblicze� naukowych jednostek obliczeniowych umieszczonych w kartach 
graficznych, tzw. GPU (ang. Graphic Processing Unit). W niniejszym artykule zaprezento-
wano mo�liwo�ci wykorzystania mocy obliczeniowej procesorów kart graficznych z serii 
NVIDIA do celów naukowych. Zawarto opis �rodowiska programistycznego, warunków, ja-
kie musz� by� spełnione oraz omówiono ograniczenia, które s� narzucane na tworzone opro-
gramowanie. 
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1. Introduction 

Evolution of IT technologies and their application in many areas of science mean that 
the demand for processing power keeps on increasing continuously. There are areas of 
science where the available processing power is still insufficient (e.g. computer graphics). 
Increase in the operating frequency of single-core microprocessors used to be one the 
solution to such a demand for processing power. Currently, it is visible that the said trend is 
subject to change. Such changes are forced by the problems with heat dissipation and other 
physical level effects. Such limitations can be bypassed by increasing the number of 
processors or processing cores in a single machine. Another solution is based on 
development of computer networks operating under control of specific operating systems, 
such as MPI or PVM. All these methods utilize the CPU processing power. 

On the other hand rapid evolution of markets of computer games and computer 
animation means that graphic cards are created with the focus on processing large quantities 
of data necessary for rendering graphics in such applications. There is however also 
a possibility of taking advantage of the processing units available on the graphic cards, 
involving the so-called GPU (Graphic Processing Unit) and CUDA framework in general-
purpose calculations.  

2. Construction of NVIDIA graphic cards 

Fig. 1 presents the internal architecture of a G80 type NVIDIA graphic card. 

Fig. 1. Simplified model of Architecture of NVIDIA graphic card G80 series 

Rys. 1. Uproszczony model architektury karty graficznej NVIDIA serii G80 



131

The graphic card core operates at the frequency of 575 MHz and has access to global 
GDDR3 type memory with the total capacity of 768MB. This memory is used mainly for 
Scatter and Gatther type operations. Each graphic card comprises 8 multiprocessors. Each 
multiprocessor further comprises 16 stream microprocessors and has 16 kB of cache 
memory available (parallel data cache). Memory block of each multiprocessor is freely 
accessible in stream microprocessors and each processor has also access to the global 
memory. There is however no way for the multiprocessors to communicate with each other 
in any other way than via the global memory. Therefore, a complete graphic card has 128 
stream processors operating at the frequency of 1350 MHz. Each such processor can 
execute two MAD type instructions per cycle, i.e. perform operations in the range of 
multiplication – addition, and a single MUL type operation - i.e. a multiplication. SP 
operate on 32 floating point data with single precision, in the format compliant with IEEE 
754 standard. Even though they are scalar units, they can be connected into vector units, 
operating in SIMD (Single Instruction Multiple Data) mode [1]. 

Such a solution is however applied very seldom in graphic cards. Most frequently, 
vector units are used in such architectures. Utilization of the scalar units is supported by the 
following justification: three or four scalar units of a stream processor will handle 
processing a vector or a matrix as well as a vector unit; while in the case of a scalar variable 
3/4ths of the processing vector unit would be left wasted.  

Parallel Data Cache (PDC) is a special type of multiprocessor memory. It is an 
indispensable element of each multiprocessor It comprises sixteen memory banks of 1 kB 
each. It has the total throughput of 32 bits per single processor cycle. This means that all 
multiprocessors in G80 series graphic cards have the total throughput of approximately 675 
Gbit/s. Therefore, PDC memory is almost as fast as registers and can be used as their 
extension [2]. 

3. CUDA architecture software development model 

Utilization of the processing power available in graphic cards was possible thanks to the 
fact that the manufacturer of such devices provided a set of software libraries, enabling 
execution of software code on graphic card processors. Such libraries are based on 
a processing architecture referred to as CUDA (Compute Unified Device Architecture) [2]. 
CUDA is a processing environment relying on GPU for general purpose processing. For 
development of software for NVIDIA CUDA platform, engineers use C language with 
certain specific extensions. 

3.1. Thread organization model 

CUDA architecture introduces a new memory organization model. Until now, memory 
model was based on a linear architecture. A software developer was responsible for 
providing proper data management, which is depending on the target task at hand (e.g. 
shifting pointers etc.). The model introduced in CUDA is much different from the 
traditional memory organization model. It was presented in Fig. 2. 
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Fig. 2. Thread organization model applied in CUDA system 

Rys. 2. Model organizacji w�tków zastosowany w systemie CUDA 

CUDA allows executing C language kernels directly on underlying hardware. Such 
functions are processed in parallel by N various threads. Such threads can be further 
organized in thread blocks. CUDA provides a variable called threadIdx, which based on 
x, y and z coordinates defining location of a thread in a block. Logical organization of 
individual functions depends on the software developer. Threads inside of a single block 
can cooperate with each other, exchange information through a shared memory block or 
synchronize execution [2].  

The CUDA architecture allows organizing thread blocks into grids. Just like in the case 
of individual threads being organized into thread blocks, it is also possible to define multi-
dimensional thread block grids. Just like in case of thread blocks, the system provides also 
a two-dimensional variable blockIdx, which allows reading the current location of the 
given target block in the gird. This means that we can have a two-dimensional thread block 
grid, where each thread block will represent a three-dimensional thread array. Such 
a memory organization simplifies management of the calculation processing tasks. 

The example shown in Fig. 3 presents practical application of arithmetic operations 
based on threads. 

The function AdvancedMethod was pre-pended with a key-word __global__, 
which means that the function may be executed on hardware. The function 
AdvancedMethod receives pointers to arrays located in the global device memory. This 
function – taking advantage of composite fields in the blockIdx, blockDim and 
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hreadIdx variables – determines the appropriate portions of data for undertaking further 
calculations [3].  

__global__ void AdvancedMetchod(float** A, float** B) 
{ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  int j = blockIdx.y * blockDim.y + threadIdx.y; 
  // do some important operations with A and B 
} 

int main() 
{ 
  dim3 dimBlock(16, 16); 
  dim3 dimGrid(4,4); 
  AdvancedMethod <<< dimGrid, dimBlock >>>( A, B );
} 

Fig. 3. Example of application of arithmetic operations based on threads in CUDA system 

Rys. 3. Przykład u�ycia operacji arytmetycznych na w�tkach w systemie CUDA 

NVIDIA CUDA operates in the SIMD (Single Instruction Multiple Data) processing 
mode. Each of the threads in the scope of a single grid executes precisely the same 
instructions and has the same constant values. Therefore, the method presented above is the 
suggested approach in terms of data processing.  

In order to call the function, it is necessary to set the execution configuration. This is 
closely related with definition of parameters covering kernel function calls. In such a call, it 
is necessary to define the grid size (in this case – 4x4) and the size of a thread block 
attributed to each grid (in this case – 16x16). In this particular case, the function 
AdvancedMethod will be executed 4096 times on 4096 various threads. The formal 
declaration of the execution configuration is as follows [3]: 

MethodName<<Dg, Db, Ns>> (parameterList), 

where: 
Dg – type of dim3, and defines the size of the grid, on which individual thread blocks 

will be executed. Dg.x * Dg.y is the number of thread blocks, which will be 
executed, 

Db – type of dim3, and defines the size of a single thread block. The number of 
threads in a block is calculated as Db.x * Db.y * Db.x.

Ns – optional argument. This variable is of size_t type and defines the number of 
bytes in the shared memory block, which is additionally allocated. By default, 
this variable is assigned value 0. 

The CUDA architecture is characterized by low cost (in terms of time) related with 
thread management. Creating a group of 32 threads with initialization of associated 
registers and memory occupies just a single processor cycle. Context switching is also very 



134

“cheap” in terms of time. This means that at every single time we can select for our 
calculations a completely different set of threads and the whole operation of switching into 
a different set of threads costs nothing (in terms of time). 

3.2. Function types 

As mentioned before, CUDA allows executing C language functions directly on 
underlying hardware. To make that possible, it is necessary to utilize the keyword 
__global__. When this keyword is used, execution of the given method is possible only 
from the host level. This function prevents execution of recurrent calls and prohibits 
declaration of static variables in the function body. Parameters to such functions must be 
sent through the shared memory, while the function itself must return void type. 

Another keyword used for definition of declared functions is the __device__
qualifier. This one means that the function will be executed on underlying hardware and 
may be called from another method executed on underlying hardware. Just like the 
__global__ qualifier, this one also prevents recurrent calls and prohibits declaration of 
static variables in the function body.  

The keyword __host__ defines functions which may be executed on the host and 
may be called from within a different function executed on the host. 

3.3. Kinds and types of variables used in applications. 

The CUDA architecture, apart from function qualifiers, offers also internal types of 
variables. Such variable types extend the existing variable types used in standard-defined C 
language. Such new variable types provide better support in order to enable operation in 
multi-dimensional environments.  Software developers have at their disposal variable types 
with one, two, three or even four components. The digit at the end of the variable type 
identifies the number of dimensions. And so, int1 indicates that this variable has only one 
component X, while int2 indicates that such a variable type has two components i.e. X 
and Y. Int2 variable type is initialized as follows: 

int2 var(3,4); 

While reference to individual values is possible thanks to the following: 

int1 varX = var.x; 

int1 varY = var.y; 

Three and four dimensional variables are processed in a similar way. Such variable 
types are also available for various number types: both integer or floating point, signed and 
unsigned etc. Therefore, a software developer has the following data types at disposal: 
charN, ucharN, shortN, ushortN, intN, uintN, longN, ulongN, 
floatN, double2, where N = 1,2,3; 

There is also an additional, special built-in variable type – dim3. It is a variable type 
based on uint3, where variable constructor accepts only one or two parameters. The 
remaining parameters are assigned a default value of 1 [2]. 
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4. Example of CUDA architecture applications – SAXPY algorithm 

The SAXPY (Scalar Alpha X Plus Y) algorithm is a typical operation supported in the 
BLAS (Basic Linear Algebra Subprograms) package, used heavily in vector processors. 
SAXPY is a combination of a scalar multiplication and addition of vectors. Its 
mathematical formula is as follows: 

� �� �y x y

where: 
� – scalar value, 
x, y – vectors. 

Its typical serial implementation in C language is shown in fig. 4. 

void saxpy ( int count, int a, int* x, int* y ){ 
    for (int i = 0; i < count; i++){ 
        y[i] = a * x[i] + y[i]; 
    } 
} 

Fig. 4. Serial implementation of SAXPY algorithm  

Rys. 4. Strukturalna implementacja algorytmu SAXPY 

Such function receives the following input parameters: number of elements in the array, 
scalar value for multiplication and two vectors (X and Y). Next, in the loop, the function 
multiplies all the elements by the scalar value. The loop will be executed the number of 
times corresponding to the array dimension [3].  

Its implementation on the CUDA platform is shown in fig. 5: 

__global__ saxpy(int count, int a, int* x, int* y){
    int i = blockIdx.x*blockDim.x+threadIdx.x; 
    if ( i<count){ 
        y[i] = a * x[i] + y[i]; 
    } 
} 

int n_blocks = ( n + 255 ) / 256; 
saxpy <<< n_blocks, 256 >>> ( n, 3, x, y); 

Fig. 5. Implementation of SAXPY algorithm in CUDA system 

Rys. 5. Implementacja algorytmu SAXPY w systemie CUDA 

In this case, the function is called exactly once in each operating thread. For calculation 
purposes, thread blocks will be created with 256 threads per block. It means that this 
implementation will be 256 times faster than its serial equivalent. 
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5. Conclusions 

Software development for NVIDIA hardware prior to introduction of the CUDA API 
required software developers to have very good, low-level knowledge of graphic card 
architecture. Additionally, the developed software was closely related with the given 
architecture and its translation into a different platform was a relatively difficult task. The 
aforementioned limitations in the majority of cases prevented software developers from 
utilizing such powerful processing units for general-purpose calculations. The introduction 
of the CUDA API not only frees software developers from dependence on the particular 
hardware platform and its drivers, but also introduces a new software development model 
for such processing units, based on well-known C language. Such a solution does not 
require learning new concepts or new tools. Thanks to that, all software developers using 
classic central processing units can also start utilizing GPU for calculation purposes. 
CUDA as a software development platform manages the thread life cycle, memory passed 
between the graphic card and the host as well as many more different operation issues. 

On the other hand, CUDA is still not perfect. Even though there are an increasing 
number of solutions using CUDA as a base platform, there are still no solutions to multiple 
existing problems. Such problems include for example slow operations on double precision 
values or no support for recurring functions executed on the underlying hardware. Such 
restrictions mean that the ability to use this platform is very limited in some cases. 

There is however no doubt that the NVIDIA CUDA framework provides very universal, 
effective data processing environment. Knowing well its pros and cons, it is possible to 
create efficient applications, the purpose of which may substantially exceed the primary 
purpose of graphic cards i.e. 3D processing and computer games. 
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