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Searching of stable configurations of 
nanostructures using computational 

intelligence methods

poszukiwanie stabilnych konfiguracji 
klastrów atomowych za pomocą metod 

inteligencji obliczeniowej

A b s t r a c t

This paper deals with computational intelligence methods: evolutionary algorithms, artificial 
immune systems and the particle swarm optimization applied to the process of minimization of 
the potential energy of small nanostructures, such as atomic clusters. These algorithms simulate 
biological processes of the natural environment and organisms such as the theory of evolution 
and the biological immune systems. Mentioned approaches, generally, do not need any 
information about the gradient of the fitness function and give a strong probability of finding 
the global optimum. The main drawback of these methods is the long time of computations.
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S t r e s z c z e n i e

W artykule przedstawiono zastosowanie wybranych metod inteligencji obliczeniowej (algorytmy 
ewolucyjne, sztuczne systemy immunologiczne, optymalizacja rojem cząstek) do minimalizacji 
energii potencjalnej klastrów atomowych. Do opisu oddziaływań międzyatomowych użyte 
zostały potencjały Morsa i Murrella-Mottrama.

Słowa kluczowe: klastry atomowe, potencjał Morsa, potencjał Murrella-Mottrama, algorytmy 
ewolucyjne, sztuczne systemy immunologiczne, optymalizacja rojem cząstek
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1. Introduction

A small nanostructure, called the atomic cluster, is an isolated spatial atomic structure 
which contains up to several thousands of atoms. The ideal clusters have some unique 
mechanical, optical, magnetic and electronic properties. It is due to defectless, perfect 
structure of the atomic clusters.  The atomic bondings and potential energy of the cluster can 
be described using ab-inito computations, density functional theory [1] or empirical atomic 
potentials (see chapter 4). One of the most important objectives is to find (for given cluster 
size) the global minimum of the cluster potential energy, which corresponds to the stable, 
spatial arrangement of atoms [10, 17]. This is a non-trivial, NP-hard problem, because the 
number of local minima increases almost exponentially [20] with the cluster size. There are 
many different methods and approaches, applied to deal with this problem. Lloyd and Johnson 
[10] adopted the Random Searches and Monte Carlo Simulated Annealing to study atomic 
clusters. Doye and Wales applied Basin Hopping Monte Carlo Algorithm to the Morse (with 
different range parameters) and Lennard-Jones [19] clusters. The Genetic Algorithm was 
applied for the first time to the Morse potential by Roberts, Johnson et. al [17]. Prediction of 
the aluminium atoms distribution using Distributed Evolutionary Algorithm was described 
by Mrozek et. al [14]. An Adaptive Immune Algorithm was used for optimization of Lennard-
Jones clusters by Shao, Cheng and Chai [18]. Zhou performed Particle Swarm Optimization 
of Ni clusters [23].

2. Computational intelligence methods in modeling of atomic clusters

The heuristic artificial intelligence methods used in modeling of atomic clusters can be 
divided into two groups. The first one is based on simulation of the certain physical processes, 
e.g. annealing in metallurgy [10]. The second group of computational intelligence methods 
is inspired by biological mechanisms in natural environment and live organisms. The bio- 
-inspired optimization methods of atomic clusters have become very popular in last years 
[13, 17, 18, 23]. Most of them give good results for optimization of multimodal functions. 
This work deals with evolutionary algorithms, the  artificial immune system and the particle 
swarm optimization.

2.1. Evolutionary algorithm

The genetic and evolutionary algorithms (EA) [11] are based on mechanisms taken from 
biological evolution of species. The selection based on the individual fitness, mutations in 
chromosomes and individuals crossover are adopted. The genetic algorithms operate on binary 
coded chromosomes. The term evolutionary algorithm is more widely used for different 
modifications of genetic algorithms (also for algorithms operating on genes containing 
floating point numbers). The evolutionary algorithms operate on a population of individuals. 
The individuals contain one chromosome in most cases. The following description concerns 
the evolutionary algorithm used in numerical examples. The staring population is created 
randomly. Next the fitness function values are computed for each chromosome. The selection 
chooses chromosomes for a new parent subpopulation taking into account fitness function 
values. Evolutionary operators change chromosomes’ genes and create chromosomes for 



87

the offspring population. The uniform and Gaussian mutations and the simple crossover are 
randomly chosen to perform chromosome changes. The new chromosomes are evaluated. 
The algorithm works iteratively till the end optimization condition is fulfilled. The flowchart 
of evolutionary algorithm is presented in Fig. 1a.

	 a)	 b)	 c)

Fig. 1. The flowcharts of evolutionary algorithm (a), artificial immune system (b) and particle swarm 
optimization (c)

Rys. 1. Schemat blokowy algorytmu ewolucyjnego (a), sztucznego systemu immunologicznego  
(b) optymalizacji rojem cząstek (c)

2.2. Artificial Immune System

The artificial immune systems (AIS) are developed on the basis of mechanism discovered 
in biological immune systems. An immune system is a complex system which contains 
distributed groups of specialized cells and organs. The main purpose of the immune system 
is to recognize and destroy pathogens - funguses, viruses, bacteria and improper functioning 
cells.

The artificial immune systems (AIS) [2, 3, 21, 22] take only a few elements from the 
biological immune systems. The most frequently used are the mutation of the B cells, 
proliferation, memory cells, and recognition by using the B and T cells. The artificial immune 
systems have been used to optimization problems, classification and also computer viruses 
recognition. The cloning algorithm Clonalg presented by von Zuben and de Castro uses 
some mechanisms similar to biological immune systems to global optimization problems. 
The unknown global optimum is the searched pathogen. The memory cells contain project 
variables and proliferate during the optimization process. The B cells created from memory 
cells undergo mutation. The B cells are evaluated and better ones exchange memory cells. In 
[22] version of Clonalg the crowding mechanism is used - the diverse between memory cells 
is forced. A new memory cell is randomly created and substitutes the old one, if two memory 
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cells have similar project variables. The crowding mechanism allows finding not only the 
global optimum but also other local ones. The presented approach is based on the algorithm 
presented in [22]. The mutation operator is changed. The Gaussian mutation is used instead 
of non-uniform mutation in the presented approach.

The memory cells are created randomly. They proliferate and mutate creating B cells. The 
number of clones created by each memory cell is determined by the memory cells objective 
function value. The objective functions for B cells are evaluated. The selection process exchanges 
some memory cells for better B cells. The selection is performed on the basis of the geometrical 
distance between each memory cell and B cells (measured by using design variables). The 
crowding mechanism removes similar memory cells. The similarity is also determined as the 
geometrical distance between memory cells. The process is iteratively repeated until the stop 
condition is fulfilled. The stop condition can be expressed as the maximum number of iterations. 
The flowchart of artificial immune system is shown in Fig. 1b.

2.3. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm is also based on observation done in 
biology [4, 8, 9]. The algorithm has similar behavior as a birds flocking or fish schooling. 
The individual bird (in the PSO – particle) changes velocity and position taking into account 
neighbour birds. This social behavior shown by some animals can be very efficient in nature. 
PSO incorporated some biological elements in the numerical algorithm, such as velocity 
change of the particle on the base of neighbours. 

The PSO is an iterative algorithm (Fig. 1c). The positions of the particles in the search space 
and starting velocities are defined randomly on the beginning of the algorithm. The changes 
of particle velocities are due to the velocities of best ever found, best in neighbourhood and 
previous particle values. The algorithm updates position of all particles in every iteration on 
the basis of computed velocities.

3. Atomic interactions – potential energy of the atomic system

The empirical pair-wise and many-body potentials were applied to compute the potential 
energy and to model interactions between atoms. The two-body Morse potential and the many-
body Murrell-Mottram potentials were applied to study spatial configurations of the atomic 
clusters. The parameters of these potentials are fitted to provide the appropriate properties of 
a material (equilibrium bonding distance, dissociation energy, phonon frequencies etc.).

3.1. Morse potential

The Morse potential is a kind of simple pair-wise potential [7,12], which depends only on 
the distances, rij, between i-th and j-th atom.

	 ΦM
ij e

r r r rr D e eij ij( ) = −
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−( ) −( )2 0 02α α
	 (1)

where: De denotes dissociation energy, r0 is the equilibrium distance of two atoms (molecules) 
and α is the scaling parameter, which controls the range of interactions. Short range 
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interactions correspond to high values of α. The potential parameters, fitted to the properties 
of the various bulk cubic metals are included in [7].

3.2. Murrel-Mottram (MM) potential

This kind of potential takes into account 2–3 body interactions [15, 16]. For the triad of 
atoms i, j and k, the general formula can be expressed as
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ij ik jk
M M

ij
M M

ij ik jkr r r r r r r− − −( ) = ( ) + ( ), , , ,2 3 	 (2)

The two-body part of the Murrell-Mottram potential has the following form
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and the relative atomic distance can be written as
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The three-body term is expressed as

	 Φ3 1 2 3 3 1
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and the value shouldn’t be changed upon interchanging atoms i, j and k. This condition is 
satisfied when the three-body potential (5) is defined as a function of symmetry coordinates 
Qi (i = 1, 2, 3)
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For alkali metals (such as aluminium) the following cubic polynomial is applied
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and the damping function FD is given by

	 F a Q a QD 3 1 3 1, sech( ) = ( ) 	 (8)

The physical meaning of the De and r0 is the same as previous, the a2 and a3 are scaling 
parameters. The set of polynomial coefficients ci (i = 1,2...6) is fitted to specific material 
properties [6].
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3.3. The potential energy of the atomic cluster

The total potential energy of N-atom cluster (so-called Potential Energy Surface, PES), 
described using is defined as a sum over all atomic interactions. 

The total potential energy of the Morse cluster

	 V rM
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	 (9)

The total potential energy of Murrell-Mottram structure
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The global minimum on the PES (the lowest energy structure) corresponds to the most stable 
spatial configuration of atoms. The determining global minimum on the atomic PES is generally 
non trivial, NP-hard problem, because the number of isomers (the structures correspond to the 
local minima) rises almost exponentially with increasing nulcearity (N) [10, 18, 20].

4. Methodology

The application of the EA, AIS, PSO to determining global minima of PES is quite similar. 
Respectively, the chromosomes, memory cells and particles contain the real-valued Cartesian 
coordinates of each atom in the considered cluster. The total number of project variables is 
3N (for N atom cluster). The initial population is generated randomly and the atoms lie in the 
cube of side dimension C:
	 C r N= 0

1
3 	 (11)

The fitness function is expressed as the total potential energy of the considered atomic 
cluster. The formulas (9) and (10) are used directly to compute the fitness function for Morse 
and Murrell-Mottramm clusters, respectively.

For each N-atom cluster, the average binding energy (energy per atom) EB is estimated

	 E
V
NB

− tot 	 (12)

The regions of enhanced stability are determined by the second difference in the binding 
energy (13), which is related to the thermodynamic stability of the atomic cluster [10] and is 
generally correlated witch experimental mass spectral intensities.

	 D N E N E N E NB B B2 2 1 1( ) ( ) ( ) ( )= − + − − 	 (13)

The comparison of the bio-inspired algorithms with respect to number of fitness function 
evaluations (for given N-atom cluster and potential type) is performed. 

The parameters of the Morse potential for bulk aluminium are as follow: De = 0.2703eV, r0 
= 3.253Å, α = 1.1646 Å-1 [7]. The coefficients of the Murrell-Mottram potential are presented 
in Tab. 1.
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Ta b l e  1 
Parameters of the Murrell-Mottram potential [6]

Parameter Value
a2 7
a3 8

De [eV] 0.9073
r0 [Å] 2.7568

C0 0.2525

C1 0.4671

C2 4.4903
C3 1.1717
C4 1.6498
C5 –5.3579
C6 1.6327

5. Results

The global minima for Morse (N = 2...21) and Murrell-Mottram (N = 3...15) clusters were 
determined using EA and AIS. The lowest energy levels for each cluster are shown in the Tab. 2. 
The values for Murrell-Mottram structures with nuclearity N = 16...20 (marked with *) are taken 
form [10]. 

The lowest average binding energies and their second differences, as a function of N, are 
presented in the following Fig. 2, 3, 4 and 5, respectively for Morse and Murrell-Mottram 
clusters.

Fig. 2. Average binding energies of the Morse Clusters

Rys. 2. Średnia energia wiązania (potencjał Morsa)
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Ta b l e  2
Global minima for Morse and Murrell-Mottram clusters

N
EB [eV]

Morse Murrell-Mottram

2 0.13515 – 

3 0.2703 0.8317

4 0.40545 1.13783

5 0.49642 1.3247

6 0.59286 1.5039

7 0.65393 1.6046

8 0.70494 1.6923

9 0.75344 1.764

10 0.80528 1.8282

11 0.85051 1.8805

12 0.91256 1.9482

13 0.98672 2.0313

14 0.99274 2.0375

15 1.01499 2.0719

16 1.03278 2.1045*

17 1.06 2.1354*

18 1.0933 2.1618*

19 1.13553 2.189*

20 1.15096 2.20718*

21 1.1651 –
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Fig. 3. Second difference in the binding energy of the Morse Clusters

Rys. 3. Iloraz róznicowy energii wiązania (potencjał Morsa)

Fig. 4. Average binding energies of the Murrell-Mottram Clusters

Rys. 4. Średnia energia wiązania (potencja Murrela-Mottrama)
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Fig. 5. Second difference in the binding energy of the Murrell-Mottram clusters

Rys. 5. Iloraz róznicowy energii wiązania (potencja Murrela-Mottrama)

The peaks in EB(N) and D2(N) at N = 4,6,13 and 19 correspond to spatial structures with 
enhanced stability. The determined stable regions are in good agreement with jellium model 
calculations presented in [5]. These clusters have identical shape for both: the Morse and the 
Murrell-Mottram potentials as shown in the Fig. 6.

Small Morse and Murrell-Mottram aluminium clusters (N = 2...20), in almost all cases, 
have the same structure. The exceptions are the clusters with the following number of atoms: 
9, 16, 18, 20. The Murrell-Mottram global minima, in these cases, correspond to the second 
most stable isomers (local minima) of the Morse potential. It’s due to fact, that the PES of the 
pairwise interaction model (such as More or Lennard-Jones) has significantly more minima 

Fig. 6. The most stable Morse  
and Murrell-Mottram clusters

Rys. 6. Układy atomów o podwyższonej 
stabilności (dla potencjałów Morsa  

i Mirrella-Mottrama)
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than the PES based on the many-body Murrel-Mottram potential. These results are comparable 
with ones presented in [10, 18]. The described phenomena, for N = 9 is presented in the Fig. 
7.

Fig. 7a) global minimum of Morse cluster, b) global minimum of Murell-Mottram corresponds 
 to the second stable isomer of the Morse cluster (EB = 0.748161eV)

Rys. 7a) Klaster dziewięcioatomowy: a) minimum globalne (dla pot. Murrella-Mottrama) posiadające 
identyczny kształt jak drugi izomer klastra z potencjałem Morsa

The total number of fitness function evaluations, for each type of the algorithm is presented 
in the Tab. 3.

Ta b l e  3 
The total number of fitness function evaluations

N
EA AIS PSO

Morse MM Morse MM Morse MM

2 3750 X 200 X 600 X
3 6250 12 000 300 2368 1350 1350
4 7500 42 500 4600 5632 2400 3000
5 21 250 100 000 6800 7744 5250 6750
6 12 500 67 500 121 200 147 825 7200 5250
7 20 000 207 500 125 550 145 000 16 800 10 500
8 58 750 205 000 486 000 232 500 26 400 28 800
9 41 250 235 000 348 096 337 500 18 900 40 500
10 85 000 375 000 918 900 1 125 000 49 500 48 000
11 120 000 400 000 595 683 1 805 625 84 150 140 250
12 125 000 460 000 369 360 1 856 250 124 200 237 600
13 102 500 425 000 336 141 1 423 125 95 550 399 750
14 137 500 575 000 775 575 2 418 750 153 300 X
15 167 500 660 000 1 917 500 2 750 625 X X
16 187 500 X 4 668 750 X X X
17 115 000 X 2 792 475 X X X
18 295 000 X 3 027 375 X X X
19 222 500 X 2 673 000 X X X
20 235 000 X 2 812 725 X X X
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15 167 500 660 000 1 917 500 2 750 625 X X
16 187 500 X 4 668 750 X X X
17 115 000 X 2 792 475 X X X
18 295 000 X 3 027 375 X X X
19 222 500 X 2 673 000 X X X
20 235 000 X 2 812 725 X X X

The behavior and efficiency of the EA and the AIS in atomic cluster modeling are similar. 
These two algorithms found all the global minima in considered range of N. The energy mi-
nimization using PSO is generally faster then two others, however the PSO have tremendous 
tendency to stuck at local minima.

6. Conclusions

The minimization of the potential energy of the atomic clusters using bio-inspired 
algorithms was performed. All the determined the lowest energy levels and shapes of the 
atomic structures are in good agreement with ones presented in bibliography (see chapter 2). 
The Evolutionary Algorithm and Artificial Immune System have no problems with premature 
convergence and find all the global minima. The main drawback of these algorithms is the 
long time of the computations. The PSO is generally faster than EA and AIS, but problems 
with sticking at local minima occurred. It’s probably caused by troubles with setting proper 
values of the PSO parameters. The reason for choosing Morse and Murrell-Mottram potential 
was available data of energy levels and configurations of atomic structures

The research is financed from the Polish science budget resources in the years 2007–2010 as the rese-
arch project.
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