NAUK PODSTAWOWE		1-NP/2009
CZASOPISMO TECHNICZNE	WYDAWNICTWO	$\text { ZESZYT } 8$
TECHNICAL TRANSACTONS	POLITECHNIKI KRAKOWSKIEJ	$\begin{aligned} & \text { ROK } 106 \\ & \text { ISSUF } 8 \end{aligned}$
FUNDAMENTAL SCIENCES		YEAR 106

EXTENTIONS OF NOT DENSELY DEFINED EVOLUTION PROBLEMS TO DENSELY DEFINED ONES

ROZSZERZANIE NIEGĘSTO OKREŚLONYCH PROBLEMÓW EWOLUCYJNYCH DO GĘSTO OKREŚLONYCH

Abstract

Evolution equations appear in many practical problems specially the ones connected with mathematical physics. The operator may be differential as well as integral. Thus it may either bounded or unbounded. At the same time densely or not densely defined. Domains may change together with t or be independent of t. The choice of the space in which $A(t)$ is considered can cause domains to be dense or not. We present here how some problems with not densely defined operators may comes down to densely defined one.

Keywords: operator, evolution problem, extrapolation
Streszczenie
Równania ewolucyjne pojawiają się w wielu praktycznych problemach, szczególnie w zagadnieniach fizyki matematycznej. Występujacy w nich operator jest operatorem różniczkowym lub całkowym. Może więc być ograniczony lub nieograniczony. Może być gęsto albo niegęsto określony, o dziedzinie zależnej lub niezależnej od t. Wybór przestrzeni, w której rozważamy $A(t)$ ma wpływ na gęstość dziedziny. W artykule pokazano jak pewne problemy z niegęsto określonymi operatorami można sprowadzić do problemów gęsto określonych.
Słowa kluczowe: operator, problem ewolucyjny, ekstrapolacja

[^0]
1. Introduction

Let $(X,\|\cdot\|)$ be a Banach space and let A be a linear operator from X to X.
By $\mathscr{D}(A), \mathcal{C}(X), \rho(A)$ are denoted the domain of A, space of all closed linear operators from X to X, resolvent set of A, respectively. If $\lambda \in \rho(A)$ then $(A-\lambda)$ is invertible and the inverse operator is denoted by $R(\lambda, A)$.

Let Ω be a bounded domain in \mathbb{R}^{n} with boundary $\partial \Omega$. By $\mathscr{C}^{k}(\Omega), \mathscr{C}^{k}(\bar{\Omega}), \mathscr{C}_{0}^{k}(\bar{\Omega})$ are denoted the space of functions of \mathscr{C}^{k} class in Ω, the space of function $u \in \mathscr{C}^{k}(\Omega)$ which partial derivatives of order $\leq k$ can be continuously extended to $(\bar{\Omega})$, the space of functions $u \in \mathscr{C}^{k}(\Omega)$ with compact supports, respectively.

Our considerations are connected with evolution problems of the first and second order that is evolution problems of the form

$$
\left\{\begin{array} { l }
{ \frac { d u } { d t } = A (t) u + f (t , u) } \tag{1}\\
{ u (0) = u _ { 0 } , u _ { 0 } \in X }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\frac{d^{2} u}{d t^{2}}=A(t) u+f(t, u), \\
u(0)=u_{0}, u^{\prime}(0)=u_{1}, \quad u_{0}, u_{1} \in X,
\end{array}\right.\right.
$$

where $(A(t))_{t \in[0, T]}$ is a family of closed operators from X to X and $f:[0, T] \times X \rightarrow X$ is a given function.

By solution of (1) we mean a classical solution that is a function $u:[0, T] \rightarrow X$ such that
(i) $u \in \mathscr{C}^{0}([0, T])$ and it is differentiable in $(0, T]$ (or $u \in \mathscr{C}^{1}([0, T])$ and it is two times differentiable in $(0, T])$,
(ii) $u(t) \in \mathscr{D}(A(t))$ for $t \in[0, T]$,
(iii) $u(0)=u_{0} \quad\left(\right.$ or $\left.u(0)=u_{0}, u^{\prime}(0)=u_{1}\right), \quad u_{0}, u_{1} \in X$,
(iv) $\frac{d u}{d t}=A(t) u(t)+f(t, u(t)) \quad\left(\right.$ or $\left.\frac{d^{2} u}{d t^{2}}=A(t) u(t)+f(t, u(t))\right) \quad$ for $\quad t \in(0, T]$.

For example, an evolution problem of the first order has been considered in [5]. The problems of order two with a densely or not densely defined family $(A(t))_{t \in[0, T]}$ of operators and dependent on t its domains has been considered in [7-9].

2. Evolution equation with A independent of t

In this part we assume that $(A(t))_{t \in[0, T]}$ is a family of operators independent of t that is $A(t)=A$ for all $t \in[0, T]$. We start with the case of densely defined operator A and next we show how to reduce not densely defined case to densely defined one.
Definition 1. An operator $A \in \mathcal{C}(X)$ is called a Hille-Yosida operator if there exist $M \geq 1$ and $\omega \in \mathbb{R}$ such that $(\omega,+\infty) \subset \rho(A)$ and

$$
\left\|R(\lambda, A)^{n}\right\| \leq \frac{M}{(\lambda-\beta)^{n}} \quad \text { for } \quad \lambda>\omega, n=1,2, \ldots
$$

1. Densely defined operators. By the Hille-Yosida theorem (see e.g. [3]), A generate a \mathcal{C}_{0} - semigroup $U(t), t \geq 0$ if and only if it is a densely defined Hille-Yosida operator. This fact can be used to prove theorems on existence, uniqueness of solutions of the problem (1) with densely defined and independent of t operator A.

Theorem 2 (see [6]). If X is a reflexive Banach space, A a densely defined Hille-Yosida operator, $u_{0} \in \mathscr{D}(A)$ and f satisfies the Lipshitz condition in $[0, T] \times u([0, T])$ then problem (1) (with $A(t)=A)$ has exactly one solution u satisfying the integral equation

$$
\begin{equation*}
u(t)=U(t) u_{0}+\int_{0}^{t} U(t-s) f(s, u(s)) d s \tag{2}
\end{equation*}
$$

where $U(t), t \geq 0$ is a semigroup generated by A.
2. Not densely defined operators. Suppose now that $A \in \mathcal{C}(X)$ is not densely defined. Then $X_{0}:=\overline{\mathscr{D}(A)}$ is a proper subspace of the Banach space X.

Let A_{0} be the part of A in X_{0} that is

$$
\begin{aligned}
\mathscr{D}\left(A_{0}\right) & =\left\{u \in \mathscr{D}(A): A u \in X_{0}\right\}, \\
A_{0}(u) & =A u \quad \text { for } \quad u \in D\left(A_{0}\right) .
\end{aligned}
$$

Then any solution of the problem

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=A_{0} u+f(t, u), \quad t \in[0, T] \tag{3}\\
u(0)=u_{0}, \quad u_{0} \in X_{0},
\end{array}\right.
$$

is a solution of the problem (1) (with $A(t)=A_{0}$). When A_{0} is densely defined, the problems with a not densely defined operator A can be reduced to a problem with an operator which is densely defined.

Proposition 3. Let A be a closed linear operator from X to X and A_{0} the part of A in the subspace $X_{0}:=\overline{\mathscr{D}(A)}$. Then
(i) A_{0} is closed,
(ii) If A is a Hille-Yosida operator then A_{0} is densely defined in X_{0} and also a Hille-Yosida operator.
Proof. Let Γ_{A} be the graph of A. Then the set

$$
\Gamma_{A_{0}}=\left(X_{0} \times X_{0}\right) \cap \Gamma_{A}
$$

is the graph of A_{0} and it is closed subset of $X_{0} \times X_{0}$, because Γ_{A} is closed, and so A_{0} is a closed operator.

For the proof of (ii) see e.g. to the proof of Theorem 3.1.10 (point (i)) in [3].
Remark 1. Assuming that A_{0} is the part in X_{0} of a Hille-Yosida operator A one can extend, for example, Theorem 2 to the case of not densely defined operators. Of course to obtain a theorem on existence or uniqueness for solutions one must put stronger assumptions then for densely defined one.

Let Ω be a bounded domain in \mathbb{R}_{-}^{n} with smooth enough boundary $\partial \Omega$. The space $X=\mathscr{C}^{0}(\bar{\Omega})$ of continuous functions in $\bar{\Omega}$ with the norm ${ }^{1}$

$$
\begin{equation*}
\|u\|=\sup \{|u(x)|: x \in \Omega\} \quad \text { for } \quad u \in X . \tag{4}
\end{equation*}
$$

is a Banach space. The set

$$
X_{0}:=\{u \in X: u(x)=0 \quad \text { for } \quad x \in \partial \Omega\}
$$

is a closed subspace of X.
Let $X_{b}=\mathscr{C}^{0}(\partial \Omega)$ be the space of continuous functions on the boundary $\partial \Omega$ of Ω. The space X_{b}, with "sup-norm" as defined as in (4) is also a Banach space and the mapping

$$
\begin{equation*}
b: X \ni v \rightarrow v_{b}:=\left.v\right|_{\partial \Omega} \in X_{b} \tag{5}
\end{equation*}
$$

is a continuous linear mapping and onto.
For each n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, let

$$
D^{\alpha}:=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \cdots \partial x_{n}^{\alpha_{n}}}
$$

be the partial derivative of order $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$ and let

$$
\begin{equation*}
P(D)=\sum_{|\alpha| \leq 2} a_{\alpha}(x) D^{\alpha} \tag{6}
\end{equation*}
$$

be a partial differential operator of order 2 with coefficients $a_{\alpha}: \bar{\Omega} \rightarrow \mathbb{R}$ of class \mathscr{C}^{∞}.
Consider the operator

$$
\begin{equation*}
A: X \supset \mathscr{D}(A) \ni и \rightarrow P(D) u \in X \tag{7}
\end{equation*}
$$

with domain $\mathscr{D}(A)=X_{0} \cap \mathscr{C}^{2}(\bar{\Omega})$ and note that A is not densely defined in X.
Assumptions 4. We shall use the following assumptions:
Ass 1. For any $f \in X_{b}$ there exists exactly one function $u=\mathscr{B}(f) \in \mathscr{C}^{2}(\bar{\Omega})$ such that $P(D) u=0$ and $u_{b}=f$. Furthermore, we assume that $\mathscr{B}: X_{b} \rightarrow X$ is continuous.
Ass 2. $0 \in \rho(A)$.
One of the examples of operators $P(D)$ satisfying Assumptions 4 is the Laplace operator Δ.

Lemma 5. If A_{0} is the part of A in $X_{0}=\overline{\mathscr{D}(A)}$ and Assumptions 4 are satisfied then A_{0} is densely defined in X_{0} and $0 \in \rho\left(A_{0}\right)$.

Proof. Since $A\left(\mathscr{C}_{0}^{\infty}(\Omega)\right)=\mathscr{C}_{0}^{\infty}(\Omega) \subset X_{0}$ and $\mathscr{C}_{0}^{\infty}(\Omega)$ is dense in X_{0}, A_{0} is densely defined in X_{0}. To prove that $0 \in \rho\left(A_{0}\right)$ it is enough to observe that $R\left(0, A_{0}\right)=R(0, A) \mid X_{0} . \square$

[^1]Example 1. Let $\Omega=(0,1) \subset \mathbb{R}$. We give an example in the space $X=\mathscr{C}^{0}(\bar{\Omega})$. Consider the operator

$$
\begin{equation*}
A: X \supset \mathscr{D}(A) \ni u \rightarrow u^{\prime \prime} \in X \tag{8}
\end{equation*}
$$

with domain

$$
\begin{equation*}
\mathscr{D}(A)=X \cap\left\{u \in \mathscr{C}^{2}(\bar{\Omega}): u(0)=u(1)=0\right\} . \tag{9}
\end{equation*}
$$

Operator A is not densely defined in X and $B: X \rightarrow \mathscr{D}(A)$ given by

$$
\begin{equation*}
B v(x)=\int_{0}^{x}\left(\int_{0}^{\tau} v(t) d t\right) d \tau-x \int_{0}^{1}\left(\int_{0}^{\tau} v(t) d t\right) d \tau \tag{10}
\end{equation*}
$$

is the inverse of A. Since B is bounded, A is closed.
Let A_{0} be the part of A in $X_{0}=\overline{\mathscr{D}(A)}$. Since $A\left(\mathscr{C}_{0}^{\infty}(\Omega)\right)=\mathscr{C}_{0}^{\infty}(\Omega) \subset X_{0}$ and $\mathscr{C}_{0}^{\infty}(\Omega)$ is dense in X_{0}, A_{0} is densely defined in X_{0}. The operator $B_{0}:=\left.B\right|_{X_{0}}$ is the inverse of A_{0}. Thus $0 \in \rho(A)$.

Remark 2. If we consider the operator A (defined by (8)) as an operator with domain $\mathscr{D}(A)=H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \subset L^{2}(\Omega)$, we get an operator which is closed and densely defined in $L^{2}(\Omega)$.
3. Extensions to densely defined operator. One of the methods is presented in [3]. It consists in construction of extrapolation space X^{-1} associated with an operator A which is assumed to be closed with non-empty resolvent set $\rho(A)$. We present here only a brief description of construction (for details see [3]).

Since A is closed, the graph G_{A} of A is a closed linear subspace of $X \times X$. Then the quotient space

$$
X^{-1}:=(X \times X) / G_{A}
$$

with the quotient norm is a Banach space.
The class of element $(u, v) \bmod G_{A}$ will be denoted by $[u, v]$. The mapping

$$
i: X \text { э } u \rightarrow i u:=[0, u] \in X^{-1}
$$

is a bounded one to one mapping of X onto the linear subspace $i X$ of X^{-1} which allow us to identify X with $i X$ which is a dense subspace of X^{-1} if and only if A is densely defined.

We define a linear operator A^{-1} by

$$
\begin{equation*}
A^{-1}: \mathscr{D}\left(A^{-1}\right):=i X \text { э }[0, u] \rightarrow[-u, 0] \in X^{-1} . \tag{11}
\end{equation*}
$$

Since, for $u \in \mathscr{D}(A), i A u=[0, A u]=[-u, 0]$, we can see A^{-1} as extension of A to the whole space X. The subspace $\mathscr{D}\left(A^{-1}\right)$ is a dense subspace of $X_{-1}:=\overline{i X}$, where the closure of $i X$ is taken in X^{-1}. Thus A^{-1} is densely defined if and only if $\mathscr{D}(A)$ is a dense subspace of X.

Let A_{-1} be the part of A^{-1} in X_{-1} and let A_{0} be the part of A in $X_{0}=\overline{\mathscr{D}(A)}$.

Proposition 6. (see [3], Proposition 3.1.9). Let A be a closed operator with $\lambda \in \rho(A)$. Then
(i) $\mathscr{D}\left(A_{-1}\right)=X_{0}$ and $A_{-1}-\lambda: X_{0} \rightarrow X_{-1}$ is an isomorphism,
(ii) A is the part of A_{-1} in X. If $\lambda \in \rho(A)$, then $\lambda \in \rho\left(A_{-1}\right)$ and $R(\lambda, A)=\left.R\left(\lambda, A_{-1}\right)\right|_{X}$.

For each $\lambda \in \rho(A)$ the mapping

$$
\begin{equation*}
|\cdot|_{\lambda}: X^{-1} \ni[u, v] \rightarrow\|A R(\lambda, A) u-R(\lambda, A) v\| \tag{12}
\end{equation*}
$$

defines an equivalent norm on X^{-1}. Moreover $\lambda \in \rho\left(A^{-1}\right)$ and the mapping $A^{-1}-\lambda$ is an isomorphism of X onto X^{-1} (see [3], Proposition 3.1.1).

Example 2. Suppose that A defined by (8) satisfies Assumptions 4. Let, for $v \in X, \varphi_{1}(v), \varphi_{2}(v)$ and φ be defined by

$$
\begin{gathered}
\varphi_{2}(v)=\mathscr{B}\left(v_{b}\right), \\
\varphi_{1}(v)=v-\varphi_{2}(v), \\
\varphi: X \ni v \rightarrow \varphi_{1}(v) \oplus \varphi_{2}(v) \in \tilde{X}:=X_{0} \oplus \mathscr{B}\left(X_{b}\right),
\end{gathered}
$$

where \oplus is a direct sum of Banach spaces.
The mapping φ is an isomorphism of Banach spaces X and \tilde{X}. Indeed, by Assumptions 4 (Ass 1) φ_{2} is continuous. Thus φ is continuous, because also φ_{1} as a sum of identity and continuous map is continuous too. Continuity of the inverse of φ is obvious. Thus we may identify $v \in X$ with $\varphi(v) \in \tilde{X}$ and $u \in X_{0}$ with

$$
\varphi(u)=u \oplus 0 \in \tilde{X}_{0}:=\varphi\left(X_{0}\right)=X_{0} \oplus\{0\} .
$$

Since A is a closed operator with non-empty resolvent set $\rho(A)$ we may construct the extrapolation space X^{-1} associated with A. According to (11), for $v \in X$ we have

$$
\begin{aligned}
{\left[0, A^{-1} v\right] } & =\left[0, A^{-1}\left(\varphi_{1}(v)+\left(\varphi_{2}(v)\right)\right]=\left[0, A\left(\varphi_{1}(v)\right)\right]+\left[0, A^{-1}\left(\varphi_{2}(v)\right)\right]=\right. \\
& =\left[-\varphi_{1}(v), 0\right]+\left[-\varphi_{2}(v), 0\right]=\left[-\left(\varphi_{1}(v)+\varphi_{2}(v)\right), 0\right] \in\left[X_{0} \oplus \mathscr{B}\left(X_{b}\right), 0\right] .
\end{aligned}
$$

Therefore $\mathscr{D}\left(A^{-1}\right)$ consists of two parts. One is $X_{0}=\overline{\mathscr{D}(A)}$ and second one consists of classes $[0, v]$ corresponding to $v \in \mathscr{B}\left(X_{b}\right)$. Since A is not densely defined in X and $\left[X_{0} \oplus \mathscr{B}\left(X_{b}\right), 0\right]=X^{-1}$, the range of A^{-1} is equal to X^{-1} and A^{-1} is not densely defined in X^{-1}. Although we need to have a densely defined extension of A.

Let A_{-1} be the part of A^{-1} in X_{-1}. Since, by Lemma 5, the part A_{0} of A in X_{0} is densely defined in X_{0} and $0 \in \rho\left(A_{0}\right), A_{-1}$ is densely defined in X_{-1} and (by Proposition 6) $\mathscr{D}\left(A_{-1}\right)=X_{0}$. To prove it one can use the same method as in the proof of part (ii) of Theorem 3.1.10 in [3].

Note that $[u, 0]=[0, v]$ if and only if $u \in \mathscr{D}(A)$ and $v=A u$ and the norm on $[X, 0]$ is equivalent to the norm given by (12). Thus $\left[X_{0}, 0\right]$ is the closure of $[\mathscr{D}(A), 0]$ and $\mathscr{B}\left(X_{b}\right) \cap \mathscr{D}\left(A_{-1}\right)=\{0\}$, because $\mathscr{B}\left(X_{b}\right) \cap X_{0}=\{0\}$.

3. The case of operators dependent on t

1. Operators with isomorphic domains. One of possible ways of reduction of some problems concerning operators

$$
(A(t))_{t \in[0, T]} \text { with domains } \mathscr{D}_{t}=\mathscr{D}(A(t)) \subset X
$$

depending on t is to find a sufficiently regular (with respect to $t \in[0, T]$) family $\left(\Psi_{t}\right)_{t \in[0, T]}$ of automorphisms of the Banach space X such that $\Psi_{t}\left(\mathscr{D}_{t}\right)=\mathscr{D}$, where \mathscr{D} is a fixed linear subspace of X, for example $\mathscr{D}=\mathscr{D}_{0}$.

Suppose now that the described above family $\left(\Psi_{t}\right)_{t \in[0, T]}$ has been constructed and that $u(t)$ is a solution of the problem 1.

Since $u(t) \in \mathscr{D}_{t}$, there exists $v(t) \in \mathscr{D}$ such that $\Psi_{t}(v(t))=u(t)$. We have

$$
\frac{d u}{d t}=\frac{d \Psi_{t}}{d t} v(t)+\Psi_{t} \frac{d v}{d t}
$$

and after a standard calculation we obtain

$$
\frac{d v}{d t}=\underbrace{\left(\Phi_{t} A(t) \psi_{t}-\frac{d \psi_{t}}{d t}\right)}_{B(t)} v(t)+\underbrace{\Phi_{t} f\left(t, \psi_{t}(v(t))\right.}_{F(t, v,(t))},
$$

where Φ_{t} is the inverse to ψ_{t} operator. Thus v is a classical solution of the evolution equation

$$
\frac{d v}{d t}=B(t) v+F(t, v(t))
$$

with the family $\left(B_{t}=B(t)\right)_{t \in \mathcal{T}}$ of operators having domains independent of t.
In general, the domain of a differential operator is determined by some boundary conditions. Thus it would be useful to find an effective construction of a family Ψ_{t} using the boundary conditions only. Such a construction for a family of elliptic operators of order two with the Robin boundary condition with a parameter (i.e. $\partial u / \partial n+a(x, t) u=0$ on $\partial \Omega$) is presented in [10]. We present it here for convenience of the reader.

Example 3. Let Ω be a bounded domain in \mathbb{R}^{n} with boundary $S=\partial \Omega$ of class $\mathcal{C}^{k+1}, \mathcal{T}=[0, T]$ and let $a: \bar{\Omega} \times \mathcal{T} \rightarrow \mathbb{R}$ be a function of class \mathcal{C}^{k} nonvanishing on S. The sets

$$
\begin{gathered}
\mathscr{D}_{t}=\left\{u \in \mathcal{L}^{2}(\Omega): u \in H^{2}(\Omega) \quad \text { and } \quad \frac{\partial u}{\partial n}+a(x, t) u=0 \quad \text { on } \quad \partial \Omega\right\}, \\
\mathscr{D}=\left\{u \in \mathcal{L}^{2}(\Omega): u \in H^{2}(\Omega) \quad \text { and } \quad \frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega\right\}
\end{gathered}
$$

are dense linear subspaces of $\mathcal{L}^{2}(\Omega)$, where n is the interior unit normal vector field on S.

Let $\eta: \bar{\Omega} \times \mathcal{T} \rightarrow \mathbb{R}$ be a function of class \mathcal{C}^{k} such that

$$
\begin{gathered}
\frac{1}{2} \leq \eta_{t}(x)=\eta(x, t) \quad \text { for } \quad x \in \bar{\Omega}, t \in \mathcal{T}, \\
\eta_{t}(x)=1 \quad \text { and } \quad \frac{\partial \eta_{t}(x)}{\partial n}=a(x, t) \quad \text { for } \quad x \in \partial \Omega, t \in \mathcal{T} .
\end{gathered}
$$

The function η can be constructed in the following way. We consider S as the retract of class \mathcal{C}^{k} (for $\varepsilon>0$ small enough) of the open ε-tube

$$
\operatorname{TUB}^{\varepsilon}(S)=\{x+\tau n(x): x \in S,|\tau|<\varepsilon\} .
$$

Then we take a function h_{ε} of class \mathcal{C}^{∞} in \mathbb{R}^{n} satisfying the following conditions:

$$
\begin{array}{lll}
h_{\varepsilon}(x)=0 & \text { for } & x \in \mathbb{R}^{n} \backslash \mathrm{TUB}^{\varepsilon}(S), \\
h_{\varepsilon}(x)=1 & \text { for } & x \in \operatorname{TUB}^{\varepsilon / 2}(S), \\
h_{\varepsilon}(x) \in G & \text { for } & x \in \mathbb{R}^{n} .
\end{array}
$$

The function

$$
f_{\varepsilon}: \operatorname{TUB}^{\varepsilon}(S) \ni x+\tau n(x) \rightarrow a(t, x) \tau \in \mathbb{R}
$$

is of class \mathcal{C}^{k} and, for ε small enough, the function $\eta=h_{\varepsilon} f_{\varepsilon}+1$ is one we have been looking for.

Let $\Phi_{t}: \mathcal{L}^{2}(\Omega) \rightarrow \mathcal{L}^{2}(\Omega)$ be given by

$$
\Phi_{t}(u)=\eta_{t} \cdot u \quad \text { for } \quad u \in \mathcal{L}^{2}(\Omega), t \in[0, T]
$$

and let $\Psi_{t}=\Phi_{t}^{-1}$. One can verify that
(i) $\Phi_{t} \in \operatorname{Aut}\left(\mathcal{L}^{2}(\Omega)\right)$,
(ii) $\Phi_{t}\left(\mathscr{D}_{t}\right)=\mathscr{D} \quad$ and $\quad \Psi_{t}(\mathscr{D})=\mathscr{D}_{t}$,
(iii) the mapping $\mathcal{T} \ni t \rightarrow \Phi_{t} \in \mathscr{B}\left(\mathcal{L}^{2}(\Omega)\right)$ is of class \mathcal{C}^{k}. Thus the mapping $\mathcal{T} \ni t \rightarrow \Psi_{t} \in \mathscr{B}\left(\mathcal{L}^{2}(\Omega)\right)$ is also of class \mathcal{C}^{k}.

References

[1] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.
[2] K a t o T., Perturbation Theory for Linear Operators, Springer, 1980.
[3] V a n Ne erven J., The Adjoint of a Semigroup of Linear Operators, Springer, 1992.
[4] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.
[5] R a d o ń M., An abstract semilinear first order differential equations in the hyperbolic case, Univ. Iag. Acta Math., Fasc. XLII, 2004, 83-94.
[6] Winiarska T., Differential equations with parameter, Monograph 68, Cracow University of Technology, 1998, 1-89.
[7] Winiarska T., Extrapolation Banach spaces and abstract semilinear second order differential equations, Int. Journ. of Diff. Equations and App., Vol. 6, No. 4, 2002, 449-465.
[8] Winiarska T., Quasilinear evolution equations with operators dependent on t, Mathematychni Studdi, Vol. 21, No. 2, 2004, 170-178.
[9] Winiarska T., Initial value problem for second order differential equations in nonreflexive Banach space, Int. Journ. of Diff. Equations and App., Vol. 5, No. 1, 2002, 13-24.
[10] Winiarska T., Winiarski T., Regularity of domains of parametrized families of closed linear operators, Ann. Polon. Math., 80, 2003, 231-241.

[^0]: * Dr hab. Teresa Winiarska, prof. PK, Instytut Matematyki, Wydział Fizyki, Matematyki i Informatyki Stosowanej, Politechnika Krakowska.
 ** Prof. dr hab. Tadeusz Winiarski, Instytut Matematyki, Wydział Matematyczno-Fizyczno-Techniczny, Uniwersytet Pedagogiczny w Krakowie.

[^1]: ${ }^{1}$ Often called "sup-norm".

