Deflection of the Horseshoe Girder:-In Fig.4a the lin $A_{s}, \ldots \ldots A_{0}$ represents the neutrat fibre of the girde which can be otherwise free to bend. Forces $P_{8}, \ldots . \mathrm{P}_{0}$, viz, the pre sures from the branch-and-root girders act upon it fibre, the deflection of the compression of the neutral fibre, the deflection of the girder at any given point in
according to the theory of flexure of curved beams:

$$
\delta=\int_{0}^{s} \frac{\mathrm{M}}{\mathrm{EJ}} x d s
$$

where s is the length of the neutral fibre between the given point and B, $d s$ a very small part of it, x the distano from the given point of any $d s$ measured horizontallyi.e., at right angles with the deflection to be calculated moment of inertia at that P in the middle of $d s, \mathrm{~J}$ thic moment of inertia at that point, and E the modulus of with infinitely small d s anproxim cam m be integrated to by making ds measurable For this pups Bortec to by making $d s$ measurable. For this purpose BA_{0} or $s-$ is divided into fourteen nearly equal parts, the poin
of division being marked 0 to 14 on the engraving ength of $d s$ and the moments of one engraving. The or likewise indicated and the man mide of onc the calculation of the above expression which now may by
written in accordance with the approximation

$$
\Sigma_{o}^{s} \frac{\mathrm{M}}{\mathrm{EJ}} x d s
$$

are recorded in the following table :-

Point.	M.	$\frac{d s}{J}$	x, measured from points.				
			8	6	4	2	0
${ }_{2}^{1}$	$3 \mathrm{P}_{0}$	$0 \cdot 00694$					
${ }_{3}^{2}$	$3 \mathrm{P}_{2}+\quad \begin{array}{r}9 \mathrm{P}^{0} \\ 15 \\ \mathrm{P}_{0} \\ \hline\end{array}$	0.00694 0.00694	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 6 \end{aligned}$	${ }_{18}^{12}$
$\stackrel{4}{5}$	${ }_{3} \mathrm{P}^{4}+{ }_{9}{ }^{9} \mathrm{P}_{2}+{ }_{2}+{ }_{21}{ }^{10} \mathrm{P}_{0}$	$0 \cdot 00694$	0	${ }_{0}^{0}$	0	- ${ }_{12}^{6}$	18 24
$\stackrel{5}{6}$	${ }_{9}^{3} \mathrm{P}_{4}^{4}+{ }_{21}^{15} \mathrm{P}_{2}^{2}+{ }_{2}+{ }_{33} \mathrm{P}^{1} \mathrm{P}_{0}^{0}$	0.00694 0.00694	0	0	${ }_{6}^{6}$	18	30 30
7	$3 \mathrm{P}_{6}+15 \mathrm{P}_{4}^{4}+{ }^{4}+27 \mathrm{P}_{2}^{2}+3{ }^{\text {a }}+3 \mathrm{P}_{0}$	${ }^{0} 0 \cdot 006944$	${ }_{0}^{0}$	${ }_{6}^{0}$	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & 24 \\ & 30 \end{aligned}$	36 42
8		$0 \cdot 00694$	0	12	24	36	48
10		$0 \cdot 00633$ 0.00420	$\stackrel{6}{6}$	${ }_{2}^{18}$	$\stackrel{30}{36 \cdot 4}$	42.4	54 60.1
11		0.00420	${ }_{13 \cdot 6}^{12 \cdot 4}$	${ }_{25 \cdot 6}^{24 \cdot 4}$	${ }^{36 \cdot 6}$	$48 \cdot 4$ $49 \cdot 6$	$60 \cdot 1$ 61.6
12		0.00229 0.00245	14.0 14.3	26.0 26.3	38.0 38.3	50.0	62.6
14	${ }_{14} \cdot 35 \mathrm{P}_{8}^{8}+26.35 \mathrm{P}_{6}^{6}+38.35 \mathrm{P}_{4}^{4}+50 \cdot 35 \mathrm{P}_{2}^{2}+62 \cdot 35 \mathrm{P}_{0}$						

In forming the expression $\Sigma \frac{\mathrm{M}}{\mathrm{J}} x d s$, each of the last columns must be used separately. For example, for point 4 the expression $\frac{M}{J} x d s$ will be, for the eleventh point,
${ }_{37 \cdot 6 x} 0.0028\left[13 \mathrm{P}_{8}+25 \mathrm{P}_{6}+37 \mathrm{P}_{1}+49 \mathrm{P}_{2}+61 \mathrm{P}_{0}\right]$,
and for the third point it will be 0 . The sum of the four-
line DE ${ }^{1}$. When acted upon by the wo forces Q and P , its point O will describe a horisutal movement, which is produced by the bending of tho piece OD , and by the extension and compression of the riotal in the piece D E ${ }^{1}$. The actual condition of the latter being free to bend will be somewhat complicated, and would be different in each girder. It will be suficiently accurate to assume as equivalent to the actuad condition that each girder is
firmly held at D and E , but freo firmly held at D and E , but free to turn at both points. The movement at D wowid then be $=\mathrm{Q} c-\mathrm{P} b$, and the movement μ at N_{1} at the distance α_{1} from E
$\mu_{1}=(Q e-P b) \frac{c}{}$
After the bending of 1)E the slements of the neutral fibre at D and E are inclined towands each other under an angle ϕ_{1} which is :-

$$
\phi_{1}=\int_{0}^{a} \mathrm{Q}_{0}-\mathrm{P} b_{1} x_{1} d x_{1}
$$

where J_{1} is the moment of inertia at N_{1}, and E the sequence of this bendin vertical part at point $]_{1}$, at the dislance x_{2} from 0 is

Combining equations (1), (3), and (4), five equations ate obtained which contain only the five forces P as unknow: quantities; these are therefore determined. The equations here; but the results are as follements, need not be given
$\mathrm{P}^{2}=\mathrm{P}^{\mathrm{T}}, \mathrm{P}$

$$
\begin{aligned}
& 0 \cdot 046^{\mathrm{T}} ; \mathrm{P}_{2}=+1 \cdot 153^{\mathrm{T}} ; \mathrm{P}_{4}=+2 \cdot 053^{\mathrm{T}} ;{ }^{\mathrm{T}} ; \mathrm{P}_{6}=+345^{\mathrm{T}} ; \mathrm{P}_{\mathrm{s}}=+5 \cdot 93^{\mathrm{T}} .
\end{aligned}
$$

are obtained :-

teen values thus obtained would be the expression $\Sigma_{0}^{s} \frac{\mathrm{M}}{\mathrm{J}} x d s$ for point 4, and this divided by E would be the value of δ_{4}. In this manner the following equations are obtained :-
$\delta_{0}{ }^{1}=\frac{1}{E}\left(12.071 P_{4}+30 \cdot 660 P_{3}+55 \cdot 745 P_{2}^{-}+1\right)$ $65.021 \mathrm{P}_{\mathrm{t}}+87 \cdot 251 \mathrm{P}_{0}$) $\delta_{2}{ }^{1}=\frac{1}{\mathrm{E}}\left(11 \cdot 695 \mathrm{P}_{4}+24 \cdot 306 \mathrm{P}_{3}+43 \cdot 414 \mathrm{P}_{2}+\right.$ $85.327 \mathrm{P}_{1}+118.403 \mathrm{P}_{0}$)
 $43.521 \mathrm{P}_{1}+56.467 \mathrm{P}_{\mathrm{o}}$)
$\delta_{6}{ }^{1}=\frac{1}{E}\left(4.647 P_{4}+11 \cdot 600 P_{3}+18 \cdot 878 P_{2}+\right.$
$\delta_{\mathrm{B}}{ }^{1}=\frac{1}{E}\left(2.572 \mathrm{P}_{4}+4.371 \mathrm{P}_{3}+8.171 \mathrm{P}_{2}+\right.$
$10.970 \mathrm{P}_{1}+13.770 \mathrm{P}_{\mathrm{o}}$)
$=0.0354 \mathrm{ft} . ; \delta_{2}=0.0286 \mathrm{ft} . ; \delta_{1}=0.0234 ; \delta_{6}=0.0155 \mathrm{ft}$ $\delta_{s}=0.00131$ o pair of branch-and-root cirders, slightly increases it. bu pait itiminishes that of the others the total effect of diminishing the forward movement. The angle ϕ, which, after the bending, the element the neutral fibre of the branch-and-root girders at point 0 forms with the vertical, is-

$$
\phi=\phi_{1}+\varphi_{2}=\int_{0}^{\mathrm{e} a} \frac{\mathrm{M}_{1}}{\mathrm{E} J_{1}} d x_{1}+\int_{0}^{0} \frac{\mathrm{M}_{2}}{\mathrm{EJ} J_{2}} d x_{2}
$$

(4.)

Point G, at the top of the girder-Fig. 3-is $4 \cdot 25 \mathrm{ft}$. abov point O . The forward movement of G is therefore $\delta_{0}+$,
At the extreme pair of girders where $P=P_{0}=-0.046^{1}$ this forward movement will accordingly be
$0.0354+4.25 \times 0.004254=0.05348 \mathrm{ft} .=0.64 \mathrm{in}$.
Being produced, as previously stated, by a load of 175 lb per foot sup. The forward movement for a load of 200 lb ,
$\mu_{2}=Q_{0}=\mathrm{P} x_{2}$, and the horizontal movement of point O

$$
\Delta y=\int_{0}^{2} \frac{\mathrm{Q} c-\mathrm{P} x_{2}}{\mathrm{EJ}} x_{2} d x_{2}
$$

where J_{2} is the moment of inertia at N_{2}. The total $\delta=b \varphi_{1}+\Delta y=b \int_{0}^{a} \frac{\mu_{1}}{\mathrm{EJ}}, d x_{1}+\int_{0}^{b} \frac{\mu_{2}}{\mathrm{E} J_{2}} x_{2} d x_{2}=$
\qquad In this $E J_{1}{ }_{a} \quad E J_{2} \quad a$ 13.5 ft .; $\mathrm{J}_{1}=20$ square inches - feet (constant between $x_{1}=o$ and $\left.x_{1}=c\right) ; J_{2}=25$ square inch - feet (constant between $x_{2}=0$, and $x_{2}=b$); E the modulus of elasticity for wrought iron $=11,000$ tons (constant.)
.
$\delta=\frac{1}{11,000}\left[13.5 \frac{10 \times 6.6-13.5 \mathrm{P}}{20 \times 6.6} \int_{0}^{a} x_{1} d x_{1}+\right.$
$+\frac{1}{25} \int_{0}^{b}\left(10 \times 6 \cdot 6 x_{2}-\mathrm{P} x_{2}{ }^{2}\right) d x_{2}$
Thus :
$\delta_{0}=0.0351-0.0057 \mathrm{P}_{\mathrm{o}}$
$\delta_{1}=0.0351-0.0057 \mathrm{P}^{2}$
$\delta_{\delta_{6}}=0.0351-0.0057 \mathrm{P}^{4}$
$\delta_{8}^{6}=0.0351-0.0057 \mathrm{P}_{8}{ }^{6}$
(3)

WROUGHTIRONGALLERY-READINGTOWNHALL. designed by mr. max am ende, d.e., construoted by messrs. handyside, and co., derby

Which was the test load, would be according to this calculation $=\frac{200}{175} 0 \cdot 64=0.73 \mathrm{in}$. The actual movement was at one side $=0.9$, and at the other 0.5 in., the nequality possibly being caused by the fact, that the
bricks which constituted the test load were piled up at fricks at one side of the gallery and then at the other.
After one-half of the test load was removed all
ranch-and-root girders, having till then been free to move ranch-and-root girders, having till then been free to move This was done by means of grouting with Portland cement, vertical grooves, so that the grouting would make a perfect
bond between the wall and the girders. The horizontal pressure upon the wall being thus outward in the unloaded ndition of the gallery, there is a bending strain in the he load is about 100 lb . per square foot, i.e., half the test he ironwork will not exceed 23 tons per square inch. If
te load should be increased to 220 lb .-an event which We load should be increased to 2001 lb .-an event which would be strained to the same amount as it is now in the
unloaded state, but in an opposite direction. The strains in the iron structure would then probably not exceed four ons per square inch, as they did not exceed $5 \frac{1}{2}$ tons u
Figs. 1, 2, and 3, page 4, show the general arrangement of
the structure. The basement under the hall is traversed by a number of 18 in . walls, upon which the twelve
branch-and-root girders and the continuous frame-girder rest. There is, however, one exception made in favour of supper-room 60 ft by 24 ft . In this case two cast iron olumns serve as supports. The floor joists rest partly on
he walls and partly on the girders. Holding-down bolts
re used only in the case of the continuous-frame girder to re used only in the case of the continuous-frame girder to
counteract the upward moment illustrated in the diagram ounteract the upward moment illustrated in the diagram
f strains, Fig. 2. Fig. 4 shows one of the branch-and-
oot girders in detail. Near the parapet can be seen the oot girders in detail. Near the parapet can be seen the
coss-section of a cross-girder 1ft. deep, which serves to coss-section of a cross-girder lift. deep, which serves to
onnect the main girders with each other, and also to apport an intermediate structure partly made of woodThis cross-girder follows the curve of the parapet at the back of the hall and at the two ends of the gallery. Near
the wall is another cross-girder, 4ft. 9 inin. deep, which is lartly a trellis girder, and serves for the same purpose of the horseshoe girder shown in Fig. 1, and also in Iig. 4, whose importance is noticed in the calculation of ligs. 5 and 6. The latter also shows the cross-girder-coss-girder in detail. Fig. 7, as already mentioned, shows forming the steps are supported at distances of 6 ft . from ach other. The planks are 3in. thick. Figs. 9 and 10 There are $76 \frac{1}{2}$ tons of wrought iron and $4 \frac{1}{2}$ tons cast iron in the structure. The available area of the gallery is 2140 quare feet, and there are consequently 0.0378 tons of iron 50,000 bricks, weighing a little more than 8 lb . each. This represents a load of 200 lb . per superficial foot. The strain
under this load was calculated not to exceed $5 \frac{1}{2}$ tons per
wher quare inch, while the strain under the assumed working alculated not to exceed 4 tons per square inch.
The architect of the Town Hall is Mr. T. Lainson, of Brighton. The ironwork was entrusted to Mr. E.
Matheson, of London, under whose direction it was manuactured and erected by Messrs. A. Handyside and Co., of Derby

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
SIR,-While I beg to thank yped steamships.
SIR,- - hile I beg to thank you for the honourable mention that In your issue of 24 th instant, I would respectfully remark, that vorth the while to build vessels of this kind for the purpose of carry-
ng cargo at the slow speed of about 8 knots ; yet I can see no good
anson ng cargo at the slow speed of about 8 knots; yet I can see no good
eason why the same principles of design may not be applied with
dvantage also to cargo steamers, particularly where speed would dvantage also to cargo steamers, particularly where speed would
re of some importance. The objections raised in this respect
egard, I believe, only the first cost of building; but this extra egard, I believe, only the first cost of building; but this extra
xpense, if any, would, I am convinced, be more than counter--
alanced by the superior speed that such a vessel certainly would
attain, ttain, as compared with others of ordinary form having equal
lisplacement and propelling power; which, , eve contra, would, with
he same speed as the latter he same speed as the latter, require less power and less weight of
engines, boilers, and coals with corresponding increase of carrying engines, boilers, and coals with corresponding increase of carrying
capacity for oargo. The reasons for greater speed, which will, I
think, appear obvious upon examination of the designs, I may state as follows :-The form of the hull makes it possible to unite great carrying capacity with very fine lines and the greatest sharpness.
It also admits of the finest and cleanest run astern possible, allowIng the propellers to develope their utmost effect, working, always
in unbroken solid water thus avoing the loss of power due to
ineir ordinaly ternpost and rudder, and the overhanging part of the ship's stern, sternpost and rudder, and the overhanging part of the ships stern,
against which the sea strikes when the ship is pitching, causing a
disturbance unfavourable to the continuous grip of the propellers upon the water.
Such a vessel
Such a vessel must glide easily through the water, creating
very litile wave at its bow and stern as the main body of the
hull divides the water horizontally below the sarface, which will bue disturbede only water horizontally below the surface, which will
water vertically; but as that part of thull that divides the
whe hull may also be very water vertically; but as that part of the hull may also be very
sharp, and as it constitutes only a small part of the displacement,
there will be less wave-making during the vesth there will be less wave-making during the vessel's progress, and a
consequent economy of power in comparison with ordinary ships. Sunch a versel must be comparatively steady in a sea-way, rolling
and pitching less than others of the usual type, on account of there and pitching less than others of the usual type, on account of there
being a considerable body of water above the projecting angurar
sides of the hull, which body of water must, when the ship rolls, sides of the hull, which body of water must, when the ship rolls,
be elevated on one side while the other side is being depressed. In be elevated on one side while the other side is being depressed. In
moderate weather, when the upper strata of the sea only are dis-
turbed by the force of the wind, there will scarcely be any motion turbed by the force of the wind, there will scarcely be any motion
fell from the sea, exopt that which might be due to a ground
ewell caused by previous gales. This steadiness during the vessel's
progress will save power in no inconsiderable degree. The rudder
-which may be nearly perfectly balanced, so as to require little power to move it-may have much less area than in vessels of the usual model and yet be more effective, requiring less angular
motion to swing the ship's stern, which presents a favourable form and comparatively small verntial surf pace to to a mavouved side forms.
The resistance the the ship's progress caused by the rudder beyin The resistance to the ship's progress caused by the rudder bein
diminished in proportion to its area, a corresponding economy o power will follow.
Owing to the
Owing to the large displacement caused by the width of the sub-
merged part of the hull all the way astern in conjunction with merged part of the hull all the way astern, in conjunction with the
great slarpness of entrance and run, the augmented surface will compare favourably with that of ordinary ships of equal displace-
ment, particularly when, as you have already pointed out, the ment, particularly when, as you have already pointed out, the
draught of water approaches or somewhat exceeds half the greates beam. As an example to illustrate this, I may cite the steamship
Charles V. a vessel of beautiful proportions, having admirable lines and very small augmented surface with respect to her displacement. The displacement of that ship is 2478 tons, and the aug
mented surface 15,266 square feet. Below I give the dimensions of three vessels upon my plan, each of which would have quite as
large displacement as the Charles V., but less augemented
 The power required to drive two vessels at the same speed being
very nearly in the same ratio as their augmented surfaces, it very nearly in the same ratio as their acgmented surfaces, it
follows that when the Charles V. makes a certain speed with an engine power of, suppose, 2000 indicated horses, the first one
of these three vessels, although having somewhat larger displace ment, would require only about 1833 indicated horserepower to
make the same speed. For the reasons stated above, however the difference would probably be considerably greater.
With regard to the vessel, the designs of whec ished, it will be seen from what has been said that with puft. draught of water, instead of $24 \mathrm{ft}$. and less beam, so as to yet have
the same displacement, the augmented surface would be somewhat diminished, and in this respect I would remark that the designs were prepared with special regard to great stability, sufficient to
allow yet another deck above the upper one shown on the drawing If the ship was loaded down to 26 ftp . draught. thus making the dis placement about 16,030 tons, the speed would still certainly exceed
20 knots ; and if the engine power was reduced to 16,000 indicated horse-power-two enges, each of 4000 indicated horse-power on
each propeller shaft instead of 22,800 as proposed, the speed wauld probably reach 19 knots, while the carrying capacity fo
cargo besides a full complement of passengers, would be abou
6oo ton 6000 tons.
London, June 28th.

cheap patents.

SIR, -I am no advocate for cheap patents beyond this, that if a either to the country or to the inventor; and that, instead of invention being over-taxed, for the good of the country it ought to present, but do not attempt to raise, indiscriminately, a lot of revenue from a thing that may never yield a farthing to the man
who has it. Yet the thing may be too good to be lost. Darwin's
theo theory applies to invention if to anything. Ask the artillerist or
 huddreds of diverse ideas, all tending to develope the thought
that was too great for the man who conceived it to bring forth. If the idea be such as may be the subject of a patent, under our
system if the man is poor it has to be hawked about at a great expense among men of money, who, perhaps, cannot see eye to
eye with the inventor ; and the inventor often becomes disgusted and thinks he has either heard or read something about casting pearls before swine. The result is that the thing passes into so
many minds that no man can tell whose was the original idea; and when it is patented, this is done, perhaps, by someone who has no right to it whatever. To remedy things 1 simply propose one law
for the rich and another for the poor so that the one shall not b hindered, nor the other robbed. Let the rich man take out his patent and proceed at once as at present. But supply the poor
man, or anyone else who desires it, wwith a form, numbered, for a
fewher he intends to patent, which form shall be returned within thive he ine to the authorities and kept for twelve months, during which time protection shall be granted for the invention described therein.
This would be fatal to the secrecy which is the parent of so many This would be fatal to the secrecy which is the parent of so many
foolish experiments and patents, as under cover of it he would be able to get the most varied expression of opinion upon his invention
able without fear of olosing it, and by properly advertising it, if there
was anything in it of talue, somene would be induced to speutwas anything in it of value, someone would be induced to specu-
late upon it in patenting and worling it-the patenting to take the usual course. But why extend protection to twelve months? Simply to allow the thing to be properly ventilated, so that no one
will rush into it headlong, and lose money by it. Besides it takes some men three monthsto decide whenerey they will take a thing up
or not; and if one is obliged to go to half a dozen such men consecuorvor, there will not be much time elet on his hands. Butsech-
tivil
we not have the Patent-office inundated with these forms? Well we not have the Patent-office inundated with these forms? Well
if we have, and every form pays well, no hame will be done.
And if they were made to pay well, still the inventor would gladly Aubmit, as it would furnish him with the means of ascertaining readily and inexpensively and safely, whether his invention was
likely to be of service or not. Sir, likely to be of service or not. Sir, my experience leads me to
believe that by inserting this you would render great serviee to a
large class of inventor large class of inventors.
3, Pleasant View, Todmorden, June 11th.
STr,--There is one aspect of the patent law question that does not seem to have received its due share of attention. Great protection by registration as useful desings. It is within the
knowledge of those who have to deal with this class of inventions that many, if not all of them, might be patented, and most likely would be if the fees for patents were lower. If, as seems likely,
an alteration is made in the patent laws in the direction of reducing the fees, then I would suggest that the registration of designs for be protected by patent. This would introduce uniformity into the system, and then these small inventions might, if necessary, be shown in modified forms, which under the present system is impossible, as the exact shape or oonfiguration as shown on the
drawings supplied by the inventor or his agent has to be registered drawngs supppied by the inventor or his agent has to be registered.
The fact so often alluded to, that many American patents are for that country the system above advocated obtains. June 23rd.
law and clark's civil engineering.
STR,-Although you and your readers must have had almost
enough of this controversy, yet we are sure you will acknowledge our claim, as the publishers of the book, to a short space in your columns in reply to Mr. Law's charge against us of a " system of
'improving',the works of living authors without their knowledge or sanction," which charge he has thought fit to reiterate in letters
vith which he has favoured us. with which he has favoured us.
We will not ask you to overb. although we should have been glad to present it in full to your
readers, in the certainty that it would entirely justify, in their
estimation, the course we have taken. We will confine ourselves the charge as it affects the book now under notice.
In March, 1880 , we received from letter addressed to them by Mr. Law, saying that hee 祭 see them previous to the work on "scaying that he should like to
printed. was in England, or, indeed, that het been aware that Mr. Law maintain that as we had been, the publishers of Weale's Rudimentary Series for upwards of ten years-as was well known to the whole
engineering world-and as Mr. Law had during that time never made limself known to us, nor in any way approached us, we were existence or, if he were had ceased to that either he was not in book. Be that as it may, immediately on receipt of that letter
we wrote to Mr. Law, informing him that a new edition of tlir Work was in course of preparation by Mr. Kinnear Clark; and that w
felt sure that that gentleman would be very pleased to suggestion with which he might favour him for its improvement concluding by inviting him to call upon us with reference to the matter. To that letter we never reeeived any repll, neither has
Mr. Law up to this time ever favoured us with a call! Now, Sir, with these facts before them, we leave your readers to judge as to
Mr. Law's courtesy or truthfulness in accusing us, as he does in his letter now before us, sa well as in your columns, of " tampering
with this work without his knowledge sor sanction," We would urther ask a verdict upon thowlectge or sanc taste, of the following accusation made in another letter recently
received from him:-"You have, employed a person to mutilate reeived from himi: "Yyou have, employed a person to mutilate that, has made the infamous charge that I had stolen that boog refers to Mr. Clark's letter in your issue of the 17 th inst. It seems to us that Mr. Law's petulance and, we fear we must the time to all considerations of courtesy, accuracy, or any of the other amenities of commercial or literary correspondence. Will it be bitterly that, on the title page of the last edition of Gregory' Mhathematics for Practical Men, published nineteen years ago, been employed some wenty years before by Mr. Weale to enlarge
it - and actually requests us to cancel the title-page of it-and actually requests us to cancel the title-page of this book published in 1862 and have another printed
If you will permit us, Sir, we will
If you will permit us, sir, we will conclude by expressing an
acknowledgment of the inmartial tone of your notice of the book
which the most distinguished praise to Mr. Law's original book, and pointing out some omissions in Mr. Clark's new edition which
you consider are to be regretted, you award Mr. Clark also a ful you consider are to be regretted, you award "Mr. Clark also a full
meed of praise, and speak of his prudence "in leaving Mr. Law"s Work as far as possible untouched," and of the "great deal of having in all cases selected actual modern examples of engineering construction for illustration of his statements, \&c. It is anothel illustration of Mr. Law's state of mind that in referring to this
notice, in your issue of the 10th, he ignores all this impartiality and notice, in your issue of the 10 th, he ignores all
appropriates the whole of the praise to himself.
appropriates the whole of the praise to himself.
7 , Stationers - -hall-court,
CrosBr Lockwoon and Co.
the proposed bridge over the douro
putes the validity of the geometrical method by which the primary orces acting upon the structure were obtaimed, as explained in my
last letter, it will no doubt be satisfactory to him to see that imilar results are arrived at by the method of direct calculation when this is correctly applied. Referring to the figure accompany-
ing your correspondent's last letter, the following dimensions may e given $\mathrm{A}, \mathrm{B}=110 \mathrm{ft} . ; \mathrm{B}, \mathrm{C}=160 \mathrm{ft}$.; vertical distances between the same
 part A_{1} D C B of the structure and take moments about the point A_{1}.
The forces which act upon that part are, H, the unknown hori-
zontal thrust at C , the vertical fixed load of 750 tons acting at 100 ons, acting vertically 1 downwards midway between A and B, and, lastly, the oblique resultant at A_{1}, the momene The equation of noments for these forces is 750 tons \times (2 fft. +110 ft . +10 ft . $)$ giving $\mathrm{H}=515 \cdot 4$ tons. Again, consider the equilibrium of the
part D B of the structure, and take monents about the point The forces which act upon that part are, P, the unknown vertical eaction at D, the vertical fixed load of 750 tons, the horizontal thrust H at C-omitted from consideration by your correspondent

- and, lastly, the thrust along AB, the moment of this latter being zero since it acts through the point B . The equation of
moments is $515 \cdot 4$ tons $\times 45 \mathrm{ft}-750$ tons $\times 10 \mathrm{ft}$. $=\mathrm{P} \times 135 \mathrm{ft}$, giving $P=+116$ tons, a force acting upwards. The thrust on
the strut A B at B , adding 50 tons for half its own weight to the $\begin{aligned} & \text { vertical load at that point, is } W \text { sec. } \theta=(750 \text { tons }+50 \text { tons }- \\ & 116 \text { tons) } \sec .36 \text { deg. } 30 \mathrm{~min} . ~\end{aligned}=684.0 \times 1.244=851.0$ tons; the difference between this value and that of 830 tons previously given being due in part to the substitution of A_{1} for A as the theo-
retical springing point of the structure, which was explained in my last letter, and in part also to small errors in scale measurement.

2. Moving Load over E C, C K.—Consider for this case the effect of the moving load alone. The amount of the unbalanced load is
8 bays $\times 12$. tons $=100$ tons. Taking moments about A_{1} as

 given by myself being thus practically substantiated, it seems unnecessary to carry the verification any further. It will be seen also that while in (a) your correspondent wrongly obtains the value
55 tons for a downward force said to be required at D, in (e) he makes use of a value of 112 tons, and then compares the result of 632 tons-which should if right belong to the second case above-
with those which properly belong to the first case of "Fixed load only. The vertical line A $A_{1} D$ is not imaginary, as "A Common
Five-eight" supposes, since it is the centre line of a sufficiently strong vertical pier ; and the object of providing articulation at
the points B and G was explained at sufficient length in the article escribing the design published in your issue of May 20th.
Lonsdale-chambers, June 28th.

Contracts Open.-Gas-holder for Halifax. - The gas-holder illustrated in our last impression has been designed by Mr. Wm clerk is Mr. Walton, not Watton, as erroneously given in our last

RAILWAY MATTERS.

ThE Socioté d'Acoz, in Belgium, has obtained a contract from minor importance are expected, and these prospe
TexDRRS were opened a few days ago at Strasburg for the
supply of 1000 steel axles for the Alsace-Lorraine Railway Company. Bochum secured three lots of 200 each, one at
347f. 50.., and the others at 367 f. 50 ..; and
Prupp and the $\mathrm{I} T$ is said that experiments are being made with a view to running IT is said that experiments are being made with a view to running
trains through the St. Gothard Tunnel by electricity, with motive trains arouined from the Reusss and the TTessin. The boring of the
power othe
Arlberg Tunnel proceeded last month at the rate of six and a half metres per dim
undertaken.
A SELECT Committee of the House of Lords has passed a Bill, which has already received the sanction of the House of Commons, authorising the Metropolitan Railway Company to extend its
Harrow and Rickansworth Extension Line as far as Aylesbury,
and thereby eventually to establish a new communication with Harrow and
and thereby
Birmingham.
To-DAY two important alterations in the train service between Leeds and Wetherby and Harrogate will come into operation. An
express train will leave Leedsevery afternoon at 4.30 for Harrogate, and the latter plapece, and anly once-at Thorner-between at Haeds express is itimed to leave Harrogate at 6.10 p.m., and to reach
Leeds at 7.17 .
GERMaNY is, it is said, to contribute to the Electro-technical
Exhibition at Paris the model of a new and important signalling Exhibition at Paris the model of a new and important signalling
apparatus, the invention of a railway official at Elberfeld, which
as alow trains to follow each other at closer distances than hitherto The device, which has, we understand, been tried and found to work excellently, is called an electro-automatic block station
telegraph, and is so constructed as to register at two stations telegraph, and is so constructed as to register at two stations
simultaneously, ybywhel-pressure, the passage of a train at a point
THE murder of Mr. Gold on the London and Brighton Railway
on Monday last has been followed by the publication of a number of letters in the daily press, advocating the introduction of the American system of railway, carriage. The chances of any individual
being murdered in a railway carriage are absolutely infinitesimalhundreds of millions to one against the occurrence--and it is not
we think likely that the comfort and privacy of the English carriage will be exchanged for the publicity and discomfort of the American
car, which has been fully tried on the Midland Railway and car, which
A SELECT committee of the House of Lords on Wednesday passed
Bill, which has already received the sanction of the House of Commons, authorising the construction of a line from the Ux-
bridge branch of the Great Western Railway to join the Watford and Rickmansworth Rail way to Rickmansworth, a distance of over
eight miles. The line will be constructed by an independent company, which has powers to raise capital to the extent of
$£ 150,000$ and to borrow any sums not exceeding $£ 50,000$. The cost of construction is estimated at $£ 114,425$, which provides for the
erection of stations at Uxbridge Dent erection of stations at Uxbridge, Denham, and Harefi
enlarging or building a new station at Rickmansworth.
of Coordice to the Paris correspondent of the Liverpool Journal tenders for 5 first-class corriages, each having two coupes litt and
2 ordinary compartments ; 5 with one coupe lit and 3 ordinary ${ }_{33}$ compartments; 40 ordinary first-class carriages ; 35 mixed ditto closed; 300 coal wagons, and 108 flat trucks ; 30 ditto of 20 and 3
of 25 tons. The value of these contracts is $5,400,000 \mathrm{f}$. The same company is to orracts locomotimested at othe
value of about $3,000,000 \mathrm{f}$, eighteen of them charged to the urrent year's accound twenty-two to the ccount of 1882 .
 Cape Colony, has just returned to England from a similar visit to
Natal. His investigations for that Government have been highly satisfactory, and among the various and pronificic seams of on anthrà
cite and bituminous coal, some of them 10 ft . or 12 ft . in thickness he has found several that are well adapted for locomotive and general steam purposes. That this coal is suitable for the former
work he proved before leaving the colony by working the loco-
motives of the existing neil motives of the existing railways for some hundreds of miles to and
fro between Durban and Maritzburg, and he has handed to that
Government a tabular statement showing the Government a tabular statement showing the advantage of thing
colonial coal instead of any English varieties. The possibility of using cheap local fuel instead of costly English coal in these to rail way constraction, anding an extene Times, beyond a Lrady impetus
Natal, will provide a better and more expeditions Natal, wail provide a better and more expeditious highway to the
Transvan State. The Railway Bill for the
expenditure of
$£ 5,000,000$ expenditure of $£ 5,000,000$ upon railway construction in Cape
Colony, which has just received the sanction of the Assembly at Cape Town, contemplates the intersection by a main line of the
coal deposits of that colony. Therefore, after considerable delay, those coal-fields are now ooing to be berore, anter in consididerable deramy,
with both the coast and the Diamond Fields Inforvatiov as to fore
iron-making materiale, has been obtained for the the British Iron
Trade Association from the Fren Trade Association from the French railway companies by H. B. M. M.
Ambassador in Paris, by the ourtesy of the French Minister of
Public Works. The charges and M Mediterraneanea Railway are, from 4 to 62 miles, $1-23 d$. per ton per
mile ; from 62 to 210 miles, 0.77 d. per ton per mile from mile; from 62 to 210 miles, $0 \cdot 77 \mathrm{~d}$. per ton per mile; from
miles and upard, 0.62 d per ton per mile. The actual charges
made by the company are considerably lower than those authorised, down to, for iron ore, 0.38 d d. per ton per mile, for coal and ooke,
0.38 p per ton per mile ; for pig ion, 0.46 d per ton per mile. O.
the Eastern Railway there is a
the Especial tariff for iron ores, the maximum charge being 0.77d. per ton per mile, and
the minimum 0.35 d per ton per mile. By the ordinary Est-Nord
tariff, the rates for iron ore are-man
 lish ton- and are divided equally between the two compenies
the Estand of the Nord. Rates for pig iron are, maximum 0.77 .
per ton per mite per ton per mile ; minimum, 0.46 d . per ton per mile, not includ
ing the costs of charging and discharging at the stations, which ar
fixed at if, per 1000 . ordinary special Est-Nord tariff are, maximum, per ton. The rates by the
mile; minimum, 0.3 d . per ton ter ton per
 o.gld. per ton per mile, minimum, $0.62 d$ d. per toon per mile, not
including the charges for loading, unloading, and the staion user.
By another special tariff this company carries bar iro price of of. Otc. per ton per kilometre- 0.62 . per tor tor per mile
including all station charges for loading and unloading. This tariff
is is specially applied to the convevance of iron from various iron
making centres to Parise The ordinary tariff of the Etst-Nord and
of the Est-Ouest provides for carrying bar ino
 kilometre-about '52d. per ton per mile -as a minimum, excluding
in both cases the charges for loading, unloading and the use of
the station, which amounts to 1 '4of. per ton, and is divided equelit the station, which amounts to 1 140f. per ton, and is divided equall
between the two companies.

NOTES AND MEMORANDA
Nioket ore of fine quality is reported to have been discovered in Der Mash Constr. says that Professor Boet Dhe following sonstution says that coating coppersor plates. with iron. Tends parts of ferro-cyanide of potassium and twenty parts of tartrate of
soda are dissolved in 220 parts of distilled water, adding a solution of three parts of sulphate of iron in fifty parts of water. Caustic
soda solution is then poured into the mixture until the Prussian
hle blue formed is re-dissolved.
THE pyramids of Egypt are thirty-eight in number, and stretch fHE pyramids of Egypt are thirty-eight in number, and stretch
Nile valley, just wheore the the Libios along the westert the weach or the re the struggle for extension, or from nearly opposite Heliopolis to past
the site of Memphis the site of Memphis: Of the whole number, only one, the first,
most northern, or ". Great Pyramid," is a true pyramid; thirty
four are mere imitations, i.e, only approximately true, while the four are mere imitations, i.e., only approximately true, while th
remaining three scarcely deserve to be classed as pyramids at all. Acoording to a report on the working of the Suez Canal in 1880
published by the Statistical Bureau of Egypt, under the direction of Amisi Bey, it appears that during the year, 2017 ships passe through the canal, with an official tonnage of 2,860,448, but really
amounting to $4,378,964$. The number of hands employed in th amounting to $4,378,964$. The number of hands employed in the
navigation was 122,453 ; the number of passengers, $535,517$. Of the
$2,860,441$ tons offial French, 75,820 Austrian, 124,083 Dutch, 71,039 Ittalian, 56,245
Spanish, 38,162 German , 29607 Rusian 7203 Turkish, and 8032 Spanish, $38,162 \mathrm{G}$ German, 29,607 Russian, 7203 Turkish, and 803 IT has, while 25,180 tons belonged to other States.
IT has, no doubt, been a mystery to many how the iron ball
inside of sleigh bells 'got there, and it is said to have taken considerable thought on the part of the discoverer before the ide struck him. In making sleigh bells the iron ball is put inside is made just the shape of the outside of the bell. Then a mould with the jinglet inside, is placed in the mould of the outside, an the melted metal is poured in, which fills up the space between the
core and mould. The hot metal burns the core so that it can all be shaken out, leaving the ball within the shell.
THE number of artesian wells in New York steadily and rapidy increases, something like forty having been sunk during
the past year. Their depths range from 200ft. to 2000ft., and th flow ranges from 1000 to 2000 barrels a day. These wells are used maine by brewers and other large manufacturers who require a
large amount of water, and who find the artesian well wate them to In one instances seven holes were drilled in different directions and at different angles, only one being vertical. The boring was
carried to a depth of about 26oft. on the average, the longest at an angle being 45 fft . deep. Water was struck in all the borings, and
IN order to obtain iridium in a convenient form for making pen
points, the molten metal is poured on an iron plate, when the workman immediately strikes it with a heavy iron, thereby
flattening it out into a slab of about one-thirty-secondth of an incl flattening it out into a slab of about one-thirty-secondth of an ind
in thickness. This slab is broken up into small pieces, which ar The ground. into the proper shape. The grinding is accomplished as follows :- A copper wheel, teshnically called a lap, about 12in.
in diameter and $\frac{1}{2}$ in. in thickness, revolving about 3000 revolutions per minute, is covered with fine emery corundum mixed with oi The emery imbeds itself into the copper, forming a rough an
sharp surface. When the object to be ground is too small to hol in that is solered on a piece of brass, which, after the grinding, is dissolved in nitric acid, leaving the iridium
ounce of iridium yields from 5000 to 10,000 pen points.
Professor Abel has made a report to the Home-office on a series explosion last year. He says it may be admitted as possible that in the large volume of flame, and the great disturbing effect of and its suspension in the surrounding air, such inflammation may
and in the complete absence of fire-damp, be propagated to a greate distance than the results of small experimentsp wound warrant on
in assuming. But it scarcely can be maintained that the air of
 fire-amp, antities of that gas in the air of a mine may suffice to bring about the ready propagation of flame by coal dust, and thus to develope
violent explosive effects, it would appear nedless to assume the coal-dust may, in the entire absence of fire-damp, sive rise to
explosions even of only limited character in coal mines, in order to account for casualties which cannot be ascribed to the existence解
A NEW form of seismometer is described by Dr. G. Wagener of
Kioto, Japan. From a strong rigid frame in the form of a short quadrangular pyramid is suspended an iron ball weighing about
fifty pounds, by means of a bundle of untwisted silk fibres three feet long. Below his bail is an tucating pendulum consisting of hollow sphere pivotted near its centre of suspension upon a smal
polished ball, also rigidly fixed to the frame, and carrying beneath
it times. A small sphere fixed to the bottom of the iron ball play into a cavity in the summit of the indicating pendulum. The oscillation as compared with that of the iron ball. Hence when an earthquake occurs the inertia of the heavy ball will keep it for a
considerable time in its pendulum moves toward the region whence the disturbance came and can return almost instantly if the horizontal displacement be
succeeded by a displacement in the opposite direction. That the movement of the pendulum may be regostered accurately in point
of time, a small silk thread attached to the bottom of the indicating pendulum passes through a small eye-hole in a porcelain plate
immediately beneath, and thence passes round a light indicating wheel which is also in connection with a lever movement drops, and stops a clock. A kindred apparatus i
employed to register the direction of the shock, eight threads from
the the indicating pendulum of a similar instrument being wound compass.
if it prove suceessfull is a recent number of the Revue Industrielle consequently of brass and gun-metal. At Lyons, attempts have
been made to adapt the bees. These attempts have been confined to simply burning off the
ores
sulpher a powerful blast. The process has already been described in THY ENGINEER. The difficulty has been, according to our contemporary,
that, toward the end of the process, the charge has been alway cooled down too much by the operation. This obstacle has, it it
said, been at length overcome by the Lyonnais. One day, when
meltine melting down some old copper, a piece of phosphor-bronze having
found its way into the prised at seeing the phosphorised metal, when exposed to the heat, and atlength arrived at a dazzling white heat. The phosphorus, thus the copper. In studying the order of combustion in air of the substances capable of being mixed with pyrites or matter, it wa.
found that sulphur burns ifrst, then certain metals, and last of all phosphorus. The inference was drawn that all that is necessary in
order to prolong to any length the Bessemer operation in ocpper
refining is impl to add amal quantity of phosphorus the the
charge, and thus obtain, after the connity
pure copper. A company has been formed in Lyons for the
purpose of working the new process, and works have been laid down
respecting which further particulars are promised.

A NEW bridge is about to be ereeted over the Tweed, near the
\qquad A NEW street is in course of formation out of Chancery-lane
through Bream's-buildings into Fetter-lane THF contractor of the new dook at Swansea has brought the
electric light to bear for the night shifts, and to considerable advantage.
THE City Commissioners of Sewers have aceepted the the Val de Travirs Company for paving the roadway of Queen
Victoria-street. At the same meeting it was decided to remove the EIGHTY of the Coleman-street, and replace it by asphalte. EIGHTY of the public lamps of Sheffield are now being lit and
extinguished by a pneumatic system invented by Mr. George Weston. The operation of lighting or putting out is done in less
than fifteen seconds. It is expected that the experiment will

Her Majestr's Government have appointed the Earl of Crawford and Balcarres, Chief Commissioner, and Sir Charles $\frac{\mathrm{T}}{\text { Bright, Professor D. E. Hughes, F.R.S., and Lieut.-Colonel C. E. }}$ Exhibition and Congress at Paris THE construction of the new high level bridge at Barrow is pro-
ceeding very satisfactorily. The masonry and briokwork is in forward state, and the ornamental iron and girder work which is to span the main line of the Furness railway and docks has nearly
all been made, but the work of erection yet rumains to be done Arrangements have been made between the Gas Committee of the Corporation of Birmingham and the Smethwick Local Board purchased by Smethwick. This is considerably earlier than the

The telegraph steamer Faraday, of London, Captain Maypee which is engaged in laying the new Atlantio cable, has pieked upe up
the end of the English shore section which the end of the English shore section which had been buoyed thirty
six miles away, and, having effected the splice, proceeded to pay six miles away, and, having effected the splice, proceeded to pay
out the mid-ocean section of the cable. The section off the
Amer A great deal of fuss was made about a fire on board the twinThere was a good deal of smoke was of little or no consequence damage whatever was caused to the saloon or any other part of the
vessel, which performed the usual mail service on Tuesday mornvessel, which performed the u.
ing between Dover and Calais
Iv April last an application was made by the Birmingham, Tame,
and Rea District Drainage Board to the Local Government or permission to borrow $£ 188,000$ for the purchase of land, \&ce. An inquiry into the matter was subsequently held by Mr. J. J.
Thornhill Harrison C.E., an inspector, and an intimation has now been received from the Local Government Board that the application
THe work of re-opening the Maudlin seam of the new Seaham
Colliery, where for the past nine months the bodies of twentyeight of the sufferers by the disaster have been lying, has now
been commenced. The workmen have advanced to within less than 1000 yards of the spot whore it is supposed the remainder of the bodies will be found. Mr. Fleuss's apparatus for enabling persons to work with safety in noxious atmospheres, and also a
safety lamp of his invention, have been used with great advantage in the operations. It is expected that some important dis. tage in the operations. It is expected that some impo
coveries as to the cause of the explosion will be made.
A MEETING of the Amalgamated Society of Engineers and of
an-society men has been held in Birmingham, in the interests of trade unionism, It was stated that the membership was increasing
and that the funds now amounted to £132,000. Since its birth the society had expended nearly two millions of money in its benefits. a distinct increase both in the quantity and quality of work done in a given time since the introduction of the chort hours system by
trade societies. He believed that if Amerioa, and the chief European countries, took off their protective tariffs, England would ecome the workshop of the world
Furfier experiments with the electric light were made in the
House of Commons on Friday night. In addition to the twelve Brush lanterns in the roof, there were thirty-four small ineade cent lights on the Swan system under the galleries. These lights
superseded sixty-four gasilights in the roof, and thirty-four gas jets superseded sixty-forur gaslights in ther oof, and thirty-four gas jets
on the pillars. There was a perceptible diminution of heat under the galleries, and the light there was steady and clear. Though
 the previous experiment. Opinion is still dividided as to the com-
parative merits of the old and new systems of illuminating the parative merits of the old and new systems of illuminating the
A socirm which promises to have an important future com.
menced its first general meeting on Tuesday, in the hall of the menced its first general meeting on Tuesday, in the hall of the
Institute of Civil Engineers, Great George-street. Inaugurated as recently as the 4th of April last at the rooms of the Chemical Society, Burlington-house, it already numbers more than 300
members, and yesterday's meeting was largely attended, Professor
Roscooe, F.R.S., the president of the Chemical Society and also of Che new society, was in the chair. The aim of the society is to
bring more closely bring more closely together the scientific chemist and the practical
man, or, as it is worded in the laws, "to promote the acquisition and practice of that species of knowledge which constitutes the three papers were rad:- On "Recent Leitisiation on Noxious
Gases,", by Mr. E. K. Muspratt; "The Brewing of Lager Beer," Professor C. Graham; and "Mechanical Furnaces," by Mr.
James Mactear. In the evening the members dined in the Pillar PLymouth has been carrying out a large drainage scheme, and on Saturday Sir Joseph Bazalgette, the engineer of the Stonehousc
Lake drainage scheme-with whom have been associated Messrs, Law and Chatterton, of Westminster, Mr. M. J. L. Hodge, octing
as resident engineer for them -made a final inspection of the works which have been in progress upwards of two years. A huge sewer reaches from the old Rectory at Stoke Damerel, round by
the Military Hospital, across Miill Bridge, past the Naval the Minitary Hospital, across Min Briage, past ene Naval
Hospita, across into Chapel-street, Stonehouse, up Durnord-
street, and so to the sea under Eastern King Point, and is in all about two miles and a quarter losg. The sewer, so far as it reaches the ascent to Durnford-street it takes the form of a tunnel of considerable size, and sometimes at a great depth from the
surface Atogether 3500 ft , have been tunnelled, and 8006 ft . are
of of brickworrk, the total length being $11,506 \mathrm{itt}$. The tunnel is
5 St. in. one way, and 4 ft. 6 iin. the other, The contrate was let to
Mr. Henry Stephens, of Ashburton, for $£ 12,866$, but the extras paid up to the present date amount, according to The Western pleted it is expected that they by the reache the work is wholly com-
otal sum spent upon the work $£ 19,000$ total sum spent upon the work $£ 19,000$. The extras have been
occasioned by the nature of the ground through which the tunnel
che proved faulty; and instead of merely having to put a little fissures were so large that regwas excavated, in many cases the brickwork had to be resorted to. Sir Joseph Bazalgette himself
says the work has been oone of extreme difticulty. While the
sewer will act as the main sewer for Stonehouse and some old catchpits which have hitherto been used will be done away with,
the prinipipal object of the work has been the purification of the
Stonehouse Creek,

THREE CYLINDER COMPOUND ENGINE.
MESSRS. DUNCAN, STEWART, AND CO., LONDON-ROAD IRONWORKS, GLASGOW, ENGINEERS,
(For description see page 11.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO CORRESPONDENTS.

*in order to avoid trouble and confusion, we find it necessary to public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibily directed dy the
writer to himself, and bearing a ad. postage stamp, in order that writier to himself, and bearing a $2 d$. postage stamp, in order that
ansters received by us may be forvarded th their destination.
notice woill be taken of communuications which do not comply with notice will be taken
these instructions.
** We cannot undertake to return drawings or manuscripts; we must therefore request correspondents to keep copies.
** All letters intended for insertion in THE Engineer, or containing questions, must be accompanied by the name and
address of the writer, not necessarily for publication, but as a
proof of good faith. No notice whatever will be taken of

 We agree with your remark that there is room for a good historical and
practical treatise on grain milling machinery. A good vark of this kind
is cxtant in Gemany by Frielrich Kich, entitted "Die Mehlfabrikation,"
miblished at Leipsic, 1871 . $x=2=5$ $=5=-=5$

COTTON BELTING.

SIr,-Will any render give us the name and address of the manufacturer
Scandinavia cotton machine and elevator belting? Scandinavia cotton machine and elevator belting?
Bristol, June 29th. COOLING CHILLS.
(To the Editor of The Engineer.)
Sir,-Will any reader kindlv tell me the simplest and best way of
keping plough-share chills cool while frequently casting in them?
June 22nd.

WANTED, A NON-CONDUCT

SIR,- Can any of your subscribers or numerous readers inform mee as
the best method to adopt to prevent heat passing through the walls of large oven or core drying stove into an adjoining dwelligg-room, which
is only divided off at present by a sound 1 Sin. wall? The heat in winter in is only divided off at present by a sound 1sin. wall? The heat in winter in
the rom is sarely to be felt, but in summer it is objectionable.
Sheffield, June 23rd.

SUBSCRIPTIONS

If credit occur, an extra charge of two shillings and sixpence per.
be made. THE ENGINEER is registered for transmission abroad.
Cloth Cases for binding The Engineer Volume, Price 2s. 6d. each
Many Volumes of The Engineer can be had price 18s. each.
Foreign Subscriptions for Thin Paper Copies

Pemittance by Post-office O, Order.- Australia, Belgium, Brazil, British
Columbia, British Guaiana, Canada, Capeo Good Hope, Denmark, Egypt,
France (Paris only, Germany Gibeltor Columbia, British Guiana, Canada, Cape of Good Hope, Denmark, Egypt,
France (Paris only), Germany, Gibraltar, Italy, ${ }^{\text {appan, Malata, Natal, }}$
Netherrands, New Bruswick, Newfoundland, New South Wales,
New Zealand, Portugal, Roumani, Netherlands, New Brunswick, Newfoundland, New South Wales,
New Zealand, Portugal, Roumania, Switzerland, Tasmania, Turkey,
United States, West Coast of Africa, West Indies, China via Southamp-
ton, Cyprus, E1 16s. India, £2 0s.6d. Pemittance by Bill in London.-Austria, Buenos Ayres, Ceylon, France,
and Algeria, Greece, Ionian. Islands, Norway, Panama, Peru, Russia,
Spain, Sweden, $£ 1$ P1 16s. Chili, Borneo, and Java, £2 5s. Signapore,
£2 0s. bd. ADVERTISEMENTS.
The charge for Advertisements of four lines and under is three shillings;
the every tivo lines aftervards one shilling and sixpence. odd lines are
charged one shilling. The line averages seven vords
 single advertisements from the country must be accompanied by stamps in
payment Alternate advertisements vill be inserted with all practical
regularity, but regularity
except veeekly advertisements areot be guaranted in any such subject to this condition. Advertisements cannot be Inserted unless Delivered before Six
o'clock on Thursday Evening in each Week. * Letters relating to Advertisements and the Publishing Department of the
paper are to ode addressed to the Publisher, Mr. George Leopold Riche; all
other letters to be addressed to the Bditor of THE ENGINEER, 163, Strand.

DEATH.

On the 22nd June, at his residence, 24, Loughborough-road, Brixton,
Thomas Bevington, A.I.C.E., aged 4s.
THE ENGINEER.
JULY 1, 1881.

mill engines.

The term " mill engines" is generally reserved for steam engines employed in driving the machinery of cotton mills,
but it is also sometimes applied to those found in jute and
woollen factories. The title is never given to engin in flour or rice mills, rolling mills, or tin or copper mills The mill engine is, and has been from the first, a appecial machine, bairn had almost a monopoly of design, if not of actual struction, in this class of machinery, and he pretty closely
followed Watt's notions. Fairbairn preferred to beam engines driving one crank shaft, with a use two wheel between the two overhung cranks. The a valves fere
of the Cornish of the Cornish type, worked by revolving horizontal cam
massive, heavy, very expensive, and fairly economical, even
when measured by the highest standard. In process of when measured by the highest standard. In process of
time it was often found necessary to augment the power of the mill engine, and to this end it was compounded or MeNaughted. By-and-bye, compound engines were built for driving cotton mills; then came the Corliss engine, and
by degrees the speed was increased. The latest development of improvement in the machinery used for
driving cotton mills consists in the driving cotton mills consists in the abandonment of
the spur fly-wheel. Its place is taken by what is neither more nor less than a huge drum or pulley; and from this ropes or belts are taken to as many pulleys as there are
floors, and the machinery on each floor is driven by a principal lay shaft appertaining to that floor. Thus transmission is effected almost wholly without the aid of gearing. One of the most direct consequences of the
adoption of this system, is that engine shafts are now driven at a much higher velocity than was thought of in Fairbairn's time. The efficiency of a fly-wheel in pro-
ducing regularity of motion varies, other things being equal, as the square of its angular velocity Conseguently it has become possible, thanks to the high-speed of modern engines, to drive a cotton mill with a single cylinder engine. As an example of what can be done in this way we may cite
Messrs. Hick, Hargreaves, and Co.'s great Corliss engine, illustrated in our impression for April 29th. In cotton spinning it is essential that the engine should revolve with the utmost uniformity of velocity ; and instances are not unknown in which a small band from the main crank shaft has been made to drive the hands of a clock without works, regulated by the engine has not been driven and than a couple of minutes in a day. So long as the slow speed was adhered to, two cylinders were of neces-
sity used to sity used to get regular turning, and the compound engine was little more than a development of the twomerits in point of economy of the simple and compound engine, just because the matter had little or no interest for millowners ; but the advent of high-speeds and the consequent possibility of using single-cylinder engines has altered the aspect of affairs ; and the question of the comparative advantages of simple and compound engines, with all its side issues, is now, perhaps, more keenly discussed by millowners than by anyone else.
It must be understood that the millowners approach the subject from a very practical point of view. Economy of fuel is but one factor in their calculations. The first cost,
space occupied, interest on first cost, and outlay on maintenance have all to be considered. Small savings of fuel one way or another are of little consequence. Thus if we suppose that of two engines each indicating 1000 -horse
power, one burns 2.75 lb while the other burns 3.0 lb of power, one burns $2 \cdot 75 \mathrm{lb}$. while the other burns 3.0 lb . of
coal per horse per hour, the difference for a day of ten hours in favour of the last engine is represented by the value of 2500 lb . of coal, amounting to, let us say, 10 ss , or in the expenses of a readily absorbed by the additional cost of the engine. Thus an outlay of a couple of thousand pounds extra to
secure economy of fuel would run away with the whole of the profit. To obtain precise information on such points, and on many others, the millowner will not rely on books or calculations. He asks for facts obtained by experience. He wants to know what the simple and compound engine
actually do in cotton mills. No one can dispute the wisdom actually do in cotton mills. No one can dispute the wisdom
of this, and an attempt is being made to supply the of this, and an attempt is being made to supply the
required information by the various engineers of the boiler associations and companies. We had reason recently to criticise Mr. Longridge's report on the trial of a compound
engine at Messrs. Nuttall's, in which results difticult engine at Messrs. Nuttall's, in which results difficult to
believe in were obtained, probably as a result of the use of inaccurate indicator springs. Mr. Fletcher not long since reported to the Manchester Steam Users' Association on
the relative performance of several compound and simple engines working in cotton mills, and Mr. Neil McDougall, engineer to the Boiler Insurance and Steam Power Company, devotes a chapter of a very interesting and able
annual report to his directors on the same subject We say before going further that Mr. McDougall quite dissent fromMr. Fletcher's views. He holds that as regards economy of fuel, there is little or nothing to choose between the maintenance, the advantage is with the simple engine Mr. Fletcher asserts, as the result of his experience over
a given time, that the average net consumption of fuel in the a given time, that the a verage net consumption of fuel in the
compound condensing engines under his inspection is 62 pe cent. of that of the single cylinder condensing engines,
Now it is well known that in cotton mills a great deal of steam is used for heating the buildings, and it is some times not easy to separate the engine consumption from
this. It is clear, therefore, that Mr. Fletcher has had some obstacles to get over before he could come to any conclusion. However, it seems that he has succeeded in
getting at net results. There is no theoretical reason why a compound engine should, other things being equal, burn only 62 per cent. of the coal required by a simple engine
and this being the case, Mr. Fletcher's a and this being the case, Mr. Fletcher's figures require to
be regarded at least with some hesitation. Mr. McDougall has no hesitation in rejecting them as untrustworthy, and he has no doubt made a good point. Mr. Fletcher has,
unfortunately, not stated all the circumstances ; and he has made comparisons where none ought to have been in which the exteample, he compares a non-compound engine, to 23.35 lb . in the cylinder, and a second engine with 35 lb . boiler and $26^{\circ} .4$ lb. cylinder pressures, with compound
engines working with cylinder pressures of 78.5 lb . and engines working with cylinder pressures of 78.5 lb . and
$76^{\circ} 5 \mathrm{lb}$. Again, he makes a curious average of the performance of four of the best compound engines and four
of the best non-compound engines of the best non-compound engines. From this it appears that all the compound types worked at 73 lb . boiler pres-
sure, 17.73 lb . mean cylinder pressure, and used 2.37 lb . of coal per indicated horse-power per hour ; and that all the 52 lb , a mean cylinder pressure of 21.84 lb ., and a con52 lb , a mean cylinder pressure of 21.84 lb ., and a con
sumption of coal of 3.72 lb . per horse per hour. As a
matter of fact, these figures do not represent the actual in a way which is really inadmissible and misleading, and we are quite at a loss to understand what was passing figures in this way, Fleter's mind when he dealt with his compound engine, and he compares this with one of the simple engines cited by Mr. Fletcher. This engine burned simple engines cited by Mr. Fletcher. This engine burned
3.24 lb . of coal per horse-power per hour; but the compound engine used no less than $6 \cdot 83 \mathrm{lb}$., although it had a higher pressure of steam and a better vacuum to work
with so bad, Mr. McDougall explains why its performance was so bad, and he goes on to point out that it would be most
unfair to use the figures we have age setting forth the performance of compound engines. Comparisons should only be drawn between the best engines of their type, and in this we fully agree with Mr. McDougall.
The most
McDougall's interesting feature in this portion of Mr, ance of two engines, one compound the of the perform pansive. Both engines were built by the same mate ex Messrs. Hick, Hargreaves, and Co., of Bolton. These engines are for convenience termed "B" and "C." "B" consists of a pair of compound tandem engines with Corliss valves to the high-pressure cylinders, which are steam-
jacketted. The low-pressure cylinders have slide The engines closely resemble that of Messrs Nuttal reported on by Mr. Longridge. The high-pressure cylinders are 20in. and the low-pressure 31in. in diameter, the stroke is 6 ft ., and the ratio of volume is $2 \cdot 42: 1$. Steam is supplied by three Lancashire boilers 30 ft . by 7 ft ., the flues being 2 ft .9 in . diameter. The feed is heated by a Green's economiser. The simple engine has an inverted vertical cylinder 32 in . diameter and $4 \mathrm{ft}$. stroke, and is fitted with boilers 30 ft . by 7 ft ., of steel ; 2 ft . 9 in . flues ; feed heated by an economiser. The compound engine during its trial made $46 \cdot 7$ revolutions per minute, corresponding to $560 \cdot 4 \mathrm{ft}$. or piston per minute, while the simple engine made $82 \cdot 8$ " B " indicated 635 -horse power, and engine " C " 540 indi-
號 cated horse-power. The boiler pressures were 71 lb . and 70 lb . respectively. The compound engine required 2.86 lb . of coal, and the non-compound $2: 35 \mathrm{lb}$. of coal per indicated horse-power per hour. It would be easy to draw the conclusion that the non-compound engine " C " was the
more economical of the two , but Mr. McDougall has properly pointed out that we must look to the boilers' performance before we express an pinion thiskind pend doing this we find that while boiler " B " evaporated but 6.66 lb . of water per pound of coal, boiler " C " evaporated 8.81 lb ., the difference being principally due to the quality and steam, we find that the and returning to ted 18.9 lb per indicated horse-power, and the simple engine 20.5 lb . of steam, or 1.6 lb . more than its rival; that is to say, it two machines being as $92 \cdot 1$ is to 100 . Again, the weight of steam required for a perfect engine working between obtained, and which were the same for both engines being 8 lb ., the actual efficiency of "B," compared with a perfect engine, was 423 , while that of " C " was 39 ; but it is a account for but 80 per cent. of the steam used, while in the case of " C " it accounted for 91 per cent. The mean ratio the expansion in the compound engine was apparently about sure, nat can be adopted with steam of the given press steam was expanded but 4.27 times, and, we believe, a it five advantage would have been derived from expanding ference betw. Be this as it may, it is evident that the diffuel is so small that some other consideration must be employed to make a millowner decide "which type of engine he will have. The cost of the " B " engine was portant The ${ }^{2}$, the diference $£ 1326$, but the foundations of " C " cost only $£ 250$. Thus, the annual charges for the two engines, allowing 4 per cent. interest on capital and 7 for depreciation - neithersums being enough$£ 385$ amounts, for engine "B," to $£ 449$, while for "C" they reach but non-c. The difference is ± 64 per annum in favour of the 183 tons of coll which ; but $£ 64$ would buy, at 7 s . per ton, indicated horse-power per hour for 3000 working hoursfigures which bear out the statement we have made, that a saving of a fourth of a pound of coal per horse-power per hour may be of no importance whatever, and may, indeed, be more than counterbalanced by the outlays cerning the other directions. We hatwo types of engines, but it is quite obvious, we think, that the simple engine has everything in its favour in this respect.
Mr. McDougall's experiments are peculiarly interesting to us, because they confirm in the fullest manner all that we have repeatedly contended for. They demolish the second cylinder neutralises the influence of the condenser in the most effectual way ; the cylinder condensation in the non-compound engine being actually considerably less than that in the compound engine, in which, moreover, expansion was certainly not pushed too far. We have over and over again shown that the presence of an extra cylinder in the compound engine must neutralise all the advantages to be gained from the interception of the cooling influence of the condenser ; and it will be seen that in the cases cited the small difference in efficiency of the steam in the compound as compared with the non-compound engine, $0 \cdot 423: 0 \cdot 39$, was due entirely to
the extra expansion. The value of various measures of the extra expansion. The value of various measures of
expansion is in theory determined by the hyperbolic logarithm of the ratio of expansion, and we have accordingly for engine "B" 1881 , and for "C " 1451 , and taking the efficiency of " C " as 39 , that of " B " should
have been 50.5 instead of 42.3 . It is difficult to contend
in the face of such facts that the compound system is specially economical. The truth is that the compound system possesses great advantages under all circumstances where two cylinders must be used to get regular
turning, in that it renders the employment of a complex turning, in that it renders the employment of a complex
valve gear unnecessary, and that it saves machinery
some strains. some strains ; but that it, as ordinarily used, secures economy of fuel, and that it is better in this respect
than simple engines, has never yet been proved when than simple engines, has never yet been proved when
justice was done to both systems. The compound engine has great advantages for use at sea; but they do not depend on economy of fuel, and for mill engines it may
be said that they have no existence. In practice, as in theory, the engine which is best made and best worked is
most economical, no matter whether it is compound or non-compound, and all that can be said on the matter seems to be, that whether the millowner uses a compound or a simple engine, he can work oin a very small consump-
tion of fuel as compared with that usually required, but, comparatively speaking, a few years back. In conclusion, ve would add that there is a great deal in Mr. McDougall's report which requires to be noticed on our part; we shal return to it in an early impression.

ce fees.

leserves more attention than it would, perhaps, have received if we had not specifically noticed it here. It
contains a suggestion which is, unfortunately, so worded contains a suggestion which is, unfortunately, so worded
that it apparently contemplates the making of one law for the rich and another for the poor ; but this is really not he writer's intention, as will be seen if his letter be read with due care. In few words, his proposal is that it shall
be possible to obtain for an invention on payment of a be possible to obtain for an invention on payment of a
very small fee, what we may for convenience call temporary protection. There is a great deal to be said against omething to be said in its favour ; but it should be fully understood that the proposal would lead to very radical changes in patent law practice in more ways than one.
Whether such changes are or are not desirable is a point which need not be discussed. We do not think they would be desirable; but if it can be shown that, on the whole,
the change would serve the interests of the inventor, then it ought to be made. The bearings of the whole question may be readily rendered intelligible. As the law now stands, no manner of safeguard can be obtained for less
than $£ 5$, which is the stamp duty or fee charged by the Governmentfor granting provisional protection. Nominally this protection lasts six months; really the time is some-
what curtailed by the circumstance that the certificate of allowance is not granted for a few days after application for protection has been made, during which the inventor
can do nothing ; and notice to proceed, which involves a can do nothing; and notice to proceed, which involves a
further expenditure of $£ 5$, must be given two clear nonths before the expiration of the time of protection. Furthermore, provisional protection is of doubtful value, as 'anyone who can subsequently get a patent sealed can
generally cut out the original applicant. Tomeetthisexpendiure of $£ 5$ many inventors have, it is urged, no spare money, and they are thus debarred from obtaining a patent. But unless they have protection they cannot with safety show their invention to manufacturers or others
who would be likely to take it up. A term of six months is more than enough, it may be argued, to obtain opinions and advice, although it is not enough to get an invention into
working order. If, now, it were possible for an inventor o obtain absolute protection for, say, two months on payment of a small fee-as, for example, five or ten shil-
lings-he would then be able to show his invention to capitalists, and ascertain whether it was or was not good
for anything. This is the theory lying at the root of our orrespondent's proposal.
We need hardly say that we do not regard a reduction in the official fees charged by Government to inventors
with much favour. Our objection to small fees is that if patents were made very cheap, hosts of men would fly to take them out, and neglect their own business in the
attempt to make a fortune. The Patent-office would become a huge State lottery, in which, like all lotteries, the blanks would be multitudinous, the prizes very few. The cost of a ticket in this lottery is now comparatively metaphor-sold is small. Let the price be reduced from $£ 5$ to say $£ 1$, and the tickets sold would be augmented in number at least five-fold. Inventions which now rest peacefully in the brains of hard-working men, or cost no
more than a little drawing done during spare hours, would more than a little drawing done during spare hours, would
then involve a continuous outlay of money, and time which is the same thing; and when it was too late the unfortunate inventor would learn the bitter lesson that the possession of a patent had not advanced his prospects of
obtaining a fortune by one jot. If we believed that patents were really valuable, or likely to aid the poor inventors of this kingdom to become rich, we should advocate the total abolition of all patent fees. It is because we hold that patents are dear at any price that we deprecate
the adoption of any change which will facilitate their tttainment. We promote, as we believe, the best interests of the poor inventor when we urge him to keep away from
the Patent-office, and when we refuse to advocate the the Patent-office, and when we refuse to advocate the
reduction in fees which would lure him to his loss and possible ruin. A patent only becomes worth something when it has had an extrinsic value imparted to it by the energy
and money of some individual who as a rule is not the and money of some individual who as a rule is not the
inventor. If a man has an invention alone, let him keep away from the Patent-office; but if he has an invention and a capitalist ready to work it, let him patent it by all means. Under these conditions, however, the fees would
not stand in the way if they were twice as great as they are.
While we write thus we are not guilty of any inconsistency if we say that we look with some favour on Mr.
Hoyle's scheme. But our reasons for doing this are not, perhaps, identical with his. At present it is certain that there is an immense number of men who have inventions which they keep to themselves, and they suffer all sorts of
mental tortures in doing so. They dare not speak beause
they fear to consult others; and they form opinions concerning their inventions which are almost always exagge-
rated, and sometimes totally erroneous. Now it would be rated, and sometimes totally erroneous. Now it would be
very good thing if these men would consult someone with money and knowledge, who would be able to tell them at once whether their inventions were or were not new,
or worth something or nothing. If any reasonable or worth something or nothing. If any reasonable could be obtained for a small sum for, say, two months, it would apparently serve a double object. It would enable inventors to obtain sound information, and this would be a very good thing. We can speak with some experience on
this point. We are held, it appears, by inventors to be worthy of confidence, and we are consulted continually by correspondents who usually begin by complaining bitterly that the cost of a patent is so high that they cannot take the
first step on the road to fortune ; and after carefully first step on the road to fortune; and after carefully
pledging us to secrecy, reveal the nature of their pledging us to secrecy, reveal the nature of their
inventions, and ask our opinion concerning their value We can safely say that in ninety-nine cout of hundred the inventions are either old or useless and they display an amount of ignorance concerning no the science or practice of mechanical engineering, but concerning what is going on in the outer world, which is
simply astounding. We have had the power loom and the link motion submitted to us as new inowions and this by men who we believe had honestly re-invented them. There is not a gun in the service of this or any other country
which has not been invented over and over again by half dozen persons. The same may be said of boilers, brakes, team engines, and propellers. It would be waste of time oxtend the list. In the majority of cases our correspondents have been quite content to accept
our verdict as correct. If we tell an inventor that what he proposes as a new thing has been in regular use for thirty years, more or less, he usually expresses his thanks, and announces his intention of invent-
ing something else. It may be argued that it is the business of every inventor to ascertain, before he spends money on his ideas, whether they are or are not original and valuable ; but the facilities for doing this are not great. The
Patent-office helps very little. Educated engineers not Patent-office helps very little. Educated engineers not unfrequently fall into error, and repatent old inventions.
How much more is the man of slender education, and with small means of acquiring information, likely to make a mistake ? Such a man, endeavouring to find out whether an invention is or is not new and valuable, is in the posi-
tion of one who wishes to learn a foreign language withtion of one who wishes to learn a foreign language
out a master. He may spend months if not years in blundering through one publication after another without finding what he wants. Could he consult his employer, or some one else trained and educated, he might perhaps have
all his doubts settled one way or another in ten minutes. It may be urged-and urged with truth too-that men of education are more honest than the needy inventor thinks, and that the said inventor is unnecessarily cautious and reticent. But this does not really matter in the least, and we think that something would be gained by the introduction of a system which would let the inventor make his invention public in safety for a short time, on
payment of a small fee. We are, therefore, prepared to payment of a small tee. We are, therefore, prepared to
go so far as to say that it would be a good thing if an inventor could, on payment of, say, $£ 1$ 1s. and a deposit of a description of his invention, obtain absolute protec-
tion for two months from the date of application. But having gone so far, we at once come face to face with difficultios of a very important character, which our correspondent has passed over in silence, but which must none the less be overcome before his scheme, or anything
like it, can be put in practice. What, we may ask, will like it, can be put in practice. What, we may ask, wo that A obtains temporary protection, and finds that his invention is quite new, but that no one will take it up. Is
the invention to become public property at the end of the two months, and so be lost to the inventor for ever? If not, and temporary protection is not to be regarded as
publication, what is to prevent B, to whom A has subpublication, what is to prevent B, to whom A has sub-
mitted the invention, from patenting a colourable imitation of it in his own name, as soon as A's temporary protection has elapsed? It will be seen that in whatever way these queries are answered, changes would have to be made in
the existing legal rules for deciding questions of priority. It may seem to be a small thing to let the existing patent law stand as it is, and merely add facilities for obtaining what we have called temporary protection for a trifling fee, but it is not a small thing. The change would involve
questions of the utmost moment, and would probably, if questions of the utmost moment, and would probaboy, ia hat it may not be possible to find a way out of the difficulty, but we confess we have not found it. The nearest approach to a solution which we can think of is, that what is now called provisional protection should be made abso-
lute, that it should run for a clear six months ; and that lute, that it should run for a clear six months ; and that
the initial fee to be paid should be $£ 1$. Notice to proceed to be given one month before the expiration of the patent, and to involve no fee save perhaps 1s, for a stamp. The fee on the application for a patent to be $£ 9$, that is to say
it should include the $£ 4$ which were remitted to the it shoold inchude the $£ 4$ which were remitted to the
inventor in the first instance, and the $£ 5$ now paid with the notice to proceed ; other fees to remain untouched. In this way the inventor would have six months clear in
which to work for $£ 1$, and he would have alsolute protection ; while the comparatively heavy fee at the end of the six months would act as a powerful influence to check a poor man who was disposed to waste time and money in
pushing an invention which could do him no good. If on the other hand he had met with encouracement, $£ 9$ or $£ 10$ for fees at the end of six months would not stand in his way. It will be seen, however, that concerning this proposition a great deal may be said on both sides. We have glad to see the question raised by Mr. Hoyle, with its glad to see the question raised by Mr. Hoyle, with its
collateral issues, discussed in our correspondence columns.

evening last, and was in every way successful. We understand
that something like 3000 persons were present. There was, as ustal, an excellent show of pictures in the library, as well as many objects interesting from an artistic point of view, and a
good collection of physical apparatus and microscopes. The good collection of physical apparatus and microscopes. The
great feature of the gathering was, however, the lighting up of great feature of the gathering was, however, the lighting up of
the quadrangle by the electric light. Three large lamps of Mr. orompton's were in use, one placed over the portico in the centre of the building, and one over the apse of each of the wings.
The three lamps were brilliantly, and the effect was most picturesque, the fine evening and the band of the Coldstream Guards attracting hundreds of the guests out on to the portico and over the lawns in front.
It was altogether the most effective exhibition of the electric light on a large scale which we effective exhibition of the electric light is much to be congratulated on his success. The Engineering Laboratory was open all the evening, and Professor Kennedy shesides the students' drawe at work to a number of visitors. Besides the studens drawings and some valuable series of tested very neatly designed model-by Mr. A. G. Ashcroft, a former student-for showing and measuring the stresses in the flanges of a beam. Many of the students' drawings were done in a very workmanlike and effective manner.
The annual distribution of prizes was held on Wednesday noon, Lord Kimberley, the prizes was held on Wednesday afterand among other awards it pras announced that the two Gilchrist
Engineering Scholarships - each of the vel Engineering Scholarships-each of the value of $£ 35$ per annum
for two years for two years-had been awarded to Mr. P. V. Appleby and Mr.
T. E. Beare respectively. We are informed that there will be milor scholarships offered for competition next session among the engineering students, one at entrance-in Octoberand one at the end of the session.

History repeats itself. When electric telegraph wires first were run along our railways and across the country, stories while perched on the wires. The fact that a few part ridges now and then killed or maimed themselves by
flying against the wires was regarded as proof positive of the accuracy of the statent Need we say that positive of the was killed by a current passed through a telegraph wire? The tales about bird massacre now begin to reappear under a new
form. According to a Berlin form. According to a Berlin paper a horse while crossing the
electric railway having set his hoof upon a rail, was instantly electric railway having set his hoof upon a rail, was instantly
thrown down, and another horse, having also touched the rail with his iron shod hoof, received a shock which sent him gallop ing off in wild terror. The idea is that a shock was given to the horses by the escape of electricity from the rail through their bodies. The story requires confirmation. The quantity of
electricity required to work enormously greater than that needed to send a telegraph
message ; but, so far as shock is message ; but, so far as shock is concerned, quantity alone
has very little to do with the matter. What is needed charge through the body, give a violent shock, while a thousand times the quantity of electricity given off by a battery will excite but a slight pricking sensation in the ends of the seems to be sufficient for the purposes of the electric railway goes to prove, what indeed is well known, that low tension elec-
tricity is were affected as described; but it is very doubtful that they the bird myths to which we have already referred classed with the basic process.
Since Mr. Thomas returned from America some progress appears to have been made in the formation of the new steel 20 acres of land a few months since. The company is to be called the "North-Eastern Steel Company, Limited," and among the first directors will be Messrs. S. G. Thomas, P. C. Gilchrist, promoters and their friends have already subscribed $£ 80,000$ out of the total of $£ 200,000$ required. It is proposed to work upon the basic process only, and to produce in the first instance
ingots, blooms, billets, and tires. Four converters will be put ingots, blooms, billets, and tires. Four converters will be put down, and the weekly product arrived at will be 2000 tons. It
is hoped that a large business may be done with existing rolling is hoped that a large business may be done with existing roling
mills in the locality in hammered or cogged blooms, and that in this way, if steel is to supersede iron for purposes other than rails, the present iron manufacturers may find it to their interest templated, bouring smelters, to supply pig iron in the molten state. It is provisionally engaged as general manager. Should the remainder of the shares be taken up, as is hoped, operations will be commenced forthwith, and the new company might expect to be at work by the end of 1882, or early the following year. The birth district and elsewhere who are sanguine as to the future of the steel. It is only right to add, however, that there are a great many others, whose position and experience entitle them to
respect, who consider that the commercial success of the basic process is still problematical, and that the victory of steel over manufactured iron other than rails is much more so.
the livadia.
Accordive to a Russian paper, the Livadia is to be broken up forthwith, her machinery being transferred to other vessels yet
to be built we suppose. It is by no means impossible that this rumour is true. Whatever may be urged to the contrary, the ship has in one sense, and that most important, been a failure. ship has in one sense, and that most mportant, been a failure.
She is structurally very weak. Sir E. J. Reed admitted this in his defence of the vessel at the last meeting of the Institution of Naval Architects, and no one can say what the effect of the continued action of the seas on her flat bottom would be; and Pussia does not at present possess a dock in the Black Sea in
which she could be rene original purpose for which she was intended was that of carrying
armour if neecssary. armour if necessary. That she is too weak to fulfil this was discovered not long after she was well advanced ; but in also became
apparent that she could be made to carry as many as nine or apparent that she could be made to carry as many as nine or of necessity, so she was finished and fitted up luxuriously to serve as a yacht till wanted for other purposes.
Russ that the Livadia when dismantled may be laid by. She would serve as a transport ship with half her present engine power.

NOMINAL HORSE POWER.
WE are glad to see that another blow has been struck at the
erm "nominal horse-power." Messrs. John Fowler and Co., of
letters, "A," "B," "C," and so on, and in their price list they
will sive size of cylinder, length of stroke, and heating surface of will give size of cylinder, length of stroke, and heating surface of
the boiler, so that the purchaser will really know what he is getting for his money. The only argument which can be used in defence of the nominan. Morse-powiwer system of rating engines is that the term has a definite meaning well understood, so that the
initiated can tell when they buy an 8 -horsepower, what sized cylininitiated can tell when they buy an 8 -horse power, what sized cylin-
der, and howmuch heatingsurface they have got, but unfortunately a rule is not observed by all makers, and the diameter of the cylinder alone is used to show the power of the engine. A
cylinder which cannot be properly supplied with steam is, however, open to the charge that it is not quite what it pretends to be, and open to the charge that it is not quite what it pretends to be, and
for this reason Messrs. Fowler have done well to give the hating surface, as well as the cylinder diameter, in their price list. Messrss. last year, given up the term nominal horse-power as applied to vertical engines. It has remained for Messrs. Fowler to disposese
of the phrase as regards traction engines. We trust that of the phrase as regards traction
their example will be rapidly followed.

LITERATURE.

Lathe Work: A Practical Treatise on the Tools, Appliances, and
Processes employed in the Art of Turning. By PAuL N. Processes employed in the Art of Turning. By Pau
Hassuck. London: Crosby Lockwood and Co. 1881. IT is a curious fact that there is no complete treatise in the English language on the construction of machine tools,
Holtzapffel's book is not yet finished, although the Holtzapffel's book is not yet finished, although the first volume was published in 1847, and if it should
be finished on the scheme of the author of the first two volumes-long since dead-it would not be a treatise of the kind to which we refer. England is the birth-place the very cradle of the machine tool trade. The principles
involved in the construction of lathes, planers, drills, shapinvolved in the construction of lathes, planers, drills, shaping and slotting machines are very complex and important.
The details of construction of such tools pass through The details of construction of such tools pass through
very wide ranges but no engineer seems to possess at once very wide ranges; but no engineer seems to possess at once
the ability and the will to write a book comprehensively dealing with the whole subject. Reciprocating machine tools are especially badly off in this respect. Concerning the lathe, several small works have been written-some good, some bad; but they all deal with lathes of small dimensions. Mr. Hasluck's work is no exception to the general rule ; it is a small octavo of 195 pages, and it is very well written, illustrated by admirable engravings,
and well printed on good paper. In so far it has and well printed on good paper. In so far it has
everything in its favour, and yet we have found it in several respects a most exasperating volume Its title is deceptive. It is not a treatise on the
tools and processes used in the art of turning. It is a tools and processes used in the art of turning. It is a tools, but not all. Mr. Hasluck posseses the most minute knowledge concerning one kind of lathe, that driven by
the foot ; but if he knows anything worth knowing about the foot; but if he knows anything worth knowing about
large lathes driven by power, he has taken great pains to conceal the fact from his readers. Whenever he has occasion to refer to a big lathe he is, indeed, almost certain to make a mistake. Thus, for example, we
are told "that lathes capable of taking discs 40in. in diameter are often incapable of taking in a cylinder 6in long." The tool here referred to is not properly called lathe at all ; and the only one which will not take in cylinders in the sense employed by Mr. Hasluck is a tire
lathe. In another place Mr. Hasluck speaks of lathes of lathe. In another place Mr. Hasluck speaks of lathes of
60 tons weight as the maximum dimensions yet reached, 60 tons weight as the maximum dimensions yet reached,
whereas the weight has been much exceeded; and whereas the weight has been much exceeded; and
we also learn from him that some lathes have been me never heard take in discs 30 ft . or 40 ft . in diameter We never heard before of such machines. There is a for turrets, and even the armour-plates themselves can be for turrets, and even the armour-plates themselves can be
faced, but this is certainly not a lathe, although it is over faced, but this is
40 ft . in diameter.
Putting power-driven lathes altogether on one side mentally correcting Mr. Hasluck's title-page, and calling his work a treatise of the foot-lathe, we have no fault to fractical point of view. He does not write about the practical point of view. He does not write about the amateur's lathe, with a multitude of complicated chucks, millwrights' shops all over the country. Our readers must know the kind of lathe we mean-one with a single Λ bed, know the kind of lathe we mean-one with a single \wedge bed,
about 3 in. or 4 in. centres, and with the screw let into a groove under the bed. Concerning this tool and its congeners Mr. Hasluck writes admirably, and gives com All lathes are in anly for doing work with it, but for it. of absolute similarity in the principles of their mode of action ; and therefore much that Mr. Hasluck has written concerning the foot-lathe can be made to apply to heavy, power-driven lathes. We take, for example, what he has arge number of rules for for cutag. There is a a screw of any given thread on a given lathe. But the a screw of any given thread on a given lathe. But the
rule of three is perhaps more employed than any other, and is that with which we are most familiar. Mr. Hasluck gives a rule which will be new to many of our Write down in th very simple and straightforward:of threads in a given length of the guide screw, and the threads in the same length of the screw to be cut. Multiply both by a number that will produce a numerator wheels. Put the quotient of the or four sets of change mandril, or as drivers, and that of the pitch as required on the guide screw or as driven;; arranged in this way the
desired result will be attained." Further on our author gives an example. To cut five threads to the inch with a guide screw of " 25 in. pitch, "Put down the two rates in A number, say 10, we get $\frac{50}{40}$; by 15 , $\frac{75}{50} ;$ by $20, \frac{100}{800}$. Every one of these numbers is to be found in the usual set of change wheels, and in practice we simply select those
two which are of most convenient size", Of fractional pitches have to be cutnvenient size," Of course
shows then, Mr. Hasluck wheels instead of two by the rule we have reproduced.

We can safely recommend the work to young engineers. tools, geometrical chucks, and such like, it will be simply invaluable. To the student it will convey a great deal of useful information, and it is no small point in the author's favour that he writes very good English in a pleasant style ; his descriptions are lucid, and his drawing
excellent. Certain of his instructions are never carried out in engineers' shops, and would enhance the cost of work, and prolong the time spent in doing it; but the pupil who can read Mr. Hasluck after hours, and can
see lathe work done while he is in the shops, will readily find out for himself in what way Mr. Hasluck's practice differs from that of the engineer, without assistance from us. As far as it goes, the book is very good indeed, but then it does not go quite far enough.

BOOKS RECEIVED

The Purchase of Gas and Waterworks, with latest Statistics of Municipal Gas and Water Supply. By A. Silverthorne. London
Crosby Lockwood and Co. 1881. Dirty Dust-bins and Sloppy Strieets. By H. P. Boulnois, M.I.C.E London: E. and F. N. Spon. 1881 ,
Practical Ventiation and Warming. By Joseph Constantine London:J. and A. Churchill. 1881 . The Iron Ore Mines and Collieriate Trades Directory and Guid Offices of Ryland's Iron Trade Circulareat Britain. Birmingham Journal of the Society of Telegraph Engineers. No. 34, 35, an
36. Vols. IX. and X. London: E. and F. N. Spon. 1881. The Scientific Roll and Magasine of Scientitic Notes. Conducte by Alexander Ramsay, F.G.S. Part I.: Climate. Vol. I. London Celebrities of the Day- Dritish and Foreign. Part II. Vol. 1.
London: W. Pool. 1881. London: W. Pool. 1881 Ferty -ighth Annual Report of the Royal Cornvall Polytechni Society. 1880. Falmouth: Lake, and Co., and R. C. Richards,
Truro: Heard and Son and J. R. Netherton. 1881.
 Italienisch, Froanzosisch, und Englisch. Pola: Wilhelm Schmidt.
Erster Band. 1881
Cassell's Household Guide. Part I. New Edition, London Cassell's Houssehold Guide. Part
Cassell, Petter, and Galpin. 1881.

TENDERS.

WALTHAMSTOW
For building a Mortuary and Disinfecting Oven, except Iron-
work. Mr. George B. Jerram, A.M.I.C.E., Surveyor.

Fuller, Walthamstow Probert, Walthamstow Barton, Walhastow Good, Wavlthamstow

WALTHAMSTOW.
Tenders for Sewers, \&c. Engineer, Mr. George B. Jerram,
A.M.I.C.E. Quantities by Messrs. Hovenden, Heath, and Berridge.
 Deductions if 12in.
pipe is is nued instead

Encineer's ess
timate .. 856

THREE-CYLINDER COMPOUND ENGINE.

been specially designed to get the most equable mossible turning, and it has therefore three-cylinders compounded. The single high-pressure cylinder is 19in. diameter, and
the two low-pressure cylinders 26 in. diameter ; all 3 fit, 6 in the two low-pressure cylinders 26 in . diameter ; all 3ft. 6 in.
stroke, working on three cranks placed at 120 deg. apart, and stroke, working on three cranks placed at 120 deg. apart, and
intended to work at fifty revolutions per minute, with a steam pressure of 60 lb . in the boilers. The power is transmitted from pulley 6eft. 20ft. diameter by twelve 5in. ropes all passing over a admitted to the high-pressure cylinder by means of two main D valves, one at either end of the cylinder, having a fixed intermediate plate and cut-off plate on the back of each, the cut-off being automatically regulated by the governor by means of
Dobson's patent valve gear. After doing duty Dobson's patent valve gear. After doing duty in the high-pressure
cylinders the steam passes over the top of the same to cylinders the steam passes over the top of the same to the valve
casing between the two low-pressure cylinders casimg between the two low-pressure cylinders, which is enlarged
to act as a receiver as well, and is then admitted to the lowpressure cylinders by two ordinary double-ported valves placed pressure calinders ytwo ordinary double-ported valves placed nected directly to the valve casing of the high-pressure cylinder nected directly to the valve casing of the high-pressure cylinder.
The air-pump is 22 in. diameter and 1ft. 9in. stroke, and worked off the crosshead of the centre engine by means of a bellcrank and rocking shaft, and is completely surrounded by the
On page 12 we illustrate the valve gear of this engine. A is the
slide bar, $R^{2} R^{2}$ are steel slips on it, $B^{1} B^{2}$ slider of hardened steel; C is the slider, $D^{1} D^{2}$ are rocking cam levers $\mathrm{E}^{1} \mathrm{E}^{2}$ regulating connecting rods, $\mathrm{F}^{1} \mathrm{~F}^{2}$ levers connected by spur segments; G is a lever connected to the governor by means
of a rod with a hand regulating screw $\mathrm{N} ; \mathrm{H}$ is a double-action dash pot, having two pistons $\mathrm{I}^{1} \mathrm{I}^{2}$, and one spiral spring S comheld stationary by projections on it entering the slote plate in the casing; M^{2} one main D valve. When in the C . position both steam ports are closed by the cut-off plates. The action of the valve motion when steam is being admitted to the back end of the cylinder is as follows: The cut-off excentric moves
the slider to its furthest position from the ecrank shaft, when the loose piece $\mathrm{B}^{\text {d }}$ drops down into the recess in A, so that on the return
of the sider, B^{2} con
and therefore the cut-off plate J^{2}, are pulled forward along with
it, until the rocking cam lever D^{2} is so canted that B^{2} is rised clear of the slip R^{2}; thus permitting the spring S to force back lates to the central position, thus closing the port. The action the front end is exactly similar. The governor, by acting on G, causes the levers $\mathrm{D}^{1} \mathrm{D}^{2}$ to approach or recede from one another, thus causing the let-off to take place earlier or later. The cut-
offs at each end of cylinder can be altered independently of each offis at each end of cylinder can be altered independently of each
other by screws on $\mathrm{E}^{1} \mathrm{E}^{2}$, or both together, by regulating other by
screw N .

UPON A MODIFICATION OF WHEATSTONE'S MICROPHONE AND ITS APPLICABILITY TO RADIOPHONIC RESEARCHES.*

By Alex. Graham Bell.

In August, 1880, I directed attention to the fact that thin dises to the action of an intermittent beam of sunlight, and I stated my elief that the sounds were due to molecular disturbances produced in the substance composing the diaphragmt. Shortly afterwards
Lord Raleigh undertook a mathematical investigation of the subjee and came to the conclusion that the audible effects were caused by the bending of the plates under unequal heating \ddagger. This explanation
has recently been called in question by Mr. Preeee, who has expressed has recenty been calledinquestion by Mr. Preece, swho has expressed the opinion that, although vibrations may be produced in the discs by
the action of the intermittent beam, such vibrations ine cause of the sonorous effects observed. According to him the aerial
then disturbances that produce the sound arise spontaneously in the air itself by sudden expansion due to heat communicated from the diaphragm, every increase of heat giving rise to a fresh pulse of air.
Mr. Preece was led to discard the theoretical explanation of Lord Raleigh on account of the failure of experiments undertaiken to test the theory. He was thus forced-by the supposed insufficiency of the explanation-to seek in some other direction the cause of the
phenomenon observed, and as a consequence phenomenon observed, and as a consequence he adopted the
ingenious hypothesis alluded to above. But the experiments which ingenious hypothesis alluded to above. But the experiments which
had proved unsuceessful in the hands of Mr. Preece were perfectly successful when repeated in America under better conditions of experiment, and the supposed necessity for another hypothesis at once vanished. I have shown in a recent paper read before the
National Academy of Sciencel that audible sounds result from the National Academy of Sciencell that audible sounds result from the
expansion and contraction of the material exposed to the beam ; and expansion and contraction of the material exposed to the beam; and producing sonorous effects. It has occurred to me that Mr. Preece's that were so easily observed in our experiments might be explained
upon the supposition that he had employed the ordinary form of Hughes's microphone, shown in Fig. 1, and that the vibrating area

was confined to the central portion of the disc. Under such circumstances it might easily happen that both the supports a, b, of
the microphone might touch portions of the diaphragm which were practically at rest. It would, of course be interesting to ascertain whether any such localisation of the vibration as that supposed really occurred, and I have great pleasure in showing to you
to-night the apparatus by means of which this point has been investigated. (See Fig. 2). The instrument is a modification of the form of microphone devised in 1827 by the late Sir Charle
Wheatstone, and it consists essentially of a stiff wire A, one end of which is rigidly attached to the centre of a metallic diaphragm
B. In Wheatstone's original arrangement the diaphragm wa B. In Wheatstone's original arrangement the diaphragm was placed directly against the ear, and the free extremity of the wire was rested against some sounding body, like a watch. In the ference like a telephone-diaphragm, and the sounds are conveye to the ear, through a rubber hearing-tube C. The wire passe through the perforated handle D , and is exposed only at the extremity. When the point A was rested against the centre of a
diaphragm upon which was focussed an intermittent beam diaphragm upon which was focussed an intermittent beam of sunhearing tube C. The surface of the diaphragm was then explore with the point of the microphone, and sounds were obtained in al parts of the illuminated area, and in the corresponding area on th other side of the diaphragm. Outside of this area, on both side
of the diaphragm, the sounds became weaker and weaker, until a a certain distance from the centre they could no longer be a certain distance from the centre they could no longer be
perceived. At the points where one would naturally place the pupports of a Hughes microphone (see Fig. 1) no sound wa observed. We were also unable to detect any audible effects when
the point of the microphone was rested against the the point of the microphone was rested against the support to
which the diaphragm was attached. The negative results obtained in Europe by Mr. Preece may, therefore, be reconciled with the positive results obtained in America by Mr. Tainter and myself. A still more curious demonstration of localisation of vibration occurred in the case of a large metallic mass. An intermittent beam of sunlight was focussed upon a brass weight (1 kilogram),
and the surface of the weight was then explored with the microand the surface of the weight was then explored with the micro-
phone shown in Fig. 2. A feeble but distinct sound was heard upo touching the surface within the illuminated area and for a short distance outside, but not in other parts. In this experiment as in the case of the thin diaphragm, absolute contact between the point of the microphone and the surface explored was necessary in
order to obtain audible effects. Now, I do not mean to deny that sound waves may be originated in the manner suggested by Mr Preece, but I think that our experiments have demonstrated that the kind of action described by Lord Raleigh actually oocurs, and
that it is sufficient to account for the audible effects observed.

* Read before the Philosophical Society of Washington, D.C., ne
1th, 1881 .
t Amer. Ass. for Advancement of Science, Aug. 27, 1880.
i Nature, Yol. XXIM., p. 274.
Roy. Soc., Mar. 10, 1881 .

DOBSON'S PATENT VALVE GEAR. MESSRS. DUNCAN, STEWART AND CO., ENGINEERS, GLASGOW.
(For description see page 11.)

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
(From our own Correspondent.)
ON 'Change in Birmingham to-day-Thursday-and in Wolver-
hampton yesterday, the quotations for lattens were $£ 917 \mathrm{~s}$, 6 d . hampton yesterday, the quotations for lattens were $£ 917 \mathrm{~s}$. 6 d . per
ton, $£ 810 \mathrm{~s}$. for doubles, and $£ 71$ s. for singles. The galvanisers reported themselves more full of work than a
week agoo and prices were $£ 15$ for week ago, and prices were $£ 15$ for galvanised corrugated roofing
sheets of 24 w .g., packed in felt, delivered in Liverpool or London. At that price a few transactions were recorded. The minimum figure for baling strip, not of the lightest weight, was $£ 65 \mathrm{~s}$.,
delivered in Liverpool. delivered in Liverpool.
Common bars were
angles and tees. Prices ranged from $£ 515 \mathrm{~s}$. . upwards. Medium
quality bars were quality bars were likewise in improved request at $£ 6$. 2 s . 6 d . to
 Wolverhampton of the $\& 710 \mathrm{~s}$. price which a few weeks ago was demanded by two or three firrs. Orders for both marked and medium bars are arriving from the Colonies and our great Eastern
dependency
Plate orders were difficult to secure. Even girder and bridge
plates were less in request, but it is is believed that girder and better busidge
will be done so so were $£ 8$ per ton ond as the quarter is well turned. Common sorts were $£ 8$ per ton, and from this figure, up to $£ 910 \mathrm{~s}$., prices ranged accerding to quality and favourite brands.
The latest mail advices received by m
give prices in Melbourne as :-Corrugated galvanised in this district give prices in Melbourne as:-Corrugated galvanised iron, ordinary
brands, $£ 20$ 10s. for 28 gauge ; best brands, $£ 2110$. to $£ 22$; black
 $£ 11$; bars and rod iron, $£ 810$. to to $£ 11$; and hoos iron for trade
purposes, $£ 10$ to $£ 11$. Tin plates were about 21 s . 6 d . per box for
This afternoon pigs were a little firmer. There were indeed
vendors who reported hetter prices fir vendors who reported better prices by from 1s. 3d. .to 2s. 6 d . per
ton than some of their customers would have given a week or ten days ago. These improved rates applied equally to Derbyshire
and Northamptonshire pigs, and likewise to hematites former qualities were quoted at the advanced price of ton; and there had been some sales on Saturday last at \&2 3 s . A few consumers who had previouss y declined to buy hematites at
£3 5s. are this whek giving that price. $£ 3$ 5s. are this week giving that price.
Staffordshire all-mine pigs wis.
staffordshire all-mine pigs were easy to be had at $£ 32 \mathrm{~s}$. 6 d , and
there was a good all-mine pig made from Staffordshire stone which there was a good all-mine pig made from Staffordshire stone which
might have been bought at from 1s. 3d. to 2s. 6d. per ton under £3. Shropshire all-mine iron was abundant at £3. Pigs having so little cinder in their mixture as to be classed as all-mine are, however, being deliverea into this district from remote centres of pro-
duction at $£ 2$ 2s. 6 d per tor th. duction at $£ 2$ 2s. 6 d . per ton. Staffordshire cinder iron was easy
to purchase at $£ 1$ 17s. 6 d . The class of pigs in which most to purchase at $£ 117 \mathrm{~s}$. 6 . The class of pigs in which most
busines was done were those suitable for foundry purposes ; still
the perches the purchases were not so free as was noticeable a month ago.
The next quarterly meetings will be held on July 13th and 14th. The next quarterly meetings will be held on July 11th and 14th. The second half of the year is being entered upon wit
Representative South Staffordshire colliers and
have again met to consider a mutual insurance scheme to super sede the Employers, Liability Act. It was reported that the supercoal miners were favourable to the scheme, but that the thick coal men were undecided, as they have not been accustomed hitherrto
to contribute to any kind of society. It was resolved to establish and accept the scheme and put it in operation at once for the benefit of the thin coal men, leaving the thick coal men to move for
themselves. themselves.
The delega
The delegates of the Staffordshire Miners' Federation, at a meeting in Wolverhampton on Tuesday, passed a resolution, expressing
regret that "certain employers at Birchills are taying 1rd. retint less than the the recognised scale." A deputation was appointed
sers to interview the employers. They. will try to induce the Birohills masters to pay their men according to the scale, and they were
The
The operatives in the Staffordshire wrought nail trade, to the
number it is estimated--including women-of about 28,000 , came out on strike on Monday in accordance with resolutions cassed during the preceding week. Thecr object is to obtain the wases
paid by the "1878 list"-an advance of 10 per cent. upon the " 1879 list," and of 30 per cent. upon present wages. Happily the
support them ; and it is also stated that some masters are already willing to give a portion of the advance wished for.
Encouraged by the success of the leather obtaining a hearing before the French Treaty Commissioners, the other branches of the staple industry of the town have just met to consider their grievances under the proposed tariff. The value of
the leather exported to France from this conntry the leather exported to France from this country annually is upwards of a quarter of a million sterling; and the great bulk of
this goes from Walsall. The new tariffs on many of the goods used in saddlery are, it was urged, almost prohibitory. All men's
und saddles would be charged a duty, of 8s. each, and yadies' saddles
10 s. each 10 . each, irrespective of quality. The bridle trade would be
affected more seriously the affected more seriously than any other in the town, the inferior
articles being subject to the same duty as those articles being subject to the same duty as those which cost double
the money. Nickel goods are also sufferers. Paris is Walsall's chief competitor, especially with South American markets, in this industry. A list of goods was drawn up with the exporters' ideas
of what the duties ought to be annexed. It was determined to forward this to the Commissioners, and to ask for the reception of a deputation.

NOTES FROM LANCASHIRE.

(From our oov Correspondent.)

Manchester.-Although it can scarcely yet be said that a decided improvement has set in, the more healthy tone which I
noticed in the iron trade of this district last week has been fairly maintained. Lancashire makers of pig iron report that a very fair amount of business has been coming to hand during the past week, and as the iron is going direct into the hands of consumers, this is a satisfactory indication of a better state of things in the giving out orders for larger quantities than they have been doing of giving out orders for larger quantities than they have been doing of
late, whilst sales could be freely made up to the end of the year : but local makers decline to go further than the next three or four months. No alteration has yet been made in the quotations for local iron, but makers are very firm at their full rates, the mini-
mum quotations for mum quotations for delivery into the Manchester district being
43 s . for No. 4 forge, and 44 s . for No. 3 foundry, less $2 \frac{2}{2}$; but in some cases 6 d . per ton above these figures is being asked.
In outside brands the chief business doing has been in Lincolnshire irons, the prices which makers are now asking for Derbyshire and Middlesbrough brands tending to check any business in this
district. Lincolnshire irons, however, have maintained the district. Lincolnshire irons, however, have maintained the
advance of 1s. per ton put on last week, and fair sales of forge advance of 1s. per ton put on last week, and fair sales of forge
have been made at 43s. 10d., whilst foundry has been sold at 44s. 10 d . per ton, less 2 L , delivered equal to Manchester.
Finished iron appears to be meeting with
Finished iron appears to be meeting with a fair inquiry. Bars, hoops, and sheets are in demand for export, and the last-named class of goods is also going off tolerably well for home consumption.
Makers generally also speak more hopefully than they have been doing of late, and prices as a rule are firm, with a slight advance being obtained in some cases. For delivery equal to Manchester
 $£ 517 \mathrm{~s}$. 6 d . for bars, $£ 65 \mathrm{~s}$. to $£ 610 \mathrm{~s}$. for hoops, $£ 615 \mathrm{~s}$. to
$£ 617 \mathrm{~s}$. for common plates, and $£ 712 \mathrm{~s}$. 6 d , up to $£ 717 \mathrm{~s}$. 6 d . for 2617 . for comm
ordinary sheets.
A considerable
coming into chester district ancashire, and some of the large firms in the Mansuch as radial drills, plasing, slotting, and drilling machines, for the United States.
makers in the back I referred in my Notes to the fact that tool drills, wh this district were developing the manufacture of twist almost exclusively in America. Extensive $\begin{aligned} & \text { ant date, were produced } \\ & \text { Ext has now been laid }\end{aligned}$ down by some of the firms in this district for this class of work, and I ture are being introduced. under my notice an excellent machine specially designed by Messrs. Smith and Coventry, of Manchester, for grinding the drills, which
is perhaps one of the mostimportant is perhaps one of the mostimportant operations in their manufacture,
as it is an essential condition to secure an ase
the drill. This machine consists of a grind even length to each lipough of with a stone, $30 \mathrm{in}$. . diameter and 5 in. broad, driven by a three-speed cone pulley
to which to which are attached compound slides for giving the necessary of the stone, and the the cut and traversing over the periphery of the stone, and the grinding apparatus specially designed by
Messrs, Smith and Coventry. In this apparatus the drill is cramped up solid while being ground, the grinding being performed by, traversing the drill across the stone and at the same time grind-
ing the clearance on the drill by raising and lowering an oscillating
arm on which it is fixed arm on which it is ixed. The drill being thus held solid, the clear ance is ground upon it by a sinple movement of the point of the
drill about a fixed centre arranged in such proper clearance is given by one movement. The first lip havin proper clearance is given by one movement. The first tip having
been ground, by means of a simple dividing head the drill is re volved exactly half a revolution, and the second lip is then ground so that a perfectly even length is secured on both lips. Several o Government dockyards In the coal trade busin
at the pit mouth are about as under : Best house coal, seconds, 6s. 3d. to 6s. 9d.; good sereened gas coal, 6s. 6d. to 6s. 9d. common coal, 4s. 6d. to 5s. 3d.; good burgy, 4s. 3d. to 4s. 9d.; and
good slack, 3s. 9d. to 4s. 3d. per ton. good slack, 3 s . 9 d . to 4s. 3d. per ton.
Coke is in moderate demand averaging about 8s. to 10s., and large 12s. to 14s. per ton at the oven.
Barrow. - The iron and steel trades in this district are fairly but not actively employed, except perhaps in one or two instances at Barrow makers are, comparatively spenking, well off, inasmuct as they have twelve out of fourteen furnaces making iron. Orders are very well held, and makers have at present as much work in hand as will furnish employment for a few months. Deliveries, this part of the yearr, and it is now more than ever evident that the competition experienced from the other districts engaged in the manufacture of Bessemer and other classes of iron is having the
effect During checking any buoyancy which the market may have. tone, but prices few days there has undoubtedy been a better any quotable alteration. The steel makers of the district have ing hands fairly filled with work, and the mills are work Ing very full time, the output of both rails and merchant orders of note, but both in the erecting and engineering depart ments there is very great activity. No change can be noted in the dull state of the finished iron trade, but there still seems reason to district. Iron ore times this trade will be driven out of the raging finds of iron ore in this sistrict latately have one two encouexplorers, and have pointed to the probability that rich motal lie
in abundance in in abuncance e
not been found.

THE SHEFFIELD DISTRICT
(From our own Correspondent.)
THE event of the week is the changing of the old-established company, restricted to members of the Firth family It it secret that it was the intention of Mr. Mark Firth to have carried out this change in his lifetime, and had he not been so suddenly cut off, it would havel been completed. The com-
pany was incorporated on the 15th June last, with a capital of pany was incorporated on the 15 th June last, with a capital of
$£ 320,000$ in 640 shares of $£ 500$ each. Mr. Mark Firth had five sons, only one of whom, Mr. John Bradley Firth, has attained his majority. The trustees of the late Mr. Firth sign the registe for the other sons, who will form the company when they reach the age specified in the will. The company at present consists of
Mr. Charles Henry Firth, Mr. Edward Firth, and Mr. Thomas Firth-broters of the deceased-Mr. J. B. Lirth Mr. . Loxley Firth- Jon of Mr. Edward Firth-and the three gentlemen who, with two members of the Firth family, act as executors under the will. Messrs. John Brown and Co., Elimited, he helairman theirnual meet ing on Wednesday. Mr. . D. D. Ellis, the chairman, presiding. The
report, declaring a dividend of 5 per cent., was adopted. It was stated, I understand, that the shareholders would shortly be asked to furnish the further capital, either in the form of 5 per cent.
preference shares or by call. The last call was made fourteen years preference shares or by can. He last ago. Messrs. Brown, Bayley, Dixon, and Co., Limited, the suceessors of Messrs. Brown, Bayley, and Dixon, Limited, have now placeed their scheme before the public. The substance of it has been anticipated in previous letters. The capital is ined at $£ 1$ ene
divided into 8000 A and 4000 B shares of $£ 12 \mathrm{~s}$. The latter will be issued as fully paid-up, and allotted-without payment-to the allottees of A shares, on which it is proposed to call up
$f 7$ per share. The directors are to hold 1400 A shares,
being more than one-sixth of the entire capital
of the company.
The results of the trading luring the liquidation are reported to have been satisfactory, both as regards working profit
and amount of income. Creditors at a distance and amount of nincome. Creditors at a distance
will be interested to know that the compostion of 6s. 8d. in the pound is payable in three
instalments- 3 s. 4 d . within six weeks of the registration of the new company, 1s. 8d. on the
3oth November next, and 1s. 8d. on the $15 t \mathrm{t}$ April next. I believe the new company will be successfully launched.
At a meting of the executives of the South
and and West Yorkshire Miner's Asspoiation, held at
Barnsley this week, it was agreed that the the Barnsley this week, it was agreed that. the A number of pony drivers struck work at
Denaby Main Colliery on Mondy for an advance of 2 d . and 3d. per day. The lacs dim not cleari know their to work on the terms against which they struck, provided the wages were paid by the
company instead of the contractors, and others company instead of the contractors, and others
wishing to stand out for the advance. No doubt wishing to stand out for the advance. No doubt An incenesed demand for the best qualities of armour plates, ship plates, and boiler plate ontinue in heavy request. Other departinent unaltered.
The pet
The petition with reference to the French men. Other sheets were still to come in from the workshops.

NOTES FROM SCOTLAND.

(From our own Correspondent.)

 The iron market, after experiencing about week of firmness, with a tendency to increased prices, has again become quiet. The changes havebeen due to speculative influences founded upon the product reference to a slight diminution in have good foundation a week were believed to ments have since been made to keep in blast for at least a short time longer four furnaces at one
of the ironworks, which were expected to be damped down at the end of the present week. As a result, and failing any apparent disposition
of the ironmasters as a body to curtail production, the quotations of warrants have receded, and there is less firmness in the
market. The production continues sarge, although
the sale market.
the sale approars to becontrather smaller than
it was at this time last yath. At the clos of the year the stocks of pig iron in Scotland amounted to 739,000 tons. During the past six months the make is believed to have been about
645,000 tons. The shipments and the amount sent by rail to England are calculated at 272,000 , and the local consumption at 220,000 tons, thus leaving 892,000 tons in stoke, of which Messrs.
Connal and Co. hold 565,500 , and makers onnal and Co. hold 560,500 , and makers
326,500 tons. This gives the increase of stock since the beginning of the year at 153,000 tons that there are eight more furnaces in blast than a year ago.
Busines
to 46s. 10 do d. cash and 46 s . 10d. to 47 s . 8 d . month. To-day-Thursday-the to 47s. one pourteen days and 46s. 11. Business was done in the . 8 d d. cash. Friday forenoon at from 47 s . 1d. to 47 s s. 6 d . cash, and 47s. 2 d . to 47 s . $7 \frac{1}{2} \mathrm{~d}$. one month, the afternoon
quotations being 47 s s. 5 d . to 47 s , 9 d . quotations being 47 s . 5 d . to 47 s . 9 d . cash and the morning at 47 s . 6 d . to 47 s . 1d. cash, and transactione month. In the afternoon cash and 47 s . 3 d . to 47 s , 1d. one month h . 46 s . 11 d . day the market was quiet at 46 s . 11d. cash and
47 s . 0 z d . one month to 46 s . 8 d cash and 46 s . 11 d one month. Owing to the demand for iron direct a little higher, the footlowing being the figures : Gartsherrie, f.o.b. at Glasgow, per ton, No. 1,
Sts. 6d.; No. 3, 49,

 47s. 6d. and 45s. 6d.; Glengarnock, at Ardrossan,
51 s .6 d. and 48 s ; Eglinton, 48 s . and 45 s ; and Daimmellington, 48 s . and 45 s . 6 d .
Most of the
trade are still well employed, and with the eate tion of cast iron pipe makers, makers of man factured iron are likewise oing well.
Theel hammermen still remain, on strike at the Steel Company of Scotland's Newton and
Blochairn works The coal trade
The coal trade continues very good for the There is a good demand for steam coals, and altogether there is little reason to complain Prices are low, but so also are the miners' wages,
and in the absence of unionism and strikes any requisite amount of work can be got out of the some years when their pay was higher, with more frequent interruptions to work.

WALES \& ADJOINING COUNTIES (From our own Correspondent.)
Mr. Holland has been appointed works
manager at Ebbw Vale. The gist of the report
issula manager at Ebbw Vale. The gist of the report
issued by the directors of this company on Satur-
day last is that day last is that a gross profit for the year ended
31 st March has been realised of $£ 75,6886 \mathrm{~s}$. 8d. Striking off expenses of head office and legal and fully paid up shares, a net profit is shown of thus: Written off for depreciation of property,
$£ 22,02811 \mathrm{~s}$; and the remainder, $£ 12,3784 \mathrm{~s}$, 1d., added to last year's balance, which increases the
amount at thie credit of profit and loss account
clared, the directors wisely deciding not to do s
until the bank balances are extinguished or ver much reduced. Most of the shares are held in he Sheffield and Manchester districts. An absolute sale is now fully expected to take
place of the whole of Booker's Works, Pentyrch, Melingriffith, and the coalfields
One of the best industries in the Swansea disriot is that of patent fuel, no less than 7000 ton. having been shipped last week, and 17,000 tons of ooal. In coal there was a tendency upward some There is also another unfavourable characteristic of existing trade-so many stoppages have taken place of ironworks and tin-plate works that smal coal has become a drug, and can be bought at too, complain, and prices rule low for all but best qualities.
Com-pate continues at its minimum price, as low as 14s. 3d. Fortunately makers of good brands hold orders at better figures. Another rupture has taken place amongst the workmen
at Old Lodge Works-tin-plate-Llanelly sliding scale cormmittee of Associated. Coal
cold masters scale a a meeting at Cardiff this theek,
under the presidency of Mr. W. T. Lewis.
, The under the presidency of
only subject brought unde
ond
inquiry submitted by the men, and discussed in private.
No practical step has taken place at Cyfarthfa, the Cyfarthfa collieries and the Taff Vale Rail way will be carried out.

THE PATENT JOURNAL

Condensed from the Journal of the Commissioners of

*. It has come to our notice that some applicants of the
Patent-0.fice Sales Department, for Patent Specifcations

Applications for Letters Patent

 ** When patents have been "communicated" thename and address of the communicating party are printed in italics.
2709. SEttivg Caps int June, 1881.
2709. Setring Caps in Empty Cartridges, W. Lorenz

 son, Shipley.
2714.
UTIIIsatio

 2018. Carrage brakes, W. Corteen and T. Cooper
Brentford.

 $22 n d$ June, 1881.
\qquad Hexids, W. Gedge.-(N. and J. Chaize, France.)
Excavaticg H Mrbous, de., W. Smith, N.B.

 GAs BURNERS, W. Brewer, London.
BuckLEs,
J. Belicard, , Manchester.
2736. ConBrisa Woot, J. and W. Baldwin, R. Haddon,

Thiolander, SVeden.)
2740. REver, Paris.).

$$
\text { 23rl June, } 1881 .
$$

2744. CAss, C. Laurent and H. W. Brand, Middlesex.

 Porming Joints, D. Church, Southwark,
Pank Wagenen, BoxEs, F. des Veux, Middlesex.
van

$$
\begin{gathered}
24 t h \text { June, } 1881 . \\
\text { Sewrin }
\end{gathered}
$$

2755. Drives for SEwiNa Maccirses, J. Sefton, Belfast,
2756. STEAM SHIPs, G. A. Cochrane, Liverpool.

 2766. Motrve Power, J. Levassor, Paris. ${ }^{\text {2766. }}$ Exxrisisgo M Mchives, H. J. Allison, Holborn.-

 Liverpool
2757. Reve

Inventions Protected for Six Months on deposit of Complete Specifications.

 2670. OBTaINING Morive PowER, B. J. J. B. Mills,Southampton-buildings.-A communication from J.

276s. Coirpressrvg ARE, W. R. Lalese, Southampton-
buildings, London. - A communication from E. Hill
 London.A Acommunication from
New York, U.S. -24 th $J u n e, 1881$.
Patents on which the Stamp Duty of
$\& 50$ has been paid.

 2689. Ruxning Trans on Cages, H. Fisher, Notting
ham. -5 th July, 187 s .

Patents on which the Stamp Duty 250S. Drying Timber, A. MeNeile, Pentonville, -17 the
Jully 1574 . July, 1874.
220. D ETrivivg. Issects, A. McDougall, Penrith.-
25th June, 1874.

Notices of Intention Ap Proceed with Last day for fliling opposition, 15 th July, 1881.

 Si. Roastrisa Corfer, P. Pearson, Manchester. -25 th
Febraury, 1881 .

 2447.
$\begin{aligned} & 189.1 \\ & \text { Lon } \\ & \text { Len }\end{aligned}$
 Lust day for fling opposition, $19 t \mathrm{t}$ July, 1881 .
TREATMEST of Roors, R. Stone, London. -222

 77. Vuconisiswg Arvioles, T. Rowley, Manchester.-
2thl February, 1881 .

 S18. SUBSTrTuTR for Coffer, S. T. Francis, London.-
$25 t h$
Sebruury, 1881

Patents Sealed atent which passed

217. Pistons, J. Wavish, Leytonstone.- 1 13th December
 5468. Orpsisco Doors,
cember
D. Waller, Leeds. $-29 t h ~ D c . ~$

 10. Photooaraphic Printing, A. M. Clark, London.-
1.ts Jonury, 1881.
218. Chrosocraph, A. M. Clark, London.-6th January, 1881.
219. METALIL WAGONs, R. Hudson, Gildersome.-sth

 chester:- 5 th A Apil, 1881.
(List of Letters Patent which passed the Great Seal on thd
$288 \mathrm{l} / \mathrm{J}$ June, 1881.) 5465 Raisisg Sunkes Vessels, w. Atkinson, London

220. TiP WAgons, G. Allix, London.- $3 r d$ January, 1881 .
221. Cast Iron, C. F. Claus, Mark-lane, London,--3rd 25. Shearing Machines, J. H. Johnson, London.-3rd 42. Drying Bri
222. Drying Bricks, J. Craven, Wakefield, and H.
Chamberlain, Barnsley.-4th January, 1881 . 45. Expansson GEar for STEAM, ENGINES, J. Bodington,
Birmingham.-4th January, 1881. Birmingham. - tth January, 1881 .
223. SUPPYYING HEAT in DwELING Houses, E. F.
Osborne, Minnesota, U.S.-4th January, 1881. 56. MEchaNical Telegraphs, W. Chadburn, Liver-Wool.-5th January, 1881 .
224. INFLAMMABLE Composition, W. R. Lake, London.
-5 th January, 1881. 68. WEAVING, G. H. Hodson and J. Broadley, Bradford. 83. Circular Revolving Measure, H. J. Allison.7th January, 1881.
225. RACK for MECHAN
226. Rack for Mechanical Purposes, W. Prowett, Bir-mingham.-6th January, 1881 . A. M. Clark, London. -7th January, 8881 . 8th January, 1881.
227. PENHoLDERS, R.Spear, London.- 8 th January, 1881.
228. PREVENTING ShIPs from Sinking, R. G. Sayers, London.-10th January, 1881.
229. Cabdiva Engivs, P. L. Klein and G. Hundt, Prussia.-10th January, 1881 .
230. Brisers, G. G. W. von Nawrocki, Germany.-10th January, 1881 . Water-closet Seats, W. R. Lake,
231. Coverisc 167. PACkivg for STorFivg Boxes, C. A. Maynard, London.-13th January, 1881 .
232. Looxs for WEAVING, J. Northrop, Skipton.-14th January, 1881.
233. Coosk SToves, H. Doulton and W. P. Rix.-14th Januaryy, 1881.
20S. PREPARING Textile Fabrics, R. W. Morrell, Brad-
ford, and J. Shaw, Wakefield. -15th. 281. Crushing Flour, P. Pfleiderer, London.-22nd January, 1881.
234. VELOcPEDES, E. R. Settle, Coventry.-22nd January, 1881.
235. MECBANICAL Motor for Rotary Action, M.
Gandy, Liverpool. $-25 t h$ January, 1881. Gandy, Liverpool.-25th Jaruary, 1881 . A. Berthier,
236. REsprivaross, E. Rinzi and A. A.
London.-28th Jonuay, 1881. London,-28th January, 1881.
237. SToprerivg Bortues, F. G. Riley, London.-7th
February, 1881. February, 1881 .
238. VELDCIPEDE, W. H. J. Grout, South Hornsey.-
14th February, 1881. 14th February, 1881 .
239. FAsTENING TIRES, D. M. Yeomans, London. -17 th
February, 18s1. F17ebreny-, SCTING Fastener for Doors, J. Woodward,
Wolverhampton. $-19 t h$ Februery, 1881 . Wolverhampton.-19th February, 1881 .
240. Rotary Engines, E. A. Brydges, Upton. $-19 t h$
February February, 1881 .
241. Cop Spinduess, G. W. von Nawrocki, Germany.5 th March, 1881. Frames, G. Neu, London.-19th
242. Umbrela March, 1881.
243. MINING Machines, H. H. Doubleday, Washing-
ton. -4 th A April, 18si.
List of Specifications published during the
week ending June 25 th, 1881 .
 ${ }^{*}$ ** Specifications will be forwarded by post from postage. Sums exceeding 1s. must be remitted by
Post-oflice order, made payable at the Post-ofice, 5 ,
High Holborn, to Mr. H. Reader Lack, her Majesty's Post-oomice order, made payabde Lack, host-oajee, o,
High Holborn, to Mr. H. Reader Lack har Masty's
Patent-office, Southampton-buildings, Chancery-lane,

ABSTRAOTS OF SPEOIFICATIONS.

Prepared by oursel ves expressly for The Enanneke at the
oftice of Her Majesty's Commissioners of Patents.
4116. An Improved Method of and Means for
Transmiting Electrical Curents Through Transmititing Electrical Currents Through
Conductors, and for Facilitating the action of INSTRUMENTS CONNECTED THEREWITH, IV. R. Lake.
-Dated 9th October, 18s0. - (A communication from L. Maiche.). $6 d$.
This invention is chiefly designed for facilitating

4

graphic messages or signals, and consists in transformension produced by the battery into induced currents of high tension capable of overcoming the resistance
of the line, also in the transformation of these of the line, also in the transformation of these
induced high tension currents bakk into quantity
currents on their arrival at the receiving station. Fig. 1 shows the means by which this is done on a tele-
phone line. At the two stations a sending telephone

A is placed in the circuit of the coarse wire of the
induction coil. The fine wire of the latter is coninduction coil
nected to earth C , and also to the line wire D as
shown. Fig. 2 shows the arrangement for a teleshown. Fig, 2 shows the arrangement for a tele-
graph line. The transmitters and relays in this case are placed in the circuit of the coarse wire of the This arrangement can also be applied to the electrophone patented by the inventor on the 7th 'August,
1880, No. 3231. The inventor also describes a modification of his invention, which has for its object the
neutralisation of the effects of induction caused by
the neutralisation of the effects of induction caused by
the line wires in proximity to the wire by which
signals are sent signals are sent.
4127. Pulverising Machines, de., W. Michaëlis.-
Dated 11th October, 1880. Gd. The pulverising apparatus consists of a cast iron
circular box O , in which a steel disc R , provided with circular box O, in which a steel disc R, provided with
a number of beaters P and fan blades Q, say eight of
each, rotates with each, rotates with great velocity. The material which pushed on by the Archimedian screw T into the
pulverising chamber. It passes the beating bars U,
made of made of steel, which crush such pieces as are too

thick. The material is then struck by the beaters P,
and by them thrown against the periphery of the circular box, which periphery in ilined with smooth or
grooved plates of steel or chilled cast iron. Here it is grooved plates of steel or chilled cast iron. Here it is
worked upon between the disc and these hard surfaces
till it bee till it becomes dust, and is carriied away by the air
current created by the fan blades Q through the current created by the fan blades Q through the
further centre of the pulverising chamber, and through
the tube X into the dust collecting chamber the tube X into the dust collecting chamber. The and ther
air in the upper dust chamber is partly carried back air in the upper dust chamber is partly carried back
to the pulveriser through the tube Y . 4153. Regulating Position of Doois 4153. Regulating Position of Dors and Windows,
R. Gossage.-Dated 13th October, 1880. 6 d . This relates to an apparatus to be used in combination with door springs to regulate the angle at which
it is to remain or hallu resume after being opened, it is it consists in on enclosing the spring in a barrel and and it consists in enclosing the spring in a barrel and
pasing rod through it, the projecting end being
screw-threaded so as to regulate the tension of the spring by means of a nut.
4177. Applinnce For Fire-Grates For Consuming
Smoke, de., E. Taylor.-Dated 14 thl October, 1880 .

A perforated or slotted bar is placed in the flue im-
mediately above the fire in a diagonal position towards mediately above the fire in a diagoonal position towards
the back of the fire, and when heated serves to burn 4243. PiAnofortes, E. G. Brever.-Dated 18th Octo-
ber, 1880 . (A communication from Count V. C. A. P. D. G. Nydpruck and L. A. Beunon.) 6d.
The action is composed of four main parts made
from metallic bands which from metallic bands, which, according to the elasticity
required, is used flat or bent over so as to form a kind required, is used flat or bent over so as to form a kind
of tube.
4261 . Scouring, Washing, AND Rinsing Wool, 4261. Scouring, Washing, And Rinsing Wool, \&c.,
J. Petrie, jun.-Dated $19 t h$ October, 1880. 6 .
The material is placed in a hopper having at its The material is placed in a hopper having at its
bottom a creeper or travolling surface, which carries
the material to a lifting apparatus provided with the material to a lifting apparatus provided with
points or spikes attached to the sliding bars for lifting

the material. At the upper end of such lifting appaamount of feed. The material carried past the beater is removed from the lifting apparatus by a revolving
brush or similar means, and then passes into the 4289. Rollers For Window Blinds, \&c., R. Carlyle. The roller is is made hollow with a slot along it from passed, this, end bieing formed with a narrow hem in
which a wire is inserted. 4306. Bobbins For Winding Yarns, L. Briggs, jun.-
Dated 22nd October 1S80 The barrel on which the yarn is wound is formed
from a sheet of paper bent into a tube or cylinder, on which collars are formed to prevent the yarn slipping
off ; the collars may be slipped over the cylinder and secured by glue.
4349. Burrons,
1880.-(Yoid.) Diettermann.-Dated 25 th October, The object is to produce buttons from bone, horn, or
plastic material, having the appearance of silk or plastic material, having the appearance of silk
mohair buttons, and it consists in cutting the face of
the button so as to give it the desired the button so as to give eit the desired ap
then staining it to the required colour.
4519. Oxidising or "Aceirv"" Distilled AND Fer-
MENTED Liquors, W. . Lake.- Dated 4th Noverbber 1880.- (A communication from C. Wated. Ramsay.) Grd.
This consists in first vaporising or atomising the
liquor, and then subjecting it to violent shocks or the liquor, and then subjecting it to violent thocksko or con-
cussions, finally injecting oxygen into the vapur, so
as to permeate the mass and thorouglt as to permeate the mass and thoroughly oxidise it.
4565 . LIFE RAFTs, de., T. Cornish. - Dated 6 th November, 1880. 6d.
The water and provision casks for use on board ships seamen's and passengers' trunks are similarly formed and the casks are provided with a network of wire or
other ropes with loops on each side to receive light other ropes with loops on each side to receive light
spars, so as to form the framework of a raft in a few
minutes. The space between the spars is fitted with minutes. The space between the spars is fitted with
mattresses constructed of a flotatable material.
4571 . Looms, dc., C. Campbell.- Dated sth November, 4571. Looms, dse., C. Campbell.- 18 . $6 d$.
1880.
This relates to improvements in looms for weavin figured fatrics, and in the pattern or shedding
mechanism or dobbies for operating the leaves of nechanism or dobbies for operating the leaves
heddles to shed the warp. According to the pattern
a low rectangular frame is slotted to receive two horizontal reciprocating crossheads B passing trans
versely across it, one on each side of the centre. A
transverse rocking shaft C is carried in the centre, and
has a double crank at each end, and also a working
crank attached to a connecting-rod actuated from any revolving shat of the loom by a crank of smaller throw
than the working crank, so that the shaft C is made to oscillate. The upper crank of this lever is connected
by a link D to one of the crossheads B, while the lower crank is connected by another link to the other cross-
head. The forward crossheal head. The forward crosshead carries an adjustable
plate, to which a series of longitudina plate, to which a series of longitudinal spear or fluke
headed hook bars E are jointed, their spear heads in their traverse catching on to either the upper or lower in
sets of hooked bars or draw bars F mounted in

4557

guide bars G, resting one end on the frame and the
other attached to the rear crosshead. According as other attached to the rear crosshead. According as
the hooks E are raised or met by the action of the
pattern card, barrel, and pushers, a number of them engage with, the corresponding upper slide bars F , the
remainder engaging with the lower slide bars. The
reme remainder engaging wi
rear ends of the lower
leaves of the heddles
4634. Open Fireplaces, J. Jobson.- Dated 11th
Novenber. 1880. Sd. The object is to effect the consumption of the smoke
produced in open fireplaces, and consists in forming pan opeding through theplaces, and consists in forming of the combustion
an thamber and leading into passag of A secondary back or screen is placed in front of the ordinary back and forms a chamber opening upwards
near the upper part of the ordinary back near the upper part of the ordinary back, and down-
wards into the passages at the sides. The back and
side passages and the front part of the fireplace over side passages and the front part of the fireplace over
the combustion chamber have flaps, by which commuthe combustion chamber have flaps, by which commu-
nication may be opened or closed to the ordinary flue. 4662. STEAM Boilers, S. Ballian. - Dated 12th The booiler, is constructed of a belt of tubes placed
tangentially to one another, and in the interion of which belt is placed the grate and furnace. The
interior of the belt above the fur interior of the belt above the furnace is filled with suc-
cessive rows of vertical cessive rows of vertical tubes touching one other.
Each of these tubes encloses a centre tube, the space between the two concentric tubes being filled with
water, and is closed at top and bottom; each tube

$$
4662
$$

communicates with those in its row, and each row
with the vertical tubes of the outer belt. From this arrangement
bustion pass into the interior tubes placed in the centre of the others and through the spaces between
four adjacent tubes. Around the boiler are placed four adjacent tubes. Around the boiler are placed
superposed horizontal tubes for feeding the boiler;
such tubes communicate with one another and with the vertical tubes, and are connected at the bottom The said tubes are connected at the top to large horizontal tubes placed at a gradient, and serving as 4672. Twist Lace Fabrics, G. Bentley.-Dated 13th This relates to improvements in twist lace machines. representing a different action. One colour repre
sents the warp other on the front motion; a asecond coloour represents
the spool threads crossing from one pillar to the othe

on the back motion, and the warp threads crossing
from one pillar to the other on the front motion; a third colour represents the spool threads traversed across one or more pillars, as may be
required on both the back and font motions. required on both the back and front motions
The drawing shows a sectional view of portion
of a twist lace machine with the improve ments, and shows the relative positions of the guide-
bars and their threads, the jack-bar and spring jacks
with the strings for selecting them.
4691. Spinning Machinery, R. E. Osborne, A. P.
Matheuson, and J. Guild.-Dated 13th November; This relates p
friction bands particularly to the temper tension or
windin to to regulate the strain on the winding thread by pressure on the turning bobbins
or forming a drag or brake for them. The temper or or forming a drag or brake for them. The temper or
tension band A is of iron, steel, or brass wire, prefer-
ably slightly curved to bear with its concave side on ably slightly curved to bear with its concave side on
the lower flage of the bobbin B, and lying across the
upper surface of the rail C . The band is formed with
screw bolt passing throughl the back at the back to a
me the and
and adjustable by nuts. The outlet loop is connected
[4691]

to one end of a cord or wire D passing, over the fron
edge of the rail and secured to a weight. 4693. Extracting Oily and Greasy Matter from
Cotron Waste, de., C. T. Bastand.-Dated 13 th November, 1880. 6 d.
The process consists in subjecting cotton waste in a
cosed vessel to the action of bisulphide of carbon, closed vessel to the action of bisulphide of carbon,
ether, or other volatile liquid, which flows with the ether, or other volatile liquid, which flows with the
oil and grease it takes up from such waste to a second
vessel vessel where the bissulphide of carbon or other vola-
tile liquid is vaporised, and thereby separated from

such oil and grease, and afterwards condensed for re-
use. The drawing is a plan of the apparatus with the
cous cover of the cylinder or vessel for containing the
cotton waste removed, and also the perforated plates cotcon waste removed, and also the perforated plates
employed thereina, and with the cover of the vaporis-
ing vessel or cylinder also removed. 4697. Ribing. Apparatus For Knitting Machines
IV. H. Beck.-Dated 15th November, 1880. 6d. The needle and cam plates are supported and carried
by a pillar or bracket secured firmly to some fixed by a pillar or bracket secured firmly to some fixed
part of the knitting machine and are connected to the said pillar or bracket in such manner that they can
be adjusted with facility either vertically or hori-
zontally. The needle plate is held zontally. The needle plate is held rigidly by means

of the fixed pillar or bracket, and is adjusted circum-
ferentially by means of an index fincer ferentially by means of an index finger or arm secured
to the spindle of the needle-plate, and so adapted and
arrang arranged as to be easily manipulated and secured at
the upper part of the machine. The drawing represents the arrangements applied to a circular knitting
machine of the type known as the "little rapid." 4703. Twisting of Doubling Machines, J. E. This consists.- in the lowering of the lifter rail and flyers below the bobbin, "and winding the yarn up.
the spindle previous to "doffing" the full bobbins. 4704. BURNERS FOR Lamps, F. Rosenthal.-Dated.
15th November, 1880.-(A communication from M. This relates to lamps burring paraftine, petroleum, and other oils and liquid hydrocarbons, and it consists particulary
in the use of a novel central air conduit with deflecting flange or disc, whereby a considerable quantity
of cold air is conveyed to the interior of the flame. 4708. Apparatus for Sounding Depth of Water in
Ships' Welle, \&ce., R. and J. Jones.-Dated 16tlo November, 1880 . $6 d$.
This consists in the manuacture of sounding tubes wells and other places, in which said tubes or rods are provided floats sliding therein or thereon, and pre-
vented from falling by a rack and pawl or other equivalent mechanism when the tube is being with-
drawn from the water, so that by the position of the float the depth of the water sounded can be ascer
tained. 4709. Cast Iron Slag Boxes and Steel Ingot
Mouds, M. and J. Cornthevaite. - Dated 16th
November, 1880 . bd. The box or mould is constructed circular in form said parts are bound together by means of malleable wrought iron bands or hoops, preferably in two parts
with flanges, the two parts of the hoops or bands being
held together by bolts and nuts, the said bands or hoops being placed in suitable grooves cast or formed
in flanges on the parts forming the body of the
mould. 4714. Concrete Buildings, J. M. Tall.-Dated 16th
November, 1s80. 6d. This consists in the use of a combination of the slab
and block systems, the slabs and blocks-being cast of such form as to dispense with the use of apparatus during the binding, and also to avoid the necessity
for first setting up the framework of the house. 4715. Paper-folding Machinery, W. Conquest.-
Dated 16 th November, 1880 . - (A communication fron

The apparatus is adapted to give to a web of paper as it issues from the printing machine a longitudinal
fold or folds, and also to cut it into sheets and fold them transversely without retarding their travel.
The web A on leaving the printing cylinders B passes
through the primary folder C , which folds it longitudinally, such fold consisting of four turners, over they would meet at a common point, and at about an ngle of 90 deg. to each other, and inclined forward at
about 4 deg. The other two are placed so that if
extended they also would meet at D and extend

 4715

which forms a seond longitudimal fold in it , when it
pissess to the outing Rhisots and ond olded transveraly.
 steanm is is used whion wion is dried, re-henented, and super

It so orrangod that it may be detatched with facility and clean it, and then rephace it, and the two appara tuses, that is to say, the superheater, and the boporver,
 aro urod simultanoousy. The drawing
4718. Appantrus ron Coxpsestix or Coonso, de.

 seocondy, in the emplopynentit of apparatus for oor on:
 the nadition of moisturo, the same air being subsequenty employed in a dry and hatead concition the purposes of heating, ventilating and drying.

 syrup chamber as the syrup enterse it, the apparatus statas open when not exposed to pressure, but whiceses with the pressure ressltining fom the aidisssion of means by which provision is made for the escape of apparatus being furnished for this purpose with an outlet passage from the cone or cork con
a valve controlled by the bottling handle.
4727. Preventing Trains Leaving the Rails and
Preventing Collisions on Railiways, c. . A. Preventing Collisions on Railwars, C. J. A.
Nicolet.-Dated 16tho June, 18s0.- (Provisional pro-
tection not alloned) tection not allowed.) 2%.
For preventing trains from leaving the rails, the which, when the rails are in position, is inside the line. Each railway carriage and locomotive is pro-
vided with vertical iron bars terminated by iron cramps, which cramps may slide in the slot of the rails, and as manys of these said vertical bars the
required will be employed. For pret required will be employed. For preventing collisions
between railway trains, four telegraph wires are between railway trains, four telegraph wires are
placed on the line, two of the said wires being placed on the right side of the right rail and the two others on
the left side of the left rail. Each locomotive or one
of the carriages is provided with of the carriages is provided with an electric apparatus. 4732. Forcing Sausage Meat into Skins, de., T. T.
Williams jun., and W. Sangste:--Dated 17th' NoThis relates to machi piston or plunger working therein are employed for forcing the meat into skins or other receptacles, and peculiar arrangement of driving gear.
4733. Coking And Distiling Coal, L. V. Semet and
E. Solvay.-Dated 17 th November, 1880. 10d. into colates tments disposed alternately is divided into compartments disposed alternately, one for the
passage of the products of combustion, and the other
to receive the coal to be coked or distilled, and it consistsin prming the flues or passages K for the passage
of the products of combustion of hollow pieces of
moulded fire-clay of rectangular

sions of the length being greater than those of the
sides, the chambers A to receive the coal being formed by the space left between two rows of retorts. By
this means no joints are formed in the side walls of shown, or horizontally; when vertical they vertically, as zigzag passage and for the flames, which pass from one to

4737

is used to receive the wires, and is made of curved
steel, the extreme end being formed so as to leave a small opening for the entrance of a knife end G between the rails when the wire is on the return stroke to in
sert the wire between the warps. On the back of rail sert the wire between the warps. On the back of rail
A are two angle brackets H, and on D are also two
brackets I bolted to the brackets H, a passage being left between the tops of the latter and the rails to per
mit the haper mit the hopper B and wire to pass.
4748. Vessels for Containing and Supplying Oil,
A. Wells and R. Walluork:-Dated 1sth November, 18s0.
This consis. taining and supplying oil for lubricating purposes, of taining and supplying oil for lubricating purposes, of
solid cast iron annealed, combined with the spouts
screwed in, screwed in, and
srrangements.
4749. Shaping Soap, de, J. O' Keeffe anl W. Robert-son.-Dated 1Sth Nocember, , 1s80. $6 d$. . 1 . Robert
The apparatus consists of dies, one or both of which is made to move and shape the soap into the desired outline, The die or dies is operated by a lever moving
on a fulcrum pin, and it may be actuated by a steam
cylinder, by hand, or otherwise. Cutting wires are cylinder, by hand, or otherwise. Cutting wires are
employed. 4752 .
 This relates to machines in which the stone is employing two or more cylinders A and B, placed one
behind another, and caused to revolve in the same direction, each, cylinder caused to revolve in the same the stone, and the second broad to finish the work the stone, and the second broad to finish the work.
By gearing and screws the cylinders an be raised and
lowered together or independently. They are driven

by pinion and spur wheel fixed on one cylinder, from
which the other is driven. On the axis of each cylinder is a spur wheel gearing with one or more powns, in a ruportial ar circular slot, and connected by
dinks to the shaft adjoining so and links to the shaft adjoining, so as to allow the cylinder
to be adjusted and still remain in gear. The travelling
bed is made to have both quick advance and return motions by open and crossed belts, and also a slow
advance for cutting by means of a friction cone carrying a long revolving pinion gearing with two spur wheels of varying number of teeth, one being
dead and the other fixed on the shaft. By a clutch
the pinion is made to side in that dead anion the other fixed on the shaft. By a clutch
the pinion made to slide in and out of gear. 4757. Tramcar Engines, de., J. Hull.-Dated 18th
November: 1880 . $8 d$. The ovject is to improve the construction and
reduce the working cost of engines by returning all exhaust steam to the boiler, for which purpose a
rotary knuckle pump (shown in the drawing) is

4757

employed, and acts as a steam exhauster, steam
condenser, and knuckle pump, being driven from condenser, and knuckle pump, being driven from
the engines in either direction. The driving wheels
are placed in the centre of the bar and are of large
dimension dimensions, a forerunner and trailing wheel being
employed. The driving wheets employed. The driving wheels are driven by spur
gearing from coupled engines with reversing gear, the
whole carried on an independent bed-plate. The
俍 boiler is vertical, with cross tubes, drop ash-box, and
grate, for cleaning out. The bottom
is grate, for cleaning out. The bottom of the fire-box
is encased with fire-bricks. The boiler is fed by an
injector placed outside the wher injector placed outside the water tank with removable
nozzle and orifice. Beyond this is a boiler scavenger
with back-pressure valve for purifying the water On
lift water from
fill up the tank.
4759. Supplying Stean Boilur and oret, or 4759. Supplying Steam Boller and other Fur-
naces with Fuel, J. Proctor:-Dated $18 t h$ NovemThis relates partly to improvements on patent No.
191, A.D. 1879, for working movable fire-bars, and partly to an improved mechanical stoker. The feed box A is made in one casting, the bottom being semi-
cylindrical with an opening at each end. In it works
on the ram D, also semi-cylindrical and having a wedge shaped projection E on its upper surface and a poker
F at each end, the former serving to guide the fuel
right and left, and with the pokers to stir in the feed-box and prevent pokers to seoming solid. As the
ram moves to and fro it causes the fuel to fall alter

4759

nately through the openings at each end of the feed upwards. The shovel consists of a plate K fitting the gear with an intermittent spur wheel N. The spring Q forces the shovel back atter it has forced the fuel
into the furnace. The improvements to movable fire into the furnace. The improvements to movable fire-
bars consist in the method of driving the tappet shaft from the main shaft.
4761. Domestic Grates and Stoves, H. Thompson.-
Dated 18th November, 18so. 6d. This consists essentially in the construction and
arrangement of sliding bars, having a slot or space and the employment in connection a slot or space
divith of a dividing plate.
4766 . Locks
4766. Locks AND Keys, T. E. Julian.-Dated $18 t h$
November, 1880 . This relates, First, to the construction of locks, the
improvements consisting in the combination of the improvements consisting in the combination of the
levers carried by the sliding bolt with the other parts of the mechanism, so that one lock is capabole of appli to say, in four as a mortice lock, and in two as a rin lock. The key is furnish
both sides of the spindle.
4767. Tricycles, Bicycles,
Deted $19 t h$ November, 1850 .
. Weatherill. This relates, First, to the axles and bearings,
Secondly, to the application of conical friction brakes in or upon and to the hubs, Thirdly, to the applica4769 .
4769. Roller and Rolling Mills, C. Herbert.-
Dated 19th November, 1880 . Sd. The invention is applicable to roller and rolling
mills of all kinds. The rollers A and A^{1} are supported mills of all kinds. The rollers A and A^{1} are supported
in bearings, those of the latter being carried by levers B, capable of turning on fulterum C. . Extending from
side to side of the machine is a shaft F, carrying cams side to side of the machine is a shaft F, carrying cams
G, engaging with forks or slots at the lower end of
levers B. Attached to shaft F is a lever H, whose

outer forked end engages with a srew hand wheel I working on a screw held in position in the box
J
by a powerful volute spring and screw nut. By raising and lowering the end of lever H the pressure
is regulated.
4781. Watch Cases, W. R. Lake,-Dated 19th Novem-
ber, 18S0.-(A communication from Sir A. von

The case is formed so as to allow the watch always
to be in one position, for which purpose it is to be in one position, for which purpose it is made in
the form of a polygon, with the corners and edges
rounded, so that it cannot shift round in the pocket. 4792. Furnaces For Steam Boilers, \&c., IW. L.
Wise.-Dated 19th Novenber, 1880.-(A comunnication from G. Criner.) $6 d$.
This relates to the consumption of smoke, and con-
sists of means for thoroughly mixing it with an exeess

of air, and for raising the whole to a high temperature. Two or more bent or zigzag flues D and G are formed
by two arches A placed between the grate H and the boiler, and in these flues the gases are mixed with an 4797. Machine Embroidery, \&c., C. A. Barlove-
Dated 20th Nocember, 1sso.- (A communication fiom J. Wiggett and C. Wetter.) 6d.
The object is to embroider eyelets, spiders, sprigs,
dots, or other figures so that they are connected todots, or other figures so that they are connected to. gether and to the body by embroidery thread only.
The machine is fitted with a perforating apparatus,
and a piece of cloth is placed in themachine as usual, and
on it "understitches" are made where the figures are
to be embroidered. The work is commenced at an onvenient part where a figure is to be formed, an
then the fabric is perforated outside the figure atrigh angles to a line raciating from the centre of the figure, front side of the cloth to another figure, where two or more understitches are made; then the leap stitch
or connecting thread already drawn from the first figure is surrounded with thread stitched through the perforation between the first and seco
fastened at the edge of the first figure.
47G6. Permanent Way of Rallways and Tram
Ways, A. Fairlie.-Dated $19 t h$ November, 1880 . $6 d$ d This relates, First, to the form and construction of longitudinal metallic sleepers ; and Secondly, to the
form of rails to be used therewith. The sleeper A is
of iron or steel

semicircular in cross section, with a rib B projecting B entering the recess in its underside, when the two
are secured by bolts and nuts D, or by rivets, thus are secured by bolts and nuts D, or by rivets, thus
forming one strong girder, 4798. Rolling, Shaping, Cutting, And Straighten-
ING Wire , \&c., Hill and H. B. Barlovo-Dated
20th Novenber, To cleanse and soften the wire it is passed through To cleanse and soften the wire it is passed through
a bath of molten lead, and then through a guide B to
the grooved roll C and flanged roll D ; the bracke supporting the latter beingadjustable in slides. When which is a small passes through a guide plate E , in the plate E being mounted on a sliding bracket. On
the upper part of the machine frame is fixed a sliding

table F , on which is mounted a fixed cutter G and
movable cutter H , actuated by a wedge I , when th table moves to and fro. J is a straightener made in two parts. The rolls are preferably made in two or
more pieces of steel and cast iron combined. 4803. Ornamentai Printing with Blocks, J. Mac
leod. - Dated 20th November. The object of the invention is to enable the printer yy depressing a treadle to cause colour to be spread on as it is printed, instead of requiring a special workmal 4805. Cords, \&c., J. and IV. Schofield and J. E. This relates to woven goods called cords, and it object is to obtain a fabric with a good back, and
which at the same time will cut well and have a good curl or cockle. The cord is woven with eight shafts,
and in a round of twelve picks four are binding pick
 picks, two, say the first and seventh in the round, are
made with the ends lifted as for plain cloth, the end made with the ends lifted as for plain cloth, the end
lifted for the first pick being down for the seventh.
For the other For the other two binding picks, which would be the
fourth and tenth, the two ends in the middle of each fourth and tenth, the two ends in the middle of each
alternate race are lifted, the two ends in the middle of each intermediate race being down, the ends
which are lifted for the fourth pick being down for which are lifted for the fourth pick being down for
the tenth pick. The intermediate ends between the the tenth pick. The intermediate ends between the
centre ends so lifted and lowered in pairs are alter-
nately up and nately up and down in regular order.
4806. Pumping Valves for Hot Water Apparatus,
W. Stainton.-Dated 20th November, 1880 . 6d. A four-way piece X is used, the ways A and Bd being
connected with the circulating pipes, C serving for the pump connection, and D for the discharge wards, it is placed as shown in relation to the fourway piece F , and the screw cap to close the discharge,
and H a rod fixed to the cap. When the cap is screwed on the way D the upper end of rod H raises the valve
and leaves the passage open through the ways A and B. When required to force water through the appa

ratus to cleanse it the cup F is removed, when the
valve will fall on its seat, and the liquid will then pass from the pump through, C and D, and from the circu*
lating pipe through A and D. 4807. Cans, \&c., T. G. F. D Ther, relates principally to cans for preserving food,
and consists in forming a screw at top below which
is formed a led ge. The cover rests on the ledge and is formed a ledge. The cover rests on the ledge and
a soft material to form a tight joint is placed over a soft material to form a tight joint is placed over
it, and a ring or outer cover is then screwed over all,
thus securing the cover proper in position. 4810. Revolving Frame for Umbrellas, \&ce, E.
Eimonds.-Dated 20th November, 1850 - (A commuThe frame is so attached to the handle, that upon it will revolve with the cover about the strong wind, 4811. Grinding Apparatus, R.R. Gubbins.-Dated The object is to gather the dust given off from the
emery or other grinding surface, and it consists in mounting on the shaft carrying the wheel a rotary fan
which draws off the dust and delivers it through pipes into any suitable place.

 Sitan

 4819.0.

 4

and produce an inflammable gaseous vapour. The
oxcentric F on the engine shaft works a pump H,
which raises the hydrocarbon which raises the hydrocarbon placed in the carbuone of a series of trays arranged therein, from which
it descends through the whole series to the bottom,
while air is forced thro who the while air is forced through the carburetter by means
of the pump K worked from a disc on the engine
shaft, the air in is passage through the carburetter
becoming impregnated with the vapours of the hydroshacoming impregnated with the vapours of the hydro-
carbon fluid.
 This relates to the use of a specially formed eyelet through which the lace can slide freely.
4821. Oil For Preventing Oxidation of Metal
SURFAEES, W. R L. Lkee. - Dated 20th November, 1880 .

Pradom.) $2 d$.
Olive oil is placed an earthenware vessel with Olive oil is placed in an earthenware vessel with
lead and allowed to stand for some days, the oil
becoming thickened, and on being drawn off deposits the thickened part, when it can be used to prevent
oxidation.
 The generator consists of a single tube C of very
small diameter arranged in a furnace, either in con-
.
contric screws with the closed spirals or with spirals

open one above the other, the flame of the furnace
passing between them. The water is forced into the tube by a pump, and the steam generated passes into
vessel D and by pipe K to the steam cylinder L. 4823. Plasterrs, A. H. Mason.-Dated $22 n$ d Novem-
ber, 18s0. $2 d$. Leather scrap is pulped and passed under couch
rollers to deprive it of moisture, and upon the sheets
so formed fosilline so formed fosilline mixed with the medicinal matters
required for the particular complaint is spread 4826. Herls for Boots and Shoes, S. H. Hodges.Dated $22 n$ November, 1880 . buiding up the heels,
This relates to a machine for buildig
and consists of a last similar to the one used in the and consists of a last similar a stand, fitting into a
Blake machine, mounted on
hole in a plate, which slides on a bed to or from a hammer, so as to adjust the distance from the head of is hinged to an upright bar, and is held in position by
a screw pin, on which, between the hammer and the a screw pin, on which, between the hammer and the
upright, is a spiral spring. The lower end of the bar is
keyed to a shaft connected by rods to a crank, so that keyed to a shatt connected by rods to a crank, so that
the hammer is brought down on the heel and fills up
4827. Salt Cake PaNs, J. H. Dennis.-Dated 22 nd
November, 1880. (Not proceeded vith.)
The of.
The pan consists of three thicknesses of metal, so that should one or t
pan will not escape.
4829. Bicycless, \&c., H. Hayzard, J. Day, ant J. H.
Gosling.-Dated 22nd November, 18s0. 6a. Gosling.-Dated 22 nd November, 1880 , 6d.
The driving wheel has a hollow hub, whithin which carrying a cog-wheel which actuated with a pranks anion on a
spindle working in the fork. This spindle also carries spindle working in the fork. This spindle also carries
a cog-wheel gearing with a pinion on the hollow hub. a cog-wheel gearing with a pinion on the hollo
By these means the speed is greatly increased.
4828. Spinning and Doubling Cotron, c. E. Thomp-
son.-Dated 22 nel November, 1880. 6d. This relates to throstle and doubling frames, in Which the spindles revolve in fixed vertical tubes
secured in the lifting rail, and upon each of which is
mounted a loose tube to carry the bobbin, and it conmounted a loose tube to carry the bobbin, and it con-
sists in the employment of a ring of metal H inserted
in an annular cavity between the two tubes A and B, aslight shoulder being formed inside the loose tube and on the fixed tube to form bearings for the ring, smallest possible diameter. By this means the bearing
surface of the loose tube is reduced, and it is brought
an 4828

A

on the lower end of the loose tube) is diminished,
whlereby finer numbers may be spun and doubled than
hithert 4830. Bovquet-Holders, F. Wirth. - Dated 22 nd
November, 1880.- (A communication from C. Erhard.) The holder consists of a tube to receive the bouquet,
to which are hinged three legs capable of being opened to which are hinged three legs capable of being opened
out so as to form a tripod to support the bouquet in an
upright position on a table. upright position on a table.
4831 Killing And Catching Whales, de., o. C.
Bjerke.-Dated 22nd November, 1880.-(Not proceeded with.). 4 .
This relates to harpoons with movable barbs, and
consists in consists in so connecting it with wires from a battery
as that when the harpoon enters the whale or oother
animal, a current of electricity will be sent with it. animal, a current of electricity will be sent with it.
4832. Wooden PAvements, E. Young.-Dated 22 nt In oveder to prevent horses slipping on wooden pave-
ment, a nail or spike is driven into each block, its ment, a nail or spike is driven into each blook, its.
head resting on a washer, so as not to sink into the
block under the pressure of the traftic. 4834 Door Furniture, J. Brooenrigg.-Dated 22 nd
November, 1880.6 d . November, 1880. 6d.
A separate spindle is attached to each knob, and
each one is inserted into the lock from opposite sides. each one is inserted ine the plates by means of slotted pieces, which slide in grooves and pass through the
neck. The sliding plates are kept in position by the
rose, which is cupped to fit the outside of the fixing rose, which is cugped to fit the outside of the fixing
plate, and when placed over it and turned partly
round the fixing is 4835 ber,
ber, 1880.-(Not proceeded with.) $2 d$. $2 d$. 22 net Novem-
The The joint consists of a buckle with three studs, the the strap or dreiving band being secured by theif
friction against each other, and against the studs 4838. SELVAGES OF Corton Velvets, \&c., H. Hey.
vood.-Dated $22 n$ November, 1880.-(Not proceeded The fabrics after being dyed, and either before or ater they have received the inal finish, have their
selvages subjected to a process whereby silk, octton,
linen, wool, or other threads are commingled or inter
spersed spersed amongst the threads already woven in the
selvage, the operation being effected by apparatus of
the character of an ordinary sewing mater 4840. Glove FAsteners, \&ce., R. Weiss.-Dated 22 nd
November, 1850.- (Not proceldel vith.) The glove or other article is fastened by a thread
attached at one end to a bar of metal stitched to one
side of the opening its other end being sored to side of the opening, its other end being secured to a
disc capable of rotation fixed on to the other side of the opening, so as to draw the two sides together.
4841. Drying STirch, B. J. B. Mills. - Dated 22nl

The lumps of damp starch are crushed by a upon the first apron of the drying machine, which is
upomposed of a number of travelling endless aprons
con composed of a number of travelling endless aprons
arranged one over the other, each one moving in the
opposite direction to the one above it. The starch ppsses from one apron to another through the series,
and is finally conveyed to a cooling and mixing
and 4842. Looms for Weaving Chenllle or Axminster
Carpets, de., W. Adam.-Dated 22nd Nocember, 18s0. 6d.
A bar of needles is set to the required gauge, and
rough the eyes of which the "catcher" or bindin through the eyes of which the "catcher" or binding
warp passes from a small roller or bobbin with flanged
ends on which it is wound. The bar of needles is
fire to ends, on which it is wound. The bar of needles is
fixed to a frame mounted with capability of being
moved up and down in suitable fixed guides carried

by the framing of the loom. The catcher warp roller
or bobbin is mounted in bearings carried by the needle frame just above the needle bar, and moves up and down with it, and such catcher warp rollor or bobbin
is provided at one or both ends thereof with suitable
taking-up appliances 4843. 4843. Atrachivg Curtains, \&c., G. Moore.-Dated
22nd Nocember, 1880 . 6d. This relates to means for attaching tapes, cords, or strings of curtains to the window sashes. The tape is
first attached to the sash and then drawn tight so as
to give the curtain a neat appearance. to give the curtain a neat appearance. Two pins are
attached to the upper and lower edges of the curtain,
and and each is fitted to a frame formed with holes to
secure it to the window sash top and bottom edges only hold the ends of the tapes,
while the other two are made to revolve, so as to tighten up the tapes.
4844. Treating Dolomite, W. R. Lake.-Dated 22 nd
November, 1880 . A communication from A. BraconThis consists chiefly in the manufacture of refractory material by extracting from calcined dolomite any
desirable portion of the lime it contains by means of a
solution of hydrochlorate of ammonia containing solution of hydro-chlorate of ammonia containing a
suitable proportion of this salt. 4845. FurNaces or Fireplaces, W. R. Lake.-Dated
22nd Novenber, 1880.-(A communication from J. This consists of a furnace or other heating device
having the usual chimney for producing the necessary

4845

outer air and its outlet opening terminating in a long narrow opening adapted for conducting the heated air
across the path of the gases in their course to the
chimney. 4846. New Colouring Matters for Dyeing and
Calico Phinting, O. N. Witt.-Dated $22 n d$ November, 1880.4 d .
This relates to colouring matters obtained by exposing organic bases of the aromatic series to the
action of nitroso derivatives of tertiary aromatic amines.
4848. Covering the Tap Holes of Casks and
Rendering them Atr-tight, de., J. Clubb.-Dated Rendering them AIr-TiGHT, \&c., J. Clubbb. - Dated
23 rd November, 1880 - (Not proceded uvith.) 4d
A plate of metal is attached to the cask at one end, so as to be capable of being turned to cover or uncover the top hole of the cask when the tap is withdrawn.
On the under side of the plate is a washer of indiarubber or
taphole.
4849. Cooking Apparatus, L. W. Leeds.-Dated 23rd

This relates to apparatus for cooking by direct radiation, and consists in placing the grate vertically,
while the horizontal depth of the fuel chamber is very shallow, and tapers from the bottom upwards. The fuel chamber at the bottom terminates in an ash pit
projecting beyond the grate bars, so as to catch any-
thing which projecting beyond the grate bars, so as to catch any-
thing which may fall through them. The draught
flue enters at the back of the fuel chamber and near flue enters at the back of the fuel chamber and near
its vertical centre, so as to promote combustion where
it is most neede its vertical centre, so as to promote combustion where
it is most needed. A screen is placed in front of the
fire, and being lined with fire-brick, when hot throws it is most needed. A screen is ph
fire and bing with fire-bric
heat back upon the fire surface.
4851. Current Meters, H. Law.-Dated 23 rd Novem-
ber, 1880.The meter is so formed that the shaft put in motion by the current imparts its motion to a vertical shaft
enclosed in a tube closed at top such shaft extending enclosed in a tube closed at top, such shaft extending
to the upper part of the tube, where is an arrangement which causes an electric circuit to be completed on
each revolution of the shaft thereby actuating a signal each revolution of the shaft thereby actuating a signal
above the water.
4852. Valves and Valve Guides for the air and
Circulating Pumps of Marine Engines, dec., W.

Bury.-Dated 23 rd November, 1880. $6 d$ d.
This consists in the combination in a valve designed to close agininst a seat having a grating of a renewable
face of cork, wood, or the like, so arranged as to cover

the whole area of such grating, in the seating and
frame or body wherein such face is secured drame or body wherein such face is secured. The bearing surfa
lignum vite.
4853. Sewer and Drain Pipes, de., J. LovegroveAn escape or overflow tube, passage, or way is prothereof, and being in connection therewith. The top
of the drain channel forms the bottom of the overflow tube, and is perforated, or has provided small slits, circular or other shaped openings. The top of this,
tube is continuous in cross section with the outside of the remaining portion of the pipes, so as to fit pipe
by pipe, either with butt joints, or butt joint and collar, or spigot and
fit any form of joint.
4854. Apparatus for Automatically Igniting and
Extinguishing Gas Jets, \&c., E. A. Brydges.-

Extinguishing Gas JETs, \&c., E. A. Brydges.-
Dated 23rd November, 1sso.-(A communication fiom J. Schuelke.)-(Not proceeded vith.) $2 d$.
An auxiliary burner is used in combination with the main burner and certain valves, and this auxiliary
burner is so arranged that it may be either continuous burner is so arranged that it may be either continuous
or intermittent it its action-that is to say, the flame
may burn constantly night and day, or with a may burn constantly night and day, or with a
scarcely perceptible flame during the day or when the scarcely perceptible flame during the day or when the
pressure of gas in the pipes is low, but will be ex-
tinguished as the pressure is increased after having
isnited the flo ignited the flame of the main burner, and it will be re-
lighted from the main burner as the pressure is decreased
4856. Loons, J. C.rook:-Dated $23 r$ November, 1880 .
(Not proceeded voiti.) (Not proceced witi.) 2 d.
The object is to weave a fancy border formed of
one, two, or more thick cords, with or without spaces one, two, or more thick cor ds, with or without spaces
between, across the face of the piece by the weft itself,
with the same kind of filling throughout, and this is with the same kind of filing throughout, and this is
accomplished by repeating the pick, whilst holding
open and without moving the shed whenever such open and without moving the shed whenever such
thick cords are required, the solvedges being formed
by catch cords worked in the usual manner, the cloth by catch cords worked in the usual madker,
thus woven beeing suitable for handkerchiefs and
similar articles. 4857. Brace

The ears are formed on opposite sides of the upper part of the buckle, the said ears being turned at right
angles. Similar ears are formed on the opposite sides of the lower part; the ears of the lower part, when the two parts are put to ether, bearing against the inner
sides of the ears of the upper part. Coincident holes
are made in each pair of are made in each pair of ears, and short cylindrical
rivets being placed in the said holes, the said rivet harets fixed in the outter ears by a rivetting process, or
ane positions of the ears may be reversed- that is, the
the ears of the lower part may be external, and the rivets
fixed in them. 4859. Vessel for the Conveyance of Mile, de.,
W. Legge.-Dated $23 r d$ November, 1880 .- (Not proceeded vith.) $2 d$. .
This consists chiefly in the combination with the
body of the can or vessel of wheels, whereon the same body of the can or vessel of wheels, whereon the same
is mounted in such a manner as to be capable of
standing upright thereon, and of being conveniently wheeled along.
4860. Lamps, S. Pitt.-Dated 23rd Novenber, 1880.-
(A communication from W. B. Robins.)
Gd. The lamp consists mainly of a long and narrow
vessel constituting the front. From the bottom of
said front, immediately in rear of its front wall, said front, immediately in rear of its front wall, rises
a long flat wick tube or holder. Enclosing this wivk
holder on its front and rear sides respectively are sheath plates or wick guards, capable of accurate ver-
tical adjustment. A plate extending upward from the rear of the boat is perforated to receive bolts or
hooks projecting from the wall of the apartment to be
lighted.
4862. Improvements in Telephones, S. Pitt.-Dated
23rd November, 1850.- (A communication Nottbeck. $2 d$.
The inventor closes the mouthpiece of the transmitting telephone by pasting or cementing over it a diaphragm of paper. The vibrations are thus deve-
loped, and the entrance of dust, and rusting of the plate by moisture of the breathst, and rus
4863. Back Sights for Small-arms, c. Wozencroft.

- Dated $23 r d$ November, 1880 . (Not proceded vith.). The back sight is so constructed as to form a com-
bined wind gauge and back sight. bined

4865. MANUFACOURE OF SUGAR, F. M. Lyte.-Dated
23rd November, 1850 .- (Not procededed witth.) 2d.
This invention consists in themethod This invention consists in the method of eliminating or separating the sulphuric acid and sulphates
other parts of lime and magnesia from the syrups. 4867. Wool Washing Machive, C: Pieper.-Dated
24 thl November, 1880 - A (communication from R. Franz.)-(Not proceeded vith.) $2 d$.
The First part consists of a system
The First part consists of a system of two or more
rollers pivotted in two discs or systems of arms fixed
on a rotating shaft on a rotating shaft. When the system of rollers
rotates, each roller while passing through the lower rotates, each roller while passing through the lower
part of its course rolls on a perforated false bottom
arranged in the trough of the machine and covered to arranged in the trough of the machine and covered to
a certain height by the lye or wash liquor. The Second a certain height by the lye or wash liquor. The Second
part consists of a rake composed of a frame to which
is attached a numer part consists of a rake composed of a frame to which
is attached a number of cross bars, eech of these bars
being provided with a row of broad teeth or pegs. 4871. Aeronautic Apparatus, R. Stevenson.- Dated 24th November, , 18so. - (Not proceeded evith.) 2 . $2 d$ ated
This relates to the employment of a centrifugal This relates to the employment of a centrifugal
exhausting fan or paddle for the purpose of raising
the the vessel and contents.
4866. Combined Cabinet and Musical Instru-
ment, A. King,-Dated $24 t h$ November, 1880.-(Nol This consists in a method of constructing cabinets
or articles of furniture in such a manner that musical boxes or other automatically playing instruments form 4873. Bicycles and Tricyoles,
F. Dietrich.-Dated 24th November, 18so. Gal. This consists in the adaptation and application of
friction or toothed gearing, arranged between the naves or bosses of the driving wheel, and mounted in
n stationary metal frame fixed to the stationary metal fame fixed to the fork of the vehicle, whereby an increase of speed is communi-
cated to wheels fixed to the naves or bosses of the
driving wheel. 4874. Decorating Celluloid or Analogous Sub-
Stanes, A. J. Boult.- Dated 24 th STANCES, A. J. Boult.-Dated 24th November, 1880.
(A. Acomminication from N. Hart and R.A. Bacon.) To enable designs or letters in tints or colours to be
permanently marked on celluloid, aniline coll permanently marked on celluloid, aniline colours are
dissolved in carbolic acid, and ether or alcolol or both added thereto. The colours thus prepared are applied
to the surface and when dry will not rub off. 4875. Sorew Propellers, J. D. Custance.-Dated
24th November, 1880 - - A communication from J. This consists in forming the hitherto plain surface
of the blade with a series of transverse, curved, or serpentine corrutuations running parallel to the the centre or
line of the shaft, or at any angle therewith, as found most desirable. 4876 . UnBper 4876. Umbrellas and Parasols, T. Baker.-Duted
24th November, 1 Iso.- (Not mooceded bith.) 2 2. This relates chiefly to an improved construction of 4877. Apparatus for Pressing, Smoothing, and
Finishing Garments, dec., C. Hoyes.-Dated $24 / h$ November, 1880 .- (Not proceected wis.
On a framework is an arm, having one end mounted
or hinged in suitable bearings. At the other end is or hinged in suitable bearings. At the other end is
attached a hollow smoothing iron, heated preferably
by gas flame. To this iron is or are attached a tube by gas flame. To this iron is or, are attached
or tubes to carry off the waste gases to a flue. 4878. Silent Mincivg Machines, J. Marshuell.-
Dated 24th November, 1880.- (Not proceeded vith.) This relates to a means for operating the machines
with less power than hitherto. 4879. Hoisting Machines, J. B. Handyside-Datel
24th November, 1880.-(A communicution from T. Mc Cabe.). $6 d$ d.
The principal distinguishing features of the machine are, First, the application of a yoke or arc-shaped
piece, which, by an automatic binding action,
prevents the prevents the hoisting rope or chain from slipping;
Secondly, the application of an excentric automatic

4879

brake block to the pulley on which the hand rope in connection with the hand rope, , and of similar pulleys and a deflecting plate or guard in connectio on
with the hoisting rope; and, Fourthly, the applica-
tion of certain fixed guards to prevent displacement tion of certain fixed gua
and fouling of the rope.
4880. Spinning Machinery, T. Craven and T. Muter. - Detel $24 t h$ November, 18s0. Gid.
This consists in mounting a twizzle at the head of

4880

the flyer, centrally with the revolving spindle, and when applied to rug or cap spinning frames, above
each spindle is mounted h hollow wharl, having a
twizzle secured thereto similor to the twizzle secured thereto similar to those at the fyer
heads. The fibre passes direct from the front rollers to
the twizzle without support, and in its travel the twizzle without support, and in its travel between
the same is twisted into yarn, the twist running the
whole distance from the top of the twizzle close to the
nip of tho front rolless, twisting the short fibre
diroctily it is delitereco by the sid rollers.

 4883. Kivyours. or Locks, H. C. Robects.-Dated

 tompoctod owith the the sheath, and extending into the

 Trisi reiatest ton vasesel which is rocked to and fro nd provided with slots.
 This r ralatest to bunnerse provided with two nipples.
 Thtan notases
 offects of collilision.

 minis rolates to a method of using the alternate
 guaoline, or other sustable volatilil iliuids.

 The night solisis phateod inn matank kand the a immonit

This reatasestodyeing yarns in two or more colourr

2d. relates to means ofr adjusting the grinding Mhe e to thio various positiond.

 may be inserted. A Aag may be attached to the end Bands buoy, which stands up out of the water
and

 Atter boing thoroughy yixed the composition in
Tressed to the requirad form and driod in an oven for pressed to the required form and dried in an oven for
about a week at a temperature of from 100 deg. to 150 deg. Celsius.
4907. Apparatus for Manipulating Twist Drills
or Btis to Grind and Sharpen the Same, de., OR Bits To Grind AND Sharpen Tree Same,
J. D. Ashoorth. - Dated 25th November, 1880 . 6 .

4907

upper part or rim of each shield A is formed with holes
traough which the boits D D are passed to connect the wo shields together. Hydraulic tubes E are inserte shanks. A strip of boiler-plate or other suitable metal
is sprung into recesses. 4908
4908. Ammoniacal Salts, H. G. Grant.-Dated 25 th
November, 1880.-(A communication from G. Rous-seax.)- (Not proceeded with.) $2 d$.
Ammoniacal liquids are heated to about 60 deg. 4911. Tramways, A. H. Rowan_-Dated 25 th

This consists of constructing train rails in two
parts, the one consisting of the head, vertical rib, and
491

lase flango of the rail, and the other forming a side to
the froove for the wheel langes.

 4911. Mosir

reaurred
hacire
418.

The biaceot of the invention is to run the bobbins at
 one uniform tension, and consists in in improvementions on 4922 .

passed through the second bath, but with black pipl
mont substituted for the umber or if colourad proof

 Two bands passis over rollers, nand move with thein faces in close proximity, and the knives are drawn
between hem while in motion and are thus cleaned on bothsiase at one operata
in supplied to the bands
tond
4932. Trenturexr of Orrs or Merturic Mixrures

 end wrapping of cotton or other suitable material an treated as above
4034.
Serur-a
4934. Sistrectrys Nexpirs, W. Tathan. Dated Deslongchamps.) - (Not proceeded woith.) 22.
2d. The stem of the needle is hooked at one end, and
has the opposite end turned up at right angles to
 The stem is grooved on its upper side to receive
covering point, the end of which opposite the point
being turned up at a right angle, and forming th
portion by whic being turned up at a right angle, and forming the
portion by which a lever bar or cam plate cause
he covering point to slide in the the covering point to slide in the groove, so as
cover or uncover the hooked end. 4935. KNEELER AND BUCRET STAND For Domestic
SERVANT, ©L., J. Northeod. - Dated 27th November
1880.- (Not 1880.- (Not proceeded with.) $2 d$.
board of suitable size is mounted on rollers and
ded on its upper side to form the kneeler. The pucket is placed on a frame, also mounted on roller
to
tacilitate its removal from place
4936. Rols Tobacco, A. T. Lendrum.-Dated 27 th
November, 1880. 4d.

This relates to means for dispensing with the cord
or confining the rolls while being compressed, an onsists in the use of a coil of split cane or half-round mee green roll spirally. The roll thus prepared i 4937. Heating Water, Mulling Beer, \&e., B. J.
Grimes and L. Dove.-Dated 27th November, 1880

The cold water passes into a narrow water-space fows, and then passes duwn a tube to a small spac between two concave plates, upon the underside o
which a gas or other flame plays. Tubes lead from the space between these plates to other similar plates, from the top one of which a p pipe passes upwards to a
urn or muller, passing round a casing and then dow arn or muller, passing
again to the heater.
4940. Sigalling on Rallways, J. Upton.- Date
27th November, $1880 .-$ (Not proceded woith.) A metal cylinder is fixed in every carriage in a train, and to it is itted a whistle or gong, so that by pulling
a cord, compressed air contained in the cylinder may
be allowed to escape and thereby sound the whistle 4941. Automatic Brake for Railway Carriages This relates to the utilisation of the momentum of railway or other vehicle for the purpose of actuating
the brakes, and it consists in making the connection
between the engine and carriage by a single bar, orming drawbar, buffer, and brake rod, being capabl can be thrust in against a strong spring on the car
which in its turn acts upon the brake blocks applied 4943. Explo
4943. Explosive Compound, W. R. Lake.-Dated 27 th
November, $1880 .-(A$ communication from J. M

This consists essentially of nitro-glycerine with
cellulose and saltpetre dissolved therein. 4944. Gas STove, S. Smith.- Dated 27 th November,
1880.- (Not proceeded vith.) A gas burner is fitted to the gaspipe, and is intro
duced into the lower part of a cylinder covered a each end with fine gauze wire. The gas enters
through the burner and mixes with air drawn in through the burne
through the bottom
the top wire gauze.
4946. Transmuting Wood and Osseous Material INTo Wood Pulp For Paper de., W. Boggett.-
Dated 27th Novenber, 1880 .-(Not proceeded voith.)
This relates to improvements on patent No. 663, A.D.
1880 , and consists in the use of a Jordan and Sons pulverising machine for comminuting the materials.
To convert sawdust and shavings into pulp for making paper, they are submitted to a high temperature in a
digester, boiled in lard oil, and immersed in diluted 4949. Producing Printed Representations of
Photographs, J. Dredge.-Dated 27th November,

1880 . $4 d$.
From relief plates of the photograph prepared in the ordinary method, printed representations are obtained
by surface printing, as for instance, in a lithographic
press, such transfer being produced by means of lines, press, such transfer being produced by means of lines,
dots or granulations of ink er pigment, the lights,
shades, and outlines being reproduced by the depos,
tion of the lines or dots on the surface in relief, in tions of the undulated surface.
4945. Treatment of Wort, B. J. B. Mills.-Dated
27 th November, 1880 .- (A communication form K. This relates to the treatment of wort by drawing it
off from the surface by means of a separating sluice

consisting of a chamber A B, adjustable cylinder C
with sharp edged cutting rim or flange K, or in lieu
thereo a thereof a simple adjuc 4950. Stopp

27th November, 1880. - (Not proceeded woith.) $2 d$. A cap piece has a flange on its under surface which
enters the mouth of the bottle, and over its oute
ircumference passes the end of a pieco circumference passes the end of a piece of elastic tube
secured by a wire. Through the tube and the cap piece passes a screw on top of which fits a nut, by serewing
up which the tube is compressed, so as to form
tight joint. A bolt of a lock is then caused to pas 4952. Furnaces for Metalluugy of Copper, A. M i
Clark.-Dated 27 th November, 1880. (A communi cation from J. Garnier.) (Not proceded d with.) $2 d$.
The First part relates to the employment of basic linings in furnaces used in the metallurgy of copper, ducing the electrical conductibility of copperg accord
ing to the purpose for which it is to be used. 4953. Manufacture of Raised Letters and Figures
from Clay, \&e., J. and A. Duckett.-Dated $29 t /$ November, 1880 - (Not proceeded voith.) $2 d$.
This consist in forming a slab or groundwork of
clay in a mould on which the raised letters or figures are afterwards placed and caused to to adhere fy figures
application of moisture or clay wash. 4955. Ruler, R. J. Cook:-Dated 29 th November, 1880 This relates to a flat ruler running on two or mor rolers.
495.
. Propelling Vessels by Hydraulic Power,
Wichardson.-Dated 29th November, 1880.(Not proceeded ovith.). $2 d$.
two jets of water projected at a high velocity from openings in the ship's sides, such jets being put in motion by the action of two right and left-hande
screws revolving on the same shaft about midships,
and driven by spur gearing from the engine shaft
4958. Motive Power Engine, A. J. Clairmonte.Dated 29 th November, 1880 . - (Not proceeded with.) 2 c
The engine is formed by a diagonal diamond shape reciver having two ends of four diagonal sides each,
with rectilinear points forming guides. The ends ar attached to two wheels which revolve off their axes
The four longitudinal sides of the receiver are The four longitudinal sides of the receiver are
diagonal, and fit to the lines of the ends and int
rectilinear guides. These sides form four levers Which are fastened to the wheels at four points a
right angles, and which receive the pressure of the motive force, whereby the engine is drive
4959. Bricks for Borders of Paths, \&c., $H . A$.
Bonneville.-Dated $29 t h$ November, 1880 . (A com
munication from E. Beaucantin.) 4d.
This relates to improvements on patent No. 4322
A.D. 1878, and consists in leaving while moulding the A.D. 1878, and consists in leaving while moulding the
brick a space in the form of an arch at the base, the
holes in all the bricks being made to correspond so as to form a drain pipe.
4960. Lathes For Screw-cutting, T. Cazethron and
W. Fearnehough.-Dated 29th November, 1880.The object is to e enable bastard thread screws to be cut without stopping or reversing the lathe, by the
use of a set of index wheels and pinion driven by the
fuide screve guide screw.
4961 . Impro
4961. Improvements on Mechanical Contrivances
For Eleotromacketic Clocks and Apparatus ceeded vith.) $2 d$.
This invention consists in mechanical improvements, by means of wrich clocks and signalling apparatus, system of electric clocks and signaning apparatus,
and replaces the usual sliding spring and mercury
contact by reliable metallic contacts with impact ontact by reliable metallic contacts
motion and exactly controllable duration.
4966. Colouring Matrex, F. Wirth.-Dated $29 t h$
November, 1880.-(A communication from E. Oehler.)

This relates to the production of colouring matter in
phlying the usual process for producing azo-colourin applying the usual process for producing azo-colouring and primary, secomdary, and tertiary amines, or their 4969. Apparatus for Drawing Beer, dc., A. Specht.

- Dated 29th November, 1880.-(A communication from K. W. Weissenborn.) $6 d$.
This relates to delivering beer or other liquid by
placing it in a vessel open at top, in which moves an placing it it a vessel open at top, in which moves an
air-tight piston, weighted so that the pressure on the
surface of the liquid will raise the liquid to the desired height.
4970 .

4970. Pinnofortes, A. Specht.-Dated 29th Novem.
ber, 1880 .-(A communication from F. Baschmann.)

The hammer has a peculiar butt, and is suspended by a hinge between the butt and the strings. The
butt rests directly on the head of the key, which is
made to raise or lower by a screw. The falling back of the hammer is effected by a spring between the frame
and the back of the gut, and this also is adjusted by a
serew within the hammer butt. 4971. Pliers for Cutting Wire, J. F. Neighoour. The pliers consist of the ordinary hinged levers, but
one or both of the jaws are provided with wheel
4985. Improvements in the Manufacture of Soda,
dse., by Electrolysis, T. Morgan.- Dated 3otio

This in invention is an improvement on one visionally patented on the 9th December, 1879 ,
No. 5030, by the present inventor and T. Wastchuk atus, which is in two parts. of the decomposing appa-
The carbon or platina forms the positive electrode, and is contained in a
glass cylinder B arranged at the side of the iron
cylinder \mathbf{A}, which forms the negative electrode. These lass cer inder ich arranged at the side of the Thou
cylinder A, which orms the negative electrode. These
cylinders are provided with lateral holes as shown,
in which are inserted
end to end in pairs by the india-rubber collars D, care
being taken to insert a thin partition of porous being taken to insert a thin partition of oprous
material in the collar between the ends of each pair of
 gases aro collected in reservoirs, and are subsequently
distributed to the receivers of the gas batteries. The

eurrent generated in these batteries is utilised in turn
to docompose a soda lye and manufacture soda by
ele electroys
5007 . M
5007. Mariners' And Azinutr Conpasses, J. Read-
man. - Dated 1 st December, 1880 .
44 In order toprevent the production of currents of air
by the motion of compass cards, they are mounted to 5013. Producing Copirs from tracinas or Dene
 Chromate of potassa is dissolved in water and sul-
phrie aido dod, he paperto eceive the oopy being
then sponged with the solution, in a frame, the originanal being, superimenosed thireon and exposed to to the action of light. Whe the drawing
has been reprouced the paper is phaced within a
win vaporising box containing aniline oil, and when
removed ${ }_{\text {is }}$ passed throuth water and dried. The
The removed is passed through water and dried. The
paper is then sponged with natron or with unslocked
lime to fix the copy, and then finally dried and pressed.
in
 This consists. of a pluy of orken or wood of ocidical form
to fit a corresponding conical-shaped neck of the bottle, and which is seared by wire
and oversing round the neek plug, the ends being twisted together
 5240. Spinning Rope Yaves, Barboun 5240. SpinNiNG, Rope Y

The novel features of the machine are, First, applysliver to the "intercepter" or drawing point; Secondly,
 the speed of the fullers or screw gills, Therdy. ${ }^{\text {and }}$
novel conductor at the delivery end of the screw

 obtaine dy means drac clutches and leverss $;$ Fifthly, ${ }^{n}$
novel centrifugal drag motion, by meanss of which the drag upon the bobbin necessary for "taking up" the tho
yarr is obtained $;$ and Sixthly, the general arrange. ment of the machine, as combining serew gills and
horizontal spindles, with the different novel arrangements before described.
5287. Sulphate of Alunirn, B. E. R. Neelands.-
Dated 1 Thl December, 1880. This relatos to the manufacture of sulphate of
alumina from impure sulphate of alumina masma by
 greater portion of the free suphuric acid and of the
soluble salts of soda contained therein may be 5311. C
 The bottoms and lower hoops of milk-cans used to transport milk and other substancess are made in one
piece of of oidd cast tetal, and can be either bolted to or screwed into the body of the can.

 electric mancoines in teloerraphy The inventor
arranges his apparatus to obtain uniform currents, to

vary the E.M.F. as required, to get multiplex workin various ways, will easily be understood from Fig. .1.
 5352]

coils, but when so connected a weak current is
exxitedin coils of armature, passes through the field
maite magnets, reacts on armature, and so on the thild the
maximum and constant current is obtained. If
cirxitB and circuitum Bis bid coinstant current is ontained. It
are discharged.
tield magnets and armatures are discharged.

 operating appliances, whereby the valves are controlled
by th by the governor; Secondy, the eombination with the
comprossor cylind of of ritef valve, arringed th open
under pressure from within the

closed by the pressure from the discharge pipe or
receiver and appliances; Thirdly, the combination with a driving shaft of a gear or hand twhe weol, a fricition
disc attached thereto a friction dise turning with th driving shaft, and appliancos whereby the two diso may be brought together or separated. Fig. 1 is
plan of an en anine and compressor, and Frg. 2 is
is plan of an engine and comprossor, and Fo. 1 is
longitudinal plan section, showing the clutch ourange.
ment 3774. Nemple for Kirtive Machives, F. W. The needle, which is selfacting, consists of two solid
parts A and B; the lower part or body B, which is pre parts A and B; the lower partor body B, which is pro
vided with the actoh hook $A 1$ is formed of a arefer ably flat or square bar or rod of metal, the front en
of the uper surfice of which is

out a part of the length of the said body. The front
end of the said groove 11, near the foot of the hook
111
is the
 "closing slide" "(slide or shutting bar), is also prefer-
ably formed of a square or flat bar, or rod of metal, or
otb
 be cut awa
face, but
desired.
dis.
136. Stabs for Paving Street Corners, W. Page.
 cormens
of such corners.
213. Mochinsery for Inserrivg Bobbins in Carriages
of Bobsin NEt Machives, de., H. Boden and S.
 through which the lowor end of a siphnde is is passe and rests in a thimble. The bobbins to be entered in
the arringes pre plaed upon the spinde, the thread
being held between cloth covered clamps the to plate is raised by means of cords and weights as eaci
bobbin is displiced at the top. Each bobbin is hel
 plate above the table which presses the bobbin on to
[2]

verge, and a second plate which holds a carriage in
position. Boloon the table is a small crosshead guide
oi vertical slide by verrical sides, a threading hook being attached to
the crosshead. Under the table is an arm on whie
the the piston bracket slidides. The vertrical movement of
the threading hook is effected by menns of a link
 attached to a treacde moved by the operator; this thes
link also rokks lever, the upper end of which place
ench carriage into position to receive a bobbin, the
end
 402. Sherp Sisars, P. Ashberry. - Dated 29 tho This consisist in forming the bow of the shears long
enough to allow it to be bent with a central part projecting inward somewhat in the shape of the centre
of the letter W, and through it one or more pivots are
mosed the of the letere \mathbf{W}, and through it one or more pivots are
passed, the object being to prevent the blades open-
ing sideways. ing sideways.
426 . Cove
 tion from J. Concunt, M.D.D.) th. $4 d$.
This relates to a compound to be used in manufac

 loop at the end, is fitted with, a ring through which
the thumb is passed, so that the thick wat of the the thumb is passed, so that the thick part of the
thumb presses upon the end of the hande beyond
the ringe
748. Drying Printed, Varnishbd, or Gumamed 1881.-(d communication from L. A. Fernoor.)
(Complete.)
6d The drying machine consists of endloss chains with paner r along apd bring them back nearry to the starting.
Fast and slow moving chains Fast and slow moving chains are used with the cross Wires so as to alternately rotard and accelerate the
movement of the sheets.

 process of decomposing water buininecting it in a
vaporised condition, with or without the admixture of Yaporised condition, with or without the admixture ou
liquid or subddivided fuel, into or upon solid or porous liquid or sub-divided fuel, into or upon solid or porous
carbonaceous material in a decomposing retort and combunatious material in a decomposing reetor and
decomposition of the combined, whereby the mutual
 and carbonic oxide is effected, seconny, th in arocess
of burnng liquid fuel in conjunction with the gases
resulting from the decomposition of water ; and resulting from the decomposition of water ; an
Thirdly, in the construction of the furnace for effect ing such combustion.

 constructed expansible brush, which enters the bottle
in combination with a tubular revolving ghaft, through
which Which water is supplied; and further to an arrange
ment of rotating and non-rotating sleeves combine with areciprocating frame, and a valveoperated thereb
to control the flow of the water to the brush. 901. Flutre Presses, H. E. Nevton.-Dated 2nd Marel)
issi.-(A communication from
A. L. G. Delnee.) The objectet of the invention is to more effectuall timhten upe the tinter platoos and frames by givinu to
them, after they have been tightened up as much
 Dossmechanical
being filtered

 are operated by levers through the perforatea or un material caused to travel through ore paper or or ont, ne en ensist, First, im arranish of paper are brought close
 can be used; Socondly, in arranging under each reed
in the wind chest a supplementary wind chest with openings for the passage of air from the reed through
it to the wind chest; Thirdly, in the arrangement a valve in the supplementary wind chest over the air
passage to the ordinary wind chest; Fourthly, in
 sure to the swell board of a reed organ placed over th
entrance of the reed chamber
 Thisis consitso of a. gase ook opened by a spring and
closed by steam pressure for rogulation of the flow of
[1093

gas, and also in a relief cook or valve combined with
169. SADDLES OF Brovcles, de., W. R. Lake.-Datect
1t March, 1881. - (A communication from C. H.

This relates, First, to suspending the leathern part This relates, First, to suspending the leathern par
or seating surface of the saddle near the ends thereot
ond and at a considerable distance above the metallit

 slack ocasioned by use $\dot{\text { How Fouthly, to clamping }}$
devices to hold the seat to the backbone, and, Fifthly, to means for adiusting the saddle vertically and
longitudinaly with reference to the clamping devices.

SELEOTED AMERIOAN PATENTS.
From the United States Patent office official Gazette
241,495. Valve Gea for Stran Evaines, William,
Johnson, Lamberville, N.J.-Filed March 18th,

 overnor cut off, an adjustable compound excentric
dapted to be moved across and around the axis of its

driving shatt by means substantially as described
whereby as the work increases or decreases the
speed of the engine is automaticaly contolled. (i)
In a cut-off mechanism, weighted levers revolving
pound excentric consisting of a concentric ring and
an excentric ring, which are moved across and around the axis of thie driving shart by mean forth. (4) In a governor cut-off, a pendulous lever one end of which is adapted to bo pooved across sthe
axis of the driving shaft by weighted levers attached axis of the ariving shart by wioighted levers attachee
to a dise revolving in unison with the pendulous
lever, combined with lever, combined with an excentrich ring, the encuous
tricity of said ring combined with the excentricity
caused by the pendulous devy caused by the pendulous lever moving across the
shatt, serving to control and regulate the movement of the engine. (5) In a governor eut-off, a pendulou
ever, one end of which is adapted to be moved acros the exis of the driving shaft by weighted and pivotted with and around a flange placed upon the pendulous lever, and is also connected with the above pivotted levers, as and for the purpose set forth. (6) In
governor cut-off, the revolving disc or wheel provide with the reactionary bell-crank lever or levers, and adapted by connecting rods to convey a double move
ment to the compourd excentric, as and for the pur set forth.
 body, Mass. - Filed April 8 sth, 188
Cain.-The herein-described con

241.534

Ioosely- journalled cutter wheel L , the serew
nut and handle and spring, as and for the purpose se
nuth. 241,58

tially as described, and for the purpose set forth. (2)
The combination of the exit pipe, the reciprocatio valve stem, the pendulous arm I, and the float arm, al
sultantantialy as described, and for the purpose sed
forth.

CONTENTS.

The Engineer, July 1st, 1881.
The Milling Exhibition. (Illustrated.)
The Gallery, New Town Hale, Readivg. Letters to the Enitor-
High-speed Steamships
Law and Clark's Civil Engañering
Proposed Bridge over the Douro
Cotron Belting
Cooling Chilis
Wanted, a Non-conductor
Notes and Memoranda
Liscellanea ...
Mill Engines
Patent-office

The Livadia...
Nominal Horse-power
Literature- Lathe Work: a Practical Treatise on the Tools,
Appliances, and Processes employed in the

Art of Turning. By Paul N. Hasluck | TENDERS |
| :--- |
| Books |

Trikek-oylinder Cömpound Ëncine " (Hlustrated)
WHEATSTONE's MIRCOPHONE. (Illustrated.).
DOBSON'S PATENT VILVE GEAR. (Illustrate.)

The patent Journal ." Spëcifioantions.. (iiluß) 1 ABTRACTS OF
(Illustrated.)
Contracts Open

The Admiralty have decided to sell her Majesty's ships Black Prince and Simoon should desirable purchaser be found
Naval Engineer Appointhents.-J. J. Robins engineer, to the Asia as additional, as instructor Court to the Asia as supernumerary ; William T. Bray, engineer of the Northumberland to the Indus, as supernumerary ; and George H. Weeks,
engineer, to the Fawn, vice James Legate, inengineer
valided.
International Medical and Sanitary xhibiranow complete; the offices are removed from the Parkes Museum to the exhibition buildings at South Kensington. The Right Hon Earl Spencer, Lord President of the Council, has
accepted the office of president, and will preside at the opening ceremony on Saturday, July 16th The exhibition is to be complete on Wedncsday, July 13th, and the judges will make their c xami days prev ou to the opening.

