Versuche mit Eisenbetonbalken.

Zweiter Teil¹).

- A) Balken mit rechteckigem Querschnitt, Abschnitt XI bis XXXIX. Biegungsversuche: Balken mit geraden Einlagen, mit und ohne Haken an den Enden, mit und ohne Walzhaut; Balken mit Thacher-Eisen; Balken mit und ohne Bügel; Balken mit aufgebogenen Eisen, Balken an der Luft und unter Wasser aufbewahrt; Balken mit Einlagen durch Ausfräsen aus Blech hergestellt; Balken ohne Einlagen. Zug- und Druckversuche.
- B) Balken mit T-förmigem Querschnitt, Abschnitt XL bis LII. Biegungsversuche: Balken mit geraden Einlagen, mit und ohne Bügel, mit aufgebogenen Eisen, mit und ohne Haken Zug- und Druckversuche.
- C) Zusammenfassung der Versuchsergebnisse, Abschnitt LIII bis LXI.

Von C. Bach.

Die Untersuchungen, über welche im Nachstehenden berichtet wird, gehören gleichfalls zu denjenigen, die gemäß dem vom Eisenbetonausschuß der Jubiläumsstiftung der deutschen Industrie aufgestellten Programm²) vorzunehmen waren und deren Ausführung der Ausschuß der Materialprüfungsanstalt der Kgl. Technischen Hochschule in Stuttgart übertragen hatte.

Ueber den ersten Teil der Versuche, welche sich auf 21 Balken erstrecken, ist in Heft 39 der Mitteilungen über Forschungsarbeiten berichtet worden. Das Nachstehende bezieht sich auf weitere 81 Balken und setzt den ersten Bericht der die Abschnitte I bis X enthält, als bekannt voraus.

Die Durchführung der Versuche lag unter meiner Leitung Hrn. Ingenieur Graf ob, der sich dieser Aufgabe, wie bereits im ersten Teil bemerkt, mit Hingebung gewidmet hat. Auch an der Erstattung des vorliegenden Berichts hat mich Hr. Graf ganz wesentlich unterstützt. Bei der Durchführung der Versuche, der Herstellung der Zeichnungen, sowie der Photographien u. s. f. waren noch beteiligt die Ingenieure Ulrich, Nusser und Daiber.

Mitteilungen. Heft 45 bis 47.

¹) Ueber den Inhalt des ersten Teiles, welcher im Heft 39 veröffentlicht ist, gibt das Inhaltsverzeichnis Auskunft.

Zu möglichst rascher Erstattung des vorliegenden Berichtes nötigte der Seite 143, Fußbemerkung 1, angegebene Umstand.

²) Bei der Aufstellung des Programms und namentlich bei Bestimmung der Bauart und der Abmessungen der Eisenbetonbalken, die zur Prüfung gebracht werden sollten, war das Mitglied des Ausschusses, Hr. Professor Mörsch, in erster Linie beteiligt. Ueber die Zusammensetzung des Ausschusses, dem Hr. Mörsch erst 1906 beigetreten ist, siehe Heft 22 der Mitteilungen über Forschungsarbeiten, Seite 1.

A) Balken mit rechteckigem Querschnitt.

XI) Bauart der Versuchskörper, Fig. 66 bis 92.

Um einen Ueberblick über diese Untersuchungen zu gewähren, seien die Versuchskörper in folgende Gruppen eingeteilt:

Fig. 66 bis 68.

a)	3	Balken	nach	Fig	. 66,	150	mm	Balkenbrei	te, 3	Eisen	v.	10	mm	Dmr.	m.	Walzhaut
b)	3	*	»	30	67,	200	>>	»	, 3	>>	>>	10	35	>>	>>	20
c)	3	50	>>	7)	68,	300	»	»	, 3	*	*	14	*	*	>>	3)

Die Balken unter b) unterscheiden sich von denjenigen unter a) lediglich durch die Breite, die Balken c) dagegen noch durch die Stärke der einbetonierten Eisen.

Im ersten Teil dieses Berichtes waren die Ergebnisse der Balken mit nur einer geraden Einlage besprochen worden. Die Balken nach Fig. 66 bis 68 sollen dazu dienen, festzustellen, welchen Einfluß es auf die Widerstandsfähigkeit der Balken hat, wenn sich die Zugkraft auf 3 Eiseneinlagen verteilt.

Die Größe der Dehnung des Betons,

unmittelbar vor der Rißbildung, war außerdem Gegenstand der Untersuchung.

Um das Gleiten der einzelnen Eisen verfolgen zu können, war die in Fig. 8 (Heft 39 der Mitteilungen über Forschungsarbeiten) dargestellte und daselbst besprochene Einrichtung getroffen worden¹).

Fig. 69 bis 71.

a)	3	Balken	n.	Fig.	69,	300	mm	Balke	enbreite,	1	Eisen	v.	251	mm	Dmr.,	mit	Haken,	bear	beitet,
b)	3	>>	>>	>>	70,	300	>>		30	1	>>	33	25	>>	»	*	» ,	mit V	Valzhaut
c)	3	»	>>	>>	71,	200	>>		>>	1	35	>>	18	33	*	>>	» ,	>>	»

Die Balken enthalten je ein Rundeisen, dessen Enden erstmals mit Haken versehen sind. Die Abmessungen der Einlagen mit Haken wurden nach Fig. 85 und 86 gewählt. Das Anbiegen der Haken erfolgte in warmem Zustand.

¹) Es ist das genau die gleiche Methode, die Verfasser zur Ermittlung der Formänderungen von Wandungen verwendet hat (vergl. Zeitschrift des Vereines deutscher Ingenieure 1893 S. 491; 1897 S. 1158 und 1222; 1899 S. 322, 323, 347 bis 352; 1899 S. 1585 und 1616; 1902 S. 334 usw.), und die er 1904 gelegentlich der Feststellung des Gleitwiderstandes von Eisen gegen Beton durch Zug in Anwendung brachte (vergl. Mitteilungen über Forschungsarbeiten Heft 22 Seite 7).

Ueber die Bemühungen v. Empergers, die Bewegung des Eisens im Beton am Widerlager zu verfolgen, vergl. Forschungsarbeiten auf dem Gebiete des Eisenbetons, Heft III, 1905, S. 10 u. f. Heft V, 1906, S. 5. Die Einlagen der Balken nach Fig. 69 sind je ein gezogenes, rund 25 mm starkes Rundeisen. Die Oberfläche der Einlage wurde vor dem Einbetonieren sorgfältig geschlichtet und abgeschmirgelt.

Die Einlagen der Balken nach Fig. 70 haben dieselben Abmessungen, jedoch trägt die Oberfläche noch die Walzhaut.

Die Balken nach Fig. 71 enthalten ebenfalls ein Rundeisen mit Walzhaut, das jedoch einen geringeren Durchmesser besitzt. Die Balkenbreite beträgt hier 200 mm gegenüber 300 mm bei Balken Fig. 70.

Durch die Untersuchung dieser Balken sollte ermittelt werden, welchen Einfluß die Haken äußern, insbesondere auf den Gleitwiderstand der Eisen und die Höchstbelastung der Balken.

Um ein Urteil darüber zu erhalten, welche Geltung hierbei die Oberflächenbeschaffenheit erlangt, wurde bei den Balken a) die Eiseneinlage glatt und bei den Balken b) mit Walzhaut verwendet.

Zur Beobachtung des Gleitens war für die Balken nach Fig. 69 und 70 die in Fig. 87 und 88 dargestellte Einrichtung getroffen worden.

Fig. 72.

3 Balken nach Fig. 72, 200 mm Balkenbreite, 1 gerades Thacher-Eisen.

Der schwächste Querschnitt des Thacher-Eisens, rund 2,3 qcm, entspricht annähernd den Querschnitten der Eisen in Fig. 67 und 71. Die Gestalt und die

Die Untersuchung dieser Balken sollte das Verhalten des Thacher-Eisens im gebogenen Balken zeigen. Das Verhalten solcher Eisen beim Herausziehen aus dem Beton und die dabei auftretende Sprengwirkung ist bereits früher festgestellt worden, worüber an der soeben bezeichneten Stelle berichtet worden ist.

Fig. 73 und 74.

a) 3 Balken nach Fig. 73, 150mm Balkenbreite, 1 Eisen v. 22mm Dmr., m. Walzhaut, gerade, b) 3 » » 74, 150 » » 1 » 22 » » » », mit Haken.

In den äußeren Teilen dieser Balken sind Bügel aus 7 mm Rundeisen einbetoniert worden.

Die Versuche mit diesen Balken bezweckten die Ermittlung des Einflusses der Bügel auf die Widerstandsfähigkeit der Balken beim Fehlen der Haken an der Einlage und beim Vorhandensein solcher.

¹) Das an verschiedenen Orten gewalzte Thacher-Eisen hat anscheinend nicht übereinstimmende Formen. Vergl. in dieser Hinsicht Heft 39 Seite 52 Fig. 1 mit Seite 141 im ersten Teil des Betonkalenders 1907. 5

4 Balken nach Fig. 75, 300 mm Balkenbreite, 1 Eisen von 26 mm Dmr. mit Walzhaut, gerade.

Je zwei Balken lagerten bis zur Prüfung an der Luft und im Wasser.

Die Untersuchung sollte zeigen, welchen Einfluß die trockene und die nasse Lagerung auf die Widerstandsfähigkeit der Balken hat und auf die Dehnung des Betons, welche unmittelbar vor der Rißbildung vorhanden ist.

Fig. 76 und 77.

a) 3 Balken nach Fig. 76, 150 mm Balkenbreite; 3 Eisen: in der Mitte eine gerade Einlage von 10 mm Dmr.; seitlich liegen an den Enden aufgebogene Eisen von 10 mm Dmr., das eine nach Fig. 89, das andere nach Fig. 90.

b) 3 Balken nach Fig. 77, 150 mm Balkenbreite; 3 Eisen: in der Mitte eine Einlage von 10 mm Dmr. mit Haken; seitlich aufgebogene Einlagen, eine nach Fig. 89, die andere nach Fig. 90, beide von 10 mm Dmr.

Fig. 77.

Die Balken unter b) unterscheiden sich von denjenigen unter a) durch die Haken der mittleren Einlage.

Zu beachten ist die Unsymmetrie, welche in Bezug auf die schrägen Abbiegungen der beiden seitlichen Eiseneinlagen besteht (vergl. Fig. 89 und 90).

Fig. 78.

3 Balken nach Fig. 78, 150 mm Balkenbreite; 5 Eisen: in der Mitte eine gerade Einlage von 10 mm Dmr., seitlich je zwei aufgebogene Einlagen von 7 mm Dmr. (je 2 Stäbe nach Fig. 89 und 90).

Im Gegensatz zu den Balken nach Fig. 76 ist hier die Anordnung der Eiseneinlagen symmetrisch. Die Balken enthalten je zwei Stäbe nach Fig. 89 und 90. Der Gesamtquerschnitt der Einlagen ist annähernd von derselben Größe wie in Fig. 76 und 77.

Fig. 79 und 80.

 a) 3 Balken nach Fig. 79, 200 mm Balkenbreite; 3 Eisen: in der Mitte eine gerade Einlage von 18 mm Dmr.; seitlich zwei aufgebogene Eiseneinlagen von 18 mm Dmr., eine nach Fig. 89, die andere nach Fig. 90.

 b) 3 Balken nach Fig. 80, 200 mm Balkenbreite; 3 Eisen: in der Mitte ein Eisen mit Haken, von 18 mm Dmr.; seitlich zwei aufgebogene Eiseneinlagen von 18 mm Dmr., eine nach Fig. 89, die andere nach Fig. 90.

Die schiefen Abbiegungen sind hier in gleicher Weise unsymmetrisch wie bei den Balken nach Fig. 76 und 77.

Die Balken b) unterscheiden sich von denjenigen unter a) nur durch die Haken der mittleren Einlage.

Fig. 81 und 82.

a) 3 Balken nach Fig. 81, 200 mm Balkenbreite; 5 Eisen: in der Mitte eine gerade
Einlage von 18 mm Dmr.; seitlich je eine aufgebogene Einlage von 13 mm Dmr.
nach Fig. 89 und je eine von 12 mm Dmr. nach Fig. 90.

b) 3 Balken nach Fig. 82, 200 mm Balkenbreite; 5 Eisen: in der Mitte ein Eisen von 18 mm Dmr. mit Haken; seitlich je eine aufgebogene Einlage von 13 mm Dmr. nach Fig. 90 und je eine von 12 mm Dmr. nach Fig. 89.

Fig. 82.

Die Anordnung der Eiseneinlagen ist im Gegensatz zu Fig. 79 und 80 symmetrisch. Der Gesamtquerschnitt der Eisen ist jedoch für Fig. 79 bis 82 annähernd gleich.

Der Unterschied der Balken unter b) gegenüber denen unter a) besteht lediglich in den Haken der mittleren Einlage.

Die Versuche mit den Balken nach Fig. 76 bis 82 sollten darüber Aufschluß geben, welchen Einfluß die verschiedenen Anordnungen der Einlagen (symmetrische und unsymmetrische Anordnung, mittleres Eisen mit und ohne Haken) auf die Widerstandsfähigkeit der Balken besitzen.

Fig. 83.

4 Balken nach Fig. 83, 150 mm Balkenbreite, 200 mm Balkenhöhe, Flacheisen von 7 mm Stärke als Einlage.

Statt Rundeisen einzulegen, wurde rund 7 mm starkes Eisenblech, das bei AA, BB ausgefräst worden war, verwendet. Die Eiseneinlage bestand somit aus 3 an den Enden verbundenen Flacheisen von 30 mm Breite in der Mitte und je 15 mm an den Seiten. Diese Form der Eiseneinlage wählte ich, um durch die Rückwirkung des Eisens auf den Beton, soweit eine solche überhaupt vorhanden ist, einen möglichst weitgehenden Einfluß des Eisens auf die Größe der Dehnung des Betons auszuüben, welche an diesem gemessen wird, ehe Rißbildung eintritt. Nach außen besaß die Eiseneinlage 4 Vorsprünge C zu dem Zweck, die Dehnung, welche das Eisen bei der Untersuchung erfährt, zu ermitteln.

Die Balken lagerten unmittelbar nach der Herstellung rund 70 Stunden an der Luft (jedoch mit feuchten Säcken bedeckt), zwei von ihnen wurden sodann unter Wasser gesetzt und verblieben hier bis zur Prüfung; die beiden andern wurden auf feuchtem Sand gelagert und bis zur Untersuchung mit feuchten Säcken zugedeckt.

Für diese Balken war die gleichzeitige Messung der Dehnungen des Betons an der unteren Balkenfläche und der Dehnungen der Eiseneinlagen vorgesehen.

Fig. 84.

3 Balken nach Fig. 84, 150 mm Balkenbreite ohne Einlagen.

Fig. 84.

Die Versuche mit diesen Balken bezwecken die Ermittlung der Dehnung des nichtarmierten Betons bei einer der Höchstbelastung möglichst nahekommenden Belastung und der Widerstandsfähigkeit von Balken aus nichtarmiertem Beton.

Weitere Versuchskörper.

Es wurden noch hergestellt und geprüft:

12 Würfel von 30 cm Seitenlänge zur Ermittlung der Druckfestigkeit des Betons in Würfelform. Das Zerdrücken der Würfel erfolgte senkrecht zur

- 8

Stampfrichtung, entsprechend der bei den Balken auftretenden Beanspruchungsweise des Betons.

4 Prismen nach Fig. 91 zur Ermittlung der gesamten, bleibenden und federnden Zusammendrückungen unter verschiedenen Belastungen, sowie zur Bestimmung der Druckfestigkeit des Betons bei einer Länge der Prismen gleich dem 5 fachen der Seite des Querschnitts.

5 Körper nach Fig. 92 zur Ermittlung der gesamten, bleibenden und federnden Verlängerungen unter verschiedenen Belastungen. Außerdem wurde an diesen Körpern die Zugfestigkeit des Betons bestimmt.

XII) Material und Zusammensetzung der Versuchskörper.

Die Materialien:

Zement, von den Portlandzementwerken Heidelberg & Mannheim A.-G. in Heidelberg,

Sand und Kies (nach Angabe »Rheinkies aus der Nähe von Speier«), von Wayß & Freytag A.-G. in Neustadt an der Haardt,

je unentgeltlich geliefert, sind die gleichen wie diejenigen, welche zu den Versuchen im »Ersten Teil« verwendet worden waren. Eine Ausnahme bilden die Balken mit Bauart nach Fig. 75. Hier fand ein anderer Zement (»B«), jedoch derselben Herkunft, Verwendung.

Ueber die Untersuchung des Portlandzements (*A«), welcher zu den Balken Nr. 1 bis 47 und 98 bis 101 verwendet wurde, ist in Anlage 1 des »Ersten Teils« (S. 44) berichtet worden. Eine zweite Sendung desselben Zements, zur Herstellung der Balken Nr. 48 bis 69 und 95 bis 97 hat bei der Prüfung die in Anlage 4 enthaltenen Ergebnisse geliefert. Große Unterschiede wurden für die verschiedenen Lieferungen nicht festgestellt.

In Anlage 5 sind die Ergebnisse der Untersuchung des Zements »B«, der der ein geringeres Alter als Zement »A« besaß, niedergelegt. Gegenüber Zement »A« zeigt Zement »B« früheren Erhärtungsbeginn, kürzere Abbindezeit und größere Temperaturerhöhung. Die übrigen Eigenschaften ergeben keine bedeutenden Unterschiede.

Die Untersuchung des Sandes und des Kieses lieferte die in Anlage 3 (Heft 39 Seite 47) enthaltenen Ergebnisse.

Das zur Einbetonierung verwendete Eisen war meist Handelseisen gewöhnlicher Art. Der größere Teil desselben ist von der Firma Wayß & Freytag A.-G. unentgeltlich geliefert worden.

Die Untersuchung des Eisens ergab Folgendes.

Bei 7 mm Dmr. (3 Versuchstäbe):	
Streckgrenze $(3474 + 3316 + 3447): 3$	g/qcm
Zugfestigkeit $(4658 + 4474 + 4474): 3 \dots $	>>
Bei 10 mm Dmr. (18 Versuchstäbe):	
obere Streckgrenze ¹) $(3342 + 3200 + 3247 + 3152 + 3193 + 3230)$	
+ 3212 + 3063 + 3129 + 2922 + 3215 + 3329 + 3316	
+ 3228 + 3143 + 3316 + 3388 + 3612: 18 = 3235	»
untere Streckgrenze ¹) $(3253 + 3141 + 3130 + 3114 + 3145 + 3172)$	
+ 3153 + 3051 + 3071 + 2909 + 3177 + 3304 + 3203	
+3177 + 3091 + 3190 + 3275 + 3518: 18 = 3171	20
Zugfestigkeit $(4380 + 4294 + 4156 + 4165 + 4349 + 4391 + 4294)$	
+4253 + 4224 + 4195 + 4253 + 4329 + 4304 + 4266	
+4221+4228+4300+4176: 18	>>

¹) Hinsichtlich der Unterscheidung einer oberen und einer unteren Streckgrenze vergl. Zeitschrift des Vereines deutscher Ingenieure 1904 Seite 1040 u. f.; oder C. Bach, Elastizität und Festigkeit, 5. Auflage Seite 8 und Seite 136 u. f.

Bei 12 mm Dmr. (3 Versuchstäbe):	
obere Štreckgrenze $(2765 + 2697 + 2829): 3.$	em
untere » $(2757 + 2639 + 2821): 3 \dots \dots = 2739$ »	
Zugfestigkeit $(4026 + 3773 + 4060): 3 \dots \dots = 3953$ »	
Bei 13 mm Dmr. (3 Versuchstäbe):	
obere Streckgrenze (2458 + 2481 + 2580): 3	
untere » $(2443 + 2457 + 2519): 3 \dots \dots = 2473$ »	
Zugfestigkeit $(3595 + 3605 + 3450): 3 \dots \dots = 3550$ »	
Bei 14 mm Dmr. (1 Versuchstab aus Stahl):	
Streckgrenze 4969 kg/qcm	
Zugfestigkeit	
Bei 18 mm Dmr. (8 Versuchstäbe):	
obere Streckgrenze $(2755 + 2788 + 2762 + 2646 + 2858 + 2984)$	
+2840+2918):8	
untere Streckgrenze $(2673 + 2731 + 2742 + 2608 + 2807 + 2921)$	
+2809+2879:8 ,	
Zugfestigkeit $(3949 + 4084 + 4077 + 3861 + 4201 + 4212 + 4132)$	
+4136):8	
Bei 22 mm Dmr. (2 Versuchstäbe):	
obere Streckgrenze $(3016 + 3047): 2 \dots \dots \dots \dots = 3031$ »	
untere » $(2949 + 2974): 2 \dots \dots \dots \dots \dots = 2961$ »	
Zugfestigkeit $(4397 + 4337): 2 \dots \dots \dots \dots = 4367$ »	
Bei 25 mm Dmr. (2 Versuchstäbe):	
obere Streckgrenze $(2383 + 2485): 2 \dots \dots \dots \dots \dots = 2434$ »	
untere » $(2342 + 2413): 2 \dots \dots \dots \dots \dots = 2378$ »	
Zugfestigkeit $(3758 + 3741): 2 \dots \dots = 3750$ »	
Bei Thacher-Eisen (2 Versuchstäbe), bezogen auf den schwächst	en
Querschnitt von rund 2,3 qcm:	
obere Streckgrenze (3565 + 3396): 2	em
untere » $(3513 + 3313): 2 \dots \dots \dots \dots = 3413$ »	
Zugfestigkeit $(4443 + 4252): 2 \dots $	

Die starken Abweichungen in der Streckgrenze des untersuchten Eisens finden ihre Begründung in der verschiedenen Stärke des Eisens und in der Verschiedenartigkeit des Zustandes (geglüht oder nicht geglüht u. s. f.)

Die Zusammensetzung der Körper nach Fig. 67 bis 74, 76 bis 82, 84, 91 und 92 betrug:

- 1 Raumteil Portlandzement »A«,
- 4 Raumteile Sand und Kies in dem Mischungsverhältnis von 3 Raumteilen Sand und 2 Raumteilen Kies, beides vollständig lufttrocken und
- 15 vH Wasser (15 Raumprozente = 7,89 Gewichtprozente, Näheres hierzu siehe Heft 39, Anlage 3, Abs. c Seite 49).

Die Balken nach Fig. 75 hatten dieselbe Zusammensetzung von Zement, Sand und Kies, jedoch mit dem Unterschied, daß hier Zement »B« (siehe oben) verwendet wurde, welcher für ungefähr dieselbe Feuchtigkeit des Betons nur 14 vH Wasser beanspruchte.

Für die Balken nach Fig. 83 (Nr. 98 bis 101) war folgende Mischung gemacht worden:

1 Raumteil Portlandzement,

1 Raumteil Sand,

2 Raumteile Kies,

8 vH (Gewichtprozente) Wasser.

XIII) Herstellung und Lagerung der Versuchskörper. Temperaturerhöhung der Balken während des Abbindens. Verlauf der Balkentemperatur während der ersten 30 Stunden.

Die Mehrzahl der Versuchskörper wurde in der Zeit vom 5. April bis 21. Juni 1906 in einem Kellerraum der Materialprüfungsanstalt an der Technischen Hochschule Stuttgart durch Arbeiter, welche unter steter Aufsicht standen, hergestellt. Die Balken Nr. 91 bis 97 (Bauart nach Fig. 68 und 75) kamen in der Zeit vom 29. November 1906 bis 11. Januar 1907 zur Herstellung. Die Balken nach Fig. 83 waren bereits im Januar 1906 hergestellt worden.

Die Verarbeitung der Materialien sowie die Behandlung der Eiseneinlagen war dieselbe, wie im »Ersten Teil« (Heft 39 S. 4) angegeben worden ist.

Zur Herstellung der Körper dienten in allen Fällen wagerecht liegende Formen aus Tannenholz (vergl. Fig. 12 bis 16 in Heft 39 S. 5). Nur zur Herstellung der Würfel wurden die üblichen gußeisernen Formen benutzt.

Das Stampfen geschah in gleicher Weise, wie in Heft 39 S. 4 und 5 beschrieben worden ist. Als Stampfer wurden auch hier, wenn irgend möglich, solche von 12 kg Gewicht verwendet.

Die Aufbewahrung der Versuchskörper erfolgte, mit Ausnahme der 4 Balken nach Fig. 75 sowie der 2 Balken Nr. 100 und 101 nach Fig. 83, auf feuchtem Sand und mit nassen Säcken bedeckt.

Von den 4 Balken nach Fig. 75 lagerten je zwei Stück an der Luft und im Wasser. Die Balken Nr. 100 und 101 nach Fig. 83 lagerten im Wasser.

An 7 Balken (Nr. 13, 16, 50, 53, 54, 57 und 58) wurden nach dem Stampfen des Betons die Temperaturerhöhungen (Thermometer reichte bis auf etwa 70 mm in das Balkeninnere und befand sich rund 150 mm vom Ende des Balkens) festgestellt. Sie -betragen durchschnittlich

$$(3,6+4,8+4,0+3,0+4,0+4,5+3,8):5 = 3,9^{\circ}$$
 C.

Der Höchstwert wurde in der Regel ermittelt rund 15 Stunden nach vollendetem Stampfen. Die Figur 93 zeigt für den Balken Nr. 57 (Bauart Fig. 82) die Temperaturänderungen während 30 Stunden.

Fig. 93. Temperaturerhöhung des Betons (nach dem Stampfen). Balken Nr. 57 (Bauart nach Fig. 82.)

Von Interesse ist es, diesen Linienzug zu vergleichen mit demjenigen, welcher sich für den reinen Zement ergeben hatte, und der in Fig. a der Anlage 4 enthalten ist.

XIV) Durchführung der Versuche im allgemeinen.

Die Durchführung der Versuche mit den Balken ist im »Ersten Teil« (Heft 39 Seite 7 u. f.) eingehend beschrieben, so daß hier eine kurze Besprechung zulässig erscheint.

Beobachtet wurden:

1) die Belastung, unter welcher Wasserflecke und Risse (vergl. Heft 39 S. 12 u. f.) zuerst gesehen wurden; ferner das Fortschreiten der Risse mit steigender Belastung;

2) die Verschiebung der Eiseneinlagen gegenüber dem Beton an den Balkenenden, d. s. die Aenderungen der Strecken x und y (Fig. 66, 69, 72, 73, 75, 76, 78, 79, 81);

3) die gesamten, bleibenden und federnden Durchbiegungen der oberen Fläche des Balkens an 5 Punkten der Mittelebene (vergl. Fig. 19 in Heft 39);

4) die gesamten, bleibenden und federnden Verlängerungen des Betons an der unteren Fläche des Balkens auf die Erstreckung von rund 70 cm (vergl. Fig. 19 und 21 bis 25 in Heft 39);

5) die gesamten, bleibenden und federnden Zusammendrückungen des Betons an der oberen Fläche des Balkens auf dieselbe Erstreckung;

6) die gesamten, bleibenden und federnden Verlängerungen der Eiseneinlagen bei den Balken nach Fig. 83;

7) die Höchstbelastung.

Die unter 1), 3) bis 5) und 7) genannten Beobachtungen erfolgten bei fast allen Balken.

Ueber die Untersuchungen mit den weiteren Seite 8 aufgeführten Körpern wird unter XXXVIII) und XXXIX) berichtet werden.

Versuchsergebnisse.

XV) 3 Balken mit Bauart nach Fig. 66: Nr. 40, 43 und 45.

Die Ergebnisse der Prüfung sind in Zusammenstellung 9 enthalten. Als bemerkenswert ist hervorzuheben das Verhalten der Einlagen beim Gleiten. Um in dieser Hinsicht einen weitergehenden Einblick zu gewähren, seien für den Balken Nr. 40 folgende Einzelheiten hervorgehoben.

Balken Nr. 40.

Die letzte Belastung, unter welcher eine Aenderung der Strecken x_1, x_2, x_3 und y_1, y_2, y_3 (Fig. 66) noch nicht festzustellen war, betrug 7500 kg (vergl. Zusammenstellung 9, Spalte 15 bis 21).

Die erste Aenderung wurde gemessen unter P = 8000 kg, und zwar

								be	i x_1	x_2	x3	¥1	y_2	<i>¥</i> 3
nachd	lem	die I	Bela	stu	ng	10	M	in.						
ger	virkt	t hatte							0,010	0,040	0,040	0,010	0,015	0 mm,
nach	15 I	Inuter	1						0,010	0,055	0,060	0,010	0,020	0,005 »,
8	20	20							0,010	0,055	0,060	0,010	0,020	0,005 .

Hiernach ist das Eisen, für welches die Messung x_1 (Stab 1, Fig. 66) gilt, unter der Belastung von P = 8000 kg um 0,01 mm zurückgegangen und hat diese anfänglich beobachtete Größe auch bei längerer Dauer der Belastung beibehalten.

Das Eisen, für welches die Größe x_2 Geltung hat, ist während der ersten 10 Minuten um 0,04 mm zurückgetreten, nach weiteren 5 Minuten hat sich dieses Maß auf 0,055 mm vergrößert und ist dabei verblieben.

Bei x₃ ist der Vorgang ein ganz ähnlicher.

Vergleicht man diese 3 Zahlen, so erkennt man, daß die Verschiebung des Eisens bei x_1 weit weniger beträgt als diejenige von x_2 und x_3 .

Am andern Balkenende ist, wie die Größen y_1 , y_2 und y_3 erkennen lassen, die Bewegung der Eisen geringer, jedoch für die verschiedenen Stäbe ebenfalls ungleich.

Die Messungen zeigen außerdem, daß unter P = 8000 kg schon nach 15 Minuten Stillstand der Bewegung der Eisen gegenüber dem Beton eingetreten ist.

Die Belastung wurde nun auf P = 0 kg erniedrigt und nach 3 Minuten die Last P = 8000 kg wiederholt aufgebracht, wobei folgendes gefunden wurde:

			bei	x_1	x_2	x_3	y_1	y_2	<i>¥</i> 3
nacl	h 6	Minuten		0,040	0,130	0,140	0,025	0,045	0,005 mm,
»	10	>>		0,070	0,175	0,180	0,025	0,050	0,005 »;
.59	15	*		0,070	0,320	0;280	0,030	0,055	0,005 ».

Nach 16 Minuten gleiten die Eisen auf der Seite der x, Fig. 66, so rasch, daß die Wage der Prüfungsmaschine nicht mehr zum Einspielen gebracht werden kann; der Gleitwiderstand war auf der Seite der x erschöpft und damit auch die Widerstandsfähigkeit des Balkens.

Dem Vorstehenden zufolge war die Gleitbewegung der Eisen sehr ungleich

Die Fig. 94 zeigt die untere Fläche, Fig. 95 eine Seitenfläche des Balkens Nr. 40. Auch von den beiden andern Balken gleicher Art, Fig. 66, sind in Fig. 94 und 95 die genannten Flächen abgebildet. Sämtliche beobachte en Risse sind auf den Balkenflächen eingetragen¹). Die unter den einzelnen Belastungen gefundenen Rißstrecken sind durch gestrichelte Begrenzungslinien bezeichnet; die zugehörige Belastung ist zwischen diesen Begrenzungslinien eingetragen (vergl. Heft 39, S. 14 u. f.). So zeigt bei Balken Nr. 40 in Fig. 94 die Zahl 3750 an, daß sich unter der Belastung von P = 3750 kg auf der Unterfläche ein Riß eingestellt hat, der von der Kante bis zur ersten gestrichelten Linie reicht. Unter der Belastung von P = 4500 kg verlängerte sich dieser Riß bis zur zweiten gestrichelten Linie usw. Auf der Seitenfläche, Fig. 95, zeigt sich der erste Riß unter P = 4000 kg.

Beim ersten Auftreten waren die Risse äußerst fein, zuerst auf der Unterfläche sichtbar und oft recht schwierig zu erkennen. Die Rißbildung vollzieht sich dabei zunächst an den Kanten, vergl. Fig. 30, Heft 39, Seite 16. Mit fortschreitender Last verlängern sich die Risse rasch über die ganze Balkenbreite und steigen an den Seitenflächen empor.

Die Zahl der beobachteten Risse ist hier weit größer, als bei den Balken, welche im »Ersten Teil« besprochen worden sind.

Auf der untern Balkenfläche und an der Seitenfläche des Balkens Nr. 40 sind außerhalb der Belastungsrollen, Fig. 66, Längsrisse entstanden siehe Fig. 94 und 95. Über das Entstehen solcher Risse vergl. Heft 39 S. 15.

Der Bruchriß verläuft namentlich auf der linken Seite des Balkens Nr. 40 schräg nach oben gegen die Belastungsrolle hin.

Wird nach den Gleichungen der »amtlichen Bestimmungen« (Heft 39 S. 18) gerechnet, so ergibt sich, ohne Berücksichtigung des Eigengewichts (vergl. Heft 39 S. 20), für die Höchstbelastung P = 8000 kg, da

¹) Um die Risse für die Photographie deutlicher erscheinen zu lassen, sind sie mit Tusche nachgezeichnet worden.

Fig. 94. Untere Flächen der Balken mit Bauart nach Fig. 66¹).

Fig. 95. Seitenflächen der Balken mit Bauart nach Fig. 66.

¹) Die kleinen Zahlen in den Abbildungen der photographischen Aufnahmen sind bei dem verwendeten, zu einem Teil durch das Format veranlaßten, Maßstab nicht so deutlich geworden, wie vom Verfasser gewünscht. Bei der Kürze der Zeit (vergl. Fußbemerkung S. 143), die für die Herstellung der vorliegenden Veröffentlichung zur Verfügung stand, war, ganz abgesehen vom Kostenpunkt, der Ersatz der Autotypien durch Lichtdruckbilder, nicht möglich.

Um denjenigen Lesern, die sich eingehend mit den Versuchen beschäftigen wollen und denen die Abbildungen nicht genügen, die Möglichkeit zum Studium vollständiger Bilder zu bieten, erklärt sich Verfasser bereit, die entsprechenden Photographien gegen Erstattung der Selbstkosten zur Verfügung zu stellen.

- h = 30,77 cm (Spalte 5 der Zusammenstellung 9),
- b = 15,02 cm (» 4 » » ...9),
- a = 0.5 + 0.9 = 1.4 cm (Spalte 8 bis 10 und Spalte 40 der Zusammenstellung 9),
- $f_e = 2,44$ qcm (Spalte 11 der Zusammenstellung 9),
- $d_1 = 1,02, d_2 = 1,03$ und $d_3 = 1,00$ cm (Spalte 8 bis 10 der Zusammenstellung 9 und Fig. 66),
- $M = \frac{1}{2} P \cdot 50 \text{ kg} \cdot \text{cm}$ (Fig. 66),
- $V = \frac{1}{2} P \text{ kg},$

nach Gl. 1, unter Zugrundelegung des Wertes n = 15, der Abstand der Nulllinie von oben (vergl. Fig. 31)

$$x = \frac{15 \cdot 2,44}{15,02} \left[\sqrt{1 + \frac{2 \cdot 15,02(30,77 - 1,4)}{15 \cdot 2,44}} - 1 \right] = 9,77 \text{ cm},$$

nach Gl. 2 die größte Druckspannung des Betons-

$$\sigma_b = \frac{2 \cdot 4000 \cdot 50}{15,02 \cdot 9,77 \left(30,77 - 1,4 - \frac{9,77}{3}\right)} = 104,4 \text{ kg/qcm}$$

nach Gl. 3 die Zugspannung des Eisens

$$\sigma_e = \frac{4000 \cdot 50}{2,44 \left(30,77 - 1,4 - \frac{9,77}{3}\right)} = 3146 \text{ kg/qcm},$$

nach Gl. 4 die Schubspannung des Betons

$$\tau_0 = \frac{4000}{15,02\left(30,77-1,4-\frac{9,77}{8}\right)} = 10,2 \text{ kg/qcm},$$

nach Gl. 5 der Gleitwiderstand

$$\tau_1 = \frac{4000}{\left(30,77 - 1,4 - \frac{9,77}{3}\right)\pi (1,02 + 1,03 + 1,00)} = 16,0 \text{ kg/qcm}^1).$$

Der Gleitwiderstand von 16 kg/qcm ist geringer als die früher gefundenen, im »Ersten Teil« veröffentlichten, Werte (Heft 39 S. 43 und Zusammenstellung 8).

Der Grund hierfür wird darin zu suchen sein, daß mit $\sigma_e = 3146 \text{ kg/qcm}$ die Streckgrenze in dem einen oder andern der drei Eisen erreicht worden sein kann (vergl. S. 10), während dies bei den Versuchen, über welche in Heft 39 berichtet worden ist, nicht der Fall gewesen ist; ferner darin, daß die Zugkräfte sich nicht so gleichmäßig auf die 3 Eisen verteilen werden, daß in ihnen die gleiche Spannung herrscht, wie die Rechnung voraussetzt.

In Fig. 96 sind zu den Belastungen als senkrechten Ordinaten die gesamten, bleibenden und federnden Verlängerungen des Betons an der untern Fläche des Balkens Nr. 40, also die Werte in den Spalten 23 bis 25 der Zusammenstellung 9, als wagrechte Abszissen eingetragen. Bis gegen P = 1500 kg verlaufen die Linienzüge annähernd nach einer Geraden. Oberhalb P = 1500 kg bis gegen P = 4000 kg ist die verhältnismäßige Zunahme der Dehnungen gegen-

¹) τ_1 kann, nachdem σ_e vorliegt, auch aus der Gleichung

τ

$$r_1 = \frac{f_e \sigma_e}{\pi dl} = \frac{2,44 \cdot 3146}{\pi (1.02 \pm 1.03 \pm 1.00) 50} = 16,0 \text{ kg/qem}$$

berechnet werden, wobei für l der Abstand zwischen Belastungsrolle und Widerlager eingeführt wird. Diese Art der Berechnung von τ_1 , welche unmittelbar aus der Anschauung abgeleitet werden kann, liefert dieselben Werte wie Gl. 5.

Wie S. 20 des ersten Teils (Forschungsheft 39) bemerkt ist, kommt in Wirklichkeit für l eine etwas größere Länge in Betracht.

über den Belastungen weit größer. Von der Belastung P = 4000 kg an nähern sich die Linien der gesamten und federnden Verlängerungen wieder einer Geraden.

Bemerkenswert ist hierbei, daß unter P = 2000 kg die ersten Wasserflecke und unter P = 3750 kg der erste Riß beobachtet wurde.

Hiernach fällt — wie schon früher festgestellt — die Entstehung der ersten Wasserflecke und der ersten Risse in das Gebiet, in welchem die Dehnungslinien die stärksten Krümmungen aufweisen (vergl. Heft 39 S. 21 u. f.).

200 2029 1 cn 7500 7000 6500 6000 c 5500 470 federnden 6.38 Verlänger 5000 Linie der gesamten Ve 4511 08 104 P=2000 kg:Erste Wasserflecke 1500 1000 Achse der Verlängerungen

Fig. 96. Balken Nr. 40 (Bauart nach Fig. 66). Verlängerungen auf der unteren Balkenfläche.

Der Verlauf der Linienzüge in Fig. 96 deutet darauf hin, daß die erste Rißbildung wahrscheinlich schon vor P = 3750 kg eingetreten ist, ohne daß jedoch eine dahingehende Beobachtung gemacht wurde¹). Es ist eben immer im Auge zu behalten, daß der Riß eine gewisse Abmessung erlangt haben muß, ehe er entdeckt wird.

Die Dehnung des Betons unter P = 3600 kg beträgt $3,31 \frac{1}{200}$ cm auf die Meßlänge l = 70,0 cm (Zusammenstellung 9 Spalte 15, 22 und 23),

d. i. $\frac{3,81}{200} \cdot \frac{1}{0,7} \cdot 10 = 0,236$ mm auf 1 m Länge.

Unter der Voraussetzung, daß der erste Riß nicht vor P = 3600 kg eingetreten ist, würde diese Länge als die Dehnung des Betons unmittelbar vor Eintritt des ersten Risses anzusehen sein¹).

Unter der Belastung P = 3500 kg ergab sich die gesamte Dehnung an der Unterfläche des Balkens zu $2,s_5 \frac{1}{200}$ cm auf 70,0 cm (Spalte 23 der Zusammenstellung 9); beim Entlasten auf P = 0 kg waren bleibend $0,s_5 \frac{1}{200}$ cm. Wird untersucht, welche Zugspannungen in dem Eisen dadurch wachgerufen werden, daß der Beton einen verhältnismäßig großen Teil seiner gesamten Dehnung nach der Entlastung beibehält, während das bei dem Eisen, so lange seine Anstrengung unterhalb der Elastizitätsgrenze bleibt, nicht der Fall ist, so ergibt sich Folgendes. Die Zugspannungen im Eisen betragen unter Zugrundelegung eines Dehnungskoeffizienten für Flußeisen von $\frac{1}{2100\,000}$ und unter der — aller-

¹) Der Linienzug in Fig. 100, welcher das Steigen der Nullachse nach oben angibt, deutet gleichfalls darauf hin, daß die Rißbildung schon in der Nähe von P = 3500 kg eingetreten sein wird.

dings nur angenähert erfüllten – Voraussetzung, daß das Eisen die gleiche Dehnung wie der Beton an der untere Balkenkante erfährt,

1) entsprechend der gesamten Verlängerung von $2,85 \frac{1}{200}$ cm auf 70,0 cm (Spalte 23 der Zusammenstellung 9)

$$\sigma_1 = \frac{2,85 \cdot 2100\,000}{200 \cdot 70} = 427 \text{ kg/qcm},$$

2) entsprechend der bleibenden Verlängerung von $0.95 \frac{1}{200}$ cm auf 70.0 cm (Spalte 24 der Zusammenstellung 9)

$$\sigma_2 = \frac{0.95 \cdot 2\,100\,000}{200 \cdot 70} = 142 \text{ kg/qcm}.$$

Da bei der Spannung von 427 kg/qcm die bleibenden Dehnungen von Flußeisen als verschwindend klein angesehen werden dürfen, so folgt, daß die Entlastung von P = 3500 kg auf P = 0 kg mit einer Zugspannung von rund 142 kg/qcm im Eisen endigt, so daß also der Beton unterhalb der Nullachse durch das gespannte Eisen von 2,44 qcm Querschnitt eine Druckbelastung von 2,44 · 142 = 346 kg erfährt, Spannungslosigkeit im ursprünglichen Zustand vorausgesetzt, was in der Regel allerdings nicht zutreffen wird (vergl. Heft 39, Seite 25, Fußbemerkung 1).

In Fig. 97 sind die ermittelten Zusammendrückungen auf der oberen Balkenfläche für denselben Balken Nr. 40 (Werte der Spalte 27 bis 29 der Zusammenstellung 9) in gleicher Weise dargestellt, wie die Verlängerungen in Fig. 96. Auf den Verlauf der Linie der bleibenden Zusammendrückungen nimmt die Zugspannung Einfluß, welche nach Maßgabe des oben Erörterten im Eisen zurückbleibt.

In Fig. 98 sind die gesamten Durchbiegungen des Balkens Nr. 40 an den 5 Stellen, welche in Fig. 19, Heft 39, eingezeichnet sind, für P = 500 kg bis

Fig. 97. Balken Nr. 40 (Bauart nach Fig. 66). Zusammendrückungen auf der oberen Balkenfläche.

 $P = 8000 \text{ kg} \text{ dargestellt}^{1}$ (Werte der Spalten 30 bis 34 der Zusammenstellung 9).

19

Fig. 99 enthält die gesamten, bleibenden und federnden Durchbiegungen des Balkens Nr. 40 (Spalten 32 und 37 der Zusammenstellung 9), welche für die Mitte der Balkenlänge ermittelt worden sind. Der Verlauf dieser Linien ist ein ganz ähnlicher wie der Dehnungslinien in Fig. 96 und 97²).

Unter der Voraussetzung, daß die Querschnitte des Balkens während des Versuchs innerhalb der Meßstrecke (vergl. Fig. 19) eben bleiben, kann mit Hilfe der ermittelten gesamten Zusammendrückungen (oben) und Verlängerungen (unten) die Lage der Nullinie unter den verschiedenen Belastungen festgestellt werden (vergl. Heft 39, Seite 26 und Fig. 41 und 42, Seite 29). In Fig. 100 sind zu den Belastungen als wagerechten Abszissen die Entfernungen

Fig. 98. Gesamte Durchbiegungen des Balkens Nr. 40 (Bauart nach Fig. 66).

¹) Ueber die bleibenden Durchbiegungen geben die Spalten 35 bis 39 Auskunft. Ihre Eintragung in die Abbildung Fig. 98 mußte unterbleiben, um eine die Deutlichkeit störende Fülle von Linien zu vermeiden.

²) Werden für die Balken Nr. 43 und 45 die in den Fig. 96 bis 99 entsprechenden Linien aufgezeichnet, so ergibt sich ganz der gleiche Verlauf der Linienzüge.

Der Maßstab ist aus Rücksicht auf die Blattbreite bei Fig. 96 nur rund 0,7 von demjenigen der Fig. 97 und 99 gewählt worden. Das Gleiche gilt auch für spätere Darstellungen, z. B. Fig. 103 bis 105 u. s. f. der Nullinie von der unteren Balkenfläche als senkrechte Ordinaten aufgetragen. Die Figur zeigt allmähliches Steigen der Nullinie bis P = 3000 kg. Mit Eintritt der Rißbildung verschiebt sich die Nullinie rasch nach oben, um dann etwa von P = 5000 kg an wieder langsamer zu steigen.

Die Lage der Nullinie für n = 15 (vergl. Heft 39 Seite 17) sowie die Linie, welche die halbe Balkenhöhe angibt, sind ebenfalls in Fig. 100 eingezeichnet.

Fig. 99. Balken Nr. 40 (Bauart nach Fig. 66), Durchbiegungen in der Mitte der Balkenlänge.

Fig. 100. Lage der Nullinie mit steigender Belastung für Balken Nr. 40 (Bauart nach Fig. 66).

Balken Nr. 43.

Von diesem Balken ist Folgendes hervorzuheben:

Unter der Belastung von P = 8000 kg zeigt sich nach Ausweis der Spalten 16 bis 21 der Zusammenstellung 9 zunächst nur eine Verschiebung des Eisens, für welches y_3 gilt, später tritt auch eine solche ein für das Eisen, zu dem y_1 gehört. Diese beiden Einlagen gleiten schließlich an diesen Balkenenden sehr bedeutend, während sich das Ende des mittleren Eisens, für welches y_2 gilt, nur wenig bewegt. Am Schlusse sind zu verzeichnen:

bei y_1	y_2	y_3
2,195	0,04	2,23 mm.

Die Bloßlegung der Eiseneinlagen nach dem Versuch ergibt, daß das mittlere Eisen auf der y-Seite an der Oberfläche losen Zunder trägt, ein Beweis dafür, daß seine Spannung die Streckgrenze überschritten hat; die beiden anderen Eisen zeigten losen Zunder nicht. Hierdurch wird auch die große Abweichung der beiden Werte y_1 und y_3 von y_2 verständlich: während die Enden der beiden ersteren Eisen sich gegenüber der Stirnfläche um 2,195 mm bezw. 2,24 mm nach innen bewegt haben, hat das Ende des mittleren Eisens seine Lage nahezu beibehalten, dagegen sich weiter nach innen unter Ueberschreitung

Fig. 101. Untere Flächen der Balken mit Bauart nach Fig. 67.

Fig 102. Seitenflächen der Balken mit Bauart nach Fig 67

der Fließgrenze stark gestreckt. Die Rechnung liefert für die Spannung im Eisen unter P = 8000 kg $\tau_e = 3169 \text{ kg/qcm}$ (Spalte 43 der Zusammenstellung 9).

Man wird hiernach aussprechen dürfen, daß die Widerstandsfähigkeit des Balkens Nr. 43 erschöpft war mit dem Eintreten des Gleitens der beiden äußern Eisen und dem Strecken des mittleren Eisens auf der y-Seite.

Balken Nr. 45 gibt zu besonderen Bemerkungen keine Veranlassung.

XVI) 3 Balken mit Bauart nach Fig. 67: Nr. 18, 21 und 28.

Diese Balken unterscheiden sich von den unter XV besprochenen nur dadurch, daß die Balkenbreite nicht 150 mm, sondern 200 mm beträgt.

8000 17,51 1 cm 7000 auf 1=69,8 cm 73 88 6000 2 5000 57 4500 2,89 P=4250 kg: Ersten Rifs beobachtet 4250 3500 1243 1.30 3000 435 1029 101 1,00 P=2500 kg: Erste Wasserflecke 2500 10,15 0.85 10,00 0.07 /0,77 1500 005 10,55 1000 001 0.33 500 0/0,15 Achse der Verlängerungen Fig. 103. Balken Nr 21 (Bauart nach Fig. 67), Verlängerungen auf der unteren Balkenfläche. 8000 0.9 6.37 8000 Q650 2.151 2.800 mm 1 200 cm auf 2=69,7 cm 7000 2.85 7000 0,450 153 40 5 6000 0.67 6000 1.095 0.375 470 5000 5000 0.240 0.675 0.915 4500 2 /0,630 P=4250 kg: Ersten Rijs beobachtet dsi 4500 10 P=4250 kg:Ersten Rifs 'cobachtet 4000 10,470 3500 010 7.54 3500 1 374 1,26 3000 10,13 1.131 0,295 3000 Q.08 Q.92/100 P= 2500 kg: Erste Wasserflecke 2500 2500 ans jo,230 P= 2500 kg: Erste Wasserflecke 2000 005 072/0,77 2000 0005 0, 175 1500 0.03 1 10.56 1500 0 0,125 03 1000 10.37 10,080 1000 500 0 0 10.18 500 10040 Achse der Zusammendrückungen Achse der Durchbiegungen Fig. 104. Balken Nr. 21 (Bauart Fig. 105. Balken Nr. 21 (Bauart nach Fig. 67). Zusamm.endrückungen auf der nach Fig. 67). Durchbiegungen in der Mitte

der Balkenlänge.

oberen Balkenfläche.

Die Ergebnisse der Prüfung sind in der Zusammenstellung 10 niedergelegt.

In Fig. 101 und 102 sind die unteren Flächen und je eine der Seitenflächen abgebildet. (Ueber die Zusammengehörigkeit der Striche und Zahlen vergl. das Seite 14 Gesagte).

Die Ergebnisse der Dehnungsmessungen (Spalten 22 bis 29 der Zusammenstellung 10), sowie die für die Mitte der Balkenlänge ermittelten Durchbiegungen

Fig. 106. Lage der Nullinie mit steigender Belastung für Balken Nr. 21 (Bauart nach Fig. 67).

(Spalten 32 und 37 der Zusammenstellung 10) sind in Fig. 103 bis 105 für den Balken Nr. 21 zeichnerisch dargestellt.

In Fig. 106 ist für denselben Balken die Lage der Nullinie unter den einzelnen Belastungsstufen angegeben. (Hinsichtlich der hierzu gemachten Voraussetzungen siehe Seite 26 in Heft 39 und Fig. 41 und 42 daselbst.)

XVII) 3 Balken mit Bauart nach Fig. 68: Nr. 95, 96 und 97.

Diese Balken unterscheiden sich von den unter XV und XVI besprochenen durch die Balkenbreite (300 mm gegenüber 150 bezw. 200 mm) und durch die stärkeren Eiseneinlagen (14 mm gegenüber 10 mm).

Die Ergebnisse der Untersuchung sind in Zusammenstellung 11 enthalten.

In Fig. 107 sind die unteren Flächen, in Fig. 108 je eine der Seitenflächen der Balken abgebildet.

Die Ergebnisse der Dehnungsmessungen (Spalten 23 bis 29 der Zusammenstellung 11) sowie die für die Mitte der Balkenlänge ermittelten Durchbiegungen (Spalten 32 und 37 der Zusammenstellung 11) sind in Fig. 109 bis 111 für den Balken Nr. 96 dargestellt.

Fig. 107. Untere Flächen der Balken mit Bauart nach Fig. 68.

Fig. 108. Seitenflächen der Balken mit Bauart nach Fig. 68.

Fig. 110. Balken Nr. 96 (Bauart nach Fig. 68) Zusammendrückungen auf der oberen Balkenfläche. Fig. 111. Balken Nr. 96 (Bauart nach Fig. 68) Durchbiegungen in der Mitte der Balkenlänge. Die Lage der Nullinie unter den einzelnen Belastungsstufen ist für denselben Balken aus Fig. 112 ersichtlich. (Hinsichtlich der hierzu gemachten Voraussetzungen siehe Seite 26 in Heft 39 und Fig. 41 und 42 daselbst.)

Fig. 112. Lage der Nullinie mit steigender Belastung für Balken Nr. 96 (Bauart nach Fig. 68)-

XVIII) Zusammenfassung der Ergebnisse von den Balken nach Fig. 66 bis 68 und Vergleich derselben mit den Ergebnissen der Balken nach Fig. 2 bis 5.

Unter Bezugnahme auf die Zusammenstellungen 9 bis 12 ist Folgendes hervorzuheben.

1) Das Gleiten der drei Eisen gegenüber den Stirnflächen des Balkens erfolgte ungleich, wie die Spalten 16 bis 21 der Zusammenstellungen 9, 10 und 11 erkennen lassen.

2) Die durch Gl. 5 (Seite 18 in Heft 39) bestimmte Spannung τ_1 (Gleitwiderstand) beträgt bei der Höchstbelastung

der	Balken	nach	Fig.	66	(16, 0 +	16,1	+1	16,9):3	=	16,3	kg/qcm,	$\sigma_e =$	3243	kg/qcm,	Alter	7	Mon	.,
*	>>	»	» .	67	(15, 8 +	17,6	+	18,1):3	=	17,2	»,	$\sigma_e =$	3363	>>	»	6	»	,
»	>>	»	*	68	(14,7+	16,0	+ 1	16,0):3	=	15,6	»,	$\sigma_e =$	2206	>>	*	3	>>	

Bei den Balken nach Fig. 66 und 67 (Zusammenstellung 9 und 10) hätte die Spannung der Eiseneinlagen (Spalte 43, berechnet nach Gl. 3 Seite 18 in Heft 39) die Streckgrenze nahezu erreicht oder ein wenig überschritten, falls Gl. 3 diese Spannung zutreffend ergibt¹). Festgestellt ist das Ueberschreiten der Streckgrenze nur für eine Eiseneinlage (Balken 43 nach Fig. 66) bezw. für zwei Eiseneinlagen (Balken 21 und 28 nach Fig. 67) (vergl. Seite 20, sowie Zusammenstellungen 9 und 10).

Bei den Balken nach Fig. 68 betrug die nach Gl. 3 (Heft 39 Seite 18) berechnete Spannung im Eisen im Mittel nur 2206 kg/qcm; blieb also bedeutend unterhalb der Streckgrenze, so daß die Zerstörung dieser Balken infolge Ueberwindung des Gleitwiderstandes erfolgte.

¹) Vergl. hierzu das unter LX Gesagte, demzufolge Gl. 3 die Eisenspannung mehr oder weniger zu groß Hefert.

Bei Beurteilung der Zahl 15,6 kg/qem für t_1 gegenüber den Zahlen 16,3 und 17,2 ist noch im Auge zu behalten, daß das Alter der Balken nach Fig, 68 3 Monate betrug gegenüber 6 bezw. 7 Monate bei den Balken nach Fig. 67 und 66.

Bei den früheren Versuchen (Erster Teil, Heft 39, Zusammenstellung 8) wurde bei 6 Monate alten Balken, welche nur eine Eiseneinlage hatten, gefunden:

Balken	nach	Fig.	2:	$\tau_1 = 22,0$	kg/qcm	$(\sigma_e = 1760)$	kg/qcm),
>>	>>	>>>	3:	$\tau_1 = 21, 1$	>>	$(\sigma_e = 2348)$	»),
»	»	>>	4:	$\tau_1 = 19, 1$	30	$(\sigma_e = 1753)$	»),
>>	>>	>>	5:	$\tau_1 = 19,8$	>>	$(\sigma_e = 1239)$	»).

Demnach ist der Gleitwiderstand bei Balken mit drei Einlagen (Zusammenstellung 12, Spalte 17) kleiner ermittelt worden, als bei den Balken mit einer Einlage (Zusammenstellung 8, Spalte 16), wie zu erwarten stand. Ein scharfer Vergleich ist allerdings infolge des Altersunterschieds der Körper nach Fig. 68 und der starken Spannung des Eisens in den Balken nach Fig. 66 und 67 nicht möglich.

3) Die Größe der Verlängerung des Betons unmittelbar vor der Beobachtung des ersten Risses wurde gefunden (Zusammenstellung 12, Spalte 8)

bei	den	Balken	nach	Fig.	66	zu	0,235	mm	auf	1	m	Länge,
>>	>>	>>	>>	>>	67	>> .	0,196	33	>>	1	m	»,
>>	30	39	20	35	68	>>	0,164	>>	>>	1	m	* .

Diese Werte sind, mit Ausnahme des letzten, größer als diejenigen, welche im ersten Teil für Balken mit einer Eiseneinlage beobachtet wurden (vergl. Seite 42 Heft 39).

In den Figuren 113 bis 115 sind die Querschnitte der Balken dargestellt; sie zeigen die Lage der Eisen an den Stellen, an denen die ersten Risse entdeckt worden sind. Wie ersichtlich, steht bei den Balken Nr. 40, 43 und 45, Fig. 113, die Eisenoberfläche um 6 bis 9 mm von der Unterfläche und um 17 bis 23 mm von den Seitenflächen ab. Bei den Balken Nr. 18, 21 und 28, Fig. 114, betragen diese Zahlen 6 bis 9 bezw. 24 bis 30 mm, und bei den Balken Nr. 95, 96 und 97, Fig. 115, 5 bis 11 bezw. 40 bis 43 mm. Die Stärke der Betonschicht zwischen Eisen und Unterfläche der Balken ist somit nahezu die gleiche, während diejenige zwischen den außen gelegenen Eisen und den Seitenflächen der Balken für die Balken nach Fig. 67 größer ist als bei den Balken nach Fig. 66, und für die Balken nach Fig. 68 größer als für die Balken nach Fig. 67.

Der Vergleich der oben angegebenen Verlängerungen von 0,235, 0,136 und 0,164 mm auf den Meter Länge zeigt, daß der Beton, gerechnet von dem Zustand an, in dem er sich bei Beginn des Versuches befindet, sich um so mehr dehnt, ehe er reißt, je näher die Eiseneinlagen an den Seitenflächen der Balken liegen. (Vergl. Anlage 6, S. 156 u. f.: »Zur Dehnungsfähigkeit des Betons mit und ohne Eiseneinlagen.)

Diese Feststellung wird noch unterstützt durch folgende Beobachtungen:

a) Die Balken nach Fig. 66 erhielten eine größere Zahl Risse als die Balken nach Fig. 67, und die Balken nach Fig. 67 mehr Risse als diejenigen nach Fig. 68 (vergl. Fig. 94, 101 und 107). Innerhalb der Meßstrecke, Fig. 19, können

in Fig. 94 durchschnittlich 11,

>	>>	101	*	3,	
>	. *	107	>>	längere Risse gezählt werden.	:

b) Die Risse der Balken nach Fig. 66 und 67 erschienen bei ihrer Entdeckung bedeutend feiner als diejenigen der Balken nach Fig. 68.

4) Vergleicht man für die Balken nach Fig. 66 und 67, die sich nur durch die Balkenbreite unterscheiden (150 gegen 200 mm), die Dehnung, welche der Beton erfahren hat, bevor Risse eintraten, also beispielweise unter P = 2000 kg, so findet sich

Fig. 113. Lage der Eiseneinlagen in den Querschnitten des ersten Risses (Balken mit Bauart nach Fig. 66). Maße in mm.

Fig. 114. Lage der Eisenelnlagen in den Querschnitten des ersten Risses (Balken mit Bauart nach Fig. 67). Maße in mm.

Die Verlängerungen verhalten sich wie 1,05:0,77 = 1:0,73, die Balkenbreiten wie 1:0,75.

Unter P = 6000 kg, also nach Eintritt der Rißbildung, ergibt sich

für den Balken Nr. 40 13,32 » 43 13,30 45 13,00 im Durchschnitt 13,21200 em auf rund 70 cm, für den Balken Nr. 18 10,63 » 21 10,20 28 9,62 im Durchschnitt 10,15200 cm

auf rund 70 cm.

Die Verlängerungen verhalten sich wie 1:0,77, die Balkenbreiten wie 1:0,75.

XIX) 3 Balken mit Bauart nach Fig. 69: Nr. 25, 27, 33.

Das zur Einbetonierung verwendete Rundeisen war rund 25 mm stark, gezogen, sorgfältig geschlichtet und abgeschmirgelt, besaß somit eine glatte Oberfläche und überdies an den Enden Haken.

Um das Gleiten der Eiseneinlage verfolgen zu können, war die in Fig. 87 und 88 dargestellte Einrichtung getroffen worden.

Die Ergebnisse der Prüfung sind in Zusammenstellung 13 niedergelegt.

Balken Nr. 25.

Von den Ergebnissen der Untersuchung dieses Balkens ist Folgendes hervorzuheben.

Unter P = 4250 kg erscheinen auf der unteren Balkenfläche die ersten Wasserflecke. Mit steigender Belastung vermehren sich dieselben in gleicher

Fig. 116. Balken Nr. 25 (Bauart nach Fig. 69). Aenderungen der Streeken x und y mit steigender Belastung (Gleiten der Einlagen).

Weise, wie dies früher für Balken Nr. 16 mitgeteilt worden ist (Heft 39 S. 13 u. f.).

Unter P = 5650 kg wird unterhalb der rechten Belastungsrolle auf der unteren Balkenfläche der erste kurze Kantenriß sichtbar. Er reicht von der Balkenkante bis zur ersten gestrichelten Linie, vergl. Fig. 117¹). Ein Gleiten

¹) Die Risse sind jeweils soweit verlaufend eingetragen worden, als sie das Auge beobachten konnte. Nach Maßgabe des S. 17 Bemerkten ist nicht ausgeschlossen, daß die Risse sich weiter erstreckten.

Fig. 117. Untere Flächen der Balken mit Bauart nach Fig. 69.

Fig. 118. Seitenflächen der Balken mit Bauart nach Fig. 69.

der Einlage gegenüber der Stirnfläche des Balkens konnte hierbei, also nach eingetretener Rißbildung, noch nicht festgestellt werden (Spalte 14 und 15 der Zusammenstellung 13).

Unter P = 5900 kg kommt ein zweiter Riß, und zwar innerhalb der Meßstrecke, zum Vorschein, Fig. 117 und 118. Bei dem unter P = 5650 kg beobachteten Riß kann eine Verlängerung des Risses nicht festgestellt werden.

Unter P = 6000 kg werden zwei weitere Risse unter der linken Belastungsrolle auf der unteren Balkenfläche, und zwar an beiden Kanten entdeckt, Fig. 117. Auch nach Feststellung dieser Risse konnte ein Gleiten des Eisens noch nicht beobachtet werden (Spalte 14 und 15 der Zusammenstellung 13).

Unter P = 6250 kg verlängert sich der bei P = 5650 kg auf der rechten Seite entstandene Riß auf ungefähr ein Drittel der Balkenbreite, siehe Fig. 117, und zeigt sich auch an der Seitenfläche, Fig. 118, etwa auf ein Viertel der Höhe reichend. Außerdem hat sich gegenüber ein Riß an der zweiten Kante der Unterfläche gebildet. Hierbei kann jedoch ein Gleiten der Einlage an diesem Balkenende noch nicht festgestellt werden.

Innerhalb der Meßstrecke werden 3 weitere Risse beobachtet.

Fig. 119 und 120. Stirnflächen der Balken mit Bauart nach Fig. 69.

Die unter P = 6000 kg auf der linken Seite entstandenen Risse haben sich vereinigt. Der vereinigte Riß reicht jetzt über die ganze Balkenbreite, Fig. 117. An den Seitenflächen geht der Riß bis auf drei Viertel der Balkenhöhe nach oben, Fig. 118. Dabei wird das erste Gleiten auf der linken Seite gemessen; Spalte 14 der Zusammenstellung 13 zeigt eine Bewegung der Einlage um 0,05 mm nach 4 Minuten, und um 0,09 mm nach 10 und 15 Minuten.

Wie hieraus erhellt, tritt Gleiten des Eisens bei der Bildung von Rissen, die sich auf die Kantenecken beschränken, noch nicht auf. Dagegen wird Gleiten beobachtet, sobald der Riß auf der Unterfläche sich über die ganze Breite des Balkens erstreckt und auf den Seitenflächen eine größere Strecke nach oben reicht. Unter P = 6500 kg gleitet die Einlage auf der linken Seite weiter (Spalte 14 der Zusammenstellung 13).

Auf der Seite von y ist zunächst kein Gleiten festzustellen. Nach 5 Minuten bilden sich die beiden Kantenrisse unter der rechten Belastungsrolle plötzlich zu einem Riß aus und wandern an den Seitenflächen eine große Strecke aufwärts. Jetzt hat sich auch ein Gleiten eingestellt, denn die Messung ergibt y = 0,05 mm und nach weiteren 6 Minuten 0,05 mm.

Das Gleiten ist demnach eingetreten

-		auf	der	Seite	yon	x	unter	P =	6250	kg,
		*	>>	>>	39	y	»	P =	6500	»,
der	erste	Rif	3 wu	irde	bemer	kt	>>	P =	5650	».

Fig. 121. Balken Nr. 25 (Bauart nach Fig. 69). Verlängerungen auf der unteren Balkenfläche.

Bei Steigerung der Belastung über P = 6500 kg bis $P_{\text{max}} = 8500$ kg verbreitern sich die Risse unter den Belastungsrollen an der Unterfläche und reichen an den Seitenflächen schließlich nahe bis zur oberen Kante heran. Die vier Risse, welche sich zwischen den Belastungsrollen und innerhalb der Meßstrecke liegend gebildet hatten, verlängern sich dabei nicht.

Die Verfolgung der Eiseneinlage bei dieser Steigerung der Belastung zeigt fortgesetztes Gleiten, vergl. die Spalten 14 und 15 der Zusammenstellung 13 und die Darstellung dieser Werte in Fig. 116. Dabei werden die Haken an den Enden aufgebogen, wie in Fig. 87 gestrichelt angedeutet ist. Schließlich führt diese Formänderung des Hakens zu einem Absprengen von Beton an der Stirn fläche, wie Fig. 120 für Balken Nr. 25 angibt¹). Mit diesem Absprengen sinkt die Belastung, auch bei Fortsetzung des Durchbiegens des Balkens²).

In Fig. 121 und 122 sind zu den Belastungen als senkrechte Ordinaten die gesamten, bleibenden und federnden Verlängerungen bezw. Zusammendrückungen als wagerechte Abszissen aufgetragen.

. Diese Linienzüge zeigen einen eigenartigen Verlauf.

Fig. 123. Balken Nr. 25 (Bauart nach Fig. 69). Durchbiegungen in der Mitte der Balkenlänge.

¹) Diesem Absprengen geht eine Rißbildung an der Stirnfläche des Balkens voraus, wie sie in Fig. 120 die Balken Nr. 27 und 33 zeigen.

Die Höhe der Belastung, bei welcher das Absprengen erfolgt, hängt natürlich auch ab von der Widerstandsfähigkeit der Betonschicht, die abgesprengt werden muß, also von dem Abstand des Hakens von der Stirnfläche des Balkens und von der Festigkeit des Betons. (Vergl. Faßbemerkung 2.)

Die Verschwächung des Hakens durch die Anbohrung für den Meßstift, vergl. Fig. 87, ist nicht bedeutend.

²) Nach Seite 19 des »Ersten Teiles« würde bei $P=8500~{\rm kg}$ die Zugkraft im Eisen betragen

$$Z = \frac{4250 \cdot 50}{31,37 - 2,15 - \frac{9,75}{2}} = 8183 \text{ kg}.$$

Unter der Annahme, daß zum Aufbiegen des Hakens bei Zugrundelegung der Gleichung

$$Z m = \frac{\pi}{32} 2,5^3 \sigma_b$$

eine Spannung $\sigma_b = 6000$ kg/qcm erforderlich wird, findet sich der Hebelarm m, an dem die Kraft Z wirken muß, um das Aufsprengen herbeizuführen, zu

$$m = 1,1 \text{ cm}.$$

Wenn nun auch der Genauigkeitsgrad dieser Rechnung zu wünschen übrig läßt, so zeigt letztere doch, daß die Sicherung durch den Haken, Fig. 87, keine so weitgehende ist, als man vielleicht zu vermuten geneigt sein könnte. In Wirklichkeit wird hierbei auch noch die große Pressung in Betracht kommen, mit welcher der Haken gegen den Beton gedrückt wird.

3

În Fig. 121 wachsen die Verlängerungen bis P = 6000 kg ähnlich wie bei den früheren Versuchen. Nach Ueberschreiten der Belastung von P = 6250 kg zeigen die gesamten Verlängerungen und noch deutlicher die federnden Verlängerungen das Bestreben, abzunehmen. Gleichzeitig mit dieser Aenderung im Verlauf der Linienzüge ist das Gleiten der Eiseneinlage (unter P = 6250 kg links, unter P = 6500 kg rechts) an den Balkenenden festgestellt worden. Es deutet dies darauf hin, daß das Eisen nach dem Eintritt des Gleitens, welches an den Stirnflächen der Balken gemessen wurde, von seinem Einfluß auf den Beton in der Meßstrecke verloren hat. Diese Feststellung wird durch die Beobachtung bestätigt, daß sich die Risse innerhalb der Meßstrecke nach P = 6500 kg nicht mehr verlängern.

Fig. 122 zeigt nach Ueberschreiten von P = 6250 kg nur noch geringe Zunahme der Zusammendrückungen, was andeutet, daß die Uebertragung der wachsenden Druckkräfte erfolgt ohne wesentliche Steigerung der Spannung der äußersten Schicht, deren Zusammendrückung gemessen wird.

Fig. 123 enthält die gesamten, bleibenden und federnden Durchbiegungen des Balkens (Spalte 26 und 31 der Zusammenstellung 13), welche für die Mitte der Balkenlänge gemessen worden sind. Nach dem Eintritt des Gleitens der Einlage (der Bildung durchgehender Querrisse) erfahren die Durchbiegungen eine bedeutende Zunahme.

Ueber das Verhalten der Balken Nr. 27 und 33 geben Auskunft: die Zusammenstellung 13, die Fig. 117 bis 120 und 124 bis 129.

XX) Zusammenfassung der Ergebnisse von den Balken Nr. 25, 27 und 33 (Fig. 69, Eisen bearbeitet mit Haken) und Vergleich derselben mit den Ergebnissen der Balken nach Fig. 1 (Eisen bearbeitet, gerade).

Aus den Zusammenstellungen 13 und 15 folgt, daß das Gleiten begonnen hat

bei	dem	Balken	Nr. 25	unter	P = 6250	kg,	entsprechend	τ,	=	15,3	kg/qcm,	
>>	20	20	» 27	>>	P = 6750	>>	»	71	=	16,6	»,	
>>	>>	>>	» 33	20	P = 7500	>>	gale d an a a	τ_1	=	18,6	»,	
		im	Durchs	chnitt	P = 6833	>>	>	$ au_1$		16,8	»,	

und daß die Widerstandsfähigkeit infolge der Formänderung des Hakens erschöpft war

> bei dem Balken Nr. 25 unter P = 8500 kg, » » » 27 » P = 8700 », » » » 33 » P = 9500 », im Durchschnitt P = 8900 ».

Im »Ersten Teil« (Heft 39, S. 30) wurde über Versuche mit Balken berichtet, deren Einlagen dieselbe Stärke und Oberflächenbeschaffenheit (glatt, ohne Walzhaut) hatten wie diejenigen der hier besprochenen Balken nach Fig. 69. Jedoch waren jene Eisen vollständig gerade, also ohne Haken. Das Gleiten stellte sich bei diesen gleichfalls 6 Monate alten Versuchskörpern von ganz den gleichen Abmessungen ein unter

 $P = 5290 \quad 5500 \quad 5750 \text{ und } 6500 \text{ kg}^{-1}),$ entsprechend $\tau_1 = 13.8 \quad 13.7 \quad 14.3 \quad 16.1 \text{ kg/qcm},$ d. i. im Durchschnitt P = 5760 kg, $\tau_1 = 14.5 \text{ kg/qcm}.$

¹) Gleiten unter der Höchstbelastung.

35

Fig. 124. Balken Nr. 27 (Bauart nach Fig. 69). Verlängerungen auf der unteren Balkenfläche

Fig. 125. Balken Nr. 27 (Bauart nach Fig. 69), Zusammendrückungen auf der oberen Balkenfläche.

Fig. 126.

Balken Nr. 27 (Bauart nach Fig. 69). Durchbiegungen in der Mitte der Balkenlänge.

36

Fig. 129. Balken Nr. 33 (Bauart nach Fig. 69). Durchbiegungen in der Mitte der Balkenlänge.
Der Vergleich dieser Zahlen mit den oben gefundenen Werten, P = 5760 kg und P = 6833 kg, ergibt, daß das Vorhandensein des Hakens den Beginn des Gleitens etwas — aber nicht sehr bedeutend — hinausgeschoben hat.

Der Berechnung des Gleitwiderstandes nach Gl. 5 (Seite 18 im Heft 39), wie dies oben geschehen ist, liegt die einbetonierte Länge von Belastungsrolle bis Mitte Widerlager, d. i. 50 cm zu Grunde. In Wirklichkeit beträgt jedoch diese Länge

> in Fig. 1 dagegen , , , , , , , , , , 52 cm,

Wird der Gleitwiderstand τ_1 auf diese Länge bezogen, so ergibt sich im Durchschnitt für die

Balken nach Fig. 69 $\tau_1 = 16.8 \cdot \frac{50}{62} = 13.6 \text{ kg/qcm},$ » » » 1 $\tau_1 = 14.5 \cdot \frac{50}{52} = 13.9$ » ,

Hieraus erhellt, daß der Gleitwiderstand, bezogen auf das qcm der einbetonierten Staboberfläche, gegebenenfalls diejenigen des Hakens eingerechnet, beim Vorhandensein von Haken fast dieselbe Größe besitzt wie bei Eisen ohne Haken. Nach Ueberwindung des Gleitwiderstandes (unter durchschnittlich P = 6833 kg) verhindern jedoch die Haken die völlige Aufhebung der Widerstandsfähigkeit des Balkens so lange, bis mit steigender Belastung die Haken sich aufbiegen und den diese Formänderung hindernden Beton absprengen (unter durchschnittlich P = 8900 kg). (Fig. 117, 119 und 120.)

Im Ganzen stehen zum Vergleich die Durchschnittzahlen

für Eisen ohne	Haken für Eisen mit Haken
Beginn des Gleitens $P = 5760$	kg, 6833 kg,
Höchstbelastung $P = 5760$	kg, 8900 kg.

XXI) 3 Balken mit Bauart nach Fig. 70: Nr. 31, 35 und 36.

Diese Balken unterscheiden sich von den unter XIX besprochenen dadurch, daß hier die Eiseneinlage die Walzhaut, also rauhe Oberfläche besaß.

Die Ergebnisse der Prüfung sind in Zusammenstellung 14 enthalten.

In den Fig. 130 bis 133 sind die unteren Flächen, je eine Seitenfläche und die Stirnflächen der drei Balken Nr. 31, 35 und 36 abgebildet.

Balken Nr. 31.

Unter P = 6250 kg werden die ersten Risse auf der untern Balkenfläche beobachtet, vergl. Fig. 130. Wie die Fig. 130 und 131 zeigen, verlängern sich die Risse allmählich unter steigender Belastung über die ganze Balkenbreite und wandern an den Seitenflächen empor. Der Riß unter der rechten Belastungsrolle erstreckt sich unter P = 7500 kg über die ganze Balkenbreite, unter der der linken Belastungsrolle ist dies erst bei P = 10000 kg der Fall. Ein Gleiten der Einlage kann unter P = 10000 kg noch nicht beobachtet werden; die erste Aenderung von x und y (Fig. 69) wurde unter P = 11000 kg bemerkt. Sie beträgt

Fig. 130. Untere Flächen der Balken mit Bauart nach Fig. 70.

Fig. 131. Seitenflächen der Balken mit Bauart nach Fig. 70.

38

	bei x	bei y
nach 3 Minuten	0,010	0,005 mm,
» 10 »	0,010	0,005 »,

40 -

ist somit sehr klein.

Mit fortschreitender Belastung gleitet die Einlage an beiden Enden ganz allmählich (Fig. 134) bis unter P = 14000 kg der Haken

Fig. 136. Balken Nr. 31 (Bauart nach Fig. 70). Zusammendrückungen auf der oberen Balkenfläche.

am linken Balkenende den Beton absprengt; dann sinkt die Belastung. Das Balkenende, an dem der Haken den Beton abgesprengt hat, zeigt Fig. 132.

Verlängerungen der Querrisse werden auch nach Eintritt des Gleitens festgestellt, Fig. 130 und 131.

Die Längsrisse auf der untern Balkenfläche erscheinen bereits unter P = 10000 kg, also vor Eintritt des Gleitens des Eisens am Balkenende. Diese Längsrisse entstehen, wie schon im Heft 39 Seite 15 bemerkt worden ist, nachdem die Risse bei den Belastungsrollen nahe bis zur obern Balkenfläche gerückt sind, dadurch, daß sich der äußere Balkenteil um die obere Kante des Rißquerschnittes dreht; damit ist ein Pressen der Eiseneinlage gegen den Beton nach unten verbunden, wodurch die dünne Betonschicht aufgesprengt wird. Die Längsrisse verlängern sich langsam gegen die Stirnflächen; am linken Ende erreicht der Längsriß unter $P_{\text{max}} = 14000$ kg die Stirnfläche, am rechten Ende geht die Rißbildung nicht so weit.

Fig. 137. Gesamte Durchbiegungen des Balkens Nr. 31 (Bauart nach Fig. 70).

Die gesamten, bleibenden und federnden Verlängerungen an der untern Balkenfläche (Spalten 17 bis 19 der Zusammenstellung 14) sind in Fig. 135, die Zusammendrückungen (Spalten 21 bis 23 der Zusammenstellung 14) in Fig. 136 aufgezeichnet. Die gesamten Durchbiegungen an 5 Punkten (Fig. 19 und Spalten 24 bis 28 der Zusammenstellung 14) sind in Fig. 137, die gesamten, bleibenden und federnden Durchbiegungen für die Mitte der Balkenlänge (Spalte 26 und 31 der Zusammenstellung 14) in Fig. 138 dargestellt. Die Lage der Nulllinie bei den verschiedenen Belastungsstufen zeigt Fig. 139. Das Verhalten dieser Balken ist ganz ähnlich demjenigen des Balkens Nr. 31.

Unter der Höchstlast von P = 14500 kg bezw. 13500 kg ist nach Ausweis der Zusammenstellung 14 (Spalte 17) die Streckgrenze der Einlagen nahezu

Fig. 138. Balken Nr. 31 (Bauart nach Fig. 70). Durchbiegungen in der Mitte der Balkenlänge.

oder ganz erreicht worden. Die nach Gl. 3 (Seite 18 des Heftes 39) berechnete Spannung im Eisen beträgt nach der Zusammenstellung 14 (Spalte 38)

> bei Balken Nr. 35 2797 kg/qcm, * * * 36 2720 * .

Probestäbe, welche vor dem Einbetonieren von den Einlagen der Balken Nr. 35 und 36 abgetrennt worden waren, ergaben

bere Streckgrenze	(2383 +	2485):2 =	: 2434	kg/qcm,
intere »	(2342 +	2413):2 =	2378	» ,
Zugfestigkeit	(3758 +	3741):2 =	3750	» .

Fig. 139. Lage der Nullinie mit steigender Belastung für Balken Nr. 31 (Bauart nach Fig. 70).

Die aus dem Zugversuch mit dem Eisen ermittelte Spannung beim Eintritt des Fließens ist demnach geringer als die nach Gl. 3 berechnete.

XXII) Zusammenfassung der Ergebnisse von den Balken Nr. 31, 35 und 36 (Fig. 70, mit Haken, Walzhaut) und Vergleich derselben mit den Ergebnissen der Balken nach Fig. 2 (ohne Haken, Walzhaut) und Fig. 69 (mit Haken, Eisen bearbeitet).

Die Ergebnisse sind in den Zusammenstellungen 14 und 15, sowie 4 und 13 enthalten.

Aus den Zusammenstellungen 14 und 15 folgt, daß das Gleiten begonnen hat

bei	dem	Balken	Nr.	31	unter	P =	11000	kg,	entsprechend	$\tau_1 = 27, 2 \text{ kg/qc}$	m,
	>>	.»	>>	35	*	P =	10 500	»,	>>	$\tau_1 = 25,3$ »	,
>>	>>	>>	>>	36	>>	P =	9500	»,	>>	$\tau_1 = 23,7$ »	,
		im	Dur	chs	chnitt	P =	10333	»,	»	$\tau_1 = 25,4$ »	,

wobei die Hakenoberfläche nicht berücksichtigt ist, und daß die Widerstandsfähigkeit infolge der Formänderung des Hakens und des Absprengens des Betons erschöpft war

> bei dem Balken Nr. 31 unter $P = 14\,000$ kg, » » » 35 » $P = 14\,500$ », » » » 36 » $P = 13\,500$ ».

In Heft 39 Seite 33 und 35 wurde über Versuche mit Balken nach Fig. 2 berichtet, deren Einlagen dieselbe Stärke und Oberflächenbeschaffenheit (Walzhaut) hatten, wie diejenigen der hier besprochenen nach Fig. 70. Jedoch waren jene Eiseneinlagen vollständig gerade, also ohne Haken. Das Gleiten stellte sich bei diesen 6 Monate alten Versuchskörpern von ganz den gleichen Abmessungen ein

> unter P = 8500 8750 8000 8000 kg, entsprechend $\tau_1 = 21,4$ 21,9 19,9 19,9 kg/qcm, im Durchschnitt P = 8417 kg, $\tau_1 = 20,8$ kg/qcm¹).

Daraus folgt, daß das Vorhandensein des Hakens den Beginn des Gleitens hinausgeschoben hat um durchschnittlich

 $10\,333 - 8417 = 1916$ kg, d. i. rund $100 \cdot \frac{1916}{8417} = 23$ vH.

Der Berechnung des Gleitwiderstands nach Gl. 5 (Seite 18 in Heft 39), wie dies oben geschehen ist, liegt die einbetonierte Länge von Belastungsrolle bis Mitte Widerlager, d. i. 50 cm, zu Grunde. In Wirklichkeit beträgt jedoch diese Länge

in Fig. 70, wenn die Länge des Eisens gemäß der Länge der

	Mittelli	inie bis zur	Stir	nfl	äche	e des	s Ha	aker	ıs ei	nbe	zoge	en	wir	d,	rur	nd	62	cm	1,
in	Fig. 2	dagegen.															52	*	•

Wird τ_1 auf diese Längen bezogen, so ergibt sich für die

Balken nach Fig. 70
$$\tau_1 = \frac{50}{62} \cdot 25{,}4 = 20{,}5 \text{ kg/qcm},$$

» » » 2 $\tau_1 = \frac{50}{52} \cdot 20{,}8 = 20{,}0$ » .

Bei Berücksichtigung dieses Umstandes findet man somit, daß der Gleitwiderstand, bezogen auf das Quadratzentimeter der einbetonierten Staboberfläche, beim Vorhandensein von Haken fast dieselbe Größe besitzt, wie bei Eisen ohne Haken, wie schon für bearbeitete Eiseneinlagen unter XX gefunden wurde.

Die Haken an den Enden verzögern jedoch die Zerstörung des Balkens so lange, bis ein Haken sich aufbiegt und den Beton einer Stirnfläche absprengt. Die Spannung des Eisens wurde dabei an 2 Balken (Nr. 35 und 36) bis etwa zur Streckgrenze gebracht.

Im Ganzen stehen zum Vergleich die Durchschnittzahlen

für	Eisen ohne Haken	für Eisen mit Haken
Beginn des Gleitens	P = 8417	10333 kg,
Höchstbelastung	P = 8813	14000 ».

Der Vergleich der Balken nach Fig. 70 mit denjenigen nach Fig. 69 ergibt Folgendes:

1) Einlagen mit bearbeiteter Oberfläche und Haken (Fig. 69)

im Durchschnitt $\tau_1 = 16.8 \text{ kg/qcm},$

2) Einlagen mit Walzhaut und Haken (Fig. 70)

im Durchschnitt $\tau_1 = 25.4$ kg/qcm,

d. i. rund 51 vH mehr, wenn das Eisen seine Walzhaut behält. Bei den Balken nach Fig. 1 und 2 wurde bei 6 Monate alten Balken dieser Unterschied

¹) Für die Balken nach Fig. 1 bis 5 und 66 bis 68 wurde der Gleitwiderstand τ_1 berechnet für die Höchstbelastung, unter welcher der Widerstand des Balkens mit dem endgültigen Gleiten des Eisens erschöpft war. Diese Last ist durchschnittlich etwas höher als diejenige, bei welcher Gleiten erstmals an der Stirnfläche beobachtet wurde.

zu rund 52 vH ermittelt. Es besteht somit für den Unterschied des Gleitwiderstandes von Eisen mit Walzhaut gegenüber Eisen mit bearbeiteter Oberfläche eine sehr gute Uebereinstimmung.

Die Gleitbewegungen gehen bei Eisen mit Walzhaut und Haken jedenfalls zu Anfang — langsamer vor sich, als bei glatten Stäben mit Haken; aus den Fig. 116 und 134 ist dies erkennbar.

Vergleicht man die Belastung, unter welcher erstmals Rißbildung beobachtet wurde, d. i.

bei den Balken nach Fig. 69	bei den Balken nach Fig. 70
(Eisen bearbeitet)	(Eisen mit Walzhaut)
unter durchschnittlich $P = 5633$	5833 kg

unter sich und mit den Belastungen, bei welchen das erste Gleiten festgestellt wurde, d. i.

bei den Balken nach Fig. 69 bei den Balken nach Fig. 70 unter durchschnittlich P = 6833 10333 kg,

so erkennt man

1) daß die Belastungen, unter denen die ersten Risse beobachtet wurden, nur wenig von einander abweichen,

2) daß das Gleiten erst bei einer Belastung eintritt, welche diejenige, unter der das Auftreten der ersten Risse beobachtet wurde, mehr oder minder stark überschreitet.

XXIII) 3 Balken mit Bauart nach Fig. 71: Nr. 23, 26 und 30.

Diese Balken unterscheiden sich von den unter XXI beschriebenen dadurch, daß sie eine Breite von 200 mm gegenüber 300 mm und eine schwächere Einlage (18 mm gegen 25 mm) besitzen. Das Rundeisen trägt auch hier die Walzhaut und hat an den Enden Haken.

Die Ermittlung der Aenderungen der Größen x und y an den Balkenenden ist hier unterblieben, da die nach Fig. 87 notwendige Anbohrung für die schwachen Stäbe unzweckmäßig erschien.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 16 und 17 niedergelegt.

Die Fig. 140 und 141 zeigen die unteren Flächen und je eine Seitenfläche der Balken Nr. 23, 26 und 30.

In den Figuren 142, 143 und 144 sind die Ergebnisse der Dehnungsmessungen (Spalten 15 bis 17 und 19 bis 21 der Zusammenstellung 16) und die Durchbiegungen in der Balkenmitte (Spalte 24 und 29 der Zusammenstellung 16) für den Balken Nr. 23 zeichnerisch dargestellt. In Fig. 145 ist die Lage der Nullinie unter steigender Belastung, gültig für den Balken Nr. 26, angegeben. (Ueber die hierbei gemachten Voraussetzungen vergl. Fig. 41 und 42.)

Wie die Bemerkung der Zusammenstellung 16 zeigt, welche z. B. für den Balken Nr. 23 bei P = 8000 kg gemacht ist, wurde die Streckgrenze der Einlagen überschritten. Die Zerstörung der Balken begann hiernach mit dem Eintreten der Streckgrenze. Durch die bedeutende Streckung des Eisens öffnen sich ein oder mehrere Risse des Balkens um eine größere Strecke, so daß diese Risse seitlich sehr weit nach oben wandern und auf der Zugseite weit klaffend erscheinen. Infolgedessen wird der gedrückte Querschnitt des Balkens stark vermindert und daselbst der Beton zerdrückt, wie auf Fig. 141 die Balken Nr. 23 (rechts), 26 (rechts) und 30 (rechts und links) erkennen lassen.

46 —

Fig. 140. Untere Flächen der Balken mit Bauart nach Fig. 71.

Fig. 141. Seitenflächen der Balken mit Bauart nach Fig. 71.

Die Zerstörung der Balken 23 und 30 erfolgte schließlich unter P = 8500 kg bezw. 9250 kg. Die Streckgrenze war jedoch schon, wie aus dem starken Aufklaffen der Risse und der hierdurch möglich werdenden Beobachtung des Zunderabspringens geschlossen werden konnte, unter P = 8000 kg bezw. 8500 kg erreicht worden.

Eine Zerstörung der Stirnfläche des Balkens durch die Haken der Einlage war nicht zu bemerken.

7000 15,81 1 Cm auf l= 70,0 cm 6000 5500 3 5000 -4500 4000 207 2,41 P=3400kg=Ersten Rijs beobachter 2500 1219 057 106 P=2500 kg:Erste Wasserflecke 2000 1009 0.69 10,78 1500 005 050 10.53 1000 Achse der Verlängerungen Fig. 142. Balken Nr. 23 (Bauart nach Fig. 71). Verlängerungen auf der unteren Balkenfläche. 5,74 1 200 CM 2000 2,485 mm 7000 auf l= 70,0cm 162 6000 6000.5 1955 5500 1,670 0,59 10,370 5500 5 5000 0.58 0,330 5000 -128 705 4500 -8 4500 0 0.54 0,280 0.82 1205 der 0.560. 4000 4000 146 2.53 1765 76,450 IP=3400kg:Ersten Rijs beobachtet 3500 ¹⁸¹ P=3400 kg=Ersten Rifs beobachtet 12 3000 3000 intz 10,245 P-2500kg: Erste Wasserflecke 2500 007 0.98/105 P=2500 kg:Erste Wasserflecke 2500 1003 2000 10, 180 2000 0.04 0.78 0.82 0,120 1500 0.03 0.50 0.61 1000 003 1000 0 0.080 001 500 500 10.040 Achse der Zusammendrückunge Achse der Durchbiegungen Fig. 143. Balken Nr. 23 (Bauart nach Fig. 71). Fig. 144. Balken Nr. 23 (Bauart nach

Zusammendrückungen auf der oberen Balkenfläche.

Fig. 144. Balken Nr. 23 (Bauart nach Fig. 71). Durchbiegungen in der Mitte der Balkenlänge.

Zugversuche mit Probestäben, welche vor dem Einbetonieren von den Einlagen der Balken Nr. 26 und 30 abgetrennt worden waren, lieferten folgende Werte:

> obere Streckgrenze (2755 + 2788): 2 = 2771 kg/qcm,untere Streckgrenze $(2673 + 2731): 2 = 2702 \quad \text{>}$, Zugfestigkeit $(3949 + 4084): 2 = 4016 \quad \text{>}$.

Wird die Spannung der Einlagen berechnet, welche sich nach Gl. 3 (Seite 18 in Heft 39) für die Belastung ergibt, bei welcher die Streckgrenze beobachtet wurde, so findet sich im Durchschnitt

 $\sigma_e = (3028 + 3167 + 3178) : 3 = 3124 \text{ kg/qcm}.$

Der Vergleich dieser Zahl mit der Streckgrenze, welche sich aus dem Zugversuch ergibt, deutet darauf hin, daß die Gl. 3 zu hohe Werte liefert.

Fig. 145. Lage der Nullinie mit steigender Belastung für Balken Nr. 26 (Bauart nach Fig. 71).

Die Balken nach Fig. 3 (in Heft 39, Zusammenstellung 5) besaßen dieselben Abmessungen wie die jetzt beschriebenen nach Fig. 71. Als Unterschied ist das Vorhandensein der Haken im vorliegenden Fall zu nennen. Die Zerstörung erfolgte dort infolge Ueberwindung des Gleitwiderstandes unter P = 6000, 5750und 6500 kg, im Durchschnitt unter P = 6083 kg. Die Balken nach Fig. 71 (mit Haken) wurden zerstört nach dem Eintritt der Streckgrenze der Einlage unter P = 8500, 8350 und 9250 kg (Zusammenstellung 16 und 17), also im Durchschnitt unter P = 8700 kg. Durch die Anordnung der Haken ist somit erreicht worden

1) daß nicht mehr die Größe des Gleitwiderstandes, sondern die Streckgrenze des Eisens maßgebend,

2) daß die Belastung, unter welcher die Zerstörung eintrat, von 6083 auf 8700 kg, d. i. um 43 vH, erhöht worden ist.

XXIV) 3 Balken mit Bauart nach Fig. 72: Nr. 41, 44 und 46.

Das zur Einbetonierung verwendete Eisen ist ein gerader Stab Thacher-Eisen, dessen kleinster Querschnitt rund 2,3 qcm beträgt. Die Gestalt und die Abmessungen des Thacher-Eisens sind in Heit 39 der Mitteilungen über Forschungsarbeiten Seite 52 niedergelegt.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 18 und 19 enthalten. Die Fig. 146 zeigt die unteren Flächen, Fig. 147 je eine Seitenfläche der Balken. In Fig. 148 ist die zweite Seitenfläche des Balkens Nr. 46 dargestellt.

Thachereisen 4500 6000 7000 Thin 3500 500 Minh (4500 100 H 8000 ;75001 E100 7500 8000 5500 3 750 5000 4000 200 4000 4500 15500 4500 5000 3750 5500 4590 4000 3750 5500 4000 000 4500.

Fig. 146. Untere Flächen der Balken mit Bauart nach Fig. 72.

		<u>/Th</u>	achereisei	<u>!</u>		
•	constants	500 2000 3500 3000 4500	70000 8000 33000 4500 4750=	18560 (A.50) 5000 2000 24000 4500	2500 2500 5000 5000 5000 5000 5000 5000	46
ł		000 500 500 500 500 600 77	7509 7500 7600 15000 15000 4500 900 - 7750	18500 6000 8500 430e F≈4000	10003 1000 5500 6000 5500 6000 1508 5000 1508	44
		<u>8500</u> 5000 000 <u>251</u> 000 4	500 5000 500	15500 15000 4000 4000 4500	4000 5300 5000	41

Fig. 147. Seitenflächen der Balken mit Bauart nach Fig. 72. Mitteilungen. Heft 45 bis 47.

50 --

Unter P = 3500 kg wird der erste Riß beobachtet, Fig. 146. Mit dem Steigen der Belastung vermehren und verlängern sich die Risse.

Unter der wiederholten Belastung von P = 5500 kg kommt am linken Balkenende der Beginn eines Längsrisses zum Vorschein, vergl. Fig. 146. Gleichzeitig wird das erste Gleiten festgestellt, und zwar

					bei x	bei y
nach	2	Minuten			0,020	0 mm,
»	6	»			0,020	0 ».

Unter P = 6000 kg hat sich der Längsriß bedeutend verlängert. Die Messung bei x ergibt

 nach
 2 Minuten
 .
 .
 .
 0,065 mm,

 >
 6
 >
 .
 .
 0,085 >>
 ,

 >
 12
 >
 .
 .
 0,085 >>
 >

Verschiebung des Stabendes gegenüber dem Balkenende. Bei y ist kein Gleiten festgestellt worden.

Fig. 148. Seitenfläche des Balkens Nr. 46 (Rückseite der Fig. 147).

Unter P = 6500 kg ergibt die Messung nach 2 Minuten

bei x bei y 0,280 0,020 mm;

nach $2^{1}/_{2}$ Minuten wird auf der unteren Balkenfläche links der Beton von dem Knoteneisen abgesprengt. Die Einlage gleitet gleichzeitig bei x sehr rasch und die Belastung sinkt.

Balken Nr. 44 und 46.

Das Verhalten dieser Balken ist ähnlich demjenigen des Balkens Nr. 41. Der Beginn von Längsrissen wurde bei beiden Balken unter P = 5500 kg festgestellt. Das erste Gleiten trat ein

> bei dem Balken Nr. 44 unter P = 7500 kg, * * * * 46 * P = 6500 *,

und zwar je an dem rechten Balkenende, bei welchem die Längsrisse zuerst aufgetreten sind. Der Vergleich dieser Zahlen mit der Belastung, unter welcher die Längsrisse beobachtet wurden, zeigt, daß die Längsrisse schon vor dem Eintritt des Gleitens an den Balkenenden entstanden sind.

Unter der Höchstlast von P = 8000 kg bezw. 7500 kg sprengen die Knoteneisen den Beton an der Balkenunterfläche ab; gleichzeitig gleitet die Einlage sehr rasch.

Bei dem Balken Nr. 46 wurde die Zerstörung noch etwas fortgesetzt. Ueber den Zustand des Balkens am Schluß des Versuchs geben die Fig. 146 bis 148 Aufschluß.

Die Ergebnisse der Dehnungsmessungen sowie die für die Mitte der Balkenlänge ermittelten Durchbiegungen des Balkens Nr. 44 sind in Fig. 149 bis 151 enthalten. Die gesamten Durchbiegungen an fünf Punkten zeigt die Fig. 152, die Lage der Nullinie mit steigender Belastung ist aus Fig. 153 ersichtlich, beide Figuren ebenfalls für Balken Nr. 44.

3000 = 701 (0 P= 7500 kg 7500 der Fi 7000 6500 6000 5500 5500 4500 4000 3750 P=3500 kg: Ersten Rifs beobachtet 3500 3000 10,28 12 2,500 10.18 0.80 2000 1912 007/ 1979 P= 2000 kg: Erste Wasserflecke 1500 000 1/0.58 1000 10.03 10.35 .501 Achse der Verlängerungen

6,11 200 CM

P=7500kg

Gleiten der Einlage

=70.0cm

8000

Fig. 149. Balken Nr. 44 (Bauart nach Fig. 72).

8000

7500

7000

3 6500

0.64

0.60

7500 2,220 7000 0.440 6500 1940

Verlängerungen auf der unteren Balkenfläche.

6000 6000 3.81 5500 5500 5000 0.50 5000 4500 0.4 4500 2 4000 4000 1,66 P=3500kg:Ersten Rifs beobachtet 3500 3500 3400 3000 1,1. 3000 0,97 2500 10,05 2500 10.025 2000 0.02_0.74 0,76 P=2000kg:Erste Wasserflecke 2000 1500 0 0.55 1500 V 0.36 1000 500 5000 Achse der Zusammendrückungen

Fig. 150. Balken Nr. 44 (Bauart nach Fig. 72). Zusammendrückungen auf der oberen Balkenfläche.

2,510 P=7500kg. Gleiten der Einlage 0.360 666 1365 1,050 0.245 0.80 0,175 0,585 1760 10,530 10,390 P=3500kg:Ersten Rifs beobachtet 10.295 2040 10,230 2015 0,175 P=2000 kg : Erste Wasserflecke 10.125 1000 0,085 7040 Achse der Durchbiegungen

2,880 mm

Fig. 151. Balken Nr. 44 (Bauart nach Fig. 72). Durchbiegungen in der Mitte der Balkenlänge. 4*

Die Ergebnisse der drei Balken zusammengefaßt ergibt Folgendes. Unter der Höchstbelastung von

 $\begin{array}{c} P = 6500 & 8000 & 7500 \ \mathrm{kg}, \\ \\ \text{entsprechend} \\ \text{im Durchschnitt} & \tau_1 = 20, 0 & 24, \mathbf{5} & 23, \mathbf{2} \ \mathrm{kg/qcm}, \\ P = 7333 \ \mathrm{kg}, \\ \tau_1 = \mathbf{22, 6} \ \mathrm{kg/qcm}, \end{array}$

trat Absprengen des Betons durch die Knoteneisen an der Unterfläche ein, womit die Widerstandsfähigkeit der Balken erschöpft war.

Fig. 152. Gesamte Durchbiegungen des Balkens Nr. 44 (Bauart nach Fig. 72).

Die Balken nach Fig. 2 bis 5 (Zusammenstellung 4 bis 8), welche je ein gerades Rundeisen mit Walzhaut von 18 bis 32 mm Stärke besaßen, ergaben durchschnittlich $\tau_1 = 19,1$ bis 22,0 kg/qcm. Hieraus folgt, daß die Widerstandsfähigkeit der Balken bei Verwendung von Thacher-Eisen nur wenig größer ist als bei einem geraden Eisen, eine Folge der aufsprengenden Wirkung, die das Knoteneisen äußert.

Die Abmessungen der Balken nach Fig. 67 und 71 sind dieselben wie diejenigen der hier besprochenen nach Fig. 72. Die Eiseneinlagen sind

in Fig. 67: 3 gerade Rundeisen, 10 mm stark, Gewicht 4,18 kg (Zusammenstellung 10),

in Fig. 71: 1 Rundeisen mit Haken, 18 mm stark, Gewicht 4,46 kg (Zusammenstellung 16),

in Fig. 72: 1 gerades Thacher-Eisen, Gewicht 4,51 kg. Die durchschnittlichen Höchstbelastungen betragen bei den Balken nach

> Fig. 67: 8783 kg, » 71: 8700 », » 72: 7333 ».

Hiernach erweisen sich die Haken an den Enden der Rundeisen wirksamer als die Knoten des Thacher-Eisens, so daß unter den Ver-

Fig. 153. Lage der Nullinie mit steigender Belastung für Balken Nr. 44 (Bauart nach Fig. 72).

hältnissen, wie sie bei den Versuchen vorlagen, dem Thacher-Eisen ein Vorzug vor dem Rundeisen mit Haken nicht eingeräumt werden kann. (Dieses Ergebnis steht in Uebereinstimmung mit den früheren Versuchen mit einbetoniertem Thacher-Eisen in Heft 39, Seite 51 u. f.)

XXV) 3 Balken mit Bauart nach Fig. 73: Nr. 29, 32 und 37.

Diese Balken besitzen eine Breite von rund 150 mm und als Eiseneinlage ein gerades Rundeisen von rund 22 mm Durchmesser. In den äußeren Teilen der Balken sind Bügel aus 7 mm Rundeisen einbetoniert worden, welche mit dem Rundstab durch 2 mm starken Bindedraht fest verbunden waren, wie die photographische Abbildung, Fig. 154, erkennen läßt.

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 20 und 21 enthalten.

Die Fig. 155 und 156 zeigen die unteren Flächen und je eine Seitenfläche der Balken.

Balken Nr. 32.

In Fig. 156 sind auf der Seitenfläche des Balkens Nr. 32 senkrechte Striche sichtbar. Diese zeigen die Lage der einbetonierten Bügel an.

Der erste Riß wird unter P = 3000 kg beobachtet, Fig. 155 und 156, und zwar rechts an einer Stelle, bei welcher ein Bügel einbetoniert ist, Fig. 156, und wo infolgedessen der Betonquerschnitt durch die Eisenmasse der Bügel verschwächt erscheint. Die Stärke der Betonschicht zwischen Bügeloberfläche und Unterfläche des Balkens beträgt rund 10 mm.

Unter P = 3250 kg reicht dieser Riß über die ganze Balkenbreite, Fig. 155.

Unter P = 3500 kg kommt ein zweiter Riß auf der linken Seite zum Vorschein, welcher über die ganze Balkenbreite, Fig. 155, läuft und auch an der Seitenfläche, Fig. 156, auf eine kurze Strecke sichtbar wird. Dieser Riß ist ebenfalls an einer Bügelstelle entstanden.

Fig. 154. Rundstab mit Bügeln.

Fig. 155. Untere Flächen der Balken mit Bauart nach Fig. 73.

Bei Steigerung der Belastung werden nun auch Risse innerhalb der Meßstrecke beobachtet, erstmals unter P = 3750 kg u. s. f.

Das erste Gleiten der Einlage wird unter P = 8000 kg festgestellt, und zwar ist

			bei x	bei y
nach 1 Minute			0,025	0,015 mm,
» 4 Minuten			0,050	0,020 »

Verschiebung der Eisen gegen das Balkenende gemessen worden. Nach 8 Minuten gleitet das Eisen auf der Seite von x sehr rasch und die Belastung sinkt, auch bei fortgesetztem Durchbiegen des Balkens.

Die beiden anderen Balken, Nr. 29 und 37, zeigen ein ganz ähnliches Verhalten.

Die Widerstandsfähigkeit der Balken war erschöpft infolge der Ueberwindung des Gleitwiderstandes,

bei den Balken Nr.					29	32	37
unter $P_{\max} = \ldots$					7750	8000	7500 kg
entsprechend $\tau_1 = .$:			23,8	23,7	22,3 kg/qcm,
im Dure	chs	chr	nitt	P	max = 7	750 kg,	
					$\tau_1 = 23$	3.3 kg/ac	m.

Fig. 156. Seitenflächen der Balken mit Bauart nach Fig. 73.

Die Balken nach Fig. 4 (Heft 39, Seite 38 und Zusammenstellung 6) unterscheiden sich von den hier besprochenen nur durch das Fehlen der Bügel. Die ersten Risse wurden dort beobachtet

Bei den Balken nach Fig. 73 (mit Bügel) kamen die ersten Risse zum Vorschein

bei Nr. 29 32 37 unter P = 3000 3000 3100 kg, im Durchschnitt P = 3033 kg. Die ersten Risse wurden bei diesen Balken, wie oben hervorgehoben, an Bügelstellen bemerkt.

Hieraus folgt, daß bei den Balken mit Bügeln die ersten Risse früher eingetreten sind als bei den Balken ohne Bügel.

Für die Größe des Gleitwiderstands wurde für die Balken nach Fig. 4 (ohne Bügel) ermittelt

 $\tau_1 = (18,5 + 17,0 + 21,7): 3 = 19,1 \text{ kg/qcm}.$

Bei den Balken nach Fig. 73 (mit Bügel) beträgt

 $\tau_1 = (23.8 + 23.7 + 22.3): 3 = 23.3 \text{ kg/qcm}.$

Hieraus ergibt sich, daß der Gleitwiderstand beim Vorhandensein von Bügeln um

23,3 - 19,1 = 4,2 kg/qcm, d. i, $\frac{4,2}{191} \cdot 100 = \text{rund} 22 \text{ vH}$

größer ermittelt worden ist als beim Nichtvorhandensein solcher.

Vergleicht man die Werte von P, unter welchen die Zerstörung erfolgt ist, so findet sich

bei den Balken nach Fig. 4 (ohne Bügel) $P_{\text{max}} = 6300 \text{ kg}$ (Durchschnittswert), » » » » » » 73 (mit » $P_{\text{max}} = 7750$ » » » ,

entsprechend im letzteren Falle um 23 vH mehr. Dabei beträgt

das Gewicht der geraden Eisenstange im Durchschnitt 6,1 kg, » » » Bügel » » 3,1 kg.

Durch Hinzufügung der Bügel, deren Gewicht rund 51 vH der Eisenstange beträgt, ist die Bruchlast um 23 vH erhöht worden.

XXVI) 3 Balken mit Bauart nach Fig. 74: Nr. 34, 38 und 39.

Diese Balken unterscheiden sich von den unter XXV besprochenen lediglich durch das Vorhandensein von Haken an den Enden der Einlage.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 21 und 22 enthalten.

In Fig. 157 sind die unteren Flächen, in Fig. 158 je eine Seitenfläche, in Fig. 159 je eine Stirnfläche der Balken abgebildet.

Balken Nr. 34 und 38.

Die ersten Risse kamen an Stellen zum Vorschein, bei welchen Bügel einbetoniert sind, ganz ähnlich wie unter XXV angegeben worden ist.

Die Höchstbelastung beträgt

bei dem Balken Nr. 34: 10500 kg, » » » » 38: 12000 kg.

Die Widerstandsfähigkeit der Balken war erschöpft, nachdem ein Haken der Eisenanlage sich aufgebogen und den Beton an dem Balkenende aufgesprengt hatte (Fig. 159).

Bei Balken Nr. 38 läßt das rasche Anwachsen der Dehnungen unter $P_{\text{max}} = 12000 \text{ kg}$ (Spalte 17 der Zusammenstellung 22) darauf schließen, daß die Streckgrenze der Eiseneinlage annähernd erreicht sein wird. Die nach der Gl. 3 (Seite 18 im Heft 39) berechnete Spannung des Eisens beträgt $\sigma_e = 3264 \text{ kg/qcm}.$

Fig. 157. Untere Flächen der Balken mit Bauart nach Fig. 74.

.

Fig. 158. Seitenflächen der Balken mit Bauart nach Fig. 74.

Die Höchstbelastung dieses Balkens beträgt $P_{\text{max}} = 12500$ kg. Unter dieser Last erscheint die Streckgrenze der Einlage überschritten (Zusammenstellung 22 und Fig. 158); mit dem Fließen des Eisens öffnet sich ein Riß in der Nähe der linken Belastungsrolle, wobei gleichzeitig im gedrückten Teil des Balkens der Beton zerstört wird.

Die nach Gl 3 (Seite 18 im Heft 39) ermittelte Zugspannung im Eisen beträgt $\sigma_e = 3411$ kg/qcm. Zugversuche mit Probestäben, welche vor dem Einbetonieren von der Einlage abgetrennt worden waren, ergaben

> obere Streckgrenze (3016 + 3047): 2 = 3031 kg/qcm,untere » (2949 + 2974): 2 = 2961 », Zugfestigkeit (4397 + 4337): 2 = 4367 ».

Die gerechnete Spannung r_e ist hiernach größer als die aus dem Zugversuch bestimmte Spannung beim Eintritt der Streckgrenze des Materials. Die

Fig 159. Stirnflächen der Balken mit Bauart nach Fig. 74.

Rechnung nach Gl. 3 ergibt somit etwas zu hohe Werte für die Zugspannung im Eisen.

An den Stirnflächen des Balkens Nr. 39 war am Schluß des Versuchs keinerlei Rißbildung wahrzunehmen.

Der Vergleich der Ergebnisse von den Balken Nr. 34, 38 und 39 (mit Haken und Bügel) mit denen nach Fig. 73 (ohne Haken und mit Bügel) ergibt eine Erhöhung der Bruchlast um 11667-7750 = 3917 kg,

d. i. $\frac{3917}{7750} \cdot 100 =$ rund 51 vH,

verursacht durch die Haken der Einlage (in Fig. 74).

XXVII) 4 Balken mit Bauart nach Fig. 75: Nr. 91 bis 94.

Diese Balken sind rund 30 cm breit und besitzen als Eiseneinlage ein gerades Rundeisen mit Walzhaut von rund 26 mm Durchmesser.

Zur Herstellung der Balken ist abweichend von den übrigen im »Zweiten Teil« unter A besprochenen Versuchen Zement »B« verwendet worden (vergl. Seite 11 und Anlage 5).

Die Balken wurden zwei Tage in der Form belassen, mit feuchten Säcken bedeckt. Zwei Balken, Nr 91 und 92, wurden dann bis zum 10. Tag jeden 2. Tag angenäßt, jedoch nicht mehr feucht bedeckt. Vom 10. Tag ab bis zur Prüfung blieben sie ohne jede Behandlung in einem Kellerraum, frei in der Luft gelagert. Zwei weitere Balken, Nr. 93 und 94, ebenfalls nach zwei Tagen entformt, lagerten in demselben Raum bis zum 8. Tag, jedoch stets mit feuchten Säcken bedeckt. Nach dieser Zeit erfolgte die Lagerung unter Wasser bis rund 5 Stunden vor Beginn der Prüfung.

Das Alter der Balken am Prüfungstage betrug, abweichend von der Mehrzahl der übrigen Versuche, 50 Tage.

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 23 und 24 niedergelegt.

In den Fig. 160 und 161 sind die unteren Flächen und von jedem Balken eine Seitenfläche abgebildet.

Bei den Balken Nr. 91 und 92, welche vor der Prüfung an der Luft lagerten, waren keine Wasserflecke beobachtet worden. Es ist dies damit zu erklären, daß in den Balken nicht genügend Feuchtigkeit vorhanden war, um die Wasserflecke auf der Balkenoberfläche erscheinen zu lassen.

Die Balken Nr. 93 und 94, welche bis zur Prüfung unter Wasser lagerten, waren andererseits zu naß, um das Eintreten von Wasserflecken zuverlässig verfolgen zu können.

Die ersten Risse wurden entdeckt (Spalte 40 der Zusammenstellung 23 und Spalte 5 der Zusammenstellung 24, sowie Fig. 160)

bei dem Balken Nr. 91 unter P = 3150 kg, * * * * 92 * P = 2750 kg, Durchschnitt P = 2950 kg, bei dem Balken Nr. 93 unter P = 4500 kg, * * * * * 94 * P = 5000 kg, Durchschnitt P = 4750 kg,

Die Balken, welche an der Luft gelagert haben, erhielten somit bedeutend früher Risse als diejenigen, welche unter Wasser lagerten.

Die Verlängerung des Betons, in mm auf 1 m Meßlänge, unmittelbar vor Beobachtung der ersten Risse, beträgt (Spalte 6 der Zusammenstellung 24)

> bei dem Balken Nr. 91 0,116 mm, » » <u>* 92 0,078 mm</u>, Durchschnitt 0,097 mm, bei dem Balken Nr. 93 0,202 mm, » <u>* 94 0,208 mm</u>, Durchschnitt 0,205 mm, Wasserlagerung.

Die Verlängerung des Betons, unmittelbar vor Beobachtung der ersten Risse gemessen, ist demnach bei den Balken, welche bis zur Prüfung unter Wasser lagerten, etwa das Zweifache der Verlängerung, welche die Balken lieferten, die an der Luft gelagert haben; jedenfalls zu einem großen Teil die Folge davon, daß der Beton unter Wasser sein Volumen vergrößert und an der Luft vermindert. Dadurch entstehen im ersten Falle im Eisen Zug- und im Beton Druckspannungen, während im zweiten Falle im Eisen Druck- und im Beton Zugspannungen auftreten. (Vergl. im Heft 39 Fußbemerkung 1- Seite 25 und Fußbemerkung 2 Seite 30).

Die Zerstörung der Balken erfolgte bei allen vier Balken infolge Ueberwindung des Gleitwiderstands. Die Größe desselben berechnet sich, ohne Berücksichtigung der Eigengewichte,

Fig. 160. Untere Flächen der Balken mit Bauart nach Fig. 75.

a) für die Balken Nr. 91 und 92 (Lagerung an der Luft) zu

(14,5+12,2): 2 = 13,3 kg/qcm;

b) für die Balken Nr. 93 und 94 (Lagerung unter Wasser) zu

(17, 1 + 16, 8): 2 = 16,9 kg/qcm.

Der Gleitwiderstand (also auch die Belastung, unter welcher die Zerstörung erfolgt ist) wurde somit höher ermittelt für Balken, welche vor der Prüfung unter Wasser gelagert haben. Der Unterschied betrug

16,9 - 13,3 = 3,6 kg/qcm, d. i. $\frac{3,6}{133}$ · 100 = rund 27 vH.

Diese Erscheinung kann zu einem Teil damit erklärt werden, daß der Beton unter Wasser sein Volumen vergrößert und sich damit gleichzeitig mit größerer Pressung gegen das Eisen legt. (Vergl. auch das oben über die Rißbildung Gesagte.)

Wasserlagerung

Luftlagerung

Fig. 161. Seitenflächen der Balken mit Bauart nach Fig. 75.

Hieraus folgt, daß zur vollständigen Klarstellung und zur Gewinnung zuverlässiger Erfahrungszahlen für die ausführende Technik Versuche mit feucht und mit trocken gelagerten Eisenbetonkörpern durchzuführen sind, jedenfalls in den Fällen, wo ein erheblicher Unterschied zu erwarten steht

XXVIII) 3 Balken mit Bauart nach Fig. 76: Nr. 49, 51 und 53.

Diese Balken sind rund 150 mm breit. In der Mitte liegt eine gerade Einlage von 10 mm Durchmesser, an den Seiten zwei^{*}aufgebogene Eisen von ebenfalls 10 mm Durchmesser, das eine nach Fig. 89, das andere nach Fig. 90.

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 25 und 28 niedergelegt.

Fig. 162 zeigt die unteren Flächen, Fig. 163 je eine Seitenfläche der Balken.

Nach Ausweis der Zusammenstellung 25 nimmt die Zerstörung der Balken ihren Anfang mit der Ueberschreitung der Streckgrenze des Eisens. Mit dem Strecken des Eisens öffnen sich ein oder mehrere Risse bedeutend, und hierauf erfolgt über diesen Rissen die Zerstörung des Betons im gedrückten Teile des Balkens, wie in Fig. 163 für die Balken Nr. 49 und 51 links und für den Balken Nr. 53 rechts ersichtlich ist.

Die durchschnittliche nach Gl. 3, S. 18 in Heft 39, berechnete Spannung des Eisens unter der Höchstbelastung beträgt $c_e = 3445$ kg/qcm. Zugversuche

Fig. 162. Untere Flächen der Balken mit Bauart nach Fig. 76.

Fig. 163. Seitenflächen der Balken mit Bauart nach Fig. 76.

mit Rundstäben, welche vor dem Einbetonieren von den Eiseneinlagen abgetrennt worden waren, ergaben

obsere Streckgrenze(2922 + 3215 + 3329): 3 = 3155 kg/qcm,untere Streckgrenze(2909 + 3177 + 3304): 3 = 3130 kg/qcm,Zugfestigkeit(4195 + 4253 + 4329): 3 = 4259 kg/qcm.

Die nach Gl. 3 berechnete Spannung σ_e ist hiernach größer als die aus dem Zugversuch bestimmte Spannung an der Streckgrenze des verwendeten Eisens.

Gleiten der mittleren geraden Einlage konnte nach Ausweis der Zusammenstellung 25, Spalte 16 und 17 nur bei dem Balken Nr. 51 an dem einen Ende unter P = 7500 kg festgestellt werden.

Berechnet man für diese Belastung nach Gl. 5, S. 18 in Heft 39, die Größe von τ_1 , so ergibt sich, wenn nur das mittlere Eisen in Betracht gezogen wird, wie es in den Beispielen zu den amtlichen Bestimmungen geschieht,

$$\tau_1 = \frac{\frac{7500}{2}}{\left(30,68 - 1, 2 - \frac{9,63}{3}\right) \cdot 1, 0} = 45,7 \text{ kg/qcm.}$$

Dieser Wert ist mehr als doppelt so groß wie diejenigen Werte, welche für ein eingelegtes Eisen erhalten worden sind. Daraus folgt, daß die beiden andern Eiseneinlagen ganz wesentlich an der Uebertragung beteiligt sind.

Für die Balken Nr. 49 und 53 ergibt sich unter der Höchstlast von P_{max} = 8250 kg bezw. 9000 kg

 $\tau_1 = 50.1 \text{ kg/qcm}, \text{ bezw. 52.6 kg/qcm},$

ohne daß ein Gleiten zu beobachten war. Daraus folgt noch im erhöhten Maße das, was für Balken Nr. 51 soeben geschlossen worden ist.

Wird die Zugkraft auf die drei Eisen so verteilt, daß in ihnen die gleiche Spannung wirkt, dann ergeben sich die Werte

15,2 16,7 18,6 kg/qcm

(Spalte 40 der Zusammenstellung 25).

Diese Werte stehen in Uebereinstimmung mit denjenigen, welche für die Balken mit drei geraden Eiseneinlagen gefunden worden sind Zusammenstellung 12 Spalte 17).

Hiernach erscheint es unrichtig, nur das mittlere nicht aufgebogene Eisen als an der Uebertragung allein beteiligt, aufzufassen¹).

XXIX) 3 Balken mit Bauart nach Fig. 77: Nr. 48, 52 und 56.

Die Größe der Balken und die Anordnung der Armierung sind dieselben wie bei den soeben besprochenen Versuchskörpern nach Fig. 76. Der einzige Unterschied besteht darin, daß hier die mittlere Einlage an den Enden mit Haken versehen ist.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 26 und 28 niedergelegt.

Die Fig. 164 und 165 zeigen die unteren Flächen und je eine Seitenfläche der Balken.

¹) Die Feststellung, welcher Anteil auf das gerade Eisen, und welcher Betrag auf die abgebogenen Eisen entfällt, wird besondere Versuche erfordern.

In Fig. 166 ist die untere Fläche des Balkens Nr. 52 unter P = 3750 kg abgebildet, nachdem die ersten Risse entdeckt waren. Das Bild zeigt ein interessantes Beispiel für das Auftreten der Wasserflecke¹). Die Wasserflecke laufen

Fig. 164. Untere Flächen der Balken mit Bauart nach Fig. 77.

Fig. 165. Seitenflächen der Balken mit Bauart nach Fig. 77.

¹) Vergl. Anlage 6: »Zur Frage der Dehnungsfähigkeit des Betons mit und ohne Eiseneinlagen«, S. 156 u. f. in beinahe zusammenhängenden Linien über die Breite des Balkens, sie zeigen den späteren Verlauf der Risse in deutlicher Weise.

In Fig. 167 bis 169 sind die Ergebnisse der Dehnungsmessungen sowie die in der Mitte der Balkenlänge ermittelten Durchbiegungen für den Balken

Fig. 166. Untere Fläche des Balkens Nr. 52 unter P = 3750 kg (Bauart nach Fig. 77).

Nr. 52 zeichnerisch dargestellt. In Fig. 170 ist die Lage der Nullinie mit steigender Belastung für denselben Balken angegeben. Ueber die Voraussetzungen, welche dabei gemacht worden sind vergl. Fig. 41 und 42, Heft 39 S. 26 und 29. Mitteilungen. Heft 45 bis 47. 5

Nach Zusammenstellung 26 begann die Zerstörung der Balken mit dem Ueberschreiten der Streckgrenze des Eisens, ganz wie bei den Balken nach Fig. 76 (unter XXVIII).

Die für die Höchstbelastung berechnete Spannung des Eisens beträgt durchschnittlich 3549 kg qcm (Spalte 36 der Zusammenstellung 26).

Zugversuche mit Probestäben, welche vor dem Einbetonieren von den Einlagen der Balken Nr. 48, 52 und 56 abgetrennt wurden, ergaben:

obere Streckgrenze: (3316 + 3228 + 3143): 3 = 3229 kg/qcm, untere Streckgrenze: (3203 + 3177 + 3091): 3 = 3157 kg/qcm, Zugfestigkeit: (4304 + 4266 + 4221): 3 = 4264 kg/qcm.

In Bezug auf die Werte τ_1 würde das unter XXVIII Bemerkte wieder anzuführen sein.

8000 250 750 6572 6001 Achse der Verlängerunge

Fig. 167. Balken Nr. 52 (Bauart nach Fig. 77). Verlängerungen auf der unteren Balkenfläche.

Fig. 168. Balken Nr. 52 (Bauart nach Fig. 77). Zusammendrückungen auf der oberen Balkenfläche.

Vergleicht man die Belastungen, welche die Zerstörung herbeiführten, mit denjenigen, welche für die Balken nach Fig. 76 unter XXVIII angegeben sind, so findet sich ein Durchschnitt 8583 (Fig. 76) gegen 8433 kg (Fig. 77), also ein Mehr infolge

Fig. 169. Balken Nr. 52 (Bauart nach Fig. 77). Durchbiegungen in der Mitte der Balkenlänge.

Fig. 170. Lage der Nullinie mit steigender Belastung für Balken Nr. 52 (Bauart nach Fig. 77).

der Anordnung des Hakens an den Enden der mittleren Einlage nicht. Diese Einflußlosigkeit des Hakens erklärt sich dadurch, daß die Zerstörung durch Ueberschreiten der Streckgrenze herbeigeführt worden ist.

XXX) 3 Balken mit Bauart nach Fig. 78: Nr. 59, 60 und 63.

Diese Balken sind rund 150 mm breit und enthalten 5 Einlagen: eine gerade von 10 mm Durchmesser in der Mitte, seitlich je zwei aufgebogene Einlagen von 7 mm Durchmesser, zwei nach Fig. 89 und zwei nach Fig. 90. Die Anordnung der Armierung ist, im Gegensatz zu Fig. 76 und 77 symmetrisch. Der Querschnitt der Eiseneinlagen ist annähernd von derselben Größe wie in Fig. 76 und 77.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 27 und 28 enthalten.

Die Fig. 171 und 172 zeigen die unteren Flächen und je eine Seitenfläche der Balken.

Nach Ausweis der Zusammenstellung 27 begann die Zerstörung der Balken mit der Ueberschreitung der Streckgrenze des Eisens.

Die nach Gl. 3 berechnete Spannung des Eisens unter der Höchstlast beträgt im Durchschnitt 3669 kg/qcm (Spalte 40 der Zusammenstellung 27).

Zugversuche mit Probestäben, die ursprünglich mit den Einlagen der Balken in Zusammenhang waren, ergaben

für 7 mm starkes Rundeisen:

Streckgrenze: (3474 + 3316 + 3447): 3 = 3412 kg/qcm, Zugfestigkeit: (4658 + 4474 + 4474): 3 = 4535 kg/qcm;

für 10 mm starkes Rundeisen:

obsere Streckgrenze:(3316 + 3388 + 3612): 3 = 3439 kg/qcm,untere Streckgrenze:(3190 + 3275 + 3518): 3 = 3328 kg/qcm,Zugfestigkeit:(4228 + 4300 + 4176): 3 = 4235 kg/qcm.

Gleiten der mittleren, geraden Einlage konnte (nach Spalte 19 und 20 der Zusammenstellung 27) bei den Balken Nr. 60 und 63 unter P = 9000 kg festgestellt werden. Beim Balken Nr. 59 war keine Bewegung des mittleren Stabes am Balkenende eingetreten.

Berechnet man für die Höchstbelastungen der Balken (Nr. 59: 8750 kg, Nr. 60: 9000 kg, Nr. 63: 9500 kg) nach Gl. 5 (Heft 39, S. 18) die Größe von τ_1 , so ergibt sich, wenn nur das mittlere Eisen in Betracht gezogen wird, wie es in den Beispielen zu den amtlichen Bestimmungen geschieht,

 $\tau_1 = (53, 3 + 53, 5 + 56, 2): 3 = 54,3 \text{ kg/qcm}.$

Wird die Zugkraft dagegen auf die fünf Eisen so verteilt, daß in ihnen die gleiche Zugspannung wirkt¹), dann findet sich

 $\tau_1 = (17.9 + 18.4 + 19.5)$: 3 = 18.6 kg/qcm.

¹) Die Balken nach Fig. 78 haben Einlagen von verschiedenem Durchmesser. Wird vorausgesetzt, daß die Zugspannung über den Querschnitt des Eisens gleichmäßig verteilt ist, daß also in allen fünf Stangen die gleiche Zugspannung herrscht, so hat das zur Folge, daß bei verschiedenen Durchmessern der Eisen auch die Gleitspannung verschieden ausfällt: am größten an dem Stab, welcher den größten Durchmesser besitzt.

Die Berechnung von τ_1 hat unter dieser Voraussetzung für die Balken nach Fig. 78 auf folgende Weise zu geschehen, wobei als Beispiel Nr. 59 gewählt wird.

$$50 \cdot \frac{P}{2}$$

Die Zugkraft in allen Eisen ist $Z = \frac{2}{h-a-\frac{x}{2}}$ kg (vergl. S. 19 in Heft 39),

der Querschnitt f_e (der 5 Eisen) = 2,35 qcm,

der Querschnitt des mittleren Eisens von 1,00 cm Durchmesser = 0,79 qcm,

68 -

Fig. 171. Untere Flächen der Balken mit Bauart nach Fig. 78.

Fig. 172. Seitenflächen der Balken mit Bauart nach Fig. 78.

damit wird die Zugkraft im mittleren Eisen

$$Z_1 = \frac{0,79}{2,35} \cdot Z \text{ kg.}$$

Dieser Zugkraft Z_1 entsprechen die Gleitspannungen an dem mittleren Stab, sie sind

$$r_1 = \frac{z_1}{50 \cdot \pi \cdot 1.00} \text{ kg/qcm}$$

Die auf diese Weise gefundenen Werte von τ_1 am mittleren, geraden, Stab sind in Spalte 42 der Zusammenstellung 27 aufgenommen.

Dieser Wert steht in ungefährer Uebereinstimmung mit denen, welche für Balken mit drei geraden Einlagen gefunden worden sind (Zusammenstellung 12 Spalte 17).

In Bezug auf die Größe von τ_1 vergl. auch das unter XXVIII Bemerkte. Für die Berechnung nach den amtlichen Bestimmungen ist die Kenntnis des Abstands *a*, Fig. 31, des Schwerpunkts der Eiseneinlagen von der Balkenunterfläche erforderlich. Zu diesem Zweck wurde bei den hier beschriebenen Balken und ebenso in den übrigen ähnlichen Fällen nach dem Versuch die Lage der Eisen im Bruchquerschnitt ermittelt und damit der Schwerpunktabstand der Eisen von der untern Balkenfläche bestimmt. Er beträgt

> bei dem Balken Nr. 59 60 63 a = 1,57 1,38 1,39 cm.

Vergleicht man die Ergebnisse der Balken nach Fig. 76 (unsymmetrische Armierung), z. B. die Belastungen, durch welche die Balken zerstört wurden, also die Durchschnittzahlen 8583 mit 9083 kg, so kann ein bedeutender Unterschied, welcher durch die symmetrische oder unsymmetrische Armierung hervorgerufen worden wäre, nicht nachgewiesen werden.

XXXI) 3 Balken mit Bauart nach Fig. 79: Nr. 58, 61 und 62.

Diese Balken besitzen eine Breite von rund 200 mm und als Eiseneinlagen 3 Rundeisen von 18 mm Dmr. Das mittlere Eisen ist gerade, die beiden andern sind aufgebogen, je eines nach Fig. 89 und 90. Die Anordnung der Armierung ist hinsichtlich der schiefen Abbiegungen unsymmetrisch.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 29 und 33 wiedergegeben.

Die Figuren 173 bis 176 zeigen die unteren Flächen, je eine Seitenfläche und die Stirnflächen der Balken.

Fig. 173. Untere Flächen der Balken mit Bauart nach Fig. 79.

Fig. 174. Seitenflächen der Balken mit Bauart nach Fig. 79.

Fig. 175 und 176. Stirnflächen der Balken mit Bauart nach Fig. 79.

Balken Nr. 58.

Der erste Riß wurde unter P = 6750 kg (vergl. Fig. 173 und 174, rechts) bemerkt, und zwar an einer Stelle, bei welcher die Einlage »3« (vergl. Fig. 79) aus der wagerechten in die geneigte Gerade übergeht, d. i. bei *B* in Fig. 79. Innerhalb der Meßstrecke zeigte sich der erste Riß unter P = 7500 kg (vergl. Fig. 173). Die Risse waren bei ihrer Entdeckung außerordentlich schwer sichtbar.

Fig. 177. Balken Nr. 58 (Bauart nach Fig. 79). Aenderungen der Strecken x und y mit steigender Belastung (Gleiten der Einlage), gemessen an der mittleren Einlage.

Mit fortschreitender Belastung verlängerten sich die Risse allmählich an der Unterfläche und an den Seitenflächen, waren jedoch noch länger schwer erkennbar, insbesondere an den Stellen, bei welchen die Eisen in der Nähe liegen.

Das erste Gleiten der mittleren, geraden Einlage wurde unter $P = 12\,000$ kg auf der Seite von x, Fig. 79, gemessen, und zwar

0,05 mm nach 10 Minuten, 0,05 » » 15 ».
Die Bewegung des Eisens am Balkenende ist also unter dieser Last noch recht klein (Spalte 16 der Zusammenstellung 29).

Mit Steigerung der Belastung gleitet die mittlere Einlage mehr und mehr (auf der Seite von y erst von $P = 14\,000$ kg an), so daß angenommen werden kann, daß dieser Stab schließlich an der Kraftübertragung in den äußeren Balkenteilen nicht mehr beteiligt ist; die Last wird dort von den aufgebogenen Eisen mit ihren Haken getragen, die ähnlich wie ein Hängewerk wirksam sind.

Die unter den einzelnen Belastungen erreichten Gleitbewegungen des mittleren Stabes sind in Fig. 177 zeichnerisch dargestellt.

Die Höchstbelastung des Balkens wurde unter $P_{\text{max}} = 17000 \text{ kg}$ erreicht. Ein Haken der Einlage »3«, Fig. 79, hat sich aufgebogen und den Beton des linken Balkenendes aufgesprengt, wie in Fig. 174 und 175 der Balken Nr. 58 zeigt.

Fig. 178. Balken Nr. 58 (Bauart nach Fig. 79), Verlängerungen auf der unteren Balkenfläche.

Die Spannung τ_1 unter der Belastung von $P = 12\,000$ kg, also nach eingetretenem Gleiten ergibt sich, ohne Rücksicht auf das Eigengewicht nach Gl. 5 zu

$\tau_1 = 42,8 \text{ kg/qcm}.$

Die Zugkraft würde hierbei durch das mittlere Eisen allein übertragen. Wird sie dagegen auf die drei Eisen verteilt, derart, daß in diesen die gleiche Zugspannung¹) herrscht, so findet sich

$$\tau_1 = 13,7 \text{ kg/qcm}.$$

1) Vergl. unter XXX, Fußbemerkung, S. 68.

Die Schubspannung des Betons unter $P = 12\,000$ kg, d. i. beim ersten Gleiten, beträgt nach Gl. 4 (Seite 18 in Heft 39)

$\tau_0 = 12,0 \text{ kg/qcm}.$

In Fig. 178 bis 180 sind die Ergebnisse der Dehnungsmessungen, sowie die für die Mitte der Balkenlänge ermittelten Durchbiegungen aufgezeichnet. Bemerkenswert ist bei diesen Darstellungen, daß das Eintreten von Rissen keinen so bedeutenden Einfluß auf die Größen der gemessenen Dehnungen hat, wie früher festzustellen war. Es ist zwar noch deutlich erkennbar, wie sich der Verlauf der Linien beim Auftreten der Risse ändert, doch ist der Einfluß weit geringer als bei den früheren Versuchen, z. B. Fig. 96, 103, 135, 142 und 167. Es rührt dies von der verhältnismäßig starken Armierung her.

Fig. 179. Balken Nr. 58 (Bauart nach Fig. 79). Zusammendrückungen auf der oberen Balkenfläche. Fig. 180. Balken Nr. 58 (Bauart nach Fig. 79) Durchbiegungen in der Mitte der Balkenlänge.

Das Gleiten der mittleren Einlage ist ohne merkbaren Einfluß auf die Dehnungsmessungen geblieben, wie die Fig. 178 und 179 erkennen lassen.

In Fig. 181 sind die gesamten Durchbiegungen an 5 Punkten der Mittelebene des Balkens zeichnerisch dargestellt.

Die Lage der Nullinie mit steigender Belastung ist aus Fig. 182 ersichtlich. Sie zeigt langsames Ansteigen bis P = 5000 kg, geht dann aber rasch nach oben bis P = 7000 kg. (Unter P = 6750 kg war der erste Riß bemerkt worden; der Linienzug weist jedoch darauf hin, daß Risse schon etwas früher eingetreten sein können.) Von P = 7000 kg bis P = 13000 kg steigt die Nulllinie noch etwas, dann aber geht sie wieder langsam abwärts. Zur Erklärung dieser Erscheinung sind in der folgenden Zahlentafel die Zunahme der Verlängerungen und Zusammendrückungen für je 1000 kg Zunahme der Belastung eingetragen Hieraus ersieht man, daß die Verlängerungen bis etwa P = 10000 kg bedeutend rascher wachsen als die Belastungen und insbesondere auch rascher als die Zusammendrückungen. Die Folge davon ist, daß der Linienzug der Nullinie steigt¹).

Fig. 181. Gesamte Durchbiegungen des Balkens Nr. 58 (Bauart nach Fig. 79).

¹) Vergl. die Voraussetzungen für die Ermittlung der Lage der Nullinie in Fig. 41 und 42, Heft 39 Seite 26 und 29. Von $P = 10\,000$ kg an schwanken die Werte der Verlängerungen im allgemeinen um einen annähernd konstanten Wert, wie zu erwarten ist. Denn nach eingetretener Rißbildung hat das Eisen die Zugkräfte im Balken übernommen, und beim Eisen wachsen bekanntlich (bis zu einer gewissen Grenze) die Verlängerungen annähernd proportional den Belastungen. Auf der Druck-

Fig. 182. Lage der Nullinie mit steigender Belastung für Balken Nr. 58 (Bauart nach Fig. 79).

seite dagegen nehmen die Zusammendrückungen fortlaufend rascher zu als die Belastungen, wie dies bei Beton zu sein pflegt. Nach ungefähr $P = 12\,000$ kg geht demnach die Zunahme der Zusammendrückungen verhältnismäßig rascher vor sich als bei den Verlängerungen, die Nullinie fällt ein wenig.

Belastung kg	Zunahme der Verlängerungen in $1/200$ cm	Zunahme der Zusammendrückunge in ¹ / ₂₀₀ cm					
Nach Spalte 15	19	23					
	der Zusammenstellung 29	9.					
0 bis 1000	0.27	0.34					
1000 » 2000	0.33	0.38					
2000 » 3000	0,33	0.40					
3000 » 4000	0,46	0,43					
4000 » 5000	0,50	0,51					
5000 » 6000	0,81	0,51					
6000 » 7000	0,96	0,59					
(6750: erster Riß)	· · ·	_					
7000 bis 8000	1,01	0,60					
8000 » 9000	1,04	0,71					
9000 » 10000	1,19	0,72					
10000 » 11000	0,99	0,68					
11000 » 12000	1,16	0,72					
12000 » 13000	1,07	0,70					
13000 > 14000	1,02	0,87					
$14000 \approx 15000$	1,08	0,87					
$15000 \gg 16000$	1,15	0,91					
16000 » 17000	1,11	1,01					

Balken Nr. 61 und 62.

Das Verhalten dieser Balken ist ganz ähnlich demjenigen des Balkens Nr. 58. Die Beschreibung kann sich deshalb auf wenige Einzelheiten beschränken.

Das erste Gleiten der mittleren Einlage wurde beobachtet

bei Balken Nr. 61 unter P = 13000 kg, » » 62 » P = 15000 ».

Die Spannung τ_1 (Gleitwiderstand) beträgt für diese Belastungen

15,5 bezw. 17,7 kg/qcm.

Der Durchschnitt für die drei Balken wird somit

 $\tau_1 = (13, 7 + 15, 5 + 17, 7) : 3 = 15, 6 \text{ kg/qcm}.$

Fig. 184. Lage der Nullinie mit steigender Belastung für Balken Nr. 62 (Bauart nach Fig. 79).

Die Lage der Nullinie mit steigender Belastung ist in Fig. 183 und 184 niedergelegt.

XXXII) 3 Balken mit Bauart nach Fig. 80: Nr. 64, 65 und 68.

Die Abmessungen dieser Balken, sowie die Anordnung der Eiseneinlagen sind die gleichen wie bei den Balken nach Fig. 79. Jedoch ist hier die mittlere Einlage an den Enden mit Haken versehen.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 30 und 33 enthalten.

Die Fig. 185 zeigt die unteren Flächen, Fig. 186 und 187 die Seitenflächen, Fig. 188 und 189 die Stirnflächen der Balken.

In den Fig. 190 bis 193 sind die Ergebnisse der Dehnungsmessungen und die ermittelten Durchbiegungen des Balkens Nr. 64 aufgezeichnet. Die Lage der Nullinie mit steigender Belastung ist in Fig. 194 für denselben Balken dargestellt (zur Gestalt dieser Linie vergl. das unter XXXI für den Balken Nr. 58 Bemerkte).

Fig. 185. Untere Flächen der Balken mit Bauart nach Fig. 80.

Fig. 186. Seitenflächen der Balken mit Bauart nach Fig. 80.

Fig. 187. Seitenflächen der Balken mit Bauart nach Fig. 80 (Rückseite der Körper in Fig. 186, 188 und 189).

Fig. 188 und 189. Stirnflächen der Balken mit Bauart nach Fig. 80.

Fig. 191. Balken Nr. 64 (Bauart nach Fig. 80). Zusammendrückungen auf der oberen Balkenfläche.

Nach Ausweis der Zusammenstellung 30 war die Widerstandsfähigkeit der Balken erschöpft, nachdem ein Haken der Einlage »3«, Fig. 80, sich aufgebogen und den Beton an den Balkenenden abgesprengt hatte (vergl. Fig. 186 bis 189). Bei den Balken Nr. 65 und 68 haben außer-

Fig. 192. Gesamte Durchbiegungen des Balkens Nr. 64 (Bauart nach Fig. 80). Mitteilungen. Heft 45 bis 47. 6 dem auch die Haken der mittleren Einlage je an einem Balkenende den Beton aufgesprengt (vergl. Fig. 188).

Die unsymmetrische Anordnung der Armierung hat bei diesen Balken unter höherer Belastung eine für die beiden Seitenflächen etwas ungleiche Rißbildung verursacht. Die Fig. 186 und 187 geben hierüber Aufschluß.

5,700 mm 2000 4.040 0.55 4.350 19000 3.685 10.550 3.360 18000 10.505 13,565 17000 5 16000 0 0,450 3.220 12.900 10,400 15000 \$ 10,370 2.500 14000 13000 00 0,325 1,990 12.375 12000 0,300 1,740 12.040 1.780 11000 \$ 0,275 1,505 0,240 1,300 17,540 10000 0,210 1,075 1,285 9000 Wirscorfle 0,885 17.050 8000 0.710 Erster 0,725 10,835 7000 0,085 0,640 P=6000kg: Ersten Rifs beobachtet Oka: 6000 0,050,0,475 5000 2.375 0,340 4000 0,025 0.230 0,245 P= 3000 kg: Erster Wasserfleck 3000 0,015 0.740 2000 745 0,003 1000 0.065 Achse der Durchbiegungen

1321

Fig. 194. Lage der Nullinie mit steigender Belastung für Balken Nr. 64 (Bauart nach Fig. 80).

Fig. 193. Balken Nr. 64 (Bauart nach Fig. 80). Durchbiegungen in der Mitte der Balkenlänge.

Der Vergleich mit den Ergebnissen der Balken mit Bauart nach Fig. 79 (unter XXXI) zeigt, daß durch die Hinzufügung der Haken an der mittleren Einlage, Fig. 80, die Höchstbelastung wesentlich gesteigert wurde. Sie beträgt im Durchschnitt

> bei den Balken nach Fig. 79: 17333 kg, » » » » » 80: 21333 »,

d. i. ein Mehr von 4000 kg oder 23 vH für die Balken nach Fig. 80.

XXXIII) 3 Balken mit Bauart nach Fig. 81: Nr. 42, 47 und 50.

Diese Balken sind rund 200 mm breit. Sie besitzen 5 Einlagen, und zwar eine mittlere gerade mit 18 mm Dmr. und seitlich je 2 aufgebogene Einlagen nach Fig. 89 und 90, die eine mit 13, die andere mit 12 mm Dmr.

Die Armierung ist im Gegensatz zu Fig. 79 und 80 symmetrisch angeordnet; die Größe des Querschnitts der Eiseneinlagen ist jedoch annähernd dieselbe wie dort.

Fig. 195. Untere Flächen der Balken mit Bauart nach Fig. 81.

Fig. 196. Seitenflächen der Balken mit Bauart nach Fig. 81. 6*

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 31 und 33 niedergelegt.

, Die Fig. 195 und 196 zeigen die unteren Flüchen und je eine Seitenflüche der Balken.

Balken Nr. 42.

Das erste Gleiten der mittleren, geraden Einlage wird unter $P = 12\,000$ kg auf der Seite von x gemessen, und zwar

0,02 mm nach 3 Minuten, 0,02 » » 6 ».

Unter P = 13000 kg tritt auch auf der Seite von y Gleiten ein.

Bei Steigerung der Last gleitet die mittlere Einlage mehr und mehr und wird deshalb an der Kraftübertragung in den äußeren Balkenteilen nur in geringem Maße noch teilnehmen. Bei $P = 17\,000$ kg klaffen die Risse (rechts und links in Fig. 196) ziemlich weit, die aufgebogenen Einlagen haben, wie die spätere Feststellung des Zunderabspringens ergibt, die Streckgrenze überschritten. Mit fortschreitendem Aufklaffen der Risse wird der Beton auf der Druckseite des Balkens zerstört, Fig. 196, und die Belastung sinkt.

Balken Nr. 47 und 50.

Die Ergebnisse sind ganz ähnlich denjenigen des Balkens Nr. 42.

Für Balken Nr. 50 ist gemäß Fig. 196 bemerkenswert, daß ein schlefer Riß ziemlich weit am rechten Balkenende unter $P = 15\,000$ kg entsteht. Die Schubspannung des Betons beträgt für diese Belastung nach Gl. 4 (Seite 18 in Heft 39)

$$\tau_0 = 15,7 \text{ kg/qcm}.$$

Werden die Ergebnisse der Balken Nr. 42, 47 und 50 zusammengefaßt, so kann Folgendes hervorgehoben werden.

Das Gleiten der mittleren, geraden Einlage wurde bemerkt:

bei dem Balken Nr. 42 unter $P = 12\,000$ kg, * * * * 47 * $P = 14\,000$ *, * * 50 * $P = 12\,000$ *.

Wird für diese Belastungen nach Gl. 5 (S. 18 in Heft 39) der Gleitwiderstand berechnet, so ergibt sich bei Verteilung der Gleitkraft auf alle Eisen derart, daß sie die gleiche Zugspannung erfahren (vergl. die hierauf bezügliche Rechnung in der Fußbemerkung unter XXX, S. 68),

 $\tau_1 = (15, 0 + 17, 1 + 15, 2) : 3 = 15, 8 \text{ kg/qcm}.$

(Dieses τ_1 gilt für den mittleren geraden Stab.)

Vergleicht man die Ergebnisse mit denjenigen der Balken nach Fig. 79, so findet sich Folgendes.

Das erste Gleiten hat begonnen

30 X

bei den Balken nach Fig. 79 unter durchschnittlich P = 13333 kg, » » » » » 81 » » P = 12667 ».

Der Gleitwiderstand beträgt für diese Belastungen

35

bei den Balken nach Fig. 79: $\tau_1 = 15.6$ kg/qcm,

$$*$$
 81: $\tau_1 = 15.8$ $*$

je berechnet für den mittleren Stab, an welchem das Gleiten gemessen wurde.

Die Höchstbelastungen sind im Durchschnitt

für die Balken nach Fig. 79: 17333 kg,

» » » » 81: 17000 »,

also nahezu gleich.

Die Art der Zerstörung der Balken unter den Höchstbelastungen ist für die Balken nach Fig. 79 und 81 verschieden, wie aus den Fig. 174 und 196 hervorgeht.

XXXIV. 3 Balken mit Bauart nach Fig. 82: Nr. 54, 55 und 57.

Diese Balken unterscheiden sich von den unter XXXIII besprochenen, nach Fig. 81, nur durch die Haken der mittleren Einlage.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 32 und 33 enthalten.

Die Fig. 197 und 198 zeigen die unteren Flächen und je eine Seitenfläche der Balken. Eine Stirnfläche des Balkens Nr. 54 ist in Fig. 199 abgebildet.

Fig. 197. Untere Flächen der Balken mit Bauart nach Fig. 82.

Die Ergebnisse der Dehnungsmessungen, sowie die für die Mitte der Balkenlänge ermittelten Durchbiegungen des Balkens Nr. 54 sind in den Fig. 200 bis 202 zeichnerisch dargestellt. Die Lage der Nullinie mit steigender Belastung ist aus Fig. 203 ersichtlich, gültig für denselben Balken.

Nach Ausweis der Zusammenstellung 32 begann die Zerstörung der Balken mit dem Erreichen der Streckgrenze der Eiseneinlagen, Fig. 198.

Deutlich erkennt man, wie die im mittleren Teile des Balkens entstandenen Risse sich unten immer weiter öffnen, infolgedessen sich der Druck im oberen Teil auf immer kleiner werdende Flächen beschränken muß, bis die Zerstörung des Betons stattfindet. Die nach Gl. 3 (Seite 18 in Heft 39) berechnete Zugspannung der Eisen unter der Höchstlast beträgt im Durchschnitt $\sigma_e = 2780$ kg/qcm.

Zugversuche mit Probestäben, welche vor dem Einbetonieren der Einlagen mit diesen in Zusammenhang waren, ergaben (vergl. Seite 11)

	í	ür	12	13	18.mm	Rundeisen
obere Streckgrenze			2764	2506	2755	kg/qcm,
untere »			2739	2473	2719	»,
Zugfestigkeit	•		3953	3550	4046	».

Fig. 198. Seitenflächen der Balken mit Bauart nach Fig. 82.

Fig. 199. Stirnfläche des Balkens Nr. 54 (Bauart n ch Fig. 82).

Die Höchstbelastung der Balken beträgt im Durchschnitt 19667 kg. Bei den Balken nach Fig. 81 (mittleres Eisen ohne Haken) wurde gefunden $P_{\rm max} = 17\,000$ kg. Der Vergleich dieser Zahlen zeigt, daß durch die Hinzufügung der Haken an der mittleren Einlage, Fig. 82, die Höchstbelastung gesteigert wurde um 19667 – 17000 = 2667 kg.

Fig. 202. Balken Nr. 54 (Bauart nach Fig. 82). Durchbiegungen in der Mitte der Balkenlänge.

XXXV) Zusammenfassung der Ergebnisse der Balken nach Fig. 79 bis 82.

Unter Bezugnahme auf die Zusammenstellungen 29 bis 33 ist Folgendes hervorzuheben.

1) Das erste Gleiten der mittleren geraden Einlage wurde gemessen

bei den Balken nach Fig. 79 unter

$$P = (12000 + 13000 + 15000): 3 = 13333 \text{ kg},$$

bei den Balken nach Fig. 81 unter

P = (12000 + 14000 + 12000) : 3 = 12667 kg.

Der Gleitwiderstand des mittleren Stabes¹) berechnet sich für diese Belastungen, bei Verteilung der Zugkraft auf alle Eisen derart, daß sie die gleiche Zugspannung erfahren,

bei den Balken nach Fig. 79 (3 Eisen) zu (13,7 + 15,5 + 17,7): 3 = 15,6 kg/qem, » » » » 81 (5 ») » (15,0 + 17,1 + 15,2): 3 = 15,8 ».

Der Gleitwiderstand ist somit für beide Fälle nahezu gleich, wie zu erwarten stand.

Was sodann die Größe von τ_1 betrifft, so zeigt sich, daß diese Werte sich nur wenig unterscheiden von denjenigen, welche für die Balken mit drei geraden Einlagen (Spalte 17 der Zusammenstellung 12, Balken

1) Vergl. Fußbemerkung unter XXX, S. 68.

88

Fig. 66 bis 68) gefunden worden sind. Dabei ist jedoch zu beachten, daß für die Balken der Zusammenstellung 12 der Gleitwiderstand für diejenige Last berechnet worden ist, unter welcher die Widerstandsfähigkeit der Balken infolge Ueberwindung des Gleitwiderstandes erschöpft war. Bei den Balken nach Fig. 79 und 81 dagegen erfolgte die Berechnung von τ_1 für diejenige Last, unter welcher das erste Gleiten eingetreten ist. Die vollständige Ueberwindung des Gleitwiderstandes dürfte etwas später erfolgt sein (vergl. z. B. Spalte 16 und 17 der Zusammenstellung 29 mit den Spalten 14 und 15 der Zusammenstellungen 4 bis 7), also auch der Gleitwiderstand bei den Balken Fig. 79 und 81 in Wirklichkeit etwas größer sein.

2) Die durchschnittliche Höchstbelastung beträgt bei den Balken

nach	Fig.	79	(3	Eisen,	mittlere	Einlage	ohne	Haken)	:	17333 kg,
33	70	80	(3	20	33	20	mit	»)	:	21333 »,
>>	>>	81	(5	• 30	33	20	ohne	»)	:	17000 »,
>>	>>	82	(5	>>	>>	- 39	mit	»)	:	19667 ».

Hieraus folgt, daß durch die Anbringung von Haken an der mittleren Einlage die Höchstbelastung wesentlich gesteigert worden ist.

Bemerkenswert ist das Verhalten der Balken nach Fig. 80 und 82 unter der Höchstlast (P_{max}). Bei den Balken nach Fig. 80 (2 aufgebogene Eisen) wurde unter P_{max} durch einen Haken der schrägen Eisen »3« der Beton am Balkenende abgesprengt, Fig. 186 und 187. Bei den Balken nach Fig. 82 (4 aufgebogene Eisen) war die Höchstlast mit dem Eintreten der Streckgrenze der Einlagen erreicht, Fig. 198, ein Absprengen des Betons durch die Haken der 4 aufgebogenen Eisen ist nicht bemerkt worden.

Die obere Streckgrenze der Eisen für die Balken nach Fig. 80 liegt bei 2914 kg/qcm (durch Zugversuch ermittel:, vergl. Seite 11) und für die Balken nach Fig. 82 zwischen 2506 und 2764 kg/qcm. Der Querschnitt der Eiseneinlagen beträgt

> bei den Balken nach Fig. 80: 7,81 qcm, » » » » 82: 7,57 ».

Ganz im Einklang mit diesen Zahlen ist die Höchstbelastung der Balken nach Fig. 82 kleiner ermittelt worden als für die Balken nach Fig. 80. Der Unterschied beträgt $21\,333 - 19\,667 = 1\,666$ kg, oder $\frac{1666}{19\,667} \cdot 100 =$ rund 8,5 vH.

3) Die Verlängerung des Betons, unmittelbar vor Beobachtung des ersten Risses innerhalb der Meßstrecke, wurde, umgerechnet auf 1 m Länge, ermittelt

bei den Balken nach Fig. 79 zu 0,257 mm, wobei e, Fig. 79, = 7 mm, * * * * * 80 * 0,188 * , * e, * 80, = 17 * , * * * * * 81 * 0,242 * , * e, * 81, = 8 * , * * * * * * 82 * 0,185 * , * e, * 72, = 15 * .

Hieraus erhellt deutlich, daß der Abstand e des Eisens von der Balkenunterfläche das Maß der beobachteten Dehnung des Betons beeinflußt, derart, daß die Dehnung um so größer gemessen wird, je näher das Eisen an der Balkenunterfläche liegt.

4) Ein Vorzug der symmetrischen Armierung, Fig. 81 und 82, gegen die unsymmetrische, Fig. 79 und 80, kann aus den Ergebnissen nicht abgeleitet werden.

XXXVI) 4 Balken mit Bauart nach Fig. 83: Nr. 98 bis 101.

Die Balken sind rund 200 mm hoch und rund 150 mm breit. Die Eiseneinlage ist ein rund 7 mm starkes Eisenblech, das so ausgefräst worden war, daß 3 an den Enden verbundene Flacheisen entstehen, wie Fig. 83 zeigt. Wie bereits oben bemerkt, wurde diese Form der Eiseneinlagen gewählt, um durch die Rückwirkung des Eisens auf den Beton, soweit eine solche überhaupt vorhanden ist, einen möglichst weitgehenden Einfluß des Eisens auf die Größe der Dehnung des Betons auszuüben, welche an diesem gemessen wird, ehe Rißbildung eintritt. Nach außen besaß die Eiseneinlage 4 Vorsprünge C zu dem Zweck, die Dehnung, welche das Eisen erfährt, durch unmittelbare Messung zu bestimmen ¹).

Die Balken lagerten unmittelbar nach der Herstellung rund 70 Stunden an der Luft (in der Form, mit nassen Säcken bedeckt), zwei von ihnen (Nr. 100 und 101) wurden sodann unter Wasser gesetzt und verblieben hier bis zur Prüfung; die beiden andern (Nr. 98 und 99) wurden auf feuchtem Sand gelagert und bis zur Untersuchung mit Säcken, die feucht erhalten wurden, bedeckt.

Die Zusammensetzung dieser vier Körper, welche für sich hergestellt wurden, betrug, abweichend von den übrigen Balken:

1 Raumteil Portlandzement »A«,

1 Raumteil Sand,

2 Raumteile Kies,

8 vH Wasser (vH des Gewichts der trockenen Materialien).

Zement, Sand und Kies waren von derselben Beschaffenheit wie bei den übrigen Versuchskörpern (vergl. unter XII).

Das Alter der Balken war rund 100 Tage.

Gemessen wurden:

1) die Verlängerungen des Betons an der untern Balkenfläche mit zwei Instrumenten (vergl. Fig. 21 bis 26 in Heft 39) auf die Erstreckung von rund 65 cm (Fig. 83);

2) die Verlängerungen der Eiseneinlage, ebenfalls mit 2 Instrumenten; zum Aufsetzen der Meßeinrichtung dienten die Vorsprünge *C*, Fig. 83.

Ein in die Versuchsmaschine eingebauter Balken mit den so angesetzten Instrumenten ist in Fig. 204 abgebildet.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 34 und 35 enthalten.

Greifen wir den Balken Nr. 98 heraus, so erkennen wir Folgendes:

1) Die Dehnung des Betons wird, sofern nur Messungen vor Eintritt der Rißbildung in betracht gezogen werden, größer als diejenige der Eiseneinlage ermittelt, so z. B.

> unter P = 500 kg zu 0,33 gegen 0,29, d. i. 1,14:1, » P = 2000 » » 2,09 » 1,84, » 1,14:1, » P = 3000 » » 4,54 » 4,00, » 1,135:1.

Die Betonschicht, deren Verlängerung gemessen wurde, liegt auf der Unterfläche des 203,6 mm hohen Balkens, während die Eisenfläche, auf welcher sich die Schneiden der Meßinstrumente befinden, um 7,5 + 7,1 = 14,6 mm von der

¹) Die Messungen ergaben natürlich die Dehnung der Eiseneinlagen zuverlässiger, als wenn Stifte in die Eiseneinlagen eingeschraubt und deren Bewegungen als Dehnung der letzteren angesehen werden.

Balkenfläche abstand (Spalten 11 und 25 der Zusammenstellung 34). Dem Verhältnis 1:1,14 würde eine Lage der Nullachse im Abstand z von der Balkenunterfläche entsprechen, die sich berechnet aus

$$z:(z-14,6)=1,14:1$$
 zu $z=119$ mm,

was der tatsächlichen Lage der Nullinie in dem 203,6 mm hohen Balken mit ziemlicher Annäherung entsprechen dürfte, so daß also hier gleiche Dehnung des Eisens und des Betons nachgewiesen erscheint.

2) Nach eingetretener Rißbildung nähert sich die gemessene Verlängerung des Betons trotz des Unterschiedes der Abstände von der Nullachse derjenigen des Eisens mehr und mehr und überschreitet sie gegen den Schluß um geringe

Fig. 204. Versuchsanordnung für die Balken mit Bauart nach Fig. 83.

Beträge, deren Größe übrigens als innerhalb der durch Beobachtungsunvollkommenheiten gelegenen Genauigkeitsgrenze liegend angesehen werden muß.

3) Für beispielsweise P = 3000 kg beträgt die gesamte Verlängerung des Eisens (auf die Längeneinheit) im Schwerpunkt des Eisenquerschnitts

$$\frac{4,00}{200\cdot 65,2}\cdot \frac{119-\left(7,5+\frac{7,1}{2}\right)}{119-(7,5+7,1)} = 0,000317 \text{ cm.}$$

Derselben entspricht eine Spannung von rund 0,000317 · 2100000 = 666 kg/qcm.

Fig. 206. Balken Nr. 98 (Bauart nach Fig. 83). Verlängerungen des Betons auf der unteren Balkenfläche.

Fig. 208. Balken Nr. 99 (Bauart nach Fig. 83). Verlängerungen des Betons auf der unteren Balkenfläche.

93

Da infolge der großen bleibenden Dehnung des Betons bei der Entlastung in Eisen $0.82 \frac{1}{200}$ cm Dehnungrest vorhanden ist, so ergibt sich, da die Anstrengung des Eisens innerhalb der Elastizitätsgrenze liegt, eine verbleibende Gegenspannung im Eisen von

$$\frac{0,82}{200\cdot 65,2} \cdot \frac{119 - \left(7,5 + \frac{7,1}{2}\right)}{119 - (7,5 + 7,1)} \cdot 2100\,000 = 137 \text{ kg/qcm},$$

mit welcher das Eisen drückend auf den Beton zurückwirkt, ursprüngliche Spannungslosigkeit des Eisens für P = 0 kg vorausgesetzt.

Diese Feststellung ist gemacht, ohne daß angenommen zu werden brauchte, das Eisen dehne sich genau so wie der Beton¹).

Fig. 209, Balken Nr. 100 (Bauart nach Fig. 83). Verlängerungen der Eiseneinlage.

Der Vergleich der 4 Balken Nr. 98, 99, 100 und 101 unter sich führt zu folgenden Ergebnissen.

1) Während die nur feucht gelagerten Balken Nr. 98 und 99 einen Unterschied bis 14 vH in der gemessenen Verlängerung des Betons gegenüber der-

94

¹) Ueber die Zuverlässigkeit der hier durchgeführten Messung der Dehnungen des Eisens siehe Fußbemerkung Seite 90.

jenigen des der Nullachse näher gelegenen Eisens aufweisen, steigt derselbe bei den unter Wasser gelagerten Balken Nr. 100 und 101 bis 29 vH (Balken Nr. 100 unter P = 2000 kg).

2) Der größere Unterschied bleibt auch nach eingetretener Rißbildung bestehen.

3) Die Dehnung des Betons, unmittelbar vor Beobachtung der ersten Risse, wurde ermittelt zu

- (0,349 + 0,299): 2 = 0,324 mm für die Balken Nr. 98 und 99 (Lagerung auf feuchtem Sand),
- (0,328 + 0,407): 2 = 0,367 mm für die Balken Nr. 100 und 101 (Lagerung unter Wasser).

Fig. 210. Balken Nr. 100 (Bauart nach Fig. 83). Verlängerungen des Betons auf der unteren Balkenfläche.

Für die Balken Nr. 100 und 101, welche unter Wasser gelagert haben, ist somit die Verlängerung vor der Rißbildung im Durchschnitt etwas größer als für die Balken Nr. 98 und 99, deren Lagerung auf nassem Sand erfolgte. Dieser Unterschied erklärt sich dadurch, daß der Beton unter Wasser eine größere Volumenzunahme erfährt als derjenige, welcher auf feuchtem Sand gelagert ist und mit feuchten Säcken bedeckt war.

Fig. 212. Balken Nr. 101 (Bauart nach Fig. 83). Verlängerungen des Betons auf der unteren Balkenfläche.

Um die bei den Balken Nr. 98 bis 101 (mit möglichst wirksamer Eiseneinlage) erhaltenen Dehnungen des Betons mit den Dehnungen zu vergleichen, welche ein gleich zusammengesetzter Balken, jedoch ohne Eiseneinlagen, ergibt, wurde ein Balken nach Fig. 213 aus demselben Beton wie die Balken nach Fig. 83 hergestellt, in feuchtem Sand gelagert, und nach 172 Tagen der Prüfung unterworfen. Die Ergebnisse der Dehnungsmessungen sind in Fig. 214 dargestellt. Der Bruch erfolgte unter P = 2300 kg.

Fig. 214. Balken Nr. 102 (Bauart nach Fig. 213). Verlängerungen auf der unteren Balkenfläche.

Hiernach fand sich die Verlängerung des Betons ohne Einlagen kurz vor dem Bruch zu

1,45 $\frac{1}{200}$ cm auf l = 80,0 cm, = 0,091 mm auf 1 m Länge,

d. i. rund ein Viertel des oben angegebenen Wertes für Beton mit besonders wirksamer Eiseneinlage.

4) Die Ergebnisse der Dehnungsmessungen an den 4 Balken sind in den Fig. 205 bis 212 zeichnerisch dargestellt. Wie bereits früher (Seite 21 im Heft 39) festgestellt wurde, fallen die ersten Risse in das Gebiet der stärksten Krümmung der Dehnungslinien, so daß die ersten Risse entdeckt wurden, kurz bevor die Linien zum zweiten Male den einer Geraden sich nähernden Verlauf nehmen.

Ueber die weitere Verwendung der Versuchsergebnisse vergl. unter LX.

XXXVII) 3 Balken mit Bauart nach Fig. 84: Nr. 66, 67 und 69.

Diese Balken sind rund 150 mm breit und besitzen keine Eiseneinlage.

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 36 und 37 wiedergegeben.

Mitteilungen. Heft 45 bis 47

Für den Balken Nr. 66 sind in den Fig. 215 bis 217 die Ergebnisse der Dehnungsmessungen und die für die Mitte der Balkenlänge ermittelten Durchbiegungen zeichnerisch dargestellt.

In Fig. 218 ist für denselben Balken die Lage der Nullinie unter den einzelnen Belastungsstufen angegeben.

Die in den Zusammenstellungen 36 und 37 angegebene Biegungsfestigkeit K_b des Betons beträgt unter Berücksichtigung des Eigengewichts

$$(24, 1 + 23, 0 + 24, 7): 3 = 23,9 \text{ kg/qcm}.$$

Da die Zugfestigkeit desselben Betons unter XXXIX zu 13,0 kg/qcm sich ergibt, so beträgt die nach der üblichen Biegungsgleichung berechnete Biegungsfestigkeit das $\frac{23,9}{13,0} = 1,84$ -fache der Zugfestigkeit.

Fig. 215. Balken Nr. 66 (Bauart nach Fig. 84). Verlängerungen auf der unteren Balkenfläche.

1875

. € 1500

Achse der Belastungen P

375 0

Fig. 217. Balken Nr. 66 (Bauart nach Fig. 84). Durchbiegungen in der Mitte der Balkenlänge.

Fig. 218. Lage der Nullinie mit steigender Belastung für Balken Nr. 66 (Bauart nach Fig. 84).

Die bei diesen Balken ohne Eiseneinlage beobachteten Wasserflecke¹) traten bei einer Verlängerung des Betons von durchschnittlich 0,08 mm auf 1 m Länge auf. Sie wurden bemerkt unter

P = (1750 + 1625 + 1625): 3 = 1667 kg.

Die durchschnittliche Bruchbelastung derselben Balken beläuft sich auf

 $P_{\text{max}} = (2100 + 2000 + 2150) : 3 = 2083 \text{ kg}.$

Die Verlängerungen des Betons, kurz vor dem Bruch gemessen, und zwar unter P = 2050, 1875 und 2150 kg, sind

(0,128 + 0,120 + 0,127): 3 = 0,125 mm auf 1 m Länge,

d. i. um die Hälfte mehr als die Dehnung betrug, unter welcher die ersten Wasserflecke beobachten wurden¹).

XXXVIII) Versuche zur Ermittlung der Druckfestigkeit, sowie der Druckelastizität des Betons. Größe der Zahl *n* (Verhältnis des Dehnungskoeffizienten von Beton zu demjenigen des Eisens) mit steigender Druckspannung.

Für die Druckfestigkeit des Betons, ermittelt an Würfeln von 30 cm Kantenlänge, ergaben sich die in der Zusammenstellung 38 enthaltenen Werte. Die Herstellung erfolgte in eisernen Formen und auf möglichst gleiche Weise wie bei den Balken. Das Zerdrücken geschah senkrecht zur Stampfrichtung.

Nach Zusammenstellung 38 beträgt die Druckfestigkeit im Mittel

228 kg/qcm²).

Bezeichnung		Alter	Ge-	Ab	messun	gen	Vo-	Raum-	Quer-	Bruchbelastung		
	Prüfungs- tag		wieht G kg	Seite a em	Seite b cm	Höhe h cm	lumen a b h ccm	gewicht 1000 G a b h	schnitt <i>a b</i> qcm	beob- achtet kg	auf 1 qcm kg	
1	3. 10. 07	193	63,35	30,28	30,08	30,03	27 351	2,32	910,8	214 500	236	
2	3. 10. 07	193	63,85	30,06	30,41	30,06	27 478	2,32	914,1	210 700	230	
3	3. 10. 07	193.	62,65	30,05	30,05	30,05	27 135	2,31	903,0	194 200	215	
4	3. 10. 07	193	62,55	30,05	30,08	30,06	27 171	2,30	903,9	204 500	226	
5	22. 12. 06	213	63,50	30,47	30,04	30,06	27 514	2,31	915,3	224 500	245	
6	22, 12, 06	213	63.55	30.44	30.08	30.03	27 497	2.31	915.6	213 200	233	
7	22, 12, 06	213	63,90	30.62	30.06	30.07	27 678	2,31	920.4	224 500	244	
8	30, 1, 07	230	63.40	30.16	30.07	30,07	27 270	2.32	906.9	212 000	234	
9	30, 1, 07	230	64.10	30.08	30.59	30.05	27 649	2.32	920.1	214 500	233	
10	30, 1, 07	230	63.80	30,10	30.50	30.05	27 586	2.31	918.0	218 200	238	
11	6 4 07	221	63.10	30.06	30.18	30.07	27 280	2.31	907.2	182 400	201	
12	6. 4. 07	221	63.15	30.06	30.21	30.05	27 288	2.31	908.1	182 400	201	
Du	rchschnitt	212	-	-	-	-	-	2,31	-	-	228	

Zusammenstellung 38.

¹) Diesen Feststellungen gegenüber müssen die Mitteilungen Turneaures hervorgehoben werden. Dieser schreibt in Engineering News 1904 Band 52 Seite 214: »In the plain concrete no watermarks or eracks were observed before rupture.« Turneaure ist deshalb der Ansicht, daß der Wasserfleck einen feinen Riß in sich schließe, und führt als Beweis an, daß ein aus dem Balken an einer Stelle, an der vorher ein Wasserfleck aufgetreten ist, herausgesägtes Betonstück an dieser Stelle zerfiel. Vergl. hierzu auch die Darlegungen Seite 156 u. f. (Anhang).

²) Als zulässige Druckspannung im gebogenen Balken ist nach den amtlichen »Bestimmungen« vom Jahre 1904 ein Fünftel der Druckfestigkeit gestattet, d. i. im vorliegenden Falle $\frac{1}{5} \cdot 228 = 45,6 \text{ kg/qcm}.$

Die »Bestimmungen« vom Jabre 1907 erlauben ein Sechstel der Druckfestigkeit als zulässige Druckspannung bei Biegung, d. i. $\frac{1}{6} \cdot 228 = 38$ kg qcm. Zur Bestimmung der gesamten, bleibenden und federnden Zusammendrückungen des Betons wurden Prismen nach Fig. 91 verwendet. Sie sind rd. 100 cm hoch und besitzen einen quadratischen Querschnitt von rd. 20 cm Seite.

Vor der Prüfung, die in einer stehenden Maschine erfolgte, waren die Versuchskörper durch Hobeln mit ebenen und parallelen Stirnflächen versehen worden.

Die benutzte Meßvorrichtung zur Ermittlung der Zusammendrückungen findet sich beschrieben in der Zeitschrift des Vereines deutscher Ingenieure 1895 Seite 489 u. f., sowie in derselben Zeitschrift 1898 Seite 35 u. f., oder in C. Bach, »Elastizität und Festigkeit« 4. Auflage Seite 111 u. f., 5. Auflage Seite 115 u. f.

Als geringste Belastung (Anfangslast P_a) wird für den mittleren Querschnitt des Körpers erhalten: das halbe Eigengewicht, vermehrt um das Gewicht der angebrachten Instrumente mit dem oberen Bügel.

Fig. 219. Zug- und Druckelastizität des Betons,

Die Belastungsweise war folgende: unter P_a Ablesung der Instrumente, dann Belastung mit P = 2500 kg, nach 3 Minuten Ablesen der Instrumente; hierauf Entlasten auf P_a , dort wieder nach 3 Minuten Ablesen der Instrumente; nun folgt P = 5000 kg, P_a u. s. f. Die Zusammendrückungen wurden demnach für jede Belastungsstufe nur einmal bestimmt, ganz entsprechend dem Vorgang bei der Prüfung der Balken (vergl. unter III, Seite 12 in Heft 39).

Die Versuchsergebnisse sind in der Zusammenstellung 39 enthalten. Fig. 219 zeigt im oberen Teile die gesamten Zusammendrückungen für den Körper Nr. 6, während im unteren Teile die gesamten Verlängerungen des unter XXXIX besprochenen Zugkörpers Nr. 7 eingetragen sind.

Nach Beendigung der Untersuchungen, in der Regel reichend bis rund 110 kg/qcm, wurde an den Prismen die Bruchbelastung ermittelt. Sie beträgt

(155 + 143 + 145 + 142): 4 = 146 kg/qcm,

d. i. $\frac{146}{228} \cdot 100 = 64$ vH der oben gefundenen Würfelfestigkeit¹). Dabei ist die Länge der Prismen gleich dem Fünffachen der Seite des Querschnitts.

Die geprüften Körper sind in Fig. 220 abgebildet.

Das Verhältnis des Dehnungskoeffizienten der federnden Zusammendrückungen des Betons zu demjenigen des Eisens, der zu <u>1</u> angenommen werden kann, beträgt, wenn Körper Nr. 6 herausgegriffen wird, auf der Belastungsstufe von

0,2 bis	6.1	m/aam				2100000	. 7 .	
	0,1 K	g/qem	• •		•	280400	(,0,	
0,2 »	96 .					2 100 000	9.0	
	50,5	"		•	•	239 400	0,8,	
0,2 »		79 -	~				2100000	10 -
	12,1	"		•		196100	10, 1,	
0,2 ×		109.0	*				2 100 000	14 =
	~	100,0			•		145 000	14,0.

Fig. 220. Körper nach Fig. 91 zur Ermittlung der Druckelastizität.

Wenn in den amtlichen Bestimmungen gesagt ist: »Das Elastizitätsmaß des Eisens ist zu dem Fünfzehnfachen von dem des Betons anzunehmen, wenn nicht ein anderes Elastizitätsmaß nachgewiesen wird«, so erkennt man deutlich, daß dieses Verhältnis erst bei sehr hohen Belastungen erreicht wird, worauf auch die Ermittlungen, betreffend die Lage der Nullachse in Fig. 100, 106, 112, 139, 145, 153, 170, 182 bis 184, 194 und 203 hindeuten.

Die übrigen Körper der Zusammenstellung 39 liefern ähnliche Ergebnisse.

¹) Versuche gleicher Art finden sich auch in Heft 29 der Mitteilungen über Forschungsarbeiten, Druckversuche A mit Eisenbetonkörpern, Seite 18 und 27: Würfelfestigkeit nach 90 Tagen 159 kg/qcm, Druckfestigkeit von Säulen mit **25** cm Seitenlänge und 1 m Länge (Länge = dem Vierfachen der Seite des Querschnitts) 141 kg/qcm, d. i. $\frac{141}{159} \cdot 100 = 89$ vH der Würfelfestigkeit.

XXXIX) Versuche zur Ermittlung der Zugelastizität und Zugfestigkeit des Betons.

Vergleich des Dehnungskoeffizienten a für Zug und Druck.

Zur Bestimmung der gesamten, bleibenden und federnden Verlängerungen des Betons sind Körper nach Fig. 92 hergestellt worden. Der Querschnitt dieser Körper im mittleren prismatischen Teil beträgt rund $20 \cdot 20$ = 400 qcm. Die Flächen *a a, a a* sind mit einem dünnen Ueberzug aus reinem Zement versehen und vor der Prüfung derartig durch Hobeln bearbeitet worden, daß die Achse des Versuchskörpers genau in die Mitte zwischen diese Flächen *a a, a a* zu liegen kommt.

Die Versuchseinrichtung ist in Fig. 221 abgebildet. Gegen die Flächen a a, a a, Fig. 92, werden gezahnte Laschen durch Schrauben angepreßt, welche die kopfförmigen Enden des Körpers durchdringen. Die Einrichtung bietet, insbesondere auch infolge der leichten Beweglichkeit der einzelnen Teile in Zapfen und Schneiden, die Möglichkeit, den Körper so einzubauen, daß die Zugrichtung mit größerer Wahrscheinlichkeit in die Achse des prismatischen Teiles fällt, als wohl sonst erreicht wird. Bei den früher¹) angewendeten Körperformen ließ sich dies nur schwer erreichen.

Die Meßeinrichtung sowie die Art der Belastung ist dieselbe wie bei den unter XXXVIII besprochenen Druckversuchen.

Die Versuchsergebnisse sind in der Zusammenstellung 40 enthalten. Die Dehnungsmessungen reichen bis zu Spannungen von rund 9,5 kg/qcm. Die Ergebnisse der Messungen an Körper Nr. 7 sind in Fig. 219 unten zeichnerisch dargestellt. Wie ersichtlich, ist der Anschluß an die Druckkurve stetig.

Nach Beendigung der Dehnungsmessungen wurde an denselben Körpern die Zugfestigkeit des Betons ermittelt. Sie ergab sich zu

$$(13,4+13,6+13,8+11,8+12,6):5 = 13,0$$
 kg/qcm.

Drei der geprüften Körper sind in Fig. 222 abgebildet.

Die Biegungsfestigkeit des Betons wurde für die Balken nach Fig. 84 unter XXXVII angegeben zu 23,9 kg/qcm. Wie bereits unter XXXVII hervorgehoben, beträgt die nach der üblichen Biegungsgleichung berechnete Biegungsfestigkeit das 1,84 fache der Zugfestigkeit.

Im Vergleich mit der Würfelfestigkeit ergibt sich, daß im vorliegenden Falle die Druckfestigkeit das $\frac{238}{13} = 18,3$ fache der Zugfestigkeit beträgt²).

Interessant ist ein Vergleich der Zug- und Druckelastizität des Betons, wobei wegen der Veränderlichkeit von α mit der Spannungszunahme nur solche Werte miteinander verglichen werden dürfen, welche mit Annäherung zu derselben Spannungsstufe gehören.

Es beträgt bei Körper

¹) Vergl. Seite 3 in Heft 29 der Mitteilungen über Forschungsarbeiten.

²) Zugfestigkeiten von Beton, wie sie in den amtlichen Bestimmungen 1907 $\left(\frac{1}{10}\right)$ Druckfestigkeit = zulässige Zugspannung = $\frac{2}{3}$ Zugfestigkeit) angegeben werden, sind in dieser Höhe dem Verfasser nicht bekannt.

Fig. 221. Versuchseinrichtung zur Bestimmung der Zugelastizität und Zugfestigkeit des Betons.

	Zug							Druck										
Nr.	5	für	0,5	bis	6,1	kg/qcm	α =	$=\frac{1}{268\ 200},$	Nr.	4	für	0,2	bis	6,0	kg/qem	α =	$\frac{1}{264\ 000}$,
*	7	>>	0,5	»	6,0	»	α =	$=\frac{1}{280\ 200},$	>>	5	»	0,2	>>	6,1	»	$\alpha =$	$\frac{1}{257\ 000}$,
»	8	>>	0,5	*	6,0	»	α =	$=\frac{1}{267\ 600},$	39	6	>>	0,2	»	6,1	»	$\alpha =$	1 280 400	,
>>	11	>>	0,5	>>	5,9	»	$\alpha =$	$=\frac{1}{280\ 400},$	*	7	*	0,2	*	6,0	»	$\alpha =$	$\frac{1}{284\ 100}$	
>>	12	*	0,5	»	6,0	>>	α =	$=\frac{1}{275\ 000}$.										

Fig. 222. Körper nach Fig. 92 zur Ermittlung der Zugelastizität und Zugfestigkeit des Betons (nach dem Bruch).

Wie ersichtlich, weichen die Werte von α auf derselben Spannungsstufe von rund 0,5 bis 6 bezw. 0,2 bis 6 kg/qcm nur wenig von einander ab.

Mit steigender Spannung wird der Unterschied jedoch größer, wie ein Vergleich der Zahlen in Spalte 12 der Zusammenstellung 40 mit denen in Spalte 14 der Zusammenstellung 39 zeigt¹).

¹) Es muß hier darauf hingewiesen werden, daß, wenn z. B. im Betonkalender 1907 Teil I S. 187 gesagt ist, daß »Versuchsergebnisse, welche über die Zugelastizität Aufschluß geben könnten, nicht bekannt geworden sind«, dies nicht zutreffend ist. Dahingehende Ermittlungen sind schon vor 6 Jahren in der Materialprüfungsanstalt der Königl. Technischen Hochschule Stuttgart durchgeführt worden. Vergl. Mörsch-Wayß und Freytag, der Eisenbetonbau, 1. Aufl. 1902 S. 54 u. f., 2. Aufl. 1906 S. 25 u. f., und Mitteilungen über Forschungsarbeiten 1905 Heft 29 Seite 30.

B) Balken mit T-förmigem Querschnitt.

XL) Bauart der Versuchskörper, Fig. 223 bis 236.

Der Querschnitt der Balken und der Gesamtquerschnitt der Eiseneinlagen sind für alle Versuchskörper annähernd gleich groß.

Fig. 223.

3 Balken mit 3 geraden Einlagen: die mittlere von 32 mm, die beiden seitlichen von 25 mm Dmr.

Fig. 223.

Um das Gleiten der Eisen verfolgen zu können, war die in Fig. 223 angegebene und durch Fig. 6 und 7 (Heft 39) näher dargestellte und daselbst besprochene Einrichtung getroffen worden.

Fig. 224.

3 Balken mit 3 geraden Einlagen wie bei den Balken nach Fig. 223. In den äußeren Balkenteilen sind außerdem noch je 12 Bügel aus 7 mm starkem

Fig. 224.

Rundeisen, Fig. 230, einbetoniert worden. Die Verbindung der Bügel mit den geraden Rundstäben erfolgte durch 2 mm starken Bindedraht.

Fig. 225.

3 Balken mit 3 geraden Einlagen wie bei den Balken nach Fig. 223 und 224. In den äußeren Balkenteilen sind zusammen 48 Bügel aus Flacheisen, Fig. 231 und 232, einbetoniert worden.

Fig. 226.

3 Balken mit 5 Eiseneinlagen: in der Mitte eine gerade Einlage von 32 mm Dmr., seitlich je zwei aufgebogene Einlagen von 18 mm Dmr. (zwei Stäbe nach

Fig. 226.

Fig. 233, im Balken oben gelegen, zwei andere nach Fig. 234, im Balken unten gelegen).

Fig. 227.

3 Balken mit 5 Eiseneinlagen wie bei den Balken nach Fig. 226. Außerdem sind noch 24 Bügel aus 7 mm Rundeisen (nach Fig. 230) einbetoniert worden, in gleicher Weise wie bei den Balken nach Fig. 224.

Zu Fig. 227.

Um den Eiseneinlagen ihre Form und ihre Lage sowohl zueinander als auch im Beton, so wie gewollt, nach Möglichkeit zu sichern, erweisen sich die Bügel als gutes Hilfsmittel; sie werden mit den Einlagen durch kräftigen Draht sorgfältig verbunden und verleihen dann der gesamten Armierung eine gewisse Widerstandsfähigkeit gegen Verschiebung während des Stampfens.

Fig. 228.

Die Anordnung der Einlagen ist dieselbe wie bei den Balken nach Fig. 227. Der einzige Unterschied ist das Vorhandensein von Haken an der mittleren Einlage.

Zu Fig. 228.

Fig. 229.

3 Balken mit 5 Einlagen: in der Mitte eine gerade Einlage von 32 mm Dmr., seitlich je zwei steiler aufgebogene Einlagen von 18 mm Dmr. (zwei Stäbe nach Fig. 235, zwei Stäbe nach Fig. 236).

Fig. 229.

Zu Fig. 229.
Im Gegensatz zu den Balken nach Fig. 223 bis 228 haben die Balken nach Fig. 229 2 m Auflagerentfernung, bei den Balken nach Fig. 223 bis 228 beträgt diese 3 m.

Die Anordnung der Armierung ist ähnlicher Art wie in Fig. 226.

Fig 233 und 234.

Zu Fig. 230: Maß a=152 bei Balken nach Fig. 227 und 228, Maß a=159 bei Balken nach Fig. 224.

Weitere Versuchskörper.

Es wurden noch hergestellt und geprüft:

10 Würfel von 30 cm Kantenlänge zur Ermittlung der Druckfestigkeit des Betons in Würfelform. Das Zerdrücken der Würfel erfolgte senkrecht zur Stampfrichtung, entsprechend der bei den Balken auftretenden Beanspruchungsweise des Betons.

3 Prismen nach Fig. 91 zur Ermittlung der gesamten, bleibenden und federnden Zusammendrückungen unter verschiedenen Belastungen, sowie zur Bestimmung der Druckfestigkeit des Betons bei einer Länge der Prismen gleich dem Fünffachen der Seite des Querschnitts.

4 Körper nach Fig. 92 zur Ermittlung der gesamten, bleibenden und federnden Verlängerungen unter verschiedenen Belastungen. Außerdem wurde an diesen Körpern die Zugfestigkeit des Betons bestimmt.

XLI) Material und Zusammensetzung der Versuchskörper.

Die Materialien:

Zement, von den Portlandzementwerken Heidelberg & Mannheim A.-G. in Heidelberg,

Sand und Kies (nach Angabe »Rheinkies aus der Nähe von Speyer«), von Wayß & Freytag A.-G. in Neustadt a/Haardt,

109

geliefert, je unentgeltlich, sind dieselben wie diejenigen, welche zu den Versuchen unter A) verwendet worden waren, mit dem Unterschied, daß hier nur Zement »B« Verwendung fand (vergl. unter XII).

Ueber die Untersuchung des Portlandzements (»B«) ist in Anlage 5 berichtet worden (vergl. unter XII).

Die Untersuchung des Sandes und Kieses ergab die in Anlage 3 (Heft 39 Seite 47) enthaltenen Ergebnisse.

Das zur Einbetonierung verwendete Eisen war Handelseisen gewöhnlicher Art und ist von der Firma Wayß & Freytag A.-G. in Neustadt a/Haardt unentgeltlich geliefert worden.

Die Untersuchung dieses Eisens ergab Folgendes:

Bei 18 mm Dmr. (4 Versuchstäbe):

obere Streckgrenze (2889 + 2945 + 3189 + 2863): 4 = 2972 kg/qcm,untere Streckgrenze (2849 + 2882 + 3157 + 2817): 4 = 2926», Zugfestigkeit (4073 + 4028 + 4488 + 4085): 4 = 4169».

Bei 32 mm Dmr. (3 Versuchstäbe, die beiden letzten auf 28 mm abgedreht):

obere Streckgrenze (2343 + 2386 + 2460): 3 = 2396 kg/qcm, untere Streckgrenze (2343 + 2338 + 2427): 3 = 2369 » , Zugfestigkeit (3589 + 3575 + 3742): 3 = 3635 » .

Die Zusammensetzung der Körper betrug:

- 1 Raumteil Portlandzement,
- 4 Raumteile Sand und Kies in dem Mischungsverhältnis von 3 Raumteilen Sand und 2 Raumteilen Kies, beides vollständig lufttrocken,
- 14 vH Wasser (14 Raumprozente = 7,36 Gewichtprozente, vergl. Anlage 3 in Heft 39 Seite 49 und unter XII).

XLII) Herstellung und Lagerung der Versuchskörper. Temperaturerhöhung der Balken während des Abbindens.

Die Herstellung der Versuchskörper erfolgte in der Zeit vom 13. Juli bis 23. August 1906 in einem Kellerraum der Materialprüfungsanstalt an der Kgl. Technischen Hochschule zu Stuttgart durch Arbeiter, welche unter steter Aufsicht standen. Während dieser Zeit herrschte in dem Raume, der auch als Lagerraum diente, eine Temperatur von rund 17 bis 20°C.

Fig. 237 bis 240. Form zur Herstellung der Balken mit T-förmigem Querschnitt.

Die Verarbeitung der Materialien (jedesmal ausreichend für die Hälfte eines Balkens, d. i. rund 480 kg), sowie die Behandlung der Eiseneinlagen war dieselbe wie im »Ersten Teil« (Heft 39, Seite 4) angegeben worden ist.

Zur Herstellung der Balken dienten wagerecht liegende Formen aus Tannenholz, Fig. 237 bis 240. (Vergl. auch unter II in Heft 39.)

Das Stampfen des Materials erfolgte in sieben gleich hohen Schichten. Vor dem Feststampfen der ersten Schicht wurden die Eiseneinlagen sorgfältig unterstopft. Als Stampfer wurden, soweit der Zwischenraum der Eisen unter sich und mit der Wand gestattete, solche von 12 kg Gewicht verwendet. Die zum Einstampfen erforderliche Zeit betrug je nach der Beschaffenheit der Einlagen etwa 1³/₄ bis 2¹/₄ Stunden.

Das Material wurde kräftig gestampft, solange bis Wasseraustritt deutlich festgestellt werden konnte; in den oberen Stampfschichten erlangte es dabei eine weiche, d. h. plastische Beschaffenheit.

Die Balken verblieben mindestens 2 Tage in der Form; alsdann wurden die Seitenwandungen entfernt und frühestens nach weiteren 6 Tagen der Formboden herausgezogen. Bis zur Prüfung, im Alter von rund 7 Monaten, lagerten sämtliche Balken auf feuchtem Sand und waren mit Säcken bedeckt, die dauernd feucht gehalten wurden.

An 4 Balken Nr. 80, 83, 86 und 89 wurden nach dem Stampfen des Betons die Temperaturerhöhungen festgestellt (vergl. unter XIII). Sie betragen durchschnittlich

$$(5,4+5,0+6,0+4,8):4=5,3$$
°C.

XLIII) Durchführung der Versuche im Allgemeinen.

Die Prüfungsmaschine mit eingebautem Balken¹) und den angesetzten Instrumenten zeigt Fig. 241.

Der Balken ist an den Enden auf Rollen gelagert und wird durch zwei nach innen gelegene Rollen belastet. Zwischen dem Balken und den Widerlagsrollen sind zur besseren Verteilung der dort auftretenden Kräfte 10 mm starke Flußeisenplatten gelegt. Die Belastungsrollen ruhen, unter Zwischenschaltung von Pappe von 200 mm Länge auf dem Balken, vergl. Fig. 242, belasten somit den Druckgurt nur auf eine Breite gleich derjenigen des Steges.

Der Abstand der Widerlagsrollen beträgt 3000 mm (bei 3160 mm Balkenlänge), derjenige der Belastungsrollen 1000 mm. (Vergl. dazu unter III in Heft 39, Seite 7.)

Die Art der Durchführung der Versuche ist in Heft 39, S. 7 u. f. eingehend beschrieben. Das dort Gesagte hat auch hier seine Gültigkeit und kann deshalb darauf verwiesen werden.

Beobachtet wurden:

1) Die Belastung, unter welcher Wasserflecke und Risse (vergl. Heft 39, Seite 12 u. f.) zuerst gesehen wurden; ferner das Fortschreiten der Risse mit steigender Belastung;

2) die Verschiebung der Eiseneinlagen gegenüber dem Beton an den Balkenenden, d. s. die Aenderungen der Strecken x und y, Fig. 223 bis 229;

3) die gesamten, bleibenden und federnden Durchbiegungen der oberen Fläche des Balkens an 7, Fig. 243 und 244, bezw. 5, Fig. 19, Punkten der Mittelebene;

¹) Balken Nr. 90 nach Fig. 228 am Schluß des Versuchs.

4) die gesamten, bleibenden und federnden Verlängerungen des Betons an der unteren Fläche des Balkens (gemessen über die ganze Breite des Steges) auf die Erstreckung von rund 60 cm (vergl. Fig. 243 und 21 bis 25 in Heft 39);

.5) die gesamten, bleibenden und federnden Zusammendrückungen des Be-

Fig. 241. Prüfungsmaschine.

tons an der oberen Fläche des Balkens auf dieselbe Erstreckung, vergl. Fig. 243, und über die Stegbreite von 200 mm¹).

6) die Höchstbelastung.

Fig. 242.

Fig. 243.

Fig. 244.

Ueber die Untersuchungen mit den weiteren, Seite 109, aufgeführten Körpern wird unter LI und LII berichtet werden.

Versuchsergebnisse.

XLIV) 3 Balken mit Bauart nach Fig. 223: Nr. 71, 72 und 87.

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 41 und 48 niedergelegt.

Fig. 245. Untere Flächen der Balken mit Bauart nach Fig. 223.

¹) Der Instrumententräger (A_1 in Fig. 21, Forschungsheft 39) berührt unter Anpressung nur den mittleren Teil des Druckgurtes von 200 mm Breite, ganz wie die Belastungsrollen nach Fig. 242 tun.

Mitteilungen. Heft 45 bis 47.

Die Fig. 245 und 246 zeigen die unteren Flächen der Balken und von jedem Balken eine Seitenfläche. Sämtliche beobachteten Risse sind auf den Balkenflächen eingetragen. Die unter den einzelnen Belastungen gefundenen

Fig. 246 Seitenflächen der Balken mit Bauart nach Fig. 223.

Rißstrecken sind durch gestrichelte Begrenzungslinien bezeichnet; die zugehörige Belastung ist zwischen diesen Begrenzungslinien angegeben.

Balken Nr. 71.

Die ersten Risse werden unter P = 13000 kg bemerkt (kurze Kantenrisse, vergl. Fig. 245). Mit fortschreitender Belastung verlängern und vermehren sich die Risse. Dabei wird die Beobachtung gemacht, daß die Risse in der Nähe der Eisen, d. i. unten und an den Kanten, schwerer sichtbar sind als an den Seitenflächen oberhalb der Einlagen. Ferner ist die Zahl der Risse an der Unterfläche und an den Kanten eine größere als diejenige der Risse, welche an den Seitenflächen weit hinaufreichen. Die Mehrzahl der zuletzt genannten Risse hat sich unter $P = 16\,000$ kg seitlich bedeutend verlängert und sind dabei gut sichtbar geworden.

Unter P = 22000 kg werden an beiden Balkenenden unter den Eiseneinlagen Längsrisse entdeckt. Mit steigender Belastung verlängerten sich diese Längsrisse, hinsichtlich deren Entstehung Folgendes bemerkt sei. Mit dem fortschreitenden Wachsen der Risse, welche gegen die Belastungsrollen hin verlaufen, ist eine Drehung und Verschiebung der äußeren Balkenteile verbunden. Dadurch wird ein Pressen der Eiseneinlagen gegen den Beton nach unten her- 115 -

Fig. 247. Balken Nr. 71 (Bauart nach Fig. 223). Verlängerungen auf der unteren Balkenfläche.

Fig. 248. Balken Nr. 71 (Bauart nach Fig. 223). Zusammendrückungen auf der oberen Balkenfläche.

8*

vorgerufen, welches die dünne Betonschicht schließlich aufsprengt (vergl. Heft 39, Seite 15).

Das erste Gleiten wird unter $P = 22\,000$ kg festgestellt, und zwar

Fig. 250. Gesamte Durchbiegungen des Balkens Nr. 71 (Bauart nach Fig. 223).

Fig. 251. Lage der Nullinie mit steigender Belastung für Balken Nr. 71 (Bauart nach Fig. 223).

116 -

Eine Gleitbewegung an den Balkenenden hat demnach nur bei x_2 (mittlerer Stab) stattgefunden.

Die Belastung wird auf $P = 24\,000$ kg gesteigert. Nachdem diese Last rund 5 Minuten gewirkt hat, bricht der Körper plötzlich auf der rechten Seite d. i. die Seite der y, ohne daß vorher Gleiten der Eisen an diesem Balkenende bemerkt wird. Der Bruchriß verläuft vom rechten Widerlager in der Richtung gegen die Belastungsrolle, vergl. Fig. 246.

In Fig. 247 bis 250 sind die Ergebnisse der Dehnungsmessungen und die ermittelten Durchbiegungen zeichnerisch dargestellt. Die Gestalt der Linienzüge in Fig. 247 bis 249 entspricht vollständig den früheren Darlegungen (Heft 39, Seite 21).

Die Dehnung des Betons bei Beobachtung der ersten Wasserfleckes belief sich auf 0,09 mm für 1 m Länge, diejenige unmittelbar vor Beobachtung der ersten Risse beträgt

2,84 $\frac{1}{200}$ cm auf die Länge l = 60,5 cm,

oder umgerechnet

0,235 mm auf 1 m Länge.

Die Lage der Nullinie mit steigender Belastung ist in Fig. 251 dargestellt. Ueber die Voraussetzungen, welche dabei gemacht sind, vergl. Fig. 41 und 42 (Heft 39, Seite 26 und 29).

Werden die Untersuchungsergebnisse in Vergleich gestellt mit den amtlichen »Bestimmungen für die Ausführung von Konstruktionen aus Eisenbeton bei Hochbauten«¹), so ergibt sich Folgendes.

Die Bestimmungen enthalten unter Bezugnahme auf Fig. 252 und im Anschluß an das S. 17 bis 19 in Heft 39 für rechteckige Balken Gesagte das Folgende:

Fig. 252. (Nach den amtlichen Bestimmungen).

Bei \mathbf{T} -förmigen Querschnitten, sogenannten Plattenbalken, unterscheidet sich die Berechnung nicht von derjenigen für Balken mit rechteckigem Querschnitt, wenn die Nullinie in die Platte selbst oder in die Unterkante der Platte fällt.

Geht die Nullinie durch den Steg, so können die geringen im Steg auftretenden Druckspannungen vernachlässigt werden.

Dann ist

¹) Erlaß des kgl. preußischen Ministers der öffentlichen Arbeiten vom 16. April 1904 und 24. Mai 1907.

$$\sigma_e = n \frac{h-a-x}{x} \sigma_o \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (7),$$

oder nach Einsetzen der Werte von σ_u und σ_e aus den Gleichungen (6) und (7) in Gleichung (8):

Da der Abstand des Schwerpunktes des Drucktrapezes von der Oberkante

$$x-y=rac{h_1}{3}rac{\sigma_o+2}{\sigma_o+\sigma_u}$$

ist, so wird nach Einsetzen des Wertes σ_u in Gl. 6

$$y = x - \frac{h_1}{2} + \frac{h_1^2}{6(2x - h_1)} = \frac{2}{3} \left(x + \frac{(x - h_1)^2}{2x - h_1} \right) \quad . \quad . \quad . \quad (10),$$

$$\sigma_e = \frac{x}{f_e(\hbar - a - x + y)} \quad \dots \quad \dots \quad \dots \quad \dots \quad (11),$$

$$\sigma_o = \frac{x}{n(h-a-a)} \sigma_e \quad . \quad . \quad . \quad . \quad . \quad . \quad (12).$$

Wird die Querkraft am Auflager mit V bezeichnet, so ist die Schubspannung des Betons in den äußeren Balkenteilen, Fig. 223,

während die auf Gleiten der Eisen hinwirkende Spannung für die Flächeneinheit der Eisenoberfläche, d. h. die Gleitspannung an der Eiseneinlage, beträgt

$$\tau_1 = \frac{b_1 \tau_0}{\pi \, d} = \frac{V}{(h - a - x + y) \, \pi \, d} \quad . \quad . \quad . \quad . \quad (14),$$

worin πd den in die Rechnung einzuführenden Stabumfang bedeutet (hierzu vergl. Seite 119).

Derselbe Wert von τ_1 ergibt sich auch unmittelbar aus der Anschauung durch die Gleichung

l ist dabei die in Betracht kommende einbetonierte Länge der Einlage (vom Widerlager bis Belastungsrolle).

Behufs Anwendung dieser Gleichungen auf den Balken Nr. 71 sind zunächst folgende Zahlen zu ermitteln.

Der Abstand der Oberfläche der Eiseneinlagen von der unteren Balkenfläche wurde im mittleren Balkenteil, an der Stelle eines ersten Risses, ermittelt zu

e = (1, 4 + 1, 6 + 1, 5) : 3 = 1,5 cm

(vergl. Zusammenstellung 41 Spalte 46).

Die Durchmesser der Eisen betragen (Spalten 10 bis 12 der Zusammenstellung 41)

Damit wird der Schwerpunktabstand des Querschnitts der Eiseneinlagen von der Balkenunterfläche

$$a = \frac{\left(1, 4 + \frac{2,50}{2}\right) \cdot 2,50^2 + \left(1, 6 + \frac{3,18}{2}\right) \cdot 3,18^2 + \left(1, 5 + \frac{2,50}{2}\right) \cdot 2,50^2}{2,5^2 + 3,18^2 + 2,5^2} = 2,87 = \infty 2,9 \text{ cm}.$$

119

Die übrigen zur Berechnung notwendigen Zahlen können ohne weiteres der Zusammenstellung 41 entnommen werden.

Hiernach ergibt sich für den Balken Nr. 71, ohne Rücksicht auf den Einfluß der Eigengewichte, für die Höchstbelastung $P_{\max} = 24\,000$ kg, unter Zugrundelegung des in den amtlichen Bestimmungen gewählten Wertes n = 15:

Der Abstand der Nullinie von der Balkenoberfläche

$$\boldsymbol{x} = \frac{\frac{45, 1.10, 5^2}{2} + 15.17, 76}{45, 1.10, 5 + 15.17, 76} = 20, 7 \text{ cm},$$

der Abstand der Nullinie vom Schwerpunkt des Drucktrapezes

$$y = 20,7 - \frac{10,5}{2} + \frac{10,5^2}{6(2.20,7 - 10,5)} = 16,0$$
 cm,

und hiermit die Spannung des Eisens

$$\sigma_e = \frac{100 \cdot \frac{24\,000}{2}}{17,76\,(51,1-2,9-20,7+16,0)} = 1553 \text{ kg/qcm},$$

die Druckspannung des Betons an der oberen Balkenfläche

$$\sigma_o = \frac{20,7}{15\ (51,1-2,9-20,7)} \cdot 1553 = 77,9 \text{ kg/qcm},$$

die Druckspannung des Betons an der unteren Fläche der Platte

$$\sigma_u = \frac{20,7-10,5}{20,7} \cdot 77,9 = 38,4 \text{ kg/qcm},$$

die Schubspannung des Betons

$$\tau_0 = \frac{\frac{24\,000}{2}}{20,1\,(51,1-2,9-20,7\,+\,16,0)} = 13,7 \text{ kg/qcm}.$$

Die Gleitspannung ist für den mittleren, stärksten Stab am größten, wenn vorausgesetzt wird, daß die drei Einlagen derselben Zugspannung unterworfen sind. Die Berechnung kann auf folgende Weise geschehen.

Die Zugkraft Z der drei Stäbe ist nach Gl. 11

$$Z = \frac{M}{h - a - x + y} = \frac{100 \cdot \frac{24\,000}{2}}{51, 1 - 2, 9 - 20, 7 + 16, 0} = 27\,586 \text{ kg}.$$

Davon entfallen auf das mittlere Eisen

$$27586 \cdot \frac{3,18^2}{(3,18^2 + 2.2,50^2)} = 12333$$
 kg.

Der Rest wirkt in den beiden seitlichen Einlagen

$$27586 - 12333 = 15253$$
 kg.

Diese Zugkräfte rufen an der Oberfläche ihrer Einlagen Gleitspannungen hervor; damit ergibt sich, wenn als einbetonierte Länge des Stabes 100 cm (Widerlager bis Belastungsrolle) eingeführt wird, a) für den mittleren Stab

 $\tau_1 = \frac{12\,333}{3,18\,\pi.100} = 12,3$ kg/qcm,

b) an den beiden seitlichen Einlagen

 $\tau_1 = \frac{15\,253}{2.2,50\,\pi.100} = 9,7$ kg/qcm.

Hiernach ist τ_1 erheblich größer am mittleren Stab als an den beiden anderen, aber schwächeren Einlagen (vergl. Fußbemerkung unter XXX). Dabei ist vorausgesetzt, wie schon oben angegeben, daß in allen drei Eisen die gleiche Zugspannung herrscht.

An der Uebertragung der Zugkraft ist in Wirklichkeit nicht die Länge von 100 cm (wie dies oben benutzt worden ist), sondern 102 cm beteiligt. Mit diesem Wert wird τ_1 am mittleren Stab

$$\tau_1 = \frac{100}{102} \cdot 12, 3 = 12, 1 \text{ kg/qcm}.$$

Werden die Eigengewichte des Balkens berücksichtigt, so vermehren sich die oben berechneten Werte der Spannungen; die Zunahme beträgt

 $\begin{array}{l} \sigma_o = 2, {\rm s} \ {\rm kg/qem}, \\ \sigma_u = 1, {\rm s} & , \\ \sigma_e = 45 & {\rm s} & , \\ \tau_0 = 0, {\rm s} & {\rm s} & , \\ \tau_1 = 0, {\rm s} & {\rm s} & . \end{array}$

Da diese Spannungen von geringer Größe sind, so können sie für die Mehrzahl der Fälle als weit zurücktretend angesehen werden¹).

Balken Nr. 72 und 87.

Der Verlauf des Bruches ist für diese Balken etwas verschieden von dem des Balkens Nr. 71 und sei deshalb für Balken Nr. 87 eingehender geschildert.

Der äußerste Riß links in Fig. 246 wird unter P = 18000 kg entdeckt und hat bereits eine bedeutende Länge.

Unter $P = 20\,000$ kg verlängert sich dieser Riß bis zur Platte. Auf der unteren Balkenfläche kommen (links und rechts) kurze Längsrisse zum Vorschein. Gleiten der Einlagen an den Balkenenden ist noch nicht eingetreten.

Unter P = 21000 kg wachsen die Längsrisse auf der unteren Balkenfläche (links), ein neuer Längsriß (links) kommt zum Vorschein. An der Seitenfläche verläuft der spätere Bruchriß eine kleine Strecke in der Ecke von Platte und Steg.

Unter $P = 22\,000$ kg wird eine kurze Verlängerung des genannten Risses in der Ecke von Platte und Steg und eines Längsrisses auf der unteren Balkenfläche (links) bemerkt. Ein neuer Längsriß zeigt sich rechts unter der mittleren Einlage.

Unter $P = 23\,000$ kg verlängern sich alle bisher genannten Risse, mit Ausnahme des unter $P = 22\,000$ kg entstandenen Längsrisses (rechts). Der Bruchriß wandert an der unteren Fläche der Platte entlang.

Gleichzeitig wird das erste Gleiten der Einlagen festgestellt, und zwar

bei x_1	x_2	x_3	y_1	y_2	y_3
nach 6 Minuten 0,010	0,025	0	0	0,015	0 mm
» 12" » 0,010	0,025	0	0	0,015	0 »

Wie ersichtlich erfolgt das Gleiten ungleich (vergl. unter XV, Seite 13).

120 -

¹) In den Zusammenstellungen gelten die angegebenen berechneten Spannungen ohne Rücksicht auf das Eigengewicht (vergl. hierüber auch Heft 39, S. 11 und S. 20).

Unter $P = 24\,000$ kg gleiten die Eisen weiter. Die Messung ergibt

		be	i x_1	\mathcal{X}_2	x_3	<i>!</i> /1	y_2	y_3
nach	ı '6	Minuten	0,020	0,065	0	0,015	0,050	0,005 mm,
>>	12	>>	0,030	0,090	0,010	. 0,015	0,065	0,005 »,
>>	18	>>	0,035	0,125	0,010	0,015	0,080	0,005 » .

Nach 21 Minuten erfolgt der plötzliche Bruch des Balkens auf der linken Seite, d. i. die Seite der *x*. Der Beton wird in den Querschnitten *a a*, Fig. 253,

abgesprengt. Die Ursache dieser Art der Sprengung ist die bereits beim Balken Nr. 71 besprochene Drehung des äußeren Balkenteils (vergl. oben bei Balken Nr. 71 S. 114).

Den Bruchquerschnitt zeigt Fig. 254. Beachtenswert ist die Gestalt der Bruchfläche im oberen Teil des Querschnitts.

Fig. 254. Balken Nr. 87 (Bauart nach Fig. 223).

Unter Bezugnahme auf die Zusammenstellung 48 sei hier für die drei Balken Nr. 71, 72 und 87 noch Folgendes hervorgehoben.

Die Gleitspannung am mittleren Stab beträgt beim Eintritt des ersten Gleitens

$$\tau_1 = (11, 3 + 10, 4 + 11, 7): 3 = 11, 1 \text{ kg/qcm};$$

unter der Höchstlast

 $\tau_1 = (12, 3 + 10, 9 + 12, 2): 3 = 11,8 \text{ kg/qcm};$

ferner

 $\tau_0 = (13, 7 + 12, 2 + 13, 5)$: 3 = 13, 1 kg/qcm.

Durch das Entstehen von Längsrissen wird der Gleitwiderstand mehr oder minder stark herabgesetzt werden. Nach Eintritt des oben besprochenen Drehens des Balkenendes (vergl. Fig. 246, Balken 87 links) und des Absprengens des Betons hat der Gleitwiderstand aufgehört.

XLV) 3 Balken mit Bauart nach Fig. 224: Nr. 74, 75 und 88.

Die Eiseneinlagen sind drei gerade Rundeisen. In den äußeren Balkenteilen sind außerdem noch je 12 Bügel aus 7 mm Rundeisen (nach Fig. 230) einbetoniert worden.

Fig. 255. Untere Flächen der Balken mit Bauart nach Fig. 224.

Fig. 256. Seitenflächen der Balken mit Bauart nach Fig. 224,

Die Ergebnisse der Untersuchung enthalten die Zusammenstellungen 42 und 48. Wie hieraus ersichtlich, gleiten die Eisen ungleich, der mittlere Stab weist in der Regel die größte Gleitbewegung auf (vergl. unter XV und XLIV).

Die Fig. 255 und 256 zeigen die unteren Flächen und je eine Seitenfläche der Balken. Die ersten Risse und alle Risse in den äußern Balkenteilen entstanden an Stellen, bei welchen Bügel einbetoniert sind (vergl. unter XXV). Die Stärke der Betonschicht zwischen Bügel und Balkenaußenfläche beträgt rund 13 mm. In Fig. 256 sind die Bügel durch senkrechte Striche auf der Seitenfläche des Balkens Nr. 75 angedeutet.

Ueber den Vergleich der Ergebnisse mit denen der Balken nach Fig. 223 vergl. unter XLVI.

XLVI) 3 Balken mit Bauart nach Fig. 225: Nr. 76, 77 und 89. Vergleich der Ergebnisse mit denen der Balken nach Fig. 223 und 224.

Die Eiseneinlagen sind drei gerade Rundeisen. In den äußeren Balkenteilen befinden sich außerdem noch je 24 Bügel aus Flacheisen (2,7 mm stark, 30,2 mm breit, vergl. Fig. 231 und 232).

Fig. 257. Untere Flächen der Balken mit Bauart nach Fig 225

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 43 und 48 niedergelegt. Wie hieraus ersichtlich (Spalten 18 bis 23 der Zusammenstellung 43) gleiten die Eisen ungleich, der mittlere Stab weist in den meisten Fällen die größte Gleitbewegung auf (vergl. unter λV , XLIV, XLV).

In den Fig. 257 und 258 sind die unteren Flächen und von jedem Balken eine Seitenfläche abgebildet. Die ersten Risse und alle Risse in den äußeren Balkenteilen entstanden an Stellen, bei welchen Bügel einbetoniert sind, ganz wie bei den Balken nach Fig. 73 (unter XXV) und Fig. 224 (unter XLV). Der Abstand der Bügeloberfläche von der Außenfläche des Balkens beträgt unten rund 14 mm und seitlich rund 17 mm. Die Lage der Bügel ist auf der Seitenfläche des Balkens Nr. 77 in Fig. 258 durch senkrechte Striche angedeutet.

Fig. 258. Seitenflächen der Balken mit Bauart nach 225.

Fig. 259. Balken Nr. 76 (Bauart nach Fig. 225). Verlängerungen auf der unteren Balkenfläche.

- 124 -

Fig. 260. Balken Nr. 76 (Bauart nach Fig. 225). Zusammendrückungen auf der oberen Balkenfläche.

Fig. 261. Balken Nr. 76 (Bauart nach Fig. 225). Durchbiegungen in der Mitte der Balkenlänge.

125

Unter den Höchstbelastungen entstanden an je einem Balkenende aller drei Balken schiefe Risse, welche sich bei gleichzeitigem raschem Gleiten der Eisen verlängerten und verbreiterten, in Fig. 258 bei Balken Nr. 76 und 77 rechts und bei Balken Nr. 89 links.

Die Schubspannung τ_0 ergibt sich nach Gl. 13, S. 118, unter der Höchstbelastung, ohne Berücksichtigung der Eigengewichte, im Durchschnitt

zu
$$\tau_0 = (21, 6 + 20, 6 + 22, 0)$$
: $3 = 21,4$ kg/qcm.

Die Spannung τ_1 berechnet sich nach Gl. 15, S. 118, für den mittleren Stab zu

$$\tau_1 = (19, 6 + 18, 4 + 19, 8): 3 = 19,3$$
 kg/qcm.

In den Fig. 259 bis 261 sind die Ergebnisse der Dehnungsmessungen, sowie die für die Mitte der Balkenlänge ermittelten Durchbiegungen für den Balken Nr. 76 zeichnerisch dargestellt. Die gesamten Durchbiegungen an 7 Punkten der Mittelebene finden sich in Fig. 262. In dieser Figur ist bemerkenswert, wie sich die Linien vom Widerlager durch die Meßpunkte a und b bezw. g und f mit steigender Last einer Geraden nähern.

Fig. 263. Lage der Nullinie mit steigender Belastung für Balken Nr. 76 (Bauart nach Fig. 225).

Die Lage der Nullinie mit steigender Belastung ist in Fig. 263 aufgezeichnet. Der Linienzug zeigt Steigen der Nullinie bis zu P = 22000 kg; unter höherer Belastung bleibt die Nullinie bis zum Bruch auf ungefähr derselben Höhe.

Vergleicht man die Ergebnisse mit denjenigen der Balken nach Fig. 223 und 224, so kann Folgendes hervorgehoben werden.

a) Die ersten Risse wurden entdeckt

bei	den	Balken	nach	Fig.	223	(ohne	e Bügel)	unter	P = 13000 kg,
>>	>>		76		224	(mit	24 Rundeisenbügeln) >>	P = 12667 kg,
_>					225	(>	48 Flacheisenbügeln	l) »	P = 11333 kg.

Bei den Balken mit Bügeln entstanden die ersten Risse an Bügelstellen und auf Grund der soeben genannten Zahlen, unter sonst gleichen Verhältnissen, früher als bei Balken ohne Bügel.

126 -

b) Die ersten Längsrisse auf der unteren Balkenfläche kamen zum Vorschein bei den Balken nach

Tig.	223	(ohne Bügel)	unter	durchschnittlich	P = 20667 kg,
20	224	(mit 24 Rundeisenbügeln)	22	>>	P = 24000 kg,
	225	(mit 48 Flacheisenbügeln)			P = 30000 kg.

Die Flacheisenbügel in Fig. 225 haben demnach die Entstehung von Längsrissen am wirkungsvollsten verzögert. Sie umfassen jede Einlage getrennt und bringen insbesondere auch den mittleren Stab auf dem kürzesten Weg in Verbindung mit dem Druckgurt des Balkens.

c) Das erste Gleiten der Einlagen wurde gemessen bei den Balken nach

ig.	223	(ohne Bügel)	unter	durchschnittlich	P = 21667 kg,
*	224	(mit 24 Rundeisenbügeln)	70	35	P = 25000 kg,
	225	(mit 48 Flacheisenbügeln)	>>>	22	P = 28667 kg.

Das Eintreten des Gleitens ist beim Vorhandensein von Bügeln später eingetreten als beim Nichtvorhandensein solcher und dabei durch die Flacheisenbügel in Fig. 225 am meisten hinausgeschoben worden.

d) Die Höchstbelastung beträgt

F

bei	den	Balken	nach	Fig.	223	(ohne Bügel)	im	Durchschnitt	23000 kg,
>>	10		20	>>	224	(mit 24 Rundeisenbüg	eln)	»	30467 kg,
35	35	39	30	*	225	(mit 48 Flacheisenbüg	eln)	»	37667 kg.

Hieraus folgt, daß die Höchstbelastung durch die Bügel wesentlich gesteigert worden ist.

Die Zunahme der Höchstbelastungen gegenüber den Balken ohne Bügel (Fig. 223) beträgt

> bei den Balken nach Fig. 224 7467 kg, » » » » » 225 14667 kg.

Das Gewicht der einbetonierten Bügel ist

für die Balken nach Fig. 224 im Durchschnitt 8,3 kg (24 Rundeisenbügel), 225 »

29,4 kg (48 Flacheisenbügel). 55

Wird die Zunahme der Widerstandsfähigkeit der Balken mit Bügeln gegenüber denen ohne Bügel umgerechnet auf 1 kg Bügel, so findet sich

> $\frac{7467}{2} = 900$ kg, für die Balken nach Fig. 224 8,3 $\frac{14667}{29,4} = 499 \text{ kg}$ 10 10 10 10 » 225

Zunahme für 1 kg Eisen in den Bügeln-

XLVII) 3 Balken mit Bauart nach Fig. 226: Nr. 79, 80 und 81. Vergleich der Ergebnisse mit denjenigen der Balken nach Fig. 223.

Die Balken besitzen 5 Eiseneinlagen: einen geraden Stab von 32 mm Durchmesser in der Mitte, seitlich je zwei aufgebogene Eisen von 18 mm Durchmesser, eines nach Fig. 233, das andere nach Fig. 234.

Die Ergebnisse der Untersuchung sind in den Zusammenstellungen 44 und 48 niedergelegt.

Die Fig. 264 und 265 zeigen die unteren Flächen und je eine Seitenfläche der Balken.

127 -

Fig. 264. Untere Flächen der Balken mit Bauart nach Fig. 226.

Fig. 265. Seitenflächen der Balken mit Bauart nach Fig. 226.

Das erste Gleiten der mittleren, geraden, Einlage wurde unter

 $P = (26\ 000 + 24\ 000 + 24\ 000) : 3 = 24\ 667\ \text{kg}$

beobachtet. Berechnet man für diese Belastungen nach Gl. 15 (Seite 118) die Gleitspannung am mittleren Stab unter der Voraussetzung, daß sämtliche Eisen an der Uebertragung derart beteiligt sind, daß in ihnen die gleiche Zugspannung eintritt (vergl. unter XLIV), so ergibt sich

 $\tau_1 = (12.8 + 11.8 + 11.9): 3 = 12.2 \text{ kg/qcm}^{-1}$.

Mit Steigerung der Belastung gleitet die mittlere Einlage mehr und mehr, so daß angenommen werden kann, daß dieser Stab schließlich an der Kraftübertragung in den äußeren Balkenteilen nicht mehr beteiligt ist, die Last wird dort von den aufgebogenen Eisen mit ihren Haken getragen.

Die unter den einzelnen Belastungen erreichten Gleitbewegungen des mittleren Stabes sind in Fig. 266 zeichnerisch dargestellt.

Unter den Höchstbelastungen von $P = 34\,000$, $33\,000$ und $33\,000$ kg, im Durchschnitt $P = 33\,333$ kg, verbreitert sich in der Nähe der Belastungsrollen bei allen drei Balken je ein Riß ganz bedeutend; gleichzeitig wird an dem Balkenende, bei welchem dieser Riß sich erweitert, eine rasche Zunahme der Gleitbewegung des mittleren Eisens festgestellt. Nach dem Versuch zeigten die aufgebogenen Eisen an dem breiten Riß losen Zunder, ihre Spannung hat demnach die Streckgrenze überschritten.

Werden die Ergebnisse mit denjenigen der Balken nach Fig. 223 in Vergleich gestellt, so ist Folgendes zu bemerken.

Das Gewicht der Eiseneinlagen beträgt

bei den Balken nach Fig. 223 (3 gerade Eisen, Eisenquerschnitt zusammen 17,79 qcm) im Durchschnitt 43,7 kg,

Mitteilungen. Heft 45 bis 47.

¹) Die vollständige Ueberwindung des Gleitwiderstands wird erst unter etwas höherer Belastung eintreten, vergl. die Werte in Spalte 21 und 22 der Zusammenstellung 44 mit den Werten in Spalte 14 und 15 der Zusammenstellung 4.

bei den Balken nach Fig. 226 (5 Eisen, dabei 4 aufgebogene, Eisenquerschnitt zusammen 18,64 qcm) im Durchschnitt 49,1 kg.

Die Balken nach Fig. 226 enthalten somit 49,1-43,7 = 5,4 kg mehr Eisen als die Balken nach Fig. 223.

Die Höchstbelastung beträgt

bei den Balken nach Fig. 223 (gerade Eisen) im Durchschnitt . . 23000 kg, » » » » 226 (aufgebogene Eisen) im Durchschnitt 33333 kg.

Die Höchstbelastung ist somit durch die Anordnung der aufgebogenen Eisen bedeutend gesteigert worden. Der Unterschied beträgt $33\,333-23\,000 = 10\,333$ kg.

Wird dieses Mehr bezogen auf das Mehrgewicht der Eiseneinlagen, so ergibt sich

$$\frac{10333}{5,4} = 1914 \text{ kg}$$

Zunahme der Höchstbelastung durch 1 kg Eisen.

IIL) 3 Balken mit Bauart nach Fig. 227: Nr. 82, 83 und 84. Vergleich der Ergebnisse mit denjenigen der Balken nach Fig. 226.

Die Balken besitzen 5 Eiseneinlagen von derselben Anordnung wie bei den Balken nach Fig. 226. In den äußeren Balkenteilen sind ferner je 12 Bügel aus 7 mm Rundeisen einbetoniert worden, von derselben Form wie bei den Balken nach Fig. 224.

Die Zusammenstellungen 45 und 48 enthalten die Ergebnisse der Prüfung.

Die Fig. 267 und 268 zeigen die unteren Flächen und je eine Seitenfläche der Balken.

Das erste Gleiten der mittleren geraden Einlage wurde bei allen drei Balken unter $P = 30\,000$ kg festgestellt (Spalte 21 und 22 der Zusammenstellung 45); die Gleitspannung am mittleren Stab beträgt unter der Voraussetzung, daß sämtliche Eisen an der Uebertragung derart beteiligt sind, daß in ihnen die gleiche Zugspannung eintritt, unter $P = 30\,000$ kg

 $\tau_1 = (15, 3 + 15, 4 + 14, 9): 3 = 15,2 \text{ kg/qcm}.$

Mit steigender Belastung gleitet die mittlere Einlage mehr und mehr und übergibt ihren Anteil an der Kraftübertragung allmählich den vier aufgebogenen Eisen. Unter der Höchstlast (im Durchschnitt $P_{\text{max}} = 41\,000$ kg) erweitert sich, in der Nähe der Belastungsrolle, ein Riß ganz bedeutend, gleichzeitig wird der Beton über diesen Rissen zerstört. Die aufgebogenen Eisen tragen losen Zunder, woraus folgt, daß diese Eisen die Streckgrenze überschritten haben.

Der Vergleich mit den Ergebnissen der Balken nach Fig. 226 liefert Folgendes:

a) Die ersten Risse wurden entdeckt

bei den Balken nach Fig. 226 (ohne Bügel) unter $P = 13\,000$ kg, * * * * * * 227 (mit 24 Rundeisenbügeln) * $P = 11\,667$ * .

Bei den Balken mit Bügeln entstanden die ersten Risse an Stellen, bei welchen Bügel einbetoniert sind, Fig. 268; sie wurden ferner, wie aus obigen Zahlen hervorgeht, bei den Balken mit Bügeln früher beobachtet als bei den Balken ohne solche.

Fig. 267. Untere Flächen der Balken mit Bauart nach Fig. 227.

Fig. 268. Seitenflächen der Balken mit Bauart nach Fig. 227.

9*

b) Die ersten Längsrisse kamen zum Vorschein

bei den Balken nach Fig. 226 (ohne Bügel).... unter P = 24000 kg, » » » » » 227 (mit 24 Rundeisenbügeln) » P = 27000 s. Durch die Bügel wurde somit die Entstehung von Längsrissen verzögert.

c) Das erste Gleiten wurde bemerkt

bei den Balken nach Fig. 226 (ohne Bügel) unter P = 24667 kg, » » » » » 227 (mit 24 Rundeisenbügeln) » P = 30000 ».

Das Gleiten ist beim Vorhandensein von Bügeln später eingetreten als beim Nichtvorhandensein solcher.

Die Gleitspannung am mittlern Stab beträgt unter der Voraussetzung, daß sämtliche Eisen an der Uebertragung derart beteiligt sind, daß in ihnen die gleiche Zugspannung herrscht, unter den Belastungen, bei welchen das erste Gleiten gemessen wurde (vergl. Zusammenstellung 45 Spalte 21 und 22)

für die Balken nach 226 (ohne Bügel) $\tau_1 = 12,2$ kg/qcm,

», » 227 (mit 24 Rundeisenbügeln) $\tau_1 = 15,2$

d) Die Höchstbelastung beträgt

bei den Balken nach Fig. 226 (ohne Bügel) $P_{\text{max}} = 33333$ kg,

» » » » » 227 (mit 24 Rundeisenbügeln) $P_{\text{max}} = 41000$ ».

Durch die Bügel ist die Höchstbelastung um 41000-33333 = 7667 kg gesteigert worden.

Das Mehrgewicht an Eisen (Bügel) beträgt bei den Balken nach Fig. 227 56,9-49,1 = 7,8 kg (Spalte 27 der Zusammenstellung 48). Durch 1 kg Eisen (in den Bügeln) ist somit die Höchstlast um $\frac{7667}{7,8} = 983$ kg gesteigert worden.

Bei den Balken nach Fig. 224 wurde eine Erhöhung von 900 kg durch 1 kg Eisen in den Bügeln von derselben Stärke und Form erreicht (vergl. S. 127). Es geht daraus hervor, daß sich die Wirkung der Bügel bei den Balken mit aufgebogenen Eisen (Fig. 227) in gleicher Größe gezeigt hat wie bei den Balken mit geraden Einlagen (Fig. 224).

IL) 3 Balken mit Bauart nach Fig. 228: Nr. 85, 86 und 90. Vergleich mit den Ergebnissen der Balken nach Fig. 227.

Die Anordnung der Eiseneinlagen ist dieselbe wie bei den Balken nach Fig. 227, mit dem Unterschied, daß die mittlere Einlage mit Haken versehen ist. Die Zusammenstellungen 46 und 48 enthalten die Ergebnisse der Unter-

suchung. Die Fig. 269 und 270 zeigen die unteren Flächen und je eine Seitenfläche

der Balken. Die Stirnflächen sind in Fig. 271 und 272 abgebildet.

Das erste Gleiten der mittleren Einlage wurde bei den Balken Nr. 86 und 90 unter $P = 33\,000$ kg gemessen. Die Gleitspannung τ_1 am mittleren Stab unter derselben Voraussetzung, wie unter XLVII und IIL angegeben worden ist, beträgt bei $P = 33\,000$ kg, ohne Berücksichtigung des Eigengewichts

$$\pi_1 = (16, 7 + 16, 4) : 2 = 16,5 \text{ kg/qcm}.$$

Bei Steigerung der Last gleitet das mittlere Eisen allmählich weiter, jedoch um viel geringere Wege, als dies z. B. bei den Balken nach Fig. 226 und 227

132

(ohne Haken) der Fall war. Der Vergleich der Fig. 266 und 273 gibt hierüber Aufschluß und weist auch darauf hin, daß der Stab mit Haken, Fig. 273, nach dem Eintritt des Gleitens in höherem Maße zur Kraftübertragung herangezogen wird als der gerade Stab, Fig. 266.

Fig. 269. Untere Flächen der Balken mit Bauart nach Fig. 228.

Fig. 270. Seitenflächen der Balken mit Bauart nach Fig. 228.

Nach Ausweis der Zusammenstellung 46 war die Höchstbelastung erreicht, nachdem die Eiseneinlagen die Streckgrenze überschritten hatten. Mit dem Strecken der Eisen öffneten sich mehrere Risse bedeutend, und hierauf erfolgte über diesen Rissen die Zerstörung des Betons im gedrückten Teile des Balkens, wie aus Fig. 270 ersichtlich ist.

Die durchschnittliche nach Gl. 11, Seite 118, berechnete Spannung des Eisens unter der Höchstbelastung beträgt

$\sigma_e = 2958 \text{ kg/qcm}.$

Zugversuche mit Rundstäben, welche vor dem Einbetonieren von den Eiseneinlagen abgetrennt worden waren, ergaben

Fig. 271 und 272. Stirnflächen der Balken mit Bauart nach Fig. 228.

30000 Achse der Aenderungen von x und y

(0,265)

0,195

j.0,030 der 12

> der 10,115 ungen"

Aender

der chse (0,360) mm

Fig. 273. Balken Nr. 86 (Bauart nach Fig. 228). Aenderungen der Strecken x und y mit steigender Belastung (Gleiten der mittleren Einlage).

		b	ei 32 mm	bei 18 mm Rundeisen	
bere Streckgrenze			2396	2972 kg/qcm,	
intere »			2369	2926 »,	
Zugfestigkeit	1		3635	4169 ».	

Die nach Gl. 11 berechnete Spannung σ_e ist hiernach größer als die aus dem Zugversuch bestimmte, durchschnittliche, Spannung an der Streckgrenze des verwendeten Eisens; die Rechnung ergibt somit etwas zu hohe Werte.

Die Ergebnisse der Dehnungsmessungen sowie die ermittelten Durchbiegungen sind für den Balken Nr. 86 in den Figuren 274 bis 277 zeichnerisch dargestellt.

Die Lage der Nullinie mit steigender Belastung zeigt die Fig. 278 für denselben Balken. (Ueber die dabei gemachten Voraussetzungen vergl. Fig. 41 und 42.) Das Ueberschreiten der Streckgrenze bei Steigerung der Last von $P = 45\,000$ kg auf $P = 46\,500$ kg findet in der Figur seinen Ausdruck.

Der Vergleich mi $_{t}$ den Ergebnissen der Balken nach Fig. 227 (ohne Haken) ergibt Folgendes.

a) Das erste Gleiten wurde gemessen

bei den Balken nach Fig. 227 (ohne Haken) unter $P = 30\,000$ kg, » » » » » 228 (mit ») » $P = 33\,000$ ».

Das Vorhandensein der Haken hat somit den Beginn des Gleitens etwas hinausgeschoben (vergl. unter XX und XXII).

Fig. 274. Balken Nr. 86 (Bauart nach Fig. 228). Verlängerungen auf der unteren Balkenfläche.

Die Berechnung der Gleitspannung unter diesen Belastungen nach Gl. 15 (un/er XLIV, S. 118) liefert

für die Balken nach Fig. 227 (ohne Haken) $\tau_1 = (15,3+15,4+14,9)$: 3 = 15,2 kg/qcm, » » » » 228 (mit ») $\tau_1 = (16,7+16,4)$: 2 = 16,5 kg/qcm.

Dieser Berechnung liegt die einbetonierte Länge von Belastungsrolle bis Widerlager, d. i. 100 cm zu Grunde. In Wirklichkeit beträgt jedoch diese Länge

in Fig. 227 (ohne Haken) 102 cm,

in Fig. 228 dagegen, wenn die Länge des Hakens, gemäß der Länge seiner Mittellinie bis zur Stirnfläche einbezogen wird, rund 113 cm.

45000 11,33 1 cm auf l=59,9 cm 10,97 42000 8. 7,85 8.52 10.57 39000 8 0,45 6,99 7.44 36000 6,50 P=33000 kg:Gleiten der mittleren Einlage \$0,35 33000 6,15 5,66 30000 5.43 10,23 4.92 27000 0,17 4,75 24000 4,1 4.24 21000 0,12 3,48/ 3,60 18000 10,12 2,98 2.85 16000 10,10 2.43/12.53 14000 0,09 2,06/2,15 12000 10,03 1.73 1,76 P=12000kg: Erste Risse beobachtet 10000 0,01 1,38 1,39 8000 0 1,05 P=8000 kg:Erste Wasserflecke 6000 0.75 4000 0,47 2000 0,23 Achse der Zusammendrückungen 0

45000 6,330 m 42000 10,755 4,62 375 39000 2 10,590 4,760 750 Q 36000 10,480 3,690 1.770 33000 10,405 33000 kg: Gleiten der mittleren Einlage 3,655 P= 30000 00 0.335 2,805 3,740 27000 2,685 2.470 9 24000 \$ 0.235 2.02 12,260 21000 10,190 7,685 1,875 18000 0,750 7,335 1,485 16000 0,725 1,095 1.220 14000 0,085 0,885 10.970 12000 10,055 0,735 P=12000 kg: Erste Risse beobachtet 10000 0,525 0,545 8000 0,005 0,410 Pa 8000 kg: Erste Wasserflecke 6000 0 0,300 0,790 4000 2000 0,095 Achse der Durchbiegungen

Fig. 276. Balken Nr. 86 (Bauart nach Fig. 228). Durchbiegungen in der Mitte der Balkenlänge.

136

Balken nach Fig. 227 (ohne Haken)
$$\tau_1 = \frac{100}{102} \cdot 15, \mathbf{z} = 14,9 \text{ kg/qcm},$$

» » 228 » » $\tau_1 = \frac{100}{113} \cdot 16, 5 = 14, 6$ ».

Hieraus erhellt, daß der Gleitwiderstand, bezogen auf das Quadratzentimeter der einbetonierten Staboberfläche, gegebenenfalls diejenigen des Hakens eingerechnet, beim Vorhandensein von Haken fast dieselbe Größe besitzt, wie 'bei Eisen ohne Haken (vergl. unter XX und XXII).

Fig. 277. Gesamte Durchbiegungen des Balkens Nr. 86 (Bauart nach Fig. 228).

Fig. 278. Lage der Nullinie mit steigender Belastung für Balken Nr. 86 (Bauart nach Fig. 228).

Durch die Anordnung der Haken an der mittleren Einlage ist eine Steigerung der Höchstlast eingetreten bis zur Streckgrenze der Einlagen, Fig. 270, was die höchstmögliche Ausnützung des Eisens in diesem Falle darstellen dürfte.

L) 3 Balken mit Bauart nach Fig. 229: Nr. 70, 73 und 78. Vergleich der Ergebnisse mit denen der Balken nach Fig. 226.

Die Einlagen sind ein gerader Rundstab von 32 mm Dmr. in der Mitte und 4 aufgebogene Einlagen aus 18 mm Rundeisen. Die 4 seitlichen Einlagen sind bedeutend steiler aufgebogen als bei den Balken nach Fig. 226 bis 228.

Die Entfernung der Widerlagsrollen beträgt 2 m.

Die Ergebnisse der Prüfung sind in den Zusammenstellungen 47 und 48 enthalten.

Die Figuren 279 und 280 zeigen die unteren Flächen und je eine Seitenfläche der Balken. Wie ersichtlich, sind bei den Balken Nr. 70 und 78 an den Auflagerstellen senkrechte Risse eingetreten. Bei dem Balken Nr. 73 sind solche Risse nicht beobachtet worden. Hierzu ist Folgendes zu bemerken: Unter XLIII wurde mitgeteilt, daß zwischen den Widerlagsrollen und den unteren Balkenflächen 10 mm starke Flußeisenplatten gelegt wurden, um eine Zerstörung an den Auflagern zu vermeiden. Bei den Balken Nr. 70 und 78 waren derartige Platten nicht verwendet worden. Bei dem Balken Nr. 73 kamen dagegen die genannten Zwischenlagen auf den Widerlagsrollen zur Anwendung und haben, wie schon erwähnt, die Entstehung von Rissen über dem Widerlager hinausgeschoben.

Das erste Gleiten der mittleren geraden Einlage wurde bei durchschnittlich P = 32000 kg gemessen. Die Gleitspannung unter dieser Last, ohne Rücksicht auf die Eigengewichte und unter der Voraussetzung, daß sämtliche Eisen

138

b) Die durchschnittliche Höchstbelastung beträgt

an der Kraftübertragung beteiligt sind, derart, daß in ihnen die gleiche Zugspannung herrscht, beträgt (nach Gl. 15) am mittleren Stab

$$\tau_1 = (15, 2 + 16, 0 + 16, 8): 3 = 16,0 \text{ kg/qcm}.$$

Bei allen drei Balken entstanden schiefe Risse, welche unter annähernd 45° geneigt in der Richtung vom Auflager zur Belastungsrolle verlaufen, Fig. 280, und welche jedoch bei ihrer Entstehung nicht bis zur unteren Balkenfläche reichen. Die Spannung τ_0 (Schubspannung des Betons) beträgt für die Belastungen, bei denen sich die genannten Risse gezeigt haben, nach Gl. 13 (vergl. unter XLIV)

$$\tau_0 = (22, 6 + 24, 0 + 22, 2): 3 = 22,9 \text{ kg/qcm}.$$

Eine vollständige Zerstörung der Versuchskörper war nicht möglich, da die Maschine eine Ueberschreitung der Last von 50 000 kg nicht zuläßt.

Fig. 279. Untere Flächen der Balken mit Bauart nach Fig. 229.

Beim Vergleich der Ergebnisse mit denjenigen der Balken nach Fig. 226 ist Folgendes bemerkenswert.

Das erste Gleiten wurde gemessen

bei den Balken nach Fig. 229 (L = 2160) unter $P = 32\,000$ kg, $\tau_1 = 16,0$ kg/qcm, » » » » 226 (L = 3160) » $P = 24\,667$ » $\tau_1 = 12,2$ ».

Der Gleitwiderstand ist somit kleiner für die Balken nach Fig. 226, wofür die Erklärung darin gefunden werden kann, daß bei den letzteren die Ueberwindung des Gleitwiderstandes eintrat, nachdem sich die in Fig. 265 ersichtlichen schrägen und durch ihre Stärke ausgezeichneten Risse, nach der

139

Belastungsrolle hin laufend, gebildet hatten, Durch diese Risse wird die einbetonierte und für das Herausziehen in Betracht kommende Länge der Einlagen ganz bedeutend vermindert. Die Gleichung, welche zur Berechnung des Gleitwiderstandes benutzt wird, setzt jedoch voraus, daß die einbetonierte Länge vom Widerlager bis zum Querschnitt, in dem die Belastung erfolgt, reicht,

Fig. 280. Seitenflächen der Balken mit Bauart nach Fig. 229. Die Zugspannung des Eisens σ_e beträgt beim Eintritt des ersten Gleitens für die Balken nach Fig. 229 (L = 2160) $\sigma_e = 1004$ kg/qcm, » » » » 226 (L = 3160) $\sigma_e = 1534$ kg/qcm.

Ll) Versuche zur Ermittlung der Druckfestigkeit, sowie der Druckelastizität des Betons. Vergleich mit den Ergebnissen unter XXXVIII.

Für die Druckfestigkeit des Betons, ermittelt an Würfeln von 30 cm Kantenlänge, ergaben sich die in der Zusammenstellung 49 enthaltenen Werte. Sie beträgt im Durchschnitt

247 kg/qcm¹).

Die Herstellung der Würfel erfolgte in gußeisernen Formen und auf möglichst dieselbe Weise wie bei den Balken. Die Druckrichtung ist senkrecht zur Stampfrichtung.

ung	n 5 1. hr	Sec.	Ge-	Ab	messun	gen	Vo-	Raum-	Quer-	Bruchbe	lastung
Bezeichnu	Prüfungs- tag	Alter	wicht G kg	Seite Seite Höhe a b hcm cm cm		lumen a b h ccm	gewicht 1000 G a b h	schnitt a b gem	beob- achtet kg	auf 1 qem kg	
101	Louis and		1.1.1.1.1.1.1		1 Card	recentif	215/11	1.1.4.10	100 100	and in the	
1	22. 3. 07	224	63,70	30,07	30,27	30,05	27 351	2,33	910,2	253 300	278
2	22. 3. 07	224	63,95	30,07	30,34	30,04	27 405	2,33	912,3	242 100	265
3	22. 3. 07	224	63.70	30,06	30,28	30,06	27 361	2,33	910,2	240 800	265
4	22. 3. 07	224	63,50	30,07	30,10	30,07	27 216	2,33	905,1	242 100	267
5	22. 3. 07	224	63,85	30,26	30,07	30,07	27 361	2,33	909,9	235 800	259
6	22. 3 07	\$ 224	62.80	30,08	29,79	30,07	26 946	2,33	896,1	228 200	255
7	28. 3. 07	216	63,65	30,43	30,06	30,06	27 496	2,31	914,7	215 700	236
8	28. 3. 07	216	63,20	30,34	30,06	30,05	27 406	2,31	912,0	$203 \ 200$	223
9	28. 3. 07	216	63,30	30,07	30,24	30,06	27 334	2,32	909,3	192 900	212
10	28. 3. 07	216	62,10	30,06	29.81	30,05	26 928	2,31	896,1	189 000	211
Du	rehschnitt	221	-	-	-		-	2,32	-	_	247

Zusammenstellung 49.

Zur Bestimmung der gesamten bleibenden und federnden Zusammendrückungen des Betons wurden Prismen nach Fig. 91 verwendet. Sie sind rund 100 cm hoch und besitzen einen quadratischen Querschnitt von rund 20 cm Seitenlänge.

Ueber die Durchführung solcher Versuche ist unter XXXVIII berichtet worden, und kann auf das dort Gesagte verwiesen werden.

Die Versuchsergebnisse sind in der Zusammenstellung 50 enthalten.

Die Bruchbelastung ergab sich zu

$$(190 + 183 + 176)$$
: 3 = **183** kg/qcm,
d. i. $\frac{183}{247} \cdot 100 =$ rund 74 vH.

der Würfelfestigkeit (vergl. hierzu unter XXXVIII).

Die Zahl *n*, d. i. das Verhältnis der Dehnungskoeffizienten der federnden Zusammendrückungen des Betons zu demjenigen des Eisens findet sich z. B. für den Körper Nr. 2 (Zusammenstellung 50), wenn für Flußeisen $\alpha = \frac{1}{2100000}$ angenommen wird,

beim Spannungsunterschied 0,2 bis 6,1 kg/qcm zu n = 7,2,

Ueber Versuche mit Körpern, welche sich von den vorstehenden nur dadurch unterscheiden, daß hier Zement B° , dort Zement A° verwendet wurde (vergl. Anlage 4 und 5), ist unter XXXVIII berichtet worden. Der Vergleich liefert Folgendes.

Der Beton mit Zement » $B^{<}$ hat eine etwas größere Würfelfestigkeit (247 gegen 228 kg/qcm) und eine höhere Druckfestigkeit der Prismen nach Fig. 91 (183 gegen 146 kg/qcm) ergeben als der Beton mit Zement » $A^{<}$. Ferner zeigen die Werte der Spalten 14 der Zusammenstellungen 39 und 50 für Beton mit

 $\frac{1}{6} \cdot 247 = \text{rund } 41 \text{ kg/qcm.}$

¹) Die zulässige Druckspannung bei Biegung nach den amtlichen «Bestimmungen« vom Jahr 1907 beträgt somit im vorliegenden Falle

Zement » B^{α} die kleineren Werte des Dehnungskoeffizienten α , entsprechend der höheren Druckfestigkeit dieses Betons¹).

LII) Versuche zur Ermittlung der Zugelastizität und Zugfestigkeit des Betons. Vergleich des Dehnungskoeffizienten α für Zug und Druck.

Zur Bestimmung der gesamten, bleibenden und federnden Verlängerungen des Betons, sowie zur Ermittlung der Zugfestigkeit, sind 4 Körper nach Fig. 92 hergestellt worden.

Ueber Versuche mit solchen Körpern ist bereits unter XXXIX berichtet, und hat das dort über die Versuchsdurchführung Gesagte auch hier seine Giltigkeit.

Die Ergebnisse sind in Zusammenstellung 51 enthalten. Die geprüften Körper sind in Fig. 281 abgebildet.

Fig 281. Körper nach Fig. 92 zur Ermittlung der Zugelastizität und Zugfestigkeit des Betons (nach dem Bruch).

Ein Vergleich der Zug- und Druckelastizität desselben Betons liefert Folgendes, wenn als Beispiele die Körper Nr. 3 der Zusammenstellung 51 (Zug) und Nr. 2 der Zusammenstellung 50 (Druck) gewählt werden. Der Dehnungskoeffizient α fand sich für Zug (Zusammenstellung 51)

	bei	0,5	bis	2,4	kg/qcm	zu	$\frac{1}{341200}$,
		0,5		6,1	»	50	$\frac{1}{295800}$,
		0,5	»	8,5	11 »	*	$\frac{1}{269400}$;
für Druck (Zusammen	nstel	lung	g 50):			
	bei	0,2	bis	6,1	kg/qem	zu	$\frac{1}{291100}$,
		0,2		12,8	Book and	»	$\frac{1}{291300}$,
	2	0,2	20	18,4	kara »		$\frac{1}{283000}$.

Der Dehnungskoeffizient ändert sich demnach für Zug bedeutend rascher als für Druck, für die Spannung von rund 6 kg/qcm sind beide annähernd gleich groß (vergl. dazu unter XXXIX).

¹) In Uebereinstimmung mit früheren Versuchen (Mitteilungen über die Druckelastizität und Druckfestigkeit von Betonkörpern mit verschiedenem Wasserzusatz, I. Teil, Tafel 1 bis 4).

C) Zusammenfassung der Versuchsergebnisse des ersten und zweiten Teiles.

Das Nachstehende faßt die wesentlichen Ergebnisse zusammen, ohne die Sache damit erschöpfen zu wollen. Es muß vielmehr ausdrücklich vorbehalten bleiben, die Einzelheiten später weiter zu verfolgen¹).

LIII) Einfluß der Anzahl der geraden Eiseneinlagen.

a) Größe des Gleitwiderstandes.

u) Balken mit emer Eiseneinlage (mit Walzhaut).

Es wurde ermittelt

Balken					Alter		τ	1	Je (naci	σ_e (nach G1. 3)		
Fig.	2	(vergl.	unter	VI)	6	Monate	22,0 k	g/qcm	1760 k	g/qcm		
*	3	(_»	*	VII)	6	20	21,1	>>	2348	>>		
*	4	(»	20	VIII)	6	2	19,1	20	1753	*		
3)	5	(»	20	IX)	6	>>	19,8	>>	1239	»		

Durchschnitt 20,5 kg/qcm.

 β) Balken mit **dre**i Eiseneinlagen (mit Walzhaut).

Balken					Alter	$ au_1$	σ_e (nach Gl. 3)
Fig.	66	(vergl.	unter	XV)	7 Monate	16,3 kg/qcm	3243 kg/qcm
*	67	(>>	20	XVI)	6 »	17,2 »	3363 »
*	68	(»	3)	XVII)	3 »	15,6 »	2206 »

Hiernach ist der Gleitwiderstand bei drei Eisen geringer als bei einem Eisen. Wird die letzte Balkengruppe nach Fig. 68, welche nur ein Alter von 3 Monaten besaß, ausgeschieden, so ergibt sich der Unterschied zu $\frac{20,5-16,7}{20,5} \cdot 100 =$ rund 19 vH.

Dieses Weniger erklärt sich ohne weiteres aus der folgenden, unter b) angeführten Feststellung. Auch die höhere Eisenbeanspruchung wird Einfluß genommen haben²) (vergl. auch unter XVIII, Ziffer 2).

¹) Zu möglichst rascher Veröffentlichung der Versuchsergebnisse nötigte der Umstand, daß der deutsche Ausschuß für Eisenbeton mit dem Sitze im Königl. Preußischen Ministerium der öffentlichen Arbeiten in Berlin bei seinem Vorgehen naturgemäß das Bedürfnis hatte, die Ergebnisse der Versuche zu kennen, welche vom Eisenbetonausschuß der Jublläumsstiftung der deutschen Industrie veranlaßt worden waren, um sie bei der Aufstellung seines Arbeitsprogrammes berücksichtigen zu können Jede Verzögerung in der Veröffentlichung mußte somit zu einer Verzögerung in der Aufnahme der in Betracht kommenden Untersuchungen des Deutschen Ausschusses für Eisenbeton führen, was zu vermeiden war. Bei dieser Sachlage war es auch nicht möglich, in dem vorliegenden Bericht, der lediglich über das durch die Versuche Gefundene Auskunft geben soll, in eine Würdigung der vielen Arbeiten einzutreten, die auf dem Gebiete des Eisenbetons erschienen sind.

²) Wenn die Eisenanstrengung, welche sich nach Gl. 3 der amtlichen Bestimmungen (vergl. S. 18, Heft 39) zu 3243 bezw. 3363 kg/qcm berechnet, tatsächlich diese Größe besessen

b) Ungleichmäßigkeit des Gleitens.

Das Gleiten der drei Eisen gegenüber den Stirnflächen des Balkens erfolgt ungleich, wie die Spalten 16 bis 21 der Zusammenstellungen 9, 10 und 11 sowie die Spalten 18 bis 23 der Zusammenstellungen 41, 42 und 43 erkennen lassen (vergl. auch XVIII), und wie sich überdies erwarten läßt.

c) Rißbildung¹).

Für die Größe der Verlängerung des Betons, gemessen unmittelbar vor der Beobachtung des ersten Risses, wurde Folgendes gefunden:

a) Balken mit einer geraden Einlage (Zusammenstellung 8, Heft 39):

Balken	Breite	Einlage	σe kæ/aom	Verlängerung
Fig. 2	300	25	1015	0,132
» 4	150	22	905	0,176

Die Rißbildung tritt somit um so später ein, je schmäler der Balken ist. Je weniger die Entfernung der Kanten der Balkenunterfläche von dem Eisen beträgt, das die Zugspannungen aufnimmt, um so größer wird die Dehnung des Betons gemessen werden können, ehe der erste Riß eintritt (vergl. auch Fig. 30 im Forschungsheft 39). Ausnahmen hiervon sind auf Ungleichmäßigkeiten, wie sie sich bei Beton nicht vermeiden lassen, zurückzuführen.

β) Balken mit drei geraden Eiseneinlagen (Zusammenstellung 12):

Balken		Breite	Einlagen	σ_e	Verlängerung
		mm	mm Dmr.	kg/qcm	in mm auf 1 m
Fig.	68	300	14	1051	0,164
*	67	200	10	1567	0,196
*	66	150	10	1456	0,235

Hiernach zeigen die Balken mit drei Einlagen, sonst gleiche Verhältnisse vorausgesetzt, eine größere Dehnung, ehe Risse beobachtet werden, als die Balken mit nur einer Einlage. Die Erklärung ergibt sich ohne weiteres aus dem unter α) Gesagten (vergl. auch XVIII, Ziffer 3).

Bei Balken mit drei Eiseneinlagen treten mehr und feinere Risse auf als bei Balken mit einer Eiseneinlage (vergl. die Fig. 101 und 102 mit Fig. 52 und 53 in Heft 39).

Die unterstützende Wirkung, welche die Eiseneinlagen, deren Zweck in der Aufnahme der Zugspannungen besteht, auf den Beton ausüben, der infolge der Belastung des Balkens auf der gezogenen Seite sein Gefüge zu lockern bestrebt ist, muß bei besserer Verteilung des Eisenquerschnittes im Beton, d. i. der Fall, wenn an Stelle eines Eisens drei Eisen treten, sich stärker geltend machen.

d) Durchbiegungen²).

Balken mit drei geraden Einlagen ergaben ein wenig geringere Durchbiegungen als solche mit einer Einlage (vergl. Zusammenstellung 57).

hätte, so würde auszusprechen sein, daß die Streckgrenze des Materials nahezu erreicht oder schon überschritten worden ist. In Wirklichkeit liefert jedoch Gl. 3 die Zugspannungen des Eisens zu groß, wie durch die Versuche festgestellt ist (vergl. unter LX).

1) Vergl. auch LVIII.

²) Bei Beurteilung der Durchbiegungen muß im Auge behalten werden, daß sie sich aus zwei Teilen zusammensetzen: der eine Teil rührt von dem biegenden Moment und der andere von der Schubkraft her. (Vergl. z. B. C. Bach, Elastizität und Festigkeit, § 52, 5. Aufl. 1905 S. 462 u. f.)
LIV) Einfluß der Haken an den Enden der geraden Eiseneinlagen.

a) Der Beginn des Gleitens wird durch das Vorhandensein der Haken etwas — jedoch nicht sehr bedeutend — hinausgeschoben, und zwar ungefähr in dem Maße, in welchem die Oberfläche des einbetonierten Stabes durch die Oberfläche des Hakens Vergrößerung erfährt.

Der Gleitwiderstand bei Eisen mit Haken, bezogen auf das Quadratzentimeter der gesamten Oberfläche der Einlage, also die Hakenoberfläche eingerechnet, ist nahezu der gleiche wie bei Eisen ohne Haken (vergl. unter XX, XXII und IL).

b) Nach Ueberwindung des Gleitwiderstandes verhindern jedoch die Haken die völlige Aufhebung der Widerstandsfähigkeit der Balken so lange, bis mit steigender Belastung die Haken sich aufbiegen und zutreffendenfalls den diese Formänderung hindernden Beton absprengen.

In dieser Hinsicht wurde ermittelt:

Balken nach Fig. 69 (1 Einlage bearbeitet, mit Haken, vergl. unter XIX und XX), $P_{\text{max}} = 8900$ kg,

Balken nach Fig. 1 (1 Einlage bearbeitet, ohne Haken, vergl. unter V und XX), $P_{\text{max}} = 5760 \text{ kg},$

mehr:
$$100 \cdot \frac{8900 - 5760}{5760} = 54$$
 vH.

Balken nach Fig. 70 (1 Einlage mit Walzhaut, mit Haken, vergl. unter XXI und XXII) $P_{\text{max}} = 14\,000$ kg,

Balken nach Fig. 2 (1 Einlage mit Walzhaut, ohne Haken, vergl. unter VI und XXII) $P_{\text{max}} = 8813 \text{ kg},$

mehr
$$100 \cdot \frac{14\ 000 - 8813}{8813} = 59 \text{ vH}.$$

Balken nach Fig. 71 (1 Einlage mit Walzhaut, mit Haken, vergl. unter XXIII) $P_{\text{max}} = 8700 \text{ kg},$

Balken nach Fig. 3 (1 Einlage mit Walzhaut, ohne Haken, vergl. unter VII und XXIII) $P_{\text{max}} = 6083$ kg,

mehr
$$100 \cdot \frac{8700 - 6083}{6083} = 43$$
 vH.

Balken nach Fig. 74 (1 Einlage mit Walzhaut, mit Haken, vergl. unter XXVI) $P_{\text{max}} = 11667 \text{ kg},$

Balken nach Fig. 73 (1 Einlage mit Walzhaut, ohne Haken, vergl. unter XXV und XXVI) $P_{\text{max}} = 7750 \text{ kg},$

mehr
$$100 \cdot \frac{11\,667 - 7750}{7750} = 51$$
 vH.

Ueber den Einfluß von Haken in Balken, welche auch aufgebogene Einlagen besitzen, vergl. unter XXXV, Ziffer 2 und unter IL.

c) Durchbiegungen.

Die Haken an den Enden der Einlagen vermindern die Durchbiegungen um einen kleinen Betrag (vergl. Zusammenstellung 57).

LV) Einfluß der Bügel.

a) Rißbildung.

α) Bei Balken mit Bügeln bilden sich die ersten Risse fast immer da, wo Bügel einbetoniert sind; in den äußeren Balkenteilen (d. h. bei Mitteilungen. Heft 45 bis 47.

Fig, 19 innerhalb der Strecken gm und gn), in denen sich die Bügel befinden, entstehen sie überhaupt nur an solchen Stellen; ferner kommen sie bei Balken mit Bügeln unter geringerer Belastung zum Vorschein als bei Balken ohne Bügel (vergl. Fig. 156, 158, 256, 258, 268, 270).

Der Betonquerschnitt erscheint an den Bügelstellen durch die Eisenmasse der Bügel verschwächt, wodurch sich die genannten Beobachtungen ohne weiteres erklären.

Die hierauf bezüglichen Ergebnisse sind unter XXV, XLVI, IIL und LVIII enthalten.

β) Die Entstehung von Längsrissen an der unteren Balkenfläche in den äußeren Balkenteilen wird durch das Einlegen von Bügeln hinausgeschoben. Unter XLVI ist dazu Folgendes enthalten:

Die Längsrisse kamen zum Vorschein

bei	den	Balken	nach	Fig.	223	(ohne Bügel)	unter	P = 20667 kg,
39	>>	7)	»	>>	224	(mit 24 Rundeisenbügeln)	»	P = 24000 ».
*	>>	>>	>>	**	225	(mit 48 Flacheisenbügeln) »	P = 30000 ».

Zu demselben Ergebnis führt der Vergleich der Balken nach Fig. 226 (ohne Bügel) mit denen nach Fig. 227 (mit 24 Rundeisenbügeln), vergl. unter IIL.

b) Gleitwiderstand.

Für die Größe des Gleitwiderstandes wurde ermittelt (vergl. unter XXV):

bei den Balken nach Fig. 4 (ohne Bügel) $\tau_1 = 19,1$ kg/qcm, » » » » » 73 (mit Bügeln) $\tau_1 = 23,3$ ».

Der Gleitwiderstand ist somit beim Vorhandensein von Bügeln um 23,3-19,1 = 4,2 kg/qcm, d. i. 22 vH größer ermittelt worden als beim Nichtvorhandensein solcher.

Das erste Gleiten der Einlagen wurde bemerkt (vergl. unter XLVI)

bei	den	Balken	nach	Fig	. 223	(ohne	Bügel)	unter	P = 21667 kg,
73	»	»	>>	>>	224	(mit 2	4 Rundeisenbügeln)	*	P = 25000 »,
>>	>>	>>	*	20	225	(mit 4	18 Flacheisenbügeln)	>>>	P = 28667 ».

Hiernach ist das erste Gleiten der Eisen beim Vorhandensein von Bügeln später eingetreten als beim Nichtvorhandensein solcher. Dasselbe zeigen die Ergebnisse der Balken nach Fig. 226 (ohne Bügel) und 227 (24 Rundeisenbügel), wie aus IIL hervorgeht.

c) Höchstbelastung.

Es wurde gefunden bei den Balken:

α)	nach	Fig	. 4 (1	-	gerades	Eisen,	ohne	Bügel)							$P_{\rm max}$	=	6300	kg,
	>>	>>	73 (1	L	*	*	mit]	Bügeln)		,					Pmax	=	7750) »;
β)	>>	30	223	(3	3 gerade	e »	ohne	Bügel)							$P_{\rm max}$	=	23000) »,
	>>	>>>	224	(3	3 >>>	>>	mit :	24 Rund	eise	enk	oüg	eln)		P_{\max}	=	30467	»,
	»	>>>	225	(3	} »	*	mit 4	48 Flach	eise	enk	oüg	eln)		P_{\max}	=	37 667	»;
2)	>>	33	226	(1	gerad.,	4 aufg	ebog.	Eisen, o	hne	B	üge	el)			$P_{\rm max}$	=	33333	; »,
	>>	»	227	(1	>>	>>		» m.24	Ru	nd	eise	enb	üg	eln)	Pmax	=	41000) ».

Hieraus ergibt sich, daß unter sonst gleichen Verhältnissen die Höchstlast der Balken mit Bügeln wesentlich größer ist als bei den Balken ohne Bügel. Die Zunahme der Höchstlast bezogen auf 1 kg Bügeleisen (vergl. Zusammenstellung 48, Spalten 27 und 28), beträgt z. B.

> bei den Balken nach Fig. 224: $\frac{30467 - 23000}{8,3} = 900 \text{ kg},$ * * * * * 225: $\frac{37667 - 23000}{29,4} = 499 \text{ *},$ * * * * * 227: $\frac{41000 - 33333}{7,8} = 983 \text{ *}.$

Alle diese Ergebnisse sind mit Bügeln gewonnen worden, welche durch Draht mit den Einlagen dicht anliegend verbunden waren, vergl. Fig. 154.

Zur Erklärung der Wirksamkeit der Bügel in Bezug auf Rißbildung, Gleitwiderstand und Höchstlast sei Folgendes bemerkt.

Mit fortschreitendem Wachsen der Risse, welche sich gegen die Belastungsrollen richten (z. B. Fig. 246, 256, 265 u. s. f.) ist eine Drehung und Verschiebung der äußeren Balkenteile verbunden. Dadurch wird ein Pressen der Eiseneinlagen gegen den Beton nach unten hervorgerufen, welches die dünne Betonschicht schließlich aufsprengt.

Der geschilderten Pressung des Eisens wirken die Bügel entgegen, welche das Eisen mit dem Druckgurt verankern, gewissermaßen aufhängen. Daß hierbei 48 Bügel nach Fig. 225 wirksamer sind als 24 nach Fig. 224 ist erklärlich.

Sodann kommt in Betracht, daß Beton, welcher unter Wasser oder doch auf nassem Sand erhärtet, sein Volumen vergrößert. Dieser Raumvergrößerung steht der Bügel entgegen, es werden dadurch Pressungen gegen den Stab hervorgerufen und dessen Widerstand gegen Gleiten erhöht.

LVI) Schräge Abbiegungen der Eiseneinlagen (aufgebogene Einlagen).

a) Gleitwiderstand.

Wird bei Balken mit aufgebogenen Einlagen (Fig. 76 bis 82 und 226 bis 229) der Gleitwiderstand τ_1 des mittleren, geraden Stabes nach Gl. 5 (Seite 18 in Heft 39) bezw. Gl. 14 und 15 (Seite 118) unter der Voraussetzung berechnet, daß in allen Eisen, also auch in den aufgebogenen, die gleiche Zugspannung herrscht (vergl. Fußbemerkung Seite 68), so ergeben sich für τ_1 Werte, welche in befriedigender Uebereinstimmung stehen mit denjenigen, welche für die Balken mit drei geraden Eiseneinlagen gefunden worden sind (vergl. die Werte in den Spalten 19 der Zusammenstellungen 28 und 33 mit denen in Spalte 17 der Zusammenstellung 12, sowie in der Zusammenstellung 48 die Werte der Spalten 20 für die Balken nach Fig. 223 und 224 mit denjenigen für die Balken nach Fig. 226 und 227).

Es erscheint hiernach unrichtig, nur das mittlere, nicht aufgebogene Eisen als an der Uebertragung allein beteiligt, aufzufassen, wie dies in den Beispielen der amtlichen Bestimmungen geschieht. (Vergl. in den Zusammenstellungen 28 und 33 die Werte der Spalten 18 mit denjenigen in Spalte 19.)

b) Höchstbelastung.

a) Die Höchstbelastung beträgt

bei den Balken nach Fig. 223 (3 gerade Eisen, Eisenquerschnitt zusammen 17,79 gem) $P_{\text{max}} = 23\,000$ kg,

bei den Balken nach Fig. 226 (1 gerades Eisen in der Mitte, 4 aufgebogene seitlich, Eisenquerschnitt zusammen 18,64 qcm) $P_{\text{max}} = 33\,333$ kg.

Durch die Anordnung der aufgebogenen Eisen ist somit die Höchstlast bedeutend gesteigert worden (vergl. unter XLVII). Der Unterschied beläuft sich auf $\frac{33333 - 23000}{23000} \cdot 100 = \text{rd. 45 vH}$ bei einem Unterschied

des Eisenquerschnittes von $100 \cdot \frac{18,64 - 17,79}{17,79} = 5$ vH.

β) Das Gewicht der Eiseneinlagen beträgt

bei den Balken nach Fig. 223: 43,7 kg,

» » » 226: 49,1 », der Unterschied ist 5,4 ».

Diese 5,4 kg haben nach α) die Höchstlast um 10333 kg erhöht. Wird dieses Mehr bezogen auf das Mehrgewicht an Eiseneinlagen, so findet sich $\frac{10333}{5,4} = 1914$ kg Zunahme der Höchstlast durch 1 kg Eisen.

Wird dieses Ergebnis in Vergleich gebracht mit denen, welche unter LV, c die Erhöhung der Höchstlast durch 1 kg Bügel angeben, so zeigt sich, daß 1 kg Eisen in den aufgebogenen Einlagen eine weit größere Zunahme ergeben hat, als 1 kg Eisen in den Bügeln.

c) Durchbiegungen.

Ueber den Einfluß, welchen die Aufbiegungen der Einlagen auf die Größe der Durchbiegungen besitzen, vergl. Zusammenstellung 57 und 58.

LVII) Größe des Gleitwiderstandes.

Die Versuchsergebnisse sind in der Zusammenstellung 52 (Spalte 7 und 8) für die Balken mit rechteckigem Querschnitt und in der Zusammenstellung 48 (Spalte 20) für die Balken mit **T**-förmigem Querschnitt enthalten.

a) Oberflächenbeschaffenheit.

(Nach Forschungsheft 39 Seite 43.)

a) Gezogenes, abgeschlichtetes und geschmirgeltes Rundeisen in der Stärke von 25 mm ergab:

nach rund 50 Tagen im Durchschnitt $\tau_1 = 10.3$ kg/qcm,

$$\gg$$
 \approx 6 Monaten \gg \approx $\tau_1 = 14,5$ \gg ;

p) gewöhnliches Rundeisen mit Walzhaut in der Stärke von 25 mm lieferte:

nach rund 50 Tagen im Durchschnitt $\tau_1 = 17,9$ kg/qcm,

$$\sim$$
 » 6 Monaten » » $\tau_1 = 22,0$ »,

d. i. um rund 74 vH bezw. 52 vH höher als im Falle a.

Nach dem unter XXII Gesagten ergab sich dieser Unterschied für Einlagen mit Haken (Balken nach Fig. 69 und 70) bei rund 6 Monate alten Körpern zu 51 vH, so daß eine sehr gute Uebereinstimmung besteht.

b) Alter der Balken.

Bei 6 Monate alten Versuchskörpern wird 'der Gleitwiderstand höher ermittelt als bei 50 Tage alten Balken.

Die hierauf bezüglichen Zahlen sind unter a,
 α und β enthalten. Der Unterschied beträgt

bei	Eiseneinlagen	mit	glatter Oberfläche	rd.	$\frac{14,5-10,3}{10,3} = 41 \text{ vH},$
>>	>	20	Walzhaut	33	$\frac{22,0-17,9}{17,9} = 23 \text{ vH}.$

c) Drei Eiseneinlagen.

Bei Balken mit drei Eiseneinlagen (nach Fig. 66 bis 68, Zusammenstellung 12) wird der Gleitwiderstand kleiner ermittelt als bei Balken mit nur einer Einlage, vergl. unter LIII.

d) Haken.

Durch Haken an den Enden der Einlagen wird das Gleiten etwas hinausgeschoben, wie schon unter LIV angegeben worden ist.

e) Bügel.

Für Balken mit Bügeln wird der Gleitwiderstand größer ermittelt, als bei Balken ohne solche, vergl. unter LV.

f) Aufgebogene Eisen.

Hierzu vergl. unter LVI, a.

g) Lagerung der Balken unter Wasser und an der Luft. Alter der Versuchskörper: 50 Tage.

Der Gleitwiderstand für die unter Wasser gelagerten Balken ergab sich zu $\tau_1 = 16.9 \text{ kg/qcm}$, für die an der Luft gelagerten Körper zu $\tau_1 = 13.3 \text{ kg/qcm}$, somit ein Unterschied von

$$100 \cdot \frac{16,9 - 13,3}{13,3} = 27 \text{ vH}.$$

(Vergl. unter XXVII.)

und

h) Thacher-Eisen.

Die Widerstandsfähigkeit der Balken ergab sich bei Verwendung von Thacher-Eisen nur wenig größer als bei einem geraden Eisen, eine Folge der aufsprengenden Wirkung, die das Knoteneisen äußert. (Vergl. das unter XXIV Ermittelte.)

i) Entfernung der Belastungsrolle vom Widerlager.

Vergl. das unter L Bemerkte.

LVIII) Dehnungsfähigkeit des Betons mit und ohne Eiseneinlagen.

Die Mitteilungen hierüber sind in einem bereits in der Zeitschrift des Vereines deutscher Ingenieure 1907 Seite 1027 erschienenen Aufsatz enthalten, der als Anlage 6 wieder mit aufgenommen ist (Seite 156 u. f.).

LIX) Druckspannungen des Betons.

Die Versuche ermöglichen einen Vergleich der Druckspannungen, welche sich ergeben

a) aus den gemessenen Zusammendrückungen der oberen Fläche des Balkens und dem aus Druckversuchen mit dem gleichen Beton ermittelten Zusammenhang zwischen Druckbelastung und Zusammendrückung,

b) aus der Rechnungsweise der amtlichen Bestimmungen (Gl. 2 in Heft 39, Seite 18).

So findet sich beispielsweise für Balken Nr. 31 nach Fig. 70, Zusammenstellung 14, besprochen unter XXI, unter der Belastung von P = 3000 kg (ohne Rücksicht auf das Eigengewicht):

die Zusammendrückung der oberen Balkenfläche zu $0,73\frac{1}{200}$ cm auf 70,0 cm.

Für den Druckkörper Nr. 4, Zusammenstellung 39, wurde auf die Länge von 75,1 em gefunden,

auf der Belastungsstufe 0,2 - 12,1 = 11,9 kg/qcm $4,15 \frac{1}{1200}$ cm, d. i. für

70,0 cm ursprüngliche Länge $0,64 \frac{1}{200}$ cm,

auf der Belastungsstufe 0.2 - 18.1 = 17.9 kg/qcm $6.23 \frac{1}{1200}$ cm, d. i. für 70.0 cm ursprüngliche Länge $0.97 \frac{1}{200}$ cm.

Mit Annäherung würde sich hiernach die Spannung für die Zusammendrückung $0,73 \frac{1}{200}$ cm berechnen zu

$$11,9 + (17,9-11,9) \frac{0,73-0,64}{0,97-0,64} = 13,5 \text{ kg/qcm}.$$

Die Rechnung nach Gl. 2 (Seite 18 in Heft 39) liefert mit n = 15

$$\sigma_b = \frac{2 \cdot \frac{3000}{2} \cdot 50}{30,02 \cdot 9,71 \cdot 25,82} = 19,9 \text{ kg/qcm}.$$

Hiernach ergibt sich die Druckspannung des Betons nach den amtlichen Bestimmungen (Gl. 2, Seite 18 in Heit 39, mit n = 15) größer als sie in Wirklichkeit ist.

In der Zusammenstellung 53 ist für den Balken Nr. 31 die gleiche Rechnung durchgeführt für P = 1000 kg bis $P = 14\,000$ kg. Wie ersichtlich, gilt das soeben Ausgesprochene für sämtliche Belastungen.

In der Zusammenstellung 54 sind für den rechteckigen Balken Nr. 52 (nach Fig. 77) die Ergebnisse derselben Rechnungen aufgeführt.

Die Zusammenstellung 55 gilt für den Balken Nr. 86 mit **T**-förmigem Querschnitt nach Fig. 228.

Wie ersichtlich, unterscheiden sich die Werte, welche nach a) und b) für die Balken Nr. 52 und 86 gefunden wurden, nicht erheblich voneinander.

Im ganzen kann somit für das Gebiet, welches durch die vorstehenden Versuche gedeckt erscheint, ausgesprochen werden, daß die Rechnung nach den amtlichen Bestimmungen, jedenfalls für die anfänglichen Belastungen, eher zu einer Ueberschätzung, als zu einer Unterschätzung der Beanspruchung führt.

Die Verfolgung dieser Verhältnisse für alle Balken, für welche die Zusammendrückungen gemessen worden sind, ist auf Grund der in den Zusammenstellungen niedergelegten Versuchsergebnisse möglich.

LX) Zugspannungen der Eiseneinlagen.

a) Balken nach Fig. 83.

Unter XXXVI wurde über Versuche mit 4 Balken nach Fig. 83 berichtet, bei welchen die Verlängerungen der Eiseneinlagen unmittelbar gemessen wurden. Unter Zugrundelegung des Dehnungskoeffizienten α für Flußeisen zu $\frac{1}{2100000}$ sind die den gemessenen Dehnungen entsprechenden Spannungen im Eisen bestimmt und in Gemeinschaft mit den nach den amtlichen Bestimmungen mit n = 15 berechneten Werten für σ_e in Zusammenstellung 56 aufgenommen worden.

Der Vergleich zeigt, daß die Spannungen, welche die unmittelbare Messung liefert, bedeutend kleiner sind als die Spannungen, welche Gl. 3 der amtlichen Bestimmungen (Heft 39 Seite 18) ergibt.

b) Balken nach Fig. 71, 76, 77, 78, 82 und 228.

Bei diesen Balken begann die Zerstörung mit dem Eintreten der Streckgrenze des Eisens, festgestellt durch Zunderabspringen. Für das gleiche Eisen wurde durch Zugversuche die obere Streckgrenze ermittelt (vergl. unter XII und XLI).

In der folgenden Zusammenstellung sind angegeben die Spannungen des Eisens, welche sich nach Gl. 3 (Seite 18 in Heft 39) bezw. Gl. 11 (Seite 118) unter Einführung derjenigen Belastung ergeben haben, bei welcher die Einlagen die Streckgrenze überschritten haben, und daneben stehen die durch unmittelbaren Zugversuch ermittelten Werte der Streckgrenze.

	В	alke	en		Abschnitt	durchschnittliches σ_e nach den Bestimmungen in kg/qcm	ober grenze in	e Str e des kg/e	eck- Eisens qcm
Fig	. 71	(1	Eise	n)	XXIII	3124	2755	bis	2788
30	76	(3	>>)	XXVIII	3445	2922	>>	3329
>>	77	(3	20)	XXIX	3549	3143	>>	3316
>>	78	(5	>>)	XXX	3669	3316	>>	3612
»	82	(5	>>)	XXXIV	2780	2506	>>	2764
>>	228	(5	>>)	IL	2958	2396	>>	2972

Hieraus ergibt sich, daß die nach den amtlichen Bestimmungen berechneten Zugspannungen σ_e in allen Fällen größer sind, als die aus dem Zugversuch erhaltenen Werte der Streckgrenze des Materials. Die Rechnung liefert somit zu hohe Werte, führt also eher zu einer Ueberschätzung der Anstrengung des Eisens, als zu einer Unterschätzung.

Zu dem gleichen Ergebnisse gelangt man, wenn die Messungen der Dehnung des Betons an der Unterfläche des Balkens weiter verfolgt werden.

LXI) Durchbiegungen.

Der Verlauf der Durchbiegungslinien (Fig. 99, 105, 111, 138, 144, 151, 169, 180, 193, 202, 249, 261 und 276) ist, wie zu erwarten, ähnlich denjenigen der Dehnungslinien (vergl. Fig. 96, 103, 109, 135, 142, 149, 167, 178, 190, 200, 205 bis 212, 247, 259 und 274, sowie das Seite 17 über die Dehnungslinien Gesagte). Die Linienzüge beginnen mit einer annähernd geraden Linie und wenden sich dann in einer mehr oder weniger starken Krümmung zu einer zweiten annähernd geraden Linie. Die Entstehung der Wasserflecke und der ersten Risse fällt in das Gebiet der stärksten Krümmung der Linienzüge. Die ersten Risse wurden entdeckt, kurz bevor sich die Durchbiegungslinien zum zweiten Mal einer Geraden nähern.

Im übrigen enthalten die Zusammenstellungen Nr. 57 für die Balken mit rechteckigem Querschnitt und Nr. 58 für die Balken mit $\hat{\mathbf{T}}$ -förmigem Querschnitt einen beachtenswerten Auszug der ermittelten Durchbiegungen. (Vergl. unter LIII, LIV und LVI.)

Stuttgart, Ende Juli 1907.

Anlagen.

Anlage 4.1)

Untersuchung des zur Herstellung der Balken Nr. 48 bis 69 und 95 bis 97 verwendeten Zements. (Zement »A«).

Erhärtungsbeginn, Bindezeit.

Der Zement begann nach durchschnittlich 5 Stunden zu erhärten. Die Bindezeit betrug durchschnittlich 12 Stunden.

Ueber die Temperaturänderungen des Zements (in Normalkonsistenz) während des Abbindens gibt Fig. *a* Auskunft. Die durchschnittliche Temperaturerhöhung beträgt

 $(4,7+4,2+5,4+5,1):4 = 4,8^{\circ}$ C.

Volumenbeständigkeit.

Die normengemäßen Kuchen auf Glasplatten zeigten nach 6 Monaten weder Kantenrisse noch Verkrümmungen.

Feinheit der Mahlung.

Gewicht des Zements.

Es wiegt 1 ltr im eingesiebten losen Zustand 1,063 kg, im vollständig eingerüttelten Zustand . . . 1,777 ».

1) Die Anlagen 1, 2 und 3 sind in Heft 39 (S. 44 u. f.) enthalten.

Druckfestigkeit.

		Ab	messung	en	Vo-	Raum-	Quer-	Bruchbe	lastung
Bezeich- nang	Gewicht G	Seite a	Seite b	Höhe h	lumen a b h	gewicht 1000 G	schnitt a b	beob- achtet	auf 1 qcm
	kg	em	em	em	eem	aon	qem	kg	kg
		Alter:	1 Tag an	der Luft, 6	Tage u	nter Was	ser.		
1	0,792	7,10	7,07	7,11	357	2,22	50,2	8950	178
2	0,792	7,12	7,08	7,11	358	2,21	50,4	9150	182
3	0,791	7,13	7,10	7,09	359	2,20	50,6	8900	176
4	0,793	7,10	7,12	7,09	359	2,21	50,6	8600	170
5	0,793	7,10	7,11	7,08	358	2,22	50,5	8950	177
Durse	ebschnitt		-	-	-	2,21	- 1	-	177
		Alter: 1	Tag an d	ler Luft, 2	7 Tage u	inter Was	ser.		
1	0,798	7,12	7,08	7,12	359	2,22	50,4	13900	276
2	0,800	7,13	7,11	7,09	359	2,23	50,7	14300	282
3	0,798	7,11	7,12	7,09	359	2,22	50,6	14050	278
4	0,798	7,12	7,11	7,08	358	2,23	50,6	14050	278
5	0,799	7,11	7,12	7,09	359	2,23	50,6	13900	275
Dure	hschnitt	-	-		a - 49	2,23	-	-	278
		Alter: 1	Tag an d	ler Luft, 8	9 Tage u	inter Was	ser.		
1	0,802	7,10	7,09	7,12	358	2,24	50,3	17500	348
2	0,803	7,15	7,09	7,11	360	2,23	50,7	17700	349
* 3	0,801	7,12	7,12	7,09	359	2,23	50,7	17300	341
4	0,803	7,13	7,12	7,09	360	2,23	50,8	17300	341
5	0,799	7,10	7,08	7,12	358	2,23	50,3	17700	352
Dure	hschnitt			_	_	2.23	- 1		346

Zusammensetzung der mittels des Hammerapparates hergestellten Probekörper: 1 kg Zement, 3 kg Normalsand, 0,33 kg Wasser.

Zugfestigkeit.

Zusammensetzung und Herstellung der Probekörper wie oben. Alter: 1 Tag an der Luft, 6 Tage unter Wasser.

(22,5 + 23,5 + 23,0 + 24,0 + 22,0 + 22,0 + 22,5 + 22,0 + 21,5 + 23,5): 10Durchschnitt **22,7** kg/qem.

Alter: 1 Tag an der Luft, 27 Tage unter Wasser. (32,0+31,5+34,5+34,0+32,5+31,0+28,0+30,5+29,5+30,5):10Durchschnitt **31,4** kg/qem.

Alter: 1 Tag an der Luft, 89 Tage unter Wasser. (35,0+39,0+39,0+40,0+39,5+40,5+39,5+38,0+39,0+37,0):.10Durchschnitt **38,7** kg/qem.

Anlage 5.

Untersuchung des zur Herstellung der Balken Nr. 70 bis 94 verwendeten Zements. (Zement »B«).

Erhärtungsbeginn, Bindezeit.

Der Zement begann nach durchschnittlich 3 Stunden zu erhärten. Die Bindezeit betrug durchschnittlich 9 Stunden. Ueber die Temperaturänderungen des Zements (in Normalkonsistenz) während des Abbindens geben Fig. b und c Auskunft. Die durchschnittliche Temperaturerhöhung beträgt

Volumenbeständigkeit.

Die normengemäßen Kuchen auf Glasplatten zeigten nach 6 Monaten weder Kantenrisse noch Verkrümmungen.

Feinheit der Mahlung.

Gewicht des Zements.

Es wiegt 1 ltr im eingesiebten losen Zustand 1,005 kg, im vollständig eingerüttelten Zustand . . . 1,799 kg.

Druckfestigkeit.

Zusammensetzung der mittels des Hammerapparates hergestellten Probekörper: 1 kg Zement, 3 kg Normalsand.

1-2-2-5-6-6-				10, 0 19	TIOTHIC	LIDEELLOIT		Sector Street	the state of
	12.35.46.5	Ab	messung	en	Vo-	Raum-	Quer-	Bruchbe	lastung
Bezeich- nung	Gewicht G	Seite a	Seite b	Höhe h	lumen a b h	gewicht 1000 G	schnitt a b	beob- achtet	auf 1 qcm
	kg	cm	em	em	eem	aon	qem	kg	kg
	225,123	Alter	1 Tag an	der Luft (Tega n	nter Was	ser		47 1 - 1
1 1	0 700	7 11	7 10	7.00	aro u		Enel	0000	164 -
1	0,790	7,11	7,10	7,08	508	2,22	50,5	8050	150
2	0,791	7,09	7,12	7,08	508	2,21	50,5	0000	169
5	0,796	7,10	7,08	7,11	308	2,22	50,3	8200	100
4	0,795	7,11	7,11	7,08	358	2,22	50,6	8150	101
9	0,796	7,11	7,10	7,08	358	2,22	50,5	8250	105
Durc	chschnitt	-	-	-	-	2,22	-		162
		Alter: 1	Tag an	der Luft, 2	7 Tage 1	anter Wa	sser.		
1	0.794	7,10	7.10	7.09	357	2.22	50.4	11700	232
2	0,802	7,13	7.09	7.11	360	2.23	50.6	12300	243
3	0,799	7,12	7.09	7.11	359	2.23	50.5	12100	240
4	0,796	7.10	7.10	7.08	357	2.23	50.4	12050	239
5	0,798	7.10	7,12	7.08	358	2.23	50.6	12250	242
Durc	hschnitt	-	-	-	-	2,23	-	-	239
		Alter: 1	Tag an d	er Luft. 89) Tage u	nter Was	ser.		
1 1	0.801	1 7 0 8	7 1 9	7.00	1 950	1 9 94	50 5	1 16550	090
9	0,801	7,00	7,10	7,09	000	2,24	50,5	16900	020
2	0,800	7,09	7,08	1,12	007	2,24	50.2	16850	000
4	0,301	7,09	7,09	7,13	009	2,23	50,3	16400	205
5	0,199	7,08	7,12	7,09	307	2,24	50,4	16500	020
	0,001	1,11	1,12	1,09	559	2,23	50,6	10200	020
Dur	chschnitt	-	-	-	-	2,24		-	330

Zugfestigkeit.

Zusammensetzung und Herstellung der Probekörper wie oben. Alter: 1 Tag an der Luft, 6 Tage unter Wasser.

(19,0 + 20,5 + 21,5 + 20,5 + 18,0 + 21,0 + 20,5 + 18,0 + 20,0 + 20,5): 10Durchschnitt **20,0** kg/qcm.

Alter: 1 Tag an der Luft, 27 Tage unter Wasser. (26,5+26,0+26,0+26,0+27,5+25,5+27,0+27,0+27,0+27,0): 10Durchsehnitt **26.6** kg/qem.

Alter: 1 Tag an der Luft, 89 Tage unter Wasser. (36,5 + 37,0 + 36,0 + 38,0 + 36,0 + 38,0 + 35,0 + 37,5 + 37,5 + 36,5): 10 Durchschnitt **36,8** kg/qem.

Anlage 6¹).

Hierzu Zusammenstellung 59 und Textblatt 1.

Zur Frage der Dehnungsfähigkeit des Betons mit und ohne Eiseneinlagen.

Bekanntlich haben die von Considère angestellten und 1898 veröffentlichten Versuche²) in weiten Kreisen zu der Auffassung geführt, daß der armierte Beton eine viel größere Dehnung vertrage, ehe er reißt, als der gleiche Beton ohne Eiseneinlage. Auf Grund der in der Fußbemerkung wiedergegebenen Aeußerung Considères wurde geschlossen, daß der Beton mit Eiseneinlage eine bis 20 mal so große Dehnung vertrage wie der gleiche Beton ohne Eiseneinlage.

Die Commission du eiment armé in Paris, gebildet durch Ministerialerlaß vom 19. Dezember 1900, hat sich u. a. auch mit dieser Frage beschäftigt, und ihre zweite Unterkommission hat im Laboratoire de l'école nationale des ponts et chaussées unter der Leitung von Mesnager und unter der Mithülfe von Mercier dahingehende Versuche 1902 durchgeführt, deren Ergebnisse³) die bezeichnete Auffassung bis zu einem weitgehenden Grad unterstützen.

Wenn nun auch die Unwahrscheinlichkeit eines so großen Unterschiedes auf der Hand lag, und wenn sodann weiter die Beobachtungen, welche in der mir unterstellten Materialprüfungsanstalt gemacht worden waren, nur einen weit

¹) Die Anlage 6 ist bereits in der Zeitschrift des Vereines deutscher Ingenieure 1907 S. 1027 u. f. erschienen.

²) Comptes rendus des séances de l'Académie des sciences, Band 127, 1898 S. 992 u. f. Considère sagt daselbst: »Après cette double épreuve, le prisme semblait intact dans toute la partie comprise entre les encastrements, et cependant le mortier de sa face soumise à l'extension avait subi, dans la première flexion, un allongement de 1,98 mm, c'est-à-dire vingt fois plus grand que l'allongement de 0,10 mm, que les mortiers analogues ne peuvent supporter sans se rompre.«

³) Expériences, rapports et propositions, instructions ministérielles relatives à l'emploi du béton armé, Paris 1907, S. 74 u. f. Seite 372 daselbst ist gesagt: »Le béton armé et préparé convenablement devient beaucoup plus ductile encore. Dans les expériences de la commission, on a constaté des allongements avant rupture allant jusqu'à 1,35 mm par mètre et on a observé la loi de déformation suivante.«

geringeren Unterschied ergeben hatten und ausgesprochen darauf hindeuteten, daß bei den französischen Versuchen das Auftreten der ersten Risse verspätet beobachtet sein wird, so schien doch Klarstellung geboten, weshalb ich Hrn. Ingenieur Kleinlogel, welcher sich in der Materialprüfungsanstalt mit einer wissenschaftlichen Arbeit zu beschäftigen wünschte, gegen Ende 1902 anregte, Versuche mit Eisenbetonbalken behufs Aufklärung in der bezeichneten Richtung durchzuführen. Diese Untersuchungen gelangten zur Ausführung: Herstellung der Versuchskörper im März 1903, Durchführung der Versuche in der zweiten Hälfte desselben Jahres. Die Ergebnisse sind in Heft 1 der »Forscherarbeiten auf dem Gebiete des Eisenbetons« 1904 veröffentlicht. Kleinlogel ermittelte¹), daß in den mit Eiseneinlagen ausgestatteten Balken die ersten Risse eingetreten sind bei den

Balken C zwischen 0,16 mm und 0,17 mm Dehnung auf 1 m,

»	D	20	0,16	*	*	0,19	>>	*	>>	20	,
»»	Е	»	. 0,15	*	»	0,24	»	»	>>	>>	,
>>	F	*	0,16	>>	>>	0,20	»	»	»	*	,
>>	G	»	0,14	3	>>	0,18	>>	*	>>	*	,
*	В	>>	0,118	>>	»	-	>>	»	>>	»	

d. s. Werte, welche im Durchschnitt noch nicht das Doppelte der Dehnung des Betons ohne Eiseneinlagen erreichen.

Amerikanische Forscher²) fanden den in Frankreich ermittelten großen Unterschied gleichfalls nicht bestätigt.

Der erhobene Widerspruch veranlaßte Considère, nochmals Versuche anzustellen, und zwar mit 2 Balken, von denen der eine unter Wasser, der andre an der Luft bis zur Prüfung aufbewahrt wurde. Considère berichtet, daß der erstere Balken Dehnungen bis 1,3 mm und der zweite solche bis 0,625 mm auf 1 m Länge ertragen habe, ohne daß Risse innerhalb der Meßstrecke beobachtet wurden ³).

Versuche, welche 1903 im Kgl. Materialprüfungsamt Groß-Lichterfelde-West angestellt wurden, und über die Rudeloff 1904⁴) berichtet, lieferten das Ergebnis, daß der Beton mit Eiseneinlage eine etwas geringere Bruchdehnung ergab als der Beton ohne Eisen, also das Gegenteil von dem, was Considère ermittelt hatte.

Schüle⁵) dagegen fand Dehnungen bis 1,38 mm für armierten Beton und sagt, daß »die Sprödigkeit des Betons durch die Armierung vermindert und die Dehnungsfähigkeit bedeutend erhöht wird, wie dies auf Grund von andern Versuchen von H. Considère festgestellt wurde«.

Diese Widersprüche nach Möglichkeit aufzuklären, halte ich bei der großen Bedeutung des Eisenbetonbaues für geboten. Hierzu sollen die nachstehenden Mitteilungen dienen, die sich auf die Ergebnisse der Untersuchung von 107 Versuchskörpern, also auf ein umfassendes Versuchsmaterial, stützen.

¹) Kleinlogel bediente sich hierbei des Verfahrens, das in der Materialprüfungsanstalt üblich war, um die ersten Risse möglichst früh zu entdecken. Die Balken wurden vor dem Versuch mit einem dünnen Anstrich von Schlemmkreide versehen.

²) Talbot, Engineering News 1904 B.d 52 S. 122; Turneaure, Engineering News 1904 Band 52 S. 213.

³) Beton und Eisen 1905 S. 58 und Expériences, rapports et propositions, instructions ministérielles relatives à l'emploi du béton armé, 1907 S. 203 u. f.

⁴⁾ Mitteilungen aus dem Kgl. Materialprüfungsamt zu Groß-Lichterfelde-West, 1904 S. 3 u. f.

⁵) Mitteilungen der Eidgen. Materialprüfungsanstalt am Schweiz. Polytechnikum in Zürich, 1906, 10. Heft S. 8, 19 und 21.

1) Wie in Heft 39 der Mitteilungen über Forschungsarbeiten S. 13 u. f. dargelegt ist, treten bei dem auf Biegung in Anspruch genommenen und feucht aufbewahrten Eisenbetonbalken unter steigender Belastung an der Unterfläche kleine feuchte Flecke, sogen. Wasserflecke, auf (vergl. Fig. 27 und Fig. 166 auf Textblatt 1). Diese Wasserflecke¹ bilden die Vorläufer von Rissen und zeigen an, daß an den betreffenden Stellen eine Lockerung des Gefüges des Betons eingetreten ist.

Würde es sich hierbei nicht um einen Balken mit Eiseneinlage, sondern um einen durch Zug in Anspruch genommenen Betonkörper ohne Eiseneinlage handeln, so stände mit Eintritt der Lockerung des Gefüges das sofortige Zerreißen, also der Bruch des Körpers zu erwarten. Auf Grund dieser Erwägung wird die Dehnung des Betons beim Eintritt von Wasserflecken im gebogenen Balken ungefähr dieselbe sein müssen wie diejenige, welche im Augenblick des Zerreißens eines Körpers aus Beton ohne Eiseneinlage vorhanden ist. In der Tat ist das auch der Fall, wie die in der Zusammenstellung 59 niedergelegten Versuchsergebnisse nachweisen.

5 Zugkörper aus Beton (Zement A) ohne Eiseneinlage, in der Zusammenstellung 59 unter a aufgeführt, Spalte 11:

Dehnung auf 1 m Länge beim Zerreißen

0,065 bis 0,09 mm.

68 Betonbalken (Zement A) mit 0 bis 5 Eiseneinlagen, in der Zusammenstellung 59 unter b bis l, Spalte 13:

Dehnung an der Unterfläche auf 1 m Länge beim Eintritt der ersten Wasserflecke

0,06 bis 0,10 mm.

4 Zugkörper von Beton (Zement B) ohne Eiseneinlage, in der Zusammenstellung 59 unter m, Spalte 11:

Dehnung auf 1 m Länge beim Zerreißen

0,08 bis 0,10 mm.

21 Betonbalken (Zement B) mit 3 bis 5 Eiseneinlagen in der Zusammenstellung 59 unter o, Spalte 13:

Dehnung auf 1 m Länge beim Eintritt des ersten Wasserfleckes

0,09 bis 0,10 mm.

Diese an 98 Versuchskörpern ermittelten Werte stimmen so gut überein, wie es für ein Material wie Beton überhaupt erwartet werden kann.

Sonach erscheint festgestellt, daß die Dehnung des Betons im gebogenen Balken beim Eintritt der ersten Wasserflecke, durch die eine Lockerung des Gefüges des Betons dem Auge sichtbar, also die Dehnungsfähigkeit des Betons erschöpft wird, rund die gleiche ist wie diejenige, unter welcher Zerreißen des auf Zug in Anspruch genommenen Betonkörpers eintritt.

2) Zwischen der Dehnung, welche in dem auf Zug beanspruchten Körper den Bruch herbeiführt, und zwischen der Dehnung, die im gebogenen Balken in der äußersten Faser beim Bruch vorhanden ist, kann, wie die folgende Dar-

¹) Wie bereits S. 13 des Heftes 39 der Mitteilungen über Forschungsarbeiten bemerkt ist, hat Turneaure diese Wasserflecke schon früher beobachtet. Inzwischen hat sich weiter herausgestellt, daß sie auch von Feret beobachtet worden sind (Etude expérimentale du eiment armé, Paris 1906, S. 51).

legung zeigt¹), im allgemeinen ein mehr oder minder großer Unterschied vorhanden sein.

Wir denken uns zwei rechteckige Stäbe aus Beton,

a) den einen auf Zug durch ruhende Belastung mit σ_z in Anspruch genommen, wobei σ_z ein wenig unterhalb der Zugfestigkeit liegen möge,

b) den andern durch ein biegendes Moment so belastet, daß in dem am meisten beanspruchten Querschnitt in der äußersten Faser gleichfalls die Spannung σ_z auftritt.

Im Falle a) ist in allen Punkten aller Querschnitte des prismatischen Stabteiles die Zugspannung σ_z vorhanden, und zwar immer unter der günstigsten Voraussetzung, daß die Zugkraft gleichmäßig über den Querschnitt verteilt ist. Bei der geringsten Abweichung hiervon — das Vorhandensein einer solchen wird die Regel sein — werden sich sofort höhere Spannungen einstellen; zu der Zugspannung $\hat{\sigma}_z$ gesellen sich Biegungsspannungen, die, sofern sich das Gefüge des Betons an irgend einer Stelle lockert, sofort zum Zerreißen führen.

Im Falle b) dagegen ist die Spannung σ_z meist nur in einem einzigen Querschnitt des Stabes vorhanden und daselbst nur in der äußersten Faserschicht wirksam. Tritt in dieser Faserschicht eine Lockerung des Gefüges ein, so greifen die im Querschnitt weiter innen gelegenen und weniger stark belasteten Fasern (wenn dieser Ausdruck für Beton gebraucht werden darf) unterstützend ein. Es braucht somit die Lockerung des Gefüges an einer Stelle noch nicht mit der Notwendigkeit wie bei a) zum Bruch zu führen, selbst wenn keine Eiseneinlagen vorhanden sind.

Solche Verhältnisse sind gegeben bei den drei Balken b der Zusammenstellung 59. Die Dehnung, unter welcher sich die Wasserflecke einstellten, betrug bei ihnen 0,08 mm auf 1 m Länge, während die Dehnung, die unmittelbar vor

dem Bruch gemessen wurde, sich auf $\frac{0,128+0,120+0,127}{3} = 0,125$ mm belief.

3) Besitzen die auf Biegung in Anspruch genommenen Balken Eiseneinlagen, so führt die unter Ziffer 2 angestellte Erwägung sofort zu der Erkenntnis, daß die Dehnung des Betons, bei der der erste Riß zu beobachten ist, größer sein wird als die Dehnung, bei der die unter Ziffer 1 erörterte Lockerung des Gefüges eintrat; denn die Eiseneinlage wird, sobald diese Lockerung beginnt, in verstärktem Maße unterstützend, die gelockerte Stelle entlastend, eingreifen und so die Rißbildung hinausschieben.

Demgemäß zeigen auch die 26 Balken c, d und e der Zusammenstellung 59 Dehnungen von 0,123 mm bis 0,143 mm unmittelbar vor Beobachtung der ersten Risse.

4) Die unter Ziffer 3 hervorgehobene unterstützende Wirkung der Eiseneinlagen gilt nicht nur für gebogene, sondern auch für gezogene Körper und wird von den Abmessungen und der Verteilung des Eisens im Betonquerschnitt abhängen.

Sehr anschaulich zeigt sich der Einfluß der Verteilung der Eiseneinlagen im Querschnitt bei Beobachtung der unter Ziffer 1 erwähnten Wasserflecke. Das Bild, Textblatt 1 Fig. 27, stellt die Unterfläche eines auf Biegung in Anspruch genommenen 300 mm breiten Balkens mit einer Eiseneinlage von 25 mm Dmr. dar, nachdem sich Wasserflecke und Risse gebildet haben. Fig. 166 (Textblatt 1) gibt die Unterfläche eines in gleicher Weise beanspruchten Balkens von 150 mm Breite

¹) Diese Darlegung ist im wesentlichen die gleiche, die ich vor einer Reihe von Jahren gegeben habe, um klarzustellen, daß die zulässige Biegungsinanspruchnahme in der Regel höher gewählt werden darf als die zulässige Zugbeanspruchung.

mit drei Eiseneinlagen von je 10 mm Dmr., die über den Querschnitt verteilt angeordnet sind, wieder. Die letztere Abbildung zeigt eine viel größere Anzahl von Wasserflecken bis zum Eintritt der Risse; sie läßt damit erkennen, daß in dem zweiten Balken an weit mehr Stellen Lockerung des Gefüges eingetreten ist als im ersten Balken. Die bessere Verteilung des Eisens im gezogenen Teil des zweiten Balkens hat somit zur Folge gehabt, daß an einer größeren Anzahl von Stellen das Gefüge sich gelockert hat, ehe Risse entstanden. Hiermit hängt es denn auch zusammen, daß beim Balken Fig. 166 eine erheblich größere Dehnung des Betons zu messen ist, ehe Risse beobachtet werden können, als beim Balken Fig. 27, nämlich 0,171 mm gegen 0,135 mm.

Entsprechend der größeren Anzahl von Wasserflecken bildeten sich unter weiterer Steigerung der Belastung bei Fig. 166 auch bedeutend mehr Risse als bei Fig. 27.

Die Risse, die im Balken Fig. 166 entstehen, sind außerdem viel feiner und deshalb schwerer sichtbar als diejenigen des Balkens Fig. 27, gleichfalls eine Folge der besseren Verteilung des Eisens über die Balkenbreite. Man erkennt, daß die ersten Risse um so schwieriger zu entdecken sind, je besser die Verteilung des Eisens und je größer der gesamte Eisenquerschnitt ist.

5) Beton, bald nach dem Abbinden unter Wasser oder doch feucht aufbewahrt, vergrößert sein Volumen, dehnt sich also aus. Beton, an der Luft aufbewahrt, vermindert sein Volumen, zieht sich also zusammen.

Inwieweit diese Beobachtung, festgestellt durch eigene Versuche und diejenigen anderer¹), Ausnahmen erleidet, muß dahingestellt bleiben.

6) Wird ein Eisenbetonbalken unter Wasser oder doch feucht aufbewahrt, so müssen sich infolge der Vergrößerung des Betonvolumens Zugspannungen im Eisen einstellen, die ihrerseits im Beton Druckspannungen wachrufen. Diese Druckspannungen werden in dem Beton, der dem Eisen am nächsten liegt, am größten sein müssen und mit Zunahme des Abstandes von der Eiseneinlage abnehmen. (Vergl. Heft 39 der Mitteilungen über Forschungsarbeiten S. 16.)

Hat der Balken nur eine Eiseneinlage, so wird diese Rückwirkung der letzteren auf den Beton an den Seitenflächen unter sonst gleichen Verhältnissen kleiner sein, als wenn der Balken mehrere Eiseneinlagen besitzt, die sich gleichmäßig über die Balkenbreite verteilen. Sie wird auf der Unterfläche um so größer sein, je näher das Eisen an dieser gelegen ist.

7) Infolge dieser Verhältnisse besteht in dem Eisenbetonbalken auch ohne Belastung desselben durch äußere Kräfte bereits ein Spannungszustand derart, daß, wenn nun die Belastung eintritt, zunächst die Druckspannungen im Beton vermindert werden. Die Dehnungen, die hierbei im Beton bis zu dem Augenblick gemessen werden, in welchem die Druckspannung des Betons im gezogenen Teil des Balkens null wird, kommen für das Maß der Dehnungsfähigkeit des als spannungslos betrachteten Materials nicht in Betracht.

Hieraus folgt, daß ein unter Wasser oder doch feucht aufbewahrter Eisenbetonbalken eine größere Dehnung des Betons zeigen muß, ehe er reißt, als ein Betonbalken ohne Eiseneinlagen, und daß dieser Unterschied unter sonst gleichen Verhältnissen bis zu einer gewissen Grenze hin um so größer sein muß, je gleichmäßiger das Eisen über die Breite des Balkens verteilt ist, je näher es an der Balkenunterfläche liegt und je größer sein Querschnitt im Verhältnis zu demjenigen des Betons ist.

¹) Considère: Comptes rendus 1899 Bd. 129 S. 467; Emerson, Eng. News 1904 Bd. 51 S. 222 (vergl. auch Burchartz in den Mitteilungen aus dem Kgl. Materialpröfungsamt zu Groß-Lichterfelde-West 1904 S. 76 u. f.) u. a.

8) Vergleicht man vom Standpunkte der unter Ziffer 4) und 7) gemachten Feststellungen zunächst die Ergebnisse der 9 Balken f unter Ausschließung der Werte derjenigen Balken, die durch die eingelegten Bügel geschädigt worden sind, also die Zahlen 0,176, 0,141 und 0,158, mit den für die Balken c, d und eerlangten Ergebnissen, so erkennt man deutlich, daß der Einfluß der Eiseneinlage auf die schmäleren Balken f größer ist als auf die breiteren Balken.

Werden die 9 Balken g ins Auge gefaßt, so zeigt sich zunächst der Einfluß der Verteilung der drei Eisen über den Querschnitt und sodann die Zunahme dieses Einflusses mit abnehmender Balkenbreite. Die Dehnung steigt bei 3 Eisen von 0,164 mm im breiten Balken auf 0,235 mm im schmalsten Balken.

Von den 6 Balken k (vergl. Spalte 6) zeigen 3 Balken 8 mm und 3 Balken 15 mm Abstand des Eisens von der unteren Fläche. Dieser Unterschied hat zur Folge, daß sich die Dehnung, beobachtet unmittelbar vor Eintritt des ersten Risses, von 0,242 auf 0,185 mm vermindert (Spalte 11).

Für die Balken i ergibt sich Aehnliches. Bei den Balken q ist die Eiseneinlage, bestehend aus ausgefrästem Eisenblech, noch wirksamer angeordnet, infolgedessen sich die Dehnung bis auf 0,367 mm steigert. Das ist der Höchstwert, der überhaupt beobachtet worden ist; er beträgt rund das Vierfache der Dehnung des Betons ohne Eiseneinlage.

Ueber die Form der ausgefrästen Eisenblecheinlage ist Seite 90 Näheres enthalten.

9) Wird der Eisenbetonbalken an der Luft aufbewahrt, so wird sich der Beton zusammenziehen, und statt der Zuspannungen werden im Eisen Druckspannungen, im Beton somit Zugspannungen eintreten. Die bis zum Eintritt der ersten Risse gemessene Dehnung muß deshalb geringer ausfallen als bei Balken, die unter Wasser oder doch feucht aufbewahrt worden sind.

In dieser Hinsicht sind die in der Zusammenstellung 59 aufgeführten 4 Balken n von Interesse. Von ihnen wurden 2 unter Wasser und 2 an der Luft aufbewahrt. Die unter Wasser gelagerten zeigten eine Dehnung von 0,205 mm, während die an der Luft aufbewahrten eine Dehnung von 0,097 mm auf 1 m Länge lieferten, je unmittelbar vor Beobachtung des ersten Risses.

Hierdurch findet auch das oben erwähnte Ergebnis der im Kgl. Materialprüfungsamt zu Groß-Lichterfelde-West durchgeführten Versuche seine Erklärung.

10) Inwieweit die Art der Versuchsdurchführung (Belastung stetig zunehmend, Belastung mit Entlastung wechselnd) und die Dauer der Belastung (Entlastung) Einfluß auf die Dehnungsfähigkeit des Betons nehmen, darf dahingestellt bleiben.

Schlußbemerkung.

Durch die vorstehenden Darlegungen und die zugehörigen Versuchsergebnisse dürfte die Frage der Dehnungsfähigkeit des Betons mit und ohne Eiseneinlagen in weitergehendem Maße als bisher klargestellt sein.

Der Beton an sich besitzt im armierten Zustande rund die gleiche Dehnungsfähigkeit wie bei Nichtarmierung.

Durch die unter Ziffer 2) bis 8) erörterten Einflüsse wird die Messung einer mehr oder minder großen Zunahme der Dehnungsfähigkeit des armierten Betons erklärt, durch das unter Ziffer 9) Bemerkte sogar die Messung einer Abnahme als möglich nachgewiesen.

Wenn in der einen oder andern Veröffentlichung ein bedeutend weiter gehender Unterschied in der Dehnung des armierten und des nicht armierten Betons — als in der Zusammenstellung 59 enthalten ist — angegeben wird, so findet man, falls die Veröffentlichung ausführlich genug ist, bei näherer Prüfung der Versuchsergebnisse, daß der Eintritt der ersten Risse eben nicht frühzeitig genug beobachtet worden ist (vergl. in dieser Hinsicht Heft 39 der Mitteilungen über Forschungsarbeiten S. 22 und 23). Hiermit soll kein Vorwurf ausgesprochen sein, sondern nur eine Bemerkung zum Zweck der Klarstellung gemacht werden. Einen Vorwurf zu äußern, liegt denjenigen natürlich fern, die aus ihrer eingehenden Beschäftigung mit Beton wissen, wie schwierig es oft ist, die ersten Risse rechtzeitig zu entdecken, und die auch nicht den Anspruch erheben, diese Entdeckung selbst immer rechtzeitig gemacht zu haben.

Stuttgart, Ende Mai 1907.

Fig. 27¹).

Untere Fläche eines 300 mm breifen Balkens mit einer Eiseneinlage von 25 mm Dmr. (Balken Nr. 16 mit Bauart nach Fig. 2).

1) Aus Heft 39 wiederholt.

Textblatt 1.

Fig. 166.

Untere Fläche eines 150 mm breiten Balkens mit drei Eiseneinlagen von je 10 mm Dmr. (Balken Nr. 52 mit Bauart nach Fig. 77).

Zusammanstellung 9 Ballion mit Banant nach Die CC Altant Hand & Mar

1	2	3	4	5	6	7	8 9	10	11	12	13 14	1	15	16	17	18 19	20	21	22	23	24	25 1	26 26		200. Alle	1 20	21	39 29	0.1	0 0 0 0	0 0 00		00 L	1	1	10			
			Abn	nessungen	des		Ahmessur	ngen der F	Fisencint	aren		1			Aendern	ngen der	Strecken		1	Verlängen	rungen	20	Zusam	nendrück	ungen	50	01	02 33	34	30 3	0 37	38	39 40	41		43 4	4 4	15	46
Bung				Balkens		Gewicht	11.0mcosul	agon der f	siseneinia	Gen der	der Rau	n- lasti	Be- ungen		(ve	ergl. Fig. (66)		auf de	er unteren	Balkenfläc	he	auf der	oberen Bal	lkenfläche		I	Durchbieg	gungen (vergl. Fig. 19	, Heft 39)		e in chnit	Eiser	rechnet 1	nach den G	Pmax, be leichunge	e- gen	
eichr	rüfungs- tag	Alter				Balkens	Durchme	esser G	Quer-	Ei eini	isen- gewie dagen des	ht (Anfa	P				1			Verlänge	erungen in	$1/_{200}$ cm	Meß- Zus	ammendrüc	kungen in	gesa	amte Durch	biegungen a	an den	bleibende	Durchbieg	angen an d	licke	atoni des J des J sruch	Se	ite 18, Hef	t 39		Bemerkungen
Bez			Breite b	Höhe h	Länge L	G -	$d_1 \mid d_2$	d ₃ so	fe Ch	ue	Ge Beto	ns $P =$	= 0 kg)	x_1	x_2 :	x3 y1	y_2	¥3	Meßlänge l	auf	die Meßlän	ge l	länge	cm auf die	Meßlänge l		Meß	stellen			Meßstelle	n	atond	einb nge m B sc	σμ	σ _e τ	. T.		Demerkungen
	-	Tage	em	em	çm	kg	em em	em	qem	em 1	kg	1	kg	mm n	nm n	nm mm	n mm	mm	em	gesamte	bleibende	federnde	em gesa	nte bleiben	de federnd	e a mm	b mm 1	c d nm mm	e n mm	a b mm mi	n mm	d mm	e A H	Lat	kg/aem k	r/acm kr/	em kg/a	acm	
40	8.12.06	210	15,02	30,77	216,0	231,8	1,02 1,03	3 1,00	2,44 9	9,58 4	4.10 2.2	9	500						20.0	0.01	0.00	0.10	70.1 0.0		0.00		0.010								Ng/qent Ng	5/qem Ag/e		qem	
												1	000						70,0	0,21 0,46	0,02 0,06	0,19 0,40	0,1 0,2 0,4	2 0 4 0,01	0,22 0,43	0,025 0,050	$\begin{array}{c cccc} 0,040 & 0, \\ 0,090 & 0, \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0 & 0,020 \\ 5 & 0,045 \end{array}$	0 0 0	0 0,010	0,005	0 0					I	Dauer des Versuches: 6 Stunden
												2	000							0,72	0,11 0,18	0,61 0,86	0,6	7 0,02 1 0,02	0,65	0,080 0,115	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	165 0,135 225 0,195	5 0,080 5 0,110	0,005 0,0 0,010 0,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0	,005					1	P = 2000 kg erste Wasserflocke
												2.	500 000							1,41 1,96	0,29 0,51	1,12 1,45	1,1	9 0,03 7 0,05	1,16 1,52	0,150	0,255 0, 0.345 0.	300 0,255 400 0,345	5 0,150 5 0,195	0,015 0,0	25 0,035	0,020 0	,010						
							100					3.	500 600							2,85	0,95	1,90	2,0	3 0,13	1,90	0,265	0,470 0,	535 0,465	5 0,265	0,050 0,01	0 0,115	0,085 0	,040						
												3	750							3,81	-	-	2,1	0 <u> </u>	-	-	-		-		-	-	_				1	I	P = 3750 kg: erster Riß, innerhalb der Meßstrecke
		1										4	500							4,86 7,24	1.87 2,54	2,99 4,70	2,6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,39 2,96	0,370 0,505	0,665 0, 0,925 1, 0	770 0,665 055 0,925	$ 5 0,375 \\ 5 0,505 $	0,090 0,1 0,130 0,2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,155 0 0,225 0	,085,120						
												5.	500							9,37 11,37	2,99 3,38	6,38 7,99	3,9 4,5	7 0,40 4 0,40	3,57 4,14	0,655	1,190 1, 1.445 1,	360 1,188 635 1,438	5 0,655 5 0,795	0,160 0,2	00 0,335 00 0,380	0,280 0	,150						
												6	000 500							13,32	3,65	9,67	5,1	0 0,39	4,71	0,955	1,720 1,	955 1,720	0 0,955	0,210 0,3	80 0,430	0,370 0	,205						
												7	000	0	0	0 0				16,78	4,10	12.68	6,2	5 0,43	5,82	1,275	2,290 2,	570 2,293	5 1,270	0,265 0,4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,415 (0,460 (,225						
												8	000 0	,010 0,	,040 0,	,040 0,01	10 0,015	0	nach 10 min	10,41	+, 52	-	0,1	- 0,40	0,32	1,435	2,570 2,	- 2,580	0 1,430	0,285 0,5	10 0,570	0,505	,275					I	P = 8000 kg: Längsrisse auf der unteren Balkenfläche
										6.9				0,010 0,010 0,010 0,010 0,010 0,00	,055 0, 055 0, 055 0, 0	,060 0,01 ,060 0,01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,005	» 15 » » 20 »	20,29	4,58	15,71	7,5	9 0,45	6,94	1,655	2,960 3.	290 2.98	5 1.620	0.355 0.6	20 0.670	0.585 (- 325					7	Zaishnavissha Davetallungan, dar Dahannaan und Durch
												(wied	000 derholt	0,040 0,070 0,070 0,070 0,070 0,00	,130 0, .175 0,	140 0,02 180 0.02	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,005	» 6 » » 10 »	-	-	-	_		_	-	_		-		-	-	-						biegungen: Fig. 96 bis 99
												Entlas	sten auf	,070 0,	,320 0,	280 0,03	30 0,055	0,005	» 15 »	-	-	-	- 1	. +	- 1	-	-	- 1 -			- 1 -	-	-					A	Lage der Nullinie mit steigender Belastung: Fig. 100 Abbildung der Unterfläche: Fig. 94
												(P	Pmax)	Nach 16 Nach 17	Minuten	n gleiten o n ergibt di	ie Eisen ie Messun	bei x sel g:	nr rasch. 1	Die Belastu	ing sinkt,	auch bei	fortgesetztei	n Durchbie	gen des B	alkens.							0,9	34,0	104,4	3146 10	,2 16,	,0 A	Abbildung einer Seitenfläche: Fig. 95 Querschnitt des Balkens beim ersten Riß: Fig. 113
													2	,820 3,	,320 2,	,840 0,03	30 0,055	0,005	-	-	-	-		+	-	-	-	- -	-		-	-	-						
43	8.12.06	217	15,07	30,62	216,0	231,6	0,99 1,05	5 1,00	2,42 9	9,55 4	1,10 2,2	9	500				a star		70,0	0,23	0,02	0,21	70,0 0,2	4 0,01	0,23	0,025	0,040 0,	045 0,045	5 0,030	0 0	0	0	0					I	Dauer des Versuches: 6 Stunden
												1	500				-	0.8		0,49 0,75	0,06 0,11	0,43 0,64	0,4	9 0,01 4 0,01	0,48	0,055 0,085	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 0,095 170 0,150	5 0,055 0 0,090	0 0 0	0	0 0,010 0	0,005						P = 1500 kg; arste Wasserflecke
												20	000 500							1,11	0,19	0,92	1,0	2 0,03 5 0.06	0,99	0,120	0,210 0, 0.285 0	235 0,215	5 0,125	0,010 0,01	20 0,020	0,020 0	,010						- ISSS AG. CISIS WASHINGAS
				126.5								3	000							2,08	0,53	1,55	1,7	3 0,12	1,61	0,210	0,375 0,	420 0,375	5 0,215	0,020 0,0	55 0,055	0,050 0	,030						
												30	600							3,52		-	2,1	9 -	-	0,285	- 0,510 0,		0 0,290		- 0,110	0,095 0						1	P = 3600 kg: erster Riß, außerhalb der Meßstrecke
					1							4	500							5,10 7,50	$1,78 \\ 2,49$	3,32 5,01	2,9 3,6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,51 3,12	0,415 0,565	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	845 0,755 165 1,040	5 0,425 0 0,580	0,100 0,13 0,135 0,2	85 0,200 55 0,285	0,185 0 0,250 0	,100					I	P = 3750 kg: Riß innerhalb der Meßstrecke
												50	000 500				1			9,73 11,47	3,07 3,39	6,66 8.08	4,3	0 0,56	3,74 4.29	0,730	1,315 1, 1,590 1,	480 1,320 775 1.580	0 0,735	0,170 0,3	15 0,350 35 0,395	0,310 0	,170						
						1.00						60	000							13,30	3,62	9,68	5,8	7 0,56	4,81	1,040	1,875 2,	095 1,880	0 1,055	0,225 0,4	0,445	0,405 0	,225						
												7(000	0		0 0		0		16,56	3,96	12,60	6,5	3 0,62	5,91	1,370	2,170 2, 2,490 2,	405 2,180 755 2,490	0 1,390	0,240 0,44 0,270 0,50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,440 0	,250					I	P = 7000 kg: Längsrisse auf der unteren Balkenfläche
												80	000	0	0	0 0	0	0,030	nach 3 min	18,26	4,15		7,1	2 0,62	6,50	1,550	2,825 3,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1,565	0,300 0,54	15 0,585	0 540 0	,300						
														0 0	0	$ \begin{array}{cccc} 0 & 0,01 \\ 0 & 0,01 \end{array} $	15 0 15 0	0,040 0,040	» 15 » » 20 »	19,93	4,41	15,52	7.6	9 0,61	7,08	1.775	- 3.145 3.	465 3.160	0 1.750	0.330 0.6	- 0.660	0.615 0	- 330						
												80 (wied	000 derholt	0	0	0 0,04	15 0,010 35 0,010	0,090	» 3 » » 6 »	-	=	-	-	+	-	-	-		-		-	-	-						Abbildung der Unterfläches Fig 94
												Entlas	ach sten auf	0 0.	.010	0 1,49	0 0 0 3 0	1,580	» 9 »	Kurze Z	eit nachher	sinkt di	e Belastung,	auch bei	weiterem I	Durchbiege	en des Balk	ens. Die F	Eisen gleit	ten bei y.	1 -	- 1	0,8	32,0	104,7	3169 10	,2 16,	,1 A	Abbildung einer Seitenfläche: Fig. 95
													max)	Cine spät $0 \mid 0,$	tere Mess, $020 \mid 0$,	o10 2,19	b: 5 0,040	2,230	-	_	_	-		1	1	-	_		_		_	-	_					4	Querschnitt des Balkens beim ersten Riß: Fig. 113
							14						I	Nach Enti	fernen d	es Betons	an der I	Bruchstell	e zeigte sic	h an Stab	2 loser Z	under.		1 It	1	1	1		1			1							
45	. 1. 07	219	15,10	31,06	215,9	234,5	1,00 1,00	1,00	2,36 9	9,52 3	,98 2,21	9	500	-					69,9	0,21	0	0,21	69,9 0,2	4 0,01	0,23	0,025	0,045 0,	050 0,045	5 0,025	0 0	0	0	0					I	Dauer des Versuches: $5^{1}/_{2}$ Stunden
											11/13/18-2	1	500							0,12	0,01	0,41 0,61	0,4	5 0,02 5 0,05	0,45	0,050	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 0,050 0 0,085	0 0,00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,005 0,015 0	0,005						
												20	000 500							1,00	0,14 0,23	0,86	1,0	2 0,06 8 0,06	0,96 1,22	0,115	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	235 0,210 305 0,270	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,03	20 0,020 25 0,030	0,020 0	,010					I	P = 2000 kg; erste Wasserflecke
												3(000 500							1,82 2,44	0.39	1,43 1,82	1,6	2 0,09 7 0,23	1,53	0,200	0,355 0, 0.450 0.	390 0,350 505 0,450	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,025 0,01	50 0,055 80 0,090	0,050 0	,030			1			
	1	i										39	900							3,49	1.31	2.63	2,5	3 -		-	0.025 0					-	-						
												45	500							6,70	2,21	4,49	3,5	1 0,53 1 0,54	2,97	0,505	0,635 0, 0,925 1.	0.620 040 0.915	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,080 0,13	$ \begin{array}{c} 0,170\\ 0,270 \end{array} $	0,150 0	,080					F	P = 4000 kg: erste Risse (je ein Riß innerhalb und außerhalb der Meßstrecke)
	-											50	500							9,05	2,75 3,16	6,30 7,88	4,2 4,8	1 0 57 8 0,65	$3,64 \\ 4,23$	0,660 0,825	1,200 1, 1,495 1,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0,155 0,29 0,195 0,30	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,290 0 0,350 0	,155						
												60	000 500					Sin 19		13,00 14,79	3,46 3,65	9,54 11,14	5,5	0 0.70 8 0.77	4,80	0 980	1,725 1, 2.050 2.	985 1,760 285 2,030	0 0,975 0 1.135	0,220 0,40	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,400 0	,215						
												70	000							16,40 18,13	3,84	12,56	6,7	8 0,80	5,98	1,300	2,365 2,	665 2,425	5 1,370	0.270 0,49	5 0,560	0,515 0	285						D 25001
												80	000	0	0	0 0	5 0.020	0	-	19,92	4,28	15,64	8,1	1 0,88	7,23	1,645	2,990 3,	385 3,115	5 1,740	0,320 0,59	0,615	0,625 0	,340	-				P	kenfläche
												(wied	lerholt	0	0	0 0,01	5 0,030	0,020	* 6 ×	-	-	-	-	I	-	-	_		-		=	-	_						
												Entlast P =	ten auf 0 kg)																	1.									
												85 (Pn	500 N max) E	ach rund ine späte	d 3 Min ere Mess	uten gleite sung ergal	en die Eis b:	en bei y	sehr rasch.	Die Bel	astung sinl	kt, auch 1	bei fortgese	ztem Durcl	hbiegen de	s Balkens.		1	1	1	1	1	0,8	29,0	110,1	3413 10	,6 16,	,9 A	Abbildung der Unterfläche: Fig. 94 Abbildung einer Seitenfläche: Fig. 95
1												1		0	0 0	0 2,80	0 2,310	2,985	-	-	-	-	- -	-	-	-	-				-	-	-	1				G G	Querschnitt des Balkens beim ersten Riß: Fig. 113
Durch	schnitt	215	-	-	-	-	- -	- 2	2,41 9	,55 4,	,06 2,29	1 -	-	-	- -	- -	-	-	-	-	-	-		-	-	-	-		-		-	-	- -	-	106,4	3243 10	,3 16,	5,3	

Zusammenstellung 9.

Zusammenstellung 10. Balken mit Bauart nach Fig. 67. Alter: rund 6 Monate.

1	2	3	4	5	6	7	8	9 10) 11	12	13	14	15	16	17	18 19) 20) 21	22	23	24	25	26	27	28 2	9	30 3	1 32	33	34	35	36	37 5	38 39	40	4	1	42	43 4	44	45	46
ang			Ab	messung Balker	en des ns	Gewicht	t Abm	essungen d	ler Eise	eneinlagen	Gewic	ht Ranm-	Be- lastunge	n	Aender (v	ingen der ergl. Fig. (Strecke 66)	n	auf d	Verlänge ler unteren	rungen Balkenfläc	che	Zusa auf de	ammendri er oberen	ückungen Balkenfläc	he		Du	rchbiegu	ungen (v	vergl. Fig.	. 19, Hef	ît 39)		te e im	lierte Eisens	itt enende	Spannun rechnet n Sei	gen unter ach den (te 18. He	Pmax, 1 Gleichun	be- ngen	
Bezeichm	Prüfung tag	s- Alter	Breite t	b Höhe	h Länge	L G des	s Dui	rehmesser	Quer schni	$\begin{array}{c c} \mathbf{r} & \mathbf{U}\mathbf{m}\mathbf{f}\mathbf{a}\mathbf{r}\\ \mathbf{i}\mathbf{t}\mathbf{t} & u_e \end{array}$	$\begin{array}{c} {\rm Eisen} \\ {\rm einlag} \\ {G_e} \end{array}$	en gewicht des Betons	P (Anfangslag $P = 0 kg$)	st x ₁	x_2	x ₃ y ₁	ı <i>y</i> :	2 1/3	Meßlänge	Verlänge auf	erungen in die Meßlän	¹ / ₂₀₀ cm nge <i>l</i>	Meß- länge	Zusammend / ₂₀₀ cm auf	drückungen die Meßlän	in ige l	gesamte	Durchbie Meßste	gungen an llen	ı den	bleibe	ende Dure Me	chbiegunge eßstellen	m an den	tetondick	einbetor finge des	om bru schn is Balke	σ _b	σ _e	τ_0	τ1	Bemerkungen
		Tage	em	em	em	kg	cm	cm cn	n qen	n cm	kg		kg	mm	mm	mm mn	m mi	m mm	em	gesamte	bleibende	federnde	em g	esamte ble	eibende fede	ernde	a l mm m	$n \qquad mm$	n mm	e mm	a mm	6 mm	c mm n	a e nm mm			m kş	g/qem kg	/qem kg/	qem kg	g/qem	
18	15.10.0	193	19,98	30,78	5 216,0	307,5	1,00	1,02 1,0	2,3	9 9,48	4,03	3 2,30	$500 \\ 1000$						69,9	0,17	0 0,01	0,17 0,34	69,9	0,19 0,40	0 0 0,02 0	,19	0,025 0,0 0,050 0,0	35 0,04 70 0,08	$\begin{array}{c c} 0 & 0,035 \\ 0 & 0,075 \end{array}$	0,025 0,050	0 0	0 0	0 0	0 0 0 0								Dauer des Versuches: $6^{1/2}$ Stunden
													$1500 \\ 2000 \\ 2500 \\ 3000$							0,56 0,78 1,03 1,48	0,04 0,09 0,15 0.31	0,52 0,69 0,88		0,62 0,84 1,10 1,43	0,05 0. 0,08 0. 0,11 0. 0 19 1	,57 ,76 ,99	$ \begin{array}{c cccc} 0,075 & 0,1 \\ 0,100 & 0.1 \\ 0,130 & 0,2 \\ 0,165 & 0.2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,075 0,105 0,135 0,170	0 0,005 0,010 0,020	0 0,005 0,015 0,035	$\begin{array}{cccc} 0,005 \\ 0,010 \\ 0,020 \\ 0,040 \\ 0,\end{array}$	$\begin{array}{c cccc} 0 & 0 \\ 010 & 0,00 \\ 015 & 0,01 \\ 035 & 0,01 \end{array}$	5 .0 .5							P = 2000 kg: erste Wasserflecke
																				$1,97 \\ 1,97 \\ 2,87 \\ 3,50 \\ 4,37 \\ 6,37 \\ 8,83 \\ 10,62$	0,50 0,50 0,89 - 1,52 2,17 2,87 2,87	1,1,1 1,47 1,98 - 2,85 4,20 5,96 7,41		1,74 2 26 2,55 2,84 3,50 4,21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,48 ,81 ,23 ,79 ,40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & 0,370 \\ & 0,490 \\ & - \\ & - \\ & - \\ & 5 & 0,675 \\ & 5 & 0,920 \\ & 0 & 1,220 \\ & 0 & 1,475 \\ & - \\ $	0,210 0,275 - 0,375 0,510 0,725 0,810	$\begin{array}{c} 0,040\\ 0,065\\ -\\ 0,105\\ 0,145\\ 0,190\\ 0,210\\ \end{array}$	0.060 0,105 0,175 0,250 0,330 0,360	$\begin{array}{ccccc} 0,065 & 0,\\ 0,125 & 0,\\ - & & \\ 0,205 & 0,\\ 0,290 & 0,\\ 0,375 & 0,\\ 0,415 & 0 \end{array}$	$\begin{array}{cccccc} 0.060 & 0.03 \\ 0.110 & 0.06 \\ - & - \\ 0.185 & 0.10 \\ 0.250 & 0.14 \\ 0.325 & 0.18 \\ 0.70 & 0.21 \end{array}$	5 5 0 0 10 35 0							P = 4250 kg: erster Riß, innerhalb der Meßstrecke
													6500 6500 7000 7500 8000 (P _{max})	0 0,015 0,025 0,075 Nach	0 0,070 0,090 0,150 16 Minute	0 0 0,010 0 0,010 0 0,030 0 en gleiten	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 en so rascl	nach 6 mi » 10 » » 15 » n. daß die	10,85 12,25 13,53 15,38 in Wage der	3.22 	9,84 aschine n	icht mehr	4,81 5,83 5,81 6,32 	0,82 5 - 0,90 4 	,91 racht y	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,950 1,070 1,290 - -		0,440 	0,510 0, - - -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,8	8 20	6,5	87,1	3149 7	7,5 1	15,8	Abbildung der Unterfläche: Fig. 101 Abbildung einer Seitenfläche: Fig. 102 Querschnitt des Balkens beim ersten Riß: Fig. 114
21	18.10.0	6 190	20,06	30,70	6 216,0	309,2	1,00	1,04 1,0	2,4	8 9,68	4,22	2 2,30	500 1000						69,8	0,15	0 0.01	0,15	69,7	0,18	0 0 0,01 0	,18,36	0,020 0,0	35 0,04 70 0,08	10 0,035 30 0,065	0,020	0	0 0	0 0	0 0 0 0								Dauer des Versuches: $6^{1/2}$ Stunden
													1500 2000 2500 3000 3500 4000							$0,55 \\ 0,77 \\ 1,00 \\ 1,36 \\ 1,81 \\ 2.44$	0,05 0,10 0,15 0,29 0,43 0,73	0,50 0,67 0,85 1,07 1,38 1,71		0,56 0,77 1,00 1,26 1,55	$\begin{array}{ccccc} 0.03 & 0 \\ 0.05 & 0 \\ 0.08 & 0 \\ 0.13 & 1 \\ 0.19 & 1 \\ 0.24 & 1 \end{array}$,53 ,72 ,92 ,13 ,36 66	$\begin{array}{ccccc} 0,070 & 0,1 \\ 0,095 & 0,1 \\ 0,120 & 0,2 \\ 0,155 & 0,2 \\ 0,195 & 0,3 \\ 0,245 & 0,4 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,065\\ 0,095\\ 0,120\\ 0,150\\ 0,190\\ 0,240\\ \end{array}$	$\begin{array}{c} 0\\ 0,005\\ 0,005\\ 0,015\\ 0,030\\ 0.050\end{array}$	$\begin{array}{c} 0\\ 0,005\\ 0,015\\ 0,030\\ 0,050\\ 0,075\\ \end{array}$	$\begin{array}{c cccc} 0 \\ 0,005 & 0, \\ 0,015 & 0, \\ 0,035 & 0, \\ 0,060 & 0, \\ 0,090 & 0 \end{array}$	$\begin{array}{c cccc} 0 & 0 \\ 0005 & 0,000 \\ 0115 & 0,000 \\ 035 & 0,011 \\ 050 & 0,033 \\ 075 & 0.051 \end{array}$)5)5 15 30							P = 2500 kg: erste Wasserflecke
													$ \begin{array}{r} 4000 \\ 4100 \\ 4250 \\ 4500 \\ 5000 \\ 6000 \end{array} $							$2,65 \\ 2,89 \\ 3,60 \\ 5,77 \\ 10,20$	1,32 2,04 3,34	- 2,28 3,73 6,86		1,98 2,10 2,39 3,08 4,23	0,24 1 - 0,40 1 0,55 2 0,67 3	,99 ,58 ,56	0,240 $0,3 -0,320$ $0,50,455$ $0,80,720$ $1,3$	55 0,63 05 0,91 05 1,47	$\begin{array}{c} 0,120\\ -\\ -\\ 30\\ 0,555\\ 15\\ 0,810\\ 70\\ 1,300 \end{array}$	0,240 - 0,315 0,450 0,710	0,085 0,125 0,195	0,135 0,200 0,330	0,355 0, 0,155 0, 0,240 0, 0,375 0,	- $ -$	75 10 30	4						P = 4250 kg: erster Riß, außerhalb der Meßstrecke $P = 4400$ kg: Riß innerhalb der Meßstrecke
													7000 8000	0 0,005 0,005	0 0,010 0,010	$\begin{array}{c cccc} 0 & 0 \\ 0,010 & 0 \\ 0,010 & 0 \\ \end{array}$		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	nàch 4 mi » 10 »	in	4,06	9,82		5,36	0,85 4	,51 — —	0,980 1,7			0,965	0,240	0,415	0,460 0,	,405 0,22 	20							P = 8000 kg: kurzer Längsriß auf der unteren Balken- fläche
													$9000 \\ (P_{\rm max})$	0,005 0,025 0,025 Nach 0,025 Nach	0,010 0,020 0,020 weiterem 0,020 dem Vers	0,010 0 0,010 0,0 0,010 0.8 Durchbieg 0,010 1,5 such wurde	0 0,0 090 0,0 880 0,0 gen des 510 0,0 e der B	10 0,015 20 0,060 040 0,070 Balkens er 050 0,080 Geton an	> 20 > > 1 > > 3 > gibt die Ma or Bruchstel	$ \begin{vmatrix} 17,51 \\ - \\ die W \\ essung: \\ - \\ le entfernt; \end{vmatrix} $	4,99 	12,52 	aschine k war abge	6,37 ann für P esprungener	0,99 5 	- - u erker	1,380 2,4 	95 2,80 Einspiele	00 2,545 en gebrach 	t werden		0,585	0,650 0, -	,595 0,33 	35 0,8	8 3	1,0	96,6	3418 8	8,5 1	17,6	 Abbildung der Unterfläche: Fig. 101 Abbildung einer Seitenfläche: Fig. 102 Zeichnerische Darstellungen der Dehnungen und Durch biegungen: Fig. 103 bis 105 Lage der Nullinie mit steigender Belastung: Fig. 106 Querschnitt des Balkens beim ersten Riß: Fig. 114
28	30.10.(6 193	20,10	31,05	2 216,1	311,7	1,03	1,00 1,0	04 2,4	7 9,65	4,30	2,29	500						69,9	0,17	0,01	0,16	69,9	0,18	0,01 0	,17	0,020 0,0	35 0,04	10 0,035	0,020	0	0	0	0 0								Dauer des Versuches: 6 Stunden
													$ \begin{array}{r} 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ \end{array} $							$0,35 \\ 0,56 \\ 0,77 \\ 1,02 \\ 1,42 \\ 1,83 \\ 2,52 \\ 0,56 \\ 0,77 \\ 1,02 \\ $	$\begin{array}{c} 0,02\\ 0,07\\ 0,11\\ 0,16\\ 0,30\\ 0,48\\ \end{array}$	$0,33 \\ 0,49 \\ 0,66 \\ 0,86 \\ 1,12 \\ 1,40$		$\begin{array}{c} 0,36\\ 0,58\\ 0,80\\ 1,05\\ 1,29\\ 1,56\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,35 ,54 ,75 ,97 ,19 ,43	$\begin{array}{c} 0,040 \\ 0,065 \\ 0,065 \\ 0,100 \\ 0,120 \\ 0,155 \\ 0,185 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 0.045 \\ 0 & 0.070 \\ 0 & 0.095 \\ 0 & 0.125 \\ 0 & 0.160 \\ 0 & 0.195 \\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 0,005\\ 0,005\\ 0,015\\ 0,020\\ 0.010\\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 0,005\\ 0,015\\ 0,030\\ 0,040\\ 0,055\end{array}$	$\begin{array}{c} 0\\ 0,005\\ 0,015\\ 0,025\\ 0,045\\ 0,060\\ 0,060\\ 0\end{array}$	$\begin{array}{c ccccc} 0 & 0 \\ 0 & 0 \\ 0,010 & 0,00 \\ 0,010 & 0,01 \\ 0,025 & 0,01 \\ 0,045 & 0,05 \\ 0,05$	05 10 15 25							P = 2500 kg: erster Wasserfleck
													4000 4100 4250 4500 5000							2,46 2,71 3,26 3,88	0,75 — 1,49	1,71 - 2,39		1,95 2,06 2,24 2,41	0,26 1	,69 	0,310 0,5			0,245 - 0,320 0,455	0,040	0,075	0,035 0 - 0,160 0 0,240 0	- $ -$	70							P = 4250 kg: erste Risse, innerhalb und außerhalb de Meßstrecke
													5000 6000 7000 8000 9000 9350 (Pmax)	0 0 0	0 0 0	0 0 0 0,0 0 0,0		0 0 010 0,030 010 0,130	nach 4 mi » 6 »	5,76 9,62 13,09 16,29 19,85 in —	2.13 3,24 3,84 4,49 5,09	5,63 6,38 9,25 11.80 14,76 —		3,05 4,16 5,19 6,29 7,36 —	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,58 ,53 ,54 ,52 ,51	0,435 0,5 0,685 1,5 0,945 1,7 1,265 2,5 1,600 2,8 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,455\\ 0,705\\ 5&0,965\\ 1,310\\ 5&1,650\\ -\\ -\\ -\end{array}$	0,095 0,170 0,205 0,285 0,335 -	$\begin{array}{c} 0,185\\ 0,315\\ 0,380\\ 0,505\\ 0,610\\\\ -\end{array}$	0,240 0 0,375 0 0.450 0 0,580 0 0,705 0 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 05 85 45 - 0,	,7 3	32,0	98,2	3521	8,7	18,1	P = 8000 kg: kurze Längsrisse auf der unteren Balken fläche
														0 Nach	0 weiterem	0 1,1 Durchbieg	20 0,0 gen des	Balkens en	» 8 » rgibt die M	die W	age der P	rüfungsm	aschine k	ann nicht	mehr zum	Einsp	oielen gebra	cht werde	en.													Abbildung der Unterfläches Fig. 101
														0 Stab	0 2 zeigt n	0,020 2,5 ach Entfer	570 0,0 rnen des	50 3,270 8 Betons vi	- iel losen Zu	inder. An	Stab 1 ist	_ t ebenfall	s etwas Z	- Zunder abg	- gesprangen	- 1	- -	- 1 -		1 -	-	-	- 1	- -	-							Abbildung einer Seitenfläche: Fig. 102 Querschnitt des Balkens beim ersten Riß: Fig. 114
Dure	enschnit	t 192	-	-	-	-	-		- 2,4	5 9,60	4,18	8 2,30	-	-	-			- -	-	-	-	-	-	-	-	-				-	-	-	-		- -	- 1	-	94,0	3363	8,2	17,2	

	0	0 1	1 1	1 5	1 0	1 0 1	0 1 0	1.10	1	1	1	1	1	1	10 1		10 1	Zusan	Imensteri	ung II.	Darken	mit Be	iuari na	ten rig.	00. AI		IU 5 Monat		1								-		1	
1	2	5	4	0	6		8 9	10	11	12	1 13	14	1 15	16	17	18 1	19 20	0 21	22	23	24	25	26	27	28	29	30 31	32	33	34	35 36	37	38	39 40	41	42	43	44	45	46
au			Abm	Balkens	1 des	Gewicht	Abmessu	ingen der	r Eisene	einlagen	Gewich	Raum	Be-	n	Aende (rungen der vergl. Fig	r Strecke . 66)	n	auf d	Verlänge er unteren	rungen Balkenflä	che	Zusa auf de	ammend er oberen	rückung n Balkenf	gen fläche		Dur	chbiegur	ngen (ver	gl. Fig. 19,	Heft 39)		e in	ierte Eisen nquer t	span rechn	et nach	unter $P_{\rm ma}$ den Gleic	ax, be-	
ehnu	Prüfungs-	Alter				des Balkens	Durchm	nesser	Oner-		Eisen-	- gewicht	t P						-	Verlänge	erungen in	1/200 cm		Zusammer	ndrückung	gen in	gesamte I	Durchbieg	ungen an (den	bleibende I	Durchbiegu	ingen an d	en licke	etoni des] 3rucl	alker	Seite 1	8, Heft 39	9	Bemerkungen
ezei	tag		Breite b	Höhe h	Länge L	G		1.	schnitt	t Umfang	$g = \frac{\text{einlage}}{G_e}$	en des Betons	P = 0 kg	x_1	x_2	<i>x</i> 3	y1 y2	2 1/3	Meßlänge d	auf	die Meßlär	nge l	Meß- 1 länge	/200 cm au	uf die Meß	länge l		Meßstell	len			Meßstelle	n	tond	einb nge m E	B B	σ.	To	7.1	Demotrangen
H		Tage	em	em	em	kø	d_1 d_2 cm cm	d ₃	fe	em	ka		ka	mm	10100	mm				gesamte	bleibende	federnde	l g	esamte bl	leibende f	edernde	a b	c	d	e	a b	с	d	e A d	Lä	E balaar	her laan	talaam	Imlaam	
1		2480		Citt	CIII	ng			qui				I Ag		mm				l em				cm												l em	kg/qci	n kg/qen	n kg/qem	kg/qem	
95	27. 3. 07	82	30,20	30,76	216,0	461,6	1,40 1,4	1 1,42	4,68	13,29	7,94	2,27	1000 2000						70,0	0,22	0	0,22	70,0	0,24	0	0,24 0,52	0,025 0,05 0,055 0,10	0 0,055 0 0,115	0,050 0,100	0,030 0,055	0 0 0 0	0	0	0						Dauer des Versuches: 3 ¹ /4 Stunden
													3000							0,81	0,03	0,78		0,83	0	0,83	0,095 0,16	0 0,180	0,160	0,090	0 0	0	0	0						P = 4000 km; arsta Wassarflacka
											1		5000			3.00				2,00	0,37	1,63		1,25	0,13	1,60	0,200 0,36	0 0,200	0,250	0,205 0	0,025 0,045	0,050	0,015 (0,025						T = 4000 kg. erste wasserneuke
									1				5500 6000						-	2,68	1,06	$^{-}_{2,86}$		2,05 2,48	0,28	2,20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,450	0,250 0,325 0	0,070 0,130	0,135	0,115 (0,065	12.50					P = 5500 kg: erster Kiß, innerhalb der Meßstrecke
													7000 8000		1.23	TRUE IN			1259	6,29 8,21	1,65 1,99	4,64		3,28 3,94	0,41	2,87 3,49	0,490 0,89 0,660 1,19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,910	0,500 0	$ \begin{array}{c ccccc} 0,100 & 0,195 \\ 0,135 & 0,245 \\ \end{array} $	0,210	0,180 0	0,095 0,135						
										1915-1			9000 9500	0	0	0	0 0	0	nach 10 mir	10,01	2,21	7,80		4,61	0,51	4,10	0,830 1,48	5 1,650	1,470	0,795	0,165 0,295	0,320	0,280 (0,145						P-9500 kg. Längsriß auf der untern Balkenfläche
					5-11							1997		0,075	0,050	0,040	0 0	0	» 20 »	-		_		-	-	-		- 1 070	-	-		-	-	-	19	07.1	2007	0.7	14.5	thilden der Unterflächet Fig. 107
													10000	0,140	0,030	0,110		0	» 1 »	11,21	_	_		4,92	-	-		5 1,870	1,660	-		=	1 - 1	- 0,1	42	07,4	2087	0,5	14,7	Abbildung einer Seitenfläche: Fig. 107.
													(P_{\max})	Nach	rund 2	Minuten g	leiten die	Eisen be	i x sehr rase	h. Die B	Belastung s	inkt, auc	h bei for	tgesetzten	n Durchbi	iegen des	Balkens.	1	1	1		1	1							Querschnitt des Balkens beim ersten Riß: Fig. 115.
96	3.4.07	86	30,03	30,43	215,9	457,6	1,41 1,4	2 1,40	4,68	13,29	7,87	2,29	1000						70,2	0,26	0,02	0,24	70,2	0,26	0	0,26	0,035 0,05	5 0,065	0,050	0,030	0 0	0	0	0						Dauer des Versuches: 4 Stunden
						1.51			1. 18				3000							0,89	0,05	0,48		0,58	0,02	0,85	0,005 $0,110,100$ $0,17$	5 0,200	0,105	0,100	0,005 0,010	0,010	0,010	0,005						P = 3500 kg: erste Wasserflecke
									1.2.1.5		1.1.1.	a train	4000 5000							$1,34 \\ 2,21$	$0,25 \\ 0,56$	1,09 1,65		1,27 1,83	0,05 0,19	$1,22 \\ 1,64$	$\begin{array}{c ccccc} 0,145 & 0,25 \\ 0,210 & 0,36 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0,245 \\ 0,375$	0,145 0,215	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,025 0,065	0,025 0	0,015	-				1.0	
	1200												5250 5500							2,63 3,04	Ξ	_		2,10 2,31	-	-	I I	_	_	-		=	_	-						P = 5250 kg: erste Risse, innerhalb der Meßstrecke
													6000 7000							4,28	1,43 2 1 3	2,85		2,72	0,41	2,31	0,340 0,61	5 0,705	0,615	0,345	0,070 0,140	0,165 0,240	0,140	0,080						
									1				8000							8,51	2,57	5,94		4,27	0,54	3,73	0,650 1,18	5 1,350	1,180	0,670	0,140 0,270	0,300	0,270	0,155						
				1						12.		1 2 4	10000	0	0	0	0 0	0		100,41 12,23	$2,94 \\ 3,28$	7,47 8,95		5,01 5,75	0,58	$4,43 \\ 5,15$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1,700 5 2,065	1,510 1,855	0,855	0,170 0,320 0,205 0,374	0,360 0,425	0,315 0,395 0	0,190 0,235						
													10000 (wiederholt	t 0	0	0 0	0 0 0	0,020	nach 2 mir » 4 »	_	Ξ	-		_	-	=	= =	=	_	-		_	_	_						
								-			1.200		Entlasten au $P = 0 k c$	ıf																										
													10500	0	0	$\begin{array}{c c} 0 & 0, \\ 0 & 0 \end{array}$	015 0,0	05 0,045	» 6 »	-	-	-		-	-	-		-	-	-		-	-	-						P = 10500 kg: Längsrisse auf der untern Balkenfläck Zeichnerische Darrfellungen der Dehnungen und Durg
												1 1 1 1 1		0	0	0 0,	015 0,0	05 0,060	» 18 »	13,43	-	_		6,20	-	-	= =	-	-	_		_	-	-						biegungen: Fig. 109 bis 111.
		1					1						$ \begin{array}{c} 11000\\ (P_{\max}) \end{array} $	0	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0.45 & 0.0 \\ 0.75 & 0.0 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	» 2 » » 6 »	Ξ	Ξ	-		=	-	-		=	_	=		=	_	- 0,	36	75,1	2290	7,1	16,0	Lage der Nullinie mit steigender Belastung: Fig. 11. Abbildung der Unterfläche: Fig. 107.
										1 19 1.				0 Nach	0 10 Minr	$0 \mid 0,$	125 0,0 n die Eis	55 0,240	» 8 »	-	-	-		- 1		- 1	- -	-	-	-	- -	-	-	-						Abbildung einer Seitenfläche: Fig. 108. Querschnitt des Balkens beim ersten Riß: Fig. 115.
97	6.4.07	85	20.10	20.05	215.0	459.0	1.1. 1.		1.75	19.00						SIGIDO.		Sent F		Austung SI	and datter	ind,							1	0.001		1								Davar des Versnehmen (Strader
		00	50,10	50,65	210,9	4.59,0	1,41 1,44	4 1,41	4,75	13,38	7,85	2,27	1000 2000						69,9	0,24 0,55	$0,01 \\ 0,04$	$\begin{smallmatrix}0,23\\0,51\end{smallmatrix}$	69,9	0,29 0,58	0	0,29 0,58	$ \begin{array}{c ccccc} 0,030 & 0,05 \\ 0,070 & 0,11 \end{array} $	0 0,060 0,125	0,055	0,030 0,065	0 0 0	0	0	0						Dauer des versuches: 4 Stunden
								1					3000 4000							0,91 1,42	$0,12 \\ 0,25$	0,79 1,17		0,93 1,34	0,01 0,08	0,92 1,26	$ \begin{array}{c cccc} 0,110 & 0,18 \\ 0,155 & 0,27 \end{array} $	0 0,200 0 0,300	0,185	0,105	0,005 0,010 0,010 0,02	0,015 0,025	0,010 0,025	0,005 0,010						P = 4000 kg: erste Wasserflecke
													5000 5250							2,32	0,59	1,73		1,94	0,20	1,74	0,235 0,41	0 0,460	0,415	0,235	0,035 0,070	0,070	0,065	0,030						
							19 36						5500							3,08	-	-		2,36	-	-		-	-	-		-	-	-			-			P = 5500 kg: erste Risse, innerhalb und außerhalb de
							12 - 13						6000 7000							4,70 7,38	1,68 2,3,6	$^{3,02}_{5,02}$		2,78 3,68	0,41 0,54	2,37 3,14	$\begin{array}{c ccccc} 0,375 & 0,67 \\ 0,555 & 1,00 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,665	0,365	0,080 0,153 0,120 0,223	0,165 0,250	0,150 0,225	0,080 0,115				1.4.41		MEDSTLECKS
-						1000							8000 9000							$9,40 \\ 11,17$	2,73 2,93	$6,67 \\ 8,24$		4,44 5,20	0,60 0,62	3,84 4,58	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,300 1,585	0,715 0,865	0,145 0,27 0,175 0,31	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,280 0,310	0,140 0,155						
													10000	0	0	0	0 0	0		12,88	3,14	9,74		5,93	0,65	5,28	1,035 1,86	0 2,080	1,875	1,015	0,200 0,36	0,385	0,345	0,175						
						-15 10-1		-					11000	0,010	0,020	0 005	0 0,0	15 0	nach 2 mir	,	-	-		-	-	-		-	-	-		-	-	-						
							141 11							0,020	0,030	0,005	0 0,0	25 0,010 25 0,010	» 6 » » 12 »	14,68	3,41	11,27		6,79	0,75	6,04	1,275 2,27	0 2,510	2,240	1,215	0,255 0,44	5 0,470	0,415	0,210						
							La de		1.		3.2.5		11000 (Pmax,	0,090 0,115	0,085 0,110	0,055 0,085	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	» 6 » » 12 »	14,99	-	-		6,94	-	_	= =	-	-	-		-	-	- - 0,	42,5	73,6	2240	7,1	16,0	
		,					The way						wiederholt	0,155	0,145	0,120 Minuton	o, 0, 0, 0	50 0,035	> 18 >	-		-		-	-	-	- -	-	-	-	- -	-	-	-						Abbildung der Unterflächer Fig. 107
													P = 0 kg)	I Mach	and 20	Minaten	stellen d	le Lisen f	x sehr ra	sen.				1	1				1			1	1							Abbildung einer Seitenfläche: Fig. 107.
Durch	chnitt	84						1 1	1.70	19.00	1 7 00																									1		1		Querschnitt des Balkens beim ersten Riß: Fig. 115.
- ur off	on mot	04		-	-	-		-	4,70	13,32	7,89	2,28	-	-	-	-			- 1	-	-	-	-	-	-	-		-				-	-			72,0	220	6 6,9	15,6	

Zusammenstellung 11.

Zusammenstellung 12.

5 17 1 2 3 4 8 9 10 11 12 13 14 15 16 6 erste Risse Spannungen unter P_{\max} , berechnet Wasserflecke nach den amtlichen Bestimmungen Bezeichnung Belastung, unter welcher Spannungen unter der Belastung in (Heft 39, Seite 18) $100 \frac{f_e}{f_e}$ Belastung Verlängerung des Belastung, unter Verlängerung des Spalte 6, berechnet nach den amt-Bauart Betons unter der Pmax 5 7 welcher zuerst Betons unter der noch der erste Riß lichen Bestimmungen (Heft 39, S. 18) Belastung in Wasserflecke be-Belastung in kein Riß beobachtet σ_b τ_0 τ_1 Spalte 6 0e obachtet wurden Spalte 4 bemerkt wurde wurde σ_b σe 70 71 vH kg kg kg/qem kg/qem kg/qem kg/qem mm/m kg mm/mkg kg/qcm kg/qcm kg/qcm kg/qcm nach Fig. 66 40 0,53 2000 0,07 3600 3750 0,236 47,0 1416 4, 67,2 8000 104,4 3146 10,2 16,0 b = 150, h = 300 mm1500 3500 3600 1386 8000 104,7 3169 16,1 43 0,05 45,8 4,5 7,0 10,2 0,52 0,220 Einlagen: 3 gerade Rundeisen, 10 mm stark 45 0,50 2000 3900 4000 50,5 1566 4,9 7,7 8500 110,1 3413 10,6 16,9 0,07 0,250 Durchschnitt 0,52 0,06 0,235 47,8 1456 4,7 7,3 8167 106,4 3243 10,3 16,3 nach Fig. 67 0,39 2000 0,06 4000 42500,205 44,1 1586 3,8 8,0 8000 87,1 3149 7,5 15,8 18 b = 200, h = 300 mm21 2500 44,2 1563 9000 96,6 3418 0,40 4100 4250 3,9 17,6 0,07 0,190 8,0 8,5 Einlagen: 3 gerade Rundeisen, 10 mm stark 28 0,40 2500 4100 4250 43,4 15523,8 7,9 9350 98,2 3521 8,7 18,1 0,07 0,194 Durchschnitt 0,07 0,196 43,9 1567 8783 94,0 3363 17,2 0,40 3,8 8,0 8,2. nach Fig. 68 95 0,50 4000 0,09 5000 5500 0,143 33,7 1043 3,2 7,3 10 000 67,4 2087 6,5 14,7 b = 300, h = 300 mm3500 5000 5250 34,2 1041 7,2 11 000 2290 96 0,08 0,157 3,2 75,1 7,1 16,0 0,51 Einlagen: 3 gerade Rundeisen, 14 mm stark 97 0,51 4000 0,10 5250 5500 0,192 35,1 1069 7,7 11 000 73,6 2240 7,1 16,0 3,4 Durchschnitt 0,51 0,09 0,164 34,3 1051 10 667 72,0 2206 15,6 3,3 7,4 6,9

Zusammenstellung 12. Balken mit Bauart nach Fig. 66 bis 68. Einlagen: je 3 gerade Rundeisen. Alter: nach Fig. 66 und 67 rund 6 Monate, nach Fig. 68 rund 3 Monate.

Zusammenstellung 13. Balken mit Banart nach Fig 69. Alter: rund 6 Mona

1	2	3	4	5	6	1 3	7	8 9	10	11	12	13	14 1	15	16	17	18	19	20	21	22	23	1 24	25	26	27	28	29	30	31	39	9.2	94	25	26 1	97	1 90	20	40	1
			Ab	messung	en des			Abmessun	igen der				Aenderung der Streck	gen	Ver	längeru	ingen	İ	Zus	ammen	drücku	ngen		20			20	20	00	51	02		Abstand	der Obe	rfläche	Spanni	ingen he	rechnet r	ach den	41
gana	Prüfunge	Alten		Balker	ns	Gew de	es	Eisenei	inlage	der	Raum-	lastunge	n (vergl. Fig.	69)	auf der u	interen B	alkenfläch	e	auf d	der ober	en Balke	enfläche			Dure	nbiegui	ngen (v	ergl. Fig.	5. 19, He	ert 39)			der Eisen Bal	einlage v kenflächer	von den n	Gleich	ungen S	eite 18, J	Heft 39	
zeich	tag	Alter	Breite	h Höhe	h Länge	Balk	kens G Di	mr. Quer	Umfan	g einlag	e des	(Anfangslas	st		V	erlänger auf di	ungen in ¹ e Meßläns	/200 cm	Meß-	Zusamm	nendrücku auf die M	ingen in feßlänge L	ge	samte Du	rchbiegu	ingen an	den	bleib	bende Du	rchbiegur	ogen an	den	im Bruch-	an den	Balken-					Bemerkungen
Bei			Dicite	Indite	n Lange	C L		d fe	ue ue	Ge	Betons	P = 0 kg) 20 1	y Meß	lange l				länge _	1200			- a	b	c		-		b	c	a		querschnitt	end	den	σb	σe	$ au_0$	τ_1	
		Tage	em	em	em	k	g ci	m qem	em	kg		kg	mm m	im o	em ge	esamte b.	leibende f	edernde	em	gesamte	bleibende	e federnde	e mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	em	em	en	kg/qcm	kg/qcm	kg/qcm	kg/qem	
25	24.10.00	189	30,20	31,37	7 216,	,0 47	6,5 2,	50 4,91	7,85	8,60	2,30	1000		7	0,2	0,22	0,01	0,21	69,8	0,26	0,03	0,23	0,030	0,045	0,050	0,045	0,025	0	0	0	0	0					1			Dauer des Versuches: 5 Stunden
												2000 3000				0,48 0,76	0,04 0,07	0,44 0,69		0,52 0,86	$0,06 \\ 0,14$	0,46 0,72	0,060 0,095	0,090 0,155	0,110 0,185	0,100 0,160	0,055 0,095	0 0,005	0 0,010	0 0,015	0 0,010	0 0,010								
												$ 4000 \\ 4250 $				1,11 1,23	0,12	0,99		1,18	0,19	0,99	0,135	0,225	0,260	0,230	0,135	0,015	0,020	0,030	0,030	0,015		1.60						P = 4250 km orsto Wassarflooko
												5000 5500				1,81 2,23	0,50	1,31		1,54 1.75	0,23	1,31	0,190	0,315	0,365	0,330	0,190	0,035	0,050	0,060	0,060	0,035								1 - 1200 kg. cisto Wasserneeke
												5650 5750		0		2,39	_	-		1,83	Ξ	-	-	-	-	-	-	-	-	-	-	-								P = 5650 kg: erster Riß, außerhalb der Meßstrecke
												5900 6000	0 0	0		2,79	1.09	- 1.07		1,97		1.71	-	-	-	-	-	-	-	_	-	_								P = 5900 kg: Riß innerhalb der Meßst ecke
												6250	0,050 0) nach	4 min	-	-	-		2,05		-	0,275	0,465	0,535	0,475	0,275	0,065	0,100	0,120	0,105	0,060				u 40,9	nter $P_g = 1225$	= 6250 kg 4,0	g: 15,3	P = 6250 kg: der Riß unter der linken Belastungsrolle
												6500	0,090 0		15 »	3,34	-	-		2,11	_	-	-	-	_	-	_	-	_	_	_	-								hat sich über die ganze Balkenbreite verlängert
									5			0300	0,110 0,00))50 »	2 » 6 »	-	_	-		-	_	-	-	-	-	-	-	-	-	_	-	-								P = 6500 kg: nach rund 5 Min. verlängert sich der Riß unter der rechten Belastungsrolle plötzlich über
													$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)80 »)80 »	12 » 20 »	3,19	_	-		2,14	_	-	=	-	_	=	=	_	_	_	_	-								die ganze Balkenbreite
								2				6750	$\begin{array}{c cccc} 0,130 & 0,1 \\ 0,130 & 0,1 \end{array}$	105 » 105 »	2 » 6 »	3,21	_	-		2,13	-	-	=	=	-	-	=	-	Ξ	-	-	-								
												7000	$\begin{array}{c cccc} 0,150 & 0,1 \\ 0,150 & 0,1 \end{array}$	130 » 130 »	2 » 6 »	3,23	_	-		2.17	-		=	=	-	-	_	-	-	- 0.480	-	-								
												0 7000	$\begin{array}{c cccc} 0,150 & 0,1 \\ 0,200 & 0,1 \end{array}$	20 » 170 »	3 » 2 »	-	1,47	1,76		=	0,35	1,82	=	=		-	-	-	-	_	-	-								
												(wiederholt nach Entlasten au	0,200 0,1	.70 »	6 » (2	2,97)	-	-		(2,09)	-	-	-	-	-	-	-	-	-	-	=	-								
												P = 0 kg 7500	0.275 0.2	30 »	6 »	3.06				2 90																				
												8000	0,275 $0,20,350$ 0.3	30 »	9 » 2 »		-	-		_	-	-	-	-	-	-	-	-	-	_	-	-								
													0,375 0,3	30 »	10 » :	3,15	-	-		2,37	-	-	1,235	2,010	2,110	2,050	1,235	-	_	_	-	_								P = 8000 kg: kurzer Längsriß auf der unteren Balken- fläche
			•									0	0,310 0,2	90	9	-	1,54	1,61		-	0,39	1,98	=	-	_	_	-	0,445	0,720	0,760	0,730	0,445								Aenderungen der Strecken x und y : Fig. 116
								-				(wiederholt nach	0,490 0,5	00 »	6 »	-	=	-		_	Ξ	-	-	=	-	_	-	-	_	-	-	-								Zeichnerische Darstellungen der Dehnungen und der Durchbiegungen: Fig. 121 bis 123
-												Entlasten auf $P = 0 \text{ kg}$	f 0,490 0,5	.00 / "		3,08)	-	-		(2,36)	-	-	-	-	-	-	-	-	-	-	-	-	0,9	1,45	0,8	ur	ter P _{max}	a = 8500	kg:	Abbildung der Unterfläche: Fig. 117 Abbildung einer Seitenfläche: Fig. 118
				-								$(P_{\rm max})$	den Bei	ton von d	t rund ¹ / ₂ er Stirnflä	che ab.	gewirkt h Die Bela	stung sin	en sich nkt.	auf der	Stirnseit	te des B.	alkens h	bei y Riss	se. Der	Haken	der Eise	eneinlage	biegt	sich auf	und d	lrückt				55,6	1667	5,4	(20,8)	Abbildung der Stirnflächen: Fig. 119 und 120
27 3	1.10.06	195	30,01	31,15	215,9	470,	,5 2,5	0 4,91	7,85	8,65	2,30	1000		70	0,0	0,21	0	0,21	69,9	0,24	0,01	0,23	0,030	0,040	0,055	0,045	0,020	0	0	0	0	0								Dauer des Versuches : 5 ¹ / ₂ Stunden
												2000 3000				0,46。 0,75	0,02 0,06	0,44 0,69		0,50 0,78	$0,02 \\ 0,04$	0,48	0,050 0,085	0,090 0,155	0,110 0,180	0,100 0,155	0,055	0	0	0,005	0	0								
												$\begin{array}{r} 4000\\ 4500\end{array}$			1	L,08 L,25	0,14	0,94		1,08 1,25	0,09	0,99	0,120	0,215	0,260	0,220	0,125	0,005	0,015	0,025	0,020	0,010		-						P-4500 kg; arstar Wassarflaak
					1							$\begin{array}{c} 5000\\ 5500\end{array}$			1	1,53	0,26	1,27		1,45	0,17	1,28	0,165	0,295	0,355	0,300	0,175	0,015	0,035	0,060	0,035	0,025					1			1 - 1000 kg. erster wasserneek
												$\begin{array}{c} 5750\\ 6000\end{array}$	0 0		2	2,28	0.80	-		1,83	0.30	- 1.69	-	0.420	-	-	-	-	-	-	-	-					mton D	0750.3		P = 5750 kg: erste Risse (zwei außerhalb, einer inner-
												6750	0 0,0	85 nach	4 min		_	-		-	-	-	-	-	-	0,435	0,245	-	-	0,110	- 0,080	0,045				44,6	1330	= 6750 k	16,6	halb der Meßstrecke) P = 6750 kg: der Riß unter der rechtenBelastungsrolle
												7000		70 » 1	5 » 3	3,68	-	-		2,45	-	-	-	-	-	_	-	-	-	_	-	-								erstreckt sich über die ganze Balkenbreite
												,	0,170 0,20	05 »	6 >	_	-	-		-	-	-	0,860	1,435	1,550	1,470	0,890	0,290	0,480	0,510	0,475	0,295								P = 7000 kg: die Risse unter der linken Belastungsrolle reichen nach 1 Min. plötzlich über die ganze Bal-
											-	8000	0,355 0,34	45 ×	3 »	-	-	-		2,45	0,40	2,05	-	=	Ξ	-	=	-	-	-	-	-								kenbreite. $P = 7000$ kg: kurzer Längsriß auf der unteren Balkenfläche
												8400	0,390 0,30	65 × 1	9 » 2 » 3	,84	1,53	2,31		2,74	0,53	2,21	1,250	2,040	2,140	2,045	1,260	0,450	0,730	0,760	0,700	0,435						-		
												8400	1,130 0,50	95 » 05 »	3 » 6 »	-	-	-		-	E.	1	=	-	-	_	-	-	-	-	=	-				1				P = 8400 kg: nach kurzer Dauer dieser Belastung zeigen sich auf der linken Stirnfläche Risse
													Die Risse	bei x wei 40 nach 2	den zahlr 0 min 3	eicher, d	ie Meßplat	tte wird	lose.	2,76	_	- 1	-	1 - 1	4.220	- 1	- 1	- 1	- 1	- 1	- 1	_								
													0,56	60 » 3 60 » 3	0 » 5 »	_	-	-		-	_	-	-	=	4,310	-	_	-	-	_	-	-								Zeichnerische Darstellungen der Dehnungen und Durch- biegungen: Fig. 124 bis 126
											1999	8700	0,50	60 × 4	5 »	-	- dan Stim	-	1 Pi	-	-	-	-	-	4,360	-	-	-	-	-	-	-		0.0	1.1	ur	ter Pmax	= 8700	kg:	Abbildung der Unterfläche: Fig. 117 Abbildung einer Seitenfläche: Fig. 118
												(Pmax)	Nach rund	8 Minut	en ist der	Haken	bei x sehr	stark a	ufgebog	gen, die	Wage der	r Prüfung	gsmaschi	ine kann	nicht m	ehr zum	Einspiel	len gebra	acht wer	den.			0,8	0,9	1,1	57,5	1714	5,6	(21,4)	Abbildung der Stirnflächen: Fig. 119 und 120
33 1.	12.06	220	80,25	31,22	215,9	472,0	0 2,49	4,87	7,82	8,50	2,29	1000		70	,0 0	,25	0,03	0,22 7	70,0	0,23	0	0,23	0,030	0,045	0,050	0,045	0,030	0	0	0	0	0								Dauer des Versuches: 4 ¹ / _o Stunden
												2000 3000			0	,48	0,05 0,10	0,43		0,50 0,76	0,02 0,03	$0,48 \\ 0,73$	0,060	0,100	0,110 0,185	0,095	0,060	0	0,005	0,005	0,005	0,005					£			Dudit des fersitenes, 172 Stunden
								-				4000 5000			1	,14 ,63	0,17	0,97		1,09	0,06	$1,03 \\ 1.37$	0,130	0,225	0,245	0,215	0,135	0,015	0,025	0,025	0,025	0,020								P = 4300 kg: erste Wasserflecke
												5250 5500			1	,80	-	-		1,63	-	-	-	-	_	_	_	_	_	_	-	-								D. SEGO has such Diese (and Diese insubally day
												6000 7000	0 0		2	,58	0,78	1,80		1,95	0,22	1,73	0,245	0,440	0,490	0,435	0,250	0,050	0,090	0,100	0,085	0,060					nton D -	7500 1		Meßstrecke)
									2.5			7500	0,080 0 0,100 0.11	nach	2 min	_	_	_		_	_	-	-	-	-	-	-	-	-	-	-	-				49,6	1490	= 7500 kg	18,6	P = 7500 kg: nach kurzer Dauer der Belastung gleitet
													$ \begin{array}{c cccc} 0,110 & 0,13 \\ 0,110 & 0,13 \end{array} $	5 » 1) > .	-	-	-		-	-	-	-	-	-	-	_	-	-	-	-	-			1					die Einlage bei x plötzlich, nach rund 5 Min. ebenso bei y ; gleichzeitig verlängern sich die Risse unter
												8000	0,130 0,16	0 »	2 » .	-	_	-		2,91	_	-	-	-	-	-	=	=	-	-	Ξ	_								den Belastungsrollen über die ganze Balkenbreite $P = 8000$ kg: Längsriß auf der unteren Balkenfläch
				-								8500	0,145 0,17	0 » 1	>>> 5,		-	-		5,12	0,46	2,66	0,945	1,675	1,770	1,665	1,005	0,295	0,515	0,530	0,505	0,315								
												8500	0,230 $0,250,240$ $0,26$	5 »	3 38 -	_	-	-		-	-	_		=	-	-	-	-	-	-	-	_								
												9000	0,240 0,26 0,310 0,32		» 5,	,18	-	_		3,24	_	_	-	Ξ	=	Ξ	_	-	-	-	=	_								P = 9000 kg; auf den Stirnflächen arscheinen Risse
													$\begin{array}{c ccccc} 0,345 & 0,35 \\ 0,345 & 0,35 \\ \end{array}$	0 » 1 0 » 2	>>> 5, >>	46	1,94	3,52		3,46	=	_	1,330	2,350	2,430	2,305	1,405	_	-	-	-	_								soor age and don sommachen ersenemen 14850
												9000 (wiederholt	$\begin{array}{c ccc} 0,490 & 0,43 \\ 0,520 & 0,45 \end{array}$	0 » : 0 » (» - » 5.	,39	_	_		- 3,51	-	_	_	_	Ξ	-	-	-	-	-	-	-	0.0	1.0	1.0					Zeichnerische Darzfellungen die Date in der
											I	Entlasten auf $P = 0 \text{ kg}$	0,520 0,45	0 * 10) » -	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	0,9	1,0	1,9		ton D			biegungen: Fig. 127 bis 129
												9500 (Pmax)	Nach rund	1 Minute	drückt d	er Haker	n auf der	Seite vo	n <i>x</i> de	n Beton	auf der	Stirnseite	e ab, ve	rgl. Fig.	119; die	e Belastu	ing sinkt	t langsam	n.							62,8	1887	6,1	(23,5)	Abbildung der Unterfläche: Fig. 117 Abbildung einer Seitenfläche: Fig. 118
Durchs	chnitt	201	-	-	-	-	-	4,90	7,84	8,58	2,30	-		-	-	_	-		_	_	_	_															unte	er P_g :		Abbildung der Stirnflächen: Fig. 119 und 120
																				12.													-	-		45,0	1348 unter	4,4 Pmax:	16,8	
	1	1	1				1		1		1			1																						58, 6	1756	5,7	(21,9)	

Zusammenstellung	14.	Balken mi	Bauart	nach	Fig.	70.	Alter:	rund	7	1
------------------	-----	-----------	--------	------	------	-----	--------	------	---	---

1	2	3	4	5	6	7	8	9]	10	11	12	13	14 15	16	17	18	19	20	21	22	23	24	25	26	27 2	28 2	29 30	31	32	33	34	35	36	37	38	39 4	40	41
ung			Abr	messungen Balkens	n des	Gewicht	Abmes	sungen d eneinlage	der	Gewicht der	Raum-	Be- lastungen	Aenderungen der Strecken (vergl. Fig. 69	v auf de	erlängen r unteren	rungen Balkenfläc	he	Zusa auf d	ammend ler obere	lrückung en Balken	gen fläche			Durch	biegunge	n (vergl	l. Fig. 19, I	Heft 39)			Abstand ler Eisene Ball	der Oberfl inlage vor enflächen	äche 1 den	Spannunger Gleichunge	n, berech en Seite	nnet nach 18, Heft	den 39	
zeichn	Prüfung tag	s- Alter	Breite b	b Höhe h	Länge L	Balkens G	Dmr. Q	uer- hnitt Un	nfang	Eisen- einlage	gewicht des Betons	$\frac{P}{(\text{Anfangslast} \ P = 0 \text{ kg})}$	x y	Meßlänge <i>l</i>	Verlänge auf	erungen in ¹ die Meßlän	$l/_{200}$ cm age l	Meß- länge	Zusamme ¹ / ₂₀₀ cm a	endrückun auf die Me	gen in Blänge <i>l</i>	gesa	amte Durc Me	hbiegung eßstellen	en an den		bleibende I	Meßstelle	ungen an en	den	m Bruch- uerschnitt	an den B ende	n alken-	бъ	σ	τ0 τ	τ1	Bemerkungen
Be		Tage	cm	em	cm	kg	d em o	fe	ue cm	kg	Detons	r = 0 kg	mm mm	cm	gesamte	bleibende	federnde	l em	gesamte	bleibende	federnde	a mm	b mm	c mm	d mm m	e o m m	a b nm mm	c mm	d mm	e mm	e cm	e_1 cm	e2 cm	kg/qem kg	qem kg	g/qcm kg/	/qem	
31	3.12.0	6 223	30,02	31,22	215,8	469,5	2,49	4,87	7,82	8,40	2,30	$1000 \\ 2000 \\ 3000$		70,0	0,20 0,42 0,69	0 0,01 0,06	0,20 0,41 0,63	70,0	0,23 0,49 0,73	$0,01 \\ 0,03 \\ 0,04$	0,22 0,46 0,69	0,030 0,055 0,085	0,045 0,085 0,135	0,050 0,105 0,165	0,040 0,0 0,080 0,0 0,135 0,0)30 ()55 ()85 0,0	0 0 0 0 005 0,010	0 0,005 0,015	0 0 0,005	0 0 0,005]	Dauer des Versuches: $6^{1/2}$ Stunden
												$ 4000 \\ 5000 \\ 6000 $			1,00 1,41 1,91	0,09 0,21 0.33	0,91 1,20 1,58		1,00 1,31 1,73	0,06 0,12 0,21	0,94 1,19 1,52	0,120 0,155 0,210	0,195 0,260 0,365	0,235 0,310 0,415	$ \begin{array}{ccccc} 0,195 & 0,1\\ 0,260 & 0,1\\ 0,370 & 0,5\\ \end{array} $	120 0,0 155 0,0 215 0,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,025 0,045 0,080	0,010 0,020 0,050	0,010 0,020 0,035							1	P = 5000 kg: erster Wasserfleck
												6250 7000			2,16 2,96	0,86	2,10		1,93 2,35	0,39	1,96	0,320	0,570	0,670	0,595 0,8	345 0,0	070 0,130	0,160	0,120	0,075								P = 6250 kg: 3 kurze Risse außerhalb der Meßstrecke P = 6500 kg: Riß innerhalb der Meßstrecke
									-			8000 9000 10000 10500	0 0		5,26 7,22 8,71	1,50 1,96 2,16 -	3,76 5,26 6,55 -		3,15 3,57 4,00	0,47 0,47 0,48 -	2,68 3,10 3,52	0,515 0,705 0,880 -	0,900 1,230 1,530	1,045 1,410 1,730 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,245 0,315 0,355 -	0,200 0,255 0,295 —	0,115 0,145 0,165 -					D - 11	1000 1000		P = 10000 kg: Längsrisse auf der untern Balkenfläche
												11000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nach $3 \min$ > 10 > > 3 >	10,07	2,26	7,81		4,51	0,57	3,94	1,075	1,850	2,080	1,860 1,0	025 0,5	215 0,360	0,405	0,340	0,190				73,0 2	186	7,1 2	7,2	
												13000	0,030 0,010 0,075 0,023 0,075 0,023	» 8 » » 2 » » 10 »	11,48	2,52	8,96		4,97	0,57	4,40	1,250	2,165	2,425	2,160 1,5 	200 0,5 375 0,5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,450	0,370	0,205								
												13000 (wiederholt nach	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	» 4 » » 8 »	-	- -			-			-	-					-	-	-								
												Entlasten auf P = 0 kg) 13500	0,175 0,04	» 8 »	_	-	-		-	-	-	_	_	_				_		-								P = 13500 kg: Riß auf der Stirnfläche bei x
												14000	$\begin{array}{c ccccc} 0,175 & 0,048 \\ 0,260 & 0,060 \\ 0,260 & 0,060 \end{array}$	> 12 > > 8 > > 12 >	14,46		=		6,00		Ξ	 1,810	- - 3,105		2,990 1,0	630	= =		Ξ									Aenderungen der Strecken x und y: Fig. 134 Zeichnerische Darstellungen der Dehnungen und Durch-
												0 14000 (wiederholt	0,215 0,050 0,480 0,083	» 3 » »· 1 »	-	2,55	11,91		-	0,62	5,38	_	=	-		0,	425 0,675	5 0,690	0,560	0,310	0.9	0.7	1.3	unter 93.0 2	$P_{\max} = 1$	14000 kg	:	biegungen: Fig. 135 bis 138 Lage der Nullinie mit steigender Belastung: Fig. 139 Abbildung der Unterfliche: Fig. 130
												nach Entlasten auf P = 0 kg)	1,000 -																		.,.	.,.	-,-			.,.		Abbildung einer Seitenfläche: Fig. 131 Abbildung der Stirnfläche bei x: Fig. 132
35	6.12.00	224	30.00	31,64	216,0	474,6	2,50 4	4.91 7	7.85	8,55	2.29	(P _{max})	Nach rund	2 ¹ / ₄ Minuten w	ird der Be	eton auf der	r Stirnfläc	he bei x 69.9	weggedr	ückt, der 1	Haken bie	gt sich a	0.045	Belastung	sinkt, aue	h bei for	tgesetztem 1	Durchbieg	en des Ba	lkens.								Abbildung der Stirnfläche bei y: Fig. 153. Dauer des Versuches: 6 Stunden
												2000 3000			0,41 0,70	0 0,04 0.09	0,41 0,66 0.00		0,49	0,03 0,06 0.09	0,46 0,71 0.98	0,050 0,080 0,115	0,090 0,140 0,900	0,100 0,160 0,985	0,090 0,0 0,140 0,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 005 0,010	0,005 0,015 0.030	0,005 0,010 0.025	0 0,005 0.015								P = 4000 kg: erste Wasserflecke
												$ \begin{array}{r} 4000 \\ 5000 \\ 5250 \end{array} $			1,53 1,70	0,05	1,28		1,45 1,60	0,15	1,30	0,160	0,285	0,320	0,290 0,	165 0,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,050	0,045	0,025								P = 5250 kg: erster Riß, innerhalb der Meßstrecke
															2,43 4,37 6,91	$0,62 \\ 1,18 \\ 1,79$	$ \begin{array}{c} 1,81 \\ 3,19 \\ 5,12 \end{array} $		2,00 2,66 3,34	0,28 0,43 0,47	1,72 2,23 2,87	0,225 0,340 0,520	0,410 0,620 0,945	0,470 0,715 1,090	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.040 0,080 0.075 0,140 0.110 0,210	$\begin{array}{c} 0 & 0,095 \\ 0 & 0,160 \\ 0 & 0,235 \end{array}$	0,090 0,145 0,215	0,050 0,080 0,120								P=8000 kg: kurzer Längsriß auf der untern Balken-
												9000 10000 10500	0 0	nach 4 min	8,86 10,66	2,11 2,39	6,75 8,27		3,90 4,45	0,50 0,54	3,40 3,91	0,695 0,865	1,255 1,560	1,420 1,750	1,295 0, 1,610 0,	735 0, 905 0,	145 0,263 170 0,314	5 0,290 5 0,340	0,265 0,315	0,150 0,175				unter	$P_g = 1$	0500 kg:		nacue
												11000	0 0,011 0 0,020	» 6 » » 2 »	_	-	_		-	_	-	-		-		_		-	-					67,2 2	2025	6,6 2	25,3	
												11500	0 0,020 0,010 0,032 0,010 0,033	» 6 » » 3 » » 6 »		-	9,80		5,03 — —		4,43	-	1,875	-				-	-	-								
									-			12000 13000	$\begin{array}{c ccccc} 0,015 & 0,040 \\ 0,015 & 0,040 \\ 0,040 & 0,080 \end{array}$	» 4 » » 8 » » 6 »	14,02	2,81			5,66	0,70	4,96		2,210	2,445	2,260 1,	275 0,		0,455	0,415	0,235						-12		
												14000	$\begin{array}{c cccc} 0,040 & 0,080 \\ 0,140 & 0,163 \\ 0,140 & 0,163 \\ \end{array}$	> 10 > > 6 >	15,76	3,04	12,72		6,31	0,80	5,51	1,425	2,580	2,845	2,630 1,	490 0,	265 0,47	5 0,525 	0,480	0,270								P = 14000 kg: Riß auf der Stirnfläche bei x
												14000 (wiederholt	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	» 8 » » 20 »	$ \begin{array}{r} 18,38 \\ 21,48 \\ 22,53 \end{array} $	- -			7,68 7,87	-		-	5,140 - -	5,065				-		-								P = 14000 kg: unter der wiederholten Belastung er- scheinen nach rund 20 Minuten auch auf der Stirn- fläche bei y Risse
											1	Entlasten auf P = 0 kg) 14500	0,270 0,273	» 30 »	23,01	_	_		8,00	-	-	-	_	5,215	_			I	_	_				unter	$P_{\max} =$	14500 kg		Abbildung der Unterfläche: Fig. 130 Abbildung einer Seitenfläche: Fig. 131 Abbildung der Stirnfläche bei z: Fig. 132
												(P_{\max})	0,475 0,310 Nach rund	» 10 » 12 Minuten wi	-1) rd der B	eton auf de	er Stirnflä	iche bei	æ durch	den Hak	en der Ei	- iseneinla	ge wegge	drückt, d	ler Haken	biegt sid	ch auf und	die Bela	stung sink	ct.	0,7	0,6	1,9	92,8	2797	9,2 (3	35,0)	Abbildung der Stirnfläche bei y: Fig. 133
36	8.12.06	225	30,06	31,24	215,8	470,4	2,48 4	1,83 7	7,79	8,45	2,29	$\begin{array}{c} 1000\\ 2000 \end{array}$		69,9	$\substack{0,23\\0,46}$	$\substack{0,01\\0,03}$	0,22 0,43	69,9	0,23 0,47	0,01 0,02	0,22 0,45	0,025 0,050	0,045 0,100	0,050 0,110	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	025	0 0 0,003	0 5 0,010	0 0,005	0								Dauer des Versuches: 6 Stunden
												$ \begin{array}{r} 3000 \\ 4000 \\ 5000 \end{array} $			0,75 1,10 1,62	0,08 0,17 0,29	0,67 0,93 1,33		0,72 1,03 1,37	0,03 0,05 0,10	0,69 0,98 1,27	0,085 0,125 0,160	0,155 0,215 0,285	0,170 0,245 0,325	$\begin{array}{c cccc} 0,150 & 0,\\ 0,215 & 0,\\ 0,295 & 0, \end{array}$	$\begin{array}{c ccc} 090 & 0, \\ 120 & 0, \\ 165 & 0, \\ \end{array}$	005 0,013 015 0,030 020 0,033	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,015\\ 0,025\\ 0,040 \end{array}$	$\begin{array}{c} 0,010 \\ 0,015 \\ 0,020 \end{array}$								P = 4500 kg: erste Wasserflecke
												$5750 \\ 6000 \\ 7000$			2,10 2,51	0,57	1,94		1,80 1,93	0,23	1,70	0,230	0,415	0,475	0,420 0,	$ \begin{array}{c c} - \\ 240 \\ 385 \\ 0 \end{array} $,045 0,07	5 0,090 0.175	0,085	0,040 0,080					-			P = 6000 kg: 4 kurze, feine Risse, (2 innerhalb, 2 außerhalb der Meßstrecke)
												8000 9000	0 0		7,07 9,26	2,01 2,38	5,06 6,88		3,26 3,81	0,43 0,43	2,20 2,83 3,38	0,585 0,775	1,040 1,385	1,190 1,570	$\begin{array}{c} 0,000 & 0, \\ 1,060 & 0, \\ 1,405 & 0, \end{array}$	$\begin{array}{c cccc} 610 & 0, \\ 810 & 0, \\ \end{array}$,130 0,24 ,160 0,29	$\begin{array}{c c}0 & 0,270\\5 & 0,325\end{array}$	0,240 0,290	0,130 0,160				unte	$P_g = 9$	9500 kg:	097	P = 8000 kg: kurze Längsrisse auf der untern Balken- fläche
												9500 10000	0 0,020 0 0,020 0,010 0,023	nach 4 min » 6 » » 4 »							-		=		-	_				-				00,8	1914	6,2 4	20,1	
									-			11000	$\begin{array}{c cccc} 0,010 & 0,023 \\ 0,025 & 0,050 \\ 0,025 & 0,050 \\ \end{array}$	» 10 » » 2 »	11,28	2,75	8,53		4,41	0,44	3,97	0,965	1,725	1,935	1,740 1, 	200 0,	,195 0,34 	5 0,380 5 0,480	0,340	0,190								
		-										12000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	» 3 » » 8 »	15,12	2,98 	- 11,93		5,68	0,45	- 5,07	1,355	2,420	2,715	2,100 1, - 2,470 1,	420 0,	,250 0,45	5 0,500	0,460	0,260								P = 13000 kg: Riss auf der Stirnfläche bei y
												13000 13500	0,090 0,190 0,090 0,190 0,165 0,380	» 6 » » 10 » » 5 »		3,72			6,39 7,06	0,70	5,69	-1,615 2,165	2,890 3,515	3,230 3,950	2,965 1, 3,670 2,	705 0, 120	,320 0,57	5 0,685	0,600	0,350								
												(P_{\max})	$\begin{array}{c ccccc} 0,175 & 0,440 \\ 0,180 & 0,465 \\ 0,185 & 0.505 \end{array}$	» 10 » » 12 » » 15 »	21,97 23,57	=			7,25 7,46	-	-				-	-								unter	Pmax =	13500 kg		Abbildung der Unterfläche: Fig. 130
													0,185 0,575 Nach rund	» 20 » 21 Minuten w	ird der B	eton auf de	er Stirnflä	iche bei	8,17 y durch		en der E	— iseneinla		_ lrückt, de	er Haken l	- biegt sie		die Belas	tung sink	- t.	1,1	0,8	1,3	90,7	2720	8,7 (33,7)	Abbildung der Stirnfläche bei x: Fig. 132 Abbildung der Stirnfläche bei y: Fig. 133
Dur	hschnitt	224	-	-	-	-	- 4	1,87 7	7,82	8,47	2,29	-	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	68,0	unter 2042 unter I	Pg: 6,6 2	25,4	
					1.1.1.1			1. 1.	*																9									92,2	2766	9,0 (:	(34,5)	

Zusammenstellung 14.

.

lonate.	1.1.1.	
29	30	3

	the face of the f	to the	1 21 1 12 1							
	a de altares à relative d'anti-									
			and the second							
				11 111						
		1								
							in the			
	and the state sold									
w las adofiers DE ach the state of a state of a set a										
101 til. : The second is the second s										
the second field of the second s								-		
a the set in the set of the set o										
ARE THE PLAN A THE ARE					- topic at 1		and mounts	no durator à		
in the and the second second second										
a second s					1					
					1.				04	
				The second					i.	
					a state					ment of
a had adapt with a data the spin states										1
a second start where the object man and day films										
111 Tan and a state of the stat						-				
Abbelormy day Salendada bel war align 101	4 (0.00)		1.00	and allow theme	aties the first	Die detady tit m	ent call and t	inne entitient		
entredant variations & filmetor										
				and the second						
(a) And Provide A start of The A (Incredently 2 and the Analysis of A start and A start and A start and A star									105	
					n 11					
								cours and		
off the set from the test from										
A stimus to subset out the ISI A stimus der al netwick inter the	-Call and and and	.1 241	1.*							
All additions where the second s										
	a da a constante									
	The traine									

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22							
	80				Wasse	rflecke			erste Ris	s s e		REAR.		Gle	iten der	Eisene	inlage			Spannur nach d	ngen unte len Gleicl	er P _{max} ,	berechnet					
Bauart	eichnung	$100 \frac{f_e}{b h}$	Belastung, unter welcher zuerst	Verlängerung des Betons unter der	Belastung,	unter welcher der erste Riß	Verlängerung des Betons unter der	Spann in Spa Gleic	pannungen unter der Belastung a Spalte 6, berechnet nach den Gleichungen Seite 18, Heft 39 ma			Spannungen unter der Belastung in Spalte 6, berechnet nach den Gleichungen Seite 18, Heft 39 m			Spannungen unter der Belastung in Spalte 6, berechnet nach den Gleichungen Seite 18, Heft 39			Belastung, unter welcher zum ersten mal eine Aenderung	Spannu Spalte ch	ngen unt 13, berec ungen Se	nter der Belastung echnet nach den Gle Seite 18, Heft 39		$\begin{array}{c} \text{Belastung} \\ P_{\max} \end{array}$		Hef	't 39	1	
	Bez		Wasserflecke be- obachtet wurden	Belastung in Spalte 4	kein Riß bemerkt wurd	e wurde	Spalte 6	σь	σ_e	τ0	τ_1	der Strecke x und gemessen wurde	σь	σ_e	7 O	Gleitwider- stand τ_1		σ_b	σe	70	$ au_1$							
		vH	kg	mm/m	kg	kg	mm/m	kg/qem	kg/qcm	kg/qem	kg/qem	P_g	kg/qem	kg/qcm	kg/qcm	kg/qem	kg	kg/qcm	kg/qcm	kg/qcm	kg/qem							
nach Fig. 69 b = 300, h = 300 mm Einlage: 1 Rundeisen, 25 mm Dmr., mit Haken, gezogen, geschlichtet und abgeschmirgelt	25 27 33	0,52 0,53 0,52	$\begin{array}{r} 4250\\ 4500\\ 4300\end{array}$	$0,09 \\ 0,09 \\ 0,09 \\ 0,09$	$5500 \\ 5500 \\ 5250$	$5650 \\ 5750 \\ 5500$	0,159 0,135 0,129	36,0 36,4 34,7	$ 1078 \\ 1083 \\ 1043 $	$3,5 \\ 3,5 \\ 3,4$	13,5 13,5 13,0	6250 6750 7500	40,9 44,6 49,6	1225 1330 1490	4,0 4,4 4,8	15,3 16,6 18,6	8500 8700 9500	$55,6 \\ 57,5 \\ 62,8$	$1667 \\ 1714 \\ 1887$	$5,4 \\ 5,6 \\ 6,1$	(20,8) (21,4) (23,5)							
Durchsel	mitt	0,52	-	0,09	- 1		0,141	35,7	1068	3,5	13,3	6833	45,0	1348	4,4	16,8	8900	58,6	1756	5,7	(21,9)							
nach Fig. 70 b = 300, h = 300 mm Einlage: 1 Rundeisen, 25 mm Dmr., mit Haken und Walzhaut	$31 \\ 35 \\ 36$	$0,52 \\ 0,52 \\ 0,51$	$5000 \\ 4000 \\ 4500$	0,10 0,07 0,09	$6000 \\ 5000 \\ 5750$	$6250 \\ 5250 \\ 6000$	0,136 0,109 0,150	39,8 32,0 38,6	$1192 \\ 964 \\ 1159$	3,9 3,2 3,7	$\begin{array}{ c c c } 14,9 \\ 12,1 \\ 14,4 \end{array}$	$ \begin{array}{c} 11,000\\ 10,500\\ 9,500 \end{array} $	73,0 67,2 63,8	$2186 \\ 2025 \\ 1914$	7,1 6,6 6,2	$27,2 \\ 25,3 \\ 23,7$	$ \begin{array}{r} 14 \ 000 \\ 14 \ 500 \\ 13 \ 500 \end{array} $	93,0 92,8 90,7	2782 2797 2720	9,0 9,2 8,7	$(34,7) \\ (35,0) \\ (33,7)$							
Durchsch	nitt	0,52	- I –	0,09	i –	-	0,132	36,8	1105	3,6	13,8	10 333	68,0	2042	6,6	25,4	14 000	92,2	2766	9,0	(34,5)							

Zusammenstellung 15. Balken mit Ba	auart nach Fig. 69 und 70.	Einlagen: je 1 Rundeisen mit	Haken. Alter:	rund 6 bis 7 Monate.
------------------------------------	----------------------------	------------------------------	---------------	----------------------

Zusammenstellung 15.

Zusammenstellung 17.

Zusammenstellung	17.	Balken mit	Bauart	nach	Fig.	71.	Einlagen:	je 1	Rundeisen	mit	Haken.	Alter:	rund	6 Monate.
------------------	-----	------------	--------	------	------	-----	-----------	------	-----------	-----	--------	--------	------	-----------

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	50		Wasse	rflecke			erste Ris	s s e				Streckg	renze d	er Eise	neinlag	е	
	hnu	100 fe	Belastung, unter	Verlängerung des	Belastung,	unter welcher	Verlängerung des	Spann	ungen u	nter der	Belastung	Belastung, unter	Spannu	ngen unt	er der B	elastung	Belastun
Bauart	zeich	100 b h	welcher zuerst	Betons unter der	noch	der erste Riß	Betons unter der Belastung in	in Sp Gleid	alte 6, t hungen	Seite 18	Heft 39	welcher die Streekgrenze	in Spal Gleich	ungen Se	erechnet r	ach den deft 39	Pmax
	Bei		obachtet wurden	Spalte 4	kein Riß bemerkt wurde	e wurde	Spalte 6	σъ	σ_e	$ au_0$	$ au_1$	beobachtet wurde	σ_b	σe	τ_0	τ_1	
		vH	kg	mm/m	kg	kg	mm/m	kg/qem	kg/qem	kg/qem	kg/qem	kg	kg/qem	kg/qcm	kg/qem	kg/qem	kg
nach Fig. 71	92	0.49	2500	0.00	9970	2400			1000				None I				
b = 200, h = 300 mm	20	0,45	2500	0,08	3230	3400	0,135	36,7	1230	3,2	11,2	8000	90,3	3028	7,9	(27,5)	8500
Einlage: 1 Rundeisen, 18 mm Dmr., mit Haken	20	0,41	2500	0,07	3500	3600	0,132	39,0	1327	3,4	12,0	8350	93,0	3167	8,1	(28,6)	8350
und Walzhaut	30	0,42	2500	0,07	3500	. 3600	0,133	38,2	1308	3,4	11,8	8500	92,7	3178	8,2	(28,7)	9250
Durchsch	nitt	0,42	-	0,07	-		0,133	38,0	1288	3,3	11,7	8283	92,0	3124	8,1	(28,3)	8700

Zusammenstellung 18. Balken mit Bauart nach Fig. 72. Alter: rund 7

	0	0 1	4	1 5	1 0	1 7	1 0	0	10	11	19	1 12	1 14	1 15	1 16	17 1	10	10	90	91	00	99	94	95	9.6	97	00	20	20 0	91 99	9 99	24	95	36	87	28	20	40	41	49
	4	0	+	0	0	1		4.2	non dan I	Figancials	12	1.5	14	15	Aenderun	igen	10	10	20	21	7.000	mmand	näakuna	20	20	21	20	29	30 0	01 01	2 00	04	50	It n	11- E	Snann	00	tor P	he	12 1
M			ADD	Balkens	n des s	Gewicht		Abmessung (T	fhachereis	isen)	age	Gewicht	Dames	Be-	der Stree	eken	auf der	unteren	Balkenfläcl	10	auf de	er oberen	Balken	fläche			Durch	biegung	gen (vergl	l. Fig. 19,	, Heft 39)		12	ehni ichni	Elsen nque t	rechnet	nach de	en Gleic	hungen	
Pr	ifungs	Alter		1		des			1	kleinster	r durch-	Eisen-	gewicht	P P	10181.118			Verlänge	rungen in ¹	900 cm		Zusamme	ndrückun	igen in	gesa	imte Dur	chbiegung	en an de	n	bleibende	Durchbieg	ungen an	den	uers	des l des l truch hnit dker	S	eite 18, 1	Heft 39	1)	Damaukangan
zeic	tag	1	Breite b	Höhe h	Länge I	G	größte	Stärke (in flachen	m Dmr.	Quer-	schnittl	einlage	des Betons	(Anfangslast $P = 0 \text{ kg}$)	æ	y 1	Meßlänge /	auf d	ie Meßläng	ge l	Meß- länge	'200 cm ai	uf die Mef	Blänge <i>l</i>		N	Ießstellen				Meßstell	len		tond	m B m B sc sc sc			-		Demerkungen
Be							Breite	Teil)		fe	fang ue		Decone					gesamte	bleibende	edernde	l g	esamte b	leibende	federnde	a	b	c	d	8	a b	c	d	e	Bri	Län voi bis	00	0e	20	21	
		Tage	em	em	em	kg	em	em	em	qem	em	kg		kg	mm 1	mm	em				em a				mm	mm	mm	mm	mm n	nm mr	m mm	mm	mm	em	em	kg/qcm	kg/qcm	kg/qem	kg/qem	
41 20	12.06	212	20,04	30,76	215,9	307,9	2,45	1,18	1,90	2,3	6,2	4,50	2,29	500			70,0	0,17	0	0,17	70,0	0,18	0	0,18	0,020	0,030	0,040	0,030 0	,020	0 0	0	0	0							Dauer des Versuches: 5 Stunden
														1000 1500				0,35	0,01	0,34		0,37	0	0,37	0,045	0,070	0,080	0,070 0 0.115 0	,040		0,005	0 - 0	0						1.5.1.1	
														2000				0,79	0,12	0,67		0,76	0	0,76	0,095	0,160	0,175	0,160 0	,095 0,0	005 0,00	05 0,005	0,005	0,005							P = 2000 kg: erster Wasserfleck
													1. 2. 2.	2500 3000				1,07 1,45	0,21 0,37	0,86		0,99	0,01 0,02	$0,98 \\ 1,24$	$0,125 \\ 0,160$	0,205	0,230	0,210 0 0,270 0	0,125 0,0 0,155 0,0	010 0,01	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,015 0,035	0,015 0,020		S. Land					
	1.													3400				1,93	-	-		1,50	-	-	-	-	-	-			70 0.075	-	-							P = 2500 kg, austa Pissa innauhalb dan Malatraaka
														4000				3,49	1,25	2,24		2,11	0,19	1,92	0,210	0,515	0,400	0,515 0	,285 0,0	,070 0,1	15 0,125	0,115	0,065							r = 5500 kg, erste misse, internatio der mebstrecke
	3													4500 5000				5,54 7,54	1,83 2.25	3,71 5,29		2,73	0,34	2,39 2,91	0,410 0.570	0,740	0,835	0,730 0	0,400 0, 0.555 0,	105 0,13 135 0,23	80 0,200 35 0,265	$0,180 \\ 0,240$	0,095						1	
														5500	0	0		9,16	2,57	6,59		3,74	0,39	3,35	0,745	1,325	1,485	1,315 0	,720 0,	175 0,2	95 0,325	0,290	0,160							P = 5500 kg: Längsriß auf der unteren Balkenfläche
					1.2							133011		(wiederholt	0,020	$\begin{array}{c c} 0 & ni \\ 0 & \end{array}$	ach 2 min » 6 »	-	Ξ	_		-	-	-	-	E	-	-	-		_	E	_							
						22.45					and the second			Entlasten auf $P = 0 r_{c} $																							1100			
														6000	0,065	0	» 2 »	-	-	-		-	-	-	-	-	-	-			-	-	-							
	-				1949							1.5. 1	1.1.1.1		0,085	0	» 6 » » 12 »	10,48	2,79	7.69		4.07	0,34	3.73	0,985	1,715	1.865	1.630 0	.900 0,	265 0,4	30 0,435	0,380	0,200			1.00			1	Abhildung der Unterfläche. Fig. 146
					1. 4 3. 4	- The state	1.2.2							6500	0,280 0	,020	» 2 »	-	_	-		- 1	-	-	-	-	-	-	- .	- -	- -	-	-	0,8	48,0	73,5	2697	6,2	20,0	Abbildung einer Seitenfläche: Fig. 147
														(Pmax)	Nach ru	and $2^{1/2}$	2 Minuten g	leitet das	Eisen auf	der Sei	te von æ	sehr ras	sch. Die	Belastur	ng sinkt.	1	1		1	1.	1	1				1.9:11			1	
44 29	12.06	217	20,10	31,12	216,0	313,0	2,45	1,17	1,90	2,3	6,2	4,50	2,29	500			70,1	0,16	0	0,16	70,0	0,18	0	0,18	0,020	0,035	0,040	0,035 0	0,020	0 0	0	0	0			1.58				Dauer des Versuches: 6 Stunden
						1.12.2	3.3							1000				$0,34 \\ 0,56$	0,02 0,07	$\left[\begin{smallmatrix} 0,32\\ 0,49 \end{smallmatrix} \right]$		0,36 0,55	0	$0,36 \\ 0,55$	$0,040 \\ 0,065$	0,065	0,085 0,125	0,070 0	0,040 0,065	0 0,0	0,005	0,005	0							
												1281	11.1	2000				0,79	0,12	0,67		0,76	0,02	0,74	0,085	0,150	0,175	0,155 0	0,090 0, 0, 115 0	,005 0,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010	0,005							P = 2000 kg: erste Wasserflecke
					1 2 3 4									3000				1,38	0,28	1,10		1,29	0,10	1,19	0,145	0,260	0,295	0,265 0	0,150 0,	,020 0,0	035 0,040	0,025	0,015							
							136						1216	3400 3500				$1,78 \\ 1.94$	0.51	1.43		1,57	0.20	1.46	0,190	0.330	0.390	0.345 0	.200 0.	.035 0,0	060 0,070	0,060	0,035							P = 3500 kg: erster Riß, außerhalb der Meßstrecke
														3750				2,26	-	-		1,87	-	-	-	-	-	-	-			-	-			12.14				P = 3750 kg: zwei Risse innerhalb der Meßstrecke
							199						1.19.24	4000				3,00	$1,00 \\ 1,59$	2,00 3,11		2,13 2,73	0,30	$^{1,83}_{2,30}$	0,255 0,365	0,465 0,670	0,530	0,475 0	0,270 0, 0, 0, 385 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,055 0,0 ,085 0,1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100	0,055							
													1.34	5000	1 Starter			6,59 8 4 0	2,13	4,46		3,26	0,50	2,76	0,495	0,920	1,050	0,960 (0,540 0,	,115 0,2 150 0.9	15 0,245 75 0.815	0,220	0,120							P = 5500 kg : Länssriß auf der unteren Balkenfläche
														6000				10,09	2,99	7,10		4,29	0,52	3,77	0,810	1,480	1,665	1,510 (0,840 0,	,175 0,3	325 0,360	0,325	0,175							i - obvo kg, Dangsins auf der unteren Dankinnache
														6500 7000	0	0		$11,62 \\ 13.18$	3,23 3,50	8,39 9,68		4,75	0,54	4,21	0,950	1,730	1,940 2.220	1,755 (2.010 1	0,975 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,200 0,3 ,220 0,4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,365 0,395	0,195							
												1 State		7500	0 -0	,030 na	ach 3 min	-	-	-		-	-	-		-		-	-			-	-			See			1	
													1.10			,030	» 6 » » 12 »	14,57	3,72	10,85		5,67	0,62	5,05	1,240	2,260	2,510	2,285 1	L,275 0,	,250 0,4	155 0,500	0,455	0,245	1000		144.43	C. S. S. S. S.		A Start	
							12							7500 (wiederholt	0,015 0	,060	» 6 »	-	-	-		-	-	-	-	-	-	-	-			-	-							
						1. 2. 1.			1			12.00		nach Entlasten auf	0,010 0	,000	. 10 .						10.00							-										
						1.264							1	P = 0 kg 8000	0,030 0	,090	» 6 »		1				_	_	_	1.20	1	12	_	_	_		_							Zeichnerische Darstellungen der Dehnungen und Durch- biegungen : Fig. 149 bis 152
															0,040 0	,135	» 15 »	10.00	-	-		-	-	-	-	-		-	-			0.00	-	Sector.						Lage der Nullinie mit steigender Belastung: Fig. 153
										1.5.25		Territ 1	2	8000 (Pmax,	0,040 0	,250	» 20 » » 1 »	16,02	4,07	- 11,95		6,11	0,64	0,47	1,430	2,590	2,880	2,645	- 0,	,520 0,5	- 0,650	0,625	0,365	1,0	49,0	89,4	3299	7,5	24,5	Abbildung der Unterfläche: Fig. 146 Abbildung einer Seitenfläche: Fig. 147
														wiederholt nach	Nach ru	und 11/2	Minuten g	leitet das	Eisen auf	der Sei	te von y	sehr ras	ch. Die	Belastun	g sinkt.											1.1.1				
											1.18.2			Entlasten auf $P \equiv 0$ kg)																										
46 3.	1.07	219	20,00	30,77	216,0	308,5	2,46	1.16	1,90	2,3	6,2	4,52	2,30	500			69.8	0,14	0	0.14	69,9	0.19	0,02	0,17	0,020	0,035	0,045	0,035 (0,025	0 0	0 0	0	0	16.53						Daner des Versnehes 51/, Stunden
								1,10	-,					1000				0,32	0,01	0,31		0,40	0,04	0,36	0,045	0,075	0,090	0,075	0,050	0 0	0,005	5 0	0			1.1.2.3				Dauer des versuenes, 5/4 stunden
														1500 2000				0,53	0,05	0,48		0,61 0,88	0,05	0,56	0,070	0,115	0,140 0,200	0,115 0,165 0	0,075 0, 0,105 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,005 0,0 ,010 0,0	0.05 0,010 0.020	0,005 0,010	0,005			12		1		P = 2000 kg; erste Wasserflecke
inter.														2500	3632			1,08	0,14	0,94		1,13	0,08	1,05	0,125	0,215	0,255	0,215 (0,130 0, 0.170 0	,010 0,0		0,020	0,015	200						
	27.5													3500				2,08	0,52	1,56		1,78	0,20	1,58	0,210	0,370	0,435	0,365 (0,220 0,	,035 0,0	060 0,080	0,060	0,040							
												T		3600 3750				2,30	1	-		1,91 2,07	12		_	1	_	-	-			1-	-							P = 3750 kg; erste Risse, innerhalb, der Maßstrecke
					1212							2.5		4000				3,44	1,09	2,35		2,38	0,86	2,02	0,295	0,525	0,615	0,525 0	0,300 0,	,065 0,1	120 0,140	0,110	0,070				13.5	1 53		
													1	5000	1. Start			7,21	2,09	5,12		3,59	0,45	3,09	0,435	1,030	1,195	1,000	0,445 0, 0,595 0, 0,	,130 0,1	0,210 0,210 0,270	0,230	0,130				1000			
												-	-	5500				8,86	2,45 2.69	6,41 7.61		4,07	0,58	3,54	0,720	1,315 1.565	1,505	1,340 0	0,755 0, 0.905 0.	,165 0,2	295 0,340 340 0,385	0,295 0,340	0,170							P = 5500 kg; Längsriß auf der unteren Balkenfläche
					1.25									6500	0	0		11,61	2,87	8,74		5,04	0,57	4,47	1,010	1,720	2,075	1,865	1,050 0,	,215 0,3	875 0,435	5 0,380	0,220							
													1155	6500 (wiederholt	0 0	,025 na ,025	ach 6 min » 10 »	-	_				-	1	-		_	-	-			E.	-					1		
														nach Entlasten auf					-	1					50.4						1									
				+										P = 0 kg 7000	0 0	,045	» 6 »	-		-		-	-	-	-	-	-	-	-			-	-							
															0 0.	,055	» 9 » » 12 »	13.09	3.12	9,97		5,60	0.67	4.98	1,170	2,115	2,405	2,195	1,240 0.	250 0.4	445 0.515	5 0.465	0.270							
									12.52					7500	0,010 0.	,160	» 1 »	-	-	-		-	-	-	-	-	-	-	- 0,			1 t	-							
														$(P_{\rm max})$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,190	* 2 * > 3 >>	-	_	_		-		-	-	-	-	-	1		I I	T-	-	0,9	47.0	85.4	3121	7.2	23.2	
															Nach 4	Minuten	n gleitet da	s Eisen a	uf der Sei	te von g	sehr ra	sch. Die	e Belastu	ng sinkt.											,0			.,.		
															Die Zers	störung	des Balker	t In F	ach Ueber	schreitur	ig der H	löchstbela	stung no	och länge	ere Zeit	fortgeset	zt, bis s	ich die E	liseneinlag	ge bei y u	um rund 5,	4 mn ge	gen das							Abbildung der Unterfläche: Fig. 146
Durchse	hnitt	216				-			1	2.0	C.C.	1 1	9.90		Darkene	l l	senonen na	in Im E	azustand	itagt de	Baiken	noch di	e belasta	r = 1		Lg.	1	1	1			1						1	00.0	Abbluung der Seitennachen: Fig. 147 und 148
						1				2,3	0,2	4,51	2,29			-		- 1	-	-	-	-			-	1.5	-	-	-				-	-	-	82,8	3039	7,0	22,6	

¹) Für *fe* ist der kleinste Querschnitt, d. i 2,3 qcm, in die Rechnung eingeführt worden.

Zusammenstellung 18.

.

νт	0.3	2.0	1.1-1	<i>6</i>	
УL	OI	10	εы	1 m	
 	· • • •		~~ ~ ~		

Zusammenstellung 19.

Zusammenstellung 19. Balken mit Bauart nach Fig. 72. Alter: rund 7 Monate.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	50	Wasse	rflecke			erste Riss	e					Spannur nach de	ngen unte en amtlich	r P _{max} , k en Bestir	oerechnet
	unu	Belastung, unter	Verlängerung des	Belastung, u	inter welcher	Verlängerung des	Spannus	ngen unt 5 herech	er der Be	lastung in den amt-	Belastung		(Heft 39,	Seite 18	8)
Bauart	eich	welcher zuerst	Betons unter der	noch	der erste Riß	Betons unter der Belastung in	lichen I	Bestimmu	ngen (Hef	t 39, S. 18)	Pmax		1	-	1
	Bez	obachtet wurden	Spalte 3	kein Riß bemerkt wurde	beobachtet wurde	Spalte 5	συ	σε	τ_0	$ au_1$		σь	σε	τ ₀	τ_1
		kg	mm/m	kg	kg	mm/m	kg/qcm	kg/qcm	kg/qcm	kg/qem	kg	kg/qem	kg/qcm	kg/qem	kg/qen
			Marken Stranger								0500		0007		000
nach Fig. 72	41	2000	0,06	3400	3500	0,138	38,5	1411	3,2	10,5	6500	73,5	2697	6,2	20,0
b = 200, h = 300 mm	44	2000	0,06	3400	3500	0,127	38,0	1402	3,2	10,4	8000	89,4	3299	7,5	24,5
Einlagen: 1 Thachereisen, gerade	46	2000	0,06	3600	3750	0,165	41,0	1498	3,4	11,1	7500	85,4	3121	7,2	23,2
Durchse	hnitt		0,06	- 11 - 12 - 11 - 11		0,143	39,2	1437	3,3	10,7	7333	82,8	3039	7,0	22,6

Zusammenstellung 20. Balken mit Bauart nach Fig. 73. Alter: rund 7 Monate.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 17	7 1	18 1	9 20	21	22	23	24	25	26	27	28 29	30	31	32	33	34	35	36	37	38	39	40	41	42
ang			Ab	messung Balker	en des 18	Gewic	ht P	Abmessung	gen der	Eisenein	Bügel	Gesamt gewich	Raum-	Be- lastungen	Aenderunge der Strecke (vergl. Fig.	en en 73)	Verlä auf der un	ngerunge eren Balke	n nfläche	Zu auf	sammend der obere	rückung Balkent	g en fläche		1	Durchbie	gungen ((vergl. Fig	. 19, Het	ft 39)			e e im schnitt	Efsens hquer- t	Spann rechnet	nach de	ter P _{max} n Gleich Heft 39	, be-	
ezeichnu	Prüfung tag	- Alter	Breite (Höhe	h Länge	L G des	Dmr.	Quer-	Um- fang	(je Dm	16 Stück	einlage	gewicht des Betons	P (Anfangslast $P = 0 kg$)	x y	Meßl	ange l	längerunger auf die Me	in $1/_{200}$ cr Blänge l	n Meß- länge	Zusamme ¹ / ₂₀₀ em a	ndrückun uf die Mef	gen in Blänge l	gesar	mte Durchl Mef	biegungen stellen	an den	bleib	ende Dur M	rchbiegun Ießstellen	gen an d	en	tondicke	nnbeton nge des m Bruch schnitt s Balker	05	σe	τ_0	Gleit- wider-	Bemerkungen
B		Tage	em	em	em	kg	cm	qem	re ue cm	d cm	kg	kg		kg	mm mn	n e	m	mte bleiber	nde federn	de em	gesamte 1	leibende f	federnde	a mm	b mm n	c d mm mr	e m mm	a mm	b mm	c mm	d mm	e mm	em Bra	cu vo	kg/qem	kg/qem	kg/qcm		
29	1. 11. 00	195	15,00	30,43	216,0	232,9	2,15	3,63	6,75	5 0,7	0 3,00	9,00	2,30	500 1000		69	9,9 0	,19 0 ,43 0,03	0,19 0,41	70,1	0,27 0,54	0,01 0,02	$0,26 \\ 0,52$	0,030 0,055	0,050 0, 0,105 0,	060 0,04 120 0,10	5 0,030 0 0,065	0	0 0	0 0,005	0,005	0							Dauer des Versuches: 5 ¹ / ₂ Stunden
														2000 2500 2750				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,65 0,90 1,19		0,80 1,09 1,43	0,03 0,06 0,13	0,77 1,03 1,30	0,090 0,120 0,165	$\begin{array}{cccc} 0,160 & 0, \\ 0,220 & 0, \\ 0,290 & 0, \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 5 & 0,095 \\ 0 & 0,130 \\ 5 & 0,170 \end{array}$	0 0,005 0,015	0,005 0,010 0,030	0,015 0,025 0,040	0,010 0,010 0,030	0),005),015							P = 2500 kg: erste Wasserflecke
				-										3000 3250 3500			1	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1,45		1,66 1,90 2,19	0,24	1,66	0,225	0,400 0,	455 0,39	0 0,235	0,025	0,055	0,075	0,050	0,035							P = 3000 kg: erste Risse, außerhalb der Meßstrecke $P = 3250$ kg: Riß innerhalb der Meßstrecke
														3500 4000 4500 5500 6000 6500 7000 7500 (wiederholt nach Entlasten auf	$\begin{array}{ccccc} 0 & 0 \\ 0,050 & 0,05 \\ 0,070 & 0,03 \\ 0,070 & 0,03 \\ 0,135 & 0,00 \\ 0,135 & 0,00 \end{array}$	25 nach 30 > 1 30 > 2 30 > 60 >	$\begin{array}{c} 2\\ 4\\ 5\\ 7\\ 8\\ 9\\ 11\\ 12\\ 6\ {\rm min} \\ -\\ 5\\ 0\\ 3\\ 3\\ -\\ 6\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,48 3,06 3,68 4,23 4,81 5,41 6,01 6,58 	0,37 0,47 0,52 0,57 0,63 0,68 0,71 0,71 	2,11 2,59 3,16 3,66 4,18 4,73 5,80 5,87 - 6,48 - -	$\begin{array}{c} 0,305\\ 0,410\\ 0,525\\ 0,635\\ 0,745\\ 0,865\\ 1,000\\ 1,135\\ -\\ -\\ -\\ 1,315\\ -\\ -\\ -\\ -\\ -\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	630 0,54 880 0,75 0,065 0,98 2900 1,13 5,510 1,38 7,740 1,54 990 1,76 2,240 1,98 - - - - - - - - - - - -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,050\\ 0,075\\ 0,095\\ 0,110\\ 0,125\\ 0,145\\ 0,165\\ 0,180\\ -\\ -\\ 0,275\\ -\\ -\\ -\\ -\end{array}$	$\begin{array}{c} 0,105\\ 0,145\\ 0,175\\ 0,205\\ 0,230\\ 0,270\\ 0,300\\ 0,325\\ -\\ -\\ -\\ 0,455\\ -\\ -\\ -\\ -\end{array}$	0,120 0,165 0,200 0,240 0,270 0,300 0,335 0,360 0,490 	0,090 0,135 0,165 0,200 0,230 0,250 0,290 0,305),060),075),095),115),113),145),145),165),180 0,250 							P=6500 kg: kurzer Längsriß auf der unteren Balkenfläche
														P = 0 kg 7750 (P_{max})	0,255 0,03 0,345 0,10 0,600 0,15 Nach 13 ¹ /2	95 » 95 » 20 » 1 2 Minuten	3 » 14 6 » - 2 » - gleitet das	21 — Eisen bei	$\begin{array}{c} - \\ - \\ - \\ x \text{ so rasch} \end{array}$	1, daß die	7,68 Wage de	- - - Prüfung	 		— — — mehr zum	 Einspielen	gebracht			=	=		1,5	41,5	96,8	2208	10,7	23,8	Abbildung der Unterfläche: Fig. 155 Abbildung einer Seitenfläche: Fig. 156
32	5.12.06	225	14,96	30,71	216,0	235,9	2,21	3,84	6,94	0,70	0 3,05	9,30	2,31	$500 \\ 1000 \\ 1500$		70	0,0 0	18 0 39 0,0	0,18	70,0	0,23	0	0,23 0,46	0,030 0,050	0,050 0 0,095 0	,050 0,04	15 0,025 05 0,055	5 0 5 0	0 0	0 0	0	0							Dauer des Versuches: 5 Stunden
		14		-										2000 2500 2750			0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,60		0,74 1,01 1,31	0,02 0,04 0,06	$0,72 \\ 0,97 \\ 1,25$	0,080 0,115 0,150	$\begin{array}{cccc} 0,145 & 0 \\ 0,200 & 0 \\ 0,270 & 0 \end{array}$	$\begin{array}{c ccccc} ,150 & 0,14 \\ ,215 & 0,13 \\ ,290 & 0,20 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0,010 0,030	0 0,010 0,025	0,010 0,020	0 0,005 0,010							P = 2500 kg: erster Wasserfleck
														$ \begin{array}{r} 2100 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \end{array} $			1 2 3 4 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1,34 \\ 1,76 \\ 2,35 \\ 3,38 \\ 4,63 \\ \end{array} $		1,49 1,72 2,16 2,67 3,26 3,87	$ \begin{array}{c} - \\ 0,14 \\ 0,26 \\ 0,35 \\ 0,42 \\ 0,46 \end{array} $	- 1,58 1,90 2,32 2,84 3,41	$\begin{array}{c} - \\ 0,200 \\ 0,270 \\ 0,360 \\ 0,470 \\ 0,590 \end{array}$	$\begin{array}{c c} - \\ 0,360 & 0 \\ 0,475 & 0 \\ 0,645 & 0 \\ 0,840 & 0 \\ 1,050 & 1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & - \\ & 0,025 \\ & 0,050 \\ & 0,070 \\ & 0,085 \\ & 0,100 \end{array}$	0,050 0,085 0,120 0,160 0,185	$\begin{array}{c} - \\ 0,050 \\ 0,085 \\ 0,125 \\ 0,170 \\ 0,195 \end{array}$	$\begin{array}{c} - \\ 0,045 \\ 0,075 \\ 0,115 \\ 0,150 \\ 0,175 \end{array}$	0,030 0,045 0,060 0,080 0.095							P = 3000 kg: erster Riß, außerhalb der Meßstrecke P = 3750 kg: Riß innerhalb der Meßstrecke
														5500 6000 6500 7000 7500 8000 (P _{max})	0 0 0,025 0,01 0,050 0,05 Nach 8 Mi	15 nach 20 » inuten gle	7 8 10 11 2 1 min 4 % 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,00\\ 5,95\\ 7,09\\ 9, 7,09\\ 9, 8,24\\ 9,24\\ 9,24\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ -\\ -\\ -\\ 0\\ 10,34\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	laß die W	4,44 4,94 5,48 6,04 6,59 - - Vage der F	0,49 0,51 0,57 0,63 0,68 	3,95 4,43 4,91 5,41 5,91 - - aschine	0,700 0,800 0,905 1,020 1,150 nicht me	$\begin{array}{c} 1,260 & 1 \\ 1,260 & 1 \\ 1,440 & 1 \\ 1,630 & 1 \\ 1,830 & 2 \\ 2,050 & 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$,400 1,20 ,610 1,44 ,820 1,64 ,050 1,84 ,290 2,00 inspielen g	50 0,700 60 0,800 60 0,910 10 1,025 50 1,140 - - ebracht we) 0,125 0 0,125 0 0,130 0 0,150 5 0,160 0 0,180 - erden kan	0,220 0,240 0,270 0,300 -0,330 n.	0,235 0,260 0,280 0,315 0,360 -	0,210 0,230 0,255 0,290 0,325 -	0,110 0,120 0,140 0,155 0,170 -	1,5	33,5	96,8	2142	11,0	23,7	P = 7500 kg: Längsriß auf der unteren Balkenfläche Abbildung der Unterfläche: Fig. 155 Abbildung einer Seitenfläche: Fig. 156
37	.12.06	224	15,00	30,82	216,0	236,7	2,16	3,66	6,79	0,70	3,18	9,20	2,31	$500 \\ 1000 \\ 1500$		70	0,0 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,20 0,43 0,65	70,1	0,22 0,45	0 0,01 0.02	0,22 0,44	0,025	0,045 0 0,090 0 0,145 0	,045 0,04	10 0,025 00 0,055	5 0 5 0	0 0 0 0 5	0 0,005	0	0							Dauer des Versuches: 4 ¹ / ₂ Stunden
														$2000 \\ 2500 \\ 3000$			011	97 0,03 32 0,10 74 0,23	0,89		1,00 1,29 1,68	0,03 0,04 0,08	0,97 1,25 1,60	0,120 0,150 0,210	0,200 0 0,265 0 0,360 0	,230 0,20 ,300 0,20 ,405 0,30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,015 0,020 0,050	0,015 0,025 0,055	0,010 0,020 0,045	0,005 0,015 0.030							P = 2000 kg: erster Wasserfleck P = 3100 kg: erste Risse außerhalb der Meßstrecke
													-	$\begin{array}{c} 3500\\ 3500\\ 4000\\ 4500\\ 5500\\ 6000\\ 6500\\ 7000\\ 7500\\ (P_{\max})\end{array}$	0 0 0,070 0,02 Nach 10 M	20 nach linuten gl	8 min 11 leitet das F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$; die Bei	1,68 2,23 2,71 3,25 3,74 4,29 4,81 5,32 5,83 6,34 astung sin	0,08 0,22 0,29 0,39 0,41 0,44 0,44 0,45 0,46 	1,60 2,01 2,42 2,86 3,33 3,85 4,37 4,87 5,37 	0,210 0,295 0,385 0,490 0,595 0,695 0,810 0,910 1,030 	0,360 0 0,510 0 0,675 0 0,865 0 1,065 1 1,250 1 1,455 1 1,645 1 1,860 2 	405 0,3 ,570 0,5 ,750 0,6 ,970 0,8 ,190 1,0 ,895 1,2 ,630 1,4 ,850 1,6 ,070 1,8	50 0,207 10 0,297 80 0,380 70 0,497 65 0,606 75 0,811 75 0,957 85 1,058	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,050 0,090 0,130 0,160 0,190 0,215 0,245 0,265 0,295	0,055 0,100 0,145 0,180 0,210 0,250 0,275 0,300 0,330 	0,045 0,090 0,125 0,160 0,185 0,220 0,235 0,270 0,295 -	0,030 0,055 0,070 0,095 0,105 0,120 0,125 0,165 0,175	1,2	33,0	89,6	2067	10,1	22,3	P = 3500 kg: erste Risse auternalb der Meßstrecke P = 3500 kg: Riß innerhalb der Meßstrecke Abbildung der Unterfläche: Fig. 155 Abbildung einer Seitenfläche: Fig. 156
Dure	schnitt	215	-	-	-	-	-	3,71	6,83	-	3,08	9,17	2,31	-	- -	-	- -	- -	-	-	-	-	-	-		- -	- -	-	-		-	-	-		94,4	2139	10,6	23,3	

Zusammenstellung 20.

Zusammenstellung 21.

.

Zusammenstellung 21. Balken mit Bauart nach Fig. 73 und 74. Einlagen: je 1 Rundeisen und 16 Bügel. Alter: rund 7 Monate.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	nung	. fe	Wassen	flecke	Belastung, u	inter welcher	erste Ris Verlängerung des	s e Spann	ungen un	nter der B	elastung	Belastung	Spannun nach d	ngen unter len Gleich Heft	P _{max} , b ungen Se 39	erechnet eite 18,
Bauart	Bezeichı	$100 \frac{1}{b h}$	welcher zuerst Wasserflecke be- obachtet wurden	Betons unter der Belastung in Spalte 4	noch kein Riß bemerkt wurde	der erste Riß beobachtet wurde	Betons unter der Belastung in Spalte 6	Gleic ab	hungen S σ_e	seite 18, 1 τ_0	$\frac{\text{Heft}}{\tau_1}$	P_{\max}	σъ	σ_e	$ au_0$	$ au_1$
		vH	kg	mm/m	kg	kg	mm/m	kg/qcm	kg/qem	kg/qcm	kg/qem	kg	kg/qcm	kg/qcm	kg/qcm	kg/qem
nach Fig. 73 b = 150, h = 300 mm Einlagen: 1 gerades Rundeisen, 22 mm Dmr. und 16 Bügel (rund 7 mm stark) Durchschn	29 32 37 nitt	0,80 0,84 0,79 0,81	2500 2500 2000	0,10 0,08 0,07 0,08	2750 2750 3000	3000 3000 3100	0,108 0,095 0,124 0,109 ')	34,3 33,3 35,9 34,5	784 736 827 782	3,8 3,8 4,0 3,9	8,4 8,1 8,9 8,5	7750 8000 7500 7750	96,8 96,8 89,6 94,4	2208 2142 2067 2139	10,7 11,0 10,1 10,6	23,8 23,7 22,3 23,3
nach Fig. 74 b = 150, h = 300 mm Einlagen: 1 Rundeisen mit Haken, 22 mm Dmr. und 16 Bügel (rund 7 mm stark)	34 38 39	0,83 0,81 0,80	$\begin{array}{r} 2750\\ 2250\\ 2000 \end{array}$	0,10 0,08 0,06	$ 3000 \\ 3400 \\ 3500 $	3150 3500 3600	0,115 0,142 0,163	36,6 40,8 42,1	816 925 955	4,1 4,6 4,7	8,9 10,1 10,4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{c}128,0\\144,0\\150,3\end{array}\right $	2855 3264 3411	14,5 16,3 17,0	(31,3) (35,6) (37,1)
Durchschr	nitt	0,81	-	0,08		-	0,140 ²)	39,8	899	4,5	9,8	11 667	140,8	3177	15,9	(34,7)

¹) Der erste Riß wurde jeweils außerhalb der Meßstrecke gefunden. Die Dehnung des Betons unmittelbar vor Beobachtung des ersten Risses innerhalb der Meßstrecke betrug 0,127, 0,156 und 0,141 mm, d. i. im Durchschnitt 0,141 mm auf 1 m.

2) Bei Balken »34« und »38« wurden die ersten Risse außerhalb der Meßstrecke beobachtet. Die Dehnung des Betons unmittelbar vor Beobachtung des ersten Risses innerhalb der Meßstrecke betrag bei Balken »34«: 0,154 mm, bei Balken »38«: 0,157 mm; damit wird die durchschnittliche Dehnung des Betons vor Beobachtung des ersten Risses innerhalb der Meßstrecke: (0,154 + 0,157 + 0,163): 3 = 0,158 mm auf 1 m.

Zusammenstellung 22. Balken mit Bauart nach Fig. 74. Alter: rund 7 h

1	2	3	4	5	6	1 7	18	9	10	11	12	15	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32 33	34	35	36	1 37	38	39	40	1	41
ang			Al	messunge Balken	n des	Gewich	t Pund	Abmessun	igen dei	r Eisene Büge	einlagen el	Gesamt-	Raum	Be- lastungen	Ve auf der	erlängeru unteren B	ngen alkenfläch	e	Zus auf d	ammend ler oberer	rückung Balken	g en fläche			Dure	hbiegun	gen (v	ergl Fig.	19, Heft	39)		Abstand der Eise Bi	d der Obe eneinlage alkenfläch	erfläche von den en	Spar	nnungen et nach Seite 1	unter Pn den Glei	ax, be-		
ezeichn	Prüfung: tag	- Alter	Breite	b Höhe M	Länge L	Balkens G	Dmr. Q	uer- unitt	nfang	(je 16 S Dmr.	Ge-	der Eisen-	gewicht des Betons	P (Anfangslast) $P = 0 kg$	Meßlänge l	Verlängeru auf die	ngen in ¹ / Meßläng	200 cm e l	Meß- länge	Zusammen 1/200 em au	ndrückun If die Mei	gen in Blänge <i>l</i>	gesa	amte Dur M	chbiegur leßstellen	ngen an d n	len	bleiben	de Durc Me	hbiegunge Bstellen	n an den	im Bruch	n- an der itter	Balken- nden				T.		Bemerkungen
я		Tage	em	em	em	kg	d em	fe qcm	ue em	d em	kg	Ge kg		kg	em	gesamte bl	eibende fe	edernde	em l	gesamte bl	leibende	federnde	a mm	b mm	c mm	d mm	e mm	a mm	b mm	c mm 1	d e nm mm	e em	e ₁ cm	e ₂ cm	kg/qer	n kg/qci	n kg/qen	h kg/qem	n	
34	4.12.00	223	14,86	30,61	216,0	233,3	2,19	3,77 (6,88	0,70	3,06	9,55	2,31	500 1000	69,8	0,19 0,39	0,01 0,02	0,18	70,1	0,22 0,49	0,01 0,03	0,21 0,46	0,025	0,040 0,085	0,045 0,095	0,040 0,085	0,025	0	0	0	0 0 0								Dauer	des Versuches: $6^{1/2}$ Stunden
														1500 2000 2500 3000 3150 3500 4000 4500		$\begin{array}{c} 0,62\\ 0,95\\ 1,28\\ 1,61\\ 1,77\\ 2,15\\ 3,18\\ 4,68 \end{array}$	$\begin{array}{c} 0,06\\ 0,13\\ 0,18\\ 0,23\\\\ 0,45\\ 0,95\\ 1,37\\ \end{array}$	0,56 0,82 1,10 1,38 1,70 2,23 3,31		0,76 1,02 1,30 1,64 1,82 2,09 2,67 3,30	$\begin{array}{c} 0,04\\ 0,05\\ 0,05\\ 0,09\\\\ 0,21\\ 0,35\\ 0,43\\ \end{array}$	$0,72 \\ 0,97 \\ 1,25 \\ 1,55 \\ \\ 1,88 \\ 2,32 \\ 2,87 \\$	0,080 0,110 0,150 0,190 0,250 0,335 0,445	0,140 0,195 0,255 0,335 0,445 0,600 0,795	0,155 0,210 0,290 0,375 0,490 0,680 0,900	$\begin{array}{c} 0,135\\ 0,185\\ 0,250\\ 0,330\\ \hline\\ 0,445\\ 0,615\\ 0,810\\ \end{array}$	0,085 0,110 0,150 0,195 - 0,260 0,355 0,460	$\begin{array}{c} 0 \\ 0 \\ 0,010 \\ 0,025 \\ - \\ 0,035 \\ 0,070 \\ 0,085 \\ 0 \end{array}$	0),005),015),035 	$\begin{array}{c cccccc} 0,005\\ 0,010& 0,\\ 0,025& 0\\ 0,040& 0\\ \hline \\ 0,065& 0\\ 0,125& 0\\ 0,170& 0\\ \end{array}$	$\begin{array}{c ccccc} 0 & 0 \\ 0 & 05 & 0 \\ 0 & 05 & 0,010 \\ 0 & 0 & 0,020 \\ \hline & & - \\ 0 & 0 & 0,040 \\ 1 & 0 & 0,065 \\ 1 & 5 & 0,080 \end{array}$								P = 27 $P = 31$ $P = 37$	750 kg: erste Wasserflecke 150 kg: erste Risse, außerhalb der Meßstrecke 750 kg: Riß innerhalb der Meßstrecke
														$\begin{array}{c} 5000\\ 6000\\ 7000\\ 8000\\ 9000\\ 10000\\ 10500\\ (P_{\rm max}) \end{array}$	Nach rund gesetzten	6,32 8,59 10,97 13,27 15,55 17,95 6 Minuten n Durchbie	1,75 2,08 2,32 2,61 2,80 3,12 drückt e gen des H	4,57 6,51 8,65 10,66 12,75 14,83 Sin Hake Balkens.	n der E	3,86 4,83 5,93 7,00 8,18 9,48 Eiseneinlag	0,46 0,49 0,59 0,64 0,70 0,83 e (Fig. 1	3,40 4,34 5,34 6,36 7,48 8,65 59) den H	0,570 0,765 1,020 1,300 1,600 1,950 Beton au	1,020 1,370 1,805 2,300 2,825 3,425 if einer S	1,145 1,530 2,015 2,555 3,120 3,760 Stirnseite	1,030 1,375 1,810 2,305 2,740 3,430 e des Balk	0,580 0,730 1,040 1,335 1,640 1,970 tens weg	0,105 0 0,140 0 0,180 0 0,240 0 0,295 0 0,370 0 g. Die Be	0,190 0,240 0,315 0,405 0,495 0,625 elastung	0,210 0 0,270 0 0,330 0 0,425 0 0,500 0 0,650 0 sinkt, au	$\begin{array}{c cccc} ,185 & 0,105\\ ,230 & 0,135\\ ,300 & 0,175\\ ,385 & 0,236\\ ,475 & 0,296\\ ,590 & 0,366\\ \mathrm{ch} \ \mathrm{bei} \ \mathrm{fort-} \end{array}$	1,3	1,6	1,1	128,	0 285	5 14,5	(31,3)	P = 7(fläct Unter) sich Abbild Abbild	000 kg: Kurzer Längsriß auf der untern Balken- he der wiederholten Belastung von $P = 10000$ kg zeigen n auf einer Stirnfläche (Fig. 159) Risse dung der Unterfläche: Fig. 157 dung einer Seitenfläche: Fig. 158 dung einer Stirnfläche: Fig. 159
38	10.12.0	226	14,95	30,90	216,0	236,1	2,18	3,73 (6,85	0,70	3,10	9,50	2,30	500 1000 1500 2000	70 0	0,20 0,42 0,71 0,98	0,01 0,05 0,12 0,17	0,19 0,37 0,59 0,81	70,2	0,23 0,46 0,72 0,99	0 0 0,01 0,03	0,23 0,46 0,71 0,96	0,020 0,045 0,075 0,105	0,040 0,085 0,135 0,195	$0,050 \\ 0,100 \\ 0,155 \\ 0,215$	0,040 0,085 0,140 0,195	0,025 0 045 0,075 0,110	0 0 0 (0 0 (0	0 0 0,005 0,010	0 0 0,005 0,015 0	0 0 0 0 ,005 0 ,010 0,00	5							Dauer $P=2$	250 kg: erster Wasserfleck
														2500 3000 3400 3500 4000 4500 5000		$1,29 \\ 1,62 \\ 1,99 \\ 2,20 \\ 3,10 \\ 4,65 \\ 6,46$	0,23 0,32 0,58 0,89 1,36 1,77	1,06 1,30 - 1,62 2,21 3,29 4,69		1,26 1,60 - 2,09 2,54 3,18 3,74	$0,04 \\ 0,06 \\ \\ 0,18 \\ 0,26 \\ 0,32 \\ 0,36$	1,22 1,54 - 1,91 2,28 2,86 3,38	0,145 0,185 - 0,250 0,325 0,435 0,540	0,255 0,325 - 0,450 0,590 0,785 0,985	0,285 0,365 - 0,495 0,650 0,875 1,100	0,260 0,325 - 0,440 0,575 0,775 0,985	$0,145 \\ 0,185 \\ - \\ 0,250 \\ 0,330 \\ 0,440 \\ 0,555 \\ 0,555 \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,185 \\ - \\ 0,250 \\ - \\ 0,250 \\ - \\ 0,255 \\ - \\ 0,25$	$\begin{array}{c} 0,010 \\ 0,020 \\ - \\ 0,040 \\ 0,060 \\ 0,075 \\ 0.095 \end{array}$	0,025 0,040 0,075 0,115 0,150 0,180	0,025 0 0,040 0 - 0,075 0 0,120 0 0,160 0 0,200 0	0,020 0,01 0,035 0,029 - - 0,070 0,04 0,110 0,06 0,145 0,07 0,180 0,09	0 0 0 5 5							P = 3 $P = 3$	3500 kg: erste Risse, außerhalb der Meßstrecke 3750 kg: Riß innerhalb der Meßstrecke
		-												$\begin{array}{c} 5000\\ 6000\\ 7000\\ 8000\\ 9000\\ 10000\\ 11000\\ 12000\\ (P_{\max}) \end{array}$	nach 10 min * 20 * * 30 * Der Balken losgedrä	9,03 9,03 11,40 13,76 15,95 18,38 21,11 26,70 28,88 31,43 wird nun ekt, kurz h	$\begin{array}{c} 1, 1 \\ 2, 25 \\ 2, 55 \\ 2, 57 \\ 3, 00 \\ 3, 33 \\ 3, 74 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	4,03 6,78 8,85 10,99 12,95 15,05 17,87 	lastet. kg wied	9,14 4,76 5,83 6,92 8,15 9,51 10,93 13,33 14,52 15,03 Bei Wied er erreich	0,30 0,47 0,57 0,64 0,78 0,94 erholung t wird.	4,37 5,36 6,35 7,51 8,73 9,99 - - - der Bela Die Bela	0,745 0,970 1,205 1,465 1,745 2,085 	1,350 1,745 2,155 2,595 3,100 3,685 	1,100 1,515 1,935 2,380 2,865 3,410 4,055 7,530 Beton a h bei we	6,385 1,355 1,730 2,135 2,570 3,070 3,670 	0,355 0,755 0,965 1,190 1,430 1,715 2,055 	0,130 0,130 0,155 0,215 0,215 0,270 0,335 	0,240 0,290 0,335 0,390 0,465 0,585 	0,260 (0 0,260 (0 0,315 (0 0,370 (0 0,430 (0 0,500 (0 0,640 (0 	,130 0,030 0,240 0,13 0,285 0,16 0,335 0,18 0,390 0,21 1,465 0,28 0,590 0,34 - - - - - - - - - - - - - - - - - - - - - - - - - -	0 0 5 5 5 1,4	2,0	1,1	144,	,0 326	4 16,8	(35,6	P = 7fiäc $P = 1$ Stin Abbil Abbil Abbil Abbil	7500 kg: kurzer Längsriß auf der untern Balken- che 12000 kg: nach 23 Minuten wurden auf einer infläche (Fig. 159) Risse beobachtet. Idung der Unterfläche: Fig. 157 Idung einer Seitenfläche: Fig. 158 Idung einer Stirnfläche: Fig. 159
39	11.12.06	225	15,01	30,91	215,9	237,6	2,18	3,73 6	,85	0,70	3,08	9,55	2,30	$500 \\ 1000 \\ 1500 \\ 2000 \\ 2500$	69,8	$0,19 \\ 0,41 \\ 0,65 \\ 0,90 \\ 1,21$	0 0,02 0,06 0,11 0,16	0,19 0,39 0,59 0,79 1,05	69,9	0,23 0,46 0,71 0,98 1,28	0,01 0,02 0,03 0,04 0,07	0,22 0,44 0,68 0,94 1,21	0,025 0,045 0,075 0,105 0,140	0,040 0,085 0,130 0,185 0,245	0,050 0,100 0,155 0,210 0,270	0,045 0,085 0,135 0,185 0,245	0,025 0,050 0,080 0,110 0,140	0 0 0,005 0,010	0 0 0,010 0,020	0 0 0,005 0,010 0,020	$\begin{array}{c cccc} 0 & 0 \\ 0 & 0 \\ 0,005 & 0 \\ 0,010 & 0,000 \\ 0,020 & 0,01 \end{array}$	5					-		Dauen $P = 2$	r des Versuches: 7 Stunden 2000 kg: erster Wasserfleck
														3000 3500 3600 4000 4500 5000		1,56 2,28 2,59 3,46 4,95 6,41	0,26 0,59 	1,30 1,69 - 2,39 3,47 4,52		1,66 2,08 	$0,14 \\ 0,23 \\ \\ 0,37 \\ 0,42 \\ 0,50 \\ 0,50 \\ \\ 0,50 \\ 0,50 \\ \\ 0,50 \\$	1,52 1,85 - 2,23 2,77 3,30	0,180 0,240 - 0,325 0,425 0,535	0,315 0,420 - 0,585 0,770 0,975	0,355 0,475 - 0,660 0,860 1,090	$\begin{array}{c} 0,320\\ 0,420\\ -\\ 0,585\\ 0,765\\ 0,970\\ \end{array}$	$0,180 \\ 0,240 \\ - \\ 0,335 \\ 0,430 \\ 0,540 \\ - \\ 0,540 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0,020 0,040 - 0,065 0,080 0,105	0,035 0,065 	0,040 0,080 - 0,130 0,175 0,215	$\begin{array}{c ccccc} 0,035 & 0,02\\ 0,070 & 0,04\\ - & - \\ 0,120 & 0,06\\ 0,155 & 0,09\\ 0,200 & 0,11 \end{array}$	5 0 5 0	. 4						P = 3	3600 kg: erster Riß, innerhalb der Meßstrecke
														$ \begin{array}{r} 6000 \\ 7000 \\ 8000 \\ 9000 \\ 10000 \\ 11000 \\ 12000 \end{array} $		8,82 11,09 13,31 15,66 17,99 20,30 22,70	2,36 2,66 2,88 3,14 3,41 3,65	6,46 8,43 10,43 12,52 14,58 16,65		$\begin{array}{r} 4,73\\ 5,72\\ 6,80\\ 7,89\\ 9,14\\ 10,39\\ 11,78\end{array}$	0,54 0,57 0,61 0,70 0,82 0,94 1,11	4,19 5,15 6,19 7,19 8,32 9,45 10,65	0,735 0,960 1,190 1,430 1,690 1,980 2,220	$1,325 \\ 1,705 \\ 2,115 \\ 2,530 \\ 2,980 \\ 3,470 \\ 4,100 $	1,480 1,905 2,335 2,800 3,300 3,830 4,550	1,320 1,695 2,085 2,500 2,950 3,445 4,155	0,735 0,940 1,155 1,395 1,640 1,920 2,840	$\begin{array}{c} 0,135\\ 0,170\\ 0,190\\ 0,220\\ 0,255\\ 0,300\\ 0,420\\ \end{array}$	0,250 0,290 0,330 0,395 0,435 0,510 0,710	0,275 0,320 0,370 0,425 0,480 0,560 0,790	$\begin{array}{ccccccc} 0,245 & 0,13\\ 0,295 & 0,16\\ 0,335 & 0,19\\ 0,390 & 0,21\\ 0,440 & 0,24\\ 0,515 & 0,28\\ 0,775 & 0,45\\ \end{array}$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			150	8 944	1 17	(97.4	P = 7fläd	7500 kg: kurzer Längsriß auf der untern Balken che
														12500 (P _{max})	Infolge star stört. N An den Bal	rker Zunah Jach rund (*,00 me der D 3 Minuten war am 9	ehnung kann d	des Eise ie Wag es Versi	ens öffnet e der Prü	sich eine fungsmas Riß wah	er der vo	orhandene cht mehr	en Risse r zum Ei	sehr we	eit, der gebracht	Beton a werden	uf der Dru 1.	uckseite	wird all	mählich zer-	1,5	1,0	1,5	150	10 041	1 11,0	(57,1	Abbil	ldung der Unterfläche: Fig. 157 ldung einer Seitenfläche: Fig. 158
Dure	hschnitt	225	-	-	-	-		3,74 6	,86	-	3,08	9,53	2,30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	-	140	,8 31	7 15,	9 (34,7	7)	

	-						
- 14		~	-	-	Ε.	~	
- 13				24.1		-	
				C. E. I			

Zusammenstellung 23. Balk	n mit	Bauart nach	Fig.	75.	Lagerung	der	Balken	bis zur	Prüfung:	Balken	91 un	d 92	an	der]	Luf	t.
---------------------------	-------	-------------	------	-----	----------	-----	--------	---------	----------	--------	-------	------	----	-------	-----	----

1	2	3	4	5	6	1 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26 9	7 90	20	20	81	32	88 2 94	1 2	5 1	36	37	38	20	40
Bung			Al	bmessunge Balken	en des s	Gewicht	t Ab	messung Eiseneinl	en der lagen	Gewicht	Raum-	Be- lastungen	Aenderun der Stree (vergl. Fig	ngen cken g. 75)	V auf der	erlängeru r unteren H	ngen Balkenfläc	che	Zus auf	sammend der obere	drückun en Balke	gen nfläche	24	20	Durchbie	gungen	(vergl. Fi	g. 19, He	ait 39)	52	e e im	Eisens	tt nende	Spannu	ngen un nach de	nter P _{ma}	x, be-	*0
Bezeich	Prüfung tag	s- Alter	Breite	b Höhe 7	Länge L	Balkens	Dmr.	Quer- schnitt	Umfang ue	Eisen einlagen Ge	gewicht des Betons	P (Anfangslast $P = 0 kg$)	æ	y i	Meßlänge <i>l</i>	Verlänger auf di	ungen in e Meßlär	$^{1/_{200}}$ cm age l	Meß- länge	Zusamm $^{1/200}$ cm :	endrücku auf die Mo	ngen in eßlänge <i>l</i>	gesa	amte Dur M	chbiegungen leßstellen	an den	blei	bende Du M	rchbiegur Ießstellen	igen an de	etondick	einbeton inge des	is Balke	συ	σ_e	$ au_0$	τ_1	Bemerkungen
		Tage	cm	em	cm	kg	em	qem	cm	kg		kg	mm	mm	em	gesamte b	leibende	federnde	em	gesamte	bleibende	federnde	a mm	b mm	c d mm m	n mm	a mm	b mm	c mm	d mm r	e 🏻 🋱 🋱 nm cm		m kg	g/qem k	g/qem	kg/qcm	kg/qem	
91	17.1.0	7 49	30,00	30,43	216,0	451,5	2,67	5,60	8,39	9,20	2,26	$1000 \\ 2000 \\ 2000$			70,2	0,23 0,61	0,01 0,15	$\substack{0,22\\0,46}$	70,0	0,36 0,79	0,04 0,10	$0,82 \\ 0,69$	$0,040 \\ 0,080$	0,065 0,145	0,075 0,0 0,165 0,1	$\begin{array}{c cccc} 65 & 0,040 \\ 40 & 0,083 \\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,005 0,020	0,010 0,025	0,005 0,020 0,	0 010							Dauer des Versuches: $2^{3}/_{4}$ Stunden
												$ \begin{array}{r} 3000 \\ 3150 \\ 4000 \\ 5000 \\ 5500 \\ \end{array} $	0 0,020	0 0 n	ach 6 min	1,63 1,90 $\cdot 2,83$ 4,23 	0,67 	0,96 		1,46 1,58 2,20 3,03 -	0,30 	1,16 	0,160 0,270 0,425 	0,275 	$\begin{array}{c ccccc} 0,330 & 0,2\\ - & - \\ 0,550 & 0,4\\ 0,840 & 0,7\\ - & - \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,055 0,135 0,225 	$\begin{array}{c} 0,085 \\ - \\ 0,175 \\ 0,250 \\ - \end{array}$	$\begin{array}{c ccccc} 0,075 & 0, & & \\ - & & & \\ 0,140 & 0, & \\ 0,210 & 0, & \\ - & & \end{array}$	040 080 120 							P = 3150 kg: erster Riß, innerhalb der Meßstrecke
												6000 (P _{max})	$\begin{array}{c cccc} 0,020\\ 0,045&0,\\ 0,050&0,\\ 0,050&0,\\ \text{Nach} 8^{1} \end{array}$	0 ,050 ,110 ,200 /2 Minut	> 12 > > 3 > > 6 > > 8 > ten gleitet o	5,11 — — — las Eisen 1	 bei y seh		Der G	3,46 		 überwund	0,540 — — — en.	0,955 — — —	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25 0,52	5 — — — —				- - - -	4	5 4	10,4	1086	4,1	14.5	Abbildung der Unterfläche: Fig. 160 Abbildung einer Seitenfläche: Fig. 161
92	18, 1, 03	50	30,18	30,34	215,8	452,8	2,64	5,47	8,29	9,10	2,26	1000 2000 2500			69,9	0,27	0,02	0,25	69,9	0,29 0,79	0,02	0,27 0,71	0,035	0,060 0,145	$\begin{array}{c cccc} 0,070 & 0,0 \\ 0,165 & 0,1 \\ \end{array}$	65 0,035 50 0,085	00,015	0,005 0,025	0,005 0,030	$0,005 \\ 0,025 \\ 0,$	0 010					,		Dauer des Versuches: 3 Stunden
												2500 2750 3000 4000 4500	0	0		1,09 1,42 1,68 3,07 4,25	0,38 0,74 1,29	0,71 		1,06 1,26 1,42 2,11 2.58	0,17 	0,89 1,14 1,64	0,115 	0,200 0,280 0,445 0,575	$\begin{array}{c ccccc} 0,225 & 0,21 \\ - & - \\ 0,310 & 0,22 \\ 0,510 & 0,44 \\ 0,655 & 0,54 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,025 	0,045 	0,050 	$\begin{array}{cccc} 0,050 & 0, \\ - & & \\ 0,080 & 0, \\ 0,135 & 0, \end{array}$	025 							P = 2750 kg: erster Riß, innerhalb der Meßstrecke
Dun	h = = 1 = 144	1 -0										$\begin{array}{c} 5000\\ (P_{\rm max}) \end{array}$	0 0, Nach 11	010 na Minute	ach 10 min en gleitet da		- l i y sehr	rasch,	Die Bel	astung sin	nkt, auch	bei fort	gesetzten	- Durchbi	egen des Ba	lkens.	-	=	- 1	-	- 0,9	4	5	33,6	921	3,3	12,2	Abbildung der Unterfläche: Fig. 160 Abbildung einer Seitenfläche: Fig. 161
93	31. 1. 07	50 49	30,12	30,54	216,0	461,6	2,64	5,54 5,47	8,34 8,29	9,15 9,10	2,26 2,29	1000			69,9	0,51	0,31	0.20	69.7	0.33	0.03	0.80	0.040	0.070	0.075 0.0	65 0.035	0.005	0.010	0.015	0.010 0	0.05		1	37,0	1004	3,7	13,3	Daner des Versuches: 5 ¹ / ₂ Stunden
												$\begin{array}{r} 2000\\ 3000\\ 3500\\ 4000\\ 4250 \end{array}$				1,12 1,71 2,02 2,48 2,83	0,62 0,88 1,02 1,25	0, ^F 0 0, 83 1,00 1,23		0,63 1,00 1,21 1,47 1,65	0,02 0,05 0,08 0,15	0,61 0,95 1,13 1,32	0,080 0,135 0,155 0,190 0,220	0,140 0,220 0,265 0,330 0,380	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,005 0,015 0,025 0,030 0,040	$\begin{array}{c} 0,010\\ 0,020\\ 0,040\\ 0,050\\ 0,070\\ \end{array}$	0,015 0,020 0,035 0,045 0,070	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010 015 025 035							
												$4500 \\ 5000 \\ 6000 \\ 6500$	0			3,25 4,09 6,08 6.05	1,66 1,92 2,52	1,59 2,17 3,56		1,94 2,28 3,06	$0,31 \\ 0,34 \\ 0,43 \\ 0,43$	$1,63 \\ 1,94 \\ 2,63 \\ 0$	0,245 0,310 0,470	0,435 0,540 0,840	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 0,070 \\ 0,080 \\ 0,120 \end{array}$	$0,115 \\ 0,140 \\ 0,210$	0,120 0,150 0,230	$\begin{array}{c ccc} 0,105 & 0, \\ 0,130 & 0, \\ 0,195 & 0, \end{array}$	060 075 110							P = 4500 kg: erste Risse (zwei Risse innerhalb, ein Riß außerhalb der Meßstrecke)
94	2.2.07	50	30,25	30,67	215,9	466,0	2,65	5,52	8,33	9.20	2.29	7000 ($P_{\rm max}$) 1000	Nachden	n diese	Belastung 1	und 1/2 Mi	nute gew	virkt hat,	gleitet	das Eiser	0,45 n bei y s	3,01 ehr rasch	0,560 n. Die I	1,000 Belastung	1,125 1,0 sinkt	15 0,580	0 0,140	0,245	0,260	0,230 0,	135	4	9 4	17,4	1295	4,7	17,1	Abbildung der Unterfläche: Fig. 160 Abbildung einer Seitenfläche: Fig. 161
												2000 3000 4000 4750			00,0	$0,56 \\ 0,99 \\ 1,74 \\ 2,91$	0,05	0,25 0,51 0,84 1,22	03,8	0,55 0,61 0,98 1,53 2,09	0 0 0,02 0,16	0,52 0,61 0,96 1,37	0,030 0,070 0,110 0,175	0,050 0,115 0,185 0,305	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0,010 0,030	0,005 0,015 0,050	0,005 0,015 0,060	0,005 0,015 $0,055$ $0,$	0 010 035							Dauer des versuches; 5 Stunden
												$5000 \\ 6000 \\ 6500$	0	0		3,32 5,36 6,39	1,26 1,85	2,06 3,51		2,25 3,05 3,41	0,35 0,40	$1,90 \\ 2,65 \\$	0,280 0,430 0,520	$0,495 \\ 0,775 \\ 0,930$	$\begin{array}{c cccc} 0,565 & 0,56 \\ 0,865 & 0,77 \\ 1,040 & 0,95 \end{array}$	$\begin{array}{c ccccc} 0 & 0,290 \\ \hline 0 & 0,430 \\ 20 & 0,515 \end{array}$	0,065 0,100	0,115 0,170	0,130 0,200	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	065 095							$P=5000~{\rm kg}\colon {\rm erste}$ Risse (je zwei Risse innerhalb und außerhalb der Meßstrecke)
				1								$\begin{array}{c} 7000\\ (P_{\rm max}) \end{array}$	0 Nach 4 M	0 na Minuten	ach 2 min gleitet das	Eisen bei	x sehr	raseh. I	Die Wag	e der Prü		schine ka	nn nicht	mehr zu	m Einspiele	n gebracht	werden.	_	-	-	- 1,0	4	3	46,2	1268	4,6	16,8	Abbildung der Unterfläche: Fig. 160 Abbildung einer Seitenfläche: Fig. 161
Dure	hschnitt	50	-	-		-	-	5,50	8,31	9,15	2,29			-	-		-	-	-		-	+	-	-		-	-	-	-	-		-	-	46,8	1281	4,6	16,9	

Zusammenstellung 23.

, Balken 93 und 94 unter Wasser. Alter: rund 50 Tage.

Zusammenstellung 24.

Zusammenstellung 24. Balken mit Bauart nach Fig. 75. Alter: rund 50 Tage.

1	2	3	4	5	6	7	8	.9	10	11	12	13	- 14	15
					erste Ris	se					Spannt	ingen unt	er P _{max} ,	berechnet
	nung	100 fe	Belastung, u	nter welcher	Verlängerung des	Span in Sp	nungen u	nter der	Belastung	Belastung	naen	den Gleic He	ft 39	seite 18,
Bauart	zeich	100 <u>-</u> b h	noch	der erste Riß	Betons unter der Belastung in	Gleid	hungen S	eite 18,	Heft 39	P_{\max}				Gleitwider-
	Bei		bemerkt wurde	wurde	Spalte 4	σ_b	σ_e	τ_0	τ_1		σь	σe	70	stand τ_1
		vH	kg	kg	mm/m	kg/qem	kg/qcm	kg/qcm	kg/qem	kg	kg/qcm	kg 'qem	kg/qem	kg/qem
	91	0,61	3000	3150	a) 2 Balken, bis 0,116	zur Prü 20,2	fung an o 543	der Luft 2,0	gelagert. 7,3	6000	40,4	1086	4,1	14,5
	92	0,60	2500	2750	0,078	16,8	461	1,7	6,1	5000	33,6	921	3,3	12,2
nach Fig. 75	Durch- schnitt	0,60	-	· -	0,097	18,5	502	1,8	6,7	5500	37,0	1004	3,7	13,3
b = 300, h = 300 mm Einlage: 1 gerades Rundejsen, 26 mm stark					b) 2 Balken, bis	zur Prüf	ung unte	r Wasse	er gelagert.					
	93 94	$\substack{0,59\\0,60}$	$\begin{array}{r} 4250 \\ 4750 \end{array}$	$\begin{array}{c} 4500\\ 5000\end{array}$	$0,202 \\ 0,208$	28,8 31,3	786 860	2,9 3,1	$\substack{10,4\\11,4}$	7000 7000	$47,4 \\ 46,2$	$ 1295 \\ 1268 $	$4,7 \\ 4,6$	$17,1 \\ 16,8$
	Durch- schnitt	0,60	-	-	0,205	30,0	823	3,0	10,9	7000	46,8	1281	4,6	16,9

Zusammenstellung 25. Balken mit Bauart nach Fig. 76. Alter: rund 7 Monate.

11	- 9	1 3 1	4	5	6	1 7	1 8 1	0 1	0 1 11	19	1 12	1 14	1 15 1	16	7 1 1	8 10	20	21	99	99	94	95	26	97	90	20 0	20 91	00	00 1	94 1 4	5 1	20 1	97	1 90	20]	40	1	41
-			1.	0	den.			5 1 1	0 1 11	1 12	1 15	11	10	Aenderung	zen		1 20	21		20		20	20 1	21	20	23 0	50 51	02	00 1	01 0		00 1	01	00	00	0£		41
80			Aome	Balkens	i des	Gewicht	Abme	essungen	der Eiser	neinlagen	Gewicht		Be-	der Streel	xen s	uf der unter	er ungen en Balkenfli	iche	auf d	er obere	n Balkenfl	läche			Durchbi	egunge	n (vergl. F	Nig. 19, E	Heft 39)		d	nittliche	den G	leichunge	Pmax, n Seite	18, Heft	39	
Inut	Prüfungs	Alter				des			1	IImfand	der Eisen-	Raum. gewicht	lastungen P	(vergi. Fig.		Vorlä	ararangan i	1/200 am	- 1	Zneamm	ondräckung	ron in		mto Dur	abbiogungou	an dan	ble	ihondo D	mabbioga	an an da	Bet	ondicke -	1	1	1	-		
zeic	tag		Breite b	Höhe h	Länge L	G	Dur	chmesser	Quer schni	tt der dre	i einlagen	des	(Anfangslast	*	u Meßlä	ngel au	f die Meßli	inge l	Meß- länge	1/200 cm a	uf die Meßl	länge /	B coa	M	leßstellen	i an uen	Die	sibende D	Meßsteller	igen an der	im	e Bruch-	a.	π.	To	T		Bemerkungen
Be							d1	d_2 d_3	3 Pe	Eisen	Gre	Belons	$\Gamma = 0 \text{ kg}$	3 2 3		gasam	hleihende	federade	1	resente	bleibende f	oberabe	a	ь	c	d d	e a	b	c	d	e que	rschnitt			-0			
	1.2.4	Tage	em	em	em	kg	em	em er	n qem	em	kg		kg	mm n	um en	1 Bosam	Dicibenta	reacting	cm ^e	sosanto	bierbende 1	cucinuo	mm	mm	mm n	nm m	im mm	mm	mm	mm n	m	em k	g/qem k	g/qem kg	g/qcm 1	kg/qcm k	xg/qcm	
49	9.1.07	223	15,02	30,72	215,9	231,6	1,00	1,00 1,	00 2,31	9,42	4.40	2,29	500	13	69	.9 0.2	0.01	0.19	69.9	0.23	0	0.23	0.025	0.045	0,050 0,	045 0.0	025 0	0	0	0	0				b	ei Annahr	me der	Dauer des Versuches: 5 ¹ /2 Stunden
													1000			0,4	7 0,05	0,42		0,48	0,01	0,47	0,055	0,100	0,110 0,	100 0,0	055 0	0,005	0,010	0,005	0					Uebertra	gung	
-													2000			1,0	0,11	0,64		1,04	0,01	1,02	0,085	0,155	0,170 0, 0, 0, 0, 0, 240 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	125 0,003	0,010 0 0,020	0,010 0,020	0,010 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	005					der Zugi durch	h	P = 1500 kg: erster Wasserfleck
						-							2500			1,4	8 0,26	1,22		1,39	0,05	1,34	0,160	0,280	0,315 0,	285 0,1	165 0,01	5 0,030	0,030	0,030 0,	015					das	die	
1													3500			3,1	7 0,94	2,23		2,40	0,29	2,11	0,295	0,525	0,595 0,	525 0,5	300 0,060	0 0,110	0,055	0,100 0,	025					Eisen I	Eisen ¹)	
													3600 3750			3,6		1		2,57	-	-	-	-	_			-	E							allein		P = 3750 kg, arster Riß anßarhalb der Meßstracka
													4000			5,3	7 1,85	3,52		3,14	0,45	2,69	0,440	0,790	0,885 0,	785 0,4	440 0,11	0 0,210	0,220	0,195 0,	105							P = 4000 kg: Risse innerhalb der Meßstrecke
												1	4500 5000			7,6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,20		3,89	0,60	3,29	0,590	1,065	1,190 1, 1,525 1.	065 0,3	595 0,14 760 0.17	$ 5 0,270 \\ 5 0,320 $	0,295	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	145 170							
		2										125	5500			11,9	8 3,84	8,64		5,28	0,65	4,63	0,935	1,665	1,850 1,	645 0,9	915 0,20	5 0,375	0,405	0,365 0,	200							
				1200								1	6500			15,5	3,61 3,79	10,26		5,88 6,56	0,67	5,87	1,080	1,930 2,195	2,150 1, 2,430 2,	905 1,0 165 1,5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,445 0,480	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220 240							
-							- 5.4						7000			17,3	5 3,96	13,39		7,25	0,72	6,53	1,390	2,480	2,755 2.	465 1,	390 0,26	0 0,470	0,515	0,470 0,	265							
1												1.1.2	8000			20,8	7 4,37	16,50		8,78	0,90	7,88	1,740	3,100	3,440 3.	,095 1,	755 0,31	5 0,570	0,620	0,570 0,	320							P = 8000 kg: kurzer Längsriß auf der untern Balken-
									1				8250 (Pmax)	0 Unton d	0		- die Venlär	-	an dan r	-	-	-	-	-	-		- -	-		-	-	0,8	108,2	3319	10,5	50,1	16,7	fläche
											1			rund	3 mm breit)	; an den Ei	seneinlagen	wird Zun	derabspri	ngen ber	nerkt. Na	ch 18 M	linuten e	rscheinen	n auf der g	edrückter	n Seite des	Balkens 1	Risse. Na	ch 37 Minu	ten							Abbildung der Unterfläche: Fig. 162
1.0												and the second		ist di	e Zerstörung	des Betons	auf der Di	uckseite s	ehr weit	vorgesch	nritten; die	Belastu	ang sinkt	t, auch h	bei fortgese	tztem Du	rchbiegen	des Balke	ens.	1								Abbildung einer Seitenfläche: Fig. 163
51	14.1.02	227	15,05	30,68	216,0	232,7	1,00	1,00 0,9	99 2,35	9,39	4,42	2,30	500		70	,0 0,2	0 0	0,20	70,0	0,25	0	0,25	0,025	0,045	0,050 0	,045 0,	025 0	0	0	0	0					-		Dauer des Versuches: 6 ¹ / ₂ Stunden
										1.00			1000 1500			0,4	5 0,02 3 0,06	0,43		0,53	0,04 0,05	0,49	0,060	0,105	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,105 0, 160 0,	060 0,00 090 0.00	5 0,010 5 0,015	0,010 0,010 0,015	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	005				1333			
							3.11						2000			1,0	4 0,13	0,91		1,16	0,10	1,06	0,135	0,235	0,260 0	,240 0,	135 0,01	5 0,030	0,035	0,035 0	015							P = 2000 kg; erste Wasserflecke
				2.74									3000			2,0	4 0,29	1,25		1,51	0,15 0,20	1,36	0,175	0,305	0,350 0 0,440 0	,310 0, 0, 395 0, 0, 0	175 0,02 225 0,03	5 0,045 5 0,065	5 0,050 5 0,070	0,045 0 0,065 0	020			-		-		
						2.52							3500 3750			2,8	8 0,80	2,08		2,39	0,31	2,08	0,295	0,520	0,580 0	,525 0,	290 0,05	5 0,100	0,115	0,100 0	055					1.		
										1.			3900			4,1	5 -	-		3,13	-	-	-	_	-	_		-	_	-	_							P = 3900 kg: erste Risse (je ein Riß außerhalb und
						24				1	1		4000 4500			5,4 7.8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,50		3,28	0,59	2,69	0,460	0,830	0,930 0	,825 0,	455 0,12	5 0,225	5 0,245 5 0,330	0,220 0	115					an ch		innerhalb der Meßstrecke)
												134	5000			10,2	4 3,18	7,06		4,73	0,67	4,06	0,805	1,450	1,620 1	,125 0, 0, 440 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,805 0,19	5 0,255	0,390	0,250 0	,190						2.2	
								1.					6000 7000			13,9 17.3	7 3,77	10,20		6,13 7.51	0,78	5,35	1,115	2,005	2,250 1 2,860 2	,995 1,	110 0,24 430 0.28	0 0,440	0,480	0,430 0 0.500 0	235	1000						P - 7000 ker kurza Längerigen auf der untern Palkon.
-				1.1.1									7500	0	0	19,0	7 4,38	14,69		8,24	0,86	7,38	1,615	2,865	3,180 2	,840 1,	,590 0,30	5 0,540	0,595	0,530 0	290			unter 1	P = 750	0 kg:		fläche
					1.386								7500 (wiederholt	0,015	0 nach 0 »	3 min — 8 » —	-	1		_	_	_	-	Ξ	-	-		-	-	-	_		98,6	3042	9,5	45,7	15,2	
												in the second	nach Entlasten auf							1 2 3																		
				18				-					$\begin{array}{c} P = 0 \text{ kg} \\ 8000 \end{array}$	0,025	0 »	3 » —	-	-		-	-	-	-	-	-	-		- 1	-	_	-							
			1											0,035	0 » 1 0 » 1	0 » —	- 4.09	16.15		0.15	1.09	8.19	1 9.05	9 205	2 0 9 0 9	- 1			-	-	-							
													8000	0,060	0 *	3 » 21,1 3 » -	4,50	- 10,15					-	5,505		- 1,	- 0,41	- 0,71	0,740	0,645 0	-							
									-				(wiederholt nach	0,065	0 » 2 0 » 3	0 » —	-	_		-	-	-	-	-	-	-		-	-	-	-							
									1		1 State		Entlasten auf $P = 0 \text{ kg}$)	0,000						19																		
			1.27.1				154						8500 (Pmax)	0,080	0 »	2 >	-	-		-	_	-	-	_		-		1	=	- 1	-	0.7	111 8	unter P	$\max = 85$	500 kg:	17.9	Abbildung day Unterflicher Fig. 169
														Unter d	ieser Belast	ing erweiter	t sich eine	r der vor	handenen	Risse s	ehr bedeut	end (sei	ine Breit	e beträg	t nach 15	Minuten	rund 8 m	nm). An	den Eise	neinlagen w	ird	0,1	111,0	0111	10,0	01,0	11,0	Abbildung einer Seitenfläche: Fig. 163
												-		wird Zerstö	Zunderabspi rung des B	ingen bemer atons auf der	kt. Nach Druckseite	10 Minute	erfolgt (sich au	f der Druc Wage der 1	kseite F	Risse; di	ese Riss	e werden	allmählie Einspieler	h zahlreich	verden	nach 15 l	dinuten ist	die							
					212															and are	uge der .	r r ur ung.		e nicht i	mont zum	Emspicies	n georaene	worden .	kann.	1 F								
53	19. 1. 02	225	15,12	30,64	216,0	233,6	0,99	1,04 1,0	2,41	9,52	4,50	2,30	500 1000		70	,0 0,2 0,4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,20	70,0	0,23	0 0,02	0,23 0,48	0,020	0,045	0,050 0	,045 0, 0.095 0.	,025 0	0	0,005	0	0							Dauer des Versuches: $6^{1}/_{4}$ Stunden
						100							1500			0,7	3 0,07	0,66		0,81	0,05	0,76	0,080	0,145	0,170 0	,145 0,	,090 0	0,001	5 0,010	0,010	0							
						E De St				Ner Santa	1. Second		2000			1,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,88		1,12	0,09	1,03	0,115	0,210 0,290	0,245 0 0,325 0	,210 0, 0, 0, 285 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,125 0,00	0.5 0,01	5 0,020 5 0,040	0,020 0	,005	1						P = 2000 kg: erste Wasserflecke
	1000									1			3000	5		1,9	9 0,40	1,59		1,88	0,22	1,66	0,215	0,385	0,430 0	,380 0,	,220 0,08	0,06	5 0,070	0,060 0	,085					plan		
										1	1		3600			2,8 3,4	4 -	2,10		2,42 2,61		2,06	0,285	-	- 0,580 0	- 0,		- 0,110	0,120	- 0,105	-							
						1942							3750 4000			3,9	5 -	3.57		2,81	0.59	2.67	0.425	- 0.800	0.890	- 0		- 0.91	0 0 995	0.195	-							P = 3750 kg: erste Risse (je ein Riß innerhalb und
									1				4500			7,8	5 2,48	5,37		3,94	0,62	3,32	0,600	1,090	1,215 1	,070 0.	,595 0,14	15 0,27	5 0,300	0,260 0	,140							aubernald der Messtrecke)
													5000 6000			10,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,06		4,57	0,65	3,92 5,19	0,755	1,375	1,530 1 2,095 1	,355 0.	,765 0,17	75 0,32 25 0.41	5 0,360 5 0,455	0,315 0	,175							
													7000			16,8	0 4,12	12,68		7,12	0,81	6,31	1,345	2,415	2,680 2	,370 1.	,335 0,21	75 0,50	5 0,550	0,485	,275							P = 7500 kg kurze Längsrisse auf der untern Balken-
						-							8000 9000	0	0	20,1	o 4,40	15,75		8,54	0,87	7,67	1,665	2,975	3,300 2	.940 1	,660 0,30	05 0,56	5 0,620	0,560		0.7	117.8	3569	11.4	52.6	18.6	fläche
													(P_{\max})	Unter d	ieser Belast	ing erreicher	die Eisen	einlagen d	lie Strech	grenze,	was durch	h Zunde	rabspring	ren festg	estellt erse	heint; ei	in Riß im	mittleren	Balkentei	erweitert	sich	.,.	,0		,4		10,0	
														der P	end. Infol	gedessen wird	d bei diese	m Riß de Nachspan	er Beton	auf der Einspiele	Druckseite	zerstör	rt. Nach	40 Min	nuten ist d	ie Zerstö	orung so w	veit vorge	eschritten,	daß die W	age							Abbildung der Unterfläche: Fig. 162
Durch	schnitt	225	_	-	- 1	_	_1		2.38	9.44	4.44	2 30	_	_	_					Support	a gooraoli	worde		201 10		abg obio		1	1	1	I			ur	ter Pm	ax:		incontaining other Softennache, Fig. 105
					1. 1				1 -100	1	1 -1-1	1,00										-	-		-		-	-				_	112,4	3445	10,9	51,5	17,5	

¹) Unter der Voraussetzung, daß in allen drei Eisen die gleiche Zugspannung vorhanden ist (vergl. Fußbemerkung unter XXX), gilt τ_1 für das mittlere Eisen.

Zusammenstellung 26. Balken mit Bauart nach Fig. 77. Alter: rund 7 Monate.

1	2	3	4	5	6	7	8	9	10 1	1 15	8 13	14	15	16	17	18	19 2	0 21	22	23	24	25	26	27	28	29 30	31	32 33	34	35	36	37	38		39
ng			Abı	messunge Balken	en des Is	Gewich	Abn	nessungen	der Ei	seneinlage	en Gewie der	ht Raum-	Be- lastungen	v auf de	erlänge er unteren	rungen Balkenflä	iche a	Zusamn auf der o	nendrücku beren Balk	ngen enfläche			Durch	biegunge	en (verg	d. Fig. 19,	Heft 39)		durch- schnittlich	e Spann den	ungen un Gleichur	ter P _{max} , ngen Seite	berechnet 18, Heft	nach 39	
ezeichnt	Prüfungs tag	Alter	Breite b	Höhe /	Länge	des Balken L G	Du	irchmesse	r Qu	aer- unitt Umf	ang Eisen einlag Ge	en des Betons	t P (Anfangslas P = 0 kg)	Meßlänge l	Verläng auf	erungen in die Meßlä	n ¹ / ₂₀₀ cm nge <i>l</i> Me län	B- Zusa 1/200 0	mmendrück cm auf die M	ungen in Ießlänge <i>l</i>	ges	amte Du	rchbiegun 1eßstellen	gen an der	n	bleibende l	Durchbiegun Meßstellen	gen an den	e im Bruch	е - <i>σъ</i>	σε	τ_0	Gleitspan	nung	Bemerkungen
B		Tage	em	em	em	kg	d ₁ em	d ₂ cm	d ₃ i	fe en en	n kg		kg	em	gesamte	bleibende	federnde	gesam	nte bleibend	e federnde	a mm	b mm	c mm	d mm n	e nm n	a b mm mm	c mm	d e mm mu	em	kg/qem	kg/qem	kg/qcm	kg/qem	kg/qem	
48	8.1.07	223	15,11	30,37	216,0	232,0	0,99	1,00 0	,99 2,	,33 9,8	4,38	2,31	500	70,0	0,19	0,01	0,18 70	0,0 0,23	3 0	0,23	0,025	0,045	0,050	0,045 0,	,025	0 0	0	0 0					bei Annahı	me der	Dauer des Versuches: $5^{1}/_{2}$ Stunden
													1000 1500		0,43 0,74	0,02 0,06	0,41 0,68	0,53	3 0,02 2 0,04	0,51 0,78	0,055 0,090	0,095 0,150	0,110 0,175	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	055	0 0,00	5 0,010 5 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5				Uebertragu Zugkraft	durch	P = 1500 kg: erster Wasserfleck
													2000 2500		1,06 1,47	0,15	0,91	1,14	4 0,08 3 0,11	1,06	0,125	0,215	0,245	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	125 0 160 0	,015 0,02 ,020 0,03	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,01 0,01 0,01 0,01	0 5				das mittlere	die drei	
													3000 3500		1,99	0,42 -	1,57	1,85	2 0,19	1,63	0,210	0,370	0,425	0,375 0,	215 0 280 0	,030 0,05	5 0,065	0,055 0,02	5				Eisen	Eisen ¹)	
													3600		3,29	-	-	2,55	2 -		-	-	-	-	-		-								D 9750 hrs. suster Diff. sufferhalt, der Maßstrecht.
										100			3750 4000		$3,88 \\ 5,29$	1,83	3,46	2,78	8 · - 6 0,57	2,69	0,435	0,790	0,890	0,785 0,	435 0	,110 0,20	5 0,225	0,195 0,10	0		18				$P = 3750 \text{ kg}^{\circ}$ erster kib, außerhalb der Meßstrecke P = 4000 kg: Riß innerhalb der Meßstrecke
													4500		8,00	2,70	5,30	4,16	6, 0,72	3,44	0,620	1,130	1,265	1,105 0,	605 0	,160 0,29	5 0,325	0,285 0,14 0.350 0.18	5						
								-					5500		12,48	3,78	8,70	5,64	4 0,84	4,15	0,980	1,455	1,965	1,735 0,	970 0	,230 0,42	5 0,465	0,405 0,25	0						
												1.76	6000		14,53 16,48	4,12 4,45	10,41 12,03	6,27	7 0,84 6 0,88	5,4 3 6,08	1,135 1,310	2,035	2,280 2,615	2,025 1, 2,325 1,	125 0 295 0	245 0,44	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,445 0,24 0,490 0,20	0 5						
				1.4	1							131	7000		18,39	4,68	13,71	7,70	6 0,95	6,81	1,480	2,655	2,945	2,620 1,	460 0	,295 0,54	0 0,590	0,525 0,28	5						
												122	8000		22,30	4,95 5,27	17,03	9,31	1 1,13	8,18	1,660 1,970	3,485	3,845	2,940 1, 3,425 1,	930 0	,470 0,79	5 0,845	0,745 0,45	5 1,2	115,5	3530	10,9	53,0	17,5	P = 8000 kg: Längsriß auf der unteren Balkenfläche
													8400 (P _{max})	Unter dies Gleichze	er Belast eitig mit	ung öffnet der Verbr	sich ein Rif	im mittl Risses wir	leren Balker rd der Betor	teil, die n auf der	Streckgre Druckse	enze des ite zersti	Eisens is ort. Nacl	t erreicht. h 16 Minu	Die E ten sink	t die Belast	abgesprung tung dauerne	enen Zunder I.							Abbildung der Unterfläche: Fig. 164 Abbildung einer Seitenfläche: Fig. 165
52	15.1.07	228	15,09	30,54	216,0	232,7	1,00	0,99 0	,99 2,	33 9,3	6 4,38	2,31	500	70,0	0,20	0,01	0,19 69	,8 0,24	4 0,01	0,23	0,025	0,040	0,050	0,045 0,	,025	0 0	0	0 0				3.22			Dauer des Versuches: 6 ¹ / ₄ Stunden
					12.9			1					1000		$0,46 \\ 0,74$	$0,04 \\ 0,10$	0,42 0,64	0,50	0 0,02 8 0,05	0,48 0,73	0,060	0,090 0,145	0,105 0,165	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	055 0 085 0	0,005 0,000 0,010 0,01	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,005 0 0,010 0,00	5						
										30			2000 2500		1,05	0,16	0,89	1,07	7 0,05	1,02	0,125	0,205	0,235	0,210 0, 0,280 0	120 0 160 0	0,010 0,01	5 0,020 5 0.030	0,015 0,0	05						P = 2000 kg: erste Wasserflecke
										-			3000		2,03	0,45	1,58	1,82	2 0,13	1,69	0,100	0,215	0,420	0,375 0,	,210 0	,030 0,05	0 0,055	0,050 0,0	15						
													3250 3500		$2,40 \\ 2,98$	0,86	2,12	2,06	5 <u>-</u> 6 0,27	2,09	0,285	0,505	0,570	0,505 0,	290 0	,055 0,09	5 0,105	0,090 0,04	5						P = 3500 kg: erster Riß, innerhalb der Meßstrecke
							1.58		1	5			3750 4000		4,18	1.95	2 1 1	2,81	1 -	-	-	-	-	0.765 0	- 120 0		0 0 915	0 185 0 1							P = 5750 kg: photographische Aufnahme der unteren Balkenfläche Fig. 166
					1				-				4500		8,07	2,78	5,29	4,06	5 0,47 5 0,65	3,41	0,420	1,120	1,270	1,125 0,	,625 0	,165 0,29	0 0,325	0,285 0,1	0						Durachinaoney 145. 100
						-				21-2			5000 5500		10,23 12,22	$3,25 \\ 3,60$	6,98 8,62	4,76	3 0,68 8 0,71	4,08	0,775 0.955	1,410 1,725	1,600	1,425 0, 1,725 0, 0	,790 0 ,970 0	0,195 0,35 0,220 0,39	5 0,385 5 0,440	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00		1				
	4											153	6000		14,36	3,87	10,49	6,21	0,77	5,44	1,130	2,035	2,285	2,040 1,	150 0	,245 0,44	5 0,485	0,435 0,2	10						
					1								7000		16,23	4,08 4,29	12,15 13,70	6,93	0,83	6,10	$1,305 \\ 1,465$	2,335 2,635	2,615	2,545 1, 2,635 1,	,490 0	0,270 $0,480,295$ $0,52$	5 0,575	0,515 0,2	00		1				P = 7000 kg: Längsriß auf der unteren Balkenfläche
		1.29			1	1.44							7500 8000		19,97 21,73	4,54	15,43	8,45	5 0,99 8 1.01	7,46	1,655 2.935	2,970	3,315	2,970 1, 3,815 2,	,675 0 190 0	0,325 0,57 0.805 1.27	5 0,625 5 1,265	0,560 0,3 1,125 0.6	1,4	117,1	3577	11,0	52,9	18,0	Zeichnerische Darstellungen der Dehnungen und Durch- biegungen: Fig. 167 bis 169
	1.1					1.4.1	-		10 3				8500	Unter dies	ser Belast	ung werde	en die äußerst	ten Risse	(rechts und	links in	Fig. 165), sowie	ein Riß	im mittler	en Balk	enteil bedeu	tend breiter	Der zuletz	t						Lage der Nullinie mit steigender Belastung: Fig. 170
													(Tmax)	genannte sinkt di	e Riß erv le Belastu	veitert sic ng. Die	h nach 25 M Eisen zeigen	inuten seh abgesprun	nr rasch, gl	eichzeitig er.	wird auf	f der ged	lrückten :	Seite des E	Balkens	der Beton z	erstört. Nac	h 26 Minute	1						Abbildung der Unterfläche: Fig. 164 und 166 Abbildung einer Seitenfläche: Fig. 165
56	25. 1. 07	228	15,00	30,49	216,0	231,6	1,00	0,99 1,	00 2,	35 9,3	9 4,30	2,31	500	69,8	0,21	0,01	0,20 69	,9 0,23	3 0	0,23	0,025	0,045	0,050	0,045 0	,025	0 0	0	0 0							Dauer des Versuches: $4^{1}/_{2}$ Stunden
						12.00						100	1500		0,44 0,72	0,03 0,08	0,41 0,64	0,50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,50 0,73	0,055	0,090 0,150	0,105 0,165	0,095 0.	,055 0	0,005 0,00	5 0,010	0,005 0,0	0.5						P = 1500 kg: erster kleiner Wasserfleck
													2000		1,04	0,15	0,89	1,05	5 0,05	1,00	0,120	0,210	0,230	0,215 0	,120 (0,010 0,01 0,020 0,02	5 0,020 5 0.030	0,015 0,0	10 15						
											1		3000		2,01	0,45	1,56	1,83	3 0,17	1,66	0,215	0,370	0,425	0,375 0	,215 (0,030 0,05	0 0,060	0,050 0,0	25						
		1							1. 1. 1.			13.3	3500		$2,99 \\ 3,66$	0,95	2,04	2,41 2,58	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,07	0,285	0,505	0,580	0,515 0	,290 (-0,055 0,10		0,100 0,0	50		1				P = 3600 kg: erster Riß, innerhalb der Meßstrecke
									1	2			4000		5,32	1,85	3,47	3,17	7 0,49	2,68	0,410	0,735	0,850	0,760 0	,420 (0,095 0,17	5 0,200	0,175 0,0	90 35			1.5			
						122							5000		10,70	3,14	7,56	4,85	3 0,66	4,17	0,775	1,400	1,590	1,405 0	,780 0	0,170 0,31	0 0,350	0,300 0,1	65						
					A LA		. 81						6000 7000		14,46 18,00	3,73 4,12	10,73 13,88	6,15	2 0,76 6 0,74	5,36	1,125	2,000	2,240 2,990	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,105 (0,240 0,41 0,285 0,50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,405 0,2 0,505 0,2	20 90						P = 7500: kurzer Längsriß auf der unteren Balkenfläche
-			1.16										8000		21,66	4,67	16,99	8,93	5 0,89	8,06	1,860	3,315	3,740	3,415 1	,965 0	0,350 0,68	30 0,720	0,660 0,8	95 1,6	117,	5 3540	11,1	53,0	17,8	Abbildung das Unterflächet Die 101
													(Pmax)	Unter $P =$ Riß im	8400 kg mittleren	werden d Teil des	lie äußersten : Balkens erwe	Risse (recl	hts und link sehr rasch	s in Fig. ; gleichze;	165), so itig wird	wie ein 1 1 bei die	Riß im m sem Riß	der Beton	auf der	bedeutend Druckseite	breiter. Ins zerstört. N	besondere de ach 4 Minute	n l				17. 4.		Abbildung einer Seitenfläche: Fig. 165
1		1	4 01		1								1	sinkt di	e Belastu	ng. Die	Eisen zeigen	abgesprur	ngenen Zund	ler.						1		1					1	1	
Dure	nschnitt	226	-	-	-	-	-	- -	- 2,8	34 9,3	7 4,35	2,31		-	-	-		- -	-	-	-	-	-	-	-	- -	-			116,	3549	11,0	53,0	17,8	

Zusammenstellung 26.

Zusammenstellung 27. Balken mit Bauart nach Fig. 78. Alter: rund 8 Monate.

1	2	3 4 5 6 7 8 9 10 11 12 13 14 Abmessungen des Abmessungen der Eiseneinlagen												17	18	19	20	21	22	23	24	25 26		27 2	3 2	29 30	31	32	33 34	35	36	37	38 3	39	40	41	4	2	43
50			Abme	Balkons	des			Ab	messunge	n der Eise	neinlagen		Gewicht		Be-	Aenderun der Stre	ngen cken	Ve	erlänger	ungen		Zusamı	nendrü	ckungen			Durch	hbiegun	gen (vergl.	Fig. 19. F	Teft 39)		' sı	pannun	gen unte	er P _{max}	, berechne	et nach	
gunut	Prüfungs-	Alter		Darkens		Gewicht des		Durchme	esser	0.0	τ	Imfang	der Eisen-	Raum-	lastungen	(vergl. Fig	g. 78)	auf der	unteren	Balkenflach	e	auf der d	oberen	Balkenfläch	e									den G	Heichung	gen Seit	te 18, He	eft 39	
ezeicl	tag	1	Breite b	Höhe h	Länge L	G Balkens	d.	da da		schn	itt des	sämtliche	r einlagen Ge	des Betons	(Anfangslast $P = 0 \text{ kg}$)	t æ	y M	leßlänge l	auf d	ie Meßläng	200 cm e <i>l</i>	Meß- länge	cm auf	die Meßläng	in ce l	gesamte Du	Meßstellen	igen an d	len b	leibende L	Meßstelle	ngen an de n	len o	76	σε	το	Gleitsp	annung	Bemerkungen
B		Tage	em	em	em	kg	em	em em	em .	em der	Stabes »	Einlagen	kø		ko	mm	mm	om	gesamte 1	bleibende f	edernde	l gesa	nte blei	bende fede	nde	a b	c	d	e a	b	c	d	e				τ	τ1	
59	28 1 07	220	15.08	30.93	216.0	237.0	1 00 0	70 0.71	0.70	0.71 9.9	5 2 14	12.00	4.45	9 2 0	500	mm		70.0	0.00	0.01	0.10	70.0					mm	mm	mm mn	i mm	mm	mm	mm kg/	qem k	g/qem k	g/qem	kg/qem	kg/qcm	
			10,00	00,00		201,0	1,00 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,10	0,11 2,0	5 0,14	12,00	1,10	2,02	1000			10,0	0,20	0,01	0,19	10,0 0,2 0,5		0,01 $0,0$		025 0,045 0,095 045 0,095 0,000 0,	0,050	0,045	0,025 0 0	0,005	0,005	0,005	0				Uebert	tragung	r Dauer des Versuches: 5 ⁴ / ₂ Stunden
															2000				1,05	0,15	0,90	1,0	4 0	0,01 $0,00$ $1,00$		115 0,210 155 0,980	0,235	0,205	0,115 0,00	5 0,010	0,015	0,010 0	0,005				das mitt-	- die füni	P = 2000 kg: erste Wasserflecke
															3000 3500				1,95 2,91	0,43 0,87	1,52	1,7	8 0),13 1,),28 2,	5 0,5 01 0,5	200 0,370 270 0,495	0,415	0,365	0,205 0,02	5 0,055 0 0,095	0,060	0,050	0,030				allein	II LAISON /	·
															3600 3750				3,26 3,77	-	-	2,4 2,6	6			I I	-	-		-	-	=	-						P = 3750 kg; erste Risse, innerhalb der Meßstrecke
															$ 4000 \\ 4500 $				5,15 7,82	1,87 2,64	3,28 5,18	3,0 3,8	7 0 7 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	59 0,1 28 0,1	390 0,720 550 1,015	0,825 1,155	0,730 1,010	0,400 0,09 0,550 0,19	5 0,185 5 0,255	0,205 0,285	0,180	0,090 0,130						
															5000 6000				$10,29 \\ 14,06$	3,24 3,89	7,05	4,5	7 0 7 0	0,63 $3,0,65$ $5,$	04 0,1 12 1,0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1,490 \\ 2,095$	1,310 1,850	0,715 0,17 1,015 0,23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,355 0,465	0,315 0,405	0,170 0,220						
															8000				17,61 21,15	4,31 4,82	13,30 16,33	7,0	0 0	0,72 6, 0,86 7,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,685 3,335	2,375 2,960	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0,530 \\ 0,640$	0,470 0,565	0,255 0,315						P = 8000 kg: kurze Längsrisse auf der unteren Balken-
															8500 8750	0	0		23,85	-	=	9,4	.8		- 1,	910 3,415 - -	3,795	3,380	1,880	-	=	-	- 11	15,4	3558	11,1	53,3	17,9	fläche
															(Pmax)	Unter d die F	lieser Be Elsen zei	lastung wa gen Zunder	chsen die abspringe	Dehnungen n. Nach 1	a (an de 8 Minute	en erscheine	alkenfläc n auf de	che insbeso er oberen,	ndere) s gedrückt	sehr rasch. ten Seite Ris	Ein Riß i se; nach	in der Mi 61 Minu	itte der Balk uten ist die	zenlänge e Zerstörung	rweitert s so weit	ich bedeut vorgeschri	tend; itten,						Abbildung der Unterfläche: Fig. 171 Abbildung einer Seitenfläche: Fig. 172
60	90 1 07	990	15.09	21 10	915.0	995.0	1.01 0		0.50	0.70 9.0	2 2 1 7	11.05		9.00		daß	die Wag	e der Prüf	ungsmase	hine nicht	mehr zu	m Einspiele	n gebra	cht werden	kann.	1	1. 1			1	1								
	25.1.01	200	10,02	01,10	210,0	200,2	1,01 0	,10 0,10	0,70	0,10 2,5	0,11	11,97	4,40	2,29	1000			69,9	0,21 0,44	0,02	0,21 0,42	70,0 0,1		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,050 0,105	0,040 0,090	$\begin{array}{c cccc} 0,025 & 0 \\ 0,055 & 0 \\ \end{array}$	0,008	0,005	0	0						Dauer des Versuches: 6 Stunden
															2000				1,04	0,05	0,92	1,:		0,07 0, 0,11 1, 0,12 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,160	0,145	0,085 0,0 0,120 0,0	05 0,010 10 0,010	0,010 0,025	0,010 0,015	0,005			-			P = 2000 kg: erste Wasserflecke
															3000				2,21	0,61	1,60	1,1	1	0,12 1, 0,21 1, 0,25 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,315	0,280	0,160 0,0 0,215 0,0 0,200 0,0		0,035 0,065	0,030	0,015						
		-								-		1.			3600				3,98	2.01	- 3.17	2,1	55	0,55 2,	60 0		0,590	0,525	0,300 0,0			0,110	0,055						P = 3600 kg: erste Risse (je ein Riß innerhalb und
															4500 5000				7,49	2,69	4,80	3,1	92	0,64 3,	28 0, 98 0	545 0,985	1,105	0,975	0,545 0,1 0,545 0,1 0,695 0,1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,195 0,265 0,265	0,170	0,125						aubernalb der Mebstrecke)
															6000 7000				13,61 17,20	3,95	9,66 12,76	5,		0,75 5.	16 1, 40 1	005 1,810	2,025	1,805	1,015 0,2 1,315 0,2	20 0,39	0,330 0,445 0,520	0,290	0,215		3				
															8000 8500	0	0		20,65 22,59	4,79	15,86	8,	36 32	0,94 7.	72 1,	,660 2,935 .880 3.325	3,260	2,915	1,635 0,3 1.875 -	10 0,55	0,605	0,540	0,300						
															9000 (Pmax)	Unter d	lieser Be	lastung erv	veitert sic	h ein Riß	in der 1	Mitte der Ba	lkenlän	ge bedeuter	nd. Nad	ch 5 Minnute	n ergeben	n die Abl	lesungen:		1							-	P = 9000 kg: kurzer Längsriß auf der unteren Balken-
			·												(* mux/	0,010	0 n:	nch 20 min	-	-	-		-	-	-		-	-		-	-	-	-				1		fläche
																Die Bel	lastung	wird nun a	uf $P = 0$	kg erniedr	igt und	dann $P = 9$	000 kg	wiederholt	aufgebra	acht. Nach	5 Minuten	zeigen s	ich auf der	Druckseite	des Ball	ens Risse;	; der						
																Die Ab	lesungen	am Schlu	ß des Ver	rsuches erg	eben:	inuten sinkt	die Bela	istung, aue	1 bel for	tgesetztem D	urchbiegei	n des Bal	kens. Die E	isen zeigei	1 abgespru	ngenen Zui	nder.						Abbildung der Unterfläche: Fig. 171
c 9	5 9 07	0.9.5	15.05	20.55	215.0	000 0	1.02 0	50 0.51	0.50			10.10				0,060 0	0,030		-	-	-	-		-			-	-			-	-	- 1	16,6	3647	11,3	53,5	18,4	4 Abbildung einer Seitenfläche: Fig. 172
0.0	5. 2. 07	235	15,05	30,75	215,9	255,5	1,03 0	,70 0,71	0,70 0	5,71 2,3	3,24	12,10	4,55	2,30	500 1000			69,8	$0,21 \\ 0,48$	0,01 0,05	0,20 0,43	69,8 0, 0,	22 49	0 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} ,030 & 0,040 \\ ,055 & 0,095 \end{array}$	0,050 0,105	0,040 0,095	0,025 (0,055 (0 0,00	0 5 0,005	0 0,005	0 0		age.				Dauer des Versuches: 5 ¹ / ₂ Stunden
							13.3								2000				0,74 1,09	0,09 0,15	0,65 0,94	$ \begin{array}{c} 0, \\ 1, \end{array} $	79 09	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 78 & 0, \\ 05 & 0, \end{array}$,090 0,155 ,125 0,215	0,165 0,240	$0,150 \\ 0,215$	$\begin{array}{c cccc} 0,085 & 0,0 \\ 0,120 & 0,0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,015	0,005 0,010						P = 2000 kg: erste Wasserflecke
															2500 3000				1,57 2,23	0,28 0,49	1,29 1,74	1, 1, 1,	42 84	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$,165 0,290 \\ ,215 0,385$	$0,325 \\ 0,425$	$0,285 \\ 0,380$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ 5 0,035 \\ 5 0,060 $	0,030 0,050	0,015 0,030						
															3600				3,29	1,02	2,27	2, 2, 2, 2, 3	47 63	0,33 2	14 0,	,300 0,530	0,595	0,520	0,290 0,0	- 0,10	5 0,120	0,105	0,055				-		P = 3600 kg: erste Risse, innerhalb der Meßstrecke
															4000				4,03	1,72	3,23	2, 3,	82 09	0,43 2	66 0,	,415 0,745	0,830	0,720	0,400 0,0	95 0,17	0 0,195	0,170	0,090				1 days		
															4500 5000				6,94 9,93	2,48	4,46	3, 4, 4,	89 61	0,57 3 0,66 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,565 1,020 ,735 1,315	1,145 1,485	0,995 1,290	0,545 0,1 0,710 0,1	.35 0,25 .85 0,33		0,240 0,315	0,130 0,170						
											Y				7000	-			16,89	4,22	9,66 12,67	5, 7,	10	0,72 5	13 1, 34 1,	,030 1,835 ,330 2,405	2,045	1,790 2,310	0,995 0,9	25 0,40 70 0,48	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,390 0,465	0,220 0,265						
										-	120				9000	0	0	ich 6 min	23,99	5,21	18,78	8, 10,	11	1,12 8	99 2,	,080 2,940	3,250 3,990	2,860 3,520	1,985 0,4	15 0,70	5 0,770	0,540 0,685	0,305 0,390						
															(wiederholt nach	0,030	0	» 9 »	-	-	-	-		-	- 2,	,215 3,845	4,215	3,740	2,105 -		-	-	-						F = 9000 kg: kurzer Längsriß auf der unteren Balken- fläche
				-											P=0 kg) 9500	Die Del	nungen	wachsen n	nter diese	r Belasture	sehr m	asch Finer	der mi	ttleren Dies		tart sich al-	ichroitin	wird and	dan Durah	ita das D	llrong d	Poter	and Set						
		9500 Die Dennungen wachsen unter dieser Belastung sehr rasch. Einer der mittleren Risse erw (Pmax) Nach 4 Minuten sinkt die Belastung dauernd. (Die Streckgrenze der Eisen ist überse Die Ablesungen am Schluß des Versuches ergeben;												berschri	itten, die Eis	en zeigen	abgespr	ungenen Zur	der.)	TREUS (16)	beton zer	istort.				-													
																0,095	0	am Schiu	ues ver	suches erge	eben: —	-	-	-	- 1	- 1 -	-	-		- 1 -	1 -	-	- 1	124,8	3803	12,1	56,2	19,8	Abbildung der Unterfläche: Fig. 171 5 Abbildung einer Seitenfläche: Fig. 172
Dure	hschnitt	231	-	-	-		- -	- -	-	- 2,3	3,18	12,02	4,48	2,30	-	-	-	-	-	-	-		-	-	-		-		- -		-	-	- 1	118,9	3669	11,5	54,3	18,0	.6

¹) Unter der Voraussetzung, daß in allen fünf Eisen die gleiche Zugspannung vorhanden ist (vergl. Fußbemerkung unter XXX), gilt 71 für das mittlere Eisen.

Zusammenstellung 27.

.

Zusammenstellung 28.

Zusammenstellung 28. Balken mit Bauart nach Fig. 76 bis 78. Alter: rund 7 Monate.

$\frac{1}{100 \frac{h}{h}} = \frac{1}{100 \frac{h}{h}} = \frac{1}{10 $		1.0	1 0			I e	7	0	0	10	11	1.9	1.9	1 14	1 15	16	17	19	10	
Hart =	1	2	3	4	9	0		0	9.	10	11	12	1.0	14	10	10	17	18	19	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Wasse	rflecke			erste	Risse		1. 2 1			in an i	Spann	ungen un	ter Pmax,	berechnet n	ach den	
Bauart Image: Problem of the product of		50				Balastung I	inter welcher		Spannu	ngen unt	er der H	Belastung in	Spalte 6,		1	Gleichur	igen Seite	a 18, Heft 39	Э	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Int	fe.	Polastung unter	Vorlängerung des	Delastung, o	unter werener	Verlängerung des	berechne	t nach d	en Gleic	hungen S. 1	8, Heft 39	Belastung	1999	201 220	12.2.2.2.1	τ_1 bei A	nnahme	
$\frac{1}{2} \frac{1}{2} \frac{1}$	Bauart	chu	100 - bh	welcher zuerst	Betons unter der	noch	der erste Riß	Betons unter der				t1 bei Ann	ahme der	Pmax				der Ueber	rtragung	
$\frac{2}{2} = \frac{2}{2} \frac{2}$		zei		Wasserflecke be-	Belastung in	kein Riß	beobachtet	Belastung in	0	0.	70	der Zugki	aft durch		412	Øe	70	der Zugkr	aft durch	
$\frac{1}{10000000000000000000000000000000000$		Be		obachtet wurden	Spalte 4	bemerkt wurde	wurde	Spalte 6	00		*0	das mittlere	-11- 17:	10.00				das mittlere	alle Eisen?)	
Name Vir kg namm kg kg kg/den k		1.19	T		mmlm	In	Ira	mm/m	ke/aam	ke/aam	belaam	Eisen allein	alle Elsen-)	br	ka'aam	ke/aom	be am	Eisen allein	kalaam	
nach Fig. 76 49 0,51 1500 0,05 3600 3750 0,258 47,2 1448 4,6 21,9 7,3 8250 108,2 3319 10,5 50,1 16,7 Bilagen: 3 Rundeisen 10 mm stark; davon das mittlere gerade, die beiden andergenogen 0,51 2000 0,07 3750 3900 3750 0,258 47,2 1448 4,6 21,9 7,3 8250 108,2 3319 10,5 50,1 16,7 Durchschnit - 0,51 - 0,06 - - 0,267 ¹ 47,8 1448 4,6 21,9 7,3 8250 111,8 3147 ¹ 10,8 51,8 ³ 17,3 ³ 18,6 nach Fig. 77 b= 150, h = 300 mm - - 0,267 ¹ 47,8 1466 4,6 21,9 7,4 8583 112,4 3445 10,9 53,0 17,5 b= 150, h = 300 mm - - 0,06 - - 0,2855 49,5 1518 4,7 22,8 7,5 8400 115,5 3530 10,9 53,9 17,5			VH	Kg	<u> </u>	Kg	kg	1	Ag/qem	ws/qcm	Kg/qcm	kg/qcm	kg/qem	I AS	mop,ga	ng/qem	ng/qem	kg/qcm	Kg/qcm	
$\frac{1}{1} \frac{1}{1} \frac{1}$			1.7.1		1							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	THE REAL	1220022		11332		1.1.1.1	
$\frac{b = 150, h = 300 \text{ min}}{b = 150, h = 300 \text{ min}}$ $\frac{51}{53} \begin{bmatrix} 0,51 \\ 0,52 \end{bmatrix} \begin{bmatrix} 2000 \\ 0,07 \end{bmatrix} = \frac{3750}{3600} \begin{bmatrix} 3900 \\ 0,27 \end{bmatrix} = \frac{49,3}{900} \begin{bmatrix} 521 \\ 47,8 \end{bmatrix} \begin{bmatrix} 4,7 \\ 22,8 \end{bmatrix} = \frac{7,6}{7,4} \begin{bmatrix} 8500 \\ 9000 \end{bmatrix} = \frac{111,8}{3569} \begin{bmatrix} 3447 \\ 10,8 \end{bmatrix} = \frac{51,8^3}{52,6} \end{bmatrix} \begin{bmatrix} 7,3 \\ 17,3 \end{bmatrix}$ $\frac{51}{0,52} \begin{bmatrix} 2000 \\ 0,07 \end{bmatrix} = \frac{9000}{0,07} \end{bmatrix} \begin{bmatrix} 3750 \\ 3600 \end{bmatrix} = \frac{3900}{0,27} \end{bmatrix} \begin{bmatrix} 3750 \\ 0,246 \end{bmatrix} = \frac{49,3}{1428} \end{bmatrix} \begin{bmatrix} 521 \\ 4,7 \end{bmatrix} = \frac{22,8}{7,4} \end{bmatrix} \begin{bmatrix} 7,6 \\ 9000 \end{bmatrix} = \frac{111,8}{17,3} \end{bmatrix} \begin{bmatrix} 3447 \\ 10,8 \end{bmatrix} = \frac{51,8^3}{14,4} \end{bmatrix} \begin{bmatrix} 7,3 \\ 52,6 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 7,3 \end{bmatrix} \\ \frac{10,51 \\ 0,52 \end{bmatrix} = \frac{9000}{2000} \end{bmatrix} \begin{bmatrix} 11,8 \\ 3569 \end{bmatrix} \begin{bmatrix} 11,8 \\ 3569 \end{bmatrix} = \frac{11,4 }{52,6} \end{bmatrix} \begin{bmatrix} 52,6 \\ 18,6 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 7,8 \\ 12,9 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8583 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8445 \end{bmatrix} = \frac{7,6 \\ 8400 \end{bmatrix} = \frac{7,4 \\ 8445 \end{bmatrix} \begin{bmatrix} 12,4 \\ 4,6 \end{bmatrix} = \frac{7,4 \\ 8445 \end{bmatrix} = \frac{7,6 \\ 8400 \end{bmatrix} = \frac{7,4 \\ 8445 \end{bmatrix} = \frac{7,6 \\ 8400 \end{bmatrix} = \frac{7,4 \\ 8445 \end{bmatrix} = \frac{7,6 \\ 8400 \end{bmatrix} = \frac{7,4 \\ 8445 \end{bmatrix} = \frac{7,6 \\ 8400 \end{bmatrix} = \frac{7,4 \\ 8445 \end{bmatrix} = \frac{7,6 \\ 8400 \end{bmatrix} = \frac{7,4 \\ 845 \end{bmatrix} = \frac{7,6 \\ 8400 \end{bmatrix} = \frac{7,4 \\ 8400 \end{bmatrix} = 7,4 $	nach F1g. 76	49	0,51	1500	0,05	3600	3750	0,258	47,2	1448	4,6	21,9	7,3	8250	108,2	3319	10,5	50,1	16,7	
Emingen? 3 Rundersen 10 min stark; davon das mittlere gerade, die beiden andern aufgebogen Durchsehnitt 53 0,52 2000 0,07 3600 3750 0,246 46,9 1428 4,6 21,0 7,4 9000 117,3 3569 11,4 52,6 18,6 nach Fig. 77 b=150, h=300 mm - - 0,06 - - 0,267 ¹) 47,8 1466 4,6 21,9 7,4 8583 112,4 3445 10,9 51,5 17,5 b=150, h=300 mm 48 0,51 1500 0,05 3600 3750 0,235 49,5 1513 4,7 22,8 7,5 8400 115,5 3530 10,9 53,0 17,5 b=150, h=300 mm 48 0,51 1500 0,05 3600 3750 0,235 49,5 1513 4,7 22,8 7,5 8400 115,5 3530 10,9 53,0 17,5 b=150, h=300 mm 48 0,51 1500 0,05 3600 3750 0,235 49,5 1513 4,7 22,8 7,5 8400 117,1 <th< td=""><td>b = 150, h = 300 mm</td><td>51</td><td>0,51</td><td>2000</td><td>0,07</td><td>3750</td><td>3900</td><td>0,297</td><td>49,3</td><td>1521</td><td>4,7 _</td><td>22,8</td><td>7,6</td><td>8500</td><td>111,8</td><td>3447</td><td>10,8</td><td>$51,8^{3}$)</td><td>$17,3^{3}$)</td></th<>	b = 150, h = 300 mm	51	0,51	2000	0,07	3750	3900	0,297	49,3	1521	4,7 _	22,8	7,6	8500	111,8	3447	10,8	$51,8^{3}$)	$17,3^{3}$)	
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	mittlene gerede, die beiden endern enforhogen	53	0,52	2000	0,07	3600	3750	0,246	46,9	1428	4,6	21,0	7,4	9000	117,3	3569	11,4	52,6	18,6	
Durchschnitt - 0,51 - 0,00 - - 0,2077 $47,8$ 1400 $47,8$ 1400 $47,8$ 142,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,0 $47,8$ 145,1 $57,9$ $11,1,1$ $53,0$	miturre gerade, die beiden andern aufgebogen		1 0 1 1		20.0		1	0.0671)	17.0	1466	1.0	01.0	1 7.	1 0500	1 110 1	2445	1 10.0	515	175	
nach Fig. 77 b = 150, h = 300 mm Einlagen: 3 Rundelsen, 10 mm stark; davon das anderen aufgebogen480,5115000,05360037500,23549,515134,722,87,58400115,5353010,953,017,5Einlagen: 3 Rundelsen, 10 mm stark; davon das anderen aufgebogen560,5120000,07325035000,17144,813674,220,26,98500117,1357711,052,918,0Durchschnitt-0,51-0,060,207^1)47,814524,521,77,38433116,7354911,053,017,8nach Fig. 78 b590,5020000,07360037500,23347,514644,622,17,48750115,4355811,153,317,9	Durchsennitt	-	.0,51		0,00			0,2017)	#1,0	1400	4,0	21,9	1,4	0989	112,4	JIIJ	10,9	51,5	11,0	
hat hat fig. 17 hat hat fig. 17 $b = 150, h = 300 \text{ mm}$ 48 0,51 1500 0,05 3600 3750 0,235 49,5 1513 4,7 22,8 7,5 8400 115,5 3530 10,9 53,0 17,5 Einlagen: 3 Rundeisen, 10 mm stark; davon das mittlere mit Haken an den Enden, die beiden anderen aufgebogen 56 0,51 2000 0,05 3500 3500 0,171 44,8 1367 4,2 20,2 6,9 8500 117,5 3530 11,0 52,9 18,0 nach Fig. 78 - 0,51 - 0,06 - - - 0,207^1) 47,8 1452 4,5 21,7 7,3 8433 116,7 3549 11,0 53,0 17,8 nach Fig. 78 59 0,50 2000 0,07 3600 3750 0,233 47,5 1464 4,6 22,1 7,4 8750 115,4 3558 11,1 53,3 17,9	nach Rig 77		11.1	A CONTRACTOR					12.13			182.5		A Standard	121.8 3	133.4	234764		1	
b = 100, h = 300 mm the 300 mm the 300 mm <th c<="" td=""><td>h = 150 $h = 200$ mm</td><td>18</td><td>0.51</td><td>1500</td><td>0.05</td><td>3600</td><td>3750</td><td>0.235</td><td>49.5</td><td>1518</td><td>4.7</td><td>22.8</td><td>1 7.5</td><td>8400</td><td>115.5</td><td>3530</td><td>10.9</td><td>53.0</td><td>17.5</td></th>	<td>h = 150 $h = 200$ mm</td> <td>18</td> <td>0.51</td> <td>1500</td> <td>0.05</td> <td>3600</td> <td>3750</td> <td>0.235</td> <td>49.5</td> <td>1518</td> <td>4.7</td> <td>22.8</td> <td>1 7.5</td> <td>8400</td> <td>115.5</td> <td>3530</td> <td>10.9</td> <td>53.0</td> <td>17.5</td>	h = 150 $h = 200$ mm	18	0.51	1500	0.05	3600	3750	0.235	49.5	1518	4.7	22.8	1 7.5	8400	115.5	3530	10.9	53.0	17.5
Integer. 6 indication of the beiden anden Enden, die beiden anderen aufgebogen 55 5,61 1500 5,61 1500 5,61 1500 5,61 1500 5,61 1500 11,1 53,0 17,8 mittlere mit Haken an den Enden, die beiden anderen aufgebogen 56 0,51 1500 0,05 3500 3600 0,214 49,0 1475 4,6 22,0 7,4 8400 11,1 53,0 17,8 nach Fig. 78 140.1 59 0,50 2000 0,07 3600 3750 0,233 47,5 1464 4,6 22,1 7,4 8750 115,4 3558 11,1 53,3 17,8	b = 100, n = 500 mm Finlagen: 3 Rundeisen 10 mm stark: devon des	52	0,51	2000	0.07	3250	3500	0,171	44.8	1367	4.2	20.2	6.9	8500	117.1	3577	11.0	52.9	18.0	
Indicate internation and an internation of the internation	mittlere mit Heken en den Enden die heiden	56	0.51	1500	0.05	3500	3600	0.214	49.0	1475	4.6	22.0	7.4	8400	117.5	3540	11.1	53.0	17.8	
Durchschnitt - 0,51 - 0,06 - - 0,207 ¹) 47,8 1452 4,5 21,7 7,3 8433 116,7 3549 11,0 53,0 17,8 nach Fig. 78 59 0,50 2000 0,07 3600 3750 0,233 47,5 1464 4,6 22,1 7,4 8750 115,4 3558 11,1 53,3 17,9	anderen aufgebogen		0,01	1000												1-31123			1	
nach Fig. 78 59 0,50 200 0,07 3600 3750 0,233 47,5 1464 4,6 22,1 7,4 8750 115,4 3558 11,1 53,3 17,9	Durchschnitt		0.51	1	0.06	1 -	-	0 2071)	47.8	1452	4.5	21.7	1 7 3	8433	1 116 7	3549	1110	1 53.0	1 17 8	
nach Fig. 78 59 0,50 2000 0,07 3600 3750 0,233 47,5 1464 4,6 22,1 7,4 8750 115,4 3558 11,1 53,3 17,9	Durensennitt		0,51	State All States	0,00			0,201 /	11,0		1,0	,1	1,0	0100	110,1	0010	11,0	00,0	,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nach Fig. 78		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										1.53		1.3.3			
	b = 150, b = 300 mm	59	0,50	2000	0,07	3600	3750	0,233	47,5	1464	4,6	22,1	7,4	8750	115,4	3558	11,1	53,3	17,9	
Einlagen: 1 Rundeisen 10 mm stark, gerade: $60 0,49 2000 0,07 3500 0,253 45,4 1418 4,4 20,8 7,2 9000 116,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 3647 11,3 53,59 18,49 16,6 16,6 16,6 16,6 16,6 16,6 16,6 16,$	Einlagen: 1 Rundeisen 10 mm stark, gerade:	60	0,49	2000	0,07	3500	3600	0,253	45,4	1418	4,4	20,8	7,2	9000	116,6	3647	11,3	53,5*)	18,44)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 Rundeisen 7 mm stark, aufgebogen	63	0,52	2000	0,08	3500	3600	0,236	46,0	1401	4,5	20,9	7,2	9500	124,8	3803	12,1	56,24)	19,5*)	
Durchschnitt -10.50 $ 0.07$ $ 0.241^{\circ}$) 46.3 1428 4.5 21.3 7.8 9083 118.9 3669 11.5 54.3 18.6	Durehsehnitt		0.50	1 -	0.07	-	-	0.2411)	46.3	1428	4.5	21.3	7.3	9083	1 118.9	3669	11.5	54.3	18.6	

In diesen Zahlen gelangt der Einfuß des Abstandes der Eisen von der Balkenunterfläche zur Geltung. Er beträgt bei den Balken nach Fig. 76: 7 mm, nach Fig. 77: 14 mm, nach Fig. 78: 6 mm.
 Unter der Voraussetzung. daß in allen Eisen die gleiche Zugspannung vorhanden ist (vergl. Fußbemerkung unter XXX), gilt 71 für das mittlere gerade Eisen, an welchem das Gleiten gemessen wurde.

⁽⁷⁾ bitter all fordation into a product of the p

Zusammenstellung 29. Balken mit Bauart nach Fig. 79. Alter: rund 8 I

1	2	3	4	5	6	7	8	9 1	0 1	1 12	13	14	15	16 17	18	19	20	21	22	23	24	25	26	27 2	8 29	30	31	32	33	34 35	36	37	38	39	40		41
ьо		Alter Abmessungen des Balkens Gewicht des Balkens Durchmes							der Eis	seneinlagen	Gewich	t	Be-	Aenderungen der Strecken	ant d	Verlänge	rungen	aha	Zusa	mmend	rückung	en		D	urchbieg	ungen (v	ergl. Fig	. 19, Heft	39)		durch-	Spannu	ngen, b	erechnet	t nach den	Glei-	
hnun	Prüfungs	Alter	Alter Breite b Höhe h Länge L G $des Balkens G$ d_1 d_2 d_3							Umfan	der Eisen-	Raum- gewicht	t lastungen P	(vergl. Fig. 7	<u>)</u>	Verläng	ernngen in	1/acc.em	aur ut	Zusamma	ndrückung	gan in	gosam	to Durabbi	ornngon a	n dan	blait	ondo Daval	hhianna	n an don	- Betondick	e	hungen	Seite 1	8, Heft 39		
ezeic	tag		Breite b	Höhe h	Länge L	G	Du	renmesser	Que schi	nitt der dre	ei einlagen Ge	n des Betons	(Anfangslast P = 0 kg)	x y	Meßlänge l	auf	die Meßlär	nge l	Meß- länge	/200 cm at	af die Meß	Blänge l	gosam	Meßs	egungen a	u uen	Dien	Mei	ßstellen	n an den	e im mittlere	n ob	σε	To	7		Bemerkungen
B		Tage	em	cm	em	kg	d ₁ em	d ₂ d		e ue	kg		kg	mm mm	em	gesamte	bleibende	federnde	/ g	esamte b	leibende f	federnde	a	<i>b</i>		6	a	b	c	d e	Balkentei	Inglaum		halaam	1. 1		
58	24. 1. 07	226	20,06	31,15	216,0	319,3	1,79	1,81 1,8	39 7,	,90 17,25	14,68	2,29	1000 2000 3000 4000		70,1	0,27 0,60 0,93 1,39	0,01 0,03 0,07 0,13	0,26 0,57 0,86 1,26	70,0	0,34 0,72 1,12 1,55	0,01 0,02 0,05 0,08	0,33 0,70 1,07 1,47	0,040 0,075 0,115 0,165	0,060 0,0 0,125 0,1 0,200 0,2 0,285 0,3	m mm 70 0,060 45 0,130 25 0,205 15 0.290	0,035 0,070 0,115 0,165	0 0 0,005 0,010	0 0 0,005 0,005	0 0,005 0,010 0,015 0	0 0 0 0 005 0 015 0.005	em	[kg/qem]	kg/qem	kg/qen	bei Anna Uebertr der Zu	hme der agung gkraft	Dauer des Versuches: $7^{1}/_{2}$ Stunden P = 3000 kg: erste Wasserflecke
													$\begin{array}{c} 5000\\ 6000\\ 6500\\ 6750\\ 7000\\ 8000\\ 9000\\ 10000\\ 11000\\ 12000\\ \end{array}$	0 0 0,050 0 0,050 0	nach 10 mir » 15 »	$1,89 \\ 2,70 \\ 3,24 \\ 3,46 \\ 3,66 \\ 4,67 \\ 5,71 \\ 6,90 \\ 7,89 \\ 1 \\ - \\ 9,05 \\ 9,05 \\ 1,00 \\ - \\ 1$	0,26 0,26 0,56 - 0,95 1,25 1,47 1,74 1,83 - 2,01	$\begin{array}{c} 1,63\\ 2,14\\ -\\ -\\ 2,71\\ 3,42\\ 4,24\\ 5,16\\ 6,06\\ -\\ 7,04 \end{array}$		2,06 2,57 2,87 2,99 3,16 3,76 4,47 5,19 5,87 - 6,59	0,12 0,12 0,16 - 0,24 0,28 0,34 0,44 0,45 - 0,46	$\begin{array}{c} 1,41\\ 1,94\\ 2,41\\ -\\ -\\ 2,92\\ 3,48\\ 4,13\\ 4,75\\ 5,42\\ -\\ 6,13\end{array}$	0,225 (0,295 (0,295 ((1,2,3) $(3,3,3)$ $(3,3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,010 0,020 0,035 - 0,060 0,080 0,095 0,120 0,140 - 0,180	0,013 0 0,030 0 0,060 0 	$0,010 \\ 0,040 \\ 0,070 \\ 0,070 \\ 0,070 \\ 0,0115 \\ 0,0,150 \\ 0,0,180 \\ 0,0,220 \\ 0,0,250 \\ 0,0,250 \\ 0,0,0,05 \\ 0,0,0,00 \\ 0,0,0,0,0,0,0,0,0,0,0,0,0,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		88.1	Unter	$P_g = 1$	dur das mittlere Eisen allein 2000 kg:	die drei Eisen ¹)	P = 6750 kg: erstes Rißchen, außerhalb der Meßstrecke $P = 7500$ kg: Riß innerhalb der Meßstrecke
													13000 14000 15000 16000 17000	$ \begin{array}{cccccc} 0,120 & 0 \\ 0,120 & 0 \\ 0,220 & 0,011 \\ 0,225 & 0,011 \\ 0,225 & 0,012 \\ 0,360 & 0,052 \\ 0,370 & 0,051 \\ 0,605 & 0,112 \\ 0,680 & 0,124 \\ 0,700 & 0,124 \\ 0,705 & 0,124 \\ 1,190 & 0,194 \\ 1,400 & 0,211 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 2,14 - 2,27 - 2,41 - 2,65 - 2,65			- 7,29 - 8,16 - 9,03 - 9,94 -	0,47 	6,82 7,55 8,37 9,25 		2,665 2,4 	40 1,880 	$\begin{array}{c ccccc} & - & & - & \\ & & & & \\ & & & & \\ & & & &$				$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$P=13000~{\rm kg}$: Längsriß auf der untern Balkenfläche
													(0) 17000 (P_{max} wiederholt nach Entlasten auf P 0 kg)	$\begin{array}{c} 1,440 & 0,211 \\ 1,560 & 0,223 \\ 1,600 & 0,233 \\ (1,200) & (0,233 \\ 2,260 & 0,333 \\ 2,430 & 0,355 \\ (4,930) & 0,365 \end{array}$	$\begin{array}{c} & & & 20 \\ & & & 25 \\ & & & 30 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $		2,84 	- 11,64 - - a gleitet Die Belas	das Eisen stung sinl	10,95 	 0,85 sch. Gleic			4,545 4, 		0 2,095 					0,8	124,8	Unter 2162	· P _{max} = 17,0	= 17000 kg) (60,7)	: (19,4)	 Zeichnerische Darstellungen der Dehnungen und Durchbiegungen: Fig. 178 bis 181 Lage der Nullinie mit steigender Belastung: Fig. 182 Aenderungen der Strecken x und y (Spalte 16 und 17): Fig. 177 Abbildung der Unterfläche: Fig. 178 Abbildung einer Seitenfläche: Fig. 174 Abbildung der Stirnflächen: Fig. 175 und 176
61	0. 1. 07	230	20,00	31,06	216,0	319,3	1,90	1,81 1,8	1 7,9	98. 17,35	14,62	2,30	$ \begin{array}{r} 1000\\ 2000\\ 3000\\ 4000\\ 5000\\ 6000\\ 6250\\ 6750 \end{array} $		70,0	$0,27 \\ 0,60 \\ 0,97 \\ 1,45 \\ 1,98 \\ 2,68 \\ 3,09 \\ 3,45 \\ 0,27 \\ 0,100$	$\begin{array}{c} 0 \\ 0,02 \\ 0,09 \\ 0,17 \\ 0,25 \\ 0,51 \\ - \end{array}$	0,27 0,58 0,88 1,28 1,73 2,17	70,1	$\begin{array}{c} 0,34\\ 0,73\\ 1,12\\ 1,55\\ 2,03\\ 2,65\\ 2,83\\ 9,15\\ \end{array}$	0 0,01 0,02 0,04 0,08 0,19 -	0,34 0,72 1,10 1,51 1,95 2,46 -	0,040 0,080 0,125 0,175 0,230 0,305 —	$\begin{array}{c cccc} 0,060 & 0,\\ 0,130 & 0,\\ 0,205 & 0,\\ 0,290 & 0,\\ 0,385 & 0,\\ 0,515 & 0,\\ - \end{array}$	$\begin{array}{ccccc} 070 & 0,06 \\ 150 & 0,13 \\ 240 & 0,20 \\ 335 & 0,29 \\ 140 & 0,39 \\ 580 & 0,52 \\ - & - \end{array}$	$\begin{array}{c ccccc} 5 & 0,040 \\ 0 & 0,080 \\ 5 & 0,120 \\ 5 & 0,170 \\ 0 & 0,230 \\ 0 & 0,300 \\ \end{array}$	$\begin{array}{c c} 0 \\ 0 \\ 0,010 \\ 0,015 \\ 0,025 \\ 0,040 \\ - \end{array}$	$\begin{array}{c} 0 \\ 0,005 \\ 0,010 \\ 0,015 \\ 0,025 \\ 0,055 \\ - \end{array}$	$\begin{array}{c c}0\\0,005\\0,015\\0,025\\0,040\\0,070\\-\end{array}$	$\begin{array}{c ccccc} 0 & 0 \\ 0,005 & 0 \\ 0,010 & 0,010 \\ 0,015 & 0,011 \\ 0,030 & 0,024 \\ 0,055 & 0,044 \\ - & - \end{array}$) 5 0						Dauer des Versuches: $7^{1}/_{2}$ Stunden P = 3000 kg: erste Wasserflecke P = 6250 kg: erste Risse, außerhalb der Meßstrecke
													7000 8000 9000 10000 12000 12500 13000 14000 15000	$\begin{array}{cccccccc} 0 & 0 \\ 0,025 & 0,020 \\ 0,025 & 0,020 \\ 0,070 & 0,055 \\ 0,070 & 0,055 \\ 0,270 & 0,115 \\ 0,335 & 0,125 \\ 0,355 & 0,135 \\ 0,355 & 0,135 \\ 0,350 & 0,236 \\ 0,930 & 0,266 \\ 0,970 & 0,266 \\ 0,980 & 0,266 \end{array}$	nach 10 mir > 15 > > 6 * > 10 > > 20 > > 30 > > 10 > > 20 > > 30 > 30	3,84 4,89 6,54 7,70 8,88 9,96 - 11,16 - 12,25 - 13,49 - 14,74	1,07 1,40 2,18 2,39 2,62 2,73 	$2,77 \\ 3,49 \\ 4,41 \\ 5,81 \\ 6,26 \\ 7,23 \\ - \\ 8,21 \\ - \\ 9,24 \\ - \\ 9,24 \\ - \\ 10,21 \\ - \\ - \\ 11,35 \\ - \\ 11,35 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		3,32 3,32 3,93 4,60 5,33 6,06 6,76 - 7,53 - 9,35 - 9,35 - 10,34	0,81 0,83 0,40 0,51 0,54 0,54 	3,01 3,60 4,20 4,82 5,52 6,22 6,96 7,72 8,62 8,62 - -	0,395 0,485 0,600 0,705 0,825 0,945 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & & - & - \\ 5 & 0,390 \\ 0 & 0,485 \\ 5 & 0,595 \\ 0 & 0,700 \\ 5 & 0,815 \\ 0 & 0,930 \\ - & - \\ 0 & 1,080 \\ - & - \\ 0 & 1,240 \\ - & - \\ - & - \\ 0 & 1,240 \\ - & - \\ - & - \\ 0 & 1,240 \\ - & - \\ - & - \\ 0 & 1,240 \\ - & - \\ - & - \\ 0 & 1,240 \\ - & - \\ - & - \\ 0 & 0 & 1,240 \\ - & - \\ - &$	$\begin{array}{c} & & & \\ 0,065 \\ 0,080 \\ 0,110 \\ 0,120 \\ 0,140 \\ 0,150 \\ - \\ - \\ 0,180 \\ - \\ - \\ 0,210 \\ - \\ - \\ 0,210 \\ - \\ - \\ - \\ 0,350 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0,105 0,125 0,175 0,195 0,225 0,245 0,280 	0,115 0,145 0,205 0,230 0,245 0,285 0,320 0,325 - - 0,375 - - 0,545 - - 0,545 - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		94,6	Unte 1630	$\begin{array}{c} \text{er} P_g = \\ 13, \end{array}$	13000 kg: 0 43,6	15,5	P = 7000 kg: Risse innerhalb der Meßstrecke P = 14000 kg: Längsriß auf der untern Balkenfläche Lage der Nullinie mit steigender Belastung: Fig. 183
32	4. 2. 07	234	20,05	30,73	215,9	315,8	1,79 1	1,81 - 1,82	7,6	9 17,03	14,25	2,30	17000 (Pmax) 1000	$\begin{array}{cccc} 1,450 & 0,435 \\ 1,710 & 0,715 \\ 1,970 & 1,135 \end{array}$	> 2 > > 10 > > 30 > 70,0	Nach ab. kan 0,28	4 Minuten Nach 45 n. Auf de 0	erscheine Minuten r andern 0,28	en auf der ist die Ze Stirnfläe 70,3	r einen S erstörung he, Fig. 1 0,33	tirnfläche so weit 176, zeige	erfolgt, o 0.33	kens Riss daß die W nach 35 M	e, vergl. F age der P inuten ebe	ig. 175. D rüfungsma nfalls Riss	er Haken schine nic se.	der Eini	age »3« d zum Einsp	0,990 Irückt do bielen geb	t den Beton racht werden	0.0,5	123,7	Unter 2131	$\begin{array}{c c} r & P_{\max} = \\ 1 & 17, \end{array}$	= 17000 kg 0 (57,0	;:) (20,3)	Abbildung der Unterfläche: Fig. 173 Abbildung einer Seitenfläche: Fig. 174 Abbildung der Stirnflächen: Fig. 175 und 176 Dauer des Versuches: 7 ¹ / ₄ Stunden
													$ \begin{array}{r} 2000 \\ 3000 \\ 4000 \\ 5000 \\ 6000 \\ 6250 \\ \end{array} $			$0,60 \\ 1,00 \\ 1,44 \\ 2,08 \\ 2,95 \\ 2,95 \\ 2,00 \\ 0,00 \\ $	$\begin{array}{c} 0,0 2\\ 0,0 8\\ 0,1 7\\ 0,2 8\\ 0,6 2\end{array}$	0,58 0,92 1,27 1,80 2,33		$0,74 \\ 1,18 \\ 1,64 \\ 2,18 \\ 2,82 \\ 2,00 \\ 0$	0,01 0,03 0,06 0,10 0,19	0,73 1,15 1,58 2,08 2,63	$\begin{array}{c} 0,075\\ 0,125\\ 0,175\\ 0,235\\ 0,325\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 5 & 0 \\ 5 & 0,005 \\ 5 & 0,010 \\ 0 & 0,020 \\ 0 & 0,045 \\ \end{array}$	$\begin{array}{c} 0\\ 0,010\\ 0,025\\ 0,040\\ 0,080 \end{array}$	$\begin{array}{c} 0,005\\ 0,010\\ 0,025\\ 0,040\\ 0,090 \end{array}$	0 0 0,010 0,00 0,020 0,01 0,035 0,02 0,075 0,04	05 15 20 15						P = 3000 kg: erste Wasserflecke
													6750 7000		+	3,69 4,11	1.17	- 2.94		2,99 3,34 3,49	0.28	- 3.91	0.495	0.745	830 0 7	-	-	-	0.140								P = 6250 kg; erstes Rißchen außerhalb der Meßstrecke
													8000 9000 10000 12000 13000 14000 15000 (wiederholt nach Entlasten auf	0 0 0,010 0,020 0,010 0,020	nach 3 mir » 6 »	5,28 6,49 7,64 8,80 9,96 11,04 12,14 13,17 -	1,50 1,77 2,00 2,18 2,36 2,55 2,59 2,71	3,78 4,72 5,64 6,62 7,60 8,49 9,55 10,46 		4,20 4,94 5,67 6,45 7,25 8,12 9,05 10,05 —	0,35 0,41 0,44 0,50 0,56 0,61 0,63 0,79 -	3,85 4,53 5,23 5,95 6,69 7,51 8,42 9,26 -	0,515 0,625 0,740 0,865 0,995 1,120 1,255 1,405 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	025 0,91 245 1,11 465 1,81 700 1,52 960 1,75 195 1,97 465 2,21 745 2,47	10 0,505 15 0,620 10 0,730 20 0,845 55 0,975 1,100 1,230 15 1,385	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,155 0,180 0,215 0,285 0,265 0,295 0,325 0,375	0,175 0,200 0,230 0,260 0,290 0,325 0,350 0,415	0,150 0,03 0,180 0,00 0,205 0,11 0,235 0,12 0,260 0,14 0,290 0,14 0,315 0,11 0,865 0,22	80 95 10 80 10 80 10 80 10	112,5	Unt 9 197	ter $P_g = 8$: 15000 kg ;,2 54,	: 17,7	P = 14000 kg: Längsriß auf der untern Balkenfläche
nrehe	lmitt	220			-					6 17.00			P 0 kg 16000 17000 (Pmax)	0,030 0,045 0,030 0,045 0,095 0,150 0,110 0,180 0,405 0,770 0,660 1,060 0,720 1,280 Nach 30 Mi Die Ablesur 0,770 3,190	 6 * 10 > 20 > 25 > 10 > 20 > 25 > 10 > 20 > 25 > nuten drückt am Schluft 		2,80 2,99 22 Minuter n der Einl uches erga		nen am e _ den Beto			10,22 — — 11,49 — &isse (ver — — kenende	1,585 — 1,845 — gl. Fig. 1 — Ios. Die	2,785 3, 				0,445	0,480 		40 50 0,7	135,	Unte 5 237	er P _{max} 74 18	= 18000 l 3,2 (64,	eg 9) (21,3	Lage der Nullinie mit steigender Belastung: Fig. 184 Abbildung der Unterfläche: Fig. 173 Abbildung einer Seitenfläche: Fig. 174 Abbildung der Stirnflächen: Fig. 175 und 176
ar ons		250	_							17,21	14,52	2,30				•-	-	-	-	-	-	-	-	-		-	-	-	-		-	98, 128,	$5 \mid 171$ $0 \mid 222$	Unter 11 13 Unter 22 17	r P_g : 3,4 46 , P_{\max} : 7,4 (60,	9 15,6 9) (20,8	

) Unter der Annahme, daß in allen drei Eisen die gleiche Zugspannung vorhanden ist (vergl. Fußbemerkung unter XXX), gilt τ_1 für das mittlere Eisen.

Zusammenstellung 29.

M	0	n	a	t	e	

Zusammenstellung 30. Balken mit Bauart nach Fig. 80. Alter: rund 8 Monate.

1	2	3	4	5	6	7	8	9 1	0 11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	9 30	31	32 33	34	35	36	37	38	1	39
			Al	bmessung	en des		Abme	ssungen	der Eise	neinlagen	Corrishi		Pa	v	erlängen	rungen		Zusa	ammendi	rückung	gen			Durch	hismon	n (usual	Fig 10 1	Toft 90)		dureh-	Spannu	ngen unte	r Pmax,	berechnet	nach	
nung	Prüfung	Alton	-	Balken	8	Gewicht des			1	TTor	der	Raum-	lastungen	auf de	r unteren	Balkenflä	che	auf de	er oberen	Balkenf	läche			Duren	oreguige	n (vergi.	F1g. 15, 1	leit 55)		schnittlich	den den	Gleichung	en Seite	18, Heft	39	
zeich	tag	Alter	Breite	b Hähe J	Länge	Balkens	Dure	hmesser	Quer	der dre	ei einlager	des	(Anfangslast	Moglange I	Verlänge auf	erungen in die Meßlän	¹ / ₂₀₀ cm M	ſeß. 1	Zusammen	ndrückung f die Meß	gen in slänge /	gesa	mte Duro M	ebstellen	gen an der	a 1	bleibende I	urchbiegung Meßstellen	en an den	e im mittlen			-			Bemerkungen
Bei			Diene	o none /	Langer		d1	d_2 d	3 fe	Eisen ue	Ge	Betons	$P \equiv 0 \text{ kg}$	mentange t	gasamta	hleihende	federado	l l	anamata ble	othendo	adam da	a	b	c	<i>d</i>	e a	1 b	c	d e	- Balkentei	σ_b	σε	τ0	τ_1		
		Tage	em	em	em	kg	em	em ei	m qem	n em	kg		kg	em	Sesamo	bierbenue	reuernue	em s	esamte Die	erbende	ledernde	mm	mm	mm	mm r	nm m	m mm	mm	mm mm	em	kg/qem	kg/qcm 1	kg/qem	kg/qcm	kg/qem	
64	6.2.07	233	20,03	30,83	215,9	316,5	1,82	1,81 1,	81 7,74	4 17,10	14,40	2,30	1000	69,8	0,28	0	0,28	70,0	0,32	0	0,32	0,035	0,065	0,065	0,065 0,	030 0	0	0	0 0				1	bei Annahr	ne der	Dauer des Versuches: 7 Stunden
													3000		0,96	0,07	0,89		1,16	0,01	1,10	0,125	0,135	0,145	0,135 0, 0,220 0, 0,	125 0,0	05 0,005	0,005 0	,005 0,005					Zugkraft	durch	P = 3000 kg: erster Wasserfleck
			1				1		-			1	5000		2,10	0,12 0,31	1,79		2,22	0,08	2,07	0,175	0,310 0,430	0,340 0,475	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,025 0 0,050 0	,025 0,010 ,045 0,025					das mittlere	die drei	
													5500 6000		$2,42 \\ 3,06$	0,66	2,40		2,52 2,87	0,27	2,60	0,325	0,575	0,640	0,580 0,	330 0,0	45 0,085	0,085 0	,080 0,043					Eisen I allein	Eisen ¹)	P = 6000 kg: erster Riß, innerhalb der Meßstrecke
						1.1							7000 8000		4,26 5,51	$1,03 \\ 1,22$	$3,23 \\ 4,29$		3,55 4,32	0,33 0,46	3,22 3,86	0,415 0,525	0,740 0,935	0,835 1,050	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	430 0,0 540 0,0	60 0,120 85 0,155	0,125 0 0,165 0	,115 0,068 ,150 0,088		1 2 3					
							14						9000 10000		6,99 8,45	$1,66 \\ 1,92$	5,33 6,53	1.1	5,05 5,85	0,52 0,59	4,53	0,640	1,145 1,375	1,285	1,150 0, 1,380 0,	660 0,1 790 0,1	05 0,190	0,210 0	,185 0,103 ,220 0,120							
													11000 12000		9,78 11,13	2,11 2,27	7,67 8,86	300	6,59 7,44	0,63	5,96 6,76	0,895	1,590	1,780	1,605 0, 1,840 1,	920 0,1 050 0,1	35 0,250 50 0,275	0,275 0	,245 0,140					2.0.1		
													$\frac{13000}{14000}$		$12,49 \\ 13,83$	2,40 2,54	10,09 11,29		8,36 9,38	0,73	7,63	1,165	2,070	2,315	2,080 1,	190 0,1 340 0,1	165 0,300	0,325 0	,300 0,170							
					1.2.2	1.55							15000 16000		15,16	2,67	12,49 13,74		10,39	0,92	9,47	1,465	2,600	2,900	2,630 1,	500 0,2	205 0,370	0,400 0	,370 0,21							P = 15000 kg: kurzer Längsriß auf der unteren Balken-
													17000		17,96	2,93	15,03		12,82	1,29	11,53	1,805	3,210	3,565	3,240 1,	850 0,2	260 0,460	0,505 0	,465 0,27							naone
													19000		20,74	3,23	17,51		15,53	1,45	13,85	2,235	3,940	4,350	3,960 2, 3,960 2,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 0,510 365 0,630	0,550 0	0,510 $0,300,610$ $0,35$	5						Zeichnerische Darstellungen der Dehnungen und Durch-
					-								21000		(25,12)	-	-	(19,11)	-	-	-	4,695	5,100 (9,795)	4,610 2,	- 0,6		1,060	- 0,54	1,7	166,7	2846	22,0	(77,0)	(25,9)	biegungen: Fig. 190 bis 193. Lage der Nullinie mit steigender Belastung: Fig. 194
													(I'max)	Nach 1 M den Bet	inute erso on ab. 1	cheinen a Nach 10	m einen Ba Minuten ist	die 2	le Risse Ierstörung	(links in so weit	f Fig. 186 t erfolgt,	daß d	e in Fig. lie Wage	. 188). der Pr	Der Hake	n der Ei chine nic	inlage »3« ht mehr z	(Fig. 80) am Einspiele	drückt dort en gebracht							Abbildung der Unterflächen: Fig. 185 Abbildung der Seitenflächen: Fig. 186 und 187
							-							werden	kann.		T	1	1	1	1		1	1	1	1	1	1	1.					1999		Abbildung der Stirnflächen: Fig. 188 und 189
65	8. 2. 07	234	20,08	31,15	216,0	320,5	1,81 1	,81 1,9	90 7,98	17,35	14,83	2,29	$\frac{1000}{2000}$	70,0	0,28 0,59	0 0,03	0,28	70,0	0,35 0,74	0,01 0,02	0,34	0,035	0,060	0,070	0,065 0	,040 0		0	0 0							Dauer des Versuches: 7 ¹ / ₂ Stunden
													$3000 \\ 4000$	Ball Street	0,98	0,07	0,91		1,16	0,05	1,11	0,115	0,205	0,230	0,210 0	,120 0 0	0 0,005	0,010	0,010 0,00	5						P = 4000 kg; areta Wasserflooko
				1200			1						5000 6000		2,06	0,30	1,76		2,14	0,13	2,01	0,220	0,400	0,450	0,410 0	,230 0,0	015 0,035	0,040	0,035 0,01	5						1 - 1000 Ag. elste WassellictAe
													6250		3,13	-	_		3,03	_	-,40	-	-	-	- 0,545 0			- 0,075								7
-								2					7000		4,07	1,09	2,98		3,48	0,41	3,07	0,395	0,705	0,795	0,710 0	,390 0,0	060 0,115	0,130	0,115 0,06	0						P = 6500 kg: erster KiB, außerhalb der Meßstrecke $P = 7000$ kg: Risse, innerhalb der Meßstrecke
													9000		6,44	1,41 1,67	3,79 4,77		4,18 4,96	0,44 0,55	3,74 4,41	0,500	0,875 1,080	0,990 1,215	$ \begin{array}{ccc} 0,890 & 0\\ 1,135 & 0 \end{array} $,495 0,0 ,605 0,0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,165	$ \begin{array}{c cccc} 0,140 & 0,07 \\ 0,170 & 0,09 \\ \end{array} $	5						
													$\begin{array}{c}10000\\11000\end{array}$		7,76 8,94	1,93 2,07	5,83 6,87		5,78 6,52	0,64 0,65	5,14 5,87	0,730 0,855	1,290 1,505	1,455 1,685	$\begin{array}{ccc} 1,305 & 0 \\ 1,515 & 0 \end{array}$,725 0,1 ,845 0,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,235	$ \begin{array}{c cccc} 0,210 & 0,11 \\ 0,235 & 0,12 \\ \end{array} $	0 5						
													$\begin{array}{r}12000\\13000\end{array}$		10,09 11,26	2,20 2,32	7,89 8,94		7,36 8,26	0,72 .	$6,64 \\ 7,46$	0,985	1,735 1,975	1,945 2,205	$ \begin{array}{cccc} 1,745 & 0 \\ 1,990 & 1 \end{array} $,970 0,1 ,110 0,1	145 0,260 160 0,290	0,290 0,320	$ \begin{array}{c cccc} 0,260 & 0,13 \\ 0,290 & 0,15 \\ \end{array} $	5 0						
													$\begin{array}{r}14000\\15000\end{array}$		$12,47 \\ 13,65$	2,40 2,48	10,07 11,17		9,22 10,33	0,87	8,35 9,36	1,265	2,230 2,505	2,485	2,245 1 2,515 1	,255 0,1	175 0,321 200 0,360	5 0,355 0 0,395	0,325 $0,170.365$ 0.19	0	1					P = 15000 kg: Längsriß auf der unteren Balkenfläche
													16000 17000		14,91 16,10	2,60 2,67	12,31 13.43		11,50 12,69	1,11	10,39 11.41	1,590	2,800	3,115	2,825 1	,575 0,5	225 0,400 255 0,460	0,435	0,405 $0,210,460$ 0.23	0						
													18000 19000		17,29	2,78	14,51		14,01	1,47	12,54	1,945	3,445	3,815	3,460 1	,935 0,5	285 0,510	0,555	0,505 0,26	0			1			
								20124					20000		19,98	3,08	16,90		17,15	1,94	15,21	2,425	4,280	4,705	4,115 2	,150 0,4	415 0,723	0,055	0,705 0,38	0						`
											1.1		21500	nach 6 min	22,06	-	-		20,23		-	-	4,910	5,345 6,185	4,845 2	- 0,0		- 1,055		5				(70.0)	(05 -1)	
													(Pmax)	An beiden	Balkenen	den drück	en die Hak	en der	20,84 Einlage »	- and	an einem	– Balken	nende ein	7,135 Haken	der mittle	ren Einlas	ge, den Bet	on ab. Nacl	h 30 Minuter	1,5	163,7	2778	22,1	(78,0)	(25,1)	Abbildung der Unterfläche: Fig. 185 Abbildung der Seitenflächen: Fig. 186 und 187
														wird de	r Versuch	abgebroc	hen, um di	e Zerst	örung nicl	ht zu üb	ertreiben.		1	1	1			1	1	-			•			Abbildung der Stirnflächen: Fig. 188 und 189
68	11.2.07	236	20,06	31,36	216,0	321,6	1,81 1,	,81 1,8	1 7,71	17,07	14,45	2,29	$\frac{1000}{2000}$	70,0	0,26	0	0,26 6	59,8	0,35	0,01	0,34	0,035	0,060	0,070	0,060 0	,035	0 0	0	0 0							Dauer des Versuches: 7 Stunden
								-					3000		0,96	0,07	0,89		1,11	0,04	1,07	0,115	0,205	0,230	0,205 0	,120 0,	005 0,010	0,005	0,010 0,00	5						P = 3500 kg: erste Wasserflecke
													5000		2,03	0,29	1,74		2,04	0,08	1,49	0,165 0,225	0,290 0,390	0,325 0,440	0,295 0	,175 0, 0, 0, 235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 0,025 5 0,050	0,020 0,01	20						
													6000		2,33	0,56	2,26	12 10 10	2,36 2,70	0,22	2,48	0,305	0,530	0,605	0,535 0	,315 0,	035 0,07	0 0,085	0,070 0,04	0						P = 6000 kg: erste Risse (je ein Riß innerhalb und
				1					-			A	8000	and the second	3,95 5,25	0,97	2,98	1.1.1	3,35 4,01	0,30 0,35	3,05 3,66	0,395 0,505	0,690 0,890	0,785 1,010	0,700 0	,405 0, 0, 510 0, 0, 0, 0	055 0,09 080 0,14	5 0,115 0 0,165	0,095 0,00 0,140 0,08	30 · ·		111				außerhalb der Meßstrecke)
	-							1					9000 10000		6,43 7,72	$1,65 \\ 1,90$	4,78 5,82		4,66 5,37	0,38 0,41	4,28 4,96	0,620 0,740	1,085 1,305	$1,225 \\ 1,465$	1,085 0 1,305 0	,620 0, ,745 0,	095 0,17 115 0,20	$ \begin{array}{cccc} 0 & 0,195 \\ 5 & 0,235 \\ \end{array} $	0,170 0,09 0,205 0,15	20						
													$\begin{array}{c} 11000\\ 12000 \end{array}$		8,98 10,18	2,10 2,24	6,88 7,94		6,02 6,77	0,43	5,59 6.31	0,860	1,520	1,690	1,515 0 1,745 0	,865 0, .995 0,	130 0,23 140 0.24	5 0,260 5 0,280	0,230 0,13	35	1	1				
								1					13000 14000		11,33	2,36	8,97		7,54	0,51	7,03	1,120	1,970	2,200	1,965 1	,120 0,	160 0,27	5 0,315	0,275 0,10	30						P - 14000 km; Längsvill ant den unteren Balleseläche
													$15000 \\ 16000$		13,80	2,60	11,20		9,23	0,58	8,65	1,395	2,460	2,730	2,445 1	,390 0,	190 0,32	5 0,365	0,325 0,1	90						toos an indigent auf der unteren Darkennache
													17000		16,25	2,85	13,40		11,15	0,77	10,38	1,705	3,015	3,330	2,970 1	,690 0,	240 0,36	0 0,450	0,395 0,2	25						
			1.58				-						19000		18,96	3,13	15,83		13,63	1,12	12,51	2,100	3,340	4,075	3,645 1 3,645 2	,870 0, 2,070 0,	315 0,55	0 0,510	0,445 0,2 0,515 0,3	05					1	
													21000		20,32 21,66	3,28 3,48	17,04 18,18		14,89 16,26	1,24 1,44	$13,65 \\ 14,82$	2,340 2,870	4,120 4,950	4,500 5,280	4,020 2 4,670 2	2,235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,390 0,66 ,750 1,18	$\begin{array}{c ccc} 0 & 0,690 \\ 0 & 1,140 \end{array}$	$\begin{array}{c cccc} 0,595 & 0,3 \\ 0,935 & 0,5 \end{array}$	50 30 2,0	168,8	2899	22,3	(78,6)	(26,2)	Abbildung der Unterfläche: Fig. 185
			200										$\begin{array}{c} 21500\\ (P_{\rm max}) \end{array}$	Nach 1 Mi 3 Minute	nute werd en sinkt d	len am e lie Belast	inen Balke ung dauerne	nende, d.	rechts in	n Fig. 18	87, Risse	bemer	kt. Ein	Haken	der Einla	nge »3«	drückt dor	t den Beto	n ab. Naci	h .						Abbildung der Seitenflächen: Fig. 186 und 187 Abbildung der Stirnflächen: Fig. 188 und 189
Dure	nschnitt	234	-		-	-		- -	7,81	17,17	14,56	2,29	-	-	-	-	-	- .	-	-	-	_	- '	-		- [-	- -	-	166,5	2841	22,1	(77,9)	(25,7)	
																	1					1 - C							10				1	1		

1) Unter der Annahme, daß in allen drei Elsen die gleiche Zugspannung vorhanden ist (vergl. Fußbemerkung unter XXX), gilt τ_1 für das mittlere Elsen.

1	2	3	4	5	6	1 7	8	9 1	0 11	12	13	14	15	16	17	18	19 20	21	22	23	24	25 26	27	28	29 30	31	32 3	33 34	35	36 3	7 38 1	39	40 41	1	42		43
50			Abi	messunge Balkens	n des	Gamlaht			Abmessur	ngen der	Eisenein	alagen		Gewicht		Be-	Aenderungen der Strecken	v auf de	erlängen er unteren	ungen Balkenfläche		Zusammen auf der ober	drückung en Balkenf	gen Häche		Durch	biegunge	en (vergl. F	ig. 19, He	ft 39)		Spa den Gl	nnungen h eichungen	berechne Seite 1	et nach 18, Heft 39		
chnun	Prüfungs	Alter				des Balkens		Durch	messer		Quer-	Umf der gera-	lang	der Eisen-	Raum- 1 gewicht	astungen P	(vergi. Fig. 81		Verlänge	erungen in 1/20	o em	Ieß- Zusamm	nendrückung	gen in	gesamte	Durchbiegung	çen an den	blei	ibende Dur	rchbiegunger	an den						Bemerkungen
Bezei	tag		Breite b	Höhe h	Länge L	G	d_1	d_2 d	l ₃ d ₄	d ₅	schnitt fe	den Ein- lage (Stab 1)	der fünf Einlagen	Ge	Betons	P = 0 kg	x y	Meßlänge <i>l</i>	auf	die Meßlänge	1	linge 1/200 cm	auf die Meß	slänge l	a b	Meßstellen c	d d	e a	b	c c	1 e	σь	σε το	0	$ au_1$		
_		Tage	em	em	em	kg	em	em e	m em	em	qem	em	em	kg		kg	mm mm	em	gesamte	orerbende fed	ernde	em gesamte	oreroende i	redernde	mm mr	n mm	mm m	nm mm	mm	mm m	m mm	kg/qcm kg	qcm kg/q	qem kş	g/qcm kg/qem		
42	22.12.06	213	19,92	30,49	216,0	309,2	1,80	1,29 1,	,29 1,25	2 1,22	7,50	5,65	21,41	13,80	2,28	$\begin{array}{c}1000\\2000\end{array}$		69,9	0,35 0,67	0,04 0,06	0,31	70,0 0,39 0,77	0,01 0,02	0,38 0,75	0,040 0,07 0,085 0,14	15 0,080 15 0,165	0,075 0,0 0,150 0,0	045 0 090 0	0	0 0	0			be Ue	ei Annahme der ebertragung der	Dauer des	Versuches: 8 Stunden
					122											$3000 \\ 4000 \\ 5000$			1,06 1,59 2.23	0,12 0,22 0,41	0,94 1,37 1.82	1,19 1,65 2,20	0,03 0,06 0,10	1,16 1,59 2,10	0,135 $0,230,195$ $0,330,260$ $0,43$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 140 & 0,010 \\ 195 & 0,015 \\ 270 & 0.030 \end{array}$	0,015 0,025 0,050	0,015 0,0 0,025 0,0 0.055 0,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			m	das die fün ittlere Eisen ¹)	P = 3000 kg	g: erster Wasserfleck
																6000 6500			3,09 3,65	0,65	2,44	2,84 3,28	0,20	2,64	0,340 0,55	0 0,675	0,600 0,8	355 0,040	0,080	0,090 0,0	075 0,050			1	Eisen illein	P = 6500 km	g: erste Risse, kurz und sehr schwer sicht-
																7000 8000			4,18 5,41	1,08 1,41	3,10	3,63 4,39	0,39 0,47	8,24 3,92	0,440 0,7 0,555 0,9	75 0,885 80 1,115	0,780 0,4 0,990 0,5	460 0,075 575 0,105	0,135 0,180	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130 0,080 170 0,105					bar (dave	on 6 innerhalb, 4 außerhalb der Meßstrecke)
																10000 11000	0 0		0,66 7,94 9,17	1,59 1,82 2,01	5,07 6,12 7,16	5,12 5,89 6,76	0,53	4,59 5,32 6,07	0,880 1,1 0,815 1,4 0,960 1,6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,200 0,4 1,435 0,8 1,680 0,9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,205	0,235 0, 0,270 0, 0,310 0, 0,000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
																12000	0,020 0 0,020 0	nach 3 min » 6 »	10,33	2,11	8,22	7,61	0,80	6,81	1,120 1,9	35 2,170	1,945 1,1	140 0,190	0,320	0,350 0,	315 0,1 95	95,8 1	unter $P_g = 671$ 12	= 12 00	0 kg: 44,4 15,0		
																13000	0,060 0,060 0,060 0,060 0,100 0,100	» 6 « » 12 »	11,53	2,27	9,26	8,50	0,87	7,63	1,290 2,2	25 2,490	2,235 1,	310 0,220	0,365	0,410 0,	365 0,230					P = 13000	kg: Längsriß auf der untern Balkenfläche
																15000	0,100 0,100 0,170 0,180	» 10 » » 6 »	12,70	2,46 1	0,24	9,86	0,93	8,43	1,460 2,5	25 2,800	2,535 1,	490 0,270	0,435	0,475 0,	430 0,260						
													36			16000	$\begin{array}{cccc} 0,170 & 0,180 \\ 0,300 & 0,360 \\ 0,300 & 0,360 \\ 0,000 & 0,000 \\ 0,00$	» 12 » » 6 »	13,97	2,64 1	1,33	10,42	0,97	9,45	1,690 2,9	15 3,230	2,925 1,	710 0,330	0,535	0,575 0,	525 0,330						
																	0,355 0,450 0,350 0,480 0,355 0,490	» 20 » » 25 » » 30 »	- 15,38	2,95 1	2,43	- 11,67	- 1,23	- 10,44	2,100 3,6	15 3,990	3,690 2,	210 0,590	0,945		985 0,660						
																17000	$\begin{array}{cccc} 1,000 & 1,190 \\ 1,520 & 1,570 \end{array}$	> 10 > > 20 >	-	=	-	-	-	-		= =	=		=	-							
													The Street				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	» 30 » » 40 »			- 3.35		1.69	- 11.39			-		0 5.375	5.530 5	 575 3 865						
																	2,770 3,130 Nach 60 M	» 60 »	uf die An	fangslast P =	- = 0 kg en	ntlastet, die M	Lessung erg	- ibt:		- -	-										
-																17000	2,520 2,910 3,140 4,360	nach 1 min	-	= -	-	<u>-</u>	-	-			=		=	-			unter Pma	ax = 17	000 kg:	Abbildung	der Unterfläche: Fig. 195
																(Pmax, wiederholt nach	- 5,380 Mit Zunahm	e der Aender	ungen vor	a x und // we	- rden die	äußersten Ris	sse breiter	und läng	er. Nach 3	Minuten wird	d bei diese	en Rissen de	er Beton a	uf der Dru	ckseite des	135,8	2367 1	17,8	(62,8), (21,8	Abbildung	einer Seitenfläche: Fig. 196
				1											E	P = 0 kg	Balkens	zerstört. Am	Schlusse	des Versuchs	zeigt s	ich an den au	ifgebogenen	Eisen Io	oser Zunder.	1 1			1		.						
47	5.1.07	221	20,07	31,13	216,1	318,2	1,79	1,29 1,	30 1,22	2 1,23	7,52	5,62	21,44	13,52	2,29	$\frac{1000}{2000}$		70,1	0,29 0,60	0,01 0,01	0,28 0,59	69,9 0,38 0,79	0,01 0,04	$0,37 \\ 0,75$	0,040 0,0 0,080 0,1	65 0,075 30 0,155	0,065 0, 0,135 0,	,035 0 ,075 0,00	0 5 0,005	0 0,005 0	0 0 ,005 0					Dauer des	versuches: 7 Stunden
					-											3000 4000 5000			0,95	0,05 0,13	0,90	1,21 1,68	0,08	1,13 1,55 2.00	0,125 0,2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,130 0,00 ,180 0,01 ,245 0.02	5 0,010 5 0,025 0 0.045	0,015 0 0,025 0 0,045 0	,015 0,005 ,025 0,015					P = 3000	kg: erste Wasserflecke
																6000 6500			2,85 3,51	0,54	2,31	2,22 2,82 3,16	0,22	2,51	0,325 0,8	555 0,625	0,420 0	,325 0,04	5 0,075	0,045 0	,075 0,045						
																$\begin{array}{c} 6750 \\ 7000 \end{array}$			$3,74 \\ 4,10$	1,02	3,08	3,33 3,50	0,42	3,08	0,420 0,3	735 0,830	0,735 0	,430 0,07	5 0,130	0,145 0	,125 0,080				-	P = 6750 innerha	kg: erste Risse (je ein Riß außerhalb und lb der Meßstrecke)
					-											8000 9000 10000			5,34 6,70 8,18	1,35 1,59 1.89	3,99 5,11 6,29	4,18 4,95 5,75	0,47 0,54 0.64	3,71 4,41 5,11	0,525 0,9 0,635 1,1 0,765 1,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,925 0 1,135 0 1.355 0	0,530 $0,090,650$ $0,110,780$ $0,13$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,185 (0,215 (0,255) (0,255 (0,255) (0,255 (0,255) (0,255 (0,255) (0,255 (0,255) (0,255) (0,255) (0,255 (0,255) (0,25) (0,160 0,095 0,185 0,110 0,225 0,130						
																$11000 \\ 12000$			9,51 10,78	2,10 2,28	7,41 8,50	6,62 7,48	0,73	5,89 6,69	0,905 1, 1,035 1,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,910 0,15 1,050 0,17	5 0,260 0 0,290	0,295 (0,325 (0,255 0,150 0,280 0,170						
																$\begin{array}{c}13000\\14000\end{array}$	0 0 0,020 0	nach 6 min	12,09	2,47	9,62	8,40	0,91	7,49	1,185 2,		2,065 1	L,185 0,19	0,325	0,365		107 5 1	unter P	$P_g = 14($	000 kg:		
																15000	0,020 0 0,080 0 0,080 0	» 12 » » 9 » » 15 »	15,35	2,59	-	9,36 - 10,43	1,00	9,28	1,345 2, - 1,535 2,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,323 1 - 2,615 1	1,505 0,22	35 0,425	0,415	0,365 $0,213$	107,5	1903	14,5	50,5 11	1	
																15000 (wiederholt	0,110 0,01 0,110 0,01	5 » 6 » 5 » 9 »	-	=		1	-	-			-		-	-							
									artyr.				1		E	Entlasten auf $P = 0 \text{ kg}$ 16000	0.180 0.03	5 » 10 »	-				1-	-		-		_		-				- Company	half the	P = 16.0	00 bor Längsriß auf der untern Balkenfläche
																10000	0,190 0,03 0,190 0,03	$\begin{array}{c} 5 \\ 5 \\ 5 \end{array} \\ \begin{array}{c} \times \\ 20 \end{array} \\ \begin{array}{c} 10 \\ \times \\ 20 \end{array} \\ \end{array}$	16,05	2,98	13,07		1,27	10,31	- 1,775 3,	055 3,350	2,975	1,710 0,33		0,590	0,505 0,30	0				1 = 160	oo kg: hangsrip aar der antern Darkennache
																17000	0,670 0,10 0,805 0,10	$\begin{array}{c c} & & 20 \\ & & 20 \\ & & 30 \end{array}$	17,65	3,36	14,29	12,85	1,37	 11,48	2,375 3,	985 4,195	3,675	2,100 0,8	55 1,235	5 1,135	0,915 0,52	0					
																17000	Nach 30 M 0,730 0,10	inuten wird :	auf die Ar	nfangslast P:	= 0 kg	entlastet, die 1	Messung erg	gibt:	1 - 1	- -	-	- -	- 1 -	1 - 1	- -						
																(Pmax, wiederholt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n – –	-	-	=	-	-	-		-			-			unter P	$P_{\rm max} = 1$	7000 kg:	Abbildu	ng der Unterfläche: Fig. 195
															E	nach Entlasten auf P=0 kg)	5,170 0,19 Unter diese	o > 20 > er Belastung	(17,85) erscheine	n nach 4 M	- inuten 1	(13,28 bei dem äußer) – rsten Riß	der Seite	e von x au	f der Druck	seite Risse		eitig ist	der genann		130,6	2311	17,3	(61,8) (2)	(),7) Abbildu	ng einer Seitenfläche: Fig. 196
																	breit gev werden 1	vorden. Nach kann. Der V	h 25 Minu ersuch wi	aten ist die 2 rd abgebroch	erstörun en. Am	g soweit erfol Schlusse des	lgt, daß d Versuchs	lie Wage werden d	e der Prüfung lie Eisen blo	gsmaschine nu ßgelegt und	ur durch ra an den auf	rasches Nacl fgebogenen	hspannen a Stäben los	zum Einspi- ser Zunder	elen gebracht bemerkt.						
50 1	2. 1. 07	226	20,01	30,50	216,0	310,5	1,79	1,29 1,	29 1,20	0 1,22	7,44	5,62	21,32	13,55	2,28	1000		70,0	0,31	0	0,31	70,0 0,38	0,03	0,35	0,040 0	,065 0,080	0,070	0,045 0	0	0	0 0					Dauer d	les Versuches: 6 ³ /4 Stunden
																2000 3000 4000			1,03 1,52	0,01	0,96	1,26 1,77	0,12 0,17	1,14 1,60	0,130 0 0,180 0	$,225 0,260 \\ ,325 0,375 $	0,225 0,325	0,140 0,0 0,190 0,0	05 0,01	0 0,020 0 0,025	0,010 0,00 0,020 0,01	5				P = 350	00 kg: erster Wasserfleck
																5000 6000			2,18 2,97	0,29 0,52	$1,89 \\ 2,45$	2,34 2,94	0,23 0,31	$2,11 \\ 2,63$	0,245 0 0,320 0	,435 0,500 ,570 0,655	$\substack{0,445\\0,580}$	$\begin{array}{cccc} 0,255 & 0,0 \\ 0,335 & 0,0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} 0 & 0,045 \\ 0 & 0,075 \end{array}$	0,040 0,05 0,060 0,04	20 10					
							•									6500 6750 7000			3,57 3,90 4,27		- 3.27	3,35 3,55 3,69	- $ 0.41$		- 0.430 0		0.770	0.440 0.0		0 0 135	0 190 0 03					P = 673	50 kg: erster Riß, innerhalb der Meßstrecke
																8000 9000			5,58	1,35 1,62	4,23 5,46	4,46	0,52 0,59	3,94 4,71	0,535 0 0,665 1	,960 1,090 ,190 1,340	0,970 1,195	0,545 0,0 0,670 0,1	090 0,16	5 0,185 0 0,220	0,160 0,09 0,195 0,10	00					
																10000 11000	0 0		8,43 9,89	1,85 2,10	6,58 7,79	6,17 7,11	7 0,69 1 0,80	5,48 6,31	0,790 1 0,935 1	,405 1,595 ,665 1,820	1,420 1,680	0,810 0,1 0,960 0,1	135 0,23 155 0,28	5 0,260 0 0,305	0,235 0,13 0,270 0,13	30 50	-				
																12000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nach 10 mi > 15 > 0 > 6 =	11,27	2,27	9,00	7,99	9 0,91	7,08	1,105 1	,940 2,170	1,945	1,100 0,1	180 0,32	0 0,345	0,310 0,1	70 97,0	unter 1695	$P_g = 12$ 12,6	2 000 kg: 44,9 1	5,2	
								1							. 7	14000	0,140 0,02 0,185 0,07	0 > 12 > 0 > 3 > 3	12,64	2,50	10,14	9,08	5 1,00	8,05	1,275 2	,240 2,495	2,230	1,260 0,5	215 0,38	0 0,410	0,365 0,2	0.5					
																	0,190 0,19 0,190 0,19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,07	2,73		10,05	9 1,12	8,97	1,445 2		2,540	1,455 0,5	265 0,46	0 0,505	0,470 0,2	85					
								-								15000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 > 10 > 0 > 15 > 0 > 10 > 10 > 15 > 0 > 10 > 1	15,69	2,93	12,76	11,35	2 1,20	10,12	1,685 2	,980 3,335	3,050	1,830 0,3	- 315 0,54	0,585	0,550 0,3	50				P = 15	000 kg: Längsrisse auf der untern Balkenfläch
																10000	0,400 0,49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17,24	3,30	_ 13,94	12,6	5 1,46	- 11,19	2,035	 3,560 3,975	3,660	2,220 0.1	505 0.89	0 0.885	0,860 0.5	50					
																17000 (Pmax)	Unter dies Der Ver	er Belastung such wird ab	gleitet d	as mittlere E . An den a	isen bei ufgeboge	y sehr rasch enen Eisen zei	. Auf der igt sich los	Drucksei er Zunder	ite wird der r.	Beton zersta	ört. Die B	Belastung si	nkt nach	rund 3 Min	uten langsan	1.					
																	Die Messu 0,780 6,42	ng von x und	d y ergibt	zum Schluß	: -	-	-	-	1 - 1	- 1 -	1 - 1	- 1 -	- 1 -	1 -		- 137,5	unter 2401	$P_{\max} =$ 17,9	17000 kg: (63,6) (Abbild 21,5) Abbild	ung der Unterfläche: Fig. 195 ung einer Seitenfläche: Fig. 196
Durch	schnitt	220	-	-	-	-	-	- -	- -	-	7,49	5,63	21,39	13,62	2,28	-		-	-	-	-		-	-	-		-	-	- -	-		- 100,1	1756	unter 13,2	Pg: 46,7	15,8	
																																134,6	2360	unter 1 17,7	$P_{\max}:$ (62,7) (21,2)	
	1) Un	er der A	nnahme	, daß in	allen für	nf Eisen	die gleie	che Zugs	pannung	vorhande	len ist (v	vergl. Fußb	emerkung	unter XX	X), gilt T	ı für das n	nittlere Eisen.												-								

Zusammenstellung 31.

Zusammenstellung 32. Balken mit Bauart nach Fig. 82. Alter: rund 7 Monate.

-

1	2	3	4	5	6	1 7	1 8	9	10 11	1 12	13	14	15	16	17	18	1 19	20 2	1 22	23	24	25	26	27	28	29	30 31	32	33	34 1	5 36	37	38	89	40		41
		1	Abı	messunger	n des	i			Ahmessi	ungen der	Eisenein	lagen					v	arlängorung		1 .	7.0.0.00.00.00	nduñoku		1		20 1	00 01		00			Channa	noon unto	or P	horochnot	nach	
10 10 10				Balkens		Gewicht			Abinesse	ungen der	Listnem	hagen	14 M 18	Gewicht		Be-	auf de	er unteren Ball	cenfläche	au	if der ob	eren Balk	cenfläche			Durchi	biegungen	n (vergl. Fi	g. 19, Hei	t 39)		den	Gleichung	gen Seite	e 18, Heft	39	
hnut	Prüfungs	Alter			1	des		Dure	hmesser		Quer-	Umf	fang	der Eisen-	Raum- gewicht	lastungen P		Vaulängamme	un in 1/	_	7							1 110	handa Day	hlifemen				1			
zeic	tag		Breite h	Hähe b	Längo L	Balkens G	1	-1			schnitt	der mittleren	der fünf	einlagen	des	(Anfangslast	Mallange	auf die 1	feflänge l	Mef	3- 1/200 CI	n auf die M	Meßlänge l	gesa	amte Durci Me	Bstellen	en an den	Die	bende Dui	eßstellen	n an den						Bemerkungen
Bei			Dicito 0	Hone n	Langen		<i>d</i> ₁	d_2	d3 d4	4 d5	fe	Einlage	Einlagen	Ge	Betons	P = 0 kg	Meblange t		1	1ang	ge	1	1	1/4	b	c	d e	a	6	c	a le	σb	0e	T ₀	41		
1		Tage	em	em	em	kg	em	em	em em	n em	qem	(Stab 1) cm	em	kg		kg	em	gesamte bleil	ende feder	nde en	gesamt	e bleibend	le federnde	mm	mm	mm	mm mi	n mm	mm	mm r	m mm	kg/qem	kg/qem 1	kg/qem	kg/qcm	g/qem	
												15 1 501												1													
54	21, 1, 07	227	20,04	30,72	215,9	315,6	1,82	1,29 1	1,30 1,2	21 1,22	7,56	5,72	21,48	13,83	2,30	1000	69,9	0,33 0	03 0,3	0 70,	0 0,37	0,01	0,86	0,040	0,065	0,075 (0,060 0,04	40 0	0	0,005	0 0				bei Annahn	me der	Dauer des Versuches: 8 Stunden
													A. S. C.			3000		1,07 0	12 0,9	5	1,19	0,01	1,17	0,085	0,140	0,165 (0,245 (0,135 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	30 0,005	0,005	0,010 0,000 0,000,000,000,000,000,000,00	010 0,000				Zugkraft	durch	P = 3000 kg; erste Wasserflecke
			1.1										1. B.C.			4000		1,62 0	,28 1,3	4	1,69	0,06	1,68	0,185	0,315	0,360 (0,320 0,19	90 0,015	0,025	0,035 0,	025 0,020				das	die fünf	
																5500		2,31 0	,44 1,8	1	2,21 2,51	0,11	2,10	0,250	0,430	0,495 0	0,435 0,21	50 0,025	0,040	0,055 0,	045 0,030				Eisen	Eisen)	
										1						5750		2,99			2,70			-		-			-	-	- 1 -	1111			allein		P = 5750 kg: erste Risse (je ein Riß innerhalb und
													The state			6000 7000		3,33 0 4,67 1	87 2,4 .36 3.3	6	2,89	0,26	2,63	0,335	0,590	0,670 0	0,585 0,33	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,080	0,095 0, 0.145 0.	080 0,050 115 0.070	1					außerhalb der Meßstrecke)
						1341										8000		6,18 1	,85 4,3	8	4,40	0,48	3,92	0,555	0,975	1,105	0,975 0,54	45 0,095	0,170	0,190 0,	170 0,095						
		1												1.5		9000		7,84 2	,22 5,6	2 7	5,34	0,58	4,76	0,690	1,210	1,365	1,205 0,61	80 0,120	0,210	0,245 0,	210 0,125	1	12				
													100			11000		10,45 2	57 7,8	8	7,04	0,73	6,31	0,950	1,675	1,875	1,665 0,93	35 0,150	0,230	0,305 0.	270 0,155		1.				
							-						1 A			12000		11,90 2	83 9,0	7	7,98	0,75	7,18	1,090	1,910	2,155	1,905 1,0	75 0,170	0,300	0,340 0.	305 0,175						
																14000		14,65 3	,12 11,5	3	9,99	0,93	9,06	1,240	2,180	2,440	2,475 1,4	05 0,210	0,380	0,385 0.	375 0,220	1. 5					
		1 - 20		128												15000		15,91 3	21 12,7	0	11,11	1,05	10,10	1,570	2,760	3,095	2,760 1,5	65 0,230	0,420	0,465 0	415 0,235						P = 16000 km; Längswige auf der unteren Bellenfläche
			1.		4				1.172				1.5			17000		18,83 3	,41 15,9 ,57 15,2	6	12,48	1,26	11,22 12,40	1,770	3,100 3,510	3,465	3,095 1,7 3,485 1,9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,480	0,535 0. 0.615 0	$475 0,265 \\555 0,315$				23		P = 10000 kg: Langsrisse auf der unteren Balkennache
													17.11			18000		20,85 4	,12 16,7	3	15,54	1,87	13,67	2,330	4,100	4,515	4,045 2,2	95 0,470	0,805	0,845 0	765 0,445						Zeichnerische Darstellungen der Dehnungen und Durch-
			in the sea	1.64							1.00-					19000	Unter dies	24,11 5	,72 18,3 wachson di	9 9 Debnu	17,98	3 2,90	15,03	2,790	4,910 dos. Balleon	5,355	4,805 2,6	95 0,750	1,270	1,305 1	155 0,655 20 Minuton						biegungen: Fig. 200 bis 202
				1							1		1			(Pmax)	erschein	nen über diese	m Riß auf	der Druc	kseite Ris	se. Nach	weiteren	7 Minuten	n ist die Ze	erstörung	g des Betons	auf der D	ruckseite s	o weit vor	geschritten,						Abbildung der Unterfläche: Fig 197
		1 - 3			1			-							1		daß die	Belastung sin	at, trotz ras	schen Na	chspannen	s an der M	faschine.	Am Schlu	iß des Vers	suches ko	ommen auf	den Stirnse	ten des Ba	alkens Riss	e zum Vor-	159.8	9745	20.7	(72.6)	(25.0)	Abbildung einer Seitenfläche: Fig. 198
				1 33.6									in the second				schein;	ule Haken der	mittieren E		ige sprenge	en den Beto	on. Nach S	chius des	versuches	wird im J	Bruchquersc	innitt auf de	n Einlagei	1 loser Zund	er bemerkt	100,0	2140	20,1	(12,0)	(20,0)	Abbindung einer Surnhache: Fig. 199
55	22.1.07	227	20,03	30,76	216,0	316,5	1,82	1,29	1,29 1,5	22 1,23	7,58	5,72	21,51	14,03	2,30	$\begin{array}{c} 1000\\ 2000 \end{array}$	70,0	0,26 0 0,62 0	,01 0,2 ,02 0,6	5 70 0	,1 0,33 0,74	5 0,01 4 0,03	$0,34 \\ 0,71$	0,040 0,080	0,070 0,145	0,080 0,155	$\begin{array}{ccc} 0,070 & 0,0 \\ 0,140 & 0,0 \end{array}$	40 0 80 0	0 0,005	0,005 0 0,010 0	005 0 005 0						Dauer des Versuches: 7 ¹ / ₂ Stunden
					1.1.1	1.1.1.1							2 5 3			3000 4000		1,01 0	,06 0,9	5	1,10	0,04	1,12	0,130	0,220	0,245	0,220 0,1	80 0,005 80 0.010	0,015	0,020 0	015 0,010						P = 3000 kg: erste Wasserflecke ,
																5000		2,16 0	,31 1,8	5	2,21	0,00	2,07	0,240	0,435	0,485	0,435 0,2	50 0,025	0,050	0,055 0	045 0,025					-	
																5500 5750		2,53			2,50	3 -	Ī	1 7	-	-			-	-							
								_					The share			5900		2,95			2,85	2 -	-	-		-			-	_							P = 5900 kg: erster Riß, innerhalb der Meßstrecke
										1.1.8			The second			6000 7000		3,16 0	,73 2,4	8 .	2,89	0,28	2,61	0,330	0,595	0,665	0,595 0,3	40 0,050	0,100	0,105 0	090 0,050						
									1994				1		-	8000	1000	5,65 1	,40 4,2	5	4,38	8 0,51	3,87	0,425	0,965	1,095	0,760 0,4	45 0,095	0,135	0,195 0	170 0,095						
				1.0					1.5					1100	-	9000		7,03 1	,73 5,3	0	5,20	0 0,56	4,64	0,665	1,185	1,330	1,180 0,6	70 0,110	0,210	0,225 0	200 0,110		19-21				
					1								See. 1			11000		9,74 2	,22 7,5	2	6,85	0,63	5,38 6,13	0,800	1,400	1,590	$1,415 0,8 \\ 1,645 0,9$	05 0,135 0,155 0,155	0,250	0,275 0	240 0,135 275 0,150	-	P. Just				
														1		12000		11,04 2	,36 8,6	8	7,75	0,76	6,96	1,070	1,890	2,120	1,890 1,0	70 0,170	0,300	0,335 0	300 0,170						
										1			Print In	1		14000		12,39 2 13,74 2	,52 9,8 .68 11.0	6	8,60	5 0,82 3 0,97	7,84	1,215	2,150	2,395	2,145 1,2 2,420 1.3	15 0,180 75 0,205	0,330	0,365 0 0.410 0	330 0,185 370 0,210	1.					
						19/1552		1.2.1.2						1.18		15000		15,28 2	,92 12,3	1	10,94	1 1,15	9,79	1,540	2,725	3,045	2,740 1,5	50 0,240	0,430	0,475 0	430 0,240		1			1	P = 15000 kg: Längsrisse auf der unteren Balkenfläche
					1.				17-12-12				1 Tari			16000		16,50 2 17.97 3	,99 13,5 23 14.7	1	12,10	3 1,34 5 1,54	10,82	1,700	3,005	3,355	3,010 1,7	05 0,265	0,475	0,525 0	470 0,265						
														36		18000		19,89 3	,64 16,2	5	15,09	1,88	13,21	2,180	3,865	4,295	3,880 2,2	15 0,410	0,715	0,780 0	720 0,415				Pr		
												2.877				19000	Ein Die i	23,25 4	,45 18,8	0	17,39	3,01	14,38	3,140	4,945	5,865	4,930 3,1	45 1,220	1,995	2,085 1	960 1,190						
		10.51			1.2.1			,	111	1.5.1					1	$(P_{\rm max})$	fortgese	etztem Durchb	iegen des E	Balkens.	Am Schl	uß des Ve	ersuches w	ird im B	uf der Dru Bruchquerse	uckseite chnitt au	Risse. Nac of den Einla	ch 6 Minute agen loser	an sinkt d Zunder be	ie Belastun merkt.	g, auch bei	163,5	2806	21,2	(74,4)	(25,5)	Abbildung der Unterfläche: Fig 197 Abbildung einer Seitenfläche: Fig. 198
							1990				1.5							1		1								-gen reser									
57	23. 1. 07	225	20,03	30,50	216,0	313,1	1,82	1,30 1	1,29 1,2	22 1,22	7,58	5,72	21,51	13,95	2,30	1000	69,8	0,30 0	,02 0,2	8 70	,0 0,3	8 0,02	0,36	0,035	0,065	0,075	0,070 0,0	40 0	0	0	0 0			1. 16.		201	Dauer des Versuches: 7 Stunden
				1.5				1.5				12.505	1. 1. 1. 1.			3000		1,04 0	,04 0,6	8	0,80	0 0,03 5 0,06	0,77	0,085	0,140	0,155	0,145 0,0 0,230 0,1	30 0,005	0,005	0,005 0	005 0 010 0.005						P = 3000 kg: erste Wasserflecke
				1	in the		1.			1.00						4000		1,55 0	,18 1,3	7	1,7	5 0,09	1,66	0,185	0,320	0,360	0,325 0,1	85 0,010	0,020	0,020 0	,020 0,010						
				16-16	1											5250	1.500 3.50	2,28 0	,36 1,9	2	2,3	7 0,18 5 —	2,19	0,255	0,450	0,500	0,450 0,2	255 0,025	0,040	0,050 0	,045 0,025			1			P = 5250 kg; erste Risse (ie ein Riß innerhalb und
2				1000												5500		2,81		-	2,7	3		-	1		-		-					122	1	Level 1	außerhalb der Meßstrecke)
								R. S.				1				7000		3,26 0 4,58 1	73 2,5 15 3.4	3	3,0	8 0,31 5 0.47	2,77	0,340	0,610	0,690	0,610 0,3	0,045 0,045	0,090	0,095 0	,085 0,050		19.5 1	1.50	12.2		
		1			2							2		N. A.		8000		6,04 1	,48 4,5	6	4,7	6 0,55	4,21	0,570	1,020	1,150	1,020 0,5	65 0,095	0,140	0,195 (,170 0,095		1	1			
					16331					1				1		9000		7,51 1	,84 5,6	7	5,6	3 0,63	5,00	0,700	1,250	1,400	1,250 0,6	395 0,120	0,220	0,240 (,215 0,120						
124						11									1.	11000		10,32 2	,24 8,0	8	7,4	2 0,76	6,66	0,835	1,490	1,950	1,490 0,8	065 0,132	0,250	0,275 (,270 0,135						
1																12000		11,68 2	,45 9,2	3	8,3	8 0,85	7,53	1,130	2,005	2,240	1,990 1,1	0,17	0,315	0,345 (,305 0,170						
													a de la Ca			14000		13,13 2 14,51 2	,76 11.7	5	9,5	5 0,99 9 1.09	8,54	1,300	2,295	2,565	2,290 1,2 2,590 1.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,360	0,395 (,350 0,200 ,395 0.230				1. 2. 5		P = 14000 kg; Längsriß auf der unteren Balkenfläche
																15000		15,98 2	,90 13,0	8	11,9	9 1,24	10,75	1,660	2,935	3,270	2,940 1,6	355 0,251	0,450	0,495 (,440 0,250						and an another perconnected
													State 1			16000		17,43 3 18,99 3	,10 14,9 ,25 15.7	3	13,3	5 1,42	11,93	1,860	3,280	3,660	3,305 1,8	855 0,280	0,500	0,550	,500 0,290					The Wa	
																18000		20,86 3	,64 17,2	2	16,6	8 2,02	14,66	2,350	4,155	4,635	4,190 2,5	350 0,400	0,720	0,800	,720 0,420						
																19000	9 Die	25,58 6	,37 19,2	1	19,8	5 3,74	16,11	2,810	5,020	5,600	5,080 2,8	830 0,650	1,180	1,320	,200 0,680	'					
			•			14.000										(P _{max})	3 Risse in sehr w	eit vorgeschri	tten; die E	weitern Belastung	sich. Aut	uch bei w	ekseite ers veiterem D	cheinen n	en des Ba	inuten R	Nach Schln	ß des Ver	en ist die suches wir	Zerstörung rd im Brug	des Betons hquerschnitt						Abbildung der Unterfläche: Fig. 197
	1																auf der	n Einlagen los	er Zunder 1	bemerkt,			Line L	and and a store of the	100 100		Junear Benna	400 101		Dia Dia	1	164,5	2789	21,1	(73,9)	(25,4)	Abbildung einer Seitenfläche: Fig. 198
Dur	chschnitt	226	-	-		-		-			7,57	5,72	21,50	13,94	2,30	-	-	-		-			1	-		-	- 1.		-		-	162,6	2780	21,0	(73,6)	(25,3)	
					· · · ·					-		and the second se	-											1			and the second s	A CONTRACTOR OF A				1				and the second sec	

1) Unter der Annahme, daß in allen fünf Eisen die gleiche Zugspannung vorhanden ist (vergl. Fußbemerkung unter XXX), gilt τ_1 für das mittlere Eisen

.

.

Zusammenstellung 32.

-	1	2	3	4 .	5	6	7	8	9	10	11	12 .	13	14	15	16	17	18	19	20	21	22	23	24	25
		BG		Wasse	rflecke	Belastung, u	inter welcher	erst	e Ris	s e nungen u	nter der den Glei	Belastung in ichungen S 1	Spalte 6, 8. Heft 39	Gle Belastung, unter welcher	iten der Spannu berechn	mittle	ter der E den Gleid	eneinlage elastung in S	palte 14, Heft 39		Spann	ungen un Gleichu	ter P _{max} , ngen Seit	berechnet n e 18, Heft 39	ich den
	Bauart	Bezelehnu	$100 \frac{f_e}{b h}$	Belastung, unter welcher zuerst Wasserflecke be- obachtet wurden	. Verlängerung des Betons unter der Belastung in Spalte 4	noch kein Riß bemerkt wurde	der erste Riß beobachtet wurde	Betons unter der Belastung in Spalte 6	σь	σε	τ ₀	bei Annahm tragung der Z das mittlere Eisen allein	e der Ueber- agkraft durch alle Eisen ¹)	ein Gleiten des Eisens erstmals festgestellt wurde	01	σε	τ ₀	Gleitwiden bei Annahme o gung der Zug das mittlere Eisen allein	rstand 71 d. Uebertra- kraft durch alle Eisen ¹)	Belastung $P_{\rm max}$	σъ	•	7 ₀	τ_1 bei Annahmeo gung der Zugi das mittlere Eisen allein	. Uebertra- craft durch alle Eisen ¹)
			vH	kg	mm/m	kg	kg	mm/m	kg/qem	kg/qcm	kg/qem	kg/qcm	kg/qem	kg	kg/qcm	kg/qem	kg/qem	kg/qem	kg/qcm	kg	kg/qem	kg/qcm	kg/qem	kg/qcm	kg/qcm
Einlagen 1 Eis	nach Fig. 79 b = 200, h = 300 mm 1: 3 Rundeisen, 18 mm stark, davon sen gerade, 2 aufgebogen.	58 61 62	1,26 1,28 1,25	3000 3000 3000	0,07 0,07 0,07	6500 6000 6000	$6750 \\ 6250 \\ 6250$	0,231 0,191 0,211	47,7 43,7 45,2	827 732 791	6,5 6,0 6,1	$23,2 \\ 20,1 \\ 21,8$	7,4 7,2 7,1	$\begin{array}{c} 12 \ 000 \\ 13 \ 000 \\ 15 \ 000 \end{array}$	88,1 94,6 112,9	1526 1630 1978	12,0 13,0 15,2	42,8 43,6 54,2	13,7 15,5 17,7	$17\ 000\\17\ 000\\18\ 000$	124,8 123,7 135,5	$2162 \\ 2131 \\ 2374$	$ \begin{array}{c} 17,0 \\ 17,0 \\ 18,2 \end{array} $	(60,7) (57,0) (64,9)	(19,4) (20,3) (21,3)
	Durchschnitt		1,26	-	0,07		-	0,211 2)	45,5	790	6,2	21,7	7,2	13 333	98,5	1711	13,4	46,9	15,6	17 333	128,0	2222	17,4	(60,9)	(20,3)
Einlag en mittler	nach Fig. 80 b = 200, h = 300 mm : 3 Rundeisen, 18 mm stark, davon das re an den Enden mit Haken versehen,	64 65 68	1,25 1,28 1,22	3000 4000 3500	0,07 - 0,10 0.08	5500 6250 5500	6000 6500 6000	0,173 0,224 0,166	43,6 47,6 43.1	745 807 742	5,8 6,4 5,7	20,8 22,6 20,1	6,8 7,3 6,7						-	21 000 21 500 21 500	166,7 163,7 168,3	2846 2778 2899	22,0 22,1 22,3	(77,0) (78,0) (78,6)	(25,9) (25,1) (26,2)
die be	iden anderen aufgebogen.				0.00			0.100		765	1 0 0	1 21	1 0 0		-			1	1	1 01 000	1.000	0041	1 00 1	177.0)	1 (95 5)
	Durchsehnitt nach Fig. 81 b = 200, h = 300 mm	42	1,25	3000	0,08	6000	6500	0,221	44,8 47,9	835	6,0	21,0	6,9 7,5	12 000	95,8	1671	12,6	44,4	15,0	17 000	135,8	2367	17,8	(77,9)	(21,3)
Einlagen	: 1 Rundeisen, 18 mm stark, gerade;	47	1,20	3000	0,07	6500	6750	0,250	49,9	883	6,6	23,6	7,9	14 000	107,5	1903	14,3	50,9	17,1	17 000	130,6	2311	17,3	(61,8)	(20,7)
je 2 R geboge	Rundeisen, 13 und 12 mm stark, auf- en.	50	1,22.	3500	0,09	6500	6750	0,255	52,6	918	6,8	24,3	8,2	12 000	97,0	1695	12,6	44,9	15,2	17 000	137,5	2401	17,9	(63,6)	(21,5)
	Durchschnitt		1,22	-	0,08	-	-	0,242	50,1	879	6,6	23,4	7,9	12 667	100,1	1756	13,2	46,7	15,8	17 000	134,6	2360	17,7	(62,7)	(21,2)
Finland	nach Fig. 82 b = 200, h = 300 mm	54	1,23	- 3000	0,08	5500	5750	0,195	45,1	774	5,8	20,5	7,0	-	-		-	-		19 500	159,8	2745	20,7	(72,6)	(25,0)
Haken aufgeb	; Je 2 Rundelsen, 13 mm stark, mit ; je 2 Rundelsen, 13 und 12 mm stark, ogen.	55 57	1,23	3000	0,07	5750	5900 5250	0,197	47,0	715	6,1 5,4	18,9	6,5	-	-	-	-	-	-	19 500	163,5	2806	21,2 21,1	(74,4) (73,9)	(25,5)
	Durchschnitt	i	1.23		0,07	- I	-	0,185	44,8	765	5,8	20,3	6,9	i –		-	1 -	-	- 1	19 667	162,6	2780	21,0	(73,6)	(25,3)

Zusammenstellung 33. Balken mit Bauart nach Fig. 79 bis 82. Alter: 7 bis 8 Monate.

¹) Unter der Annahme, daß in allen Eisen die gleiche Zugspannung vorhanden ist (vergl. Fußbemerkung unter XXX), gilt τ_1 für das mittlere Eisen. ²) Der erste Riß wurde jeweils außerhalb der Meßstrecke gefunden. Die Dehnong des Betons unmittelbar vor Beobachtung des ersten Risses innerhalb der Meßstrecke betrug: 0,262, 0,246 und 0,264 mm auf 1 m, d. i. im Durchschnitt 0,257 mm.

Zusammenstellung 33.

Zusammenstellung 34. Balken mit Bauart nach Fig. 83. Alter: rund 3 Monate.

Aufbewahrung der Versuchskörper: Balken Nr. 98 und 99: auf feuchtem Sand, mit nassen Säcken bedeckt. Balken Nr. 100 und 101: unter Wasser.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
36			Abr	nessunger Balkens	n des	Gewicht		A	bmessu	ngen de	er Eisene	inlage			Be-	Verläng an der	gerunge unteren	n des Be Balkenfläc	tons	v	erlänge Eiser	erungen d neinlage	ler	durchschnittliche	
seichnu	Prüfungs- tag	Alter	Broitab	Höhe h	Länna L	des Balkens <i>G</i>		Breite		Stärke	einbe- tonierter Umfang	Quer- schnitt	Gewicht des Fisens	gewicht des	P (Anfangslast	Maglange /	Verläng auf	erungen in die Meßlän	1/200 em	Meß-	Verläng auf	erungen in die Meßlär	¹ / ₂₀₀ cm nge <i>l</i>	Betondicke e (innerhalb der Meßstrecke)	
Bez		Tage	cm	cm	em	kg	em	t ₂ cm	b3 em	em	ue em	fe qem	Ge	Betons	P = 0 kg	em	gesamte	bleibende	federnde	l l cm	gesamte	bleibende	federnde	cm	
.98	2.5.06	99	15,04	20,36	215,4	157,4	1,51	2,69	1,50	0,71	14,24	4,05	6,95	2,31	500	65,0	0,33	0	0,33	65,2	0,29	0	0,29		Dauer
-9.9	7. 5. 06	98	15,04	20,39	215,1	156,7	1,48	3,01	1,50	0,71	14,82	4,25		2,30	1000 1500 2000 2500 3000 3100 3250 3400 3500 4000 4500 5000 Bei weiterer 500 1000	Steigerung d 65,1	0,14 1,28 2,09 3,11 4,54 5,05 5,42 5,88 6,11 7,02 8,14 9,21 er Belasta 0,35 0,76	$\begin{array}{c} 0,04\\ 0,14\\ 0,33\\ 0,61\\ 0,93\\ -\\ -\\ -\\ 1,55\\ 1,55\\ 1,55\\ -\\ 1,62\\ \text{ing bricht}\\ 0\\ 0,02 \end{array}$	0,10 1,09 1,76 2,50 3,61 - - 4,56 5,47 - 7,59 der Körpe 0,35 0,74	ər plötz 65,3	0,15 1,17 1,84 2,66 4,00 4,54 4,97 5,59 5,79 6,99 8,25 9,33 lich unte 0,31 0,64	$\begin{array}{c} 0,04\\ 0,13\\ 0,28\\ 0,50\\ 0,82\\ -\\ -\\ -\\ 1,50\\ 1,60\\ -\\ 1,68\\ r\ P_{max}=6\\ 0\\ 0,01\\ \end{array}$	0,06 1,04 1,56 2,16 3,18 - - 4,29 5,39 - 7,65 590 kg. 0,31 0,63	0,75	P = 3 Zeichn und Dauer
															1500 2000 2500 3000 3100 3250 3400 3500 4000 4500 5000 Bei Steiger	ung der Bela	1,19 1,72 2,51 3,89 4,41 5,06 5,59 5,59 5,96 7,02 8,27 9,64 astung br	0,04 0,11 0,25 0,57 0,78 0,99 1,22 1,28 1,42 1,45 1,59 icht der E	1,15 1,61 2,26 3,82 3,63 4,07 4,37 4,68 5,60 6,82 8,05 3alken un	ter Pmax	$1,01 \\ 1,47 \\ 2,20 \\ 3,32 \\ 4,02 \\ 4,79 \\ 5,57 \\ 5,91 \\ 6,95 \\ 8,03 \\ 9,51 \\ \kappa = 7380$	0,04 0,10 0,25 0,43 0,77 1,13 1,65 1,76 1,88 1,93 2,12 0 kg.	$\begin{array}{c} 0,97\\ 1,37\\ 1,95\\ 2,89\\ 3,25\\ 3,66\\ 3,92\\ 4,15\\ 5,07\\ 6,10\\ 7,39 \end{array}$	0,75	P = 1 Zeich
Duro	chschnitt	99	-	-	-	-	-	-	-	-	14,53	4,15	7,12	2,30	-	-	-	-	-	-	-		-	0,75	
100	4.5.06	107	15,07	20,09	215,2	156,6	1,68	3,13	1,70	0,65	15,62	4,23	7,25	2,33	500 1000 1500 2000 2500 3000 3150 3250 3300 3400 3500 4000 4500 5000 6000	65,3	0,35 0,77 1,26 1,93 2,86 4,28 5,66 6,01 6,62 6,95 7,48 8,57 9,88 11,23 13,78 der Bele	0 0,02 0,06 0,17 0,42 0,74 	$\begin{array}{c} 0,35\\ 0,75\\ 1,20\\ 1,76\\ 2,44\\ 3,54\\ -\\ 4,26\\ 4,37\\ 4,60\\ 4,95\\ 5,79\\ 7,03\\ 8,22\\ 0,75\\ 0,75\\ \end{array}$	65,8	$\begin{array}{c} 0,29\\ 0,62\\ 1,00\\ 1,50\\ 2,29\\ 3,47\\ 4,24\\ 4,52\\ 4,99\\ 5,32\\ 5,73\\ 6,73\\ 7,74\\ 8,90\\ 100\\ 8,90\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 1$	$\begin{array}{c} 0\\ 0,01\\ 0,05\\ 0,14\\ 0,35\\ 0,55\\ -\\ 1,04\\ 1,40\\ 1,46\\ 1,63\\ 1,64\\ 1,67\\ 1,80\\ 1,88\\ -\\ 6010\\ \end{array}$	0,29 0,61 0,95 1,36 1,94 2,92 	0,96	Daue P =
101	8, 5, 06	95	15,04	20,41	215,2	158,0	1,42	2,99	1,42	0,64	14,22	3,73	6,78	2,32	$\begin{array}{c} 500\\ 1000\\ 1500\\ 2000\\ 2500\\ 2750\\ 2850\\ 2900\\ 3000\\ 3500\\ 4000\\ 4500\\ 5000\\ \end{array}$	65,1	0,36 0,81 1,32 2,00 3,23 4,50 5,30 5,72 6,11 7,63 9,13 10,66 12,10	0,01 0,05 0,09 0,22 0,54 1,00 - 1,57 1,62 1,93 2,10 2,22 2,36	0,35 0,76 1,23 1,78 2,69 3,50 - 4,15 4,49 5,70 7,03 8,44 9,74	65,2	0,32 0,66 1,07 1,66 2,62 3,69 4,50 4,51 5,35 6,44 7,67 8,91 10,32	$\begin{array}{c} 0\\ 0\\ 0,01\\ 0,04\\ 0,13\\ 0,27\\ 0,66\\ -\\ -\\ 1,41\\ 1,45\\ 1,50\\ 1,62\\ 1,73\\ 1,84\\ \end{array}$	0,32 0,65 1,03 1,53 2,35 3,03 - 3,50 3,90 4,94 6,05 7,18 8,48	0,77	Daue P = Zeiei ur
Dure	hschnitt	101	-	-	+	T	-	-	The states	-	14,92	3,98	7,01	2,32	1227		-	-	-	-	-	-		0,86	1200

```
Zusammenstellung 34.
```

```
26
```

Bemerkungen

des Versuches: 5 Stunden

3100 kg: erste Risse

nerische Darstellungen der Dehnungen: Fig. 205 d 206.

r des Versuches: 4 Stunden

3100 kg: erste Risse

nerische Darstellungen der Dehnungen: Fig. 207 d 208.

er des Versuches: 5 Stunden

3150 kg: erste Risse

hnerische Darstellungen der Dehnungen; Fig. 209 nd 210.

er des Versuches: 31/2 Stunden

2900 kg: erster Riß

chnerische Darstellungen der Dehnungen: Fig. 211 nd 212

Zusammenstellung 35.

	4 15
erste Risse Spannungen unter i	max, berech-
Belastung, unter welcher Verlängerung des Spannungen unter der Belastung Belastung het nach den Gleich Heft 35	ingen S. 18,
Bauart Bauart Bauart Bauart Bauart Bauart Betons unter der Belastung in Betons unter der Belastung in Betons unter der Belastung in Betons unter der Belastung in Betons unter der Belastung in Belastung in Be	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\tau_0 = \tau_1$
vH kg kg mm/m kg/qem	qcm kg/qcm
a) 2 Balken, bis zur Prüfung auf feuchtem Sand gelagert.	
98 1,32 3000 3100 0,349 67,7 1140 6,1 6,5 6590 148,7 2505 1	,5 14,2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,1 15,4
nach Fig. 83 Durchschnitt – 1,35 – – – 0,324 67,2 1114 6,1 6,3 6985 156,3 2591 1	,3 14,8
b = 150, h = 200 mm Einlage: Flacheisen b) 2 Balken, bis zur Prüfung unter Wasser gelagert.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,6 12,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- -

¹) nicht ermittelt.

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1		Abn	nessungen	des	1	13.33		1	Verlänge	rungen		Zn	sammen	adrückun	ren	1				Torres .						Spannunger	n unter P _{max}	
	-		Balkens		Gewicht	Cat Of	Be-	auf de	er unteren	Balkenfli	iche	auf	der ober	ren Balke	nfläche	1000		Dure	hbiegu	ngen (v	ergl. Fig	g. 19, He	eft 39)			Mb	Mb	
Drilfong	Alton		1		des	Raum-	lastungen		1																	$K_b = - W$	$K_b = - W$	
tag	Alter				Balkens	des	(Anfangslast	1000 028	Verläng	erungen i	n ¹ /200 cm	Meß-	Zusami	mendrücku	ingen in	ges	amte Du	rchbiegun	ngen an	den	bleib	bende Du	rchbiegu	ngen an	den	$\frac{1}{2}P_{\text{max}}\cdot 50$	$\frac{G}{G}\left(\frac{200}{L}-\frac{L}{L}\right)$	Bemerkungen
		Breite b	Höhe h	Länge L	G	Betons	P = 0 kg	Meßlänge l	aur	die Mebla	unge t	länge	1/200 em	auf die M	eslänge (1.2.1.2.2	1	Meßsteller	1			Л	leßsteller	1		$=\frac{2}{1}$	$+\frac{2(2 4)}{w}$	
1991.95		1. 1. 10	Start Start		1.1.1.5			and the	resamte	hleibende	federnd	1	resamte	hlaihanda	fadarada	a	Ь	с	d	е	a	b	c	d	е	$b h^2 \cdot \frac{1}{6}$	(vgl. Zusammen-	
1.	Tage	em	em	cm	kg	1111	kg	em	Scounte	Dictochat	reacting	em	Sesamo	DIGIDOLIUC	reuernue	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg/qem	stellung 37) kg/qcm	
1						101212		235 1998	120000		1522	1.0		1969			1	S-482	1100		1. 1. 18	1				1/2/11/2		
7. 2. 07	233	15,07	30,93	216,0	232,5	2,31	375	69,9	0,17	0	0,17	69,7	0,19	0,01	0,18	0,025	0,035	0,045	0,035	0,020	0	0	0	0	0			Dauer des Versuches: 3 Stunden
1000		101231			1. 200	1-15-23	1125	S. S. S.	0,38	0,02	0,36	1988	0,39	0,02	0,37	0,050	0,075	0,095	0,080	0,050	0	0,005	0,005	0,005	0,005	2	11: 1. 1. 2. 2. 2.	
10.00	1.12	1.1.2.2			a chair		1500	1000	0,05	0.18	0,56	1. 3. 4	0,01	0,03	0,58	0,080	0,120	0,150	0,125	0,075	0,005	0,010	0,015	0,010	0,005	1	1.000	
	1.2				A.C.S.	1. 1. 1.	1625		1.10	0,10		200	0.93	0,04	0,00	0,105	0,115	0,205	0,180	0,105	0,010	0,025	0,025	0,025	0,015		Contraction of the second	
100 60	1.5.10.	1 6 6 8					1750		1,27	1.	-	112	1.06			_	-	_								State and the		D. 1770 Las and Manager La
127.2		1.1.1.1.2.1				13. Al	1875		1,46	0,34	1,12	-	1,17	0,12	1,05	0,145	0,250	0.290	0.255	0.145	0.025	0.040	0.050	0.040	0.025			P = 1750 kg: erste wassernecke
1. 1. 1.	100.00	1.1.2.5			Server 1	- Starting	2000		1,68	-	-	1.00	1,29	-	-	-	_	-		_	_				0,020	S. S. S. S. S. S. S.		and the second
1.000	1.44	1.2.1.2		196			2050	No. Contraction	1,79	-			1,33	-	-	-	-	- 1	- "		-	- 1		_	-		1-	Zeichneuische Damiellungen des Debennen und Daub
				1997	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1.1.1.1.1.1	2100	Nachdem	diese Last	t rund 2	Minuten #	gewirkt 1	hat, brick	ht der Ba	lken plöt:	zlich, I	Der Bruch	hriß verl	äuft dur	ch vorhe	er entsta	ndene W	asserflect	ke.		21.8	24.1	higgingen. Fig. 215 his 217
	1.00			6-61-7	1.250		(P_{\max})	197 343 4			182															,0	- 1,1	Lage der Nullinie mit steigender Belastung. Fig. 218
					12.58	1.15					Real Arts																	suge der Humme mit stelgender Bellstung. Fig. 210
9, 2, 07	234	15,03	31,02	215,9	231,5	2,30	375	70,0	0,18	0,02	0,16	70,0	0,17	0,01	0,16	0,020	0,035	0,045	0,035	0,020	0	0	0,005	0	0			Dauer des Versuches: 2 Stunden
1.1.1.1.1				2.796.2 3	1.51203		750		0,40	0,06	0,34	24.19	0,36	0,01	0,35	0,045	0,075	0,095	0,080	0,045	0	0,005	0,010	0,005	0			
1000				1.8.1.		17 13 13	1120		0,68	0,11	0,54	1230	0,61	0,04	0,57	0,070	0,120	0,145	0,130	0,075	0,005	0,010	0,015	0,010	0,005			
1.1.1.20				10.20		1224	1625		1,00	0,21	0,02		0.94	0,00	0,50	0,100	0,175	0,210	0,180	0,105	0,010	0,020	0,030	0,020	0,015			
				1251-12		Sec. 1	1750	1	1.35	1		-	1.06	_	_					1.	7			T	-			P = 1625 kg: erster Wasserfleck
1000	122.2						1875	2	1,68	0,51	1,17	Land I	1,16	0,09	1,07	0.145	0.255	0.300	0.255	0.150	0.025	0.045	0.060	0.045	0.095	10000		
1. 1. 1. 1. 1. 1.							2000	Nach 2 M	inuten bri	cht der I	Körper pl	ötzlich.	Beim B	ruchriß w	urden ku	rz vorhe	r Wasse	rflecke h	emerkt		0,010	. 0,010	0,000	0,010	1 0,020	20.7	22.0	
	1 2 7 1	11.6.1.2	222	1.14			(P_{\max})	State 2	1223			1					1 11 11000	LINCEAC D	emerae.			1	1			20,1	20,0	
1.16	1-1-2/	12.2 × 1		1.1.1	101211	121.21						12																
12. 2. 07	236	15,05	30,86	215,9	232,0	2,31	375	70,0	0,10	0,01	0,09	70,0	0,17	0,01	0,16	0,025	0,040	0,045	0,040	0,025	0	0	0	0	0			Dauer des Versuches: 2 Stunden
	L G P S			1			1125		0,28	0,01	0,27	1.1.1	0,38	0,01	0,37	0,050	0,080	0,090	0,075	0,045	0	0,005	0,005	0	0			
	1999		1111	126 12		12 11 1	1500		0,04	0,03	0,51	1.805	0,60	0,04	0,56	0,075	0,125	0,135	0,125	0,075	0,005	0,010	0,015	0,010	0,005			
	1.3.3.1				1. 1. C. S.	1.1	1625	111 - 11 - 13	0,97	0,01	0,10	-22	0,91	0,00	0,10	0,105	0,170	0,190	0,170	0,100	0,010	0,020	0,025	0,015	0,010	11 . S. A. C 15 . A		
					101	1200	1750		1,11				1.01	121-1				_		1. 2. 2.								P = 1625 kg: erste Wasserflecke
	1			1. 1. A. A.	1.2.18		1875	D. State of State	1,26	0,25	1,01	1	1,10	0,07	1,03	0,145	0,240	0.270	0.235	0.140	0.025	0.040	0.045	0.035	0.020			
			1			1.5. 1	2000	1	1,44	-	- 12		1,19	-		-	-	-	_	-	_	_	-			1. 1. 1. 1. 1. 1.		
	1.	1. 1.30	CARD .				2050	1.	* 1,53	19 · · · · · · · · · · · · · · · · · ·		1000	1,23	-		-	-	-	-		-	-	1-4	-	-			
			Sec. 1		200		2100		1,63	-		Const.	1,28		-	-			+	-	-	-	-	-				
	1 22 7		1 I	Ser Ver	1		2150		1,78	-		1	1,37	-	-	- 1		0,360	-	-		-		-				
			1.1.1.1				(P_{\max})	Nach rund	d 3 Minute	en bricht	der Balk	en plötz	lich. Be	eim Bruch	riß waren	n viele V	Vasserflee	eke beoba	achtet w	orden.						22,5	24,7	
chschnitt	234		-	-	-	2,31	-	•	-		-	-	34	-	- N	-	-	-	02		-	1 - 1	12423			21.7	23.9	
									1		1														1	1	,	

Zusammenstellung 36. Balken mit Bauart nach Fig. 84. Alter: rund 8 Monate.

Zusammenstellung 36.

Zusammenstellung 37.

1	2	3	4	5	6	7	8	9	10
			Wasserflee	eke			Verlängerung	Spann	ungen unter P_{\max}
	ang		West's second dee	5	spannung kb	Bruch-	des Betons		1
Bauart	Bezeichm	Belastung, unter welcher zuerst Wasserflecke be- obachtet wurden	Betons unter der Belastung in Spalte 3	$k_b = \frac{M_b}{W} \stackrel{1}{}$	$k_b = \frac{M_b}{W} + \frac{G}{2} \cdot \frac{\frac{200}{2} - \frac{L}{4}}{W}$	belastung P_{\max}	Bruch (vergl. unter XXXVII)	$K_b = \frac{M_b}{W}$	$K_b = \frac{M_b}{W} + \frac{G}{2} \cdot \frac{\frac{200}{2}}{W}$
		kg	mm/m	kg/qem	kg/qem	kg	mm/m	kg/qem	kg/qcm
nach Fig. 84	66	1750	0,09	18,2	20,4	2100	0,128	21,8	24,1
b = 150, h = 300 mm	67	1625	0,08	16,9	19,1	2000	0,120	20,7	23,0
ohne Einlagen	69	1625	0,07	17,0	19,2	2150	0,127	22,5	24,7
	Durchschnitt	1667	0,08	17,4	19,6	2083	0,125	21,7	23,9

Zusammenstellung 37. Balken mit Bauart nach Fig. 84. Alter: rund 8 Monate.

¹) Hierin bedeutet M_b das biegende Moment $\frac{P}{2} \cdot 50$ kg cm, $W = \frac{b \cdot \hbar^2}{6}$ das Widerstandsmoment.

Zusammenstellung 39.

	2	1 3	4	5	1 6	1.7			1 10	1 11	12	13	14	A */.	16
									1	Zusam	mendrücku	ngen in	Federung		
nune		Abme	ssungen de	es Körper	s Quer-	Gewicht	Raum-	Belastungs	Meß-	$\frac{1}{1200}$ er	n auf die M	leßlänge l	der Längen-	Trahath	Jastana
Zelch	And	Seite	Seite	Höhe	a · b	des Körpers	des	stufen	länge		1	1	einheit auf 1 kg	nocusto	relastung
Be	Tam	a	. b	ħ		In	LICOMO	kalaam		gesamte	bleibende	federnde	Pressung	has	Iralann
	Ing	e cm	em	em	qem	- Rg		Kg/qem		1	1	1	1	I Kg	KB/dem
4	237	20,1	3 20,59	105,0	414,5	98,8	2,27	0,2- 6,0	75,1	2,05	0,07	1,98	264000	64 200	155
								0,2-12,1		4,15	0,10	4,05	$\frac{1}{264800}$		
								0,2-18,1		6,23	0,12	6,11	$\frac{1}{264000}$		
						1200		0,2-24,1		8,38	0,14	8,24	$\frac{1}{261400}$		
								0,2-36,2		13,11	0,18	12,93	1 250900		
			1					0,2-48,3		18,42	0,32	18,10	1 239500		
								0,2-60,3		24,03	0,58	23,45	$\frac{1}{231000}$		
		12.90						0,2-72,4		31,31	1,08	30,23	1 215200		
								0,2-84,4		39,51	1,80	37,71	$\frac{1}{1}$	1	
								0,2-96,5		49,68	3,13	46,55	201200		
					-					$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
5	237	20,06	20,35	104,4	408,2	96,9	2,27	0,2- 6,1	50,1	1,39	ò,01	1,38	$\frac{1}{257000}$	58 300	143
								0,2-12,2		2,82	0,01	2,81	$\frac{1}{256700}$		
								0,2-18,4		4,23	0,02	4,21	$\frac{1}{259900}$		
								0,2-24,5		1 1,39 0,01 1,38 $\frac{1}{257000}$ 58 30 2,82 0,01 2,81 $\frac{1}{256700}$ 58 30 4,23 0,02 4,21 $\frac{1}{259900}$ 5,63 0,03 5,60 $\frac{1}{260900}$ 8,98 0,11 8,87 $\frac{1}{247400}$ 12,81 0,19 12,62 $\frac{1}{232500}$ 17,20 0,43 16,77 $\frac{1}{218700}$					
								0,2-36,7		8,98	0,11	8,87	$\frac{1}{247400}$		
								0,2-49,0		12,81	0,19	12,62	1		
								0,2-61,2	ALL SAN	$ \begin{vmatrix} 1,33 & 0,01 & 1,38 \\ 2,82 & 0,01 & 2,81 & \frac{1}{257000} \\ 4,23 & 0,02 & 4,21 & \frac{1}{256700} \\ 5,63 & 0,03 & 5,60 & \frac{1}{260900} \\ 8,98 & 0,11 & 8,87 & \frac{1}{247400} \\ 12,81 & 0,19 & 12,62 & \frac{1}{232500} \\ 17,20 & 0,43 & 16,77 & \frac{1}{218700} \\ 22,45 & 0,76 & 21,69 & \frac{1}{203200} \end{vmatrix} $					
								0,2-73,5		22,45	0,76	21,69			
								0,2-85,7		28,67	1.41	27.26	$\begin{array}{c} 203200 \\ 1 \end{array}$		
								0.2-98.0		36.83	2.51	34.82	188600		
								0.2_110.2		47.97	4 5 9	49.74	171300 1	1.0.1	
			1.1.1					0,2 110,2		,	1,00	**,**	154700		
6	233	20,10	20,54	104,6	412,9	97,6	2,26	0,2- 6,1	49,9	1,27	0,01	1,26	$\frac{1}{280400}$	59 700	145
								0,2-12,1		2,67	0,03	2,64	$\frac{1}{269900}$		
							1	0,2-18,2		4,17	0,07	4,10	$\frac{1}{262900}$		
	-							0,2-24,2		5,76	0,12	5,64	1	1.	
								0,2-36,3		9,24	0,21	- 9,03	1		
								0,2-48,4		13,25	0,31	12,94	1		
								0,2-60,5		17,82	0,60	17,22	223000		
		1						0,2-72,7		23.21	1.07	22.14	$\frac{209700}{1}$	1.11	
					-			0 2-84 8		20.80	1.04	97.05	$\begin{array}{c}196100\\1\end{array}$		
								0.2 00,0		20,00	2,34	21,00	$\begin{array}{c}181200\\1\end{array}$		
	1							0,2-96,9		08,21	3,24	35,03	165300		
								0,2-109,0		51,02	6,10	44,92	145000		
7	233	20,08	20,61	105,5	413,8	98,9	2,27	0,2- 6,0	50,2	1,23	0	1,23	1 284100	58 800	142
								0,2-12,1	1.1.2.5	2,54	0,02	2,52	1 284500		
								0,2-18,1		3,99	0,07	3,92	1		
								0,2-24,2		5.48	0.08	5.40	275100		
								0.2-36.2		8.78	0.11	8.67	267700 1		
								0.9 49.0		19.15	0,11	19.00	$\begin{array}{c} 250100\\1\end{array}$		
								0,2-40,5		12,47	0,17	12,30	$\frac{235600}{1}$		
								0,2-60,4		16,89	0,39	16,50	219800		
								0,2-72,5		22,08	0,83	21,25	205000		
								0,2-84,6		28,30	1,51	26,79	189800		
								0,2-96,7		36,15	2,75	33,40	$\frac{1}{174000}$		
								0,2-108,7		48,03	5,41	42,62	$\frac{1}{153400}$		
urch- chnitt	235	-	-	-	-	-	2,27	-	-	-		-		-	146

Zusammenstellung 40.

	1	usamn	renstell	ung 40	(Zugve	rsuene mit K	opern	nach Fl	5. 02, aus	Deton 1	interiorite		
_ 1	2	3	4	5	6	7	8	9	10	11	12	13	14
gun		Abmess Kö	ungen des rpers	Oner	Gewicht		Te8.	Verlänge	die Mesure	1200 cm	Federung der		
sichnu	Alter	-		schnitt	des Körpers	Belastungs- stufen	inge 7	aur	die biebini	80.	Längeneinheit auf 1 kg	Höchstbe	lastung
Beze		Seite	Seite b		norpore			gesamte	bleibende	federnde	Spannung		
	Tage	em	em	qem	kg	kg/qem	em				2	kg	kg/qem
5	244	20,6	20,0	412,0	152,5	0,5-1,2	45,1	0,12	0,02	0,10	$\frac{1}{378800}$	5510	13,4
						0,5-2,4		0,36	0,04	0,32	$\frac{1}{321300}$		
						0,5-3,6		0,65	0,06	0,59	$\frac{1}{284400}$		
						0,5-4,9		1,07	0,21	0,86	$\frac{1}{276900}$		
						0,5-6,1		1,37	0,24	1,13	$\frac{1}{268200}$		
						0,5-7,3		1,66	0,26	1,40	$\frac{1}{262900}$		
			1			0,5-8,5		1,98	0,30	1,68	$\frac{1}{257700}$		
						0,5-9,7		2,40	0,42	1,98	$\frac{1}{251500}$		
										14	1		
7	240	21,0	20,0	420,0	153,1	0,5-1,2	45,0	0,12	0,01	0,11	343600	5720	13,6
		1.00				0,5-2,4	1	0,34	0,03	0,31	331000		
						0,5-3,6		0,59	0,06	0,53	315800		
1000						0,5-4,8		0,89	0,10	0,79	293900		
						0,5-6,0		1,20	0,14	1,06	280200		
						0,5-7,1		1,54	0,20	1,34	266000		
12						0,5-8,3		1,89	0,27	1,62	260000		
			2			0,5-9,5		2,33	0,37	1,96	1 248000		
8	240	20.7	20.0	414.0	151.7	0.5 - 1.2	45.0	0,11	0,01	0,10	1	5730	13,8
		20,1	20,0	114,0	101,1	0.5-2.4	,-	0.34	0.04	0.30	378000		
						0,5-2,4		0.65	0.09	0.56	342000		
						0,5-5,6		0,05	0,05	0.89	298900 1		
						0,5-4,8		1.95	0.14	1.11	279800 1		
						0,5-6,0		1,20	0,14	1,11	267600 1		
						0,5-7,2		1,57	0,19	1,38	262200 1		
					1	0,5-8,5		1,96	0,29	1,67	258700 1		
						0,5-9,7	1.15	2,44	0,42	2,02	245900		
11	226	20,9	20,2	422,2	154,1	0,5-1,2	45,0	0,10	0	0,10	$\frac{1}{378000}$	5000	11,8
					12.59	0,5-2,4		0,31	0	0,31	$\frac{1}{331000}$		
						0,5-3,6		0,56	0,02	0,54	1 310000		
						0,5-4,7		0,82	0,05	0,77	$\frac{1}{294500}$		
						0,5-5,9		1,12	0,08	1,04	1 280400		
						0,5-7,1		1,44	0,11	1,33	1		
						0,5-8,3		1,85	0,19	1,66	1		
						0,5-9,5		2,28	0,27	2,01	$\frac{1}{255700}$		
											241800		
12	226	20,1	20,9	420,1	154,3	0,5-1,2	45,0	0,10	0	0,10	378000	5300	12,6
						$^{0,5-2,4}$		0,32	0,01	0,31	1 331000		
						0,5-3,6		0,58	0,03	0,55	$\frac{1}{304400}$		
						0,5-4,8		0,84	0,05	0,79	$\frac{1}{293900}$		
						0,5-6,0		1,17	0,09	1,08	$\frac{1}{275000}$		
						0,5-7,1		1,49	0,12	1,37	$\frac{1}{260100}$		
						0,5-8,3		1,86	0,19	1,67	1 252200		
						0,5-9,5		2,27	0,25	2,02	1 240600		
Durch-	235	_	_	-	-	-	-	_	_	-	-	-	13,0
UULANER								1.1.	and the second se			1	1

Zusammenstellung 41. Balken mit Bauart nach Fig. 223. Alter: rund 7 Monate.

The second secon

26

.

		1 0	1 4 1	- 1	e	7 1 7		0 1	10 1 1	1 1 1	0 1 40	14	1 15	1 10	17	1 19	19	20 9	1 99	28	24	25	26	27 1	28	29	30	31	32 1	33 34	35	36	37	38	39	40	41	42 4	43 44	4 45	46	47	48	49	50	51
1	2	3	4 Ab	5 messunger	6 n des B	alkens		9 1	Abmess	ungen de	er Eisene	einlagen	Gewich	at 16	Be-	18	Aenderu	ingen der	Strecken 223)	20	auf d	Verlänge: er unteren	rungen Balkenfl	iche	Zusan auf der	nmendrü oberen	ückunge Balkenflä	en äche				Dure	hbie	gung	gen (v	ergl. Fig	c. 243)				durch-	he Spann	angen un den Gleic	ter P _{max} , chungen u	berechnet nter XLIV	
zeichnung	Prü fung tag	s- Alter	Breit	te	Höhe		nge Ball	kens	Durch	messer	Que	r- itt Umfang der dre Eisen	g Eisen- ei einlage	Raum- gewicht des Betons	1 a stunge P (Anfangslas) $P = 0 kg$	t x_1	x2	x3 3	1 1/2	y3	Meßlänge	Verlänge auf	erungen in die Meßlä	n ¹ / ₂₀₀ cm nge <i>l</i>	Meß- länge	usammend 200 cm auf	drückunge f die Meßli	en in änge l	gesan	nte Durchb	biegungen	an den M	Meßstellen		blei	lbende Du	ürchbiegu	ngen an d	den Meßste	ellen	Betondie e im mit ler Balkente	ke σ_o	σe	το	$ au_1$ am mittleren	Bemerkungen
Be		Tage	b em	b_1 cm c	m c	em ei	m k	rg c	d_1 d_1 d_2 em e	$d_2 = d_1$ em er	m qen	ue n em	kg	Betons	kg	mm	mm	mm m	m mm	mm	em	gesamte	bleibende	federnde	l ge	samte ble	eibende fe	edernde	a mm m	b c m mm	d mm	e mm	f mm	g mm	a mm	b mm	c mm v	d e mm m	$e \qquad f \\ m \qquad mn$	m mm	em	kg/qen	n kg/qen	n kg/qem	Stab ¹) kg/qcm	
71	20.2.03	222	45,1	20,1 5	1,1 1	0,5 310	6,1 97	6,5 2,	,50 3,	18 2,8	50 17,7	76 25,69	43,2	2,32	$2000 \\ 4000 \\ 6000$						60,5	0,30 0,62 1,04	0,01 0,04 0,15	0,29 0,58 0,89	60,2	0,23 0,47 0,73	0 0 0,01	0,23 0 0,47 0 0,72 0	,040 0,0 ,095 0,1 ,155 0,2	075 0,085 150 0,175 235 0,280	5 0,090 5 0,195 0 0,310	0,085 0,180 0,290	0,070 0,145 0,240	0,035 0,085 0,140	0 0 0,005	0 0 0,010 0	0 0 0,010 0,	0 0 0 0 ,015 0,0	0 0 0 0 015 0,01	0 0 10 0						Dauer des Versuches: 6 Stunden P = 6000 kg: erste Wasserflecke
															$\begin{array}{c} 8000\\ 10000\\ 12000\\ 13000\\ 14000\\ 16000\\ 18000\\ 990000\\ \end{array}$							1,57 2,16 2,84 3,29 3,90 5,09 6,18 7,14	0,24 0,40 0,59 0,87 1,09 1,28	$1,33 \\ 1,76 \\ 2,25 \\ - \\ 3,03 \\ 4,00 \\ 4,90 \\ 5,81 \\ $		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,03 0,05 0,06 	$\begin{array}{c ccccc} 0,98 & 0, \\ 1,27 & 0, \\ 1,60 & 0, \\ \hline \\ 1,95 & 0, \\ 2,32 & 0, \\ 2,68 & 0, \\ 3,04 & 0, \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0,410 \\ 0,550 \\ 0,710 \\ - \\ 0,895 \\ 1,145 \\ 1,465 \\ 1,780 \\ 0,800 \\ 0,710 \\ - \\ 0,895 \\ 0,780 \\ - \\ 0,780 \\ - \\ 0,780 \\ - \\ 0,780 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,780 \\ - \\ 0,895 \\ - \\ 0,89$	$0,330 \\ 0,440 \\ 0,570 \\ \\ 0,710 \\ 0,910 \\ 1,150 \\ 1,395 \\ 0,000 \\$	$\begin{array}{c} 0,210\\ 0,275\\ 0,355\\ \hline \\ 0,445\\ 0,565\\ 0,715\\ 0.855\\ \end{array}$	$\begin{array}{c} 0,015 \\ 0,025 \\ 0,045 \\ - \\ 0,055 \\ 0,070 \\ 0,095 \\ 0,105 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 0,025 & 0,\\ 0,045 & 0,\\ 0,090 & 0,\\ \hline \\ 0,110 & 0,\\ 0,150 & 0,\\ 0,210 & 0,\\ 0,255 & 0.\\ \end{array}$	$\begin{array}{cccccccc} 0.030 & 0.0\\ 0.055 & 0.0\\ 0.095 & 0.0\\ - & -\\ 0.120 & 0.1\\ 0.160 & 0.1\\ 0.220 & 0.2\\ 0.265 & 0.2\\ \end{array}$	$\begin{array}{c cccccc} 0.25 & 0.02 \\ 0.55 & 0.04 \\ 0.85 & 0.07 \\ - & - \\ 110 & 0.08 \\ 145 & 0.12 \\ 205 & 0.16 \\ 245 & 0.19 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						 P = 13000 kg: erste Risse (je ein Riß innerhalb u außerhalb der Meßstrecke) P = 22000 kg: Längsrisse auf der unteren Balkenfläc Zeichnerische Darstellungen der Dehnüngen und Dure
															20000 22000 (P _{max})	0 0 Nachde Die Ab 0,020	0 0,015 0,015 em diese olesung n 0,105 0	0 (0 (Last run ach dem	0 0 0 0 1 5 Minut Bruch erg	0 0 en gewirk gab:	nach 15 mfi » 25 » it hat, brich	n 7,14 8,23 nt der Körj	1,33 1,49 per plötzl	6,74 ich auf de	er Seite de	3,58 (r y.	0,16	3,42 1 -	,015 1,6	- -	5 2,260	2,145	1,660	1,015	0,130	0,260 0	0,815 0,	,335 0,3 		30 0,125	1,5	77,9	1553	13,7	12,3	biegungen: Fig. 247 bis 250 Lage der Nullinie mit steigender Belastung: Fig. 2 Abbildung der Unterfläche: Fig. 245 Abbildung einer Seitenfläche: Fig. 246
72	21.2.07	223	45,1	20,0 50	0,9 10	0,5 316	6,0 97	2,0 2,	,50 3,	20 2,5	50 17,8	36 25,75	44,5	2,32	$2000 \\ 4000 \\ 6000 \\ 8000 \\ 10000$						60,0	0,30 0,63 0,97 1,48 2,06	0 0,03 0,06 0,15 0,30	0,30 0,60 0,91 1,33 1,76	60,0	0,24 0,51 0,80 1,10 1,44	0 0,02 0,04 0,07 0,11	0,24 0 0,49 0 0,76 0 1,03 0 1,33 0	,045 0,0 ,095 0,1 ,150 0,1 ,225 0,1 ,290 0,4	070 0,09 145 0,18 240 0,29 340 0,42 455 056	0 0,095 5 0,195 5 0,310 5 0,445 5 0,595	0,085 0,185 0,300 0,425 0,565	0,075 0,155 0,245 0,345 0,460	0,055 0,105 0,160 0,230 0,300	0 0,005 0,015 0,030	0 0,015 0,025 0,045	0 0,005 0, 0,020 0, 0,035 0, 0,055 0,	$\begin{array}{c} 0 \\ 0,005 \\ 0,020 \\ 0,035 \\ 0,060 \\ 0,060 \end{array}$	0 0 005 0,00 015 0,01 030 0,05 050 0,05	$\begin{array}{c cccc} 0 & 0 \\ 05 & 0 \\ 15 & 0,005 \\ 30 & 0,020 \\ 50 & 0,030 \end{array}$						Dauer des Versuches: 5 Stunden P = 6000 kg: erste Wasserflecke
	,													-	$12000 \\ 13000 \\ 14000 \\ 16000 \\ 18000 \\ 20000$	0	0	0	0 0	0	nach 10 mi	$2,84 \\ 3,24 \\ 3,70 \\ 4,70 \\ 5,64$	0,51 	2,83 		1,79 1,99 2,19 2,62 3,04	0,15 	$ \begin{array}{c ccccc} 1,64 & 0 \\ \hline 2,01 & 0 \\ 2,41 & 0 \\ 2,80 & 0 \end{array} $,375 0, ,475 0, ,590 0, ,745 1,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0 & 0,775 \\ - & 0 \\ 0 & 0,980 \\ 5 & 1,235 \\ 5 & 1,600 \end{array}$	0,735 	0,590 0,750 0,950 1,235	$0,380 \\ - \\ 0,480 \\ 0,600 \\ 0,755$	0,045 0,065 0,085 0,115	0,070 0,110 0,135 0,190	$\begin{array}{cccc} 0,090 & 0 \\ - & \\ 0,130 & 0 \\ 0,180 & 0 \\ 0,245 & 0 \end{array}$	0,095 0,0 - 0,140 0, 0,185 0, 0,260 0,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			P = 13000 kg: erster Riß, innerhalb der Meßstreel P = 20000 kg: Längsrisse auf der unteren Balkenflä
															21000 (P _{max})	0 0 Nach 7 Die Me	0 0 7 Minuter essung na 0	$\begin{array}{c c} 0 & 0\\ 0 & 0, 0\\ 0 & \text{bricht } 0\\ \text{ach dem} \\ 0 & - \end{array}$	0,06 0,06 050 0,21 ler Balker Bruch erg	0 0,010 0 0,010 5 0,040 n plötzlich ;ab:	> 15 > > 6 > auf der S	6,48 eite der y.	1,19	5,29		3,46	0,27	3,19 0	,925 1,4	490 1,92	0 2,025	1,975	1,540	0,930	0,145	0,255	0,325 0),345 0, 	350 0,2	- 0,165	1,2	69,1	1361	12,2	10,9	Abbildung der Unterfläche: Fig. 245 Abbildung einer Seitenfläche: Fig. 246
87	7.3.07	202	45,2 2	20,1 51	.,7 10),6 316	5,3 971	7,5 2,	49 3,5	20 2,4	18 17,7	4 25,66	43,3	2,29	$\begin{array}{c} 2000\\ 4000 \end{array}$						60,1	0,29 0,56	0,01 0,01	0,28 0,55	60,2	0,23	00,02	0,23 0 0,50 0	,045 0, ,090 0,	070 0,08 140 0,17	0 0,085 0 0,190	0,080 0,170	0,070 0,145	0,045 0,095	0 0	0	0 0	0	0 0 0 0	0 0						Dauer des Versuches: $4^3/_4$ Stunden
	~														6000 8000 10000 12000							0,91 1,29 1,78 2,43	0,03 0,09 0,19 0,35	0,88 1,20 1,59 2,08		0,80 1,14 1,43 1,79	0,03 0,07 0,08 0,09	$\begin{array}{c cccc} 0,77 & 0 \\ 1,07 & 0 \\ 1,35 & 0 \\ 1,70 & 0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,270 0,385 0,515 0,675	0,225 0,320 0,415 0,555	0,145 0,210 0,270 0,350	0,005 0,015 0,020 0,035	0,010 0,025 0,035 0,060	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,015 0,00,00,00,00,00,00,00,00,00,00,00,00,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) 5)					P = 7000 kg: erster Wasserfleck
															$ 13000 \\ 14000 \\ 16000 $							2,94 3,64 4,91	0,73	2,91 3,94		2,00 2,20 2,65	0,13 0,15 0,17	$ \begin{array}{c c} - \\ 2,07 \\ 2,50 \\ 2.00 \\ 0 \end{array} $,470 0, ,590 0,	 735 0,90 935 1,16	5 0,960 0 1,240 0 1,605	0,900 1,155	0,720 0,915	0,455 0,585 0,785	0,060 0,080 0,100	0,095 0,130 0,180	- 0,110 0 0,150 0 0,220 0	- 0,120 0, 0,160 0, 0,285 0	- $ -$		5					P = 13000 kg: erster Riß, innerhalb der Meßstrec
															$ \begin{array}{r} 18000 \\ 20000 \\ 22000 \\ 23000 \\ \end{array} $	0 0,010 0	0	0 0	0	0 5 0	nach 6 mii	- -	-	4,84 — —		_	-	$ \begin{array}{c} 2,50 \\ - \\ 0 \\ 1 \end{array} $,900 1, ,055 1,	455 1,86 730 2,24	1,803 5 1,960 0 2,340	1,850 2,215	1,430 1,695	0,880 1,025	0,120 0,150	0,210 0,260	0,275 0 0,335 0	0,285 0, 0,350 0,	255 0,1 335 0,2	95 0,120 35 0,14	5					P = 20000 kg: Längsrisse auf der unteren Balkenflä
															24000 (Pmax)	$\begin{array}{c cccc} 0,010 & 0\\ 0,020 & 0\\ 0,030 & 0\\ 0,025 & 0\\ \end{array}$	0,025 0,065 0,090 0	0 0 0 0,0 ,010 0,0	0,01 05 0,05 15 0,06	5 0 0 0,005 5 0,005 0 0.005	» 12 » » 6 » » 12 » » 18 »	-	-	-			-	- 1 - 1	,170 1, ,285 2,	930 2,52 125 2,79	2,625 5 2,910	2,495	1,895	1,145 1,270	-		_	-			1,3	75,7	1 152	7 13,5	12,2	
			-													Nach 2 Die Mes	1 Minutes ssung na	n bricht ch dem 1 - 0,0	der Balken Bruch erga 35 0,100	n plötzlici ab: 0 0,035	auf der S	eite der x .	_	- 1	- 1	-	-	- 1	- -	- -	-	-	-		-	- 1	- 1	- 1	- -	- -						Abbildung der Unterfläche: Fig. 245 Abbildung einer Seitenfläche: Fig. 246 Abbildung des Bruchquerschnittes: Fig. 254
Durch	schnitt	216	-		- 1 -	- -	-	- -		- -	17,7	9 25,70	43,7	2,31	-	-	-			-	-	-	-	-	- .	-	-	-		- -	-	-	-	-	-		-		- -	- -	-	74,5	148	0 13,1	11,8	

¹) Unter der Annahme, daß in allen drei Eisen die gleiche Zugspannung vorhanden ist (vergl. unter XLIV).

Zusammenstellung 42. Balken mit Bauart nach Fig. 224. Alter: rund 7 Monate.

11	9	8	4 5	6	7 8	1 9	1 10	11 12	13	14	15 16	1 17	18	19 5	20 21	22	23 24	25	26	27	28 2	29' 30	31	32	33 34	35	36 37	38	39	40 41	42	43 44	45	46	47	48	49 50	51
	-	0	Ahmessur	ngen des B	alkens		Ahmes	sungen der	r Eisenein	lagen	10 10			Aenderur	ngen der Sti	recken		Verläng	erungen		Zusam	mendrück	ungen			D	nnahhi		mon (vor	erl Fig 949	-			durch-	SI	bannungen b	berechnet	
mg		-	romessu	ingen uno D		Gewicht		angen de		G	der Raum	Be- lastunge	n	(ver	gl. Fig. 224)	auf	der untere	n Balkenfl	äche	auf der	oberen Bal	lkenfläche			D	urenbi	regun	g e n (ver	gi, rig, 240,	"		S	Schnittliche Betondicke	nach de	n Gleichung	en unter XLIV	
chnu	rüfungs-	Alter	Breite	Höhe	Länge	des Balkens	Durch	hmesser	Quer-	Umfang j der drei	Eisen- gewich	it P	at					Verlän	gerungen i	n ¹ / ₂₀₀ cm	Мев- Zu	sammendrüc	kungen in	g	esamte Durchb	iegungen an	den Meßstel	len '	bleib	ende Durchbi	legungen a	in den Meßstel	len	e			τ_1 am	Bemerkungen
sezei	tag		b b1	h 1	h_1 L	G	d_1	d2 d3	schnitt fe	Eisen	Ge Betons	s $P = 0 \text{ kg}$	x_1	æ2 a	^c 3 <i>Y</i> 1	· y2	y ₃ Meßläng	e l	die Meßl	ange <i>l</i>	länge	o cm aur die	Meblange t							h c		e f		Balkenteil	0 ₀	σε	τ ₀ mittleren	
H		Tage	em em	em	em em	kg	em	em cm	aem	em	kg	kg	mm	mm m	m mm	mm	mm em	gesamt	e bleibend	e federnde	em ges	amte bleiben	de federnde	le mm	mm mm	mm	mm mm	g mm	mm n	am mm	mm	mm mm	mm	em j	kg/qem	kg/qem kg/	/qem kg/qem	
				1								1					60.0	0.90	0.01	0.90	50.0	0 10	0.91	0.040	0.065 0.085	0.085 (0.080 0.065	5 0.045	0	0 0	0	0 0	0	1.000				Dauer des Versuches: 7 ¹ / ₄ Stunden
74 2	1. 2 07	225 4	5,1 20,1	51,8 1	0,8 316,1	990,2	2,48 3	5,18 2,48	8 17,60	20,07	31,8 2,30	4000					00,0	0,29	0,01	0,28	0,	46 0	0,46	0,085	0,140 0,175	0,185 (0,170 0,135	5 0,085	0 0,	005 0,005	0,010	0,005 0,005	0					P = 7000 km and m Wessellack
												6000 8000						0,94 1,33	0,11 0,17	0,83 1,16	. 0, 0,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,71 0,99	0,135 0,190	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,285 (0,270 $0,2050,375$ $0,300$	0,130	0,005 0,	005 0,010	0,015	0,010 $0,0050,020$ $0,010$	0,005					T = 7000 kg; erster wasserneck
												10000						1,84 2,54	0,27	1,57	1,	28 0,01 63 0.04	1,27	0,255	0,405 0,510 0,535 0,670	0,535 (0,510 0,410 0,665 0,540	0 0,260 0 0,340	0,015 0,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,045 0,085	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,015 0,040					
												13000						3,06	-	-	1,	86 -	1.07	0.450	0.720 0.900	- 0.955 (0 895 0 720	0.450	0.050 0.0	0.95 0.120	0.125	0,120 0.095	0.055			1	·	P = 13000 kg: erste Risse (vier Risse innerhalb, drei Risse außerhalb der Meßstrecke)
						1.					1.575	16000						4,93	1,05	3,88	2, 2, 2,	40 0,08	2,32	0,550	0,880 1,105	1,165 1	1,100 0,875	5 0,560	0,070 0,	115 0,145	0,155	0,145 0,110	0,070					
												18000 20000						5,87 6,82	$1,19 \\ 1,32$	4,68 5,50	2, 3, 3, 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2,69 \\ 3,04$	0,670 0,785	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,405 1 1,665 1	1,325 1,060 1,575 1,260	0,665	0,075 0,	$125 0,165 \\ 155 0,200$	0,175 0,215	0,165 0,130 0,205 0,155	0,080					
					1 21-1				-			22000	0	0 0		0 0	0 .015 nach 10 n		-	-				0,895	1,455 1,840	1,925 1	1,835 1,460	0,910	0,110 0,	185 0,230	0,250	0,235 0,185	0,110		U	Inter $P_g = 2$	3000 kg:	P = 23000 kg: Längsrisse auf der unteren Balkenfläche
												20000	0	0 0	0	0 0	,015 » 15	» —	-	-	-		-	-		-		-	-		-		-		72,5	1482 1	3,0 11,8	
								1				24000	0	0 0	0,020 0,020	0,015 0	,015 » 6 ,015 » 12	» —		-			-	1,025	1,665 2,120	2,235 2	2,115 1,680	1,040	0,125 0,5	215 0,280	0,295	0,285 0,220	0,130					
												26000	0,010 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0,015 & 0 \\ 0,015 & 0 \end{array}$,015 » 6 ,015 » 12	» —	-	-	-		12	1,175	1,905 2,450	2,585 2	2,475 1,980	1,200	0,145 0,5	245 0,330	0,355	0,345 0,270	0,150	2.				
												28000	0,010	0 0,0	15 0,025	0,055 0	,015 » 6	» —	-	-			- 30	- 1.315	2,140 2,760	2.915 2	2,815 2,240	1,350	0,170 0,5	295 0,380	0,405	0,395 0,320	0,180			1		
												. 30000	0,015	0,010 0,0	15 0,065	0,135 0	,035 × 6		-	-	-		-	1 -		2 200 9		1 5 2 0	0 105 0	245 0 455	- 0.485	0.480 0.800	- 0.920	1.5	Un 99.0	ter $P_{\text{max}} = 2023 \qquad 1$	31400 kg:	Abbildung der Unterfläche: Fig. 255
										and a		1. 1. 1. 1.	0,015 0 Beim S	Steigern de	r Belastung	gleiten d	,035 » 12 ie Eisen bei y	unter Pmay	= 31400	kg sehr ras	sch. Die V	Wage der M	aschine sin	at nach k	urzer Dauer d	er Höchstbel	lastung.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,100 (0,	010 0,100	0,400	0,100 0,000	0,200	1,0			.,,.	Abbittung einer Seitennaene, Fig. 200
													Die Ab	blesung am	Schluß des	Versuche	s ergibt:			- 1			1 -	1 - 1	_ 1 _	1 - 1	- -	1 - 1	-	- 1 -	1 - 1	- 1 -						
							1						0,015	0,000 0,0	10 0,010	5,105 0.	,040							1.														Dauer des Versuches, 6 ³ /, Stunden
75 28	3. 2. 07	26 43	,2 19,9	51,4 10	9,6 316,2	979,6	2,49 3,	,19 2,49	17,73	25,66 5	52,0 2,31	2000					59,8	0,29 0,59	0	0,29 0,57	60,4 0,1 0,1	23 0 51 0,01	0,23	0,045 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,085 ($0,085 0,070 \\ 0,175 0,145$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0 0,005	0,005	0 0 0 0 0 0 0	0					Dader des versuches: 0/4 stunden
												6000						0,88	0,04	0,84	0,	80 0,02	0,78	0,155	0,230 0,285 0,315 0,390	0,300 0	0,290 $0,2350.395$ 0.320	5 0,150 0 0.205	0,005 0,0	010 0,015 020 0,025	0,015 0.030	0,015 0,010 0,025 0,020	0,010 0,015					P = 7000 kg: erster Wasserfleck
			-	4			has ton					10000						1,84	0,21	1,63	1,	39 0,06	1,33	0,275	0,415 0,510	0,540 (0,515 0,415	5 0,265	0.020 0,0	040 0,040	0,045	0,040 0,030	0,020					
				11-21-05						3.2		12000- 13000						2,45 2,82	0,38	2,07	1, 1,	94 -	- 1,66	0,350		- 0,695		-			-		-					P = 13000 kg: erster Riß, außerhalb der Meßstrecke
												14000 16000						$3,34 \\ 4,65$	0,63	2,71 3,75	2,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,01 2,38	0,445 0,570	0,690 0,855 0,880 1,090	0,900 0	0,860 0,695 0,880 0,880	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,055 0,0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,110 0,160	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,055					r = 14000 kg. Kib innernalo der mebstrecke
								1 1 1 1 1				18000						5,76	1,05	4,71	2,4	89 0,12	2,77	0,680	1,060 1,325 1,250 1,565	1,400	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 0,675 0 0,800	$ \begin{array}{c cccc} 0,090 & 0, \\ 0,110 & 0, \\ \end{array} $	140 0,170 170 0,205	0,180	0,175 0,135 0,210 0,160	0,090 0,105					
												22000		1991				7,71	1,13	6,44	3,0	68 0,13	3,55	0,940	1,485 1,850	1,945	1,860 1,465	5 0,915	0,120 0,	190 0,240	0,250	0,245 0,185	0,125		U	nter $P_a = 2$	6000 kg:	
												24000 25000	0	0 0	0	0	0	8,59	1,28	-	4,1	- 0,16	3,93	1,090		2,280		-			-		-		82,8	1666 1	14,8 13,3	P = 25000 kg: Längsrisse auf der untern Balkenfläche
												26000		0,010 0,0 0,010 0,0	05 0 05 0	0,010 0.	,005 nach 6n ,005 » 12	in 9,49	1,33	8,16	4,	61 0,26	4,35	1,280	2,080 2,610	2,740	2,645 2,085	5 1,255	0,180 0,	300 0,385	0,390	0,390 0,295	0,175					
												28000	0	0,030 0,0	05 0,010	0,045 0	,030 > 10	» 10,52	1,45	9,07	5,	10 0,30	4,80	1,455	2,390 3,030	3,170	3,060 2,410	0 1,445	0,210 0,	350 0,455	0,480	0,475 0,350	0,215	1,3	Un 95,6	ter $P_{\max} = 1923 \mid 1$	30000 kg; 17,1 15,3	Abbildung der Unterfläche: Fig. 255 Abbildung einer Seitenfläche: Fig. 256
-												30000	Nachde	m diese B	elastung 8 1	Minuten ge	wirkt hat, gib	t der Balk	en sehr ra	sch nach.	Kurz dara	uf kann die	Wage der	Prüfungsi	maschine nicht	mehr zum	Einspielen g	gebracht we	erden.									
												(Pmax)	Am Sel 0.010 0	hluß des V 0,080 0.0	Versuches er	gibt die A 3,975 3.	blesung:	1		1 - 1	- 1 -	- 1 -	- 1	11	- 1 -	1 - 1	- 1 -	1 - 1		- - 7	1 - 1	- -	1 -					
				10	- 010 1	070.0	0.00		17.00	95 59		2000					60.0	0.99	0	0.99	60.0		0.94	0.015	0.065 0.075	0.090	0.080 0.063	5 0.040	0	0 0	0	0 0	0					Dauer des Versuches: 6 Stunden
00 0.	5.07	99 40	4 20,1	51,5 10.	,5 510,1	010,0	2,50 5,	20 2,49	11,02	20,12 0	2,3 2,29	4000					00,0	0,28	0	0,58	0,0 0,1	48 0	0,48	0,090	0,135 0,170	0,180	0,165 . 0,140	0 0,085	0	0 0	0	0 0	0					
												6000 8000						0,89	0,02	0,87	0, 1,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,74	0,140 0,195	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,285	0,265 0,220 0,301 0,30	$ \begin{array}{c} 0 & 0,140 \\ 5 & 0,200 \end{array} $	0 0,	005 0,005	0,005	0,005 0,005	0	1 states				P = 8000 kg: erster Wasserfleck
	-						1. 1.6				1.	10000			and and			1,78	0,16	1,62	1,	38 0,05 57 –	1,33	0,265	0,405 0,495	0,530	0,505 0,410	0 0,265	0,010 0,	015 0,015	0,020	0,015 0,015	0,010	4.				
												12000						2,46	0,33	2,13	1,	77 0,11	1,66	0,365	0,560 0,695	0,740	0,700 0,56	5 0,360 5 0.470	0,030 0, 0.050 0	045 0,055	0,065	0,055 0,050	0,030	a alle ha				P = 12000 kg; erste Risse außerhalb der Meßstrecke
						1			1.11			16000					1	4,94	0,78	4,16	2,	63 0,17	2,46	0,595	0,925 1,160	1,225	1,160 0,933	5 0,580	0,065 0,	105 0,125	0,135	0,130 0,100	0,065					P = 13000 kg: Riß innerhalb der Meßstrecke
3												18000 20000					an and	5,90 6,91	0,86	5,04 5,90	3, 3, 3,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,88	0,720 0,870	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,480 1,835	1,410 $1,121,730$ $1,363$	5 0,710 5 0,845	0.075 0, 0, 100 0, 0, 0.000 0, 0.000 0, 0.0000 0, 0.0000 0, 0.0000 0, 0.00000 0, 0.00000 0, 0.00000000	125 0,160 0,215	0,165	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,080	1. 1. 1. 1.				
17			- Aller									22000 24000	0	0 0	0	0	0	7,92	1,10	6,82 7.68	3,	89 0,19 33 0,25	3,70	1,020	1,670 2,115 1,895 2,420	2,210	2,120 1,693 2,430 1,933	5 1,020 5 1,140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	195 0,260 235 0,305	0,270 0,320	0,2€0 0,205 0,310 0,235	0,130 0,135		1			
								-			138 138.8	26000	0	0 0	0	0,010	0 nach 10 n	in	1.00	-	,			-	2 145 2 700	2885	2 770 2 19	0 1 290	0.165 0		0.385	0.380 0.995	0.160		82.6 U	Unter $P_g = 2$ 1654	26000 kg: 14,7 13,2	P = 24000 kg: Längsriß auf der untern Balkenfläche
								1				28000	0	0 0	0,010	0,045 0,	,010 × 10	»	-	-	4,	- 0,33		-				-	-		-		-					
								2				30000	0,010 (0 0 0	0,010 10 0,070	0,045 0, 0,145 0, 0,145 0, 0,145 0, 0,045 0, 0,0000, 0,000, 000, 0,000, 0,0000, 0,0000, 0,000, 000	,010 × 15 ,035 × 10	» 10,85 » 11,82	1,34	9,51 ←	5, 5,	34 0,37 95 —	4,97	1,460	2,410 3,118	3,255	3,140 2,460	- 1,445	0,185 0,		0,450	0,445 0,335	0,175	1,3	U	nter $P_{\max} =$	= 30000 kg:	Abbildung der Unterfläche: Fig. 255
						-						(P_{\max})	0,010 0	0,040 0,0	10 0,095 10 0,180	0.165 0,	,050 » 15 ,180 » 20	· -			-		-	E		-	2 2	1	12	= =	-	= =	=		95,3	1909	16,9 15,3	Abbildung einer Seitenfläche: Fig. 256
			•			1.11							Nach 2	2 Minuten	sinkt die H	Belastung (dauernd.														1.			1		1		
												122.5	Die Ab 0,020 0	0,050 0,0	eh Schluß d 20 2,810	es Versuch 2,905 2.	nes ergibt:	1 -	- 1	- 1	- 1 -	- 1 -	1 -	1 - 1	- -	1 - 1	- 1 -	1 - 1	1 - 1	- -	1 - 1	- -	1 -		13/2			
Durchso	hnitt 2	17 –		- -	-	-	- -		17,72	25,65 5	2,0 2,30		-			-		-	-	- 1			-	-	- -			-	-				-	-	79.9	Unter	$P_g:$ 14.2 12.8	
																		1200				1. 1. 1. 1. 1.						1							10,0	Unter	Pmax:	
100							10 12 A		1. 1. 1. 1. 1. 1.					1. 1. 1. 1.					1	1 States	10-10 L. 18	14054195155	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Contraction of the state		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second							96,6	1952	11,2 15,0	

1) Unter der Annahme, daß in allen drei Eisen die gleiche Zugspannung vorhanden ist (vergl. unter XLIV).

Zusammenstellung 43. Balken mit Bauart nach Fig. 225. Alter: rund 7 Monate.

1	2	3	4 5	6	7	8 9	1	10 11	12	13	14	15	16	17	18	19	20 21	22	23	24	25	26	27	28	29	30	31	32 33	3 34	35	36	37 38	39	40	41 4	2 43	44 45	46	1 47	48	49	50 1	
			Abmes	sungen des	Balkens			Abmessung	en der 1	Ciseneinlag	gen o	ewight		Ber		Aenderu	ngen der S	strecken			Verlänge	rungen		Zusa	mmendr	rückunge	en			D) n r c h i	hinge	p. 0.	(money) Int	. 9.00		40	durch	Spape	ungen, her	rechnet n	ach den	01
gunu	Priifunge	Altor	Breite	Но	10	Gewi	icht s	Durchmess	ser		0	der ' F	Raum- 1	astungen		(ver	rgl. Fig. 22	(5)		auf d	er unteren	Balkenfl	läche	auf de	er oberen	Balkenflä	äche			D	ureni	bregu	n g e n	(vergi. Fig	5. 243)			schnittliche	Gleich	lungen unte	er XLIV,	, S. 118	
teich	tag	Alter -			Lär	nge Balk	ens		1	Quer- schnitt Un	mfang ei	Eisen- ge inlagen	des (A	P Anfangslast							Verlänge	erungen i die Meßl	n ¹ / ₂₀₀ em	Meß-	Zusammen	ndrückunge	en in	gesamt	e Durchbie	egungen an	n den Meßs	stellen	b	bleibende D	urchbiegun	gen an den	Meßstellen	Betondicke		1		τ_1	Bemerkungen
Bez			b b1	h	h ₁		d	l_1 d_2	d ₃	fe	lle	Ge E	Betons	P = 0 kg	æ,	x2 .	x ₃ y ₁	y_2	¥3	Meßlänge l	aur	are mean	ange e	länge	/200 Cm au	u die Mebis	ange t	a b				P 0	_			, 1		im mittleren Balkenteil	σο	σ_e	τ_0	am mittleren	
		Tage	em em	em	em ei	m kg	r ei	m em	em	qem	em	kg		kg	mm 1	nm n	nm mm	mm	mm	cm	gesamte	bleibend	e federnde	em g	esamte bl	eibende fe	edernde n	a o nm mm	n mm	mm	mm n	f = g mm mm		mm	c d mm m	m mm	mm mm	n em	kg/gen	h kg/gem l	kg/aem	Stab ¹)	
76	2.3.07	224	15,3 20,0	0 51,8	10,9 31	6,1 1007	7,5 2,	48 3,20	2,48	17,70 2	25,58	73,0	2,31	2000						60,2	0,28	0,01	0,27	60.0	0.24	0	0.24 0.	045 0.06	0 0.075	0,085	0.080 0.0	070 0.04	5 0	0	0		0 0		İ				
				1-2-1	-		-							4000 6000	1						0,59	0,04	0,55		0,48	0	0,48 0,	090 0,13	0 0,170	0,180	0,170 0,1	140 0,08	5 0	0	0,005 0,0	05 0	0 0			1.50			Dauer des Versuches: 8 ¹ / ₄ Stunden
	S. Star			Sec.	1									8000					-		1,35	0,15	1,20		1,05	0,02	1,03 0,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0,265	0,285	0,265 0,1	305 0,19	5 0,005	0,005	0,010 0,000 0,00 0,00 0,00 0,00 0,00 0,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		ASSI		1	P = 8000 kg: erster Wasserfleck
														12000					10.22		1,80 2,44	0,24 0,39	$1,56 \\ 2,05$		1,34 1,71	0,02 0,07	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0,495 5 0,680	0,525 0,715	0,490 0,4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0,025 0,045	0,030 0,0 0,070 0,0	35 0,030 70 0,060	0,025 0,01 0,050 0,02	10		13337	23347		P = 12000 kg; arstar Big sufferbalb day Molatrack
														14000 16000							3,52 4,67	0,67	2,85 3,79		2,12 2,50	0,10	2,02 0, 2.40 0.	450 0,71 560 0,88	5 0,890 5 1,105	0,945	0,880 0,1	710 0,44 880 0.55	5 0,045 5 0,070	0,075	0,105 0,1	15 0,105 50 0,185	0,085 0,04	15					P = 13000 kg: Risse innerhalb der Meßstrecke
														18000 20000							5,67 6.52	1,04	4,63		2,88	0,10	2,78 0,	670 1,06	0 1,315	1,390	1,310 1,0	050 0,66	0 0,080	0,125	0,165 0,1	70 0,160	0,125 0,07	10					
				18. 14		1								22000				-			7,36	1,23	6,13		3,63	0,09	3,54 0,	890 1,42	5 1,775	1,865	1,765 1,4	410 0,88	5 0,090	0,145 0,170	0,190 $0,10,220$ $0,2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95					
	•													26000							8,99	1,29	6,88 7,63		4,03 4,49	0,09 0,11	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,62 130 1,83	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,115 2,395	2,005 1,0 2,275 1,8	610 0,99 820 1, 12		0,185 0,215	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	05 25					
												1		28000 30000	0	0	0 0	0	0		9,81 10,65	1,44 1,49	8,37 9,16		4,97 5,51	0,12	4,85 1, 5,29 1,	260 2,04 100 2,27	5 2,540 5 2,835	2,675 2,975	2,545 2,0 2,830 2,2	040 1,26 270 1,39	0 0,135 5 0,165	0,235	0,295 0,3 0,360 0.8	05 0,295 65 0,350	0,235 0,14 0,275 0,16	10		Inter P	- 32000 1	F.C.	
	1.1.1.1.1													32000	0,010 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	015 0,0	015 0 015 0	0,025	0 1	nach 10 min » 15 »	- 11,52		9,98		6.07	0.31	5 76 1	510 2.51	5 3 1 9 5	3 995		505 153	0 0 195	- 0.295					100,0	2054	18,2	16,5	T = 50000 kg: Langsrisse auf der unteren Balkenfläche
														34000	0,010 0, 0,010 0.	030 0,0	025 0 025 0	0,065	0,010	» 10 » » 15 »		- 1.66	10.99		-	-			-	-			-	-			0,515 0,18	50					
														36000	0,020 0,	065 0,	025 0,013	0,155	0,020	» 10 »		-	-		-	-			-	-			5 0,210	0,360	0,455 0,4	- 0,440		15					Zeichnerische Darstellungen der Dehnungen und Durch- biegungen: Fig. 259 bis 262
														38000	0,030 0,	120 0,0	035 0,130	0,135	0,020	» 15 » » 6 »	13,69	1,89	11,80		7,20	0,39	6,81 1,	870 3,05	5 3,805	4,015	3,830 3,0	070 1,86	5 0,250	0,425	0,525 0,5	55 0,540	0,440 0,26	1,6	U 118.8	nter $P_{\text{max}} = 2440$	= 38000	kg:	Lage der Nullinie mit steigender Belastung: Fig. 263 Abbildung der Unterfläches Fig. 257
							1					1		(Pmax)	Nach 17 Die Able	Minuter sung na	n kann die ich Schluß	Wage d des Vers	ler Prüfur suches ere	ngsmaschine ribt:	e nicht me	hr zum	Einspielen	gebracht	werden,	die Belaste	ung.sinkt	dauernd.									-				-1,0	10,0	Abbildung einer Seitenfläche: Fig. 258
-															0,030 0,	130 0,0	035 7,690	8,085	7,720	-		-	-	-	-	-	- -	- -	-	-	- 1 -	- 1 -	-	-	- -	- 1	-					101	
77	4.3.07	226 4	5,1 20,0	51,5	10,8 316	,2 1000	,5 2,5	50 3,17	2,50	17,71 23	5,66	72,9 2	2,31	2000					13.4	60,0	0,31	0,02	0,29	59,8	0,25	0	0.25 0.	0.06	0 0.080	0.090	0.080 0.0	065 0.04	0 0	0	0	0	0 0						Dever des Verscher 6 of 1
					1 1 1									4000 6000			1				0,61	0,03 0.08	0,58		0,50	0	0,50 0,	085 0,13	5 0,165	0,180	0,175 0,1	135 0,09	0 0	0	0	0 0	0 0						Dauer des versuches: 6 Stunden
									-					8000							1,33	0,15	1,18		1,06	0,01	1,05 0,	190 0,29	5 0,360	0,285	0,380 0,3	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0 0,005	0,010	0,015 0,0	015 0,020	0,010 0,01	10					P = 8000 kg: erste Wasserflecke
														11000							2,09	- 0,23	1,56		1,37	0,01	1,36 0,	260 0,40	0 0,495	0,535	0,505 0,4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0,015	0,025	0,030 0,0	030 0,030	0,020 0,01	15					P = 11000 kg erster Big außerhalb der Meßstrecke
										1.				14000							$2,62 \\ 3,66$	$0,47 \\ 0,71$	2,15 2,95		$1,71 \\ 2,10$	0,05 0,06	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	355 0,55 455 0,71	5 0,690 5 0,890	0,735 0,955	0,700 0,3	565 0,36 725 0,45	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,055	0,070 0,0	075 0,075 15 0,105	0,055 0,03	30					P = 12000 kg: Risse innerhalb der Meßstrecke
		1												16000 18000							4,66	0,88	3,78 4,72		2,48	0,06	2,42 0, 2,78 0	560 0,87 365 1.04	5 1,100	1,180	1,110 0,1	895 0,56 075 0.67	5 0,065	0,110	0,130 0,1	45 0,140	0,110 0,06	65					
					1									21000	0 0	0 005 0 0	0 0	0	0	ach 10 min	7,19	1,18	6,01		3,43	0,06	3,37 0,	830 1,30	5 1,640	1,745	1,660 1,	335 0,85	5 0,080	0,125	0,180 0,1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	AREAU	Unter $P_g =$	= 24000 1	kg:	
	-				1 3					1951		-	1	27000	0 0,	005 0,0	015 0	0	0	» 15 »	8,77	1,30	7,47		4,05	0,06	3,99 1,	000 1,57	5 1,980	2,100	2,005 1,0	615 1,01	0 0,105	0,175	0,220 0,5	235 0,225	0,185 0,10	05	76,3	1551	13,7	12,3	
				1.2.										27000	0,005 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	010 0,0 010 0,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,010	0,005	» 10 » » 15 »	10,41	1,45	8,96		4,69	0,05	4.64 1.	175 1.87	0 2,355	2,500	2.385 1.9	915 1.19	5 0.125	- 0.205	0.250 0.9		0.915 0.19	9.5					
														30000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,030	0,015	> 10 » > 15 »	- 12.19	- 1.61	10.58		- 5.36	0.05	5 81 1		5 9 780	2 940				-									P = 30000 kg: Längsrisse auf der unteren Balkenfläche
				-										33000	0,015 0,	040 0,0	050 0,050	0,080	0,035	» 10 »	-	-	10,00		_	_			-	2,940			5 0,155	0,255		- 0,325		65					
			-											36000	Nach 6	Minuten	erscheinen	am eine	n Balken	ende neue	Risse (rech	1,85 its in Fig	g. 258), k	l urz darauf	6,13 sinkt die	0,07 e Belastun	6,06 1, ng dauernd	$300 \mid 2,57$	5 3,250	3,430	3,285 2,0	645 1,63	0 0,195	0,325	0,405 0,4	125 0,415	0,340 0,20	05	U 114	Juter Pmax	= 36000) kg:	Abbildung der Unterfläche: Fig. 257
														(P _{max})	Die Able 0,035 0,	sung na	ch Schluß 085 4,320	des Versi 4,430	uches erg	ibt:	- 1	_	1 - 1			_ 1		1			1		1	1				1,0	114,5	2020	20,0	10,4	Abbildung einer Seitennache: Fig. 258
89	13.3.07	202 41	,2 20,2	51,5	0,5 316,	3 995,	8 2,51	1 3,18	2.51	17.84 25	5.75 7	73.4 2	2.29	2000						60.0	0.00	0.01	0.05								_		_	-							a sal		
									-,				,	4000						60,0	0,28	0,01	0,27 0,55	60,0	0,22 0,45	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	045 0,07 090 0,14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,090 0,180	0,080 0,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0 5 0	0,005	0 0,005 0,0	0 0	0 0 0				A SEC		Dauer des Versuches: 7 ¹ / ₄ Stunden
	-					105								8000							0,93	0,08	0,85		0,74	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140 0,22 195 0.31	0 0,275	0,290	0,265 0,5	220 0,14 310 0,20	0 0,005	0,010	0,010 0,0	010 0,005	0,005 0	0.5	1000				P = 6000 kg: erster Wasserfleck
	-													10000 11000	13						1,76	0,21	1,55		1,32	0,01	1,31 0,	265 0,42	0 0,515	0,545	0,515 0,4	425 0,27	5 0,025	0,035	0,045 0,0	045 0,015 0,035	0,015 0,00	20					
		2012			6									12000	12 2						2,78	0,51	2,27		1,80	0,05	1,75 0,	365 0,58	0 0,735	0,770	0,725 0,1	590 0,37	5 0,045	0,075	0,085 0,0	090 0,080	0,070 0,04	45		A Start			P = 11000 kg: erste Risse, außerhalb der Meßstrecke $P = 12000$ kg: Riß innerhalb der Meßstrecke
														16000							5,09	0,76 0,96	3,20 4,13		2,19 2,53	0,06 0,05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	185 0,77 585 0,93	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,010 1,235	0,945 0,1	770 0,48 940 0,60	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,095 0,125	0,115 0,15	120 0,115 150 0,145	0,100 0,03	55 75		Alexan			
														21000							6,16 7,51	$1,12 \\ 1,27$	5,04 6,24		2,85 3,41	0,04 0,02	2,81 0, 3,39 0.	715 1,10 855 1.37	5 1,380 0 1.710	1,455	1,385 1,3 1,710 1	120 0,70 375 0.87	5 0,080 5 0.090	0,135	0,170 0,	175 0,165	0,135 0,08	85					
										1				24000 27000	0 0	0	0	0	0		8,85 10.24	1,41	7,44		4,01	0,02	3,99 1,	030 1,65	0 2,055	2,160	2,060 1,0	655 1,05	5 0,100	0,190	0,235 0,	235 0,225	0,190 0,1	35					
				-										30000	0,005 0,0	20 0,0	05 0	0,005	0,015 n	ach 6 min	-	-	-		-	-			-	2,540			-		- 0,280 0,1	- 0,270	0,225 0,14	40	96,	Unter $P_g = 3$ 1915	= 30000	kg: 15,2	P = 30000 kg: Längsrisse auf der unteren Balkenfläche
														33000	0,020 0,0	85 0,0	10 0,010	0,025	0,020	» 12 »	-	-	9,91		5,40		5,34 1,		5 2,885	3,000	2,875 2,	305 1,45	0,145	0,295	0,355 0,	350 0,345	0,290 0,1	75					
														36000	0,020 0,0 0,045 0,1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,025 0,060	0,020 0,020	» 18 » » 10 »	13,15	1,88	11,27		6,23	0,19	6,04 1,	350 2,72	5 3,365	3,495	3,360 2,	700 1,68	5 0,165	0,365	0,445 0,	430 0,430	0,355 0,25	25					
														39000	$ \begin{array}{c cccc} 0,045 & 0,1 \\ 0,115 & 0.2 \end{array} $	45 0,0 40 0,0	20 0,010 55 0,010	0,060	0,020	» 15 » » 3 »	15,03	2,38	12,65		7,26	0,45	6,81 1,	395 3,16	5 3,915	4,070	3,915 3,	140 1,94	5 0,235	0,495	0,615 0,	600 0,605	0,490 0,3	05	1	Unter Pmax	= 3900	0 kg:	
							1							(Pmax)	Nach 5 M	inuten e	erscheint an	m einen 1	Balkenend	le (links in	Fig. 258)	ein neu	er Riß.	Bald darau	uf werden	dort nocl	h weitere	Risse bem	erkt.		- 1 -		-	1 - 1	- .	- 1 -		1,6	125,8	\$ 2490	22,0	19,8	
														1	2,235 0,9 2,235 2,3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,170 0,180	0,020 na 0,020	ach 12 min $\approx 20 \approx$	18,04	(4,09)	(13,95)		8,65 ((1,07)	7.58) 3	95 4.99	5 5.745	5.750	5.425 4	260 2 61	5 -	-	= -	- -		-					
							1								Die Risse	am linke	en Balkene	em Entle	eitern sich	Bell	; die Wag	e der P	rüfungsma	schine kar	nn nur du	arch rasche	es Nachsp	annen zum	Einspieler	n gebracht	t werden.	Der Versu	ch wird je	etzt abgebr	ochen.		1 - 1 -						
Durch	abnitt 6	17								7.77	001 5	0 1 1 1			2,185 2,2	10 2,0	50 0,030	0,180	0,020	-	$r = 0 \mathbf{k}$	-	- 1	-	-	-	- 1 -	- 1 -	1 -		- 1 -	- 1 +	1	1 - 1	-	- 1 -	1 - 1 -	_					Abbildung der Unterfläche: Fig. 257 Abbildung einer Seitenfläche: Fig. 258
arens	chille 2		-			1		-	- 1	1,15 25,	,00 78	0,1 2,	,30	-				-	-	-	-	. =	-	-	-	-		- -	-		- -	- +	-		- -			- -	1	Unt	ter P_g :		
																																							90,9	9 1840 Unte	16,3 er Pmax:	14,7	
														1		1		1	1								1		1										119,	5 2419	21,4	19,3	

¹) Unter der Annahme, daß in allen drei Eisen die gleiche Zugspannung vorhanden ist (vergl. unter XLIV).

Zusammenstellung 44. Balken mit Bauart nach Fig. 226. Alter: rund 7 Monate.

1	2	3	4 5	6	7 8	9	10 1	11 12	13	14 15	16	17 1	8 19	20	21 22	23	24	25	26 3	27 28	29 30	31	32 8	33 34	35 3	36 37	38 3	9 40	41 42	43	44 45	46	47 48	49
	a lulas	1	Abmes	sungen des	Balkens			Abm	essungen de	r Eiseneinla	ıgen	Com	inht	Po	Aenderungen der Strecken	7	erlänger	ungen		Zusammend	rückungen				Durchl	bieguns	ren (verg	l. Fig. 243)			Spa	nnungen,	berechnet nach den Glei-	1
ung		-	Breite	Höl	he	Gewich des	t	Durchmes	sser		Umfa	ng d	er Raum-	lastungen	(vergl. Fig. 226)	auf de	er unteren	Balkenfläch	18	auf der oberei	a Balkenfläche				Duren	or o g un g	, on the p		1.192			chungen	unter XLIV, Seite 118	
lichn	rüfungs- tag	Alter	Dicito		Läng	ge Balken	s			Quer-	der geraden	der fünf einl	en- gewich agen des	t P (Anfangslast			Verlänger auf d	ungen in ¹ / le Meßläng	200 cm M	eß- Zusamme	ndrückungen in uf die Meßlänge	n Z	gesamte Durc	hbiegungen	n an den Meßst	tellen	bleiben	de Durchbieg	ingen an den	Meßstellen			7,	Bemerkungen
Beze			b b1	ħ	h ₁ L	u u	d_1 d_1	d_2 d_3	<i>d</i> ₄	ds fe	Einlage	Ein-	Fe Betons	P = 0 kg)	x y	Meßlänge <i>l</i>			18	l l		a	b i	e d	l e l f	e a	a b		d e	P	σ ₀	σ	70 am mittle en Stab	
		Tage	em em	em	em em	n kg	em e	em em	em	em qem	em	em k	g	kg	mm mm	cm	gesamte b	leibende	edernde	m gesamte b	leibende federn	nde mm	mm m	m mm	mm m	m mm	mm mi	n mm	mm mm	mm	mm kg/qc	m kg/qe	m kg/qem kg/qem kg/qem	
79	22. 2. 07	212 4	5,5 20,0	0 51,1	10,4 316,3	1 970,9	3,16 1.	,90 1,90	1,79 1	,79 18,56	9,93	33,11 48	3,9 2,30	2000		60,1	0,27	0	0,27 6	0,2. 0,22	0 0,25	0,040	0,070 0,0	0.090	0,035 0,0	070 0,045	0 0	0	0 0	0	0		bei Annahme der	Dauer des Versuches: 8 Stunden
														4000 6000			0,55	0,01	0,54	0,45	0 0,45	5 0,085	0,130 0,1	70 0,180 80 0,300	0,170 0,1 0,285 0,2	40 0,095 225 0.145	0 0	0	0 0	0	0		Uebertragung der Zugkraft durch	
														8000			1,42	0,16	1,26	1.08	0,03 1,00	0,190	0,310 0,3	85 0,410	0,385 0,3	310 0,205	0 0,00	05 0,010	0,010 0,010	0,005	0		das die fünf	P = 8000 kg: erste Wasserflecke
1			-											12000			2,06	0,40	2,25	1,41	0,06 1,35	0,260 0,340	0,425 0,5 0,550 0,6	i90 0,730	0,535 0,4 0,695 0,5	i60 0,355	0,020 0,02	50 0,055 0	0,040 $0,0300,060$ $0,050$	0,030 0	0,025		Eisen	
														13000 14000		Section 1	3,10 3,54	0,71	2,83	1,92 2,12	0,07 2,05	5 0,425	0,685 0,8	60 0,915	0,865 0,6	95 0,445	0,030 0,00	30 0,080	,090 0,075	0,060 0	,035		allein	$P = 13\ 000$ kg: erste Risse, außerhalb der Meßstrecke
	1.1.1													16000 18000			4.63	1,00	3,63	2,53	0,13 2,40	0,535	0,870 1,0	90 1,160	1,100 0,8 1,365 1,1	395 0,560 00 0,695	0,050 0,10	00 0,130 0	0,135 $0,1250.185$ 0.165	0,100 0	0,055			$P = 16\ 000$ kg: Risse innerhalb der Meßstrecke
														20000			6,54	1,19	5,35	3,43	0,21 3,22	2 0,790	1,280 1,6	10 1,700	1,625 1,3	310 0,820 0.005	0,090 0,10	50 0,200	0,210 0,190	0,155 0	0,090			
								1						24000	0 0		=	Ξ	-	-	= / [1,085	1,570 $1,51,790$ $2,2$	45 2,360	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	190 1,105	0,125 $0,2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,260 $0,2350,305$ $0,275$	0,180 0),130			P = 24000 kg: Längsrisse auf der untern Balkenfläche
-										E P				26000	$\begin{array}{c ccccc} 0,015 & 0,035 \\ 0,015 & 0,035 \end{array}$	nach 6 min » 10 »	-	=	-	=		1,220	2,035 2,5	55 2,670	2,535 2,0	30 1,250	0,145 0,20	60 0,330	,340 0,315	0,250 0		unte 1623	er $P_g = 26000$ kg: 5 15,1 30,4 12,8	
														28000	0,050 0,075 0,050 0,075	» 6 » » 12 »	-	Ξ	-	_		- 1.360	2,280 2.8	85 3.030	2.875 2.2	290 1.415	0,165 0,30	05 0,385	- $ 0.360$	0,280 0	-			
	11.574		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											30000	0,095 0,145	» 15 » » 20 »	_	-	-	-		1 5 9 0	2 560 2 5		9955 96		0.905 0.9			- 0.960 0	-			
	10							1						33000	0,315 0,705	» 20 »	-	-	-			-									-			
															$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	» 25 » » 30 »	-	=	-	=		1,980	3,320 4,2	4,500	4,365 3,3	355 2,205	0,410 0,73	10 0,890	0,930 0,905	0,770.0	0,475			Abbildung der Unterflächer Fig 264
														34000 (Pmm)	Nach 5 Minu	iten sinkt die	e Belastung	langsam,	auch bei i	fortgesetztem D	urchbiegen des	Balkens.		••										Abbildung einer Seitenfläche: Fig. 265
						119.0								(I max)	1,395 5,525	ergibt am S	- des	versuches:	- 1 -	- -	- -	1 -		- 1 -	1 - 1 -	- -		- -	- -	-	- 110,	5 212	r $P_{\max} = 34000 \text{ kg:}$ 5 19,7 (39,7) (16,8)	
80 6	. 3. 07	223 45	,2 20,2	51,5	10,8 316,2	989,1	3,19 1,9	90 1,90	1,80 1,	80 18,75	10,02	33,26 49	.2 2.30	2000		60,1	0,32	0,03	0,29 6	0,1 0,24	0 0,24	0,045	0,070 0,0	0.095	5 0,085 0,0	065 0.045	0 0	0	0 0	0	0			Dauer des Versuches: 7 Stunden
													-,	4000			0,62	0,08	0,54	0,48	0 0,48	8 0,095	0,145 0,1	0,195	5 0,180 0,1	140 0,090	0 0	0		0	0			P = 6000 kg; arster Wassenfleek
							1.194	a lena						8000			1,43	0,21	1,22	1,05	0,01 1,04	0,215	0,330 0,4	10 0,430	0,200,0,200,0,200,0,200,0,200,0,000,000	325 0,210	0,010 0,0	15 0,025	0,030 0,025	0,020 0	0,010			I = 0000 kg, eister wasserneck
														10000 12000			1,99 2,68	0,32 0,51	1,67 2,17	$\begin{array}{c c}1,41\\1,79\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,015 0,025			
12														13000 14000			3,08 3,57	0,76	2,81	2,01 2,22	0,17 2,05	5 0,480	0,740 0,9	015 0.965	5 0,910 0.7	725 0,455	0.065 0.1				0,055			P = 14000 kg; erste Risse, innerhalb und außerhalb
			6											16000			4,67	1,00	3,67	2,67	0,21 2,40	0,605	0,935 1,1	160 1,220	0 1,155 0,9	920 0,565	0,085 0,1	40 0,170	0,180 0,165	5 0,130 0	0,075			der Meßstrecke
														21000	0 0		7,09	1,32	5,77	3,66	0,22 3,44	1 0,920	1,135 1,4	175 1,875	5 1,405 1,15 1,165 1	405 0,865	0,130 0,2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,220 $0,200$ $0,200$ $0,250$	0,180 0	0,115			
	2		1724					A Start				10-1		24000	0,025 $0,0050,025$ $0,005$	nach 10 min * 15 *	8,44	1,47	6,97	4,41	0,26 4,15	5 1,130	1,790 2,5	225 2,340	2,215 1,7	745 1,070	0,165 0,2	55 0,320	0,330 0,310	0,235 (0,140 76,4	unt 4 147	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P = 24000 kg: Längsrisse auf der untern Balkenfläche
														27000	0,170 $0,0350,215$ $0,045$	» 10 » » 20 »	1	-	2			-								-	-			
							6							5	0,220 0,045	* 25 ×	9,91	1,62	8,29	5,28	0,37 4,91	1 1,490	2,390 2,9	35 3,010	0 2,840 2,2	220 1,365	0,270 0,4	30 0,510	0,495 0,460	0 0,350 0	0,205			
										-				30000	0,545 0,110	» 15 »	-	-	-			-				I I I				-	_			
		•					- 2015 (155)								$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	» 25 » » 30 »	11,36	1,86	9,50	6,12	0,52 5,60	0 1,880	3,055 3,7	25 3,790	0 3,555 2,7	770 1,695	0,395 0,6	20 0,735	0,710 0,65	5 0,500	0,305			Aenderungen der Strecken x und y : Fig. 266
														33000 (Pmm)	1,765 0.300 2,225 0.330	» 3 » » 15 »	=	E	I	-		_								_	_			Abbildung der Unterfläche: Fig. 264 Abbildung einer Seitenfläche: Fig. 265
					-									(* max/	3,425 0,370	» 30 »	13,97	-	-	7,46		3,935	6,420 7,1	105 7,220	0 6,130 4,8	890 2,975	- -			-	-	unte	$P_{\max} = 33000 \text{ kg:} $	Abbittung einer Beitennache. Fig. 200
			a read												Nach 40 Min	uten kann di	e Wage de	r Prüfungs	maschine	nur durch sehr	rasches Nachs	spannen zu	ım Einspielen	gebracht	werden. Bald	darauf sinkt	die Belastu	ng langsam.		1 - 1	- 105.	,0 200	18,9 (38,1) (10,2)	
81 14	3. 07	27 45	3 20,1	51,3 1	10 5 316.0	977.6	3,17 1,7	9 1,79	1,90 1.9	90 18.61	9.96	33.14 49	9 9 80	2000		60,0	0.28	0	0.28 6	0.0 0.26	0.01 0.25	5 0.040	0.060 0.0	0.095	5 0.085 0.0	070 0.040	0 0	0	0 0	0	0			Danar das Varsuchas: 6 Stunden
											0,00		2 2,00	4000			0,60	0,01	0,59	0,53	0,03 0,50	0,090	0,140 0,1	185 0,195	5 0,190 0,1	150 0,095	0 0	0,005	0,005 0,003	5 0,005	0	1		Duder des versaches, o Standen
				14.3.2										8000			1,38	0,03	1,28	1,12	0,08 0,76	4 0,195	0,225 0,1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0,290 0,2 5 0,405 0,3	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0,005 0,0	15 0,010 0,020	0,010 0,010 0,010	0 0,015	0,005			P = 6000 kg: erster Waşserfleck
				345										10000 12000			$1,94 \\ 2,59$	0,22 0,35	1,72 2,24	$1,43 \\ 1,82$	0,11 1,35 0,14 1,68	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,420 0,8	$ 535 0,565 \\ 690 0,735 $	5 0,540 0,4 5 0,705 0,5	435 0,280 565 0,365	$ \begin{array}{c ccccc} 0,010 & 0,0\\ 0,025 & 0,0\\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,035			P = 12000 kg; erster Riß, außerhalb der Meßstrecke
1		AL												13000			2,99	0.58	2.88	2,02	0.17 2.07	7 0.445	0.705 0.4	890 0.945	5 0.895 0.7	715 0.460	0.040 0.0	70 0.100	0.105 0.10	5 0.080	0.050			P = 13000 kg: Riß innerhalb der Meßstrecke
			-						1-t-					16000			4,40	0,79	3,61	2,66	0,19 2,47	7 0,565	0,900 1,:	125 1,193	5 1,130 0,5 5 1,435 1,5	905 0,575	0,065 0,1	05 0,140	0,145 0,14	0 0,110	0,065			
B. T. T										1 LARCH				21000	0 0		6,62	1,11	5,51	3,70	0,28 3,45	2 0,900	1,455 1,8	1,498 840 1,925	5 1,455 1,155 1,155 1,155 1,455 1,	485 0,920	0,110 0,1	90 0,250	0,260 - 0,25	0 0,195	0,115			
														24000	$\begin{array}{c cccc} 0,010 & 0,015 \\ 0,010 & 0,015 \end{array}$	nach 10 min * 15 *	7,94	1,25	6,69	4,33	0,29 4,04	4 1,105	1,785 2,5	250 2,355	5 2,270 1,8	815 1,115	0,125 0,2	20 0,290	0,305 0,29	5 0,230	0,140 78,	un 0 150	ter $P_g = 24000$ kg: $00 \mid 13,9 \mid 28,1 \mid 11,9$	P = 24000 kg: Längsriß auf der untern Balkenfläche
													-	27000	0,035 0,060 0,035 0,060	» 10 » » 15 »	9,45	1.39	8.06	4,98	0.31 4.63	7 1,305	2.130 2.1		5 2.740 2.1	180 1.330	0.160 0.2	75 0.860	0.380 0.36	5 0.285	0.170			
		1				1.1.1								30000	0,105 0,165	» 10 »	-	-	-	-		-								-	-			
	- 12														0,115 $0,175$ $0,175$ $0,175$	» 20 » » 25 »	11,01	1,54	9,47	5,74	0,36 5,38	8 1,575	2,575 3,5	290 3,435	5 3,320 2,0	625 1,600	0,215 0,3	870 0,490	0,500 0,50	0 0,395	0,240		-	
											1		1 2 4	33000 (Pmax)	$\begin{array}{c cccc} 0,480 & 0,635 \\ 0,625 & 0,795 \end{array}$	» 10 » » 20 »		-	-	-		=								-	-			
															0,900 $0,9751,280$ 1.265	» 30 » » 40 »		-	_	6.68		-		- <u> </u>	5			-		-	-			
															2,400 1,640	» 45 »	_	-	-	-		-		- 0,230			- -			+	-			
															Nach 46 Min Die Messung	am Schluß	ie Wage de	r Prüfungs	smaschine	nicht mehr zu	n Einspielen g	ebracht w	erden. Die	Belastung s	sinkt dauernd.									
															3,790 1,755	un sentus (-	- l	- 1	1 - 1	- -	1 -	1 - 1-	- 1 -	1 - 1 -	- 1 - 1	- -	- 1 - 1	- -	1 - 1	- 107	unt 7,2 20	er $P_{\text{max}} = 33000 \text{ kg}$: 62 19,1 (38,5) (16.3)	Abbildung der Unterfläche: Fig. 264 Abbildung einer Seitenfläche: Fig. 265
Durchse	nitt :	21 -	-	-		-		-		18,64	9,97	33,17 49,	1 2,30	_		-	_	-				-		_ _			- -	- -	_ _		-		unter P_g :	
																															79	,6 15	34 14,2 28,7 12,2 unter P_{\max} :	
	1					1	5 5 4		1				1									. 1									107	7,6 20	73 19,2 (38,8) (16,4	
	1) IInton	don Annah		n allon film	e Elaon dia	glaiche Z	nganannung	vorhanden	ist (monor)	unton VIII	7	E-01																						

ng unter XXX), gilt τ_1 für das mittlere Eisen.

Zusammenstellung 45. Balken mit Bauart nach Fig. 227. Alter: rund 7 Monate.

11	2	3 4	5 6	7 8	9	1 10 11	12	13	14 15	16	17		19 20	21	22 2	13	24 25	26	27 28	29	30	31 3:	2 33	34 35	36 3	37 38	39	40 41	42 4	3 44	45	46 4'	7 4	18 1	. 49
	i	Abm	essungen des	Balkens			Abme	essungen de	er Eiseneinla	agen		Gewicht		Aender	ungen	Ver	längerunge	n	Zusamme	ndrückuns	ren					intra la					Spannung	gen, hereel	hnet nach de	n Glei-	
mg					Gewicht				1	1		der Eisen- Ra	um- lastung	der Str (vergl. F.	recken lig. 227)	auf der u	interen Balke	nfläche	auf der obe	eren Balken	fläche		1	Dure	hbieg	ungen	(vergl, Fig	. 243)			chung	gen unter	XLIV, Seite	118	
I chuu	rüfungs-	Alter Breite	Höh	e Lanc	des Balkens		Durchmes	sser	Quer-	- Um	nfang	einlagen gew	vicht P	-		V	erlängerange	n in $1/_{200}$ cm	Mag Zusam	nmendrückun	gen in	mosam	ata Durabhiagur	gon an don M	asstallon		bleibende D	rebbierunge	n an don Mag	atallan				Non in	Bemerkungen
ezel	tag	b 1	h	h, Laug	G	d. do	da	di	de fe	tt der gerade Einlage	en der fünf Ein-	Bügel Be	tons $P = 0$ kg	x x	y Meßlä	inge l	auf die Me	Blänge l	länge 1/200 en	n auf die Mei	Blänge l	gesam	ite Durenbiegui	igen an den m			Dierbende Di	in chibitog ungen	n an den meb	sterren	σο	σ. τ.	0 am mittl	T1	Demeratingen
B				~1					-3 / /6	Stab 1	lagen	Ge				ge	samte bleibe	nde federnde	l gesamt	e bleibende	federnde	a b	b c	d e	ſ	g a	Ь	c d	e	r g			-	leren Stat	
		Tage cm c	m em	em em	kg	em em	ı em	em	em qem	em	em	kg	kg	mm	mm er	n			em		1	mm mr	m mm n	mm mm	mm m	nm mm	mm	mm mm	mm m	m mm	kg/qem kg	g/qem kg/q	lem kg/qem	kg/qem	
82 1	6. 3. 07	229 45,1 20	,2 51,3	10,8 316,2	985,6	3,19 1,79	9 1,78	1,90 1	1,79 18,36	6 10,02	32,82	56,7 2	29 2000		60	,0	0,29 0	0,29	59,7 0,23	0	0,23 0,	,040 0,00	65 0,080 0,	,090 0,080	0,065 0,0	045 0	0	0 0	0 0	0	1323		bei Ann	ahme der	Dauer des Versuches: 7 ¹ /4 Stunden
				the state									4000				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 0,57 5 0,90	0,45	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	085 0,14 ,140 0,21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,185 0,175 ,295 0,275	0,135 0,0 0,100	090 0 145 0	0	0 0,005					Uebertra Zugkra	gung der ft durch	P = 6000 kg. erster Wasserfleck
Sec.													8000				1,35 0,0	8 1,27	1,02	0,04	0,98 0,	,195 0,30	05 0,385 0,	410 0,385	0,315 0,5	205 0,00	5 0,005 0	,010 0,010	0,005 0,0	05 0			das	die fünf	
													11000				2,17 -	9 1,69	1,38	0,06	- 0,	- 0,43					-						Eisen	Elsen ')	P = 11000 kg: erste Risse, außerhalb der Meßstrecke
								12.2					12000				2,56 0,3	9 2,17 0 3.09	1,74	0,09	1,65 0, 2.05 0	,350 0,5	55 0,695 0 50 0.940 1	,740 0,700	0,565 0,1	365 0,03 485 0.05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,060 0,065 0,100 0,115	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	040 0,025 0.050			allein		P = 13000 kg: Risse innerhalb der Meßstrecke
				2012						1			16000				4,87 0,8	6 4,01	2,59	0,16	2,43 0,	,605 0,91	55 1,190 1	,265 1,190	0,955 0,0	610 0,07	0 0,110 0	,135 0,150	0,130 0,1	00 0,065				Res and	
							10.82						18000 21000				5,81 0,9	$ \begin{array}{cccc} 7 & 4,84 \\ 4 & 6.10 \end{array} $	2,99 3,60	0,16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,715 1,14 ,900 1,44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,510 1,420 ,900 1,795	1,145 0,1 1,445 0,1	725 0,08 915 0,09	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,160 0,175 0,175 0,210	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
							a diana						24000	0			8,63 1,2	1 7,42	4,23	0,20	4,03 1,	,095 1,7	60 2,200 2	,315 2,190	1,765 1,3	115 0,11	5 0,190 0),240 0,255	5 0,225 0,3	185 0,115					D. 070001
1 -					1.50								30000	0,020	0,040 nach 1	0 min		5 8,67	4,92	0,21	4,71 1,	- 2,10					5 0,220 0					unter $P_{y} =$	= 30000 kg:		P = 27000 kg : Langsrisse auf der unteren Balkenfläche
					1								33000	0,020	0,040 > 1 0.105 > 1	5 »	11,37 1,4	0 9,97	5,67	0,24	5,43 1,	,530 2,4	3,080 3	,245 3,100	2,520 1,	585 0,17	0 0,270	0,340 0,360	0 0,340 0,	280 0,175	97,7	1913 17	7,4 35,1	15,8	
								1					00000	0,055	0,110 » 1	5 »		-	-	-	-				-					- ' -					
													36000	0,055 0,270	$\begin{array}{c cccc} 0,110 & \gg & 2 \\ 0,260 & \gg & 1 \end{array}$	0 »	12,79 1,5	6 11,23	6,51	0,31	6,20 1,	,775 2,8	-365 3,590 3	,775 3,615	2,945 1,		0 0,340	0,425 0,450	0 0,430 0,10	355 0,230					
														0,305	0,280 > 2	0 >		- 10 50		-	7 02 2		4		9 5 9 5 9		5 0 500								
													39000	0,695	0,935 × 1	0 »		4 12,00	-	-	- 2,						-								
													(Pmax)	0,765 0,825	1,220 > 2 1.445 > 3	0 »	= =			-	-						=								
			A Second						1					0,870	1,705 > 4	0 >			-	-	-	- 17-			-		-					nton D	- 20000 100	1	Abbildung der Unterfläche: Fig. 267
										1.				0,900	$2,005 \times 6$	0 »	15,88 2,0	5 13,83	8,63	0,75	7,88 3.	,305 -5,3	345 6,635 7	,070 7,080	6,075 3,	,800 1,26	1,955	2,875 2,610	0 2,780 2,	675 1,740	127,0	2487 2:	= 35000 kg; 2,6 (45,6)	(19,8)	Abbildung einer Seitenfläche: Fig. 268
1								12.	and the second					Nach	60 Minuten	wird der	Balken auf	P=0 kg en	ntlastet und da	nn mit $P =$	39000 kg v	wiederholt	belastet. Nac	hdem diese wi	iederholte B	Belastung 1	rund 6 Minute	en gewirkt h	nat, sinkt die	Wage der					
								5-19 19			1 3 3 4			Pru	rungsmaschine	e, auch b	el fortgesetzt	em Durchbie	egen des Balken	18.	1	1	1				1		1		1 1 1 1 1				
83 18	. 3. 07 2	21 $45,4$ 20,	1 51,1 1	10,1 316,1	982,6	3,18 1,80	1,79	1,79 1.	,79 18,04	9,99	32,50	56,8 2,	32 2000		60	,0	0,28 0,0	1 0,27	59,8 0,23	0	0,23 0,	,045 0,0	065 0,085 0	,090 0,085	0,060 0,	,040 0	0	0 0	0	0 0					Dauer des Versuches: 7 Stunden
				1								13.774	6000	1000			1,02 0,0	6 0,96	0,40	0	0,75 0,	,135 0,2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,290 0,270	0,205 0,	,145 0	0	0 0	0	0 0					P = 6000 kg: erste Wasserflecke
			1000										8000				$1,44 0,1 \\2,04 0.2$	$ \begin{array}{cccc} 0 & 1,34 \\ 4 & 1.80 \end{array} $	1,03	0	1,03 0, 0, 1.37 0.	,195 0,3 .260 0.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,395 0,370 0,550 0,510	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,200 0 ,265 0.00	0 0.015	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 010 0.010					
													12000				2,87 0,4	4 2,43.	1,74	0,04	1,70 0,	,355 0,5	545 0,685 0	,735 0,690.	0,550 0,	,365 0,05	20 0,035	0,050 0,050	0 0,045 0,	035 0,025					
													14000				3,42 - 3,96 - 0,6	9 3,27	2,02 2,23	0,10	2,13 0,	,465 0,7	730 0,915 0	0,975 0,920	0,725 0,	,480 ,0,04	15 0,075	0,100 0,100	0 0,085 0,	060 0,045			·	A STAN	P = 13000 kg: erste Risse, innerhalb und außerhalb der Meßstrecke
							The start						16000				5,06 0,8	9 4,17	2,65	0,12	2,53 0,	,585 0,9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,215 1,145	0,910 0,	,585 0,06	30 0,095 35 0,110	0,125 $0,1230,145$ $0,153$	5 0,120 0,0	090 0,055					
					1					1.			21000				7,72 1,2	0 6,52	3,66	0,12	3,54 0,	,895 1,4	1,000 1,000 1	,855 1,755	1,395 0,	,885 0,01	05 0,150	0,190 0,19	5 0,180 0.	140 0,085					
					-								24000 27000	0	0		9,24 1,3 10.87 1.4	1 7,93 6 9,41	4,29	0,13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,100 1,7 ,315 2.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,280 $2,1652,725$ $2,595$	1,735 1, 2,095 1,	,100 0,11 ,305 0,15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					P = 27000 kg: Längsrisse auf der unteren Balkenfläche
													30000	0,010	0,020 nach 1	0 min		-	-	-	-				-		-		- 0.220 0		100 8	unter P_g	= 30000 kg	1 15 4	
	5.0				1.20								33000	0,010	0,020 » 1 0,060 » 1	0 > 1		0 11,02	5,78	0,22	0,06 I.		- $ -$		2,480 1,		- 0,215		-	- 0,100	100,0	1010 1	55,0	1.0,4	
2													36000	0,025	0,060 > 1 0.135 > 1	5 » 1 0. »	14,53 1,8	5 12,68	6,61	0,30	6,31 1.	,810 2,8	860 3,570 9	3,765 3,600	2,895 1,	,805 0,21	10 0,340	0,415 0,43	5 0,415 0	,335 0,210)				
														0,055	0,140 » 1.	5 »		-	-	-	-				-		-		0						
			1.0							Call & La Y			39000	0,055 0,115	0,140 > 2 0,280 > 1		- $ -$	4 14,37	7,69	0,52	7,17 2.	- 3,3	-4,1854	-4,230	3,405 - 2,	,115 0,2		- 0,59	- 0,580 0	- 0,29				The second	
									1					0,120	$0,300 \gg 1$ $0,300 \gg 20$	5 » 0 »		3 16.91	- 8.87	0.74	8.13 9	485 3.9	980 4.930 5	5.195 4.995	4.015 2	485 0.3	0.635	0.800 0.84	5 0,825 0	.675 0.430	0				Abbildung der Unterfläche: Fig. 267
				1						-			42000	Nach 1	rund 3 Minuter	n erweite	rt sich ein R	iß (3. Riß vo	on rechts in Fig	g 268); glei	chzeitig erfo	olgt über	diesem Riß die	Zerstörung de	s Betons au	af der Druc	kseite.	1000 1 0100							Abbildung einer Seitenfläche: Fig. 268
									1				(Pmax)	Die Ab	plesung am So	chluß des	Versuches 1	lefert:											1 1		141 - 1	unter Pma	x = 42000 kg	5: (21.2)	
														0,225	0,860 -			-						-		-					141,1	2720	24,4 (49,1)	(21,6)	
84 20.	3.07 22	3 45,1 20,1	51,2 1	0,6 316,1	985,3	3,18 1,89	1,89	1,79 1,	79 18,60	9,99	33,11	57,2 2,3	31 2000 4000	3-5-5	60,	,0	0,29 0	0,29	59,9 0,23	0	0,23 0,	,040 0,0	070 0,080 (140 0,170 (0,095 0,080	0,065 0,	,040 0	0	0 0 0	0	0 0	- and -	1		a date of	Dauer des Versuches: 71/2 Stunden
											1000		6000				0,93 0,0	1 0,92	0,46	0	0,73 0.	,140 0,2	220 0,275 0	0,295 0,275	0,215 0	140 0	0	0,005 0,00	0.005	0 0					
1													8000			and the	1,30 0,0 1,74 0,1	7 1,23 5 1,59	1,02	0,02	1,00 0 1,30 0	,190 0,3 ,255 0,4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,415 0,385 0,550 0,520	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,195 0,0 ,265 0,0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,010 0,01 0,030 0,03	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,005 0,01	0				P = 8000 kg: erste Wasserflecke
											192.53		11000				2,05 -	-	1,53	-	-				- 0.500 0			0.065 0.08	- 0.070 0	050 0.03	0				P = 11000 kg: erster Riß, außerhalb der Meßstrecke
						Ser Lange							14000				2,67 0,4 3,94 0,7	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	2,21	0,07	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,370 0,5 0,500 0,7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,060 $1,005$	0,800 0	0,510 0,0	55 0,095	0,110 0,13	35 0,115 0	,090 0,05	0				P = 13000 kg: Risse innerhalb der Meßstrecke
													16000				4,95 0,9	3 4,02 4 4.81	2,60	0,11	2,49 0	0,615 0,9	975 1,230 1 165 1,460 1	1,305 $1,2351,555$ 1.470	0,985 0	,620 0,0 ,745 0.0	65 0,110 80 0,130	0,145 0,16 0,16 0,165 0,18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,115 0,07 ,130 0.08	5				
													21000				7,15 1,1	6 5,99	3,53	0,11	3,42 0	,915 1,4	455 1,830 1	1,945 1,850	1,480 0.	,935 0,0	95 0,165	0,215 0,23	35 0,220 0	,175 0,10	5	1. Alert	1.7. 1.6		
													24000 27000	0	0		8,39 1,2 9,66 1,3	6 7,13 6 8,30	4,15	0,13 0,16	4,02 1 4,68 1	,130 1,8 ,325 2,1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,380 2,265 2,805 2,670	1,810 1 2,140 1	,135 0,1 ,345 0,1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,280 0,28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,245 0,12	5				P = 27000 kg: Längsrisse auf der unteren Balkenfläche
													30000	0,010	0,025 nach 10	0 min		-	-	-	-				2 405 1		70 0.995	0.360 0.29	85 0.860 0		5 07 5	unter P	g = 30000 kg		
											1.5		33000	0,010	0,025 » 1: 0,075 » 10	0 .		9,45	5,59	0,22	- 1								-		51,5	1879	11,4 00,0	14,9	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF
													36000	0,035	0,075 » 1: 0,165 » 1(5 » 1	2,25 1,6	1 10,64	6,44	0,32	6,12 1	,785 2,8	865 3,585	3,775 3,600	2,880 1	,795 0,2	10 0,355	0,440 0,46	60 0,435. 0	- 0,22	0				
									1				00000	0,100	0,165 » 1	5 . * 1	3,70 1,8	2 11,88	7,26	0,41	6,85 2	2,050 3,2	295 4,125 4	4,340 4,150	3,330 2	2,075 0,2	70 0,445	0,570 0,59	95 0,560 0	,460 0,29	5				
													39000	0,175	$0,380 \gg 10$ $0,405 \gg 20$	0 x () x ()		T	-	1	-				-		_		_						
		148.163						1200						0,185	0,405 » 25	5 » 1	5,44 2,2	13,24	8,36	0,67	7,69 2	2,395 3,8	860 4,845	5,105 4,925	3,980 2	2,475 0,4	05 0,665	0,825 0,89	95 0,880 (0,750 0,47	5				
									1 72-1				42000 (Pmax)	0,325	3,065 × 10 3,865 × 15	0 » 5 »			=	-	-						_	2	I I			unter Pm	$hax = 42000 \ k$	g:	
			12270								1 1 6			0,340	5,505 × 20	0 » 1	7,32 -	-	9,50	-	-	- -	- -		1 - 1				- -	- -	136,5	2626	24,3 (48,9)) (20,9)	Abbildung der Unterfläche: Fig. 267
1								1		1			1	Der dr	itte Riß von	rechts in	Fig. 268 ha	it sich allmä	ihlich bedeutend	l erweitert.	Nach 21 M	Minuten si	inkt die Belast	ung. auch bei	fortgesetzt	em Durchh	biegen des Ba	likens.	1			untor I			Abbildung einer Seitenfläche: Fig. 268
Durchsel	nitt 224				-		-		18,33	10,00	32,81	56,9 2,3	1 -	-				-		-	-				-		-		-		98,7	1910	17,4 35 ,	0 15,2	
																															134.9	2611 un	23.8 (47.9	9) (20.9)	
-									A DAY IN									1 2 2 1 2					1								,,.		2010 1 (21).	(20,8)	

¹) Unter der Annahme, daß in allen fünf Eisen die gleiche Zugspannung vorhanden ist (vergl. unter XLIV, sowie die Fußbemerkung unter XXX), gilt 71 für das mittlere Eisen.

Zusammenstellung 46. Balken mit Bauart nach Fig. 228. Alter: rund 7 Monate.

1	2	8	4 5	6	7 8	9	10	11 12	13	14 15	16	17	18 19	20	21	22 23	24	25	6 27	28	29 3	30 31	32	83 34	35 36	87	38 3	9 40	41 42	43 44	45 4	6 47	48	1	49
ng		-	Abmessu	ngen des I	Balkens	Gewich	t	Abi	nessungen d	ler Eisenein	lagen		der Eisen- Raur	Be- n- lastunger	der Stree (vergl. Fig	ken (228) aut	Verlänger der unteren 1	ingen Balkenfläche	Z . auf	der oberen	rückunger Balkenfläc	he			Durchbi	legung	g e n (verg	gl. Fig. 243)			Spannung ehunge	n unter XLI	nach den Glei- V, Seite 118		
efchnt	rüfungs- tag	Alter	Breite	Höne	Läng	nge Balken G	8	Duream	esser	Quer schni	itt der gerade	ang en der fünf	einlagen gewic einschl. des	Anfangslas	t	2/ Meßläns	verlänger auf d	ungen in ¹ /20 e Meŝlänge	em Meß-	Zusammen 1/200 cm au	ndrückungen if die Meßlär	in nge l	gesamte Du	rchbiegungen	an den Meßstel	len	bleibe	ende Durchbie	gungen an den	Meßstellen	<i>a</i> .		τ1		Bemerkungen
Bez		Taga		ħ	h1 D	n ko	d ₁	d ₂ d ₃	d4 em	ds fe	Einlage (Stab 1)	Ein- lagen	Ge kg	$P \equiv 0 \text{ kg}$	mm	am cm	gesamte 1	leibende fed	rnde cm	gesamte bl	eibende fed	ernde a mm	b mm	c d mm mm	e f mm mm	g	a la	b c	d e mm mm	f g	kg/aem kg/	aem kg/aem	am mittleren St	tab	
85	23.3.07	221 4:	5,4 20,2	51,1 1	0,4 316,1	,1 983,6	3,18 1	1,79 1,78	1,90	1,79 18,31	1 9,99	32,79	57,8 2,81	1 2000 4000 6000 8000 10000		60,0	0,27 0,58 0,95 1,34 1,91	$\begin{array}{c cccc} 0 & 0 \\ 0 & 0 \\ 0,02 & 0 \\ 0,08 & 1 \\ 0,20 & 1 \end{array}$	27 60,0 58 93 26 71	0,26 0,55 0,83 1,14 1,48	0,01 0, 0,03 0, 0,06 0, 0,07 1, 0,09 1,	25 0,050 52 0,100 77 0,145 07 0,205 39 0,270	0,070 0 0,155 0 0,235 0 0 320 0 0,430 0	,090 0.C95 ,185 0,190 ,290 0,300 ,400 0,420 ,535 0,565	0,085 0,070 0,180 0,150 0,285 0,222 0.395 0,310 0,545 0,430	0 0,050 0 0,100 5 0,150 0 0,210 0 0,285	0 0 0 0 0 0,00 0,005 0,0 0,010 0,0	$\begin{array}{c ccccc} 0 & 0 \\ 0 & 0 \\ 005 & 0,005 \\ 015 & 0,015 \\ 030 & 0,040 \end{array}$	0 0 0 0 0,005 0,005 0,015 0,015 0,040 0,040	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		dem x8/dem	bei Annahme d Uebertragung d Zugkraft durc das die fü mittlere Eisen	$\begin{array}{c c} \text{ler} & \text{Dat} \\ \text{der} & \\ \text{ch} & P = \\ \tilde{anf} \\ n^{-1} \end{array}$	uer des Versuches; 7 ¹ / ₂ Stunden = 7000 kg: erste Wasserflecke
														$\begin{array}{c} 11000\\ 12000\\ 14000\\ 16000\\ 18000\\ 21000\\ 24000\\ \end{array}$			$2,30 \\ 2,95 \\ 4,31 \\ 5,42 \\ 6,53 \\ 7,96 \\ 9,35$	$\begin{array}{c c} - \\ 0,53 & 2 \\ 0,79 & 3 \\ 0,99 & 4 \\ 1,13 & 5 \\ 1,25 & 6 \\ 1,36 & 7 \end{array}$		-1,70 1,95 2,38 2,80 3,17 3,78 4,45	0,10 1, 0,11 2, 0,11 2, 0,09 3, 0,09 3, 0,08 4,	$\begin{array}{c cccc} & - & - & - \\ 85 & 0,385 \\ 27 & 0,525 \\ 69 & 0,655 \\ 08 & 0,780 \\ 69 & 0,965 \\ 37 & 1,160 \end{array}$	$\begin{array}{c cccc} - & & \\ 0.620 & 0 \\ 0.830 & 1 \\ 1.025 & 1 \\ 1.235 & 1 \\ 1.550 & 1 \\ 1.860 & 2 \end{array}$	$\begin{array}{c cccc} - & - \\ ,775 & 0,815 \\ ,050 & 1,095 \\ ,290 & 1,350 \\ ,545 & 1,625 \\ ,930 & 2,020 \\ ,330 & 2,420 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & - \\ 5 & 0,405 \\ 5 & 0,530 \\ 0 & 0,665 \\ 5 & 0,785 \\ 5 & 0,970 \\ 5 & 1,175 \end{array}$	$\begin{array}{c c} - & - \\ 0,040 & 0,0 \\ 0,060 & 0,0 \\ 0,070 & 0,1 \\ 0,075 & 0,1 \\ 0,085 & 0,1 \\ 0,095 & 0,1 \end{array}$	$\begin{array}{c c} - & - \\ 0.65 & 0,080 \\ 0.95 & 0,130 \\ 1.15 & 0,155 \\ 1.35 & 0,180 \\ 1.60 & 0.215 \\ 1.85 & 0,240 \end{array}$	$\begin{array}{c c} - & - \\ 0,085 & 0,085 \\ 0,135 & 0,130 \\ 0,155 & 0,150 \\ 0,180 & 0,180 \\ 0,210 & 0,210 \\ 0,235 & 0,240 \end{array}$	$\begin{array}{c ccccc} - & - & - \\ \hline & 0,065 & 0,045 \\ 0 & 0,110 & 0,065 \\ 0 & 0,120 & 0,085 \\ 0 & 0,150 & 0,090 \\ 0 & 0,180 & 0,115 \\ 0 & 0,185 & 0,135 \end{array}$			Eisen allein	P =	= 12000 kg: erste Risse, innerhalb und außerhalb der Meßstrecke
			-											$\begin{array}{c} 27000\\ 30000\\ 33000\\ 36000\\ 39000\\ 42000\\ 45000 \end{array}$	Unter di	Polastana	10,68 12,11 13,57 14,97 16,40 18,01	$\begin{array}{cccccccc} 1,41 & 9\\ 1,55 & 10\\ 1,68 & 11\\ 1,81 & 13\\ 1,97 & 14\\ 2,20 & 15\\ m & mittlener \end{array}$	27 56 89 16 43 81	5,17 5,96 6,76 7,60 8,53 9,64	0,07 5, 0,08 5, 0,08 6, 0,07 7, 0,07 8, 0,06 9,	$\begin{array}{c ccccc} 10 & 1,370 \\ 88 & 1,630 \\ 68 & 1,870 \\ 53 & 2,110 \\ 46 & 2,350 \\ 58 & 2,700 \\ tor \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} 2,740 & 2,190 \\ 3,240 & 2,603 \\ 3,755 & 3,010 \\ 4,270 & 3,415 \\ 4,810 & 3,844 \\ 5,540 & 4,415 \end{array}$	$\begin{array}{ccccccc} 0 & 1,385 \\ 5 & 1,645 \\ 0 & 1,875 \\ 5 & 2,115 \\ 5 & 2,360 \\ 5 & 2,695 \end{array}$	$\begin{array}{cccc} 0,100 & 0,2\\ 0,130 & 0,2\\ 0,150 & 0,3\\ 0,165 & 0,3\\ 0,205 & 0,4\\ 0,310 & 0,5 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 0,270 & 0,275 \\ 0,340 & 0,345 \\ 0,405 & 0,415 \\ 0,465 & 0,480 \\ 0,555 & 0,580 \\ 0,770 & 0,800 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5			P =	= 27000 kg: Längsriß auf der untern Balkenfläche
														45000	Nach 15	Minuten ergal	en die Ablesu	ngen:	Tene des	13.06		- -	1 - 1	- 1 -	1 - 1 -	1 - 1	- -	- 1 - 1	- -	1 - 1 -				At	= 45000 kg: Kisse auf einer Stirnnache
															Nach 30 wird die die Zerst	Minuten ist d Last auf P= örung des Bet	e Bewegung a 46500 kg gest ons so weit e	nnähernd zur eigert. Der folgt, daß d	n Stillstand Riß im mi e Belastun	gekommen () ittleren Balke g sinkt, trotz	Rißbreite ru enteil wird ; z raschen N	nd 1 ¹ / ₂ mm) jetzt bedeute achspannens	, der Balken end breiter u . (Rißbreite	wird auf $P =$ and länger. A rund 5 mm).	0 kg entlastet. Auf der gedrücl , Die Eisenein	Dann folgt kten Seite d lagen zeiger	erneute Bela des Balkens en losen Zune	astung mit P : entstehen Ri der,	= 45000 kg. N sse. Nach rund	Nach 15 Minuten 1 10 Minuten ist	156,9 U 156,9 3	nter $P_{\text{max}} = 27,4$	46500 kg (55,4) (24,	,0)	bbildung einer Seitenfläche: Fig. 270 bbildung der Stirnflächen: Fig. 271 und 272
86 21	. 3. 07	218 45,	3 20,0	51,8 10	,4 316,2	978,3	3,19 1,1	79, 1,80	1,90 1	,79 18,41	10,02	32,88	57,4 2,30	2000 4000 6000		59,8	0,28 0,58 0.93	$ \begin{array}{cccc} 0 & 0, \\ 0 & 0, \\ 0 & 0 \end{array} $	28 59,9 58	0,23	$ \begin{array}{cccc} 0 & 0, \\ 0 & 0, \\ 0 & 0 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} 0,070 & 0, \\ 0,140 & 0, \\ 0,220 & 0 \end{array}$	085 0,095 180 0,190 280 0,300	$\begin{array}{c cccc} 0,085 & 0,070 \\ 0,170 & 0,145 \\ 0,280 & 0,225 \end{array}$	0,045 0,095 0,145		0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0				Da	auer des Versuches: 8 ¹ /4 Stunden
														8000 10000 11000			1,33 1,85 2.08	0,05 1, 0,16 1,	28	1,05 1,39	0 1, 0,01 1,	05 0,195 38 0,260	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,385 0,410 ,510 0,545	0,385 0,320 0,510 0,415	0,205 0,265	0,005 0,0 0,010 0,0	005 0,005 015 0,020	0,005 0,005 0,020 0,020	5 0 0 0,010 0,001	5			P	= 8000 kg: erste Wasserflecke
														$ \begin{array}{c} 11000\\ 12000\\ 14000\\ 16000\\ 1000 \end{array} $			2,03 2,47 3,48 4,57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 95 84	1,55 1,76 2,15 2,53	$\begin{array}{cccc} 0,03 & 1, \\ 0,09 & 2, \\ 0,10 & 2, \end{array}$	$\begin{array}{cccc} 73 & 0,355 \\ 06 & 0,465 \\ 43 & 0,580 \end{array}$	$\begin{array}{cccc} 0,555 & 0 \\ 0,730 & 0 \\ 0,920 & 1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0,700 & 0,565 \\ 0,915 & 0,735 \\ 1,150 & 0,920 \\ 1,105 & 1,105 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0,020 & 0,0 \\ 0,045 & 0,0 \\ 0,060 & 0,0 \\ 0,055 & 0 \end{array}$	$\begin{array}{cccc} 0.40 & 0,050 \\ 0.65 & 0,085 \\ 0.85 & 0,125 \\ 0.150 \end{array}$	0,055 0,050 0,085 0,085 0,125 0,115	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5			P	= 12000 kg: erste Risse, innerhalb und außerhalb der Meßstrecke
						1								$ \begin{array}{r} 18000\\ 21000\\ 24000\\ 27000\\ 30000\\ 33000\\ \end{array} $	0 0) 15 nach 10 n	$ \begin{array}{c} 5,48\\ 6,90\\ 8,37\\ 9,86\\ 11,28\\ \text{in} - \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 96 30 39 90	2,98 3,60 4,24 4,92 5,66 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,135 \\ 1,480 \\ 1,730 \\ 2,050 \\ 2,410 \\ - \end{array}$	$\begin{array}{ccccccc} ,410 & 1,485 \\ ,775 & 1,875 \\ ,150 & 2,260 \\ ,550 & 2,685 \\ ,995 & 3,140 \\ \hline & & - \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0,715 5 0,895 5 1,085 5 1,280 0 1,495 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Unter $P_g = :$	3000 kg	Р	$r=27000~{ m kg}$: Längsrisse auf der unteren Balkenfläche
														36000 39000 42000 45000 46500		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>> 12,80 >> - >> 16,13 >> - >> 18,01 >> - >> 21,47 >> - >> -	1,41 11, 	39 38 37 32 55	$ \begin{array}{c} 6,50 \\ - \\ 7,44 \\ - \\ 8,52 \\ - \\ 9,71 \\ - \\ 11,33 \\ - \\ 17,43 \end{array} $	0,35 6, 0,45 6, 0,67 7, 0,97 8, 1,67 9,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5 1,740 \\ - \\ 0 1,975 \\ - \\ 0 2,230 \\ - \\ 5 2,505 \\ - \\ 5 2,925 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0,190 0,8 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 108,5 2 5 5 5 5	089 19,2	38,3 16	,7 	P = 45000 kg: Risse auf den beiden Stirnflächen Zeichnerische Darstellungen der Dehnungen, Durch- biegungen, sowie der Aenderungen von x und y : Fig.
														(P _{max})	0,240 0,3 0,265 0,3 Mehrere mit dem	50 × 6 50 × 6 60 × 12 Risse werden Balken verlie	» – » – pedeutend brei t und abbrich	ter und läng	er. Auf de	21,94 r Druckseite . Die Eisen	entstehen n einlagen zei	ach 6 Minu gen losen Z	ten Risse. N		ten ist die Zerst	törung so v	weit erfolgt,	— — — — — — , daß ein Tei	l der Platte de	en Zusammenhang	157,8 3	$\begin{array}{c c} \text{Onter } P_{\max} = \\ 039 & 28,0 \\ \end{array}$	48000 kg (55,9) (2-	4,2) I A A A	Lage der Nullinie mit steigender Belastung: Fig. 278 Abbildung der Unterfläche: Fig. 269 Abbildung einer Seitenfläche: Fig. 270 Abbildung der Stirnflächen: Fig. 271 und 272
90 25.3	3.07 21	4 45,3	20,3 53	1,2 10,3	316,0	981,1	3,18 1,80	1,80	1,90 1,9	00 18,70	9,99	33,23	58,2 2,29	2000 4000		60,2	0,32	$ \begin{array}{ccccccc} 0,01 & 0, \\ 0,01 & 0, \\ 0,02 & 0 \end{array} $	1 59,9 9	0,26 0,54	0,01 0, 0,02 0,	25 0,040 52 0,090	0,065 0 0,145 0	,080 0,095 ,170 0,195	0,080 0,06 0,175 0,14	5 0,040 0 0,095	0	0 0 0 0	0 0 0,005 0					I	Dauer des Versuches: 7 Stunden
														6000 8000 10000			0,95 1,36 1,94	$\begin{array}{ccccccc} 0,08 & 0,0$	7 2 8	0,82 1,17 1,52	$\begin{array}{c cccc} 0,04 & 0, \\ 0,12 & 1, \\ 0,17 & 1. \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 0,235 & 0 \\ 0,325 & 0 \\ 0,430 & 0 \end{array}$	$\begin{array}{cccccccc} ,275 & 0,310 \\ ,395 & 0,430 \\ ,530 & 0,580 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 5 & 0,155 \\ 5 & 0,220 \\ 0 & 0,290 \end{array}$	$\begin{array}{cccc} 0,005 & 0, \\ 0,010 & 0, \\ 0,015 & 0, \end{array}$	$\begin{array}{c cccc} 0,010 & 0,010 \\ 0,020 & 0,020 \\ 0,025 & 0,040 \end{array}$	$\begin{array}{c ccccc} 0,015 & 0,01 \\ 0,025 & 0,02 \\ 0,045 & 0,04 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05			1	P = 7000 kg: erster Wasserfleck
														$ \begin{array}{r} 11000\\ 12000\\ 14000\\ 16000\\ 18000\\ 21000\\ 24000\\ \end{array} $			2,22 2,64 3,73 $\cdot 4,74$ 5,67 7,11 8,55	$\begin{array}{c ccccc} - & - & - & - & - & - & - & - & - & - $	1 / 0 9 1 9 9	$ 1,70 \\ 1,92 \\ 2,38 \\ 2,80 \\ 3,22 \\ 3,83 \\ 4,50 $	0,20 1, 0,26 2, 0,30 2, 0,34 2, 0,36 3,	$\begin{array}{c cccc} - & - & - & - \\ 72 & 0,375 \\ 12 & 0,495 \\ 50 & 0,615 \\ 88 & 0,780 \\ 47 & 0,925 \\ 11 & 1,15 \end{array}$	$\begin{array}{c c} - \\ 0,585 & 0 \\ 0,785 & 0 \\ 0,970 & 1 \\ 1,150 & 1 \\ 1,445 & 1 \\ 1,780 & 2 \end{array}$	- - ,725 0,770 ,960 1,025 ,190 1 270 ,420 1,510 ,775 1,880 180 2 300	$\begin{array}{c cccc} - & - & - \\ 0,730 & 0,58 \\ 0,970 & 0,77 \\ 1,195 & 0,95 \\ 1,420 & 1,13 \\ 1,775 & 1,42 \\ 2,170 & 1,74 \end{array}$	$\begin{array}{c c} & - \\ 5 & 0,380 \\ 0 & 0,495 \\ 5 & 0,615 \\ 5 & 0,730 \\ 0 & 0,910 \\ 0 & 1,110 \end{array}$	$\begin{array}{c c} - \\ 0,035 & 0, \\ 0,055 & 0, \\ 0,075 & 0, \\ 0,095 & 0, \\ 0,110 & 0, \\ 0,185 & 0 \end{array}$,065 0,075 ,100 0,120 ,130 0,150 ,155 0,175 ,185 0,210	$\begin{array}{c ccccc} & & & & & & \\ 0,080 & 0,03 \\ 0,135 & 0,12 \\ 0,170 & 0,14 \\ 0,200 & 0,13 \\ 0,235 & 0,23 \\ 0,280 & 0,08 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 40 60 80 90 15 85				P = 12000 kg: erster Riß, außerhalb der Meßstrecke P = 13000 kg: Riß innerhalb der Meßstrecke
		-												27000 30000 32000	0 0	5 mach 10m	8,55 9,99 11,46	1,50 8,4 1,58 9,1	9 8	4,50 5,19 5,97	$\begin{array}{c} 0,59 \\ 0.45 \\ 0,52 \\ \end{array} \begin{array}{c} 4, \\ 4, \\ 5, \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,180 2,300 ,595 2,720 ,030 3,180	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,110\\ 0 \\ 1,305\\ 0 \\ 1,510 \end{array}$	$\begin{array}{cccc} 0,125 & 0, \\ 0,145 & 0, \\ 0,175 & 0, \end{array}$,255 0,290 ,295 0,345	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 80				P = 27000 kg: Längsrisse auf der unteren Balkenfläche
														36000	0,025 0,05 0,05 0,045 0,045 0,04	$\begin{array}{c} 5 \\ 5 \\ 0 \\ \end{array} \\ \begin{array}{c} * \\ 15 \\ * \\ 10 \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} * \\ 10 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ $	12,94	1,72 11,5	2	6,81	0,64 6,	17 1,770	2,845 3	,490 3,660	3,470 2,79	0 1,755	0,205 0,	,345 0,405	0,430 0,4	05 0,320 0,2	10 109,3	$\begin{array}{c c} \text{Unter} & P_g = \\ 2062 & 19,0 \end{array}$	33000 kg 38,6 1	16,4	
														39 000 42000	$\begin{array}{c ccccc} 0,045 & 0,04 \\ 0,070 & 0,07 \\ 0,070 & 0,07 \\ 0,115 & 0,11 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,57	1,93 12,0 	4 7	7,76	0,78 6, ⁻ 1,11 7, ⁻	98 2,030 81 2,325	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 005 \\ - \\ 005 \\ - $	4,000 3,20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,255 0,	$\begin{array}{cccc} ,415 & 0,490 \\ - & - \\ ,535 & 0,650 \\ - & - \end{array}$	$\begin{array}{cccc} 0,520 & 0,4 \\ - & - \\ 0,685 & 0,6 \\ - & - \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 - 15				
														45000	0,115 0,11 Unter dies	0 × 15 » er Last erwei	20,21 ern sich meh	3,96 16,5 ere Risse.	5 Nach 1 Mir	10,28 nute ergab di	1,60 8, ie Ablesung	68 2,665	4,325 5	,350 5,630	5,360 3,25	5 2,615	0,440 0	,730 0,895	0,950 0,9	00 0,690 0,4	30	Unter P _{max} :	= 45000 kg		P = 45000 kg: Riß auf einer Stirnfläche
														(P_{\max})	0,165 0,15 Nach 18 M	0 nach 10 m finuten wird	n — uf einer Stirn	seite (links	n Fig. 270	20,01) ein Riß be	merkt; verg	gl. Fig. 271	=	= =		-	=	= =	= =		- 149,1	2811 25,	9 (52,6) (:	(22,5)	Abbildung der Unterfläche: Fig. 269
						•									0,170 0,15 Nach 25 1	5 nach 20 m Ainuten ist de	n — Beton auf d	er Druckseit	e sehr star	25,49 k zerstört.	Die Belastu	- Auf	der Druckse ich etwa 30	ite erscheinen Minuten lang	n Risse. sam. Die Eise	eneinlagen :	zeigen losen	n Zunder.	1 ,			-1			Abbildung einer Seitenfläche: Fig. 270 Abbildung der Stirnflächen: Fig. 271 und 272
archschni	tt 218	-		-	-			-		18,47	10,00	32,97	57,6 2,30	-		-	-		-		-		-			-	-	- -			- Un 108,9 154.6	ter P_g (aus P 2075 19, Unter 2958 27	(r. 86 und 90): 1 38,4 P_{\max} 1 (54,6)	: 16,5 (23,6)	

1) Unter der Annahme, daß in allen fünf Eisen die gleiche Zugspannung vorhanden ist (vergl. unter XLIV, sowie die Fußbemerkung unter XXX), gilt 71 für das mittlere Eisen.

Zusammenstellung 47. Balken mit Bauart nach Fig. 229. Alter: rund 7 Monate.

1	2	3	4	5 6	3 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	1 2	3	24	25	26 2	7 2	28 29	30) 31	32	33	34 35	36	37	38	39 40	41	42	43	44		45
			Abn	nessungen	des Bal	lkens	1	1		Abme	nessungen	n der Eis	eneinlage	en		Gewicht		Be-	Aenderunge der Strecke	n n	Verlä	ngerun	gen		Zusam	mendrück	ungen			Durch	biegu	ngen	(vergl. 1	Fig. 243)		Span	nungen, be	ter XLIX	nach den	Glei-	
nung	Prüfungs-	Alter	Breite	e	Höhe		Gewich	ht	D	Ourchmes	esser		Oner.	Umfa	ang	der Eisen-	Raum- gewicht	lastunger P	(vergl. Fig. 22	(9)	ur der un	rlängerun	ren in 1/e			sammendrö	kungen	in g	esamte Du	rchbiegung	en an den	ble	aibende D	urchbiegun	igen an den		lungen un		V Selle I		Damadanasaa
szeich	tag	-		h. h	1	Läng L	e Balken G	15	da	da	1	de	schnitt	der mittle-	der fünf	einlagen Ge	des Betons	$\begin{array}{l} \text{(Anfangslas} \\ P = 0 \text{ kg)} \end{array}$	x y	Meßlä	inge l	auf die	Meßlänge	a l Ma	ge 1/200	o cm auf die	Meßläng	re l	1	Meßstellen				Meßstellen	Bon nu non	σ,	σe	70	τ_1	ren Stab	Bemerkungen
Be		Tage	em	em en	n en	em	kg	em	em	em	em	em	gem	Einlage	lagen	kg		kg	mm mn	en	ges	amte blei	bende fe	dernde en	gesa	amte bleiber	nde feder	nde a mm	b mm	c mm	d e mm mm	a mm	b mm	c mm	d e mm mm	kg/qem	kg/qcm kg	g/qem	kg/qem	kg/qem	
	19 9 07	211	15.0	0.0 51	0 10	9 916	1 660.9	2 91	1.81	1.91	1.91	1.81	18 37	10.08	32.84	35.3	2.30	3000		60	0 0	91	0	0.91 50	7 0	18 0	0.1	18 0.090	0.030	0.035 0	0.030 0.02	0 0	0	0	0 0				bei Annal	ame der	Dauer des Versuches: 9 Stunden
10.	10.2.07	211	40,0	.0,0 01	,0 10,	,2 210,	1 000,2	0,21	1,01	1,01	1,01	1,01	10,01	10,00			-100	6000 9000			0	50 0	0,08	0,42	0,	,36 0,0	1 0,3	35 0,040	0,070	0,085 0	0,075 0,04	5 0,005 0 0,005	0,005	0,010	0,005 0,003				Uebertrag Zugkraft	ung der durch	
									-	1								12000 15000			1.	,07 0	,16	0,91	0,	71 0 89 0	0,7		0,150	0,175 0	0,155 0,09 0,205 0,12	5 0,010 0 0,010	0,010	0,020 0,025	0,015 0,008 0,020 0,010	5			das mittlere	die fünf Eisen ¹)	P = 13000 kg: erster Wasserfleck
							-					12-1						$\frac{18000}{21000}$			1.2	84 0 36 0),33),50	1,51 1,86	1,	,07 0 ,28 0,0	1,0 1 1,2	07 0,140	0,245	0,280 0	0,255 0,15 0,315 0,18	0 0,015 5 0,020	0,025	0,035 0,050	0,030 0,020 0,045 0,030				Eisen allein		
					1. 1.			-	123									$\begin{array}{r} 23000\\24000\end{array}$	1033		2.	76 04 0	,72	2,32	1, 1, 1,	42 - 0,0	1 1,4	48 0,210	0,375	0,425 0	0,390 0,22	5 0,030	0,060	0,070	0,065 0,040					1	P = 24000 kg: erster Riß, außerhalb der Meßstrecke
							1											$27000 \\ 30000$	0 0 0,015 0	nach ;	5 min	-	-	-	-		-	0,24	0,445	0,500 0	0,460 0,26	5 0,035	0,070	0,085	0,080 0,04	5 50,1	unter 1 947	$P_g = 300$ 17,4	000 kg: 34,5	15,2	P = 25000 kg: Riß innerhalb der Meßstrecke
																		33000	0,015 0 0,035 0	» 1(» 1)	0 » 5 »							0.85	0,650	0,710	0.650 0.37	0 0.055	0,110	0,185	0.125 0.06						
					-					1.5		1 55.7						36000	0,035 0 0,100 0,01	5 × 20	0 » 5 »		_	_		_		0.41	0,750	0.825 (0.770 0.43	0 0.070	0,130	0.150	0.155 0.08						P = 36000 kg: Längsriß auf der unteren Balkenfläche
																		39000	0,100 0,01 Unter dies	5 × 30 er Belastu	0 » ing wurder	n über de	en Wider	lagsrollen	senkrech	hte Risse b	emerkt. 1	Der Versu	h wurde	jedoch (in	Stufen von	je 3000 k	xg) fortge	esetzt bis	zur Belastung	65,1	unter . 1231	$P_s = 390$ 22,6	000 kg: (44,8)	(19,8)	Abbildung der Unterfläche: Fig. 279
																			von P=	50 000 k	g. Eine g	rößere K	raft kon	nte mit de	r Maschi	ine nicht a	usgeübt	werden,	1		1	1	1	1 1	1.		2.30				Abbildung einer Seitennache: Fig. 280
78	14.2.07	204	45,1 2	0,1 51,	4 10,	5 216,1	669,0	3,20	1,80	1,81	1,81	1,82	18,32	10,05	32,80	35,2	2,30	3000 6000		60,	,5 0, 0,	22 0 46 0	,01	0,21 60 0,43 60	,1 0, 0,	15 0 33 0	0,1	0,011 0,031	0,030	0,035 (0,075 (0,030 0,01 0,065 0,04	5 0 0 0	0	0	0 0 0 0						Dauer des Versuches: 7 ¹ / ₂ Stunden
																		9000 1 20 00	-		0, 0,	69 0 98 0	,04	0,65 0,92	0, 0,	,54 0 ,75 0,0	0,5 2 0,7	54 0,053 73 0,080	0,105	0,115 (0,155 ($ \begin{array}{c cccc} 0,105 & 0,06 \\ 0,140 & 0,08 \\ \end{array} $	5 0,005	0,005 5 0,005	0,005	0,005 0 0,005 0,00	5					P = 13000 kg: erster Wasserfleck
																		15000 18000			1, 1,	30 0 68 0	,09	1,21 1,49	0, 1,	99 0,0 25 0,0	6 0,9 9 1,1	0,101	0,185	0,205 0	$\begin{array}{c cccc} 0,190 & 0,11 \\ 0,240 & 0,14 \end{array}$	0 0,005	5 0,010 0 0,020	0,015	0,010 0,00 0,015 0,01	5					
																		21000 23000			2, 2, 2,	18 0 55		1,84	1, 1,	51 0,12 - 72 - - - - - - - - - - - - -	2 1,3	39 0,170	0,295	0,330	0,300 0,17	5 0,015	5 0,030	0,035	0,030 0,01	5					R - 24,000 kg, aster Big, innerhalb der Megetreite
													-					24000 27000			2, 3,	37 0	,56	2,21	1,	,80 0,1 ,09 0,1	7 1,6	0,200 0,240 0,240	0,360	0,400 0	0,365 0,21 0,430 0,24 0,24	0,020	0,045	0,055	0,050 0,02 0,02 0,03	5 0					r = 24000 kg. eister hib, innerhalb der Mebstecke
									1.5.8									32000	0,010 0	nach 2	2 min		-	-	- 2,	- 0,2	2 2,1	- 0,28	- 0,505	0,565		- 0,032	- 0,075	-		0	unter	$P_{g} = 32$	000 kg:		
							1.2.1.											33000	0,025 0,01	5 » 1(» 4,	64 1	,01	3,63	2,	,69 0,2	4 2,4	0,32	0,600	0,660	0,600 0,34	15 0,050	0,090	0,105	0,090 0,04	5 51,8	1002	18,3	36,6	16,0	
																		36000	0,045 0.03) » 5,	23 1	,08	4,15	3,	,00 0,2	8 2,7	74 0,40	0,715	0,790	0,710 0,40	0,060	0 0,115	0,130	0,115 0,06	0					
																		39000		- 1.	5,	89 1	,23	4,66	3,	32 0,2	9 8,0	03 0,47	0,845	0,920	0,830 0,47	0,071	5 0,135	0,155	0,135 0,07	5 68 0	unter	$P_s = 42$ 24.0	000 kg: (48.0)	(21.0)	P = 39000 kg: Längsriß auf der unteren Balkenfläche
																		45000			7,	06 1	,41	5,65	3,	87 0,3	0 3,5	57 0,61	1,095	1,195	1,080 0,59	0,110	0 0,195	0,220	0,185 0,10	5 08,0	1011	24,0	(10,0)	(21,0)	Abbildung der Unterfläche: Fig. 279 Abbi'dung einer Seitenfläche: Fig. 280
																		40000				307		0,007	4,	,10 0,5	- 0,0													1	
73	8. 2. 07	216	44,8 . 20	0,0 51,6	3 10,7	216,0	667,0	3,16	1,80	1,81	1,82	1,82	18,15	9,93	32,71	34,9	2,29	3000 6000		60,	0 0,	42 0	,01	0,20 60	0,0 0,	,17 0,0 ,34 0,0	1 0,1	16 0,01 83 0,03	0,025 0,060	0,035	0,030 0,02	20 0 40 0	0	0	0 0 0						Dauer des Versuches: 8 Stunden
																		9000 12000			0,	91 0	,02	0,86	0,	,74 0,0	1 0,0 3 0,7	71 0,07	0,095 0,130	0,105	0,130 0,08	80 0 80 0	0,005	0,005	0,005 0					E	D. If one has series Wesserflack
				-														15000			1,	55 0	,19	1,36	0,	,13 0,0	4 0,8	00 0,09	0,170	0,190	0,210 0,12	25 0,00	5 0,010	0,010	0,010 0,00	5					P = 15000 kg; erster wasserneck
					1													24000			2,	47 0	,43	2,04	1,	,62 0,1	1 1,2	51 0,14	0,250	0,280	0,315 0,18	85 0,01	5 0,015	0,020	0,015 0,01	.5				-	
					1					4								26000			2,	89	_	246	1,	81 -	0 1 5		-	-		-	-	-		5					P - 27,000 kg, arstar Riss, außarbalb, dar Maßstracka
										24								30000	0 0		4,	02 0	,96	3,06	2,	,16 0,1	4 2.0	02 0,27	0,385 0,475	0,535	0,480 0,20	65 0,03	5 0,065	0,075	0,065 0,03	5				-	P = 30000 kg: Risse innerhalb der Meßstrecke
																		34000	0,010 0	nach S	3 min	_	-	_			± 2,0			-				-		54.9	unter	$P_g = 34$	1000 kg:	16.8	
																		36000	0,010 0,01	5 » 10 5 » 15) >>	55 1		4.25	2	.72 0.1	5 2 5	57 0 87	5 0.675	0.745	0.685 0.2	85 0.05	0 0.100	0.110	0.095 0.03	5	1004	- 0,0	0010	10,0	
-					1							1						39000	0,020 0,02	0 » 10 0 » 15) » 6	19 1	.36	4.83	2,	,99 0.1	6 2 5	83 0 46	0 0.820	0,895	0.810 0.4	55 0.06	0 0,125	5 0,135	0,125 0.0	10 62.2	unter	$P_s = 39$ 22.2	0000 kg: (44.7)	(19.3)	
					1													42000	0,055 0,04	5 » 10 5 » 20) » -	.88 1	-	- 5.44	3	.29 0.1	7 3	12 0.59	0 0.980	-	0.920 0.5	15 0.08	0 0.150	0,155	0,140 0,0	75		,.		(10,0)	P = 42000 kg: Längsriß auf der unteren Balkenfläch
																		45000	0,095 0,05	5 » 10 5 » 20) >>	.58 1		- 6.04	3	.55 0.1	6 3	39 0.58	5 1.065	- 1,145	1.035 0.5	75 0.09	5 0.170	0 0.175	0.150 0.0	80					
		1														1		48000	0,145 0,09	5 × 10 5 × 15) » .	29 1	-	6.67		.84 0.1	7 3	67 0.66	- 1.185	1.265	1,140 0.6	30 0.10	0 0,190	0 0.200	0,175 0.0	95					
																		50000	0,200 0,12 0,200 0,12	5 » 15 5 » 20) » 8.	75 1	-	7,07	4.	,02 0.1	8 3.1	84 0.70	5 1.285	- 1.365	1,235 0.6	80 0.11	0 0.210	0 0,215	0,195 0.1	05					Abbildung der Unterfläche: Fig. 279 Abbildung einer Seitenfläche: Fig. 280
Durch	chnitt	10		_	-	-	_	-	_	-	-	-	18,28	10,02	32,78	35,1	2,30	-		-		-	-	-						-		- -	_	-		-	1	unter	Pg:	16.0	
																																1				52,0	1004	18,3 unter	30,7 Ps:	10,0	
	1	1	.			12				1	- 1				1		1			1											1			1.1.1	1 - 1 -	65,1	1255	22,9	(45,8)	(20,0)	

1) Unter der Annahme, daß in allen fünf Eisen die gleiche Zugspannung vorhanden ist (vergl. unter XLIV, sowie die Fußbemerkung unter XXX), gilt 71 für das mittlere Eisen.

Zusammenstellung 48. Balken mit Bauart nach Fig. 223 bis 229. Alter: rund 7 Monate.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	.17	18	19	20	21	22	23	24	25	26	27	28
								erste Ri	isse						Gleit	en der	Eisene	inlagen			Spann	ingen unt	er Pmax,	berechnet na	ch den Glei-		
			Wasse	erflecke			1- 14.		Spann	nungen u	nter der	Belastung in	Spalte 6, be-		Spannur	ngen unte	er der Be	elastung in S	palte 15, be-				chungen	Seite 118		a star	Frhähung der
	88				Belastung,	unter welcher	Verlänge	erung des Betons	r	echnet na	ach den (Gleichungen S	eite 118	Belastung,	rec	chnet nac	ch den G	leichungen Se	eite 118			1		T. am mittle	ren Fisen hei	Gewicht	Belastung Pmax
	Inut	100 fe								1 .		τ_1 am mittl	eren Eisen bei	ein Gleiten	1000			τ_1 am mittle	eren Eisen bei	Belastung				Annahme der	Uebertragung	der Fison-	gegenüber den Bal-
Bauart	eicł	F	Belastung, unter	Verlängerung des		1.	A	Deckseldere				Annahme de	r Uebertragung	der Eisen-				Annahme der	Uebertragung	Pmax		1999		der Zugk	raft durch	einlagen	nach Fig. 223, be-
	Bez		welcher zuerst	Betons unter der	noch	der erste Riß	unter der Be-	eines Rissesinner	- σo	σε	70	der Zug.	krait durch	einlagen erst-	σο	σe	7.0	der Zugk	rait durch		σο	0e	τ0		100000	Ge	zogen auf 1 kg
			achtet wurden	Spalte 4	kein Riß	beobachtet	lastung in Snalte 6	halb der Meß-				das mittlere	alle Eisen 1)	stellt wurde				das mittlere	alle Eisen 1)					das mittlere	alle Eisen 1)	132.7	Eiseneinlagen
		1			bemerkt warde		Sparte o	strecke	1			Eisen alleir	1					Eisen allein			10.1		1.2.05	Eisen anem		1.	
		vH	kg	mm/m	kg	kg	mm/m	mm/m	kg/qem	n kg/qem	h kg/qem	kg/qem	kg 'qem	kg	kg/qem	kg/qcm	kg/qcm	kg/qem	kg/qem	kg	kg/qem	kg/qem	kg/qcm	kg/qem	kg/qem	kg	
nach Fig 222	71	1 99	6000	0.09	12 000	13 000	0.935	0.235	39.0	777	6.9	_	6.2	22 000	71.5	1424	12.6	_	11.3	24.000	77.9	1553	13.7	_	12.3	43.2	±
Einlagen: 3 gerade Rundeisen; das mittlere	72	1,39	6000	0,08	12 000	13 000	0,237	0,237	39,5	778	6,9	-	6,2	20 000	65,8	1296	11,6		10,4	21 000	69,1	1361	12,2		10,9	44,5	-
32 mm stark, die beiden seitlichen je 25 mm	87	1,36	7000	0,09	12 000	13 000	0,202	0,202	37,8	763	6,7	-	6,1	23 000	72,5	1463	12,9		11,7	24 000	75,7	1527	13,5	-	12,2	43,3	-
Durchschnitt	-	1,38	-	0,09	-	13 000	0,225	0,225	38,8	773	6,8	-	6,2	21 667	69,9	1394	12,4		11,1	23 000	74,2	1480	13,1	-	11,8	43,7	-
nach Fig. 224	74	1.34	7000	0.09	12 000	13 000	0.212	0,212	37,8	773	6,8		6,1	23 000	72,5	1482	13,0	_	11.8	31 400	99.0	2023	17.7	-	16,1	51,8	
Einlagen: 3 gerade Rundeisen und 24 Bügel	. 75	1,37	7000	0,09	12 000	13 000	0,205	0,236	38,2	769	6,9		6,1	26 000	\$2,8	1666	14,8		13,3	30 000	95,6	1923	17,1	-	15,3	52,0	-
aus Rundeisen	88	1,37	8000	0,10	11 000	12 000	0,174	0,205	35,0	700	6,2		5,6	26 000	82,6	1654	14,7	-	13,2	30 000	95,3	1909	16,9		15,3	52,3	-
Durchschnitt	-	1,36	-	0,09	-	12 667	0,197	0,218	37,0	747	6,6	-	5,9	25 000	79,3	1601	14,2	-	12,8	30 467	96,6	1952	17,2	-	15,6	52,0	900
nach Fig. 225	76	1,35	8000	0,11	10 000	12 000	0,150	0,202	31,3	642	5,7	-	5,2	32 000	100,0	2054	18,2	-	16,5	38 000	118,8	2440	21,6	-	19,6	73,0	_
Einlagen: 3 gerade Rundeisen und 48 Bügel	77	1,36	8000	0,11	10 000	11 000	0,149	0,174	31,8	646	5,7	-	5,1	24 000	76,3	1551	13,7	-	12,3	36 000	114,5	2326	20,6	-	18,4	72,9	
aus Flacheisen	89	1,37	6000	0,08	10 000	11 000	0,147	0,168	32,1	638	5,6	-	5,1	30 000	96,3	1915	16,9	-	15,2	39 000	125,3	2490	22,0	-	19,8	73,4	-
Durchschnitt	-	1,36	-	0,10	-	11 333	0,149	0,181	31,7	042	5,7	-	5,1	28 667	90,9	1840	16,3	-	14,7	37 667	119,5	2419	21,4	-	19,3	73,1	499
nach Fig. 226	79	1,44	8000	0,12	12 000	13 000	0,234	0,295	39,0	750	7,0	14,1	. 5,9	26 000	84,5	1625	15,1	30,4	12,8	34 000	110,5	2125	19,7	(39,7)	(16,8)	48,9	-
Einlagen: 4 aufgebogene und ein gerades	80	1,43	6000	0,08	13 000	14 000	0,256	0,256	41,4	801	7,4	14,9	6,4	24 000	76,4	1478	13,7	27,6	11,8	33 000	105,0	2032	18,9	(38,1)	(16, 2)	49,2	-
Rundeisen	81	1,44	6000	0,08	10 000	12 000	0,162	0,216	32,5	625	5,8	11,7	4,9	24 000	78,0	1500	13,9	28,1	11,9	33 000	107,2	2062	19,1	(38,5)	(16,3)	49,2	-
Durchschnitt	-	1,44	-	0,09	-	13 000	0,217	0,256	37,6	725	6,7	13,6	5,7	24 667	79,6	1534	14,2	28,7	12,2	33 333	107,6	2073	19,2	(38,8)	(16,4)	49,1	1914
nach Fig. 227	82	1,41	6000	0,08	10 000	11 000	0,157	0,213	32,6	638	5,8	11,7	5,1	30 000	97,7	1913	17,4	35,1	15,3	39 000	127,0	2487	22,6	(45,6)	(19,8)	56,7	-
Einlagen: 4 aufgebogene und ein gerades	83	1,41	6000	0,08	12 000	13 000	0,239	0,239	40,3	777	7,0	14,1	6,2	30 000	100,8	1943	17,4	35,0	15,4	42 000	141,1	2720	24,4	(49,1)	(21,6)	56,8	-
Rundeisen; ferner 24 Bügel aus Rundeisen	84	1,44	8000	0,11	10 000	11 000	0,145	0,223	32,5	625	5,8	11,7	5,0	30 000	97,5	1875	17,4	35,0	14,9	42 000	136,5	2626	24,3	(48,9)	(20,9)	57,2	-
Durchschnitt	-	1,42	-	0,09	-	11 667	0,180	0,225	35,1	680	6,2	12,5	5,4	30 000	98,7	1910	17,4	35,0	15,2	41 000	131,9	2611	23,8	(47,9)	(20,8)	56,9	1364 (für 1 kg in den Bügel gegenüber Fig. 226: 983)
nach Fig. 228	05	1.11	7000	0.00	11.000	12 000	0.109	0.109	37.1	715	6.5	13 1	5.7				1			46 500	156.0	2022	97.4	(55.4)	(24.0)	57.9	500)
Einlagen: 4 aufgebogene und ein gerades	86	1,41	8000	0,05	11 000	12 000	0,174	0,174	36,1	696	6,4	12,8	5,6	33 000	108.5	2089	19.2	38.3	16.7	48 000	157.8	3039	28.0	(55,9)	(24,2)	57.4	
mit Haken verschenes Rundeisen; außerdem	90	1,44	7000	0,09	11 000	12 000	0,184	0,219	36,4	687	6,3	12,9	5,5	33 000	109,3	2062	19,0	38,6	16,4	45 000	149,1	2811	25,9	(52,6)	(22,5)	58,2	-
24 Buger aus Rundersen Durchschnitt	-	1,43		0,10	- 1	12 000	0,183	0,195	36,5	699	6,4	12,9	5,6	33 000	108,9	2075	19,1	38,4	16,5	46 500	154,6	2958	27,1	(54,6)	(23,6)	57,6	1691
mash Dim 990	70		12.000	0.10	00.000	94.000	0.990	0.959	201	796	19.9	26.4	11.6	20.000	50.1	0.17	17.4	94.5	15.9							25.0	
Finlagen: 4 sufgebogene und ein gewaden	70	1,44	13 000	0,10	23 000	24 000	0,230	0,255	37.9	720	13,5	26,2	11.5	32 000	51.8	1002	18.3	34,0	15,2		-	-	-	-	E.	35,3	
Rundeisen	73	1,41	15 000	0,05	26 000	27 000	0,241	0,263	41,5	814	14,8	29,8	12,9	34 000	54.2	1064	19.3	38.9	16.8		-		_	1521-14		34.9	
Durchschnitt	- 1	1.42	-	0,10		25 000	0.227	0,242	39.0	753	13,7	27,5	12,0	32 000	52.0	1004	18.3	36.7	16.0	1 -	1 -	1 -	-	-	-	35.1	-
D'aronschiller	1	-, ==		0,10		20000	-,								1			,	,-			1. 1. 1. 1.	1			1	a set of the set of the

1) Unter der Annahme, daß in allen Eisen die gleiche Zugspannung vorhanden ist (vergl. unter XLIV, sowie die Fußbemerkung unter XXX), gilt 71 für das mittlere Eisen.

Zusammenstellung 48.

Zusammenstellung 50.

Zusammenstellung 50 (Druckversuche mit Körpern nach Fig. 91, aus Beton mit Zement »B«.).

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
elchnung	Alter	Abmess	ungen des	s Körpers	Quer- schnitt a b	Gewicht des Körpers	Raum- gewicht des	Belastungs- stufen	Meß- länge l	$\frac{1}{1200} \text{ cm}$	mendrücku 1 auf die M	ngen in eßlänge l	Federung der Längen- einheit auf 1 kg	Höehstb	elastung
Bez		Seite	Seite b	Höhe h			Betons			gesamte	bleibende	federade	Pressung		
	Tage	em	em	em	qem	kg		kg/qem	em	1			α	kg	kg/qem
1	250	20,00	20,25	103,1	405,0	95,9	2,30	0,2- 6,2	75,0	1,93	0,10	1,83	$\frac{1}{295100}$	77 000	190
			1.5					0,2-12,3		3,87	0,15	3,72	292700		
								0,2-18,5		5,78	0,18	5,60	$\frac{1}{294100}$		
				1	1			0,2-24,7		7,68	0,20	7,48	294800		
								0,2-37,0		11,93	0,32	11,61	$\frac{1}{285300}$		
								0,2-49,4		16,56	0,51	16,05	275900		
	1						-	0,2-61,7		21,56	0,74	20,82	$\frac{1}{265900}$		
						1		0,2-74,1		27,18	1,21	25,97	$\frac{1}{256100}$		
								0,2-86,4		33,38	1,72	31,66	$\frac{1}{245000}$		
								0,2-98,8		40,68	2,29	38,39	$\frac{1}{231200}$		
2	252	20,08	20,30	101,7	407,6	95,6	2,31	0,2- 6,1	33,3	0,83	0,02	0,81	$\frac{1}{291100}$	74 600	183
								0,2-12,3		1,69	0,03	1,66	$\frac{1}{291300}$		
								0,2-18,4		2,61	0,04	2,57	$\frac{1}{283000}$		
	1 Start							0,2-24,5		3,58	0,06	3,52	$\frac{1}{275900}$		
								0,2-36,8		5,58	0,10	5,43	$\frac{1}{269300}$		
								0,2-49,1		7,66	0,16	7,50	$\frac{1}{260500}$		
								0,2-61,3		9,97	0,22	9,75	$\frac{1}{250400}$		
								0,2-73,6		12,69	0,39	12,30	$\frac{1}{238500}$		
								0,2-85,9		15,58	0,52	15,06	$\frac{1}{227400}$		
								0,2-98,1		18,83	0,83	18,00	$\frac{1}{217300}$		
3	247	20,14	20,63	101,7	415,5	97,8	2,30	0,1- 6,0	75,0	1,79	0,02	1,77	$\frac{1}{300000}$	73 200	176
								0, 1 - 12, 0		3,97	0,12	3,85	$\frac{1}{278200}$		
								0,1-18,1		6,53	0,28	6,25	$\frac{1}{259200}$		
								0,1-24,1		9,32	0,59	8,73	$\frac{1}{247400}$		
								0,1-36,1		14,80	1,07	13,73	$\frac{1}{236000}$		
-								0,1-48,1	1.1	20,54	1,68	18,86	229100		
1								0,1-60,2		26,27	2,19	24,08	$\frac{1}{224600}$		
			-					0,1-72,2		32,64	2,93	29,71	1 218400		
								0,1-84,2		39,64	3,72	35,92	$\frac{1}{210700}$	1	
								0,1-96,3		47,60	4,77	42,83	$\frac{1}{202100}$		
Durch- schnitt	250	-	-	-	-	+	2,30	-	-	-	-	-		-	183

Zusammenstellung 51.

Zusammenstellung	51	(Zugversuche	mit	Körpern	nach	Fig.	92.	aus	Beton	mit	Zement	»B«).
													100

-							-		0 ,				
-	1 2	3	4	5	6	7	8	9	10	11	12	13	14
	50	Abm	essungen de Körpers	es				Verläng	gerungen in	$\frac{1}{1200}$ em	Federung		
	Alter		norpers	Quer- schnit	t Gewicht	Belastungs-	Meß- länge	aut	f die Meßlä	nge l	Längeneinheit	Höchst	belastung
	ezeio	Seit	e Seite	a · b	Körpers	sturen	1				auf 1 kg Spannung		
	Tage	a	b cm	aem	kg	kg/acm	em	gesamte	bleibende	federnde		ke	kg/aem
-						- mail down		1	1				- Ag/qom
	3 257	19,	8 20,8	411,8	152,8	0,5-1,2	44,9	0,13	0,03	0,10	377200	5000	12,1
						0,5-2,4		0,39	0,09	0,80	$\frac{1}{341200}$		
						0,5-3,6		0,66	0,16	0,50	$\frac{1}{334100}$		
						0,5-4,9		1,01	0,26	0,75	$\frac{1}{316100}$		
						0,5-6,1		1,40	0,38	1,02	1 295800		
	1					0,5-7,3		1,86	0,55	1,31	1 270700		1
						0,5-8,5		2,37	0,77	1,60	1		
											269400		
4	258	19,8	20,8	411,8	152,6	0,5-1,2	45,0	0,10	0	0,10	$\frac{1}{378000}$	5440	13,2
						0,5-2,4		0,33	0,02	0,81	$\frac{1}{331000}$		
						0,5-3,6		0,60	0,07	0,53	$\frac{1}{315800}$		
		1				0,5-4,9		0,93	0,15	0,78	$\frac{1}{304600}$		
						0,5-6,1		1,30	0,26	1,04	$\frac{1}{290800}$		
						0,5-7,3		1,75	0,42	1,33	1 276100		
						0,5-8,5		2,30	0,66	1,64	1		
						0,5-9,7		3,06	1.02	2,04	1		
											245500		
9	229	19,9	20,9	415,9	154,1	$0,5{-}1,2$	44,8	0,13	0,02	0,11	342100	5480	13,2
						0,5-2,4		0,37	0,06	0,31	329500		
						0,5-3,6		0,65	0,11	0,54	$\frac{1}{308600}$		
						0,5-4,8		0,98	0,18	0,80	$\frac{1}{289000}$		
						0,5-6,0		1,36	0,28	1,08	$\frac{1}{273800}$		
						0,5-7,2		1,76	0,39	1,37	$\frac{1}{262900}$		
						0,5-8,4		2,27	0,57	1,70	$\frac{1}{249800}$		
						0,5-9,6		2,84	0,78	2,06	$\frac{1}{237500}$		
											1		12.5
10	230	20,9	20,0	418,0	153,1	0,5-1,2	45,1	0,12	0,01	0,11	344400 1	5000	12,0
						0,5-2,4		0,37	0,05	0,32	321300		
			-			0,5-3,6		0,66	0,13	0,58	316600		
						0,5-4,8		1,04	0,24	0,80	290900		
						0,5-6,0		1,44	0,35	1,09	273100		
						0,5-7,2		1,88	0,49	1,39	$\frac{1}{260900}$		
						0,5-8,4		2,44	0,70	174	$\frac{1}{245700}$		
	1					0,5-9,6		3,12	0,98	2,14	$\frac{1}{230100}$		
Durch	t 244	-	-	-	-	-	-	-	-	-	-	-	12,6

Zusammenstellung 52.

Zusammenstellung 52.

		-								
1	2	3	4	5	6	7	8	9	10	11
		Belas	tung P	Höc	hst-	Gleitwid	1) lerstand	Zug-	1 - 1 Contraction	
	Bauart	bei Beo	bachtung	belas	stung	$ au_1$ (nacl	h G1. 5,	spannung		Altor
		Glei	itens	P_{r}	max	in Heft	39 S. 18)	(für die	Durandaria	der
		Final	Dunch	Final	Dunch	Thereal	Dunk	Belastung	Bemerkungen	Versuchs-
Figur	Einlagen	werte	schnitt	werte	schnitt	Einzel-	sehnitt	von τ_1 in		körper
		her	be	Irm	lear	ha 'aam	bellaam	sparte s)		
		hg	kg	hg	Rg	kg qem	kg/qem	kg/qem		
		4240	3995	4240	3995	11,0	10.8	826		52 Tage
		3750	0000	3750		9,7	10,0	0.0	Gezogenes Rundeisen,	
1	1 Rundeisen, 25 mm Dmr.,	5290		5290		13,8			geschlichtet	
	geraue, bearbenet	5750	5760	5750	5760	14.3	14,5	1154	mit glatter Oberfläche	6 Monate
		6500		6500		16,1				
		7000	6500	7500	7000	19,2	17.9	1434		51 Tage
		6000	0000	6500	1000	16,6	11,0	1101		- I Lage
2	1 Rundeisen, 25 mm Dmr.,	8500	1 3 - 1	9000		22,7			_	
	gerade	8000	8313	8750	8813	21.7	22,0	1760		6 Monate
		8000		8500		21,0				
	1 Rundeisen 18 mm Dmr	5500		6000		21,1				
3	gerade	5000	5667	5750	6083	19,9	21,1	2348	-	6 Monate
	•	6500		6500		22,3			1	
4	1 Rundeisen, 22 mm Dmr.,	5500	6083	5650	6300	18,5	19.1	1753		6 Monate
	gerade	7250	0000	7250	0000	21,7	10,1	1100		0 monieco
	1 Pundoison 22 mm Dmr	8500		8500	1	17,0				
5	gerade	10000	9167	11000	9833	22,1	19,8	1239	-	6 Monate
		9000		10000		20,3				
66	3 Rundeisen, 10 mm Dmr.,	8000	8000	8000	8167	16,0	16.9	2942		7 Moneto
00	gerade	8000	0000	8500	0107	16,9	10,5	0240	-	7 Monate
	a. D	8000		8000		15,8				
67	3 Rundelsen, 10 mm Dmr., gerade	8000	8450	9000	8783	17,6	17,2	3363	-	6 Monate
	Bornan	9350		9350		18,1				
00	3 Rundeisen, 14 mm Dmr.,	9500	10167	10000	10007	14,7	15.0	2200		2 Monato
00	gerade	11000	10107	11000	10007	16,0	10,0	2200	-	5 Monate
		6250		8500		15.3			Gezogenes Rundeisen.	
69	1 Rundelsen, 25 mm Dmr., mit Hakan hearheitet	6750	6833	8700	8900	16,6	$16,8^{2}$)	1348	geschlichtet	6 Monate
	mit maken, bearberet	7500		9500		18,6			und abgeschmirgelt	
	1 Rundeisen, 25 mm Dmr.,	11000	10000	14000	11000	27,2	05.2	0010	²) Ohne Berücksichtigung	
70	mit Haken	9500	10333	13500	14000	25,3	25,4*)	2042	der Hakenoberfläche, versi, unter XX und XXII.	7 Monat3
		5500		6500		20.0				
72	Thachereisen	7500	6500	8000	7333	24,5	22,6	3039	-	7 Monate
		6500		7500		23,2				-
	1 Rundeisen, 22 mm Dmr.,	7500		7750		23,8		0100		
73	gerade, 16 Bügel	8000	7667	8000	7750	23,7	23,3	2139	-	7 Monate
		5500		6000		14.5				
	1 Rundeisen, 26 mm Dmr.	5000	5250	5000	5500	12,2	13,3	1004	an der Luft gelagert	
75	gerade	7000	7000	7000	7000	17,1	16.0	1991	unter Wassen gelagent	50 Tage
		7000	1000	7000	1000	16,8	10,9	1201	unter wasser gelagert	
	3 Rundeisen, 10 mm Dmr.,	-		8250	0500	- 3				
76	das mittlere gerade, die andern aufgehogen	7500	-	9000	8583	15,2%)	-	3042		7 Monate
	5 Rundeisen, das mittlere			0000			-		-	
	10 mm Dmr., gerade,	-		8750	0000	10,3	1	0.00-	³) Bei Annahme der Ver-	0 Monato
78	seitlich je zwei aufgebogene	9000	-	9000	9083	$18,4^{\circ})$ $18,5^{3})$		3625	teilung der Zugkraft auf	8 Monate
	von 7 mm Dmr.					10,07			die aufgebogenen, seitlich	
70	3 Rundeisen, 18 mm Dmr.,	12000	19999	17000	17999	$13,7^{-3}$	15 03)	1711	gelegenen, derart, daß in	1 8 Monate
19	die andern aufgebogen	15000	10000	18000	1/000	17,73)	10,6%	1/11	allen Eisen die gleiche Zug-	o monate
	5 Rundeisen.	1							- spannung herrscht (vergl.	
	das mittlere 18 mm Dmr.,	12000		17000		$15,0^{3}$)	1000		randomerang unter AAA)	1
81	gerade, seitlich	14000	12667	17000	17000	17,13)	15,83)	1756		7 Monate
2. 2 1	yon 13 und 12 mm Drog	12000		17000		15,2")	1			1 Alt
	, ou to and to min Dinf.		·				1 1			

¹) Der Gleitwiderstand τ_1 (Spalte 7 und 8) ist bei den Balken mit geraden Einlagen für die Höchstlast P_{\max} berechnet, unter welcher die Widerstandsfähigkeit infolge Ueberwindung des Gleitwiderstandes erschöpft war. Das erste Gleiten wurde jedoch öfters schon unter geringerer Belastung festgestellt (vergl. Spalte 3 und 5). Bei den Balken mit Hakeneinlagen (Fig. 69 und 70) und mit aufgebogenen Einlagen (Fig. 76, 78, 79, 81) ist τ_1 für die Belastung P

Zusammenstellung 53, 54, und 55.

Belastung P in kg	1000	2000	3000	4000	5000	6000	6250 (erste Risse)	7000	8000	9000	10000	11000	12000	13000	14000
σ_b nach den amtlichen Bestimmungen (Gl. 2, S. 18 in Heft 39)	6,6	13,3	19,9	26,6	33,2	39,8	41,5	46,5	53,1	59,8	66,4	73,0	79,7	86,3	93,0
σ_b nach den Messungen	4,2	9,0	13,5	18,5	24,1	30,9	34,2	40,6	52,1	57,9	63,0	68,5	73,2	77,7	82,9

Zusammenstellung 53. Balken Nr. 31 (Bauart nach Fig. 70). Unter Zugrundelegung der Ergebnisse von Druckkörper Nr. 4 (Zusammenstellung 39).

Zusammenstellung 54. Balken Nr. 52 (Bauart nach Fig. 77). Unter Zugrundelegung der Ergebnisse von Druckkörper Nr. 4 (Zusammenstellung 39).

Belastung P in kg	1000	2000	3000	3500 (erster Riß)	4000	5000	-6000	7000
σ_b nach den amtlichen Bestimmungen (Gl. 2, S. 18 in Heft 39)	13,8	27,6	41,3	48,2	55,1	68,9	82,7	96,4
Je nach den Messungen	9,2	19,7	32,5	40,9	52,0	71,2	84,9	96,2

Zusammenstellung 55. Balken Nr. 86 (Bauart nach Fig. 228). Unter Zugrundelegung der Ergebnisse von Druckkörper Nr. 2 (Zusammenstellung 50).

Belastung P in kg	2000	4000	6000	8000	10000	11000	12000 (Erste Risse)	14000	16000	18000	21000	24000	27000	30000
σ_o nach den amtlichen Bestimmungen (Gl. 12, vergl. unter LIV)	6,6	13,2	19,7	26,3	32,9	36,1	39,5	46,0	52,6	59,2	69,0	78,9	88,8	98,6
$\sigma_{ ho}$ pach den Messungen	5,4	11,1	18,4	23,7	30,9	35,1	38,5	46,0	53,0	60,9	70,2	79,5	88,7	98,0

Zusammenstellung 56.

						and the second se	
Balken Nr.	Belastung P in kg:	1000	2000	3000	3500	4000	5000
98 (erster Riß unter $P = 3100$ kg)	Zugspannung des Eisens σ_{ϵ} nach den amtlichen Bestimmungen: (nach Gl. 3 Seite 18 in Heft 39)	380	760	1140	1330	1520	1901
	σ_e nach den Messungen:	113	296	644	932	1126	1503
99	σ_e nach den amtlichen Bestimmungen:	363	726	1089	1270	1452	1814
(erster Riß unter $P = 3100$ kg)	σ_e nach den Messungen:	103	236	534	950	1118	1529
100	σ_e nach den amtlichen Bestimmungen:	375	750	1124	1312	1499	1874
(erster Riß unter $P = 3150$ kg)	σ_e nach den Messungen:	100	241	558	921	1082	1431
101	σ_e nach den amtlichen Bestimmungen:	409	819	1228	1433	1638	2047
(erster Riß unter $P = 2900$ kg)	σ_e nach den Messungen:	106	267	862	1037	1235	1662

Zusammenstellung 56. Balken mit Bauart nach Fig. 83.

Bauart		gesamte in mm E	Durchbi in der M Salkenläng	Querschnitt der Eiseneinlagen (Durchschnitt) gem			
	1		1		1		
nach Fig. 1 (Heft 39 Seite 2)	Balken Nr. P = 3000 kg P = 5000 kg	.10 0,190 0,405	$11 \\ 0,185 \\ 0,365$	$15 \\ 0,185 \\ 0,360$	4,94		
nach Fig. 69	Balken Nr. P = 3000 kg P = 5000 kg	25 0,185 0,365	27 0,180 0,355	$33 \\ 0,185 \\ 0,345$	4,90		
nach Fig. 2 (Heft 39 Seite 2)	Balken Nr. P = 3000 kg P = 7000 kg	9 0,175 0,960	16 0,180 0,870	17 0,185 0,920	4,90		
nach Fig. 70	Balken Nr. P = 3000 kg P = 7000 kg	31 0,165 0,670	35 0,160 0,715	36 0,170 0,760	4,87		
nach Fig. 3 (Heft 39 Seite 2)	Balken Nr. P = 2000 kg P = 5000 kg	$\begin{array}{c c} 3 \\ 0,210 \\ 1,430 \end{array}$		$12 \\ 0,175 \\ 1,135$	2,53		
nach Fig. 71	Balken Nr. P = 2000 kg P = 5000 kg	23 0,180 1,395	$26 \\ 0,180 \\ 1,240$	$-30\\0,175\\1,190$	2,58		
nach Fig. 4 (Heft 39 Seite 2)	Balken Nr. P = 2000 kg P = 5000 kg	$7 \\ 0,255 \\ 1,245$	$13 \\ 0,255 \\ 1,380$	$14 \\ 0,230 \\ 1,195$	3,72		
nach Fig. 73	Balken Nr. P = 2000 kg P = 5000 kg	29 0,250 1,290	$32 \\ 0,215 \\ 1,165$	37 0,230 1,190	3,71		
nach Fig. 74	Balken Nr. P = 2000 kg P = 5000 kg	$34 \\ 0,210 \\ 1,145$	$38 \\ 0,215 \\ 1,100$	39 0,210 1,090	3,74		
nach Fig. 67	Balken Nr. P = 2000 kg P = 5000 kg	18 0,190 1,045	$21 \\ 0,175 \\ 0,915$	28 0,185 0,920	2,45		

Zusammenstellung 57. Durchbiegungen (vergl. Fig. 19).

Bauart		gesamte in mm a (v	Durchbi an der M ergl. Fig	egungen eßstelle . 19)	gesamte in mm F	Durchbi in der M Balkenlänj	Querschnitt der Eiseneinlagen (Durchschnitt) qem		
	Pallon Nr.	40	4.9	45	40	19	15		
nach Fig. 66	P = 2000 kg	0,115	0.120	0,115	0.225	0.235	10.235	2.41	
	P = 5000 kg	0,655	0,730	0,660	1,360	1,480	1,355		
	Balken Nr.	49	51	53	49	51	53		
nach Fig. 76	P = 2000 kg	0,120	0,135	0,115	0,240	0,260	0,245	2,38	
	P = 5000 kg	0,760	0,805	0,755	1,525	1,620	1.530		
	Balken Nr.	48	52	56	48	52	56		
nach Fig. 77	P = 2000 kg	0,125	0,125	0,120	0,245	0,235	0,230	2,34	
	P = 5000 kg	0,800	0,775	0,775	1,625	1,600	1,590		
nach Fig 79	Balken Nr. $p = 2000 \mathrm{km}$	0.115	60	63	0.00-	60	63	0.0-	
· nach Fig. 78	P = 5000 kg	0,115	0,120	0,125	1 4 9 0	0,230	0,240	2,85	
	Ralkon Nr	58	61	62	50	61	60		
nach Fig. 79	P = 3000 kg	0.115	0.125	0.125	0.995	0.240	0.245	7 86	
	P = 10000 kg	0,690	0,705	0,740	1,340	1,370	1,465	1,00	
	Balken Nr.	64	65	68	64	65	68		
nach Fig. 80	$P = 3000 \rm kg$	0,125	0,115	0,115	0,245	0,230	0,230	7,81	
	P = 10000 kg	0,775	0,730	0,740	1,540	1,455	1,465		
	Balken Nr.	42	47	50	42	47	50		
nach Fig 81	P = 3000 kg	0,135	0,125	0,130	0,265	0,245	0,260	7,49	
	P = 10000 kg	0,815	0,765	0,790	1,605	05 1,525 1,59			
	Balken Nr.	54	55	57	54	55	57		
nach Fig. 82	P = 3000 kg	0,130	0,130	0,125	0,245	0 245	0,255	7,57	
Vier in the second	P = 10000 kg	0,805	0,800	0,835	1,625	1,590	1,670		

Zusammenstellung 58.

Bauart		Dan	urchbiegun der Meßste	gen (in mi	nm) unter $P = 6000 \text{ kg}$ in der Mitte der Balkenlänge			Durchbiegungen (in mm) unter $P = 18\ 000$ kg an der Meßstelle a in der Mitte der Balkenlänge				Du an c	urchbiegun ler Meßste	gen (in m	a) unter $P = 30000$ kg in der Mitte der Balkenlänge			Querschnitt der Eiseneinlagen (Durchschnitt) qem		
nach Fig. 223	Balken Nr. Durchbiegungen	71 0,155	72 0,150	87 0,140	71 0,310	72 0,310	87 0,300	71 0,715	72 0,745	87 0,755	71 1,540	72 1,600	87 1,605				-		-	17,79
nach Fig. 224	Balken Nr. Durchbiegangen	74 0,135	75 0,155	88 0,140	74 0,285	75 0,300	88 0,285	74 0,670	75 0,680	88 0,720	74 1,405	75 1,400	88 1,480	74 1,475	Ξ	Ξ	74 3,290		_	17,72
nach Fig. 225	Balken Nr Durchbiegungen	76 0,140	77 0,135	89 0,140	76 0,285	77 0,285	89 0,290	76 0,670	77 0,665	89 0,715	76 1,390	77 1,405	89 1,455	$76 \\ 1,400$	77 1,380	89 1,425	76 2,975	77 2,940	89 3,000	17,75
nach Fig. 226	Balken Nr. Durchbiegungen	79 0,140	80 0,155	81 0,145	79 0,300	80 0,305	81 0,305	79 0,670	80 0,730	81 0,705	79 1,440	80 1,490	81 1,495	79 1,530	80 1,880	81 1,575	79 3,420	80 3,790	81 3,435	18,64
nach Fig. 227	Balken Nr. Durchbiegungen	82 0,140	83 0,135	84 0,140	82 0,295	83 0,290	84 0,295	82 0,715	83 0,700	84 0,730	82 1,510	83 1,460	84 1,555	8 2 1,530	83 1,545	$^{84}_{1,535}$	82 3,245	8 3 3,215	84 3,255	18,33
nach Fig. 228	Balken Nr. Durchbiegungen	85 0,145	86 0,145	90 0,145	85 0,300	86 0,300	90 0,310	85 0,780	86 0,720	90 0,730	85 1,625	86 1,485	90 1,510	85 1,630	86 1,500	90 1,550	85 3,390	86 3,140	90 3,180	18,47

Zusammenstellung 58. Durchbiegungen der Balken nach Fig. 223 bis 228 (vergl. Fig. 243).

Zusammenstellung 59.

Zusammenstellung 59. (Zu Anlage 6.)

1	2	3	4	4	5	6	7	8	9	10 -	11	12	13	14
	Querschnitt	Figur im Versuchsbericht ¹)	Ball abmes ge etion g e m	Bau cen- ssun- en en en em	iart Eiseneinlagen	durchschniftliche Ent- g fernung der Stabober- fläche von der unteren Balkentlische	Zahl der Kürper	u of Alter der Körper	Zusammensetzung des Betons der Versuchskörper	Lagerung der Versuchskörper	a gemessene Verlänge- ا تر تر الا مالي والمالية والمالية المالية المالية المالية المالية المالية المالية والمالية المالية والمالية و والمالية والمالية وللمالية والمالية berechnete Zugspannung 5 ₆ de Elsens unmittelbar vor Beobachtung des ersten Risses (nach den antlichen preußischen Bestimmungen)	are gemessene Verlängerung Berne Betons beim Eintritt ar der ersten Wasserflecke	nähere Angaben finden sich im Bericht unter Abschuitt:	
a	Die Del	92	Zugka 20/	örper 20 ungen	reichen bis etwa 9,	- 7 kg/qcm	5 Zugsj	8 pannu	 1 Raumteil Portlandzement A, 4 Raumteile Kies und Sand in dem Mischungsverhält- nis von 3 Raumteilen Sand zu 2 Raumteilen Kies, 15 vH Wasser (Raumprozente) ng (die Zugfestigkeit beträgt d den Debum zufeine 	auf feuchtem Sand, mit nassen Säcken bedeckt urchschnittlich 13	0,065 bis 0,09 kg/qcm); die a	- ngegebenen	— Werte	XXXIX
b		84	15	30	ohne Einlagen	_	3	8	wie unter a)	wie unter a)	0,125	_	0,08	XXXVII
-		1	30	30	25 mm-Rundelsen, bearbeitet, Querschnitt: $f_e = 4.93$ gcm, Umfang: $u_e = 7,87$ cm.	0,8	4	6			0,127	963	0,07	v
		2	30	30	25 mm-Rundeisen, $f_e = 4,89$ qcm, $u_e = 7,83$ cm.	0,8	4	6		3	0,132	1015	0,07	III, IV, VI
c		69	30	30	25 mm-Rundeisen, bearbeitet, $f_e = 4,90$ qcm, $u_e = 7,84$ cm.	0,9	3	7			0,141	1068	0,09	XIX
		70	30	30	25 mm-Rundeisen, $f_e = 4,87$ qcm, $u_e = 7,82$ cm.	0,9	3	7	3		0,132	1105	0,09	XXI
		5	30	30	$\begin{array}{l} 32 \text{ mm-Rundeisen,} \\ f_e = 8,02 \text{ qcm,} \\ u_e = 10,04 \text{ cm.} \end{array}$	0,9	3	6			0,136	741	0,08	IX
1		3	20	30	18 mm-Rundelsen, $f_e = 2,53$ qcm, $u_e = 5,63$ cm.	0,9	3	6	2	*	0,123	1285	0,06	VII
d		71	20	30	18 mm-Rundeisen, $f_e = 2,58$ qcm, $u_e = 5,70$ cm.	1,3	3	6		3	0,133	1288	0,07	xxIII
0		72	20	30	Thachereisen $f_e = 2,3$ qcm, $u_e = 6,2$ cm.	0,9	3	7	3	3	0,143	1437	0,06	XXIV
2.		4	15	30	22 mm-Rundeisen, $f_e = 3,72$ qcm, $u_e = 6,84$ cm.	1,5	8	6		3	0,176	905	0,10	VIII
f		73	15	30	22 mm-Rundei-en und 16 Bügel, $f_e = 3,71$ qcm, $u_e = 6,83$ cm.	1,4	3	7	5	39	0,109 ²) 0,141 ³)	782	0,08	xxv
		74	15	30	22 mm-Rundeisen und 16 Bügel, $f_{e}=3,74$ qcm, $u_{e}=6.86$ cm.	1,4	3	7	3	39	$0,140^{2})$ $0,158^{3})$	899	0,08	XXVI
		68	30	30	3 Rundelsen 14 mm, $f_e = 4,70$ qcm, $u_e = 13,32$ cm.	0,8	3	3	3	×	0,164	1051	0,09	XVII, XVIII
g		67	20	30	3 Rundeisen 10 mm, $f_e = 2.45$ qcm, $u_e = 9,60$ cm.	0,8	3	6	2		0,196	1567	0,07	XVI, XVIII
		66	15	30	3 Rundeisen 10 mm, $f_e = 2,41$ qcm, $u_e = 9,55$ cm.	0,8	3	7	2	3	0,235	1456	0,06	XV, XVIII
		76	15	30	3 Rundeisen 10 mm, $f_e = 2,38$ qcm, $u_e = 9,44$ cm.	0,7	3	7	3		0,267	1466	0,06	xxviii
h		77	15	30	3 Rundeisen 10 mm, $f_e = 2,34$ qcm,	1,4	3	7	ъ	3	0,207	1452	0,06	XXIX

-						1		-			1					
		79	20	30	3 Rundeisen 18 mm, $f_e = 7,86$ qcm, $u_e = 17,21$ cm.	0,7	3	8			0,211 ⁴) 0,257 ⁵)	790	0,07	XXXI, XXXV		
_1		80	20	30	3 Rundeisen 18 mm, $f_e = 7,81$ qcm, $u_e = 17,17$ cm.	1,7	3	8			0,188	765	0,08	XXXII, XXXV		
k -		81	20	30	1 Rundeisen 18 mm, 2 \Rightarrow 13 \Rightarrow , 2 \Rightarrow 12 \Rightarrow , $f_e = 7,49$ qcm, $u_e = 21,39$ cm.	0,8	3	7		5	0,242	879	0,08	XXXIII, XXXV		
		82	20	30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,5	3	7	3	3	0,185	765	0,07	XXXIV, XXXV		
1		78	15	30	1 Rundelsen 10 mm, 4 \approx 7 \approx , $f_e = 2,35$ qcm, $u_e = 12,02$ cm.	0,6	3	8	3	33	0,241	1428	0,07	XXX		
m		92	Zugk 20)	törper /20	-	-	4	8	1 Raumteil Portlandzement B, 4 Raumteile Kies und Sand in dem Mischungsverhält- nis von 3 Raumteilen Sand zu 2 Raumteilen Kies, 14 vH Wasser (Raumprozente)		0,08 bis 0,10	-	-	LII		
	Die De	Die Dehnungsmessungen reichen bis etwa 9,5 kg/qcm Zugspannung (die Zugfestigkeit beträgt durchschnittlich 1 der Dehnungen sind durch Ergänzung der Dehnungslinien gewonnen worden										,6 kg/qcm); die angegebenen Werte				
	1000				26 mm-Rundeisen,			50	nie mten m)	(Nr. 91 und 92) an der Luft gelagert	0,097	502		XXVII		
n		75	30	30	$f_e = 5,52$ qcm, $u_e = 8,32$ cm.	1,0	4	Tage	wie unter m)	(Nr. 93 und 94) unter Wasser gelagert	0,205	823				
		223	20	50	1 Rundeisen 32 mm, 2 » 25 », $f_e = 17,79$ qcm, $u_e = 25,70$ cm.	1,3	3	7		auf feuchtem Sand mit nassen Säcken bedeckt	0,225	773	0,09	XLIV		
		224	20	50	1 Rundeisen 32 mm, 2 > 25 > , 24 Bügel aus Rund- eisen, $f_e = 17,72$ qcm, $u_e = 25,65$ cm.	1,3	3	7			0,197 ²) 0,218 ³)	747	0,09	XLV		
0		225	20	50	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,6	3	7		3	$0,149^2)$ $0,181^3)$	642	0,10	XLVI		
	20002	226			1 Rundeisen 32 mm,	1,2					0,217	725	0,09	XLVII		
-	2.03	229	20	50	$\begin{array}{c} 4 & > & 18 \\ f_e = 18,5 \text{ qcm}, \\ u_e = 33,0 \text{ cm}. \end{array}$	0,9	6	7			0,227	753	0,10	L		
	20170	227			1 Rundeisen 32 mm, 4 > 18 >,	1,6					0,180 ²) 0,225 ³)	680	0,09	IIL		
		228	228 20 5	50	24 Bügel aus Rund- eisen, $f_e = 18.4$ qcm,	1,8	- 6	7			0,183 ²) 0,195 ³)	699	0,10	IL		
p		213	15	20	$u_e = 52, y $ cm.	-	1	172 Tage	1 Raumteil Portlandzement A, 1 » Sand, 2 Raumteile Kies, 8 vH Wasser (Gewichtspro- zente)	in feuchtem Sand	0,091	-	-	XXXVI		
					Eisenblech mit Aus- fräsungen, 7 mm stark, außen je	0,75		100	2	(Nr. 98 und 99) auffeuchtem Sand und mit nassen Säcken bedeckt	0,324	1114	-	XXXVI		
р		83	15	20	stark, ausen je 15, in der Mitte 30 mm breit, $f_e = 4,1$ qcm, $u_e = 14,7$ cm.	0,86	- 4	4 100 Tage		(Nr. 100 und 101) unter Wasser ge- lagert	0,367	1145		-		

¹) Die Figuren 1 bis 65 finden sich in Heft 39 der Mitteilungen über Forschungsarbeiten, die folgenden Figuren sind im vorliegenden Heft enthalten.
 ²) Unmittelbar vor Beobachtung des ersten Risses an einer Bügelstelle außerhalb der Meßstrecke. Bei Balken mit Bügeln entstehen die ersten Risse fast immer an den Stellen, an denen Bügel einbetoniert sind; sie bilden sich außerdem früher, als wenn die Bügel fehlen.
 ³) Unmittelbar vor Beobachtung des ersten Risses innerhalb der Meßstrecke.
 ⁴) Unmittelbar vor Beobachtung des ersten Risses an der Biegungsstelle der schief nach oben abgebogenen Einlage »3* (Fig. 79).
 ⁵) Unmittelbar vor Beobachtung eines Risses innerhalb der Meßstrecke.

