

z. 2-Ch/2008 ISSN 0011-4561 ISSN 1897-6298

URSZULA KIEŁKOWSKA*

SOLUBILITY IN THE KVO₃ + NH₃ + CO₂ + H₂O SYSTEM FROM 293K TO 303K

ROZPUSZCZALNOŚĆ W UKŁADZIE $KVO_3 + NH_3 + CO_2 + H_2O W ZAKRESIE$ TEMPERATUR 293–303K

Abstract

Solubility in the KVO₃ + NH_3 + CO_2 + H_2O system and the saturated solution densities were measured employing the isothermal solution saturation method. Investigations in the given range of the NH3 concentration varying from 0.1 to 0.6 mol·dm³, as a function of time and temperature, have been carried out. The data presented herein is essential for the assessment of optimum operating conditions for the production process of potassium carbonate introducing the modified Solvay's method.

Keywords: potassium metavanadate(V), ammonia, solubility, equilibrium

Streszczenie

Metoda izotermicznego nasycania roztworów zbadano rozpuszczalność i oznaczono gestość roztworów równowagowych w układzie KVO₃ + NH₃ + CO₂ + H₂O. Badania prowadzono w zakresie stężeń NH₃ od 0,1 to 0,6 mol·dm⁻³, w zależnośvi od czasu i temperatury. Uzyskane dane są niezbędne przy opracowaniu optymalnych parametrów otrzymywania węglanu potasu zmodyfikowaną metodą Solvaya.

Słowa kluczowe: metawanadan potasu, amoniak, rozpuszczalność, równowaga

Dr Urszula Kiełkowska, Katedra Technologii Chemicznej, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu.

1. Introduction

Further investigations revealed a potential possibility of K_2CO_3 production based on the carbonization of KVO_3 + ammonia solutions [1].

 KVO_3 is generated from KCl and V_2O_5 in the presence of steam or oxygen according to the reactions given below [2–4]

$$2 \operatorname{KCl} + \operatorname{V_2O_5} + \operatorname{H_2O}_{(\text{steam})} \rightarrow 2 \operatorname{KVO_3} + 2 \operatorname{HCl}$$
(1)

$$4 \text{ KCl} + 2 \text{ V}_2\text{O}_5 + \text{O}_2 \rightarrow 4 \text{ KVO}_3 + 2 \text{ Cl}2$$

$$(2)$$

K₂CO₃ production process can be described by a general equation

$$KVO_3 + NH_3 + CO_2 + H_2O \leftrightarrow NH_4VO_3 + KHCO_3$$
(3)

The process of carbonization of water + ammonia solution of KVO_3 , consisting of polythermic-polybaric chemisorption of carbon dioxide and crystallization of ammonium metavanadate is a very important step of the vanadate method of K_2CO_3 production.

Knowledge of the solubility in the systems: $KVO_3 + H_2O$ [5, 6], $KVO_3 + NH_3 + H_2O$ [7] and $KVO_3 + NH_3 + CO_2 + H_2O$ is essential for the assessment of optimum operating conditions for the carbonization step in the production process of potassium carbonate.

Since the literature inspection has not revealed any solubility data describing the KVO₃ solubility in aqueous ammonia solutions partially carbonating the equilibrium studies have been undertaken to present a comprehensive and reliable report.

2. Experimental Part

Analytical purity grade chemicals were used for all of the experiments: KVO₃ (purity of 98%, Aldrich Chemical Company, Inc.) and NH₃ (Nitrogen Works Tarnów-Mościce SA, Poland).

Investigations on the solubility of potassium metavanadate(V) in water + ammonia + carbon dioxide solutions in the given range of the NH₃ concentration varying from 0.1 to $0.6 \text{ mol}\cdot\text{dm}^{-3}$, as a function of temperature and time, have been carried out. The experiments were performed in the temperature range from 293 to 303K.

The required amounts of salt and water + ammonia solutions were thermostated at

a selected temperature in the time range from 24 to 96 h, with constant stirring.

At both the temperatures of 293K and 303K, a CO_2 partial pressure of about 1 atm was required. All of the laboratory tests were carried out in the originally constructed pressure apparatus, which both guaranteed operational safety and enabled to reach the state of equilibrium [8].

After equilibration the clear solution was sampled to chemical analysis to determine the solution density. The accuracy of that determination was ± 0.002 g·cm⁻³.

The concentration of vanadium(V) in the equilibrated solutions was determined by a spectrophotometric analysis using the peroxide method [5, 9, 10]. The analysis was

200

performed with the double-beam UV-VIS HITACHI U-2000 spectrophotometer. The error of the vanadium determination is approximately of 2%.

The potassium ion concentration was determined by weight with sodium tetraphenylborate $(Na[B(C_6H_5)_4])$ as a precipitating agent [9]. The precision of the measurements was estimated within 1%.

Concentration of the water + ammonia solutions was determined with the automatic distillation apparatus VAPODEST 30 [11, 12]. The precision of the measurements was estimated within 1%.

The CO_2 concentration of the given solutions was determined using the originally built apparatus described earlier [13]. Quantitatively generated CO_2 gas was absorbed by a NaOH test solution, then BaCl₂ solution was added to precipitate BaCO₃ out. The excess of NaOH solution was titrated with an acid in the presence of mixed acid-base indicators (thymol blue + cresol red). Finally, methyl orange was introduced and CO_2 determined by titration of BaCO₃ solids with a diluted HCl solution. The experimental procedures have been previously reported in detail [13].

The identification of the solid phases equilibrated with the mother solution was carried out by an X-ray method [14].

3. Results and Discussion

We have found that substrates in the investigated system react and the insoluble ammonium metavanadate(V) is produced. The similar effect was also observed in the research on the NaVO₃ [11] and KVO₃ [7] solubility in the aqueous solutions of ammonia without carbon dioxide.

Table 1

Time [h]	c(K) [mol·dm ⁻⁵]	$c(VO_3)$ [mol·dm ⁻³]	$c(NH_4)$ [mol·dm ⁻³]	$c(CO_2) [mol \cdot dm^{-3}]$			
$c(NH_3 init) = 0.1 \text{ mol} \cdot \text{dm}^{-3}$							
24	0.6938	0.5947	0.0334	0.1615			
48	0.7398	0.6304	0.0378	0.2310			
72	0.7772	0.6567	0.0670	0.1870			
96	0.8283	0.6922	0.0437	0.2003			
$c(NH_3 init) = 0.3 mol dm^{-3}$							
24	0.7189	0.4774	0.1440	0.1949			
48	0.7061	0.4268	0.1224	0.2645			
72	0.7501	0.4447	0.1282	0.2974			
96	0.7833	0.4710	0.1279	0.1926			
$c(NH_3 init) = 0.6 mol dm^{-3}$							
24	0.7649	0.3353	0.1737	0.2435			
48	0.8043	0.3577	0.1679	0.2356			
72	0.8923	0.3559	0.1798	0.2769			
96	0.8723	0.3357	0.1574	0.2850			

KVO₃ solubility in the KVO₃ + NH₃ + CO₂ + H₂O at 293K

202

As long as KVO_3 is the only salt remaining in an equilibrium with the solution, $[K^+] = [VO_3^-]$. When the first ammonium metavanadate(V) crystals are formed $[K^+] > [VO_3^-]$.

Analyses for K^+ , VO_3^- and NH_3 are necessary to characterize the system. The results of the chemical analyses of the solutions are presented in Tables 1 and 2.

Table 2

Time [h]	$c(K^{+})$ [mol·dm ⁻³]	$c(VO_3)$ [mol·dm ⁻³]	$c(NH_4^+)$ [mol·dm ⁻³]	$c(CO_2)$ [mol·dm ⁻³]			
$c(NH_3 init) = 0.1 \text{ mol} \cdot dm^{-3}$							
24	0.8668	0.8228	0.1096	0.1762			
48	0.8641	0.8291	0.1024	0.1269			
72	0.9404	0.8646	0.0863	0.1206			
96	0.9328	0.8453	0.0863	0.1276			
$c(NH_3 init) = 0.3 mol dm^{-3}$							
24	0.8839	0.6814	0.1634	0.2589			
48	0.9251	0.7227	0.1796	0.3073			
72	0.9370	0.7505	0.1446	0.2289			
96	0.9463	0.7127	0.1563	0.1844			
$c(NH_3 init) = 0.6 \text{ mol} \cdot dm^{-3}$							
24	0.9863	0.6331	0.1913	0.2032			
48	1.0358	0.6608	0.1913	0.2415			
72	1.0474	0.6705	0.1971	0.2739			
96	1.0330	0.6532	0.1913	0.2342			

KVO₃ solubility in the KVO₃ + NH₃ + CO₂ + H₂O at 303K

We found that the concentration of potassium ions in the equilibrated solutions rises with the increasing NH_3 concentration and time at the investigated temperature range.

The results also reveal that the KVO₃ solubility increases with the temperature elevation at the whole range of NH₃ concentrations in the solution.

Based on the experimental data, the ratio of KVO_3 conversion into NH_4VO_3 might be calculated according to the following ion concentration proportion

$$[K^{+}] - [VO_{3}^{-}] / [K^{+}]$$
(4)

The dependence of the conversion ratio of potassium metavanadate(V) into ammonium metavanadate(V) calculated from equation (4), on the initial NH_3 concentration, time and temperature is presented in Table 3. Analysis of these data shows that the conversion ratio of KVO₃ into NH_4VO_3 rises with the increase of NH_3 concentration and the time of thermostating. We found that the conversion ratio decreases with the increase of temperature.

The course of the density changes dependence on the initial NH₃ concentration and the time at both temperatures is presented in Figs 1 and 2.

The X-ray analysis of the solid phase revealed that for all the investigated samples, the precipitate remaining in equilibrium with the solution is a mixture of NH_4VO_3 and KVO_3 .

203 Table 3

c(NH ₃ init) [mol·dm ⁻³]	Time [h]	Conversion ratio
	T = 293 K	
	24	0.1428
0.1	48	0.1479
0.1	72	0.1551
	96	0.1643
	24	0.3359
0.2	48	0.3956
0.3	72	0.4072
	96	0.3986
	24	0.5617
0.6	48	0.5552
0.6	72	0.6012
	96	0.6153
·	T = 303 K	
	24	0.0507
0.1	48	0.0405
0.1	72	0.0806
	96	0.0938
	24	0.2291
0.2	48	0.2188
0.5	72	0.1990
	96	0.2469
	24	0.3581
	48	0.3621
0.6	72	0.3598
	96	0.3677

KVO₃ conversion ratio into NH₄VO₃

Fig. 1. Course of the density changes dependence on the initial NH₃ concentration and time at 293K: (•) $- 0.1 \text{ mol/dm}^3$, ($\mathbf{\nabla}$) $- 0.3 \text{ mol/dm}^3$, ($\mathbf{\Box}$) $- 0.6 \text{ mol/dm}^3$

Rys. 1. Zmiany gęstości roztworów w zależności od stężenia początkowego NH₃ i czasu w temperaturze 293K: $(\bullet) - 0,1 \text{ mol/dm}^3, (\mathbf{V}) - 0,3 \text{ mol/dm}^3, (\mathbf{I}) - 0,6 \text{ mol/dm}^3$

Fig. 2. Course of the density changes dependence on the initial NH₃ concentration and time at 303K: (•) $- 0.1 \text{ mol/dm}^3$, (\checkmark) $- 0.3 \text{ mol/dm}^3$, (\blacksquare) $- 0.6 \text{ mol/dm}^3$

Rys. 2. Zmiany gęstości roztworów w zależności od stężenia początkowego NH₃ i czasu w temperaturze 303K: (•) – 0,1 mol/dm³, ($\mathbf{\nabla}$) – 0,3 mol/dm³, ($\mathbf{\Box}$) – 0,6 mol/dm³

204

This work is supported by KBN grant 3T09B12428.

References

- [1] Trypuć M., Stefanowicz D., Kiełkowska U., Łyjak G., Torski Z., Sposób wytwarzania węglanu potasu, Patent PL 186 717.
- [2] Trypuć M., Torski Z., Białowicz K., Investigations on the influence of silicon dioxide introduced as a neutral carrier on V₂O₅ conversion into KVO₃, Polish Journal of Chemical Technology, 3 (1), 28, 2001.
- [3] Trypuć M., Białowicz K., Kiełkowska U., Torski Z., Mazurek K., Synthesis of KVO₃ from KCl and V₂O₅ in the Presence of Oxygen, Polish Journal of Chemical Technology, 3 (1), 33, 2001.
- [4] Trypuć M., Białowicz K., Mazurek K., Investigations on the synthesis of KVO₃ and Cl₂ from KCl and V₂O₅ in the presence of oxygen, Chemical Engineering Science, 59/6, 1241, 2004.
- [5] Trypuć M., Białowicz K., Mazurek K., Solubility in the $KVO_3 + KCl + H_2O$ System from 293K to 323K, Industrial Engineering Chemistry Research, 41 (17), 4174, 2002.
- [6] Trypuć M., Kiełkowska U., Solubility diagram for the system KHCO₃ + KVO₃ + H₂O at 293-323K, Fluid Phase Equilibria, 213, 81 2003.
- [7] Trypuć M., Białowicz K., Mazurek K., Solubility of KVO₃ in water + ammonia solutions from 293K to 323K, Industrial Engineering Chemistry Research, 43, 8403, 2004.
- [8] Trypuć M., Kiełkowska U., Solubility investigations in the NaVO₃ + + NH₄HCO₃ + NH₄VO₃ + NaHCO₃ + H₂O System, Polish Journal of Chemical Technology, 1, 40, 1999.
- [9] Trypuć M., Kiełkowska U., Solubility diagram for the system KHCO₃ + + KVO₃ + H₂O at 293-323K, Fluid Phase Equilibria, 213, 81, 2003.
- [10] Sandell, G. Colorimetric metal analysis, Interscience Publishers, New York 1959.
- [11] Trypuć M., Białowicz K., Solubility in the System $NaVO_3 + NH_4VO_3 + NH_3 + H_2O$ from 293K to 323K, Journal of Chemical and Engineering Data, 45, 492, 2000.
- [12] Trypuć M., Białowicz K., *Solubility of NH*₄VO₃ in Water + Ammonia, Journal of Chemical and Engineering Data, 42, 318, 1997.
- [13] Koneczny H., Trypuć M., Gulewicz K., Determination of CO₂ in product of soda industry, Przemysł Chemiczny 12, 691, 1964.
- [14] *Powder Diffraction File*, Joint Committee on Powder Diffraction Standards, USA, 1976.