Zasady przeprowadzenia pomiaru krajów z szczególnym uwzględnieniem pomiaru Polski.

Napisał
Dr. Kasper Weigel, prof. miernictwa Politechniki lwowskiej.

Dokonanie.

Część druga.

Projekt pomiaru ziemi polskich.

A) Omówienie szczegółów projektu.

Przedwzrostnikiem należy zadać sobie sprawę z dokładności i użytkowości pomiarów wykonanych dotychczas na ziemiach dzisiejszych polskich.

Ziemie polskie należące do zaboru pruskiego są zrobione w najmniej dokładnej. Tak, karty topograficzne jak i plany katastralne są pierwszą jakością.

Sieć tryangułacyjna I-go rzędu wykonana parterami w latach 1859, 1858, 1858, 1859, 1861—62, 1868—72, 1872—73, 1877. Składa się ona z łańcuchów trójkątnych i sieci wypełniających. Przecie te sieci zapożyczone na dalszego rzędu już do sieci IV. rzędu dla celów katastralnych.

Dla przedstawienia spółdzielnych punktów tryang., na plassczyźnie i wyrównaniu użyto wiernokątnego odwzorowania podwojnego.

Zdjęcia topografia rozpoznane w podziałach 1:25000 (oryginal), prócz tego sporządzono plany topograficzne w podziałach 1:12000, 1:6250 i plany fortyfikacyjne w podziałach 1:2500, 1:500 i 1:250, a wreszcie karty poglądowe w podziałach 1:50000 i 1:100000.

Karty topograficzne są odwzorowane w przedziałach stopniowych (porównaj część pierwszą: IV. Zdjęcia topograficzne).

Dla planów katastralnych przyjęto cały szereg układów spółdzielnych prostokątnych sferycznych (system Solnena) o rzędnych nie przekraczających \(\pm 60 \text{ km} \). Początki poszczególnych układów są równocześnie punktami tryangułacyjnymi I-go i II-go rzędu.

Natomiast przyjęto dla obliczenia i wyrównania sieci tryang. jeden układ prostokątny na plassczyźnie z zastosowaniem wiernokątnego odwzorowania podwojnego.

W zaborze austriackim zdjeto Galicyę topograficznie ostatnio w latach 1874—75 w podziałe 1:25000.

Prócz tego istnieją powiększenia w podz. 1:12500, i pompniejszenia w podz. 1:75000 (karty specjalne) wreszcie karty ogólnowe (nowe) w podz. 1:30000.

Dla zdjęć katastralnych przyjęto w Galicyi jeden układ spółdzielnych prostokątnych. Początki tego układu jest punkt tryangułacyjny przydany Kopecm Unii lubelskiej.

Przez przyjęcie to powstały rzędne w kierunku na zachód o długość około 370 km! (Porównaj część I-szą ust. VI).

Układ ten wymaga zatem stanowczo ograniczenia od strony zachodniej. Rezultaty tryangułacji są odwzorowane systemem Solnena.

Punkt tryang. są dwaj pochodzenia: I-szo i II-go rzędu zakończał geograficzny instytut wojskowy, III-cio i IV-to rzędne są to stare punkty katastralne o mniejszych pewnych wynikach. Ponadto wskutek niedostatecznej opieki nad punktami katastralnymi wielu z nich brakuje, lub nie są zupełnie pewne z powodu uszkodzenia.

Karty topograficzne są odwzorowane przy pomocy przedziałek stopniowych, których konstrukcja różni się jednak od konstrukcji używanej w zaborze pruskim (patrz I. część; IV. zd. top.).

W zaborze rosyjskim sporządzono karty topograficzne dla najważniejszych partyj n. p. miast w podziałach 1:16000 i 1:21000, dalej dla ważniejszych partyj wojskowych w podziałach 1:42000 i 1:84000, prócz tego istnieją pomniejszenia w podziałach 1:126000 i 1:42000.

Karta topograficzna w podziale 1:126000 odnosząca się do Królestwa Polskiego powstała na podstawie pomiarów gen. Przybyszewskiego wykonanych w ostatnich latach przed wybuchem powstań listopadowego, gotowe niedzioryte tej karty zatwierdził sztab gen. rosyjski, wydając ją jako ważną w roku 1896. Poznać to można, choćby po napisach polskich na poszczególnych arkuszach, gdyż tylko na tytułowej karcie opłaciło się zmienić napisy polskie na rosyjsko-francuskie.

*) T. zn., że sferyczne spółdzielne prostokątne (Solnena) nanieśono jako spółdzielne prostokątne płaskie.
Planów katastralnych obejmujących cały kraj brak zupełnie w Królestwie Polskim.

Taki jest materyl, na którym mamy oprzeć nowe pomiary kraju; wprawdzie jest możliwe, że przed wybuchem światowej wojny sztab rosyjski sporządził nowe plany topograficzne Królestwa Polskiego, przypuszczam jednak, że nie będą to plany obejmujące całość Królestwa Polskiego, lecz że będą to rządowe znośne tylko pewne partye o większym znaczeniu strategicznym.

Biorąc na uwagę wszystkie wyliczone tu pomiary i karty względe plany, można nakreślić następujący plan pomiaru ziemi polskich.

Ze względu na to, że Królestwo Polskie nie posiada planów katastralnych i jednolitych kart topograficznych, a dalej, że trygulancja była niemiłodzieńczej i odpowiednio przeprowadzona, należałoby przedwczesniem założyć i pomierzyć w Królestwie Polskim.

Aby uniknąć wielkich kosztów i wielkiego nakładu pracy należałoby siedzieć do odgórnej wschodni gubernii, Lomżyńskiej, na-wiązując ją do punktów siedzi i Rzędowej w Prusach wschodnich, w kierunku południowo-wschodnim przez Warszawę, Radom, Kielce, Będzin, nawiązując ją tu pod氤ę do trygulacji i siedzieć do rządu Słaska pruskiego i Galicyi.

Drużba Kopenh. trójkatów siedzi Rzędowej ciągnąłby się od Warszawy przez Płock, Wrocław a uzyskajac połączenie z punktami siedzi i Rzędowej koło Torunia. Trzeci lańcuch należałoby poprawdzić od tych punktów przez Wrocław, Łęczycę, Łódź, Częstochowę i Będzin z nawiązaniem do pierwszego lańcucha. Czwarty lańcuch biegłby od punktów trygulacyjnych w Lomżyńskim wzdłuż granicy wschodniej poprzez Siedleckie, Czelma, a dalej wzdłuż granicy galicyjskiej przez Sandomierz do Będzina; Będzin z nawiązaniem do jak największej ilości punktów siedzi i Rzędowej w Galicyi i punktów t. zw. rosyjskich (Struwe, Tennera itd.). Wreszcie piąty lańcuch usytuowałby się poprzez Lublin i Chełm.

Dookoła gubernii Suwalskiej należałoby założyć szósty lańcuch t. z. nawiązany do siedzi wschodniopruskiej od zachodu, a od południa do siedzi łomżyńskiej.

Pola powstałe między lańcuchami tr. wypełnione były częściowo siatką wypełniającymi, częściowo punkty trygulowane pojeedynczne.

Tak wyglądały ogólny zarys siedzi i Rzędowych.

Siedzi tak założone naładowane były stosunkowo niewielkie pracy przy wyrównaniu, a równocześnie wziętoby istniejące już siedzi i Rzędowe w zaborach pruskim i austriackim.

Bardzo jest również prawdopodobnym, że trzeba będzie niektóre punkty siedzi i Rzędową w Galicyi usunąć, a to z powodu ich ewentualnego zniszczenia podczas walk w Galicyi.

Dla uszczuplania długości boków trójkatów nie zależnie od nawiązania należy założyć siedzi podstawową w środku poprzednio omówionego obszaru, a więc najłustniejszą na południe od Warszawy np. mniej więcej wzdłuż południka 21° długości geograficznej od Greenwich.

Przeprowadzenie pomiarów astronomicznych nie nastręczaloby prawie żadnych trudności.

Obserwatorium warszawskie, krakowskie i lwowskie rozporządzają aż nadto wystarczającą ilością do tego celu potrzebnych przyrządów. Nie brak także i ludzi wyszkolonych fachowo w tym kierunku.

Górze przedstawia się sprawa ilości geodetów potrzebnych dla przeprowadzenia trygulacji; na razie mamy ich mało, każdy jednak technik, obniżony z zasadami geodyzji wyższej po przebyciu specjalnie w tym celu uzupełnionego kursu teoretyczno-praktycznego może zamieścić się w krótkim czasie w fachowym trygulatorium. Potrzeba na to nieco pracy i dobrej woli.

Jeśli by pomiary miały być przeprowadzone jeszcze przed ukończeniem wojny, mielibyśmy już na początku 20% z pomiarów podstawy.

Nie posiadamy bowiem w całej Polsce ani jednego precyzyjnego przyrządu do pomiarów długości. Katedra miernictwa Politechniki lwowskiej miała otrzymać w r. 1914 cochowany drut wewnątrzy z Paryża; niestety wybuch wojny przerwał odnośne prace i nieumiejętne sprowadzenie tak trudne dla wewnątrzy jak i innych części przyrządu do mierzenia podstaw.

Gdyby nie można było w żaden sposób uzyskać przyrządu tego rodzaju, należałoby wyznaczyć długość boku jednego z trójkatów siedzi i Rzędowy w okolicy Warszawy, biorąc średnią arytmetyczną ogólną z długości tego boku otrzymywanych pośrednio przez cztery lańcuchy trójkatów nawiązane do istniejących boków siedzi ustalonych w zaborach pruskim i austriackim.

Przy ustalaniu punktów siedzi i Rzędowej należy korzystać ze wszystkich dotychczasowych kart i planów, które mogą oddać przy rekonesansie wielką usługę. Punkty trygul. II-go i III-ego rzędu należy obierać przy rekonesansie według zasad przytoczonych w części pierwszej rozdział. III.

Również czynności pomiarowe jakotéże i ra- chunkowe są opisane w tym samym rozdziale.

Ze względów oszczędnościowych proponowałbym w myśl oświadczenia znanego trygulatora Abendrotha mniejszą ilość seryi przy pomiarach kierunkowych, a więc przy dwu kierunkach zastąpić 24 tylko 16, przy 3 kier. zastąpić 16 tylko i d. t. Dla przedstawienia wszystkich trygulacyjnych na planach i wyrównaniu ich spół- rzedzowych należy obrać jeden prostokątny układ płaszczyzny. Najlepiej zastosować do tego celu wierzchołkaco od wierzchołka w podwójną materię.

Początek spółrzędnych tego układu powinien znajdować się w centrum państwa polskiego, a za- tem należy go obrać na jednym z punktów Rzędowych w pobliżu Warszawy (na południu mniej więcej 21° na wschód od Greenwich).

Karty topograficzne w podziałce 1:10000 należy odwzorować w przedziałach stopniowych. System używany w Prusach będzie stosunowo przedawniający, ponieważ do nam ciągłość kart Królestwa z Wielkopolską, Prusami Wschodnimi i Śląskiem, podczas gdy system używany w Austrii dałoby tylko ciągłość Królestwa Polskiego z Galicją.

Próbę zgodną z tych kart szczegółowych należy jeszcze sporządzić karty topograficzne w podziałach 1:100000 i 1:200000.

Karta w podz. 1:100000 może być sporządzona również w przedziałach stepiowych, a to w ten
sposób, że gdy na jedną podziałkę (pole) wypada 80 arkuszy kart w podz. 1:25000, wypadnie 8 arkuszy kart w podz. 1:100000.

Karta w podz. 1:200000 musi być jako karta pogłębiona wykonana przy zastosowaniu odwzorowania stożkowego.

Szczegóły odnoszące się do zdjęć i wykonania kart topograficznych omówiliśmy w rozdziałach VI-tym i VII-tym części pierwszej. Jako poziom odrębnym można przyjąć dla ziemi polskich albo średnie poziom Morza Bałtyckiego, lub południowe poziom o 250 do 260 m wyższe. Ten ostatni poziom odpowiada umiejętności przeciwym wysokościom ziemi polskich.

O pomiarach wysokościowych podano dość wyprawiające objaśnienia w III. rozdziale pierwszej części.

Ciągi ścieżek niwelacyj musiłyby biegać wzdłuż ważniejszych rzek i gościniec, kolei i t. d. Ciągi idące wzdłuż rzek musiłyby być tak założone, aby można było z łatwością wyznaczać i kontrolować zera lat wodniskowatych rozmiarów umieszczanych między rzekami. Zgodnie z moim powinny być na węzele najmniejszą rzeką przynajmniej dwie punkty dokładnie zaznawane.

Ważniejszą kwestią przyjmuje niem. poziomu porównawczego. Jako taki nadaje się dla Polski jedynie średni stan Morza Bałtyckiego wyznaczony na podstawie długoterminowych obserwacji; np. w Gdańsku.

Gdybyśmy mogli posługiwać się danymi wyników owych obserwacji, moglibyśmy zmysłowato nawiązać się przez pruskie punkta wysokość do średnich poziomu Morza Północnego. Po dokonanych obserwacjach możnaby później poziom odpowiadające poprawić.

Przyjmijmy kolejno do planów katastralnych i planów dla gospodarki państwowej.

Plan te są zawsze odwzorowane na płaszczyźnie. Ponieważ, jak już wykazaliśmy (w rozdziale VI. części pierwszej), rzędne poszczególne układów nie powinny — przy zachowaniu dokładności długości około 1:20000 — przekraczać 65 km, należy, chcąc zachować przynajmniej część planów katastr. obecnie istniejących (względem zmienności tylko ich podziałek), przyjąć następujące prostokątny układ (wiernokątowe) jako nowe:

a) układ warszawski, początku ukł. punkt tryang. I-rzędny koło Warszawy, dł. geogr. około 21° na wschód od Greenwicht;
b) układ łączniczki, początkę ukł. punkt tryang. I-rzędny na południ. zachód od Łęczycy (dl. geogr. około 19°);
c) układ suwalski, początku ukł. punkt tryang. I-rzędny na półn. wschód od Suwałk (dl. geogr. około 23°);
d) układ lubelsko-chełmski, początku ukł. punkt tryang. I-rzędny między Lublinem a Chełmem (dl. geogr. około 28°);
e) układ krakowski, początku ukł. punkt tryang. I-rzędny koło Krakowa (dl. geogr. około 20°);
f) układ tarnowsko-przemyski, początku ukł. punkt tryang. I-rzędny między Tarnowem a Przemyślem (dl. geogr. około 22°).
R) Wykonanie projektu.

Drugi wydział sekcji pomiarowej, t.j. geograficzny miał za zadanie wyprowadzić szczegółowy projekt tryangulacji I-go, II-go — dodając jeszcze — i III-go rzędu, niwelacji ścisłej i kartografii; ponadto ma podlegać temu wydziałowi zakład litograficzny i wydawnictwo map.

Zdjęcia topograficzne szczegółowe będą trwały dziesięciu lat; wydział geograficzny powinien zatem posiadać dla ich przeprowadzenia specjalnie wyszkolony personal inżyniersko-topograficzny. Personal roboczy mógłby być dostarczony przez polskie władze wojskowe, musiałby jednak podlegać S. II. min. rob. techn.

Byłoby bardzo sklepiwym dla wydziału projektu, gdyby personal pomiarowy, tak inżynierski jak i roboczy nie podlegał bezpośrednio min. rob. techn. Roboty te wymagają stanowczej centralizacji.

Pomiary tryangulacyjne katastralne (dalsze sieci III-go i IV-go rzędu) i wszelkie czynności z niemi związane mają należeć do kompetencji (trzeciego) wydziału katastru gruntownego. Ponieważ tryangulacje te potrwają także dziesięciu lat, powinien i ten wydział zaangażować odpowiedni personal pomiarowy na czas trwania tryangulacji.

Obliczanie belek statycznie niewyznaczalnych metodą Baszyńskiego.

Weźmy pod uwagę jakąkolwiek belkę obciążoną dowolnymi ciężarami. Przyjmując początek belki za początek układu spółrzędnych O, prowadząc poziomą o x w prawo, o y pionową w dół, otrzymamy następujące równanie dla linii ugięcia belki:

\[y = F(x) \]

dla nachylenia linii ugięcia do poziomu:

\[\frac{dy}{dx} = \frac{M}{E} \]

dla momentów:

\[M = \frac{EI}{z} = -EI \frac{d^2y}{dx^2} \]

dla sił poprzecznych:

\[\frac{dM}{dx} = V \]

dla obciążenia rozłożonego:

\[\frac{dV}{dx} = -P \]

Wyjmując z funkcji 1. spółczynnik EI otrzymamy ją w zmienionej nast. postaci:

\[y = \frac{1}{EI} f(x) \]

tg \(\alpha = \frac{dy}{dx} = \frac{1}{EI} f'(x) \]

\[M = -EI \frac{d^2y}{dx^2} = -f''(x) \]

Szczegółowe zdjęcia katastralne mają podlegać dyrekcyjom technicznym w każdej administracyjnej części państwa. Z tego względu byłoby wskazane, aby jeden układ katastralny nie rozciągający się na obszary działania kilku dyrekcji, raczej powinna jedna dyrekcja obejmować obszar, na którego by było więcej niż jeden układ katastralny.

Wydawał czearty i piąty sekcji II. min. rob. techn. miałby współpracować przy projekcie i wykonaniu kart gospodarki państwowej. Do ich kompetencji należałoby obmyślzenie szczegółów, jakie te karty mają zawierać, a rzecz podległa im persoanal byłoby wykonanie odnośnych pomiarów i planów, jakotże prowadzenie ewidencyj nad nimi.

W każdym razie powinien istnieć ścisły kontakt wszystkich wydziałów należących do sekcji pomiarowej min. rob. techn. tak przy projekcie jak i przy wykonaniu pomiaru kraju.

Kończąc, polecam sprawę pomiarów ziem polskich jak najgorzej całemu społeczeństwu polskiemu. W dzisiejszych czasach nie da się pomyśleć państwa, któreby nie rozporządziło dok. adnym kartami topografią i planami, choćby tylko katastralnymi. Państwo takie nie byłoby w stanie ani ochronić swych granic, ani prowadzić racjonalnej gospodarki, a wewnętrzne spory graniczne zużyłyby rychło energię jego obywateli. Nie znamy się tedy ogromem pracy pomiarowej, lecz przeprowadzając pomiar Polski pamiętajmy, że będzie on górnym czynnikiem jej bytu, rozwoju i niezależności.

Lwów, w czerwcu 1918 r.
b) Dla obciążenia wzrastającego wedle linii prostej:

\[p_z = p \left(\frac{\alpha + \beta \xi}{l} \right) \]

gdzie \(\xi = \frac{x}{l} \)
np. dla obciążenia wzrastającego od \(p_1 \) do \(p_2 \):

\[p_z = p_1 \left(1 + \frac{p_2 - p_1}{p_1} \frac{\xi}{l} \right) \]

zaś dla obciążenia wzrastającego od 0 do \(p \)

\[p_z = p \frac{\xi}{l} \]

c) Dla obciążenia zmieniającego się wedle paraboli:

\[p_z = p \left(\alpha + \beta \frac{\xi}{l} + \gamma \xi^2 \right) \]

np. dla symetrycznego parabolicznego obciążenia o wartości \(p \) w środku, zaś 0 na podporach, otrzymamy:

lewa podpora \(\xi = 0 \), \(p_z = 0 \) stąd \(0 = p (\alpha + \beta \cdot 0 + \gamma \cdot 0) \)

środek \(\xi = \frac{1}{2} \), \(p_z = p \frac{\xi}{l} \)

prawa podpora \(\xi = 1 \), \(p_z = 0 \) stąd \(0 = p (\alpha + \beta + \gamma) \)

a więc równanie 13 otrzymuje kształt:

\[p_z = p \frac{\xi}{l} \left(\frac{1}{2} - 4 \xi^2 \right) \]

Biorąc za podstawę najogólniejsze z tych równań (13), otrzymamy równanie 6—10 w postaci:

\[y = \frac{p t^4}{n E I} \left(a_1 \xi^2 + a_2 \xi^3 + a_3 \xi^4 + a_4 \xi^5 + a_5 \xi^6 \right) \]

\[a_2 = \frac{p t^2}{n E I} \left(a_1 + 2 a_2 \xi + 3 a_3 \xi^2 + 4 a_4 \xi^3 + 5 a_5 \xi^4 + 6 a_6 \xi^5 \right) \]

\[M_z = \frac{p t^2}{n} \left(2 a_2 + 6 a_4 \xi + 12 a_4 \xi^2 + 20 a_6 \xi^3 + 30 a_9 \xi^4 \right) \]

\[V_z = \frac{p t}{n} \left(6 a_3 + 24 a_4 \xi + 60 a_6 \xi^2 + 120 a_9 \xi^3 \right) \]

\[p = \frac{p}{n} \left(24 a_4 + 120 a_6 \xi + 360 a_9 \xi^2 \right) \]

W równaniach tych oczywiście:

\[a_4 = \frac{n a}{24} \]

\[a_5 = \frac{n \beta}{120} \]

\[a_6 = \frac{n \gamma}{360} \]

Np. dla belki obustronnie wmurowanej, obciążonej ciągłym jednostronnie rozłożonym otrzymamy:

\[p_1 = p \]

stąd:

\[a = 1, \quad \beta = 0, \quad \gamma = 0 \]

Przyjmując \(n = 24 \), otrzymamy z równań 19:

\[a_4 = 1, \quad a_5 = 0, \quad a_6 = 0 \]

Dla lewego utwierdzonego końca belki mamy:

\[y = 0, \quad a = 0, \quad a = 0 \]

a więc z równ. 14 i 15:

\[a_4 = 0, \quad a_5 = 0 \]

Na prawym utwierdzonym końcu \((\xi = 1) \) też \(y = 0, \quad a = 0, \) a stąd:

\[0 - a_1 + a_2 + a_3 = a_1 + a_2 = 0 \]

\[0 - a_1 + a_2 = a_1 + a_2 = 0 \]

Z tych dwóch równań o dwóch niewiadomych mamy:

\[a_1 = a_2 = 0 \]

a stąd:

\[y = \frac{p l^4}{24 E I} \left(a_1 + 2 a_2 \xi + 3 a_3 \xi^2 \right) \]

\[a_2 = \frac{p l^4}{12 E I} \left(a_1 + 2 a_2 \xi + 3 a_3 \xi^2 \right) \]

\[M_z = \frac{p l^2}{12} \left(1 - 6 \xi^2 + 6 \xi^2 \right) \]

\[V_z = \frac{p l}{2} \left(1 - 2 \xi \right) \]

na podporze:

\[y = 0 \]

\[a = 0 \]

\[M = \frac{p l^2}{12} \]

\[V = \frac{p l}{2} \]

Równania powyższych można także użycie dla ciągu skupionego (ryc. 1). Niech np. ciężar \(P \) znajduje się w odległości \(kl \) od podpory \(A \) belki o długości \(l \). W tym punkcie oczywiście \(\xi = k \).

Ryc. 1.

Oznaczmy spółczynniki \(a_1, a_2, \ldots \) dla części \(AC \) przez \(a_1, a_2 \), zaś dla części \(CB \) przez \(b_1, b_2 \ldots \) Wtedy otrzymamy dla \(AC \):

\[y' = \frac{p l^4}{6 E I} \left(a_1 + a_2 \xi + a_3 \xi^2 + a_4 \xi^3 \right) \]

\[a_2' = \frac{p l^4}{6 E I} \left(a_1 + 2 a_2 \xi + 3 a_3 \xi^2 \right) \]

\[M_{z}' = - \frac{p l}{3} \left(a_1 + 2 a_2 \xi \right) \]

\[V_{z}' = - P a_{3} \]

dla części \(CB \):

\[y'' = \frac{p l^4}{6 E I} \left(b_1 + b_2 \xi + b_3 \xi^2 + b_4 \xi^3 \right) \]

\[a_2'' = \frac{p l^4}{6 E I} \left(b_1 + 2 b_2 \xi + 3 b_3 \xi^2 \right) \]

\[M_{z}'' = - \frac{p l}{3} \left(b_1 + 3 b_2 \xi \right) \]

\[V_{z}'' = - P b_{3} \]

Na wyznaczenie niewiadomych \(a_1 \ldots \)\(a_5, b_1 \ldots \)\(b_4 \) musimy mieć 8 równań, z których 4 otrzymujemy z warunków, w jakich znajduje się cała belka (podobnie jak dla obciążenia ciągłego); pozostałe 4 wyznaczamy zaś z warunków, jakie spełnić musi punkt \(C \).
W tym punkcie bowiem:
1. Ugięcia są równe, więc:
 \[y_{s} = y_{s}' \]
2. Kąt linii ugięcia jest ten sam:
 \[a_{s} = a_{s}' \]
3. Momenty:
 \[M_{s} = M_{s}' \]
4. Różnica sił poprzecznych równa jest sile P:
 \[V_{s} - V_{s}' = P \]

Rozwiązując te 4 równania z podstawieniem, otrzymamy 4 nast. równanie:
\[
\begin{align*}
 a - b &= k^3 \\
 a_1 - b_1 &= -3 k^2 \\
 a_2 - b_2 &= 3 k \\
 a_3 - b_3 &= -1
\end{align*}
\]
Dla kilku ciezarów skupionych należy wpro- wadzić jeszcze nowo sformułować ciężarki ciężarkiem skupionym P w odległości kl od le- wej podpory, otrzymamy:

Dla lewej podpory:
\[a = 0, \quad a_1 = 0. \]

Dla prawej podpory:
\[b + b_1 + b_2 + b_3 = 0 \]
\[b_1 + 2b_2 + 3b_3 = 0 \]
dalej wz 21
\[b_2 = -k^2, \quad b_1 = 3k^3, \quad a_3 = 3k(2 - k) \]
\[a_2 = -3k^2(2 - k), \quad a_1 = -k(1 - k)^2 \]
\[a = -(1 - k)^2(1 + 2k) \]

Otrzymywa zatem równanie ugięcia dla AC:
\[
Y = \frac{P^2}{6EI} \left[3k \xi^2 + (1 + 2k) \xi^2 \right]
\]
\[
a = \frac{P^2}{2EI} \left[2k \xi + (1 + 2k) \xi \right]
\]
\[M = P(1 - k)^2(2 - k) \xi \]
\[V = P(1 - k)^2(1 + 2k) \xi \]

Dla części CB:
\[
y = \frac{P^2}{4EI} \left[-3 \xi^2 + (2 - k) \xi^2 - (3 - k) \xi^2 \right]
\]
\[
a = \frac{P^2}{2EI} \left[1 - (2 - k) \xi + (3 - k) \xi^2 \right]
\]
\[M = P(1 - k)^2(2 - k)(3 - k) \]
\[V = P(1 - k)^2(3 - 2k) \]

Dla punktu środkowego ciężaru w środku:
\[\xi = 0 \quad \text{a} \quad k = 0 \]

W podobny sposób można obliczać wszelkie ro- dzaje belek prostych, ciągłych i ramowych; dla cię- żarów czyto rozłożonych, czyto skupionych, oraz wyznaczać linie wypadkowe.

Metoda, jaką podaje Baszyński, różni się od dotychczasowych uwidocznieniem związku, panu- cego między momentami zginającymi a linią ugięcia, oraz przy obciążeniach odmiennych od tych, jakie podano we wzorach 11-13, otrzymujemy ogromną ilość równań pierwszego stopnia, do rozwiązania i wtedy sposób ten staje się uciążliwszy od zazwyczaj używanego. Przy systemach bardziej skomplikowanych łatwo ustawić równania, ale komplikuje się bardzo ich rozwiązanie.

Przez prostota ogólnego założenia pozwala nawet mniej biegłym łatwo i pewnie ustawić ogólne równanie. Należy tylko zwrócić uwagę na to, że znaki momentów mają inne znaczenie, niż w zazwyczaj używanej metodzie.

Natomiast są pewne rodzaje belek, gdzie nowa metoda zasługuje na baczne uwagę; widzimy to np. przy belkach krzyżujących się wzajemnie, jakimi m. i. są belki żelbetowe stropowe.

Zamierzenie studiów wodociągowych w wodach żelazistych.

W aktualnym artykule, ogłoszonym w 11 numerze Czasopisma pod powyższym tytułem, wspomniał szan. autor, że wodociąg m. Przemysła zastosował studnie murowane o 2-metrowej średnicy z wolnem, przerywaniem stosunek pionowymi o 30\(°\) powierzchni przepuszczalnej, zapuszczane na węże-

Oto takich studni nie projektowali, ani ich w ten sposób nie wykonano a wzmianka powyższa, niedokładna w opisie, daje mi możliwość uzupełni-

nia artykułu kilku pobrańiami uwagami, jak budowa-

nie nie głębokie studnie w wodach żelazistych i twardych, skoro problem, jak wadliwie poprawić należy, zajęło się już szan. autor. Nagdy nie mogłem wyrozumieć, dlaczego i w jakim celu w płynnych na-

szych złoża aluwialnych i fluogiologicznych, o 8 u do 12-metrów mięsośści (Kraków, Tarnów, Prze-

myśla) mamy budować studnie murowe z całym apa-

ratem koszów, tkanin, sztucznych filtrów i poko-

mamy sobie utrudnić robotę, tak studnie budując, skoro w naszych warunkach nie zachodzi potrzeba budowy studni murowych.

Ze takie studnie murowe z filtratem budują się powszechnie w Niemczech północnych, w przestarzanym łożysku owej wielkiej rzeki północnej, jako ongą tamtej płynęła, to zrozumiałe, bo przy mięsości złoża wodosytnego, sięgającego na dziesiątki metrów w głębi, przy poborze wody z głębokości również kilku dziesiętek metrów, (70 m) in nowszych wodo-

ciągach berlińskim na Wuhheide), pozostaje tylko ten sposób budowy, więc wierciec, więc kosze i filtry. Ze wreszcie — bo o innych nie wspominam — stu-

dnie murowe znalazły duże zastosowanie w guberniach północnych Królestwa Polskiego (w siedlankach, kom-

żyńskim, warszawskim etc.), to także zrozumiałe, bo nikomu nie wpadły dy char na myśl głębokie studnie murowane czy betonowe na dziesiętki metrów w piasku morenowym, albo nawet na setki metrów w piaski kwaercowe trzeciorządu, nałożone na stropie formacji kredowej, by się dość do pierwszego czy drugiego poziom wody, tam występującego.

U nas jednak na Podkarpaciu, gdzie zadanie ogranicza się do przebiega korpusem studni tych 8—12 m zwierzą, gdzie zatem żadaną ilość wody
możemy uzyskać sprawnie i pewnie zwyczaj studnią większej średnicy, zasilaną z dna, niezależnie od wszelkich otworów w oponie betonowej, z czasem zatkać się mogących, przyzwyczajenia budowy studni rurociągów niema, a fakt stosowania takich studniesk wydaje mi się zbędnem w tych warunkach naśladowaniem owego wzorca, sugerowanie otwarem się urokami nowości urządzenia przemysłowego znakomicie, ale tylko pod względem wykonania mechanicznego.

To też projektując w r. 1913 studnie dla wodociągu przemyskiego, wykluczyłem z góry studnię rurociągów, zaczuwszy typ przestrzenną studnię betonowaną na wieńcu lano-żelaznym, dziurawym, 2 metrowej wysokości, proponowany przez inżynierów Rumpła i Niklaza z Cieplice czeskich (ob. M. Za-

ączkowski: „O wodociągach m. Przemysła“, Czasopismo techniczne r. 1897), jakżeść pomysłem dra O. Smreka, by studnię 2-metrowej średnicy murowaną, u spodu z cegieł pustych, na wieńcu żelaznym wykonaną, głębią aż w nieprzezszczepne są. (Ten niewykonany typ studni pomysłu p. Smreka miał zatem na myśli autor artykułu).

Natomiast przyszłe jako zasada: 1. że studnia ma być zasilana zasadniczo z dna przez narzut ka-

mienny na dnie studni; 2. że spodnia część studni umocowana z cegieł klinkierowych, promienistych, z pionowymi, pustymi stosunami 3/4 m/m może się-

gać od wieńca w górę tylko po poziomu na największej przysypnej depresji; 3. że nad poziomem największej depresji, opona studnierna winna być szczelna, zatem betonowa. (30 cm grubości), obustronnie wy-

prawiona.

Ta betonowa, szczelna opona ma zatem to samo znaczenie, co proponowana przez szan. autora rura lejkowata, w rys. 3 artykułu nakreślaną. Wartość pierwszej wymagał, aby spód wieńca żelaznego wznio-

sił się nad ląmą conajmniej o wysokości S ∆/3 40 cm i wynika z równania: powierzchnia dna studni (3-14 m²) równa powierzchni waleca o średnicy 2-60 m i wysokości S.

Gdyby iły były oddzielone od zwiru idealnie, wystarczałoby to rachunkowe wznowienie (s) i zby-

teczne byłoby murowanie dziurawej opony. Po-

nieważ jednak, jak przypuszczać i co praktyka po-

twierdzała, przyląkające do łu zwiry są już le-

piszcoń światłowiskiem skłonione, należało się z tem liczyć, asekrować się od ufortepienia dna studni w słabo przepuszczalnych żwirach a to zarówno przez zwięk-

szenie wysokości S (w praktyce średnio około 80 cm) jakżeść przez wymurowanie przepuszczalnej opony. Z tych rozważań wyniśł postulat drugi.

Znaczenie postulatu 3 wyjaśnił już szan. autor artykułu. W myśl tych zasad zaprojektowane stud-

nie wykonać obejmuje bez trudności przeszkro-

stwo inż. Z. Rodakowski poglądbiarką workową, z postępem dziennym 15-25 cm. Przełącny koszt wykonania studni średni 12 m pod teren głębokiej i około 2 m nad teren wystającej, przy średniej głębokości bagrowania zwykłe S m, miał wynosić na podstawie ofert z maja 1914 r. niecich 4000 koron bez kosztów dostawy części żelaznych, co chyba nie jest sumą, mogącą od budowy takiej studni kogo-

kolwiek odstraszyć.

Jak zachowają się tak wybudowane studnie pod względem osadzania się żelaza, co do tego oba-

wy żadnej nie żywie, gdyż dno studni zawsze wodą pokryte, zatkać się żelazem nie może. O ileby zaś-

kiedyś w przyszłości przewidywane głęboki poziom depresyjny miał się jeszcze obniżyć a górne otwory w oponie studniowej zatkały się, to wobec ogólnego obniżenia się poziomu wody (i większej powstałej stąd depresji) może to być rzeczą obojętną; gdyż jednak na przetkaniu otworów komuś zależało, łatwo wejść do studni i płaskim dłem otwor otwory rozwinąć.

W ten oto bardzo prosty sposób rozwiązuje się zagadnienie, jak zapobieć zamierzeniu studni w wo-

dach żelazistych, o ile nie muszą być studniami ruro-

wemi małej średnicy.

W sprawie doświadczeń H a a c k a, na które powołuje się autor artykułu, mógłby na podstawie kilkugodzinowych prób, jakie tutaj przeprowadzono z filtrem boltmannowskim o złożu piaskowym 160 m grubości, podkreślić przedwzyszkę naszą równie tęż, t. j. że każda woda zachowuje się inaczej przed odzelżaniem, skoro teza 2 i 3 nie pokrywa się z memi obserwacjami a wszystkie razem nie wyczepują problemu.

Bo oto okazało się przy doświadczeniach — mimo-

chodem to zaznacza — że wyniki odzelżania no-

cne i dzienne były różne, w szczególności nocne i gałerze. Szczegółowe śledzenie wyników nocnych na-

prowadziło chemika miejskiego p. Roźnuskiego do wniosku, że znaczny wpływ na przebieg odzelżenia (filtracji) posiada ciepło płotka powietrza, że wodę do wznęcenia gorąca więcej wydziela się bezwodnika węglowego z wody, skutkiem czego i żelazo łatwo i dopiero zastrzęci się w filtrze.

Inne spostrzeżenia i wnioski, jakie mi się na-

sunęły przy obserwacji: filtrowania, obserwacje wzrostu zawartości żelaza w wodzie przy wzrasta-

jącej depresji, wbrew twierdzeniu, że im głębszy lejeg depresyjny w studni, tym odzelżanie (w grunc-

ie) jest dokładniejsze, odkładam do sposobniejszej pory i szczegółowych czasów, pisząc się potem w zupełności na końcu wywody szan. autora, do-

magające się indywidualizowania przypadków pąbom i odzelżania wody.

Drzwi, 30 czerwca 1918.

Dr. R. Rostowski.
ogółem przeszło 60 prac. Politechnika zawdzięcza ś. p. Wołoszczakowi piękną, może jedyną w tym rodzaju zbióR przecięż przeszło 600 drzew, wykonany własnoręcznie przez zmarłego. Cześć pamięci cichego badacza!

Jan Nep. Franke, doktor honoris causa nauk technicznych, radca dworu, b. profesor i rektor Politechniki, członek czynny Akademii Umiejętności, członek honorowy i b. prezes Polskiego Towarzystwa Politechnicznego, em. inspektor szkół przemysłowych i realnych zakończył życie w dniu 6 b. m. w 1972 roku życia. Obszernie wspomnienie o zasłużonym uczonym i wychowawcy wielu pokoleń techników polskich umieścimy w jednym z następnych numerów.

Inż. Karol Stadtmüller, em. profesor wyższej Szkoły przemysłowej w Krakowie, autor licznych podręczników z zakresu budowy maszyn i słownictwa technicznego zmarł dnia 14 lipca b. r. w Krakowie. Obszernie wspomnienie umieścimy w jednym z najbliższych numerów.

ROZMAITOŚCI.

— Kwestya oszczędzania paliwa. Sprawa oszczędnego uŜywania paliwa, w szczególności zaś węgla, należy dziś do najważniejszych. Dlatego też zwracamy uwagę na udany konkurs, jaki w tej dziedzinie rozpowszechnił w r. 1917 Sekcja niemiecka „Morawskiego Urządu dla popierania przemysłu” (Mährisches Landesamt für Gewerbeforderung, Deutsche Sektion, Berne, Hindenburgstr. 7).

Konkurs obejmował dział palenisk i ogrzewań domowych i dział rozpraw dotyczących racjonalnych sposobów ogrzewania.

Wyłyni konkursu były bardzo poważne, przysłano bowiem ogółem 79 prac, z których nagrodzono w dziale I-yn 3 za nowe konstrukcje pieców do opalania nieprzerwanego (Pollak, Glisshammer i Eberl), natro Georg znanego kilka dyplomów za nowe konstrukcje palenisk kuchennych, wkładek do takich palenisk, urządzeń do lepszego spalania węgla lub do konserwowania ciepła.

Urząd morawski zapowiada wydanie prac nagrodzonych drukiem.

SPRAWY BIEŻĄCE.

— Ministerstwo opieki społecznej i ochrony pracy nadało Wydziałowi P. Tow. Politechnicznego następujące pismo, które dosłownie podajemy do wiadomości Kolegom.

Ministerstwo Zdrowia Publicznego, Opieki Społecznej i Ochrony Pracy zwraca się do WPAów w następującej sprawie:

Według relacji nadchodzących z Galicji, powołanie pod broni prawie wszystkich zdolnych do pracy wywołalo tam brak zarówno wykwalifikowanych pracowników z wyższym wykształceniem, jak wogólę sił roboczych. Królestwo Kongresowe przeciwko posiada nadmiar zdolnych do pracy, niemogących znaleźć zużywania na jego obszarze wskutek ruin przemysłu i zastępu w handlu. Zestaw tych bezrobotnych, inteligentów i robotników wzrasta z dniem każdym z powodu reemigracji z Rosji i grozi wobec braku wszelkiej nadziei na rychłe poprawienie się konjunktury na rynku pracy, prawdziwą katastrofą społeczną.

 Zużywanie tych sił twórczych i produkcyjnych bez uszczuplenia dla kraju — mogłoby nastąpić jedynie w innych dzielnicach Polski, i dlatego Ministerstwo Zdrowia Publicznego, Opieki Społecznej i Ochrony Pracy, uważając akcję społeczną w tym kierunku w Galicji za bardzo pożądana, odnosi się do WPAnów z prozą o poprawie jego usilów, podjętych ku zabezpieczaniu groźnej kliki przez pokrywanie zapotrzebowania sił fachowych i niewykwalifikowanych, robotników skierowanej przez WPAnów instytucji na rynku pracy Królestwa Polskiego.

Wszelkich bliższych informacji udzieli Wydział Emigracji i Pośrednictwa Pracy Ministerstwa Zdrowia publicznego, Opieki Społecznej i Ochrony Pracy, który też dołoży wszelkich starań, by zarówno dobór pracownikó- w fachowych, jak i robotników odpowiadał wymaganiami prowadzonej przez WPAnów instytucji.

— Zakup kamieniologów przez gminę m. Krakowa. Otrzymaliśmy następujące pismo z prozą o umieszczeniu:

Pod powyższym tytułem umieszczył „Novella Reforma” w kronice Nr. 298 z dnia 10 lipca b. r. notatkę o zakupie kamieniologów w Międzyn, Chrzanowie i Libiążu przez gminy miasta Krakowa od firmy H. Kula i Spka, tow. z ogr. poręcią, nadmiaru, iż lomy te bali profesor Morozewicz i inżynier Marcinkiewicz.

Czytelnik niewątpliwie w całą sprawę myśląc logicznie odnosi wrażenie, jakobyj ja w kwestii za- kupu kamieniologów wydawał jakakolwiek opinię, która mógłby być podstawą do przeprowadzenia całego interesu.

Wiele mi na tem zależy, by opinia publiczna mimo- woli nie łączyła tego nazwiska z uchwałą Rady m. Krakowa postanawiającą zakup tych kamieniologów za kwotę 62.000 koron, więc oświadczam, iż w sprawie tej o zdań nie byłem zapytywany i w przeprowadzeniu tej transakcji żadnego udziału nie brałem.

Inż. Roman Marcinkiewicz, wicedyrektor kraj biura kolejowego.

— Konkursy. Rektorat Szkoły politechnicznej ogłasza konkurs celem obsadzenia posady asystenta na przeciągu jednego roku:

1. przy katedrze rolnictwa z terminem wnoszenia podań do 31 sierpnia b. r.
2. przy katedrze maszyn górniczych z terminem wnoszenia podań do 31 października b. r.

Redaktor naczelnny i odpowiedzialny prof. Dr. Stanisław Anczyca
I. Związkowa drukarnia we Lwowie, ul. Lindego 4.