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OPROGRAMOWANIE KOMPUTEROWE DO 
MODELOWANIA WYKRESÓW CTPc 

A b s t r a c t  

The purpose of the paper is to present a computer program for calculating Continuous Cool-
ing Transformation diagrams for constructional and engineering steels. The computer pro-
gram uses artificial neural networks for prediction of steel parameters after heat treatment. In-
put data are chemical composition and austenitising temperature. The results of calculation 
consist of temperature of the beginning and end of transformation in the cooling rate function, 
the volume fraction of structural components and hardness of steel cooled from austenitising 
temperature at a fixed rate. The algorithm can be used in designing new chemical composi-
tions of steels with required hardness after heat treatment.  
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S t r e s z c z e n i e  

Celem niniejszego artykułu jest prezentacja komputerowego programu do obliczania diagra-
mów CTPc dla stali konstrukcyjnych. Program ten korzysta ze sztucznych sieci neuronowych 
do predykcji parametrów stali po obróbce cieplnej. Danymi wejściowymi są skład chemiczny 
oraz temperatura austenityzowania. Wynikami obliczeń są temperatury początków i końców 
przemian w funkcji szybkości chłodzenia, udziały procentowe faz oraz twardość stali po 
chłodzeniu z temperatury austenityzowania. Algorytm może być użyty w projektowaniu no-
wych stali z wymaganą twardością po obróbce cieplnej. 

Słowa kluczowe: komputerowa nauka o materiałach, metody sztucznej inteligencji, sieci neu-
ronowe, wykresy CTPc 
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1. Introduction 
 
CCT diagrams are used for determination of the phase structure and hardness of steels 

after heat treatment like quenching, normalizing or annealing. The preparation of a CCT 
diagram for a steel with proper chemical composition requires a lot of experiments and very 
expensive testing equipment [1]. 

These are the main reasons for many attempts of modeling steel transformations during 
cooling. Many of these attempts involve mathematical models of processes proceeding in 
steel during cooling or empirical dependencies developed after many experiments. 

Most equations are based on Jonson-Mehl or Avramy dependences. Some of them allow 
getting values of transformations temperatures, e.g. martensite start temperature. The ob-
tained results of these equations in many cases are very different from real values of pa-
rameters. Most of them can be used only for a small group of steels with very similar 
chemical compositions. The transformations proceeding steel during heat treatment are very 
complicated therefore for modeling these processes artificial intelligence methods are used. 
Especially application of neural networks is very promising [2–4]. 

Some authors assume that application of a few simple neural networks instead of one 
big network allows calculation of required parameters with smaller errors [5–11]. This 
assumption is used in the presented computer program. The program calculates all parame-
ters required for generating a CCT diagram, hardness of steel after cooling and phase 
structure of steel with chemical composition adopted by the user.  

 
 

2. Program structure and algorithm of calculations 
 
The computer program presented was developed in the Borland C++ Builder 6 pro-

gramming environment. All neural networks were generated in Statistica Neural Networks 
4.0 F computer program. Design of the proper neural networks required preparation of 
a representative set of data. This set of data was prepared from four hundred CCT diagrams 
published in the literature. The program cannot be used for any steel. The best results were 
obtained for the steels with ranges of mass concentrations shown in Table 1. 

 
T a b l e  1 

Ranges of mass fractions of elements 

 Mass fractions of elements [%] 
 C Mn Si Cr Ni Mo V Cu 
Min. 0,08 0,13 0,12 0 0 0 0 0 
Max 0,77 2,04 1,90 2,08 3,65 1,24 0,36 0,3 

% Mn + % Cr + % Ni + % Mo ≤ 5 

 
The program works correctly only in Microsoft Windows operating system. The pro-

gram consists of forty files, 21 of which are files with neural networks. The program has 
a modular structure shown in Fig. 1. Every unit contains a few files and performs a specific 
function.  
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The data input unit allows the user to input chemical composition and austenitising 
temperature for requested steel. Austenitising temperature can also be calculated by the 
program as temperature Ac3 + 50°C. The user can also input more than one chemical com-
positions of steel and save them in the file. It can be useful if a new version of the program 
appears and the user wants to compare the old and new results. All required data can be 
input using a user friendly form (Fig. 2). 

 

 
Fig. 1. Block diagram of the computer program 

Rys. 1. Schemat blokowy programu komputerowego 
 
 

 
Fig. 2. Data input form 

Rys. 2. Formularz wprowadzania danych 
 
The classification unit consists of 4 files with neural networks: klasy_m.cpp, 

klasy_p.cpp, klasy_b.cpp and klasy_f.cpp. These neural networks (networks structures 
shown in table 3) are used to check whether the requested transformation is present during 
cooling at the adopted cooling rate. The first file contains functions to detect whether the 
ferritic transformation is present, the second for perlitic transformation, the third for bainitic 
transformation and the last one for martensitic transformation. Every file contains only 
neural networks. Therefore a fifth file was required for management of the aforementioned 
files. This file contains functions which: 
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– send starting parameters (chemical composition and austenitising temperature) for neural 
network inputs, 

– run appropriate neural network, 
– save results in to global table (Tab. 2). 

These functions are run for every cooling rate (140 cooling rates were implemented). 
 

T a b l e  2  

Global data structures 

Global table Content 

Klasyf, klasyp, klasyb, klasym Classifiers of transformations for all adopted 
cooling rates  

Fstart, fkon, pstart, pkon, bstart, 
bkon, mstart 

Start and finish temperatures of transformations 
calculated by neural networks for all adopted 
cooling rates  

Fskon, fkkon, pskon, pkkon, bskon, 
bkkon, mskon 

Start and finish temperatures of transformations 
after verification for all adopted cooling rates 

Czasfsokr, czasfkokr, czaspsokr, 
czaspkokr, czasbsokr, czasbkokr, czasmsokr 

Start and finish times of transformations for all 
adopted cooling rates 

Bledy Average errors values for the neural networks 
outputs  

Procentfokr, procentpokr, procentfokr, 
procentmokr 

Volume fractions of phases for all adopted 
cooling rates 

Hv Calculated hardness of steel for all adopted 
cooling rates 

Ac1, ac3, ta, bsmax, msmax Characteristic temperatures values calculated 
by the neural networks 

 
The calculations unit consists of 17 files with neural networks. Also the management 

file was implemented. This file contains the following algorithm: 
– send starting parameters (chemical composition, austenitising temperature and values of 

classifiers) for neural network inputs  
– run appropriate neural network, 
– save results in to global table (Tab. 2). 

Running order of the neural networks is very important. The order is as follows: 
– calculating the characteristic temperatures values (Ac1, ac3, ta, bsmax, msmax), 
– calculating the values of the start and finish temperatures of transformations (ferritic, 

perlitic, bainitic, martensitic), 
– calculating the start and finish times of transformations, 
– calculating the hardness, 
– calculating the volume fractions of phases. 

The values calculated by neural networks must be verified, because in some cases the 
starting temperature of transformation can be lower than the finish temperature. Therefore a 
verification system was needed. For every temperature value calculated by neural networks 
a verifying function was implemented. These functions also save the results into global ta-
bles (Fskon, fkkon, pskon, pkkon, bskon, bkkon, mskon in Tab. 2). All verification proce-
dures are shown in Fig. 3. 
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T a b l e  3  

Structures of the neural networks used for generating CCT diagram 

Inputs 
Neural 

network 
structure 

Outputs 

C,Mn,Si,Cr,Ni,Mo,V 7-4-1 The temperature of eutectiodal transformation Ac1 
C,Mn,Si,Cr,Ni,Mo,V 7-5-1 The temperature of ferrit/austenit transformation Ac3 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta 9-8-1 The temperature of bainitic transformation Bsmax 
C,Mn,Si,Cr,Ni,Mo,V 7-6-1 The temperature of martensitic transformation Msmax 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-7-1 Classifier of the ferritic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-15-1 Classifier of the perlitic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-20-14-1 Classifier of the bainitic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-12-1 Classifier of the martensitic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-11-1 Start temperature of the ferritic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-7-1 Finish temperature of the ferritic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-5-1 Start temperature of the perlitic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-15-1 Finish temperature of the perlitic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,Bsmax,pierw 11-7-1 Start temperature of the bainitic transformation 
C,Cr,Bsmax,Msmax,pierw 5-1250-5-1 Finish temperature of the bainitic transformation 
C,Mn,Si,Cr,Ni,Mo,V,Cu,Ta,pierw 10-11-1 Start temperature of the martesitic transformation 
Tempw,pierw 2-7-1 The times of start or finish transformation  

 
 

 
Fig. 3. The verification unit procedures 

Rys. 3. Procedury modułu weryfikacji  
 
The results presentation unit contains functions for generating a CCT diagram from the 

values calculated by the aforementioned units and placed in global tables. The results can 
be presented as a CCT diagram (Fig. 5) or as a results table (Fig. 4). Also hardness diagram 
and diagram of the volume fractions of phases are presented. 
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Fig. 4. The results table for calculated CCT diagram of a steel of the following chemical composition: 

0,15% C, 0,39% Mn, 0,29% Si, 0,12% Cr  

Rys. 4. Tabela wyników dla diagramu CTPc dla stali o składzie chemicznym: 0,15% C,  
0,39% Mn, 0,29% Si, 0,12% Cr 

 

            
Fig. 5. The calculated CCT diagram, hardness diagram and volume fractions of phases diagram of 

the steel of the  following chemical composition: 0,15% C, 0,39% Mn, 0,29% Si, 0,12% Cr 

Rys. 5. Obliczone wykresy CTPc, twardości oraz udziału faz dla stali o składzie chemicznym: 0,15% 
C, 0,39% Mn, 0,29% Si, 0,12% Cr 

 
The results archivisation unit allows the user to save the calculated results in a text file, 

save all the diagrams as a jpg image or send everything to printer. Saving process is fast 
and easy.  

The help unit contains descriptions of all program functions, menus and settings. 
The settings unit affects all unit. It allows language option (Polish or English), amount 

of input chemical compositions, precision of calculations, print settings and CCT diagram 
settings such as line thickness, or showing the calculated temperatures.  

 
 

3. Results discussion 
 
The data set (400 CCT diagrams) was divided into two parts. The first one was used for 

neural networks training. The second part of the data set was used only for evaluation of the 
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results obtained from neural networks. The obtained values of temperatures, times, hard-
ness and volume fractions are very close to experimental data. Most of the average errors of 
the calculated parameters are lower than 5%. In Tab. 4 errors values for the calculated 
volume fractions of phases are shown. These results are acceptable. The calculated tem-
peratures average errors are between 18 and 25 Celsius degrees (Tab. 5). Most of the Pear-
son coefficients for calculated parameters are close to 0,9. Also shape and position of the 
transformation curves are very similar to experimental diagrams (Fig. 6).  

T a b l e  4  
Statistical coefficients of calculated volume fractions of phases 

Variable Average error [%] Pearson coefficient 
Ferrite volume fraction 5,2 0,88 
Pearlite volume fraction  4,4 0,94 
Bainite volume fraction 9,45 0,86 
Martesite volume fraction 6,72 0,94 

 
T a b l e  5  

Statistical coefficients of the calculated transformation start and finish temperatures 

Calculated 
variable 

Average 
error [ºC] 

Average
error [%]

Standard deviation of error 
[ºC] 

Pearson 
coefficient 

Fs 18,2 2,6 18,1 0,87 
Ff 19,4 3,1 19,2 0,87 
Ps 15,5 2,4 14,5 0,85 
Pf 22,8 3,8 21,3 0,80 
Bs 25,8 5,3 27,2 0,80 
Bf 24,1 7,2 30,9 0,78 
Ms 21,2 7,1 19,9 0,83 

 

       
Fig. 6. The CCT diagram for steel of the following chemical composition: 0,38% C, 0,64% Mn, 

0,23% Si, 0,99% Cr, 0,08% Ni, 0,16% Mo, 0,01% V, 0,17% Cu, austenitised in 1050ºC, 
a) experimental, b) calculated by program 

Rys. 6. Wykres CTPc dla stali o składzie chemicznym: 0,38% C, 0,64% Mn, 0,23% Si, 0,99% Cr, 
0,08% Ni, 0,16% Mo, 0,01% V, 0,17% Cu, austenityzowanej w 1050ºC, a) doświadczalny, 

b) obliczony przez program 
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