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A b s t r a c t  

Applicability of the Kolmogorov’s equations for mathematical simulation of gases purification under low 
temperature plasma tubular reactor was considered. Comparison of the obtained results with other simula-
tion methods and experimental data was performed. 
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S t r e s z c z e n i e  

W pracy przedstawiono możliwość zastosowania równań Kołmogorowa do matematycznego modelowa-
nia oczyszczania gazów w niskotemperaturowym, plazmowym reaktorze rurowym. Przedstawiono po-
równanie wyników zaproponowanej symulacji z wynikami innych metod i eksperymentów.  
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1. Introduction 

At the mathematical modeling already at the step of problem statement the problem of 
concrete approach to modeling choice always appears. In that case we do not speak so 
much about mathematical methods of modeling as about which abstraction level it is neces-
sary to use for sufficient description of physical nature of phenomena under study. The suf-
ficiency here means a compromise accomplishment of requirements to model such as ade-
quacy, universality and economy. But if at the mathematical model creation of any concrete 
phenomena the satisfactory agreement between all requirements to the model can be 
achieved then the description of group objects connected, for example, with the technologi-
cal relationship only becomes quite difficult task in the frame of single approach. The 
chemical technological processes are an example of such group of modeling objects. These 
objects include processes in dispersion and continuous media, heat, diffusion and mechani-
cal processes, chemical kinetics etc. 

Attempts have been made repeatedly to propose more or less universal approach unified 
for whole processes groups. Some of them were sufficiently successful. So, the determinate 
approach based on an application of substance transfer equation (Umov’s equation) is 
a classical one [1]. The fundamental dependencies of continuum dynamics, heat and mass 
transfer are the special cases of that equation [2, 3]. These dependencies use the methods of 
partial differential equations and elements of field theory. It is necessary to point out that 
models being used to describe the process in study at continuous space and time. It is 
a positive property of such approach. On the other hand, the application of the classical 
determinate transfer equations without essential simplifications results in substantial calcu-
lating difficulties, especially, for multidimensional non-stationary tasks. These difficulties 
has not been overcome till now in spite of existence of powerful computers. 

The attempts have been made repeatedly to simplify the phenomena physical picture to 
make easier the mathematical operations with models without prejudice to modeling quali-
ty. Thus, cell models are widely used at reactors modeling that is, in fact, the spatial discre-
tization of object [4]. The task solutions of transfer with variable coefficients when model 
assumes a space division on a number of zones within which the task is believed to be li-
near and for agreement on boundaries the boundary conditions are used are other example 
[3]. 

Recently, numerous attempts of application for technological processes modeling of 
stochastic approaches appeared. In particular, interesting results of discrete Markov’s 
chains theory elements application for the description of a number of technological 
processes (bulk solids treatment, heat and mass transfer) have been obtained [5–7]. 

The aim of present paper is the demonstration of stochastic approach possibilities to 
modeling based on the Kolmogorov’s equations application. 

2. Modeling object 

Let us consider the tubular reactor for gas purification with the application of low tem-
perature plasma of dielectric barrier discharge (DBD) as the modeling object. 

The reactor (Fig. 1) had a coaxial geometry. The reactor body was made from a Pyrex 
tube which also acted as the dielectric barrier. The alternative high voltage of industrial 
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frequency was applied between internal metal electrode and cylindrical external one located 
on a glass reactor body. A gas mixture containing the carbon monoxide admixture and 
technical grade oxygen as the main plasma forming gas inputted to a ring gap between in-
ternal surface of glass tube and internal electrode. The discharge action resulted to gas puri-
fication from CO during the gas movement along the discharge axis.  

 
Fig. 1. The scheme of the DBD reactor for gas purification 

Rys. 1. Schemat reaktora DBD do oczyszczania gazu 

The atomic oxygen and ozone forming under discharge excitation were the active spe-
cies which react with polluting components transforming them into less toxic substances. 

 
 

3. Conventional approach to modeling 
 
The conventional classical approach to mass transfer process modeling accompanied by 

a volume chemical reaction usually assumes the application of fundamental equation de-
scribing the concentration field in a moving reacting medium [2] 

 γ+∇⋅=⋅+⋅+
δ
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where: C is the substance concentration; v is the medium velocity; D is the diffusion coeffi-
cient; γ is the volume powder of source (sink) of substance mass; t is the time.  

The volume powder value characterizes a substance amount forming or consuming per 
time unit due to chemical reaction.  

For the equation (1) solution it is necessary to add the equations of medium movement 
(2) and flow continuity (3) to it 
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where ρ is the medium density; σ is the stress tensor. 
As is easy to see that the problem in such statement is rather complicated. Therefore, 

some assumptions are made at the process modeling. Because the tubular type reactors 
length is essentially higher than the diameter the process is considered as one dimensional 
omitting the cross diffusion. Beside that, the medium is considered as an incompressible. 
That assumption is often not valid under the gas mixture study. Nevertheless, such assump-
tions  allow to simplified essentially the mathematical statement of problems and result the 
task in single partial differential equation   
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Such equation with appropriate initial and boundary conditions describes the non-
stationary mass transfer process with chemical reaction for the tubular type reactor and al-
lows to study the local concentrations profile in that device. 

Nevertheless, practical application of given models has shown that the problem of cor-
rect statement of boundary condition appears in this case. In particular, at the modeling 
substances concentrations are known at the reactor input only. But concentrations values 
are not enough for task solution. It is necessary to use additional assumptions about the 
process proceeding. It is often believed that the reactor length is enough for process finish-
ing [8]. That assumption means that the concentration gradient equals zero at the reactor 
output and the task becomes completely definite. 

It is necessary to note that the introduction of simplifying assumptions can distort the 
process real picture.  

 
 

4. Stochastic approach to modeling 
 
Let the reactor volume be divided into several elementary cells along its length. The gas 

entering for purification passes through these cells in series. The substance amount change 
into the each elementary cell depends on the following parallel proceeding processes: 
– substance coming in the cell due to its diffusion and macroscopic movement of 

a medium, 
– substance consumption in the cell due to a reaction, 
– removal of the substance non-reacting part from the cell with the media movement and 

with the diffusion. 
We will assume that pollutant concentration is the stochastic variable which can take the 

value in the range from initial concentration up to zero. Otherwise, it means that the reactor 
is a system possessing the ensemble of probable states. Let the number of possible states be 
limited with the finite value n.  

The reactor state (i = 1, 2, ...., n) will be denoted as Si whereas Ci(t) will be the probabi-
lity of Si state realization at a time moment t. It is easily to show that in this case the Ci(t) 
value means the same that relative (normalized) concentration of pollutant in the i-cell. 

The characteristics of forces acting on a system we will denote the following way. The 
parameter λ characterizes the intensity of processes transferring the system to the SJ (j > i) state. 
The parameter μ characterizes the intensity of processes transferring the system to the Sk (k < i) 
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state. We will suppose that in common case these parameters depend on the Si. Obviously, the 
system can transfer from Si state to the one of the neighboring states Si+1 or Si-1 only at a quite small 
range of time Δt. 

Therefore, the gas purification process in the reactor can be described with the graph (transfer 
diagramm) shown in Fig. 2.  

 
Fig. 2. The graph for gas purification process in a reactor 

Rys. 2. Schemat procesu oczyszczania gazu w reaktorze 

The probability change Сi(t) over small range Δt directly following time t is  
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Dividing this equation by Δt and finding the limit at Δt→0 , we obtain 
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The equation (5) is not valid at the i = 1 and i = n because in these cases the probabili-
ties Сi-1(t) or Сi+1(t) lose meaning. Therefore, it is necessary to analyze the appropriate equa-
tion with special way. For example, at the i = 1 the system can change the S2 state on the S1 
one. Then 
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The equations (5), (6) allow to determine the system state change with respect to time at 
given initial conditions and known intensity parameters λi and μi. 

Applying given equations for modeling the state of reactor with substance consumption 
it can be indicated that under constant flow of purifying gas and constant parameters of 
chemical reaction the λ and μ parameters can be considered as the constants which independent 
on the current system state and number of possible states n. In that case the λ will be the normalized 
intensity of media flux whereas the μ will be the normalized intensity of substance consump-
tion. In this case the normalization means the dividing intensities mentioned above by total 
amount of consuming substance coming to the reactor. It is necessary to note that intensity 
of substance consumption (μ) characterizes proceeding, at least, two parallel processes – a sub-
stance consumption in the cell due to reaction and a removal of non-reacting substance part with the 
media flux and with the diffusion.  

In that case the state of reactor being modeling can be described by the Kolmogorov’s eq-
uations for the Markov’s chains with continuous time that is by following system of equations 
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The following condition has to fulfill strictly 
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For the stationary conditions the differential equation system by A.N. Kolmogorov 
transforms to the algebraic system of equations 
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Obtained mathematical models (7) and (9) together with the condition (8) allow to find 
probable states of system from n elementary cells modeling considering reactor in statio-
nary (9) or transition (7) regimes. The relative concentration in the last cell Сn characterizes 
the substance amount at the reactor output.  

 

5. Experimental verification 
 
The adequacy of models proposed can be studied by calculated data comparison with 

experimental results obtained on the laboratory set up the scheme of which was shown in 
Fig. 1. The reaction zone length was 122 mm, the internal diameter was 20 mm, the square 
of the ring gap was 1,7 cm2. The discharge voltage was varied in the range of 10–16 kV. 
The model gas mixture containing the carbon oxide (CO) of 1,2 vol.% was inputted into 
reactor. The gas mixture flow was changed from 0,2 up to 1,4 cm3/s. The carbon oxide 
losses due to the reaction depended on the operating voltage on reactor electrodes. These 
losses were calculated on the base of dependencies given in the study [9]. The change range 
of losses was from 0,065 to 0,084 mg/ (L×s). Coefficients of model (7)–(9) λ and μ were 
calculated from constructive parameters of the experimental set up and conditions of expe-
riment accomplishing. The coefficient λ depending on model mixture flow and normalized 
on a total amount of substance changed in the range of 0,0037–0,0252 s-1 at the considered 
conditions. The coefficient μ was in the range of 0,0041–0,0258 s-1. 

The comparison of experimental and calculated data is given in the Tables 1, 2. Here, 
the equations system (9) added with the condition (8) was used. The number of cells was 
taken of 10. The output concentration was calculated as S10 state probability multiplied by 
input concentration. In the same Tables the data calculated on the conventional model (1)–(3) sim-
plified according to assumptions described above are given. Tables include experimental data ob-
tained at various voltages applied to electrodes.  
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T a b l e  1 

The carbon monoxide concentrations at the reactor output under the voltage of 12 kV 

Gas flow 
[cm3/s] 

Carbon monoxide concentration [g/m3] 

Experimental 
value 

Calculation on the (1)–(3) 
model 

Calculation on the (8)–(9) 
model 

Value Error, [%] Value Error, [%] 
0,29 9,7 9,2 5,15 9,6 1,03 
0,33 10,6 10 5,66 10,1 4,72 
0,51 11,7 11,6 0,85 11,6 0,85 
0,65 11,8 12,4 5,08 12,2 3,39 
0,91 12,52 13,1 4,63 12,9 3,04 
1,00 13,4 13,3 0,75 13,1 2,24 
1,21 13,4 13,6 1,49 13,4 0,00 
1,40 13,5 13,8 2,22 13,6 0,74 

 
T a b l e  2 

The carbon monoxide concentrations at the reactor output under the voltage of 14 kV 

Gas flow 
[cm3/s] 

Carbon monoxide concentration [g/m3] 

Experimental 
value 

Calculation on the (1)–(3) 
model 

Calculation on the (8)–(9) 
model 

Value Error, [%] Value Error, [%] 
0,29 8,6 8,8 2,33 8,6 0,00 
0,33 9,1 9,6 5,49 9,2 1,10 
0,51 10,2 11,4 11,76 10,9 6,86 
0,65 10,4 12,2 17,31 11,6 11,54 
0,91 11,1 13 17,12 12,5 12,61 
1,00 11,3 13,2 16,81 12,7 12,39 
1,21 11,9 13,5 13,45 13 9,24 
1,40 12,6 13,7 8,73 13,3 5,56 

 
The analysis of data listed in the tables indicates that there is a correlation between ex-

perimental and calculated data. Moreover, results show that the model proposed describes 
the process better (errors are less).  

Also, the approach proposed allows to study the transition regime of reactor operating, 
in particular, changing with respect to time the concentration of reacting substance at the 
reactor output under the concentration stepwise impulse at the reactor input. 

One of the examples of calculation on the model (7) together with condition (8) is pre-
sented below. Model parameters corresponded to mixture flow of 0,51 cm3/s and voltage of 
15 kV. Initial conditions for system (7) were 

 ,15)0(1 =C    ....,320)0( == iCi  (10) 
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The model time was calculated from mixture flow and reactor volume. Results of mod-
eling are presented in Fig. 3. 

 
Fig. 3. The concentration change at reactor output with respect to time 

Rys. 3. Zmiana koncentracji na wyjściu z reaktora  

6. Conclusion 

Thus, the proposed stochastic approach utilizing the Kolmogorov’s equation for the tu-
bular reactor modeling can be applied parallel with conventional methods based on the 
classical transfer equations.  
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