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A b s t r a c t  

In this paper an analytical method of analyzing the flux density distribution in the air gap and the 
mathematical model for permanent magnet synchronous machines with non-uniform air gap are 
presented. The paper contains a way of calculating flux density distribution in the air gap for machine 
with eccentricity and shows the comparison results of calculation for simplified model and FEM. This 
approach is presented by an example of 3-phase PM synchronous machine. 
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S t r e s z c z e n i e  

W artykule przedstawiono analityczną metodykę analizy rozkładu pola w szczelinie powietrznej maszyny 
z magnesami trwałymi oraz model matematyczny dla maszyny synchronicznej z magnesami o niere-
gularnej szczelinie. W artykule zaprezentowano sposób obliczeń pola w szczelinie powietrznej maszyny 
z ekscentrycznym wirnikiem oraz podano wyniki obliczeń rozkładu pola w szczelinie powietrznej ma-
szyny uzyskane na podstawie modelowania w sposób uproszczony i metodą elementów skończonych 
(FEM). Podejście takie zostało przedstawione na przykładzie 3-fazowej maszyny synchronicznej z ma-
gnesami trwałymi. 
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Symbols 

Br –  residual flux density 
Hc  –  magnetic coercive force 
x –  angular position on stator surface 
ϕ –  rotor displacement 
y –  angular position on rotor surface (y = x – ϕ) 
lc  –  an equivalent length of a machine core 
ws –  total turn numbers of phase stator winding 

1.  Introduction 

In the paper the method creation of so called “circuit models” for diagnostic purpose of 
synchronous machines with permanent magnets (PM) located on the surface of the rotor is 
presented. It is very important for users to know mathematical model for diagnostic 
application, for example with taking into account slotting and rotor eccentricity, therefore 
that problem is discussed in the paper.   

This method uses Lagrange’s formalism and is based on obtained coil characteristics 
and the magnetic co-energy function of the whole system. Both of these cases require to 
know the flux density distribution in the air-gap of the machine. This problem can be 
solved by FEM or by simplified analysis. In this paper the simplified analysis of the flux 
density distribution in the air-gap of permanent magnet machines is proposed and applied.  

2.  Analytical description of flux density distribution in the air gap of PM machine 

2.1. Flux density distribution for model 1D 

Let us take into consideration, for example, a model of a synchronous machine with 
permanent magnets shown in Fig. 1. 

For this machine the consideration is done under the following assumptions:  
–  the stator and rotor iron have infinite permeability,  
–  the permanent magnets are mounted at the surface of the rotor,  
–  the equivalent length of the machine core is so long that magnetic field has the 2D form 

and only the radial component of the flux density is considered,  
–  the demagnetization characteristics of the magnets are linear (Fig. 2).   
This linear approximation of the PM characteristic is allowable for Rare Earth PM. 
Applying Ampere’s law around this closed path (solid line in Fig. 1)  
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where: 
 Hg(x, ϕ) –  magnetic field intensity in the air-gap at angle x, 
 Hm(x, ϕ) –  magnetic field intensity in the magnet,  
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 lg(x, ϕ) and lm(x – ϕ) –  substitutional functions of the line length of the magnetic 
field in the air-gap and permanent magnet respectively, 

 as(x) –  total ampere-turns at point x, 
 Θs(x) –  MMF of stator windings. 

 

 
Fig. 1. Model of a permanent magnet machine 

Rys. 1. Model maszyny z magnesami trwałymi 
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Fig. 2. Demagnetization characteristics of PM 

Rys. 2. Charakterystyka demagnesowania magnesów trwałych 

Assuming that the magnets have linear characteristic, it is possible to write formula for flux 
density in the magnet 
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Defining in addition the function of residual flux density which is similar to rectangular 
function of PM magnetization it is possible to take into account the proper sign of the 
residual flux density 

 )(sgn)( ϕ−=ϕ− xNSBxB rr  (3) 
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Fig. 3. Special function of residual flux density 

Rys. 3. Specjalna funkcja indukcji remanentu 

For the air-gap the flux density formula is as follows 

 ),(),( 0 ϕμ=ϕ xHxB gg  (4) 

Taking into consideration only radial components of flux density in the air-gap and PM  
(1D analysis) 

 ),(),(),( ϕ=ϕ=ϕ xBxBxB mg  (5) 

Introducing into consideration substitutional function of the length line of the magnetic 
field in PM l ′m(x – ϕ) 
 

l ′m 
l ′m(x – ϕ) 
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Fig. 4. Substitutional function of the line length of the magnetic field in PM 

Rys. 4. Zastępcza funkcja długości linii sił pola magnetycznego w magnesie 
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where value 
r

m
m

ll
μ

=′ , the function of permeance can be obtain as [2] 
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and, the flux density on the stator surface can be expresed as [2] 
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where 

 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

′ϕ′λ

′′Θμϕ′λ
−Θμϕλ=ϕ

∫

∫
π+

π+

Θ

xdx

xdxx
xxxB

x

x

s

x

x
s

),(

)(),(
)(),(),(

2

0

2

0  (8) 

 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

′ϕ′λ

′′ϕ−′ϕ′λ
−′ϕ−ϕλ=ϕ

∫

∫
π+

π+

2

2

)(

)()(
)()()( x

x

x

x
mr

mr

xdx

xdlxBx
lxBxxB

,

,
,,PM

 (9) 

 BΘ(x, ϕ) –  term of flux density produced by the stator MMF (classical form), 
 BPM(x, ϕ) –  term of flux density produced by the PM. 

For cylindrical symmetrical machine with smooth stator end rotor yoke (Fig. 5) and rare 
earth PM (P.U. value of permeability μr ≅ 1,03···1,08) 

 

 
Fig. 5. Cross section of a cylindrical PM machine with internal rotor 

Rys. 5. Przekrój poprzeczny cylindrycznej maszyny z magnesami trwałymi 
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formulas (8) and (9) can be modified and reduced to the forms 

 )()(),( 0 xxBxB sΘμλ==ϕ ΘΘ  (10) 
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2.2. Flux density distribution for model 2D 

Equations (8) and (9) present, the general expressions for the radial component of the 
flux density created on the base of 1D model analytical model. Zhu and Howe [5] proposed 
an analytical model prediction of the two-dimensional air gap field distribution )(2 ϕ−xB D

PM  
for PM machines with smooth cylindrical shape of stator and rotor joke (PM machine 
model – Fig. 5). Therefore, general solutions for the flux density distribution ),( ϕxBPM  
produced by permanent magnets for the points located on the stator surface (smooth 
machine with number of pole pairs p > 1) according to [5] has the form  
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and { }maxmax 5,3,,,3,5 ς−−−ς−= KK ppppppQ . 
Introducing into formula (9) the results of considerations (11) and (12) is possible to 
modify this expression to general form 
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Moreover, the effects of rotor eccentricity and stator slot openings on air gap field 
distribution may be added by introducing suitable air gape permeance function Λ(x, ϕ). 
Consequently, a 2D analytical model can be used to calculate field distribution in PM 
machine with real shape of air gap.    
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Assuming that geometry of the air-gap and magnets is represented in (14) by the 
permeance function 
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where sets M and N contain successive whole numbers }1,0,1{ maxmax mmM LL−−= ; 
}1,0,1{ maxmax nnN LL−−= , integrals in (14) can be written in following forms  
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3.  Mathematical model of a 3-phase PM synchronous machine 

Defining coil characteristics which formulate PM in an integral form in the magnetic 
circuit is the main problem of creating a mathematical model.  

Let consider these symmetrical coils a and b which are represented by their MMFs and 
angular positions of their symmetry axes xa and xb .  

 

 
Fig. 6. Location of two coils magnetizing an air-gap PM machine 

Rys. 6. Położenie dwóch uzwojeń magnesujących szczelinę powietrzną maszyny 

The MMFs of coils express by the Fourier series are done by the sets of harmonics 
order numbers { }maxmax 5,3,,,3,5 ν−−−ν−= KK ppppppP  and a winding factor ς

wk  of 
each harmonic. On the basis of (7) and formulas for coil characteristics [1] the linked flux 
for winding a is defined as follows  
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ws  is an equivalent turn number. 

The coil’s linked flux (18) has two components  
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where: 
 ψΘa –  the linked flux of winding a, produced by the stator MMF,  
 ψPMa –  the linked flux of winding a, produced by the PM. 
Assuming additionally that inductances are defined, what can be expressed for phase a as 
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Simplified approach, accounting for a radial component of flux density in the air-gap where 
),(),( ϕ=ϕ Θ xBxB , presented in [1] leads to an analytical expression for the mutual 
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where parameters Q1 and Q2 depend on the sets P, M, N and are defined as follow 
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Generally, a mutual inductance Lab is aproximated by a triple Fourier series  
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A self-inductance due to the main flux can be obtained by substituting xa = xb .  
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The linked flux of winding a ψPM a , produced by the PM can be also derived based on 
formula (18) for substitution B(x, ϕ) = BPM(x, ϕ). After mathematical transformations, it can 
be slightly modified to relation (21) and expressed as 
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where parameters D1 and D2 in (25) depend on the sets P, Q, M, N and are defined as 
follow 
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Generally, the linked flux of winding a produced by the PM ψPM a can be expressed by 
a triple Fourier series  
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For application of the Lagrenge’s formalism for the class of PM machines, it’s not only 
necessary to modify the characteristics of coil set but also co-energy function, in order to 
take into account the presence of PM in the machine magnetic circuit. Because the iron core 
has an infinite permeability, the conservation of energy of the magnetic field is only in the 
volume of the air-gap and permanent magnets, therefore, the co-energy expression can be 
described by 
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Using formal mathematical notation, for the most general case, the flux density distribution 
is in the form (7), (8) and (14), the co-energy function can be transformed and expressed as  

 Ec0(ϕ, i1 , i2 , i3) = E ′c0(ϕ, i1 , i2 , i3) + E ″(ϕ) (30) 

where the co-energy expression depending on the stator MMF can be obtained as 
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and the second component of the co-energy expression independent of the stator MMF has 
the form 
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Lagrange’s equations for 3-phase machines excited by permanent magnets can be written in 
the standard matrix form 
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The electromagnetic torque formula (34) includes reluctance torque Te , main torque Tm 
produced by interaction between the PM flux and stator currents, and also torque at zero 
current so called cogging torque Tcog produced by the tangential forces on the slot or pole 
walls. 

4.   Permeance function for PM machine with rotor eccentricity 

The geometry of the air-gap is represented in (8) and (14) by an air-gap permeance 
function which depends on air-gap geometry and especially a type of eccentricity. The 
permeance function of the air-gap is an inverse of the length of magnetic field force lines 
in the air-gap and PM. Good results for a smooth stator and rotor yoke can be obtained 
using the approach, which keeps perpendicular crossing of the boundary between iron and 
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air by magnetic field force lines. It is connected to an assumption that μr ≅ 1 what is 
appropriate approximation for the Rare Earth PM.  

 )(),()( ϕ−+ϕ=δ xlxlx mg  (35) 

 
Fig. 7. Simplified cross-sections of a motor with rotor eccentricities 

Rys. 7. Uproszczony przekrój maszyny z ekscentrycznym wirnikiem 

The length of a magnetic field force line in the air-gap and PM δ(x) are equal to the sum 
of segments AB and BC in Fig. 7 and is given by the formula  
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Fig. 8. Permeance calculation model 

Rys. 8. Model do wyznaczenia permeancji 
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Fig. 9. Illustration cases of rotor eccentricities 

Rys. 9. Ilustracja przypadków ekscentryczności 

The slots on the stator side modify locally the length of the magnetic field force lines in the 
air-gap.  

Then, correction value Δδs(x) should be added in respective places 
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These corrections can be determined using the conformal mapping approach as it is done 
for field calculations in a slot similar to Carter coefficient determination  
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where: 
 Δδmax(x) –  is calculated according to [6, 7], 
 bs –  is an equivalent slot opening,  
 xslot –  is a local variable over a slot; xslot ∈ (0, bs). 
An equivalent air-gap length δc(x, ϕ) can be locally determined for any rotor position angle ϕ. 
Then, it creates a function of two variables x and ϕ, which is periodic with respect to each 
of them. Inverse values give the permeance function.  
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For the static eccentricity de = ds , dd = 0, γe = γ = const this function can be written as  
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For dynamic eccentricity de = dd , ds = 0, γe = ϕ + χ it takes the form 

 ∑
∈

χ−ϕ−
−Λ=ϕ−Λ=ϕΛ
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and only for mixed eccentricity where ds ≠ 0, dd ≠ 0, γ = const and de = d(ϕ) = 

)cos(222 γ−ϕ++= dsds dddd ; ⎟⎟
⎠

⎞
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γ−ϕ=γ )sin(arcsin
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d
e d

d  for de ≠ 0 is given by a double 

series 
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The permeance function, can be represented by the double Fourier series. The Fourier 
coefficients Λm, n , can be obtained by the 2D FFT algorithm. It should be noted, that the 
permeance function depends on two variables x and ϕ only at dynamic and mixed 
eccentricities, whereas for an even slotted stator and a smooth rotor yoke the permeance 
function for symmetry case and static eccentricity depends periodically on one variable.  

5.  The comparison with the FEM results 

The analytical model developed in this paper was compared with FEM computation. 
As an example, the calculations of flux density distribution in case of symmetry and rotor 
eccentricity of the PM synchronous machine  SGPM with rated values: PN = 2,5 kW,  
UN = 230 V, IN = 7,67 A, p = 3, nN = 1000 rpm have been carried out. Necessary data for 
computation were fixed on the base of design data. For this machine the geometrical 
dimensions and parameters of permanent magnets and air gap are following: lg = 3 mm,  
lm = 11 mm, rs = 66 mm, β = 22° (0,38 rd), Br = 1,06 T, Hc = 720 kA/m. 

For the PM machine with above parameters, the calculations of flux density distribution 
are presented in the figures bellow. The FEM computations have been done using the 
MAGNET software. Computations have been led at current-less state of the PM machine 
with smooth stator for case symmetry and rotor dynamic eccentricity. The level of 
eccentricity was 66%, it means that the relation between the symmetry, when length of  
air-gap over PM was 3 mm, in case of the eccentricity minimum air-gap was 1 mm.   

Solid line – FEM flux density distribution 
Dashed line – results obtained from the simplified model of the flux density distribution 
The FEM cross section of the considered PM machines are shown in Figs 10 and 11.  
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Fig. 10. FEM calculation for symmetrical machine 

Rys. 10. Obliczenia polowe dla maszyny symetrycznej 

 
Fig. 11. FEM calculation for machine with rotor eccentricity 

Rys. 11. Obliczenia polowe dla maszyny z ekscentrycznością 

The effects of flux density distribution in the air gap for various coil angles obtained 
from FEM computations compared with effects obtained from simplified analysis are 
illustrated in Figs 12 and 13. 
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Fig. 12. Flux density distribution at stator surface for case of air-gap symmetry 

Rys. 12. Rozkład pola magnetycznego na powierzchni stojana dla symetrii szczeliny powietrznej 
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Fig. 13. Flux density distribution at stator surface for case rotor dynamic eccentricity 

Rys. 13. Rozkład pola magnetycznego na powierzchni stojana dla przypadku 
ekscentryczności dynamicznej wirnika 

This computation presented above shows a good agreement of the FEM analysis with 
the analytical calculation.  

6.  Conclusion 

A method of modeling permanent magnet motors has been developed in this paper. The 
model is based on the co-energy function and magnetic field density in the machine air-gap. 
The model allows the calculation of such effects as rotor eccentricity, cogging torque and 
other word effects usually neglected in commonly used analytical models. The model 
reduce the necessity of using the FEM analysis and described the PM machine by a very 
simple but precise way.  
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