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A b s t r a c t  

In the paper the method of the generation of the global difference formulas based on the 
arbitrary irregular node distribution is presented. The presented method uses approach that 
comes from DQ technique. As the base functions, radial functions are assumed, which are 
especially efficient in the approximation of a function given in a large number of scattered 
nodes. In order to show the accuracy of the formulas some derivatives of an exampled 
function are computed. The influence of the number of nodes as well as the shape parameter 
of the radial function on the accuracy and condition number of the system is investigated.  
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S t r e s z c z e n i e  

W artykule przedstawiono metod� generacji globalnych wzorów ró�nicowych opartych na do-
wolnie nieregularnie rozmieszczonych w�złach. Przedstawiony sposób wykorzystuje podej-
�cia stosowane w metodzie kwadratur ró�niczkowych. Jako funkcje bazowe przyj�to funkcje 
radialne, które s� szczególnie skuteczne w aproksymacji funkcji zadanych w du�ej liczbie nie-
regularnie rozmieszczonych punktów. Dla zilustrowania dokładno�ci schematów ró�nico-
wych obliczono pochodne przykładowej funkcji oraz zbadano wpływ liczby w�złów i współ-
czynnika kształtu funkcji radialnych na dokładno�� przybli�enia pochodnej i wska�nik uwa-
runkowania układu równa	.  

Słowa kluczowe: metody bezsiatkowe, radialne funkcje bazowe, metoda kwadratur ró�niczkowych 
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1. Introduction 

The difference formulas are the basic tools that allow to calculate the approximation of 
derivatives as well as to solve numerically differential equations. The most often used 
difference formulas are obtained with the use of the uniform point distribution for the 
domain discretization. The appropriate weighs are determined using local Taylor series 
expansion. The method that applies such formulas to solve differential equations is called 
classical finite difference method and has been used in computational mathematics and 
mechanics for a long time.   

Such difference formulas are not suitable when the domain of the solution has irregular 
shape or when the derivatives of a function are approximated at scattered nodes. In these 
cases another approach is required.   

The attempt to overcome this inconvenience has been made in several works (for 
example [1]), that give the beginning of the so-called generalized finite difference method. 
This method uses arbitrary irregular grids to generate local difference formulas and 
appropriate weights are calculated with the aid of Taylor series expansion.  

The generalized finite difference method falls into a larger group of numerical 
techniques called meshless or meshfree methods [2]. The common feature of these methods 
is the use of the arbitrary irregular node distribution. It means that there are no geometrical 
dependences between the nodes unlike the discretization in finite element method or 
classical finite difference one. The mentioned feature allows to apply these methods to 
challenging computational problems.  

A lot of meshless methods use the radial basis functions (RBF) to create the shape 
functions or calculate the weight coefficients. It was found [3] that RBF (especially 
multiquadrics) are very effective in the interpolation of a large set of scattered data points. 

In the present work a method for generation of the global difference formulas with the 
aid of differential quadrature (DQ) technique [4] that uses multiquadrics RBF is shown. 
The method leads to obtain difference formulas that accurately approximate derivatives of 
the function given at irregularly distributed nodes by solving simple algebraic equations. 

2. DQ technique based on RBF 

In the conventional DQ method a function derivative at a point is approximated by 
a linear weighted sum of the function values at all nodes along the line parallel to 
coordinate axis. Therefore the method requires regularly distributed set of nodes. In the 
present paper the method is generalized in the way that a function derivative at a point 
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where: 
)(r

ikc  – are unknown weighting coefficients for the rth order derivative of the f 

function with respect to x
 
 variables, where  can take values from the set 

� �1, , n� � � . 

In order to determine the weighting coefficients, the function f(x) is written as a linear 
combination of some base functions ϕj(x). The appropriate interpolation formula takes the 
form  
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Introducing Equation (2) to (1) and changing the order of the summation on the right 
hand side of the formula one can obtain 
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Comparing the values standing next to appropriate coefficients aj one gets 
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Equation (4) can be expressed in a close form using matrix notation 
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The set of NN ×  linear equations given by (5) allows to determine weighting 
coefficients for the global difference formulas that approximate rth order derivative at each 
node xi. The existence of the unique solution of Equation (5) is conditioned by the 
nonsingularity of the matrix.  

Introducing multiquadrics RBF (6) as ϕj(x) 

2 2( ) ( )j j C� �  �x x x  (6) 

this nonsingularity depends on the shape parameter C. 
Different values of the shape parameter influence the accuracy of the difference 

formulas as well as the condition number of the matrix Φ
~

. 
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3. Numerical example 

In order to show the accuracy of the difference formulas described in chapter 2, some 
derivatives of the two-variable function 1 2 1 2( , ) sin( ) cos( )f x x x x= are computed.  

The values of the function are imposed at the nodes from the range of 1 2, [0, ]x x � � . 

The calculations are carried out applying uniform and random node distribution. The 
accuracy is determined by the percentage, relative error given by the expression: 
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where: 
( )r

if  – denotes the approximate value of the rth order derivative at the ith node 

with respect to appropriate variable, 
( )r

if  – is the exact value of this derivative.  

In any case the condition number of the coefficient matrix Φ of the system (5) is 
computed as follows  

1cond( ) 

� �
� �� � �   (8) 

The goal of the computation is to show the influence of the number of nodes N and the 
shape parameter C on the accuracy of the difference formulas and the conditioning 
of the problem.   

The results obtained using uniform node distribution are presented in Figs. 1–2. 

Fig. 1. The error of the approximation of the first
1'xf  and second 

21' xxf  order derivatives – uniform 

node distribution 

Rys. 1. Bł�d przybli�enia pierwszej 
1'xf  oraz drugiej 

21' xxf  pochodnej – w�zły rozmieszczone 

równomiernie 
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log (cond ( ))

N 

C = 1 

C = 1.5 

C = 2 

Fig. 2. The condition number of the Φ matrix – uniform node distribution 

Rys. 2. Wska�nik uwarunkowania macierzy Φ – w�zły rozmieszczone równomiernie 

The results presented in Fig. 1 show that increasing the coefficient C improves the 
accuracy. The difference formulas that use a larger number of nodes yield the better results 
without concern for losing the convergence as it takes place in conventional DQ method. In 
the latter the interpolation polynomial is used to calculate the weight coefficients and it is 
the main reason that the method may not converge. Unfortunately in the present approach 
the better results can be achieved at the expense of worse condition number of the matrix Φ
in the system (5). It is clearly shown in Fig. 2. In this case one should assume a large 
enough computational precision (a number of significant digits) or use the special type 
algorithms.  

Figs. 4–5 present the results obtained with the use of random node distribution. The 
example of this distribution contained N = 100 points is shown in Fig. 3. The conclusions 
follow from Figs. 4–5 are similar to those presented above, where the uniform point 
distribution is applied. It is worth to notice that in both cases the accuracy of the calculation 
of the first order derivative is better then the second one. 

Fig. 3. The example of the random node distribution used in computations (N = 100)

Rys. 3. Przykład losowego rozmieszczenia w�złów u�ywany w obliczeniach (N = 100) 
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Fig. 4. The error of the approximation of the first
1'xf  and second 

21' xxf  order derivatives – random 

node distribution 

Rys. 4. Bł�d przybli�enia pierwszej 
1'xf  oraz drugiej 

21' xxf  pochodnej – w�zły rozmieszczone 

losowo 

Fig. 5. The condition number of the Φ matrix – random node distribution 

Rys. 5. Wska�nik uwarunkowania macierzy Φ – w�zły rozmieszczone losowo 

4. Conclusions 

In the paper the way of the generation of the global difference formulas that use all 
nodes to approximate a derivative is presented. This idea comes from the DQ method and 
gives generally more accurate results than the local approach but has some drawbacks. For 
a large number of nodes the condition number is poor what makes numerical complications.  
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