

z. 1-E/2007 ISSN 0011-4561 ISSN 1897-6301

EUGENIUSZ KORZYCKI, PIOTR MAZUREK, HENRYK ŚWIĄTEK, KRZYSZTOF ZYMMER'

UWARUNKOWANIA I ZALETY STOSOWANIA W TRAKCJI ELEKTRYCZNEJ 18- I 24-PULSOWYCH ZESPOŁÓW PROSTOWNIKOWYCH

MULTIPULSE (18 AND 24) PULSES RECTIFIER SETS FOR ELECTRIC TRACTION DC SUPPLY SYSTEMS THE ADVANTAGES AND CONDITIONS

Streszczenie

W niniejszym artykule opisano rozwiązania układowe wielopulsowych (12-, 18- i 24-pulsowych) zespołów prostownikowych o optymalnych układach prostowniczych. Podano powody warunkujące potrzebę stosowania i możliwości wykonawcze takich zespołów z podstawowym przeznaczeniem dla potrzeb trakcji elektrycznej (PKP - 3,3 kV DC, metro - 825 V DC, tramwaj - 660 V DC). Przedstawiono przykładowe obliczenia współczynnika odkształcenia krzywej napięcia – THD_{μ} oparte na danych typowych zespołów prostownikowych stosowanych aktualnie w trakcji kolejowej (PKP) i miejskiej (tramwaj, metro). Zamieszczono przebiegi współczynnika - THD_u w funkcji mocy zwarciowej – S_c linii zasilającej podstacje trakcyjne o różnej liczbie zespołów prostownikowych, a także o różnym ich obciążeniu.

Słowa kluczowe: podstacje trakcyjne, energoelektronika, wielopulsowe zespoły prostownikowe

Abstract

Configurations of multipulse rectifier sets (12, 18, 24 pulses) with optimum solution of rectifiers are presented in the paper. The reasons of applying multipulse rectifiers for the railway -3,3 kV DC, underground - 825 V DC, tram - 660 V DC supply systems are also quoted. Examples of calculation of total harmonic distortion voltage THD_u , based on data of the typical rectifier sets are presented. These rectifiers are actually in operation in DC supply systems of trams, underground and railway. The total harmonic distortion as a function of the short circuit power of the power supply line $-S_c$ and as a function of the load current is presented in this paper too.

Keywords: traction substations, power electronics, multipulse rectifier sets

Mgr inż. Eugeniusz Korzycki, mgr inż. Piotr Mazurek, mgr inż. Henryk Świątek, dr hab. inż. Krzysztof Zymmer, Instytut Elektrotechniki, Warszawa.

1. Wstęp

Powszechnie wiadomo, że przekształcanie napięcia przemiennego w napięcie jednokierunkowe, wyprostowane przez zespoły prostownikowe, związane jest z powstawaniem wyższych harmonicznych zarówno po stronie zasilania, jak i odbioru. I tak po stronie napięcia wyprostowanego, tj. w sieci trakcyjnej, harmoniczne te występują w postaci napięć przemiennych rzędu (n_u) i częstotliwościach (f_{hu}), zaś po stronie zasilania, tj. w sieci energetycznej, w postaci prądów przemiennych rzędu (n_i) i częstotliwościach (f_{hi}), przy czym [1]

$$n_u = m \cdot p \tag{1a}$$

$$n_i = mp \pm 1 \tag{1b}$$

$$f_{hu} = n_u \cdot fs \tag{2a}$$

$$f_{hi} = n_i \cdot fs \tag{2b}$$

gdzie:

 f_s – częstotliwość napięcia zasilania,

p – wskaźnik tętnienia napięcia wyprostowanego,

m – dowolna liczba całkowita (m = 1, 2, 3, ...).

Liczba i wartość tych harmonicznych podstawowo zależna od konfiguracji układu prostowniczego, nominalnej mocy i napięcia zwarcia transformatora prostownikowego oraz wartość obciążenia danego zespołu jest szczegółowo opisana w literaturze technicznej. Natomiast szkodliwość oddziaływania harmonicznych prądu i napięcia jest różna i zależy od wielu parametrów technicznych sieci oraz rodzaju ewentualnych obiektów zakłócanych. Zakresy i dopuszczalne wartości tego szkodliwego oddziaływania określane są odpowiednimi współczynnikami zawartymi w obowiązujących międzynarodowych normach (EN, IEC) lub krajowych resortowych zarządzeniach czy przepisach. W odniesieniu do sieci zasilającej podstawowym tego rodzaju współczynnikiem jest odkształcenie sinusoidalnego przebiegu krzywej napięcia zasilania (THD_u), zaś do sieci trakcyjnej współczynnik wygładzenia napięcia wyprostowanego (U_{wn}) [2, 3].

W celu znaczącego ograniczenia zawartości wyższych harmonicznych w sieci zasilającej i trakcyjnej, jak również zminimalizowania obecności wielu niecharakterystycznych harmonicznych proponujemy stosowanie zarówno w trakcji kolejowej (PKP), jak i miejskiej (metro, tramwaj, trolejbus) wielopulsowych zespołów prostownikowych o optymalnych 18- i 24-pulsowych układach prostowniczych.

Przeprowadzone przez nas analizy techniczno-ekonomiczne oraz symulacje komputerowe potwierdzają przytoczoną powyżej propozycję jako technicznie realną oraz ekonomicznie celową i opłacalną [4, 5].

2. Optymalne rozwiązania układowe wielopulsowych zespołów prostownikowych

Opracowane w Zakładzie Przekształtników Mocy Instytutu Elektrotechniki wielopulsowe (12-, 18- i 24-pulsowe) zespoły prostownikowe o optymalnych układach prostowniczych są jakościowo nowymi zespołami w odróżnieniu od innych proponowanych rozwiązań [6, 7], a podstawowo przeznaczone dla potrzeb trakcji elektrycznej (PKP - 3,3 kV DC, metro - 825 V DC i tramwaj - 660 V DC).

Pod pojęciem optymalny układ prostowniczy wielopulsowego zespołu prostowniczego rozumiemy taki układ, który jest złożony z odpowiednio skojarzonych układów 6-pulsowych. Układ taki, w odróżnieniu od układów wielofazowych (o kącie przewodzenia elementów prostowniczych zależnym od liczby faz pojedynczego układu), charakteryzuje się stałym kątem przewodzenia, jednakowym dla wszystkich przyrządów półprzewodnikowych, równym 120°el., niezależnie od liczby pulsów w napięciu wyprostowanym. Oznacza to, że każdy taki wielopulsowy zespół prostowniczy, w zależności od wielkości napięcia i pradu wyprostowanego będzie się składał z szeregowo, równolegle lub szeregowo-równolegle połączonych po stronie napięcia wyprostowanego, podstawowych 6-pulsowych układów prostowniczych. Prostowniki tych układów o konfiguracji mostków 3-fazowych zasilane są z oddzielnych galwanicznie niezależnych uzwojeń wtórnych transformatora prostownikowego.

Wymagane dla tych układów 30, 20 i 15 stopniowe wzajemne przesunięcia wektorów napięć zasilających 3-fazowe mostki układów 6-pulsowych mogą być dokonywane po wtórnej lub pierwotnej albo po wtórnej i pierwotnej stronie transformatora prostownikowego.

Prawidłowa praca takich wielopulsowych zespołów prostownikowych wymaga, aby napięcia międzyprzewodowe i napięcia zwarcia dla wszystkich uzwojeń wtórnych ich transformatora były praktycznie jednakowe, tzn. przy zachowaniu wymaganej tolerancji dla przekładni napięciowej transformatora wynoszacej ±0,5% wartości zadeklarowanej lub wymaganej (PN-EN 60076-1, transformatory, wymagania ogólne). Spełnienie takiego wymagania dla zespołów prostownikowych o optymalnych układach prostowniczych bedzie możliwe, jeżeli uzwojenie pierwotne transformatora prostownikowego będzie się składać z takiej samej liczby części, jak uzwojenie wtórne, tzn. dwóch dla układu 12-pulsowego, trzech dla układu 18-pulsowego i czterech dla układu 24-pulsowego. Ponadto każda taka cześć uzwojenia pierwotnego bedzie mieć jednakowe napiecie zasilania (np. 15 kV) przy mocy odpowiednio równej 1/2, 1/3, 1/4 mocy znamionowej transformatora prostownikowego danego wielopulsowego zespołu prostownikowego o optymalnym układzie prostowniczym.

3. Potrzeba opracowania i możliwości wykonawcze wielopulsowych zespołów prostownikowych

Technicznie zasadna potrzeba opracowania przez nas optymalnych rozwiązań układowych dla wielopulsowych (12-, 18- i 24-pulsowych) zespołów prostownikowych oraz świadomość możliwości wykonawczych tego rodzaju zespołów była następstwem wymienionych poniżej uwarunkowań, a mianowicie:

1. Dotychczasowe i przewidywane przyszłościowe, rygorystycznie przestrzegane przez energetyke, wymagania nieprzekroczenia dopuszczalnej lub przyjętych w szczególności dla dużych aglomeracji wartości współczynnika odkształcenia krzywej napiecia (THD_u) oraz wielkości poszczególnych harmonicznych dla określonych sieci (WN i ŚN) energetycznych zasilających zespoły prostownikowe. Wynika to ze stosunkowo dużych sumarycznych mocy zainstalowanych na podstacjach trakcyjnych zespołów prostownikowych w porównaniu z mocami zwarciowymi energetycznych linii zasilających w miejscu przyłączenia tych zespołów.

- 2. Wymagania eksploatatorów trakcyjnych zespołów prostownikowych dotyczące przede wszystkim wielkości niezbędnej mocy znamionowej przy jednoczesnym dotrzymywaniu uzgodnionych przeciążalności prądowych oraz zachowaniu wymaganych normą wielkości pulsacji i wahań napięcia wyprostowanego dla różnych czasów trwania obciążenia i przeciążenia tych zespołów. Wymagania te są konsekwencją stosowania nowoczesnych i o większej mocy pojazdów trakcyjnych, np. na liniach PLK przewidzianych do jazdy z prędkością do 200 km/h.
- 3. Możliwości techniczne oraz otwartość krajowych producentów transformatorów, a w szczególności Zakładu EV Żychlińskie Transformatory Sp. z o.o. na produkcję specjalnych wielouzwojeniowych transformatorów prostownikowych zarówno w wykonaniu olejowym, jak i suchym.
- 4. Aktualna dostępność rynkowa pastylkowych diod mocy o dużych prądach znamionowych ($I_{F(AV)}$ ponad 5 kA) i wysokich napięciach pracy (U_{RRM} do 5 kV) umożliwiająca budowę prostowników diodowych o dużej mocy (kilku MW) i napięciu wyprostowanym (ponad 3 kV – PKP) bez konieczności stosowania równoległych i szeregowych połączeń diod, a zatem niewymagających ich selekcji do tego rodzaju pracy, a więc i tańszych.

Dla omawianych wielopulsowych zespołów prostownikowych, oprócz problemów wykonawczych transformatorów prostownikowych o odpowiednich konfiguracjach ich uzwojeń, istnieje podobny problem z budową przystosowanych do nich prostowników diodowych, zapewniających i umożliwiających kontrolę wymaganej równomierności obciążania się równolegle połączonych podstawowych 6-pulsowych układów prostowniczych. Uważamy ponadto, że prostowniki dla tych zespołów powinny być budowane z zastosowaniem opracowanych przez nas rozwiązań konstrukcyjnych wprowadzonych do bezawaryjnie pracujących zespołów prostownikowych [8]. Rozwiązania te polegają na:

- rozdzieleniu toru prądowego od toru cieplnego w module diodowym,
- wyeliminowaniu sztywnych połączeń modułów diodowych z izolacyjną konstrukcją wsporczą oraz oszynowaniem prostownika (R, S, T, +, -),
- zastosowaniu podwójnej izolacji elektrycznej elementów prostownika znajdujących się na wysokim potencjale w stosunku do uziemionej jego metalowej obudowy.

4. Kryteria wyboru wielopulsowych zespołów prostownikowych dla potrzeb trakcji elektrycznej

Z przeprowadzonych przez nas analiz dotyczących formalnie zasadnej potrzeby stosowania w trakcji elektrycznej 18- lub 24-pulsowych zespołów prostownikowych wynika, że podstawowe wstępne kryterium wyboru powinny stanowić obliczenia określające zawar-

tość wyższych harmonicznych prądu $\left(\sum_{p} I_{h}\right)$ w sieci energetycznej i napięcia $\left(\sum_{p} U_{h}\right)$

w sieci trakcyjnej. Natomiast podstawowym, decydującym kryterium tego wyboru powinny być konkretne dla danej trakcji (podstacji trakcyjnej) i linii zasilającej obliczenia współczynnika odkształcenia krzywej napięcia zasilającego (THD_u) oraz wartości napięć

pierwszych harmonicznych ($U_{h(ni=17)}$, $U_{h(ni=23)}$) i wartości pulsacji napięcia wyprostowanego ($U_{h(nu-max)} - U_{h(nu-min)}$) w sieci trakcyjnej. Porównanie tych wyników z odpowiednimi wartościami dopuszczalnymi określonymi w normach lub przyjętymi przez energetykę czy trakcję wymaganiami eksploatacyjnymi stanowić będzie podstawę do wyboru rodzaju wielopulsowego zespołu prostownikowego.

Pod pojęciem zawartości wyższych harmonicznych prądu w sieci energetycznej czy napięcia w sieci trakcyjnej z technicznie uzasadnioną dokładnością przyjęliśmy sumę geometryczną charakterystycznych (h_{ch}) i niecharakterystycznych (h_{nch}) harmonicznych do 55 rzędu, występujących dla rozpatrywanego wielopulsowego zespołu prostownikowego. I tak zawartość tych harmonicznych określamy następującymi zależnościami:

dla harmonicznych prądu

$$\sum_{p} I_{h} = \sqrt{\sum_{p} (I_{h_{ch}})^{2} + \sum_{p} (W_{i} \cdot I_{h_{nch}})^{2}}$$
(3)

dla harmonicznych napięcia

$$\sum_{p} U_{h} = \sqrt{\sum_{p} \left(U_{h_{ch}} \right)^{2} + \sum_{p} \left(W_{u} \cdot U_{h_{ach}} \right)^{2}}$$
(4)

przy czym

$$I_{h} = \frac{I_{h\%}}{100} I_{1L}$$
(5)

$$U_{h} = \frac{U_{h\%}}{100} U_{do}$$
(6)

gdzie:

- $I_{h\%}$, $U_{h\%}$ procentowa wartość prądu, napięcia harmonicznej określana podanymi w normie PN-IEC 146-1-2 zależnościami, które uwzględniają kąt komutacji i rząd harmonicznej ($h \leftrightarrow n_i, n_u$),
- W_i, W_u współczynnik udziału niecharakterystycznej harmonicznej prądu, napięcia dla rozpatrywanego wielopulsowego (p = 12, 18, 24) zespołu prostownikowego, przy czym dla układu prostowniczego nieoptymalnego zgodnie z sugestiami przytoczonymi w normie PN-IEC 146-1-2 przyjęliśmy $W_i = 0,15, W_u = 0,05$, natomiast dla opisanego powyżej układu prostowniczego optymalnego – na podstawie przeprowadzonych analiz komputerowych określających procentową zawartość poszczególnych harmonicznych niecharakterystycznych dla rozpatrywanych zespołów o optymalnych układach prostowniczych wynika, że jest ona o ponad połowę mniejsza od porównywalnych tego typu zespołów o nieoptymalnych układach prostowniczych, tzn. niespełniających przytoczonych powyżej wymagań wykonawczych i rozwiązań konstrukcyjnych – przyjęliśmy $W_i = 0,07, W_u = 0,02$,
- *I*_{1L} prąd w linii zasilającej dany zespół prostownikowy o określonym obciążeniu,
- obliczeniowa wartość napięcia wyprostowanego dla danego zespołu prostownikowego o określonym obciążeniu.

100

Z przeprowadzonej analizy przebiegów zawartości harmonicznych w funkcji kąta komutacji dla typowych warunków pracy aktualnie eksploatowanych w trakcji elektrycznej zespołów prostownikowych wynika, że o wyborze jego rodzaju (p, W_i, W_u) dla potrzeb danej trakcji elektrycznej decydującym kryterium będą obliczenia współczynnika odkształcenia krzywej napięcia (THD_u) linii zasilającej rozpatrywaną podstację trakcyjną z danymi zespołami prostownikowymi. Natomiast pomocnicze kryterium mogą stanowić obliczenia procentowych wartości pierwszych harmonicznych charakterystycznych (U_{h1ch}) % dla rozpatrywanych zespołów prostownikowych o pulsacji (p), tj. dla: $p = 12 - U_{11\%}$; $p = 18 - U_{17\%}$; $p = 24 - U_{23\%}$.

Zgodnie z normą PN-IEC 146-1-2 skuteczna wartość fazowego napięcia harmonicznych dla danej linii zasilającej określona jest następującą zależnością

$$U_{fh} = \frac{U_{LN}}{\sqrt{3}} \cdot \frac{S_{1L}}{S_c} \cdot \frac{I_h}{I_{1L}} \cdot k_{hL}$$
(7)

przy czym

$$k_{hL} = \sqrt{\frac{1 + \frac{1}{(Q_s \cdot Q_p)^2} + \frac{1}{(h \cdot Q_s)^2}}{\frac{1}{Q_p^2} + \frac{1}{h^2}}}$$
(8)

$$Q_s = \frac{X_s}{R_s} = (8-12)$$
 jw. (9)

$$Q_p = \frac{R_p}{X_s} = (80 - 120) \text{ jw.}$$
 (10)

gdzie:

- S_c moc zwarciowa linii zasilającej,
- U_{LN} znamionowe napięcie linii zasilającej,
- S_{1L}^{III} moc zespołu prostownikowego odpowiadająca prądowi I_{1L} , X_s reaktancja rozproszenia głównego transformatora systemu zasilania,
- R_s szeregowa rezystancja układu zasilania odpowiadająca stratom mocy w obciażeniu,
- równoległa rezystancja układu zasilania odpowiadająca stratom mocy w sta- R_n nie jałowym,
- rząd harmonicznej prądu określany zależnością (1b). h

W przytoczonych poniżej przykładowych obliczeniach wielkości napięć harmonicznych (U_{fh}) dla wielopulsowych trakcyjnych zespołów prostownikowych przyjęto średnie wartości parametrów linii zasilającej, tj. $Q_s = 10$ i $Q_p = 100$ określające wartości współczynnika – k_{hL} dla poszczególnych harmonicznych (od $n_i = 5$ do $n_i = 55$).

Natomiast zgodnie z normą PN-IEC 1000-2-2 wartość rygorystycznie przestrzeganego przez energetykę współczynnika odkształcenia krzywej napięcia (THD_{*u*}) linii zasilającej klasy 1 i 2 określana jest następującą zależnością

$$\text{THD}_{u} = \frac{\sqrt{\sum_{h_{d}}^{h_{g}} U_{h}^{2}}}{U_{1L}} \cdot 100 \tag{11}$$

gdzie:

 h_d , h_g – rząd dolnej, górnej granicy sumowania harmonicznych – U_h ,

 U_{1L} – skuteczna wartość napięcia linii zasilającej.

Uwzględniając przyjęty przez nas sposób określania zawartości harmonicznych prądu w linii zasilającej dany zespół prostownikowy (3), a także zależności (7) i (11) oraz obliczeniową wielkość współczynnika odkształcenia napięcia (THD_u) linii zasilających, rozpatrywane wielopulsowe trakcyjne zespoły prostownikowe będzie można określić na podstawie następującej zależności

$$\text{THD}_{u} = \frac{100 \cdot \sqrt{3}}{U_{LN}} \sqrt{\sum_{p} (U_{fh_{ch}})^{2} + \sum_{p} (W_{i} \cdot U_{fh_{nch}})^{2}}$$
(12)

przy czym dla zespołów o pulsacji p:

$$p = 12; \quad \frac{h_{ch} - h_d = 11; h_g = 49}{h_{nch} - h_d = 5; h_g = 55}$$

$$p = 18; \quad \frac{h_{ch} - h_d = 17; h_g = 55}{h_{nch} - h_d = 5; h_g = 49}$$

$$p = 24; \quad \frac{h_{ch} - h_d = 23; h_g = 49}{h_{nch} - h_d = 5; h_g = 55}$$

Rzędy harmonicznych niecharakterystycznych (*nch*) dla omawianych zespołów o pulsacji p = 12, 18, 24 stanowią odpowiednie rzędy harmonicznych charakterystycznych dla składowych zespołów 6-pulsowych.

5. Obliczenia współczynnika THD_u dla wielopulsowych zespołów prostownikowych typowych dla danej trakcji elektrycznej (kolej, metro, tramwaj)

Przytoczone poniżej przykładowe obliczenia wielkości współczynników odkształcenia krzywej napięcia – THD_u linii średniego napięcia (U_{LN} = 15 kV) mających zasilać wielopulsowe (12, 18, 24) zespoły prostownikowe przeznaczone dla trakcji kolejowej i miejskiej (metro, tramwaj) zostały przeprowadzone na podstawie danych technicznych eksploatowanych aktualnie przez te trakcje 12-pulsowych zespołów prostownikowych. I tak dla:

 trakcji kolejowej – dane zespołów typu ZP-1,7/3,3 ŚN zasilających sieć trakcyjną linii szybkiego ruchu (E20),

Ryc. 1a. Wykresy współczynnika odkształcenia napięcia (THD_{*u*}) w funkcji mocy zwarciowej (S_c) linii zasilającej (SN-15kV) 1×ZP-1,7/3,3; $I_d = I_{dN} = 1700$ A; kpp – III

Fig. 1a. Diagrams of the voltage distortion factor (THD_{*u*}) versus short-circuit power of the power supply line (S_c) (SN-15kV) 1×ZP-1,7/3,3; $I_d = I_{dN} = 1700$ A; kpp – III

Ryc. 1b. Wykresy współczynnika odkształcenia napięcia (THD_u) w funkcji mocy zwarciowej (S_c) linii zasilającej (SN-15kV) 2×ZP-1,7/3,3; $I_d = 3/4 I_{dN} = 1275$ A; kpp – III; $I_{dN} = 1700$ A

Fig. 1b. Diagrams of the voltage distortion factor (THD_u) versus short-circuit power of the power supply line (*S_c*) (SN-15kV) 2×ZP-1,7/3,3; *I_d* = 3/4 *I_{dN}* = 1275 A; kpp – III; *I_{dN}* = 1700 A

kyc. 2a. wykresy wspołeżynnika odksztarcenia napięcia (1HD_u) w funkcji mocy zwarciowej (S_c) linii zasilającej (SN-15kV) $2 \times ZP-2,4/0,825$; $I_d = 3/4 I_{dN} = 1800$ A; kpp – III

Fig. 2a. Diagrams of the voltage distortion factor (THD_u) versus short-circuit power (S_c) of the power supply line (SN-15kV) 2×ZP-2,4/0,825; $I_d = 3/4 I_{dN} = 1800 \text{ A}$; kpp – III

Ryc. 2b. Wykresy współczynnika odkształcenia napięcia (THD_{*u*}) w funkcji mocy zwarciowej (S_c) linii zasilającej (SN-15kV) 3×ZP-2,4/0,825; $I_d = 1/2 I_{dN} = 1200$ A; kpp – III

Fig. 2b. Diagrams of the voltage distortion factor (THD_u) versus short-circuit power (S_c) of the power supply line (SN-15kV) 3×ZP-2,4/0,825; $I_d = 1/2 I_{dN} = 1200$ A; kpp – III

Ryc. 3a. Wykresy współczynnika odkształcenia napięcia (THD_{*u*}) w funkcji mocy zwarciowej (S_c) linii zasilającej (SN-15kV) 3×ZP-1,6/0,66; $I_d = 3/4 I_{dN} = 1200$ A; $W_j = 0,15$

Fig. 3a. Diagrams of the voltage distortion factor (THD_u) versus short-circuit power (S_c) of the power supply line (SN-15kV) 3×ZP-1,6/0,66; $I_d = 3/4 I_{dN} = 1200$ A; $W_j = 0,15$

Ryc. 3b. Wykresy współczynnika odkształcenia napięcia (THD_{*u*}) w funkcji mocy zwarciowej (S_c) linii zasilającej (SN-15kV) 3×ZP-1,6/0,66; $I_d = I_{dN} = 1600$ A; $W_i = 0,15$

Fig. 3b. Diagrams of the voltage distortion factor (THD_u) versus short-circuit power (S_c) of the power supply line (SN-15kV) 3×ZP-1,6/0,66; $I_d = I_{dN} = 1600$ A; $W_j = 0,15$

- trakcji komunikacji miejskiej:
 - metro dane zespołu typu ZP-2,4/0,825 instalowanych na podstacjach trakcyjnych II etapu budowy metra (od podstacji Ratusz),
 - tramwaj dane zespołu typu ZP-1,6/0,66 instalowanych aktualnie na modernizowanych i przewidywanych w przyszłości dla linii szybkiego tramwaju.

THDu [%]

2.8

Wyniki z przeprowadzonych obliczeń wielkości tego współczynnika w zależności od wielkości mocy zwarciowej (S_c) linii zasilających te zespoły oraz liczby pracujących na podstacji trakcyjnej tych zespołów oraz różnych ich obciążeń (I_d) w formie graficznej przedstawiono na rycinach:

- 1a, b dla trakcji kolejowej,
- 2a, b dla trakcji miejskiej metro,
- 3a, b dla trakcji miejskiej tramwaj.

Ryc. 4a. Wykresy współczynnika THD_u w funkcji prądu I_d przy $S_c = \text{const}, p = 12;$ $1 \times \text{ZP-1}, 7/3, 3; I_{dN} = 1700\text{A}; III \text{ kp}$

Fig. 4a. Diagrams of the THD_u factor versus the I_d current at $S_c = \text{const}$, p = 12; $1 \times \text{ZP-1}$, 7/3, 3; $I_{dN} = 1700$ A; III kp

Klasa 2 (8/3) 3xZP-1,7/3,3 2.6 Klasa 1 (5/2) 2xZP-1.7/3.3 2,4 2,2 Sc = c 2,0 1,8 (5/3) 3xZP-1,7/3,3 1,6 1,4 1,2 1,0 0,8 0.6 0,4 0.2 0.0 0,5 1,5 Id [kA] 2 1

Ryc. 4b. Wykresy współczynnika THD_u w funkcji prądu I_d przy S_c = const, p = 24; 1×ZP-1,7/3,3; I_{dN} = 1700A; III kp

Fig. 4b. Diagrams of the THD_u factor versus the I_d current at $S_c = \text{const}$, p = 24; $1 \times \text{ZP-1}, 7/3, 3$; $I_{dN} = 1700\text{A}$; III kp

I tak na:

– rycinie 1a wykreślono przebiegi współczynnika THD_u = $f(S_c)$ dla pierwszego zespołu o pulsacji p = 12, 18, 24, o optymalnym i nieoptymalnym układzie prostowniczym oraz znamionowym obciążeniu dla wymaganej III klasy przeciążalności prądowej (kpp), tj. $Id_N = 1700$ A, zaś na ryc. 1b – dla dwóch zespołów o obciążeniu każdego z nich prądem $I_d = 3/4$ $Id_N = 1250$ A,

- rycinie 2a wykreślono analogiczne przebiegi THD_u = $f(S_c)$ dla dwóch zespołów o obciążeniu każdego z nich wynoszącego 3/4 znamionowego prądu Id_N = 2400 A dla wymaganej III kpp, tj. I_d = 3/4 Id_N = 1800 A,
- rycinie 2b dla trzech zespołów o obciążeniu każdego z nich prądem $I_d = 1/2$ $Id_N = 1200$ A,
- rycinie 3a, wykreślono analogiczne przebiegi $\text{THD}_u = f(S_c)$ dla trzech zespołów o obciążeniu każdego z nich wynoszącego 3/4 znamionowego prądu $Id_N = 1600$ A dla wymagań V kpp, tj. $I_d = 3/4$ $Id_N = 1200$ A,
- rycinie 3b wykreślono analogiczne przebiegi THD_u = $f(S_c)$ dla trzech zespołów o obciążeniu każdego z nich prądem $I_d = Id_N = 1600$ A.

Na rycinach podano minimalne wartości mocy zwarciowej ($S_{c \min}$) linii zasilającej (ŚN-15 kV) podstacje trakcyjne wyposażone w aktualnie pracujące zespoły prostownikowe, tj. o p = 12 i $W_i = 0,15$, wyznaczone dla dopuszczalnych wartości współczynnika THD_u dla 1 i 2 klasy tej linii, tj. THD_u = 8% – klasa 2 i THD_u = 5% – klasa 1.

Dodatkowo dla zespołu trakcji kolejowej mającego największe obliczeniowe wartości współczynnika THD_u przykładowo na ryc. 4a i 4b wykreślono jego przebiegi THD_u = $f(I_d)$ przy S_c = const dla pierwszego 12- i 24-pulsowego zespołu prostownikowego o wykonaniu optymalnym (W_i = 0,07) i nieoptymalnym (W_i = 0,15). Ponadto na rycinie tej oznaczono dopuszczalne wartości współczynnika THD_u dla 1 i 2 klasy linii zasilającej ŚN odpowiadające pracy 1, 2 lub 3 rozpatrywanych zespołów prostownikowych.

6. Zalety stosowania w trakcji elektrycznej 18- i 24-pulsowych zespołów prostownikowych o optymalnych układach prostowniczych

Stosowanie w trakcji elektrycznej (PKP, metro, tramwaj) 18- i 24-pulsowych zespołów prostownikowych daje wiele korzyści:

- Zespoły te w istotny sposób ograniczają wielkości niecharakterystycznych harmonicznych zarówno po stronie zasilania, jak i odbioru, a tym samym charakteryzują się zmniejszonym szkodliwym oddziaływaniem na współpracujące z nimi sieci, tj. zasilających energetyczną i odbiorczą trakcyjną.
- 2. W odniesieniu do trakcji kolejowej zbędne jest stosowanie dla takich zespołów urządzeń wygładzających (rezonansowych lub typu gamma) w celu zapewnienia nieprzekraczal-ności dopuszczalnego równoważnego napięcia zakłócającego wynoszącego 0,5% zna-mionowego napięcia wyprostowanego, tj. 16,5 V.
- 3. W odniesieniu do trakcji miejskiej (metro, tramwaj, trolejbus), dla której stosowane będą 18- bądź 24-pulsowe zespoły o równoległych połączeniach składowych 6-pulsowych układów prostowniczych, zbędne będzie stosowanie dodatkowych kosztownych i zwiększających straty dławików wyrównawczych. Będzie to możliwe dzięki temu, że transformatory prostownikowe tych zespołów mają pełną separację galwaniczną poszczególnych grup 3-fazowych uzwojeń wtórnych, a ich prostowniki diodowe będą posiadać odpowiednie połączenia po stronie napięcia wyprostowanego składowych mostków 3-fazowych.
- 4. Sumaryczne straty mocy w prostownikach, 18- i 24-pulsowych zespołów, wyposażonych w zmodernizowane moduły diodowe (moduły z miedzianymi wyprowadzeniami prądowymi spod elektrod diod), będą o ok. 5% mniejsze od porównywalnych strat mocy

w prostownikach wyposażonych w stare moduły diodowe (bez ww. wyprowadzeń prądowych). Uzyskanie takiego efektu będzie możliwe dzięki rozdzieleniu toru prądowego od toru cieplnego w zmodernizowanych modułach, w których aluminiowe radiatory będą odprowadzać ciepło powstałe tylko od strat mocy w diodach, a nie również ciepło powstające w radiatorach od przepływającego przez nie prądu obciążenia diod.

5. Dzięki wyeliminowaniu sztywnych połączeń modulów diodowych z izolacyjną konstrukcją wsporczą szafy prostownika oraz ich wyprowadzeń prądowych z oszynowaniem (R, S, T, +, -) uzyska się znacznie większą odporność styku diody z radiatorem na naprężenia mechaniczne powstające w torach prądowych w przypadku ewentualnych zwarć oraz częstych i nieregularnych przeciążeń typowych dla zespołów trakcyjnych. W odniesieniu do prostowników dla potrzeb metra dodatkowo dochodzą jeszcze naprężenia pochodzące od mechanicznych drgań szafy, powstających podczas przejeżdżania pociągów, których torowiska i konstrukcja wsporcza szafy prostownika są ze sobą mechanicznie w sztywny sposób powiązane (awaria – spalenie prostownika na stacji Centrum).

Należy jeszcze zwrócić uwagę na fakt istotny dla obliczeń dopuszczalnych obciążalności oraz przeciążalności prądowej oraz wytrzymałości zwarciowej prostownika. W omawianych zespołach wszystkie diody prostowników składowych pracują w takich samych warunkach układowych i obciążeniowych, tzn. obliczeniowy kąt przewodzenia dla każdej diody ma optymalną wartość wynoszącą 120°el., przy jednakowych przebiegach komutacji zachodzącej oddzielnie dla każdego składowego układu 6-pulsowego. Natomiast w innych publikowanych w czasopismach technicznych rozwiązaniach kąt przewodzenia diod jest różny lub wynosi po ok. 40°el., co zachodzi w prostowniku o układzie mostka 9-fazowego. Istotne dla takiego 18-pulsowego zespołu prostownikowego [6] obliczenia dopuszczalnych obciążalności i przeciążalności prądowej oraz wytrzymałości zwarciowej limitowanej przede wszystkim przez diody jego prostownika będą obciążone znaczącym błędem.

7. Podsumowanie

- Podstawowym uzasadnieniem przyszłej konieczności stosowania w trakcjach elektrycznych opisanych powyżej 18- i 24-pulsowych zespołów prostownikowych o optymalnych układach prostowniczych będzie:
 - z jednej strony trakcyjnie uzasadniona (duże moce pojazdów trakcyjnych nowej generacji) potrzeba stosowania zespołów o większej niż dotychczas mocy znamionowej, a tym samym i przeciążalności prądowej (200% *I*_{dN} przez 1 min tramwaj i 300% *I*_{dN} przez 5 min PKP),
 - z drugiej strony konieczność dotrzymywania wymaganej przez energetykę dla danej linii zasilającej podstacje trakcyjne nieprzekraczalnej, określonej normą, wartości współczynnika odkształcenia krzywej napięcia (THD_u) oraz zawartości wielkości poszczególnych harmonicznych.
- 2. Z przytoczonych na ryc. 1a i b, 2a i b, 3a i b przebiegów współczynnika THD_u w funkcji mocy zwarciowej (S_c) i prądu obciążenia (I_d) omawianych zespołów i różnego ich układu pracy na podstacji trakcyjnej (1, 2, 3 zespoły) wynikają następujące, istotne dla danych rodzajów transportu szynowego, wnioski:

a) w przypadku stosowania typowych dla danych rodzajów transportu szynowego (PKP, metro, tramwaj) wielkości zespołów prostownikowych o pulsacji p = 12 i wykonaniu nieoptymalnym ($W_i = 0,15$), zasilanych liniami średniego napięcia, o dotychczasowej klasie 2 (THD_u = 8%) lub przewidywanej (THD_u = 5%), moce zwarciowe tych linii (S_c) nie powinny być mniejsze niż podane w tablicy 1,

-							
	0	h		1	0	0	
1	a	υ	1	1	c	a	- 1

	РКР	Metro	Tramwaj
Klasa linii zasilającej podstację	ZP-1,7/3,3 ŚN $I_{dN} = 1700$ A III kpp	ZP-2,4/0,825 ŚN I_{dN} = 2400 A III kpp	ZP-1,6/0,66 ŚN I_{dN} = 1600 A V kpp
	$1 \times ZP$ obciążenie po $I_d = I_{dN} = 1700 \text{ A}$	$2 \times ZP$ obciążenie po $I_d = 3/4 I_{dN} = 1800 A$	$3 \times ZP$ obciążenie po $I_d = 3/4 I_{dN} = 1200 A$
Klasa 2 THD _{u} = 8%	$S_c = 80 \text{ MVA}$	$S_c = 34,5 \text{ MVA}$	$S_c = 42,97 \text{ MVA}$
Klasa 1 THD _{u} = 5%	$S_c = 123 \text{ MVA}$	$S_c = 55,2 \text{ MVA}$	$S_c = 68,75 \text{ MVA}$
	$2 \times ZP$ obciążenie po $I_d = 3/4 I_{dN} = 1250 A$	$3 \times ZP$ obciążenie po $I_d = 1/2 I_{dN} = 1200 A$	$3 \times ZP$ obciążenie po $I_d = I_{dN} = 1600 \text{ A}$
Klasa 2 THD _{u} = 8%	$S_c = 138 \text{ MVA}$	$S_c = 43,3 \text{ MVA}$	S _c = 49,05 MVA
Klasa 1 THD _{u} = 5%	$S_c = 210 \text{ MVA}$	$S_c = 69,3 \text{ MVA}$	$S_c = 78,49 \text{ MVA}$

- b) w przypadku stosowania w trakcji elektrycznej proponowanych przez nas 18- i 24pulsowych zespołów prostownikowych o podobnych danych jak dla dotychczas eksploatowanych zespołów o p = 12, w odniesieniu do trakcji miejskiej i linii zasilających o mocy zwarciowej $S_c \ge 50$ MVA zespoły takie nie będą stwarzać zagrożenia przekroczenia dopuszczalnej wielkości współczynnika THD_u, nawet dla linii zasilającej o klasie 1 (ryc. 2a, b; 3a, b). Natomiast w odniesieniu do trakcji kolejowej i linii zasilających klasy 2 o mocy zwarciowej $S_c \ge 50$ MVA, to podstacje trakcyjne wyposażone tylko w 24-pulsowe omawiane zespoły ($P_m = 6,3$ MVA; $U_{Z%} = 6/6\%$) nie będą stwarzać zagrożenia przekroczenia dopuszczalnej wielkości współczynnika THD_u = 8% (ryc. 1a i 1b),
- c) im mniejsza jest moc zwarciowa linii zasilającej (S_c) tym bardziej jest zasadne stosowanie wielopulsowych zespołów prostownikowych o optymalnych układach prostowniczych (ryc. 4a i b).

Literatura

- [1] Korzycki E., Ocena wpływu podstacji trakcyjnych z przekształtnikami diodowymi na odkształcenie krzywej napięcia w energetycznych liniach zasilających, Materiały Międzynarodowej Konferencji Naukowej "Jakość Energii Elektrycznej", Politechnika Łódzka, Spała 1991.
- [2] Polska Norma PN-EN 61000-2-4 (1997) Kompatybilność elektromagnetyczna. Środowisko. Pomiary kompatybilności dotyczące zaburzeń przewodzonych małej częstotliwości w sieciach zakładów przemysłowych.

- [3] Wytyczne o ochronie linii i urządzeń telekomunikacyjnych przed szkodliwym oddziaływaniem linii elektroenergetycznych i trakcji elektrycznej prądu stałego, Instytut Łączności, Warszawa 1985.
- [4] Korzycki E., Sakowicz S., Świątek H., Prostowniki nowej generacji dla zespołu o zmniejszonej wartości napięcia zwarcia transformatora i obniżonym poziomie harmonicznych generowanych do sieci zasilającej, Dokumentacja Instytutu Elektrotechniki, Nr arch. 49/2004/NPM.
- [5] Korzycki E., Mazurek P., Świątek H., Analiza przekształtnikowych układów wielopulsowych przeznaczonych dla prostowników trakcyjnych, Dokumentacja Instytutu Elektrotechniki, Nr arch. 27/2005/NPM.
- [6] Kurczewski W., *Układy prostownikowe 18-pulsowe do zasilania sieci trakcyjnej*, Technika Transportu Szynowego 3/1999, 4/2000.
- [7] Glinka T., Grzenik R., Kulesz B., Małoń Z., Sobota J., Transformatory prostownikowe podstacji trakcyjnych, Materiały V Konferecji MET2001, Gdańsk 2001.
- [8] Korzycki E., Świątek H., Zymmer K., Nowe opracowania prostowników trakcyjnych (PKP, metro, tramwaj). Zalety rozwiązań technicznych, Materiały XI Konferencji SEMTRAK 2004, Kraków-Zakopane-Kościelisko 2004.