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EXTENTIONS OF NOT DENSELY DEFINED EVOLUTION  
PROBLEMS TO DENSELY DEFINED ONES 

ROZSZERZANIE NIEGĘSTO OKREŚLONYCH PROBLEMÓW 
EWOLUCYJNYCH DO GĘSTO OKREŚLONYCH 

A b s t r a c t  

Evolution equations appear in many practical problems specially the ones connected with 
mathematical physics. The operator may be differential as well as integral. Thus it may either 
bounded or unbounded. At the same time densely or not densely defined. Domains  
may change together with t or be independent of t. The choice of the space in which A(t)  
is considered can cause domains to be dense or not. We present here how some problems with 
not densely defined operators may comes down to densely defined one. 
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S t r e s z c z e n i e  

Równania ewolucyjne pojawiają się w wielu praktycznych problemach, szczególnie w zagad-
nieniach fizyki matematycznej. Występujący w nich operator jest operatorem róŜniczkowym 
lub całkowym. MoŜe więc być ograniczony lub nieograniczony. MoŜe być gęsto albo nie-
gęsto określony, o dziedzinie zaleŜnej lub niezaleŜnej od t. Wybór przestrzeni, w której 
rozwaŜamy A(t) ma wpływ na gęstość dziedziny. W artykule pokazano jak pewne problemy  
z niegęsto określonymi operatorami moŜna sprowadzić do problemów gęsto określonych. 
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1. Introduction 

Let (X, || · ||) be a Banach space and let Α be a linear operator from  X  to  X. 
By D (Α), C(X), ρ(Α) are denoted the domain of Α, space of all closed linear operators 

from X  to  X,  resolvent set of A, respectively. If  λ ∈ ρ(Α) then (Α – λ) is invertible and 
the inverse operator is denoted by R(λ, A). 

Let Ω be a bounded domain in nR  with boundary ∂Ω. By ( )k
C Ω , (k

C Ω),  0 (k
C Ω) are 

denoted the space of functions of kC  class in Ω, the space of function u ∈ ( )k
C Ω  which 

partial derivatives of order ≤ k can be continuously extended to (Ω),  the space of functions 
u ∈ ( )k

C Ω  with compact supports, respectively. 
Our considerations are connected with evolution problems of the first and second order 

that is evolution problems of the form 

 

2

2

0 0 0 1 0 1

( ) ( , ) ( ) ( , ),
or

(0) , (0) , (0) , , ,

 = + = + 
 
 = ∈ ′= = ∈ 

du d u
A t u f t u A t u f t u

dt dt
u u u X u u u u u u X

 (1) 

where [0, ]( ( )) ∈t TA t  is a family of closed operators from X to X and : [0, ]× →f T X X   

is a given function. 
By solution of (1) we mean a classical solution that is a function : [0, ] →u T X  such 

that 

  (i) 0([0, ])u T∈C  and it is differentiable in (0,T ] (or 1([0, ])∈u TC  and it is two times 
differentiable in (0,T ]), 

 (ii) ( ) ( ( )) for [0, ],u t A t t T∈ ∈D  

(iii) 0 0 1 0 1(0) (or (0) , (0) ), , ,′= = = ∈u u u u u u u u X  

(iv) 
2

2
( ) ( ) ( , ( )) (or ( ) ( ) ( , ( ))) for (0, ].

du d u
A t u t f t u t A t u t f t u t t T

dt dt
= + = + ∈  

For example, an evolution problem of the first order has been considered in [5].  
The problems of order two with a densely or not densely defined family [0, ]( ( )) ∈t TA t   

of operators and dependent on t its domains has been considered in [7–9]. 

2. Evolution equation with A independent of t 

In this part we assume that [0, ]( ( )) ∈t TA t  is a family of operators independent of t that is 

( ) =A t A  for all [0, ].∈t T  We start with the case of densely defined operator A and next 

we show how to reduce not densely defined case to densely defined one. 
Definition 1. An operator ( )∈A XC  is called a Hille-Yosida operator if there exist 1≥M  

and ∈Rω  such that ( , ) ( )A+∞ ⊂ω ρ  and 

( , ) for , 1,2,
( )

n
n

M
R A n≤ > =

−
…λ λ ω

λ β
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1. Densely defined operators. By the Hille-Yosida theorem (see e.g. [3]), A generate  
a C0 – semigroup ( ), 0≥U t t  if and only if it is a densely defined Hille-Yosida operator. 
This fact can be used to prove theorems on existence, uniqueness of solutions of the 
problem (1) with densely defined and independent of t operator A. 

Theorem 2 (see [6]). If X is a reflexive Banach space, A a densely defined Hille-Yosida 
operator, 0 ( )∈u AD  and f satisfies the Lipshitz condition in [0,T ] × u ([0,T ]) then 

problem (1) (with A(t) = A) has exactly one solution u satisfying the integral equation 

 0
0

( ) ( ) ( ) ( , ( )) ,= + −∫
t

u t U t u U t s f s u s ds (2) 

where ( ), 0≥U t t  is a semigroup generated by A. 

2. Not densely defined operators. Suppose now that ( )∈A XC  is not densely defined. 
Then 0 : ( )=X AD  is a proper subspace of the Banach space X. 

Let A0 be the part of A in X0 that is 

0 0( ) { ( ) : },= ∈ ∈A u A Au XD D  

0 0( ) for ( ).= ∈A u Au u D A  

Then any solution of the problem 

 0

0 0 0

( , ), [0, ],

(0) , ,

 = + ∈

 = ∈

du
A u f t u t T

dt
u u u X

 (3) 

is a solution of the problem (1) (with 0( ) ).=A t A  When A0 is densely defined, the problems 

with a not densely defined operator A can be reduced to a problem with an operator which 
is densely defined. 

Proposition 3. Let A be a closed linear operator from X to X and A0 the part of A in the 

subspace 0 : ( ).=X AD  Then 

 (i) A0 is closed, 
(ii) If A is a Hille-Yosida operator then A0 is densely defined in X0 and also a Hille-Yosida 

operator. 

Proof.  Let AΓ  be the graph of A. Then the set 

0 0 0( )= ×A AX XΓ ∩Γ  

is the graph of A0 and it is closed subset of X0 × X0, because AΓ  is closed, and so A0  

is a closed operator. 
For the proof of (ii) see e.g. to the proof of Theorem 3.1.10 (point (i)) in [3].   □ 

Remark 1. Assuming that A0 is the part in X0 of a Hille-Yosida operator A one can 
extend, for example, Theorem 2 to the case of not densely defined operators. Of course to 
obtain a theorem on existence or uniqueness for solutions one must put stronger 
assumptions then for densely defined one. 
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Let Ω be a bounded domain in nR  with smooth enough boundary .∂Ω  The space 
0( )=X C Ω  of continuous functions in Ω  with the norm1 

 sup{ ( ) : } for .= ∈ ∈u u x x u XΩ  (4) 

is a Banach space. The set 

0 : { : ( ) 0 for }= ∈ = ∈X u X u x x ∂Ω  

is a closed subspace of X. 
Let 0( )=bX C ∂Ω  be the space of continuous functions on the boundary ∂Ω  of .Ω  

The space Xb, with “sup-norm” as defined as in (4) is also a Banach space and the mapping 

 : :∋ → = ∈b bb X X∂Ωυ υ υ  (5) 

is a continuous linear mapping and onto. 

For each n-tuple 1( , , ) , let= ∈…
n

nα α α N  

1 2
1 2

:=
⋯ n

n

D
x x x

α
α

α α α

∂

∂ ∂ ∂
 

be the partial derivative of order 1= + +… nα α α  and let 

 
2

( ) ( )
≤

= ∑P D a x Dαα

α

 (6) 

be a partial differential operator of order 2 with coefficients : →aα Ω R  of class .∞
C  

Consider the operator 

 : ( ) ( )∋ → ∈A X A u P D u XD⊃  (7) 

with domain 2
0( ) ( )=A XD C∩ Ω  and note that A is not densely defined in X. 

Assumptions 4. We shall use the following assumptions: 

Ass 1. For any ∈ bf X  there exists exactly one function 2( ) ( )= ∈u fB C Ω  such that 

( ) 0=P D u  and .=bu f  Furthermore, we assume that : →bX XB   is continuous. 

Ass 2. 0 ( ).∈ Aρ  

One of the examples of operators P(D) satisfying Assumptions 4 is the Laplace operator 
∆. 

Lemma 5. If A0 is the part of A in X0 = ( )AD  and Assumptions 4 are satisfied then A0 

is densely defined in X0 and 00 ( ).∈ Aρ  

Proof. Since 0 0 0( ( )) ( )∞ ∞=A XC CΩ Ω ⊂  and 0 ( )∞
C Ω  is dense in X0, A0 is densely 

defined in X0. To prove that 00 ( )∈ Aρ  it is enough to observe that 
00(0, ) (0, ) .XR A R A=  

 
                                                           
1 Often called “sup-norm”. 
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Example 1. Let (0,1) .=Ω ⊂R  We give an example in the space 0( ).=X C Ω  Consider 

the operator 

 : ( ) ′′∋ → ∈A X A u u XD⊃  (8) 

with domain 

 2( ) { ( ) : (0) (1) 0}.= ∈ = =A X u u uD C∩ Ω  (9) 

Operator A is not densely defined in X and B : ( )→X AD  given by 

 
1

0 0 0 0
( ) ( ) ( )

   = −   
   ∫ ∫ ∫ ∫

x
B x t dt d x t dt dυ υ υ

τ τ

τ τ  (10) 

is the inverse of A. Since B is bounded, A is closed. 

Let A0 be the part of A in X0 = ( ).AD  Since 0 0 0( ( )) ( )∞ ∞=A XC CΩ Ω ⊂  and 0 ( )∞
C Ω   

is dense in X0, A0 is densely defined in X0. The operator 
00 : XB B=  is the inverse of A0. 

Thus 0 ( ).∈ Aρ  

Remark 2. If we consider the operator A (defined by (8)) as an operator with domain  
1 2 2
0( ) ( ) ( ) ( ),=A H H LD Ω ∩ Ω ⊂ Ω we get an operator which is closed and densely defined 

in 2( ).L Ω  

3. Extensions to densely defined operator. One of the methods is presented in [3].  
It consists in construction of extrapolation space X –1 associated with an operator A which  
is assumed to be closed with non-empty resolvent set ( ).Aρ  We present here only a brief 

description of construction (for details see [3]). 
Since A is closed, the graph AG  of A is a closed linear subspace of X × X. Then  

the quotient space 
1 : ( ) /− = × AX X X G  

with the quotient norm is a Banach space. 
The class of element ( , )u υ  mod AG  will be denoted by [ , ]u υ .  The mapping 

1: : [0, ] −∋ → = ∈i X u iu u X  

is a bounded one to one mapping of X onto the linear subspace  iX  of  X–1  which allow us 
to identify X  with  iX  which is a dense subspace of  X–l  if and only if A is densely defined. 

We define a linear operator A–1 by 

 1 1 1: ( ) : [0, ] [ ,0] .− − −= ∋ → − ∈A A iX u u XD  (11) 

Since, for ( ), [0, ] [ ,0],∈ = = −u A iAu Au uD  we can see A–1 as extension of A to the whole 

space X. The subspace 1( )−AD  is a dense subspace of 1 : ,− =X iX  where the closure of  

iX  is taken in X–1. Thus A–1 is densely defined if and only if ( )AD  is a dense subspace  

of X. 

Let A–1 be the part of A–1 in X–1 and let A0 be the part of A in 0 ( ).=X AD  
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Proposition 6. (see [3], Proposition 3.1.9). Let A be a closed operator with ( ).∈ Aλ ρ  

Then 

 (i) 1 0( )− =A XD  and 1 0 1:− −− →A X Xλ  is an isomorphism, 

(ii) A is the part of 1−A in X. If ( ),∈ Aλ ρ  then 1( )A−∈ρλ  and 1( , ) ( , ) .XR A R A−=λ λ  

For each ( )A∈ρλ  the mapping 

 1: [ , ] ( , ) ( , )X u AR A u R A−⋅ ∋ → −
λ

λ λυ υ  (12) 

defines an equivalent norm on X–1. Moreover 1( )A−∈λ ρ  and the mapping 1A− −λ  is an 
isomorphism of X onto X–1 (see [3], Proposition 3.1.1). 

Example 2. Suppose that A defined by (8) satisfies Assumptions 4. Let, for 

1 2, ( ), ( )X∈ ϕ ϕυ υ υ  and ϕ  be defined by 

2( ) ( ),b=ϕ υ υB  

1 2( ) ( ),= −ϕ ϕυ υ υ  

1: ( )X ∋ →ϕ ϕυ υ  ⊕ 2 0( ) :X X∈ =ɶϕ υ  ⊕ ( ),bXB  

where ⊕ is a direct sum of Banach spaces. 
The mapping ϕ  is an isomorphism of Banach spaces X and .Xɶ  Indeed, by 

Assumptions 4 (Ass 1) 2ϕ  is continuous. Thus ϕ  is continuous, because also 1ϕ  as a sum 
of identity and continuous map is continuous too. Continuity of the inverse of ϕ  is 
obvious. Thus we may identify X∈υ  with ( ) X∈ ɶϕ υ  and 0u X∈  with 

( )u u=ϕ ⊕ 0 0 00 : ( )X X X∈ = =ɶ ϕ  ⊕ {0}. 

Since A is a closed operator with non-empty resolvent set ( )Aρ  we may construct the 
extrapolation space X–1 associated with A. According to (11), for X∈υ  we have 

1 1 1
1 2 1 2

1 2 1 2 0

[0, ] [0, ( ( ) ( ( ))] [0, ( ( ))] [0, ( ( ))]

[ ( ),0] [ ( ),0] [ ( ( ) ( )),0] [ ( ),0].b

A A A A

X X

− − −= + = + =
= − + − = − + ∈ ⊕B

υ υ υ υ υ

υ υ υ υ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
 

Therefore 1( )A−
D  consists of two parts. One is 0 ( )X A= D  and second one consists 

of classes [0, ]υ  corresponding to ( ).bX∈υ B  Since A is not densely defined in X and 
1

0[ ( ),0] ,bX X X−⊕ =B  the range of 1A−  is equal to 1X −  and 1A−  is not densely defined 
in 1.X −  Although we need to have a densely defined extension of A. 

Let 1A−  be the part of 1A−  in 1.X−  Since, by Lemma 5, the part A0 of A in X0 is densely 
defined in X0 and 0 10 ( ),A A−∈ ρ  is densely defined in 1X−  and (by Proposition 6) 

1 0( ) .A X− =D  To prove it one can use the same method as in the proof of part (ii)  
of Theorem 3.1.10 in [3]. 

Note that [ ,0] [0, ]u = υ  if and only if ( )u A∈D  and Au=υ  and the norm on [X, 0]  
is equivalent to the norm given by (12). Thus [X0, 0] is the closure of [ ( ),0]AD  and 

1( ) ( ) {0},bX A− =∩B D because 0( ) {0}.bX X =∩B  
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3. The case of operators dependent on t 

1. Operators with isomorphic domains. One of possible ways of reduction of some 
problems concerning operators 

[0, ]( ( ))t TA t ∈  with domains ( ( ))t A t X= ⊂D D  

depending on t is to find a sufficiently regular (with respect to t ∈ [0, T ]) family [0, ]( )t t T∈Ψ  

of automorphisms of the Banach space X such that ( ) ,t t =Ψ D D  where D  is a fixed linear 

subspace of X, for example D = D0. 
Suppose now that the described above family [0, ]( )t t T∈Ψ  has been constructed and that  

u (t) is a solution of the problem 1. 
Since ( ) ,tu t ∈D  there exists ( )t ∈υ D  such that ( ( )) ( ).t t u t=υΨ  We have 

( )t
t

ddu d
t

dt dt dt
= + υ

υ
Ψ

Ψ  

and after a standard calculation we obtain 

( ) ( ) ( , ( ( )),t
t t t t

dd
A t t f t t

dt dt

 = − + 
 

υ
υ υ

ψ
Φ ψ Φ ψ  

 

where tΦ  is the inverse to tψ  operator. Thus υ is a classical solution of the evolution 

equation 

( ) ( , ( ))
d

B t F t t
dt

= +υ
υ υ  

with the family ( ( ))t tB B t ∈=
T

 of operators having domains independent of t. 

In general, the domain of a differential operator is determined by some boundary 
conditions. Thus it would be useful to find an effective construction of a family tΨ  using 
the boundary conditions only. Such a construction for a family of elliptic operators of order 
two with the Robin boundary condition with a parameter (i.e. / ( , ) 0u n a x t u+ =∂ ∂  on )∂Ω  
is presented in [10]. We present it here for convenience of the reader. 

Example 3.  Let Ω  be a bounded domain in n
R  with boundary S = ∂Ω  of class 

1, [0, ]k T+ =C T  and let :a × → RΩ T  be a function of class k
C  nonvanishing on S.  

The sets 

2 2( ) : ( ) and ( , ) 0 on ,t
u

u u H a x t u
n

 = ∈ ∈ + = 
 

∂
Ω Ω ∂Ω

∂
D L  

2 2( ) : ( ) and 0 on
u

u u H
n

 = ∈ ∈ = 
 

∂
Ω Ω ∂Ω

∂
D L  

are dense linear subspaces of 2( ),ΩL where n is the interior unit normal vector field on S. 

F(t, υ, (t)) 
B(t) 
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Let : × → Rη Ω T  be a function of class kC  such that 

1
( ) ( , ) for , ,

2 t x x t x t≤ = ∈ ∈η η Ω T  

( )
( ) 1 and ( , ) for , .t

t
x

x a x t x t
n

= = ∈ ∈
∂η

η ∂Ω
∂

T� 

The function η  can be constructed in the following way. We consider S as the retract  
of class k

C (for 0>ε  small enough) of the open ε-tube 

TUB ( ) { ( ) : , }.S x n x x S= + ∈ <ε τ τ ε  

Then we take a function hε  of class ∞
C  in n

R  satisfying the following conditions: 

/2

( ) 0 for \ TUB ( ),

( ) 1 for TUB ( ),

( ) for .

n

n

h x x S

h x x S

h x G x

= ∈

= ∈

∈ ∈

R

R

ε
ε

ε
ε

ε

 

The function 

: TUB ( ) ( ) ( , )f S x n x a t x∋ + → ∈ε
ε τ τ R  

is of class k
C and, for ε small enough, the function 1h f= +ε εη  is one we have been 

looking for. 

Let 2 2: ( ) ( )t →Φ Ω ΩL L  be given by 

2( ) for ( ), [0, ]t tu u u t T= ⋅ ∈ ∈Φ η ΩL  

and let 1.t t
−=Ψ Φ  One can verify that 

  (i) 2Aut ( ( )),t ∈Φ ΩL  

 (ii) ( ) ( ) ,t t t tand= =Φ ΨD D D D  

(iii) the mapping 2( ( ))tt∋ → ∈Φ ΩBT L  is of class .k
C  Thus the mapping 

2( ( ))tt∋ → ∈Ψ ΩBT L  is also of class .k
C  
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