
GRZEGORZ KOLARZ∗

UTILIZATION OF NVIDIA CUDA SYSTEM
IN THE PROCESS OF SCIENTIFIC COMPUTING

WYKORZYSTANIE SYSTEMU NVIDIA CUDA
W PROCESIE OBLICZE� NAUKOWYCH

A b s t r a c t

Rapid evolution of markets of computer games and computer animation means that graphic
cards are created with the focus on processing large quantities of data necessary for rendering
graphics in such applications. Thanks to the utilization of the NVIDIA CUDA software
package, it is possible to take advantage of the processing units available on graphic cards, i.e.
GPU (Graphic Processing Unit) in scientific calculations. This work presents also the
potential of utilization of the processing power of NVIDIA series graphic cards for scientific
purposes. It also contains a description of the software environment, which must be met, and
presents limitations, which are imposed onto target software under development.

Keywords: parallel processing, graphic cards, CUDA system

S t r e s z c z e n i e

Szybko rozwijaj�ce si� rynki gier oraz animacji komputerowych sprawiły, �e karty graficzne
s� tworzone z my�l� o przetwarzaniu du�ej ilo�ci danych na potrzeby renderowania grafiki
w tych zastosowaniach. Korzystaj�c z pakietu NVIDIA CUDA istnieje mo�liwo�� zaanga�o-
wania do procesu oblicze� naukowych jednostek obliczeniowych umieszczonych w kartach
graficznych, tzw. GPU (ang. Graphic Processing Unit). W niniejszym artykule zaprezento-
wano mo�liwo�ci wykorzystania mocy obliczeniowej procesorów kart graficznych z serii
NVIDIA do celów naukowych. Zawarto opis �rodowiska programistycznego, warunków, ja-
kie musz� by� spełnione oraz omówiono ograniczenia, które s� narzucane na tworzone opro-
gramowanie.

Słowa kluczowe: przetwarzanie rozproszone, karty graficzne, system CUDA

∗ MSc. Grzegorz Kolarz, Institute of Applied Informatics, Faculty of Mechanical Engineering,

Cracow University of Technology.

130

1. Introduction

Evolution of IT technologies and their application in many areas of science mean that
the demand for processing power keeps on increasing continuously. There are areas of
science where the available processing power is still insufficient (e.g. computer graphics).
Increase in the operating frequency of single-core microprocessors used to be one the
solution to such a demand for processing power. Currently, it is visible that the said trend is
subject to change. Such changes are forced by the problems with heat dissipation and other
physical level effects. Such limitations can be bypassed by increasing the number of
processors or processing cores in a single machine. Another solution is based on
development of computer networks operating under control of specific operating systems,
such as MPI or PVM. All these methods utilize the CPU processing power.

On the other hand rapid evolution of markets of computer games and computer
animation means that graphic cards are created with the focus on processing large quantities
of data necessary for rendering graphics in such applications. There is however also
a possibility of taking advantage of the processing units available on the graphic cards,
involving the so-called GPU (Graphic Processing Unit) and CUDA framework in general-
purpose calculations.

2. Construction of NVIDIA graphic cards

Fig. 1 presents the internal architecture of a G80 type NVIDIA graphic card.

Fig. 1. Simplified model of Architecture of NVIDIA graphic card G80 series

Rys. 1. Uproszczony model architektury karty graficznej NVIDIA serii G80

131

The graphic card core operates at the frequency of 575 MHz and has access to global
GDDR3 type memory with the total capacity of 768MB. This memory is used mainly for
Scatter and Gatther type operations. Each graphic card comprises 8 multiprocessors. Each
multiprocessor further comprises 16 stream microprocessors and has 16 kB of cache
memory available (parallel data cache). Memory block of each multiprocessor is freely
accessible in stream microprocessors and each processor has also access to the global
memory. There is however no way for the multiprocessors to communicate with each other
in any other way than via the global memory. Therefore, a complete graphic card has 128
stream processors operating at the frequency of 1350 MHz. Each such processor can
execute two MAD type instructions per cycle, i.e. perform operations in the range of
multiplication – addition, and a single MUL type operation - i.e. a multiplication. SP
operate on 32 floating point data with single precision, in the format compliant with IEEE
754 standard. Even though they are scalar units, they can be connected into vector units,
operating in SIMD (Single Instruction Multiple Data) mode [1].

Such a solution is however applied very seldom in graphic cards. Most frequently,
vector units are used in such architectures. Utilization of the scalar units is supported by the
following justification: three or four scalar units of a stream processor will handle
processing a vector or a matrix as well as a vector unit; while in the case of a scalar variable
3/4ths of the processing vector unit would be left wasted.

Parallel Data Cache (PDC) is a special type of multiprocessor memory. It is an
indispensable element of each multiprocessor It comprises sixteen memory banks of 1 kB
each. It has the total throughput of 32 bits per single processor cycle. This means that all
multiprocessors in G80 series graphic cards have the total throughput of approximately 675
Gbit/s. Therefore, PDC memory is almost as fast as registers and can be used as their
extension [2].

3. CUDA architecture software development model

Utilization of the processing power available in graphic cards was possible thanks to the
fact that the manufacturer of such devices provided a set of software libraries, enabling
execution of software code on graphic card processors. Such libraries are based on
a processing architecture referred to as CUDA (Compute Unified Device Architecture) [2].
CUDA is a processing environment relying on GPU for general purpose processing. For
development of software for NVIDIA CUDA platform, engineers use C language with
certain specific extensions.

3.1. Thread organization model

CUDA architecture introduces a new memory organization model. Until now, memory
model was based on a linear architecture. A software developer was responsible for
providing proper data management, which is depending on the target task at hand (e.g.
shifting pointers etc.). The model introduced in CUDA is much different from the
traditional memory organization model. It was presented in Fig. 2.

132

Fig. 2. Thread organization model applied in CUDA system

Rys. 2. Model organizacji w�tków zastosowany w systemie CUDA

CUDA allows executing C language kernels directly on underlying hardware. Such
functions are processed in parallel by N various threads. Such threads can be further
organized in thread blocks. CUDA provides a variable called threadIdx, which based on
x, y and z coordinates defining location of a thread in a block. Logical organization of
individual functions depends on the software developer. Threads inside of a single block
can cooperate with each other, exchange information through a shared memory block or
synchronize execution [2].

The CUDA architecture allows organizing thread blocks into grids. Just like in the case
of individual threads being organized into thread blocks, it is also possible to define multi-
dimensional thread block grids. Just like in case of thread blocks, the system provides also
a two-dimensional variable blockIdx, which allows reading the current location of the
given target block in the gird. This means that we can have a two-dimensional thread block
grid, where each thread block will represent a three-dimensional thread array. Such
a memory organization simplifies management of the calculation processing tasks.

The example shown in Fig. 3 presents practical application of arithmetic operations
based on threads.

The function AdvancedMethod was pre-pended with a key-word __global__,
which means that the function may be executed on hardware. The function
AdvancedMethod receives pointers to arrays located in the global device memory. This
function – taking advantage of composite fields in the blockIdx, blockDim and

133

hreadIdx variables – determines the appropriate portions of data for undertaking further
calculations [3].

__global__ void AdvancedMetchod(float** A, float** B)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 // do some important operations with A and B
}

int main()
{
 dim3 dimBlock(16, 16);
 dim3 dimGrid(4,4);
 AdvancedMethod <<< dimGrid, dimBlock >>>(A, B);
}

Fig. 3. Example of application of arithmetic operations based on threads in CUDA system

Rys. 3. Przykład u�ycia operacji arytmetycznych na w�tkach w systemie CUDA

NVIDIA CUDA operates in the SIMD (Single Instruction Multiple Data) processing
mode. Each of the threads in the scope of a single grid executes precisely the same
instructions and has the same constant values. Therefore, the method presented above is the
suggested approach in terms of data processing.

In order to call the function, it is necessary to set the execution configuration. This is
closely related with definition of parameters covering kernel function calls. In such a call, it
is necessary to define the grid size (in this case – 4x4) and the size of a thread block
attributed to each grid (in this case – 16x16). In this particular case, the function
AdvancedMethod will be executed 4096 times on 4096 various threads. The formal
declaration of the execution configuration is as follows [3]:

MethodName<<Dg, Db, Ns>> (parameterList),

where:
Dg – type of dim3, and defines the size of the grid, on which individual thread blocks

will be executed. Dg.x * Dg.y is the number of thread blocks, which will be
executed,

Db – type of dim3, and defines the size of a single thread block. The number of
threads in a block is calculated as Db.x * Db.y * Db.x.

Ns – optional argument. This variable is of size_t type and defines the number of
bytes in the shared memory block, which is additionally allocated. By default,
this variable is assigned value 0.

The CUDA architecture is characterized by low cost (in terms of time) related with
thread management. Creating a group of 32 threads with initialization of associated
registers and memory occupies just a single processor cycle. Context switching is also very

134

“cheap” in terms of time. This means that at every single time we can select for our
calculations a completely different set of threads and the whole operation of switching into
a different set of threads costs nothing (in terms of time).

3.2. Function types

As mentioned before, CUDA allows executing C language functions directly on
underlying hardware. To make that possible, it is necessary to utilize the keyword
__global__. When this keyword is used, execution of the given method is possible only
from the host level. This function prevents execution of recurrent calls and prohibits
declaration of static variables in the function body. Parameters to such functions must be
sent through the shared memory, while the function itself must return void type.

Another keyword used for definition of declared functions is the __device__
qualifier. This one means that the function will be executed on underlying hardware and
may be called from another method executed on underlying hardware. Just like the
__global__ qualifier, this one also prevents recurrent calls and prohibits declaration of
static variables in the function body.

The keyword __host__ defines functions which may be executed on the host and
may be called from within a different function executed on the host.

3.3. Kinds and types of variables used in applications.

The CUDA architecture, apart from function qualifiers, offers also internal types of
variables. Such variable types extend the existing variable types used in standard-defined C
language. Such new variable types provide better support in order to enable operation in
multi-dimensional environments. Software developers have at their disposal variable types
with one, two, three or even four components. The digit at the end of the variable type
identifies the number of dimensions. And so, int1 indicates that this variable has only one
component X, while int2 indicates that such a variable type has two components i.e. X
and Y. Int2 variable type is initialized as follows:

int2 var(3,4);

While reference to individual values is possible thanks to the following:

int1 varX = var.x;

int1 varY = var.y;

Three and four dimensional variables are processed in a similar way. Such variable
types are also available for various number types: both integer or floating point, signed and
unsigned etc. Therefore, a software developer has the following data types at disposal:
charN, ucharN, shortN, ushortN, intN, uintN, longN, ulongN,
floatN, double2, where N = 1,2,3;

There is also an additional, special built-in variable type – dim3. It is a variable type
based on uint3, where variable constructor accepts only one or two parameters. The
remaining parameters are assigned a default value of 1 [2].

135

4. Example of CUDA architecture applications – SAXPY algorithm

The SAXPY (Scalar Alpha X Plus Y) algorithm is a typical operation supported in the
BLAS (Basic Linear Algebra Subprograms) package, used heavily in vector processors.
SAXPY is a combination of a scalar multiplication and addition of vectors. Its
mathematical formula is as follows:

� �� �y x y

where:
� – scalar value,
x, y – vectors.

Its typical serial implementation in C language is shown in fig. 4.

void saxpy (int count, int a, int* x, int* y){
 for (int i = 0; i < count; i++){
 y[i] = a * x[i] + y[i];
 }
}

Fig. 4. Serial implementation of SAXPY algorithm

Rys. 4. Strukturalna implementacja algorytmu SAXPY

Such function receives the following input parameters: number of elements in the array,
scalar value for multiplication and two vectors (X and Y). Next, in the loop, the function
multiplies all the elements by the scalar value. The loop will be executed the number of
times corresponding to the array dimension [3].

Its implementation on the CUDA platform is shown in fig. 5:

__global__ saxpy(int count, int a, int* x, int* y){
 int i = blockIdx.x*blockDim.x+threadIdx.x;
 if (i<count){
 y[i] = a * x[i] + y[i];
 }
}

int n_blocks = (n + 255) / 256;
saxpy <<< n_blocks, 256 >>> (n, 3, x, y);

Fig. 5. Implementation of SAXPY algorithm in CUDA system

Rys. 5. Implementacja algorytmu SAXPY w systemie CUDA

In this case, the function is called exactly once in each operating thread. For calculation
purposes, thread blocks will be created with 256 threads per block. It means that this
implementation will be 256 times faster than its serial equivalent.

136

5. Conclusions

Software development for NVIDIA hardware prior to introduction of the CUDA API
required software developers to have very good, low-level knowledge of graphic card
architecture. Additionally, the developed software was closely related with the given
architecture and its translation into a different platform was a relatively difficult task. The
aforementioned limitations in the majority of cases prevented software developers from
utilizing such powerful processing units for general-purpose calculations. The introduction
of the CUDA API not only frees software developers from dependence on the particular
hardware platform and its drivers, but also introduces a new software development model
for such processing units, based on well-known C language. Such a solution does not
require learning new concepts or new tools. Thanks to that, all software developers using
classic central processing units can also start utilizing GPU for calculation purposes.
CUDA as a software development platform manages the thread life cycle, memory passed
between the graphic card and the host as well as many more different operation issues.

On the other hand, CUDA is still not perfect. Even though there are an increasing
number of solutions using CUDA as a base platform, there are still no solutions to multiple
existing problems. Such problems include for example slow operations on double precision
values or no support for recurring functions executed on the underlying hardware. Such
restrictions mean that the ability to use this platform is very limited in some cases.

There is however no doubt that the NVIDIA CUDA framework provides very universal,
effective data processing environment. Knowing well its pros and cons, it is possible to
create efficient applications, the purpose of which may substantially exceed the primary
purpose of graphic cards i.e. 3D processing and computer games.

R e f e r e n c e s

[1] NVIDIA CUDA Architecture. Documentation available on website:
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Over
view.pdf, version 1.1, 2009.

[2] NVIDIA CUDA Programming Guide Version 2.2. Documentation available on
website: http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/

NVIDIA_CUDA_Programming_Guide_2.2.pdf, version 2.2, 2009.
[3] NVIDIA CUDA Reference Manual Version 2.2. Documentation available on website:

http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/CUDA_Referen
ce_Manual_2.2.pdf, 2009.

