THE WOOL EXHIBITION.

No. II.
Mr. George Hodason's machinery at the Crystal Palace for weaving consists of eight looms of various widths ; they are adapted for weaving different styles of cloth from plain light Orleans to the most complex heavy woollens. The first is a plain loom, well suited for the fabrication of either worsted, mohair, silk, cotton, or alpaca goods. At presentit is weaving an Orleans piece, but this class of loom can be ducing figures or shedding motions from sixteen to twenty shafts can be applied with ease. A plain loom of 32in. reed space at the International Exhibition in 1862 -London-ran at upwards of 450 picks per minute; but of course this was done as an experiment to show what could be accomplished in the way of speed by the machinery of this firm.
A patent loom for weaving lasting and Serge de Berrie cloth is the next machine which draws attention. Up to the present time, it has always been necessary to have some contrivance underneath the healds or drawing them have been lifted; springs, weights, or levers have been employed for this purpose, but there have always have been employed for this purpose, but there have always giving way, or by the cards which connect the healds and giving way, or by the cards which connect the hese invention has in this respect a great advantage over others, brought out as yet for weaving the above-mentioned fabric; pos sessing at the same time many other excellent points, which cannot fail to attract the notice of a practical man. The healds, which may be either of worsted or wire, are fixed in an iron frame by steel hooks that can be regulated
by nuts, so as to make them higher or lower, tighter, or
end, and another in the centre on the underneath side. Backwards and forwards work two jacks, and these acting alternately, lift the knives accordingly as they are selected by pattern surface. To retain a knife in position when lifted, the pattern pin places a small catch
behind the hook on the low side of the knife, and thus prevents it going back. The jacks are moved by treadles, actuated upon by a regular two winged Orleans tappet on the low shaft; this being a decided advantage, approaching plain weaving as near as it is possible, with a twilling ing plain
motion.
Standing next to this is a $9 / 4$ (82in. reed space) pick and pick drop box loom, suitable for heavy woollens. It is massively constructed throughout, having the old system of taking up the cloth by weight and double swords; these last have the advantage of producing a swell in the to get through the shed thereby easing the friction upon the warp and causing fewer breakages of the threads owe warp and causing fewer breakages of the threads, owing to the going pait not working in a radius but nearly parallel. The system of shedding motion already described above is applied with slight alteration to this loom. On the same stud as the cylinder, which works the shafts, is the card cylinder for governing the box motion. There is a two-hoed box on both sides, each working independently. The raising and lowering of the box is effected by means of a lever, operated on by a tappet with two
elevations at the back of the loom. On the side of the elevations at the back of the loom. On the side of the appet there are two pins, on each of which is fastened an upright rod, both rods having catches at their other extremities, but these face in opposite directions, so that
when one is in gear the other is out. On the top shaft when one is in gear the other is out. On the top shaft works a broken-backed lever with a slot at the end, in
which the above-mentioned catches move. By this arrangement an oscillating movement is given to the tappet, which
small excentric, which works in the square opening ; at the as many of the same stud is a bose with wice gears ; by this means the tappets are allowed to remain two picks in the same tapition without moving remain boxes are raised and lowered by means of a tappet with three elevations and three hollows, situated directly underneath and revolving on the axle of the swing rail ; by thus working from the exact centre on which the going part swings all oscillation of the boxes is prevented. At the side of the loom hangs perpendicularly a lever, to the extremity of which a pulling rod is fastened which turns the tappet at each pick. Cards for governing the picking and boxes are absolutely done away with here.
The seventh is a $3 / 4-39 \mathrm{in}$. reed space-circular skip box loom; it possesses the advantage of being able to spring from one shuttle to any other in the circle, and is suitable for weaving complex checks, such as Scots tartans. The method of skipping is entirely new ; it is easy to understand, resembling, as it does, the regular circular box principle as much as possible, the ground work being exactly the same. The novelty consists in a sliding bowl or pulley in the middle of the broken backed lever, which works on a three rise tappet. This sliding bowl, by a very neat direct arrangement, is operated on by the cylinder or card motion, which slides it backwards and forwards on to any of the elevations of the tappet as required, two cylinder pegs of different lengths being used to effect this object. When the box is turning it is perfectly free, as all stress is taken off by an excentric, during the required time, allowing the spring to come into action again when the change has been effected. To avoid the possibility of a mistake, there is also applied a system are operated upon by another excest This loom will weave at the rate of 130 to 140 picks per

the peter the great
slacker. When once they have been fixed in position, there is nothing either to slip or give way. These frames are connected to the regular system of jacks on the top of the loom by small adjustable round rods. The treadles are in the same position as in ordinary looms, but instead of placing a bowl in a recess, it is put on a pin, cast on the placing a bowl in a recess, it is put on a pin, cast on the
side of the treadle, thus forming a projection, which runs in a groove in the treading tappet, similar to the Woodcroft system. The positive motion of the treadles is transferred to the jack rods by means of a strong treading rod. The wrought iron frames mentioned above work up and down in a sort of double fork, by which the weaver can give the healds the necessary incline. In case a heald thread breaks at any time, there is a very simple conhealds, so that it is out the fork and thus liberating the healds, so that it is much easier to repair the breakage the healds will wear . Ther the healds will wear much longer when used in this loom being held in the framing as oeing reat rition framing as already stated. Besides a great reduction in the number of heald threads breaking, it will also be found that there is a saving in the quantity of ends that come down in the warp, owing to the easy speed-160 to 170 picks per minute-at which the loom is running, alone proves the easy working and general efficirunning, alone prov
The third of Mr. Hodgson's looms is an $8 / 4$ (76in reed space) fast reed loom, specially made for weaving worsted coatings and serges, where only one class of weft is necessary. It is a compact machine, with picking wheels at both sides. It is now working at about 130 picks per minute, weaving a worsted coating, with a 16 -shaft twill. The healds are lifted by means of a shedding motion. It is compact, occupies little space, and as it is firmly fixed on the weaver, requiring no gantry, without being cumbrous the top rail, and is substantial without being cumbrous, the whole altitude of the loom and shedding motion being less than the height of an
ordinary man. It posssesses the advantage of ordinary man. It posssesses the advantage of
being able to retain the healds in a lifted position when able to retain the healds in a lifted position when they are required to be up twice or more which lift the heads, are knives with double hooks at one
can be regulated by the pattern surface, to remain in one position or change at any given pick. The picking is on the sliding tappet principle, and can be arranged by cards to weave any pattern. The tappets are moved in a very eat way, by means of a scroll on a short shaft parallel to the low shaft, at the other end of which is a small casting with two pegs ; working between these pegs is a back-toback catch which lifts after each pick. In the scroll groove is inserted a single stud, projecting from a horizontal square rod, also parallel to the low shaft. At each end of his is fixed a clutch, which can slide the tappet nose backwards and forwards on any given single pick as directed by the cyllnder. A double-nosed tappet is, of course, used pposite each of the two cones.
Next comes a 4/4 (43in. reed space) pick and pick loom, with a six-hold circular box at each end, working independently. As this loom is fitted up with a jacquard, can be produced weave the most complicated patterns that can be produced by machinery either in worsted, silk, or principle, that is are turned on the regular circular box principle, that is by means of a broken backed lever, working on the low shaft. Parallel to this at the bottom of the loom is another lever, one end of which is connected to the box by pulling rods, and to the other end are attached hooked rods, which are operated upon according to the pattern. To prevent the boxes turning too far, there is an automatic lock motion applied, so that when he pulling rods turn the box they place the locks nderneath certain pegs, thus stopping the box firmly in position. The picking motion is similar to that of No. 4. Close to preceding loom is a $4 / 4$ (43in. reed space) pick and pick drop box loom, with a two-holed box on each side. It presents many new features, both in the picking arrangement and the box motion, and is specially adapted for weaving rep cloths, where the pattern is a series of single picks of two different kinds of weft. The mechan ism throughout this loom is so simple and positive that it can be run with ease at 140 picks per minute Although the picking is on the old principle of sliding tappets, yet there is a novelty in the mode of working them backwards and forwards. The two tappets are connected by means of an iron rod, in the
centre of which is a large square opening. From the spur rail projects a stay, which supports a stud bearing a
minute; it answers the same purpose as a twelve-holed
shuttle-box, but with this great advantage, that it makes shuttle-box, but with this
only one-third the waste.
The last loom exhibited is a $9 / 4$ (82in. reed space) pick and pick shedding motion loom, with a six-holed circular box at each end, working independently, on the same principle as No. 4. It is, however, for heavier work, such as woollens and backed worsted coatings. The boxes being of great dimensions, will take a shuttle large enough to admit a woollen cop. The connection of the different working parts with the cylinder is not of the usual stamp for instead of having separate cylinders for the box and shedding motion, they are combined, as in the drop-box loom. The shaft machine and picking arrangement are similar to those already described. There is applied to this loom a strong loth reed, with the advantage that the loom runs quicker and more easily.

THE PETER THE GREAT.
This warship, which we illustrate above, the largest and most formidable of the Russian navy, is now lying in the Clyde, of Greenock, where she arrived from Cronstadt, under com and the Minin are the two mastless turret-ships of the Russian fleet of war-vessels, resembling in design those of the same type of our own navy, the Dreadnought more especially. Preparations are being made for the reception of the Peter the Great by Messrs. John Elder and Co., who are about to replace her present machinery, which has proved unsatisfactory, with that of higher power and improved construction. As she has on board a large store of ammunition, permission has been asked from the General Commanding the Forces in Scotland to store her powder
in the magazine at Fort Matilda; at present she draws about in the magazine at Fort Matilda ; at present she draws about up the river. The Peter the Great was built in Russia ten years ago, at the Admiralty Works, Gallerny Ostroff, St. Petersburgh, and her engines constructed by Mr. George Baird, a Scotch engineer, at St. Petersburgh, from the designs of Mr. Norman Scott Russell. Her length is 321 ft ., and her breadth 64 ft. , but from her great draught it is difficult to realise that her displacement is nearly 10,000 tons, the greater portion of her hull being submerged. The vessel is divided into sixteen com-
bottom is double throughout ; a portion of the space between the inner and outer skins above the water-line is utilised for the divided by the turets which five procted, by or when are divided by the turrets, which are protected by armour plating of Krupp steel, besides armament consists of four 35 -ton guns mounted on the various decks. Although generally spoken of as a mastless vessel, she carries in reality three masts ; two of these are very light, but the mainmast is of iron, and of sufficient diameter to enable the men to go aloft by a stair inside it, ordinary ladders being thus unnecessary. She is built of iron sheathed with wood, and is worked by twin screws.

THE BOILER EXPLOSION ON BOARD THE CITY OF ROME.

The inquest on the bodies of the men killed in this unfortunate accident terminated on the 21 st ull., the following verdict
being returned by the jury :- "We come to the conclusion that being returned by the jury:- "We come to the conclusion that
the poor men lost their lives through the explosion which was the poor men lost their lives through the explosion which was
caused by an over pressure of steam ; and we would further caused by an over pressure of steam; and we would further
suggest that the shipyard people test their boilers periodically." suggest that the shipyard people test their boilers periodically."
The foreman, in answer to the coroner, said, "that with regard to any neglect, they, the jury, considered the matter and had to any neglect, they, the jury, considered the matter and had
left it open. No doubt the fireman had exceeded his duty by allowing the over pressure."
The principal engineering witness examined during the inquiry Boiler, and Employers' Liability Company, who stated that the explosion was "clearly attributable to the reduction in thickness of the fire-box plates, which materially reduced their strength ; consequently the fire-box collapsed, being incapable of with-
standine the standing the pressure to which it was subjected, probably a pressure of 70 lb . to the square inch." He also stated that although
"it was impossible to calculate the collo "it was impossible to calculate the collapsing pressure of the
fire-box, owing to the irregularity of the thickness of the plates, fire-box, owing to the irregularity of the thickness of the plates,
and the uncertainty as to its shape-for it may have been more or less flattened on the sides prior to the accident-yet, judgine from many similar cases of collapse which had come under his
 notice, he was of opinion that the bursting pressure could square inch, and may have been less."
If Mr. Longridge's opinion be correct, the boiler was of
course quite unfit for a pressure of 40 lb ., which was
that intended to be carried, that intended to be carried,
according to the evidence of the representatives of the
Barrow Shipbuilding ComBarrow Shipbuilding Com-
pany, and which the fireman pany, and which the fireman been instructed not to ex-
ceed. Against Mr. Longridge's Agaidence, on the other hand, however, was that of Mr. Rodgers, the managing
engineer of the shipbuilding company, who stated that the boiler had been tested
by water to 60 lb . pressure three and a-half years ago, of weakness. In Mr. Longhad taken place since that date, the feed-water used being very good, and the corrosion of the plates of the fire-box having been
due to the use of salt water before the test referred to. In fixing the collapsing pressure of the furnace at 70 lb ., or less, there can be no doubt Mr. Longridge passed a judgment supported by evidence largely supplied by his own imagination. There was nothing to show that the sides of the furnace were
flattened any more than that the form was fairly circular, in which latter case the furnace would have stood far more than 70 lb ., and in the absence of any data as to the condition of the boiler in this respect, compariso
Two prominent facts appeared to be clearly established-First, that a safety valve formerly on the boiler had been removed,
leaving one valve only, which according to Mr. Longridge could only be loaded to 58 lb., and would probably blow at considerably less than this on account of the width of the face. Secondly, the
pressure of steam in the boiler immediately before the explosion pressure of steam in the boiler immediately before the exp
was seen to be 70 lb . by the gauge attached to the boiler.
No explanation was obtained as to why so high a pressure
should have been reached in a boiler intended to be worked should have been reached in a boiler intended to be worked at 40 lb ., and the safety valve of which would blow at considerably less than 581b. even if the weight had been placed at the end of
the lever. There appears to be no reason to suspect that the the lever. There appears to be no reason to suspect that the
safety valve had stuck fast in its seat, and the question therefore arises, had the valve been deliberately tampered with by the unfortunate fireman in his endeavours to stop the noise of the unfortunate fireman in his endeavours to stop the noise of the
escaping steam, which hand been complained of; or was the safety valve deficient in area, as appears to be suggested by part of Mr. Longridge's evidence
On the whole we cannot regard the inquiry into the accident with any degree of satisfaction. The construction of the boiler will be readily understood from the annexed sketch.
The hoiler after the explosion fell from a great height and completely staved in, so that its appearance conveys little information concerning the accident. There is no room to doubt,
however, that the vertical fire-box gave way, a great rent being torn in it.

THE FAURE SECONDARY BATTERY

Ir cannot be said that there has been any delay in bringing this battery before the public. Hardly had the interest excited by the letters in the Times been raised, before boxes of these
cells are brought over to England and exhibited in action before scientific audiences. Last Saturday at the conversazione at King's College, a number of cells were used to supply the cur-
rent required by some score or so of Swan lamps. An evening or so later the battery was used at the house of the president of the Royal Society, when both Swan and Maxim lamps were rendered incandescent by its means. On wednesday morning of the British Electric Light Company, Heddon-street, with the Lane-Fox lamp, the current being supplied from the Faure
battery. These experiments, although they do not decide the economical question, do show that certain progress has been made. With thisapparatuscertainchangesareobtained in thematerials used under the influence of a current from a dynamo machine in a voltaic battery. The exact chemical change is as
yet probably undecided, but whatever it might prove to be, the
material under the new conditions is in such a state that whenever required it will undergo another change, and give back, so to
speak, an electric current similar to that which caused the first speak, an electric current similar to that which caused the first
change. So far as we can gather, the best cells are those which change. So far as we can gather, the best cells are those which
after use show pure spongy lead on one electrode and pure peroxide of lead on the other. Originally the cell consists of two plates of lead, coated as uniformly as possible with a thin a cylindrical shape. This is placed in a jar and acidulated water poured in to completely moisten the felt. A new form of cell is about to be adopted in which the plates of lead will be flat, because it has been found that however great care may be taken to spread the red lead evenly in rolling, the red lead does not remain in its original place, so that the coating on
the plates is uneven. There is still much to be done to obtain the plates is uneven. There is still much to be done to obtain battery. For example, the question of durability is as yet
batientic and commerial value of this secondary battery. For example, the question of durability is as yet
unsettled, because the invention is so recent. M. Faure has, however, some of those first made, and they are as good now a when constructed some months ago. Sir W. Thomson and Mr results thus obtained, together in the investigation, and the the battery has been practically in use for a short time, and not merely used for exhibition purposes, will go far to enable us to judge the real value of the invention.

EHRHARDT'S PORTABLE LOCOMOTIVE EIGHING APPARATUS

We illustrate herewith a weighing apparatus very largely used on the Continent, though little used in this country. It is intended for exact adjustment of the weight on the axles of locoof the adyants, and railway carriages. The following are some weighing machines :-(1) Its portability, as it can weigh trucks, ocomotives, tenders, carriages, \&c., at the place where they are made or loaded, and thus avoid the labour and loss of time in moving the loaded trucks to the machine ; (2) the great saving in prime cost, no foundations being required ; and (3) its greater the weigh the thas machines now used for ascertaining gives the exact weight on each wheel
Two machines, which weigh each about 100 lb ., are repre-

THE INSTITUTION OF CIVIL ENGINEERS THE orisinality, labour, and ingenuity displayed by the authors the past session have led the Council to make the following

For Papers read at the Ordinary Meetivgs,

1. George Stephenson Medals, and Telford Premiums, to Chomas Forster Brown and George Frederick Adams, MDI. Inst, 2. A Watt Medal, and a Telford Premium, to John Isaac Thornycroft, M. Inst. C.E., for his Paper "On Torpedo Boats and Light Yachts for High Speed Steam Navigation.
2. A Telford Medal, and a Telford Premium, to Theophilus
Seyrig, M. Inst. C.E., for his Paper "On Different Modes of
3. A Telford Medal, and a Telford Premium, to Max am Ende, Assoc. M. Inst. C.E., for his Paper on "The Weight and Limiting Dimensions of Girder Bridges.
4. A George Stephenson Medal and a Telford Premium to
Benjamin Baker," M. Inst. C.E., for his Paper on "The Actual 6. A Telford Premium, to Richard Henry Brunton, + M. Jnst. C.E., for his Paper on "The Production of Paraffine and Paraffine Oils." A Telford Premium, to Charles Colson,t Assoc. MI. Inst,
C.E., for his paper on "Portsmouth Dockyard Extension Works C.E., for his paper on " Portsmouth Dockyard Extension Works."
5. A Telford Premium, to Christian Hendrick Meyer, Asso. M, 8. A Telford Premium, to Christian Hendrick Meyer, Assoc. M.
Inst. C.E., for his Paper on the " Temporary Works and Plant at Inst. C.E., for his Paper on the "Tem
6. A Telford Premium, to Benjamin Walker, M. Inst. C.E., for
his Paper on " Machinery for Steel-making by the Bessemer and the Siemens Processes.
7. The Manby Premium, to Joseph Prime Naxwell, Assoc. M.,

For Papers Printed in the Proceedings without being

1. A Telford Medal, and a Telford Premium, to Professor Dr. J. Weyrauch, for his Paper "On the Calculation of Dimensions as 2. A Telford Premium, to James Richard Bell, M. Inst. I.E. 3. his Paper on "The Empress Bridge over the Sutlej." 3. A Telford Premium, to John Lewis Felix Target. \dagger N. Inst. Purposes,
2. A Telford Premium, to William Thomas Henney Carrington,

sented in Figs. A and B, applied to both sides of a locomotive. The makers give the following instructions for using it : "Place one such apparatus under each wheel with the lower part a, which at the same time serves as main-frame, resting with its claw on the he the main frame a, touching the under side of the tire with its foun edge. After setting each apparatus plumb by the screw e, bove the horizontal line to a certain angle. This angle, upon which depends the height to which the wheels are to be lifted from the rails, is shown by the index on the figured arched scale which is above the plummet f. If these apparatuses are place of all paratuse are at the same ancle which is indicated by of all apparatuses are at the same angle, which is indicated by
smilar figures on the arched scale, you then move the weights on the lever g until the index fingers of all apparatuses on the arched scale are brought to o. Each wheel is now at the same height from the rail, say one to two millimetres, and the respecive weights on each axle can then be read off in kilos, or any other weights from the scale, which is arranged on the upper urface of the lever G . The difference in the weights indicated y the several apparatuses show most accurately the inequality the load and tension of the bearing springs above the respecive wheels, and the same can therefore be regulated surely -and easily. The sum of these weights of the various apparatus gives the above test. When used with "double-hended rails" the foot ever k and screw l are
For loads of 37 cwt . to 145 cwt . they are provided with sut e scale on the lever, and with a movable weight on the latter, but for loads of 15 cwt . to 32 cwt , and of 32 cwt . to 150 cwt . a weight, both of which are on the lever, and a large and a small to indicate the load from 15 cwt . to 32 cwt . on the one side of the weighted lever, and both weights, the one suspended from the other, will indicate the load from 32 cwt . to 150 cwt . on the The machines ever..
The machines are made by the Sachsische Maschinenfabrik Chemnitz, the English agents being Messss. James Scott and A report speaking in the highest
A report speaking in the highest terms of the practical value of the machine has been made to the Committee of Administration of the State Railways of Belgium by the engineer, Mr.

MAP OF THE DERBY SHOWYARD.
Wr publish this week, as a supplement, a map of the machinery department of the Royal Agricultural Society at Derby. The arrangement of this map differs from that which
we have adopted in previous years, and will we think be found an improvement. It will be seen that the whole map is an ivided into small blocks, each distinguished by a letter. The names of exhibitors are arranged alphabetically, and each is accompanied by a letter incicating the biook in which the stand
of the exhibitor is situated, and by a number which is of the exhibitor is situated, and by a number which is that of
the stand. The search for any given exhibitor is thus reduee to the sim. The search for any given exhivitor is thus reacced in whefined within the small limits of the dimension of the block in which it is situated.

Assoc. M. Inst. C.E., for his Paper on " Three Systems of Wire Rope Transport
For Papers read at the Supplemental Meetings of Students, 1. A Miller Prize, to James Bernard Hunter, Stud. Inst. C.E., Ior hafacturee of Railway Carriages and Wagons.,
2. A Miller Prize, to Matthew Buchan Jamieson, Stud. Inst C.E., for his Paper on "The Internal Corrosion of Cast Iron Pipes." Niiller Prize, to Thomas Stewart, Stud. Inst. C.E., for his
3. A Paper on "The Prevention of Waste of Water,"
4. A Miller Prize to William Henry Edinger, Stud. Inst. C.E. for his Paper on "Brick and Concrete and Concrete Gasholider Tanks.
5.
5. 5. A Miller Prize, to Daniel Macalister, Stud. Inst. C.E., for his
Paper on "CCaissons for Dock Fatris Paper on "Caissons for Dock Entrances."
". A Miller Prize, to Lindsay Burnet, \ddagger Stud. Inst. C.E., for his "Description of a Cargo-carrying Coasting Steamslip, with detailed investigation as to its Efficiency,"
7. A Miller Prize, to Edward Walter Nealor Wood, Stud. Inst C.E. for his Paper on "The Imulter int of the Old' Horbour at Holyhead."
8. A Miller Prize, to Arthur Stuart Vowell, Stud. Inst. C.E., for his Paper on "Steel; its Chemical Constitution and Behaviour under Tensile Strain,", William Marriott, Stud. Inst. C.E., for his
9. A Miller Prize, to Will Paper on "Boilers.
\qquad
Boiler Explosions.-We have had occasion recently to point out that it was possible a boiler explosion might be caused by the
sudden withdrawal of a large volume of steam from it. If the sudden withdrawal of a large volume of steam from it. If the Pittsourg Commercial is to be credited, an experiment has bee ment made on the 16th of June :-"Mr. Lawson exploded his boiler yesterday through the medium of a vacuum created by turning a
full head of steam into the cylinder at once. The boiler itself was full head of stean into the cylinder at once. The boiler itself was made of the very best material, and built especially for the experi
ment in the strongest manner known. It was 6 ft in length, with ment in the strongest manner known. It was 6ft. in length, with
a diameter of 30 in. The iron was made by Singer and Nimick, the a diameter of 3oin. The iron was made by singer and Nilimich, the
boiler itself by W. W. Roberts, and the fittings by Wilson, Snyder, and Co., the latter firm also furnishing the engineers for
the test. Just about five oclock everything was ready for the explosion. At that time the boiler was three-fourths
the fork every full of water, being 7in. or 8in. above the fire line, and
the steam gauge showed a pressure of 3801 l . to the square the steam gauge showed a pressure of so 0 . 1 . to the square inch. Everything being in readiness, the spectators safely ensconced
in the bomb-proofs erected by the Government, the valve was pulled, and a full head of steam turned into the cylinder. Instantly there was a terrific explosion. The ground trembled as if from an eate bomb proof. Mr. Lawson and one or two others waited only a few moments, and stepped out just in time to cateh a shower of firt and grime. Scarcely a vestige of the boiler and furnace was left. It was found that the boiler had been completely demolished It had not given away merely in one point, but had been torn
into fragments with a force that must have been tremendous. Framents of the boiler, not more than a foot long and four or five Finches wide, were found in different places. The fragments al showed that the iron was of an extraordinary good quality, and the force that rended it was of tremendous power."

Has previously received a Telford Medal and a Telford Premium.
Have previously received Teliord Prem

The prime cause, says a United States contemporary, of most of the railway accidents of to-day is broken rails. Steel rails do not
sem to show a graeter percontage of breakage than did ron rails
formerly, but a railway authority reminds us that both railw mileage and railway traffic have enormously increased within the past few years; trains and engines have been increased in weight,
tha average speed is higher, and during the past winter the cold
has has been extraordinary. Ir may be remembered that recently an engine-driver on the
London and South-Western Railway died from being burnt ty the flames from the furnace of his engine rushing through the fire-hole
door. A memorial has been sent by the men to the chief inspector door. A memorial has been sent ty the men to the chief inspector
of the line and the locomotive superintendent, asking that the fire
hole doors should be so constructed as to prevent a similar calamity of the line and the locomotive superintendent, asking that the fire-
hole doros should be so constructed as to prevent a similar calamity
occurring through the faultininess of the engines. A promise has occurring through the faultiness of the engines. A promise has
been made that the defeet should be remedied The legal notice ree ELevATED railroads are now entitled to rank among American institutions, and in the future will call for a large consumption of
iron. There are, according to the rron Ale, three schemes of this
chand character under discussion in st. . Touis, U.S., and the only ques-
tion is, which shall be adopted? Phildelpia is making good progress in following the example of New York. Broolliyn encounters
an obstale, partly arising from the configuration of the surface,
and which favours the construction of tunnels, but the city is in in
desperate need of some form of rapid transportation $\begin{aligned} & \text { oston }\end{aligned}$
隹 desperate need
hesitates, appar
disfigurement.
The Scinde, Punjaub, and Delhi Railway ran, during the Afghan campaigns, up to December 31st last, 652 special trains,
carrying 471,970 troops and followers, 105,656 horses, ponies, and mules, 15,408 bullocks, 8645 camels, 470 guns, artillery, and engi. neers, carriages,
milititary stores, and 78,405
ways. This the tars of materiala for the the frontier rail wifthout a single accident of any importance, and as a consequence of the success of the arrangements made by the traffic manager,
Mr. Ross, that gentleman has had the Companionship of the Order Mr. Ross, that gentleman has had the Com.
of the Indian Empire conferred upon him.
The evidence given by Mr. Menelaus, of Dowlais Ironworks,
before the Select Committee on Railway Charges, is of interest. He stated that the Dowlais Company last year raised over one million
tons of coal, using half, and selling half., They sent away over the
railway 106,000 tons of finished steel, 51,000 tons of iron, and railway 106,000 tons of finished steel, 51,000 tons of iron, and
19,000 tons of pig iron, spiegel, and scrap. They sent over the
railway 590,000 tons of coal, and including everything, 767,000 tons or 2450 tons per day. In the same period they received
417.000 tons of Spanish ore, and of coal 417,000 tons of Spanish ore, and of coal and coke 145,392 tons,
and of pitwood, 13,00 tons. Dowlais pays 1 Is. Sd. per ton for its
coal to Cardift, and 1s. 11d. for its Spanish ore to Dowlais, and coal to Cardiff, and 1s. 11d. for its
the tolls per week amount to $£ 4183$.
THE Government inspection of a new single line railway has just of the Rye and Hastings branch of the South-Eastern Railway sixty-five miles from London, and passes through or by the villages
of Snargate, Brenzett, Old Romney, Mydley Chappel, and the ancient town of Lydd, where there is a station, to a point abou
100 yards sorth-east of Dungeness Lighthous. The railway is to serve the purposes of dispersing more easily the agricultural pro
duce of the Romney Marsh, which it almost evenly divides, giving access to beds of shingle, now largely used in concrete buildings, and
accommodating the artillery and rifle practice grounds owned by accommodating the artillery and rifle practice grounds owned by
the War-orfice. It will probably be opened for public traffic in the course of the present month.
According to the Diaro Official, railrond making in Mexico is
being pushed on with great rapidity, ipwards of 40 ,000 men being
employed on the numerous new lines now in process of construction General Grant's contract for the line from the city of Mexico to several branches, has bheen approved by the whil thatrow out of
Deputies. The line, which is to be completed within ten year from the date of the contract, is to be built without subsidy, but the company will have the right of way and the free importation of
all articles needed for the ocontruction of the road during the Theriod or construction and for twenty-five years after completion net revenue of 10 per cent. on the capital of construction, and the
Government retains the right to purchase the line at the expiry of Government retains the right to purchase the line
ninety-nine years, paying in cash its actual value.
Frox the time an old rail arrives in the yard at a United States one times. The process, according to the American Manufacture and run on a set of rolls to the shears, then cut up, when cut piled into fagots, then loaded on to a barrow and charged into furnace,
heated to a welding heat, then hauled out and placed on iron bogies run to weighing rolls, handled six times until finished to a bloom
then returned to the bogie, earried to a rehte to a welding heat, then returned to the rolls on a bogie, passed
through the rolls nine times, then run to saws, where both ends are cut oft at once, then laid on the cooling bad, where boothed ends are
under the straightener, which takes out all minor crooks. The taken to the punching filed off, when the rail is inspected, the the slotting machine, where it is slotted for the spikes; then the OF steel rails the American Iron Age last received says:- "There
has been a good deal of business done during the week, but at a very wide range of prices. A sale of 2500 tons, for summer deli
very, was made at about 63 iols. at mill, with other sales fron
that down to 56 dols. at mill. For summer deliver 62.50 don and upward is quoted, and orders are hard to place. Foreign rail
are offered at about 61.50 dels for Juls and August shipment, and several lots taken at about
62 dols. For winter delivery there 62 dols. For winter delivery there has been some pressure to sell,
and गne Peenmylvania mill has taken an order from a Southern
road capacity for production leads manufacturers to fill upp as largely as possible, and it now seems likely that at anything above 56 dols
buyers will take hold very urgent. Iron rails are active and sales une reported ate thssities ade dols.
to 51 dols, per ton at mill, according to section. Old iron rails steady, but per ton at few mill, according to section. Olders asking inon rails ares. to 28 dols. per
ton in Priladelphia, while buyers are disposed to hold back for
to lower prices.
and Yourkon on Saturday a collision took place on the Lancashire Twenty-five persons were injured, some damage was done to the
rollingstsock, and the traffic was interrupted for about a couple of
hours. It seems that about the time Mours. It seems that about the time named the Lancashire and just about to move oft from the platform side at the west end of
the station when a special train, consisting of a number of horse boxes, entered the station from the west, or Manchester end. The
driver of the horse-box train ran past the home signal, which it is said was against him, and the buffers of his engine caught one of named engine (No. 361), was thrown off the metals, and the force carriages becoming dedtached coupling chains to break, engine, which wand the tho
off the line, ran towards Normanton. They were quickly strown When it was ascertained that about twenty-five of the occuppants the passengers were able after a short delay, to proceed on their journey, or to return to their homes.

NOTES AND MEMORANDA.

Accorning to an American exchange, if iron is placed in furnace aised to a red or white heat, and continued for fifteen or thirty minutes or longer, according to the mass of iron to be
operated upon, and then removed from the furnace and allowed to cool, the surface will be found thoroughly cleaned, and covered
with a coating which is impervious to rust under ordinary circum tances.
THE greatest feat ever accomplished in telegraphy is the transYission or the whose acoomplished in less than seven hours. The
York, which wher
operators started on four wires at 5.30 p.m., and additional wire were employed until at $9 \mathrm{p} . \mathrm{m}$. no fewer than 20 were in use, and
t 12.20 a.m, the last word was sent. It is certainly a great feat, at 12.20 a.m. the last word was sent. It is certainly a great feat,
but it would be interesting to learn how many errors were made,
for even the best regulated telegra The Archier fior Pharmacio sive the fowing foumla for making paper for wrapping up silver :- Six parts of caustic soda
are dissolved in water until the hydrometer marks 20 dea. Beaume. are dissolved in water funtit the hydrometer marks 20 deg. Beaume.
To the solution add four parts of oxide of zine, and boil until it is
dissolved dissolved. Add sufficient water to bring the solution down to
10 deg. Beaume. Paper or calico soaked in the solution and dried

1. from. the tarnishing action of the sulphyretted hydrogen which is contained in such notable quantities in the atmosphere of all large towns.
Accordivg to the American a series of experiments have been
carried on in Ohio, near Pittsburg, under the auspices of the carried on in Ohio, near Pittsburg, under the auspices of the
national Government, which casts light on the true cause of boiler nationa Government, which casts light on the true cause of is thine
explosions. The theory reached by the new experiments is that the withdrawal of a quantity of steam from the upper part of the flashes into steam, which strikes the boiler-top with such an impact as to rend it. The pressure may be such as the boiler could
resist if it were steady and equable. Instead of this it takes the resist if it were steady and equable. Instead of this it takes the
form of a blow more violent than that of a trip-hammer. The experimenters believe that this danger can be met by making an experstable separation between the part of the
atjuam is drawn into the cylinder, and the rest.
When making some experiments under the direction of M. Chevreul, M. Niepce de St. Victor, who tried helio-chromic experi-
ments on a large doll bedecked with jewels and resplendent with ments on a large doll bedecked with jewels and resplendent with
coloured silk, made the remarkable discovery that black is not the mere absence of light, but is entitled to be considered a colour self, and has a special chemical action of its own. The colour hll the colours of the doll, including white ; but as the blacks ha also been impressed as black, it led to this experiment: - A hollo tube, black from the absence of light, was presented to the camera,
together with another article of a definite black colour, with thi result, that the former was represented by an unaltered state o he original violet colour of the surface, while in the latter case very deep black resulted.
According to a report of the director of the United States Mint
lately issued, the total gold circulation of the United States ncluding bulion in the Treasury amounted, at the commencement of May, to $520,000,000$ dollars, of which about $264,000,000$ dollars
were held as Treasury and national bank reserves, and 256 , 000 , 1 . dollars were in actual circulation. There has been a total gain of gold coin and bullion to the country since July, 1879, of 234,000,000 dollars, of which $35,000,000$ dollars was added to the Treasury,
$59,000,000$ dollars to the banks, and $140,000,000$ dollars to the active $59,000,000$ dollars to the banks, and $140,000,000$ dollars to the active
circulation. The total amount of gold in the country makes a fair showing compared with the principal exceeded only by two. The amount estimated to be in England in
1880 was $596,000,000$ dollars, of which $428,000,000$ dollars was in actual circulation ; and France, with $927,000,000$ dollars of gold,
ard a circulation of about $816,000,000$ dollars. The larger pro had a circulation of about 816,000,000 dollars. The larger pro-
portion of gold in active circulation in the latter two countries the director attributes in part to the fact that their coinage consists $4.86 \frac{1}{2}$ dols, of Americ noney, while in France, out of a total coinage during the last 7 years of $1,743,288,000$ dols. of gold, nearly 99 per cent. was 1
pieces of less than 5 dols.
ONE of the American contributions for the Electrical Exhibition at Paris will be a moditication of Mr. Edison's magnetic separator
for the treatment of iron sand found in large quantities on the south shore of Long Island and in other localities on sea conste Acording to Mr. Batchelor's statement to the United States Evening Post the Long Island sand contains 26 per cent. of the finest iron known. Innumerable attempts have been made to
separate the sand, and magnetic plates have been used before, but with no success on account of the presence of what is known as titanite iron, a substance which spoils iron. Edison disparticles, and constructed his separator with that fact in viev. The sand falls a distance of 4ft. in a thin stream from a slitin a V-shaped
box holding about a ton. Under this box is a receiver divided box holding about a ton. Under this box is a receiver divided
into two compartments, the dividing partition being placed nearly ander the slit in the sand reservoir and parallel to it. If no magbut when a powerful magnet is brought near enough to act upon the falling shower, the pure iron particles are deftlected in their
fall and fly on the other side of the partition. The particles of itanite of iron are not attracted equally with the iron and are not deflected sufficiently to fall into the compartment with the pure Long Island sand, and is now at work with its first machine at Quogue, near Moriches, on the Great South Bay. This machine, which cost 700 dols. to make, is managed by one boy, who keeps
six men and two carts busy bringing sand for his hopper. It treats, six men and two carts busy bringing sand for his hopper. It treats,
we are told, one hundred tons of sand a-day, producing about twenty tons of pure
selling for six dollars.
Mr. F. E. KidDER has recently performed a series of experitheir object the determination of the moduli of elasticity and of other information as might be derived from the data obtained The results of these researches are embodied in a paper read befor current number of the Journal of the Franklin Institute. The
conclusions drawn from the results of the conclusions drawn from the results of the experiments are as follows:- The modulus of elasticity depends not only upon the
elasticity of the material, but also upon the length of time
that the that the load is applied. When subjected to loads not exceedin permanent set; but even under very small loads, if applied
for any length of time, there will be a temporary set. Knots and gnarls in beams loaded at the centre, when not within
one-eighth of the ppan of the centre of the beam, do not materially proportional to the under small loads. Deflection is very nearly strain, and the modulus is consequently very nearly constant for
all moderate deflections. A high modulus of elasticity does always accompany high transverse strength. In spruce beams the apper fibres begin to rupture by compression under about four-
fifths of the breaking weight, and the neutral axis, at the time of rupture, is very near the centre of the beam, as shown by the
fracture. Beams which are subjected to seyere strain for time, bend more before breaking than those which are broken in a comparatively short time. The modulus of elasticity of small
sprue beams, of a auality such as is used in the best buildings,
may be talen may be taken at from $1,600,0001 \mathrm{~b}$. to $1,700,000 \mathrm{lb}$., and the
modulus of rupture at $11,000 \mathrm{lb}$.

MISCELLANEA
A NEW code of botler rules, containing suggestions and rules for
wners and tenters of boilers, has iust been compiled for use by the owners and tenters of boilers, has just been compiled for use by the
South. Staffordshire Institute of Mining Engineers. The best provisions of the Manchester Association and similar bodies in
Germany, France, and America, have been laid under contribution. IN accordance with a resolution recently passed at Sir Josiah Mason's Science College, the Birmingham Town Council have
invited the British Association to hold its meeting of 1883 in Sirmingham. On the same occasion, trustees alike for the Mason Orphanage and for the College. were appointed b
act with those appointed by the founder himself.
A NEW iron hopper steamer of 600 tons, built and engined by
V. Simmons and Co., Renfrew, was launched complete on the 30 th June from their works at Renfrew. It has been constructed
under the direction of Sir John Coode, C.E., for the harbour works at Colombo, India. It is named "Perseverance," and is the second Messrs. Jamies and Samuel Spenoer-agents for Mr. John Spencer, the Tube Works, West Bromwich-3, Queen-street place,
Cannon-street, E.C., have gained a gold medal at the Melbourne Exhibition for their anti-corrodo tubos and fittings, coated by
Barff's rustless process. This is in addition to the jurors' award of Bart's sustless process. This is in addition to the jurors award of
the First Order of Merit, and is the only gold medal awarded for

The Japanese papers report that a new palace for the residence of the Mikado is about being built at Yeddo, which will be entirely
of wood, and will cost $5,600,000$ yen (nearly $£ 1,120,000$). There will be, however, a grand reception hall, in which all grand State ceremonies will be performed, which is to be built partly of tiles
and partly of wood, at an estimated cost of 170,000 yen (about

Messrs. G. Bras and Co., Leeds, are about to light Piccadilly with their patent street lanterns. Nearly two hundred of these
lanterns have been purchased by the several lighting authorities in London, and are in use at the crossings. They were, we under-
stand, the first flat flame lanterns of light lighting power ever stand, the first flat flame lanterns of ligh lighting power ever
introduced, and seem to be the only lanterns which have made a uccessful stand against the ele lic light.
Ter use of Fletcher's annular furnaces is extending rapidly-the Westinghouse Brake. Co., which adopted this system in its London
Works about a year ago, now has two, and a second has just been started at its Paris works, and there is one at the Pittsburgh manufactory. Each furnace is for a Morgans' patent crucible of 60 kilo. capacity, and when it is remembered that a pot of gun-
metal can be fused readily within the hour, it is easy to calculate elting

The Birmingham Corporation are resolved upon another somewhat extensive outlay on public works. The Finance Committee the market house, the covering in of the Smithfield vegetable market, and other works. They lately invited tenders for the erection of shops and other buildings on the market frontage in
Jamaica-row Of the three Birmingham architects who tendered, Messrs. Osborne and Readiny, of Bennetts Hill, have secured the work at a cost of $£ 14,000$. This rais
The Horsely Engineering Company, Limited, of Tipton, have required for the erection and completion of the Tipton new gas machinery to correspond. The total weight of iron in the whole
apparatus is about 700 tons. The works will, in the first instance, apparatus is about 700 tons. The works will, in the first instance,
be capable of froducing about sixty million cubice feet of gas per annum, and the arrangements will admit of the capabilities being
doubled with the least possible outlay. They will include latest improvements in gas-making, and it is expected that they will be in operation in March next., This new works is for one of the four districts which were formerly supplied with light by the
Birmingham and Staftordshire Gas Company, but which have been severed from it since the property of the company was purchased by the Birmingham Corporation.
There arrived in Cardiff on Saturday morning, on the completion of her trial trip from the Tees, the steamship Anjer Head, which
has been completed by Messrs, Raylton, Dixon, and Co, of Middlesbrough, to the order of Messrs. Angier Brothers, of Bishops-gate-street, London, being the second vessel of her size which has boat of 286 fft over all, by bjift, beam, and $24 f t$. 6 bin depth of hold, having a gross tonnage of 2015 tons and carrying capacity of 2900 or 3500 tons measurement. She is in every respect a very firstclass ; has iron main deck, and upper deck of pitch pine ; water ballast in fore and main holds, and under boilers. Her engines,
which are by Messrs. Thos. Richardson and Sons, of Hartlepool, have given most satisfactory results, as the vessel made the run to
Cardiff from the Tees in 62 hours, an average of nearly 12 knots per hour.
Av important improvement is, says the American Manufacturer, Company, near Wilkes-Barre, Pa. There is a slope in the mine
whereby the coal is hoisted from a lower vein. The pumping Whereby the coal is hoisted from a lower vein. The pumping
engines are located at the foot of the shaft, and the steam for Working these engines and the engine at the slope, is run through
pipes from the boiler room above the ground. The amount of steam thrown off and the heat from the pipes make it extremely warm in the mines. The steam also interferes somewhat with
ventilation. On account of these causes the employes suffer mueh inconvenience. It is expected to overcome the sources of complaint
by using air as a motive power. The compressors will be situated at the head of the' shait, and the air will be conveyed through pipes to the engines in the mine. The work of pe in readiness.
compressors has been begun, and they will soon be be dint
The ventilation will then be improved to a great extent, and the temperature of the mine made much more pleasant for the work-
men.
Lord Coirringe has recently decided that a steam tricycle is a steam engine within the Locomotives. Acts, 1865 and 1878. An
appeal came before him from the decision of Mr. Marsham the the
police magistrate at Greenwich, in which he held that the steam poine magistrate at areenwin, Th
tricycle recently invented by Pir Thyns was within the
provisions of the Highways and Locomotive Acts of 1865 and 1878 . provisions on was fully described in the case, and it appeared that
The machine
it was capable of travelling at the rate of ten miles an hour, without any escape of steam, or showing any indication of being
driven by steam. The machine in question is an ingenious invention, consisting of an ordmary tricycle with the addition of three
metal boxes, containing a complete steam engine, a condensing
 was of opinion that the machine in question was not withim
the mischief contemplated by the Atcs, but considered himself
bound to convict on clauses 3 of the Act of $186 \overline{\text { and }} 28$ of the Act of 1878, in which "locomotive "is defined as "a locomotive
propelled by steam, or by other than animal power," and he he
intlicted a nominal penalty of As. Mr. Mellor, Q.., and Mr.
Chanell were for the appelant. Channell were for the appellant. Mr. Mellor argued that these
statutes were penal statutus, and that as the tricycle was found not to be within the mischief of the Acts, it ought not to be
held to be within them, and he pointed out that the require-
ment to travel not more than two miles an tour three persons in attendance, would prevent the use of the ma-
chine.
Mr. Leese, for the respondent, was not called upon chine. Mr. LLeese, for the respondent, was not called upon.
Lord Coleridge gave judgment in his favour, thinking the case
came within the Act.

THE LICHTERFELD ELECTRIC RAILWAY.
MESSRS. SIEMENS AND HALSKE, BERLIN, ENGINEERS.

THE LICHTERFELD ELECTRIC RAILWAY. messrs. siemens and halske, berlin, engineers.

SECTION THROUCH
THE ROTARY ENGINE

Fig.i3 sectional elevation of carriage

THE LICHTERFELD ELECTRIC RAILWAY. The following account of this railway, the opening of which has lately attracted so much attention, is condensed from a paper read by Dr. Werner Siemens before the Verein für Eisenbahnkunde, on 21st May last.
The laying down of this line grew out of a concession made to Messrs. Siemens and Halske, to lay an electric railway in the Friedrichstrasse at Berlin. This was found impracticable ; but way to be lost to Germany, determined on building a short line at their own cost, and cast about for a suitable locality. This was found at the Central Military School, recently built, which, during its building, had been connected by a short line of railway with the Lichterfeld station of the Berlin and Anhalt Railway. The earthwork of this railway was still in place, and with the consent of the various authorities it was utilised for the laying of the electric line. This line, although placed on the ground, was, however, arranged throughout with a view to the requirements of a line raised on posts, such as had been originally intended, in order that the experiment might be a conclusive one as to the working of such a line. Thus the two rails were
chosen as the conductors for the forward and the return current, chosen as the conductors for the forward and the return current, principle of the siemens electro A dynamo-electric machine-the generator-driven by a steam engine, sends a current of electricity through some metallic con-ductor-in this case the rail-to a similar machine - the motormounted on wheels, to which it is coupled by mechanism. The electric current rotates the motor, and through it the wheels whereupon the train moves. The two machines being similar, either of them is able to act as a generator or as a motor; and thus if the train be propelled by any other means-e.g., in running down an incline-the motor becomes a generator, and sends back electricity to the original generator, by which it can motor machine always generates a current of a certain strength which goes in the opposite direction to the driving current and diminishes its effects. The amount of this diminution varies with the speed at which the train travels, being less-within the limits of practice-as the speed is higher, and vice versa, As a
consequence of this, it is found in practice that definite relations exist between the inside conductors, the coils of wire within the machine, and the outside conductors, and that the resistance of itself, otherwise the loss of effect is increased. Hence, with given machine, it is necessary to have conductors, which, however varied in form, do not give a resistance exceeding this limit. Hence there is an obvious convenience in making use of the rails, which are always of section so large that even in a wires in the machine. If separate wires are used their section must be increased at intervals by affixing additional wires or otherwise, which can be accomplished without any practical difficulty. This method, however, involves an increased expenditure of force, due to the increased section, and it is therefore desirable to find some other method of keeping the resistances within the proper limit. For this purpose, instead of diminish ing the resistance of the conductor, we may increase the resist ance of the machine, by using longer or thinner wires for the electro-magnets and induction coil. The whole question of design ing the apparatus of an electric railway is thus rather economical than technical. But it must be remembered that currents which have to overcome a high resistance require a high degree of made the question of insulation less important power required in fact with a known and determinate amount of loss, due to the front Sbould speciol means of insul.
available, the choice varying according be required many are line elevated on posts, and resting on wooden sleepers, these latter form an insulation in themselves. In a line laid upon the ground, but so that the rails rest usually on the sleepers only, and are only exceptionally in contact with the ground, the experience at Lichterfeld shows that, even in a length of several kilometres, no special means are required; but chairs of glass, ashphalt insulators between rail and sleeper, and ashphalt coatings for the rails, have all been tried with success. Where, insufficient; a wire tramway hung from insulators on the telegraph posts must then be resorted to, as in Fig 2 A trolley running on this way, and connected by a wire to the carriage, keeps up the electric communication. By this means
the electric system may be applied even to tramways; while in tunnels, or where great speed is required, light rails may be substituted for the wires.
The question often asked, whether in an electric railway two trains may be on the road at once, may be answered in the affirmative. It is only a question of properly proportioning the resistance of the outer conduction to that of the machine. In fact a service of frequent light trains is specially suited to the electric system, since the motor is not in itself, as in the case of steam, a ponderous object. 1 . 8 . of jointing the rails ; in addition to the ordinary fish-plates light strips of iron are rivetted on the bottoms, passing from one rail to another, and forming an electrical connection. In Fig. 5 is shown the cross section at crossings, \&c., in Figs. 6, 7, 8 the detail of the cross sections at the three stations, No. 2, 6, and 16. The horizontal steam engine, shown in Figs. 9 and 10, belongs to the pumping station for the Lichterfeld water supply, and is only used provisionally. The motor to be used permanently is a rotary steam engine of Dolgorouke's patent, as shown in Figs. 11 and 12. We shall not give a full description of this engine at present, as it is not yet at work. It will be seen, however, that it consists of a casting ithe Two such castings are within which rotate two rotary pistons. Two such castings are at 180 deg. interval. by this means the balancing of the strains, which has always been a difficulty with rotary engines, is provided for. The parts are so arranged and so exactly fitted that no packed joints are needed. The rapidity of rotation makes the engine specially suitable for making a dynamo-machine.
Figs. 13 and 14 show the carriage, which resembles an ordinary tram-car, but carries between the two axles a dynamo machine. The current is conducted from the rails into the wheel tyres, and from them to strips of metal fixed on the wooden bodies of the wheels. On these strips rest springs, which are themselves prolongations of the two poles of the machine. The wooden bodies completely insulate the tyres from electric connections. The metallic provided with an electrical regulating apparatus, in place oar is provided with an electrical regulating apparatus, in mechanical apparatus used at the exhibition railways, and with another apparatus which at once governs the speed within certain limits, and prevents accidental interruptions of current,

It was foreseen from the first that the proper insulation of the rails was not possible in the part laid upon the street; here,
therefore, a suspended wire tramway, as already described, and therefore, a suspended wire tramway, as and
as shown in Figs. 15 and 16 , is provided.
The electric railway is at present working
tion with the trains of the Berlin and Anhalt line. The trainne at the average speed of twelve miles an hour allowed by the concession, but if necessary can run on the level at twenty t
twenty-five miles an hour, with the full complement of twenty six passengers, giving a total load of $4 \cdot 8$ tons. The motor can
develop $5 \frac{1}{2}$-horse power, with a dead weight of less than half a ton The working has gone, on perfectly satisfactorily, and it is already proposed to extend the line further to Steglitz, and also to apply
the electric system to a tramway at Charlottenburg.

LETTERS TO THE EDITOR.

We do not hold ourselves responsible for the opiuions of our.

ENGINE-ROOM ARTIFICERS, R.N. STR,-I do not know what position your correspondent "E. X. may hold in her Majesty's service, but it is evident from his lette

 may hold in her Majesty's service, but it it evident from his lettethat he can know little or nothing of that of which he writes.
His assertion that the Admiralty entered mechanics in subsequently, to supply the practicicl knowledgec which the majority
of naval engineers lacked, is simply false upon the face of it, as is plainly shown by the class of men selected for entry - -namely mechanics without sea-going experience. Had that "practical
knowledge" of which "E. X." writes been really required, their Lordships would have been compelled to try to get experienced
sea-going engineers from our mail steamships instead of entering
men-fitters, coppersmiths men-fitters, coppersmiths, smiths, boiler-makers, and pattern-makers-who had to be taught their practical engine-room duties
by the engineer officers of the Navy. In Inay state that I was
personally engaged in the entry and examination of candidates for appointment as engine-room artificers, and that I have, since that,
had to examine merchant service engineers for Board of Trade certificates of the first and second classes, and I can positively sa that I have never met with any of the engine-room artificers on
entry who have been equal to the merchant service engineers in entry who have been equal to the merchant service engineers in
respect to practical knowledge or general ability. In fact, not one the inanagemer started a donkey engine, or had any experience The real reason tor the the introcuchintion of ong engine-room artificers
was, that the Admiralty began to understand that it was, that the Admiralty began to understand that it was not
eoonomical to employ a large number of scientific men, holding
position as officers, to do the work which ordinat mether position as officers, to do the work which ordinary mechanics could
do just as well ; and this fact was frequently pointed out to their Lordships, several naval engineers choosing rather to resign than
serve on in a subordinate and bad position, without prospect of promotion.
I do not
I do not intend to define what a practical naval engineer should be, as there are many various opinions on the subject; but I must
confess that I cannot admit that an ordinary fitter, smith, or boilermaker is entitled to be called a "practical engineer," or "naval engineer,", any more than I can admit that a navy is a "civil
engineer., a scavenger is a "sanitary engineer," or that a collier
is a " mining engineer." is a " mining engineer."
I am not opposed to the engine-room artificers, nor is the great
majority of the naval engineer officers opposed to them majority of the naval engineer officers opposed to them. Quite
the contrary ;but I objeot to their claims being advanced by means
of false pretences. That the entry of engine-room artificers has been a a great sucecess is id ue to to the fortering care of the engineers
of the Navy, the large majority of whom would gladly welcome a large increase in the number of the artificers, and a reductione an
their own numbers. But to enable this to be effected at once with safety, a better class of men should be entered at first ; and this
better class can only be obtained by giving better pay better class can only be obtained by giving better pay on entry,
better messing and washing accommodation, and a fairly good pension. The engineer officers of my acquaintance would glaclly
see some system instituted which would supply the Navy with
trained ensin trained engine-room artificers, to whom a watch could be safely
entrusted; or who would have some little knowledge working of boilers and engines before being sent to sea. Unfortunately, many of them are sent to sea far more ignorant of the
management of machinery than the stokers; hence their inability to keep a position of authority over the men.
But this is not all. Many of the artificers will talk and joke wise ine
them the their position, which the engineer officers would like sion" will give a man authority unless he possesses a good know-
ledge of his duties, self-respect to keep his position, and tact to carry on duty with the stokers without quarrelling.
Respecting Respecting the question of watch keeping, I have known man
 occurred to myself for several months some years ago, until, , in
fact, another assistant engineer was applied for, and sent out; but fact, another assistant engineer was applied for, and sent out; ; but
I have never heard of a single case of engineer officers objecting to artincers keeping watch in the engine-room.
diate wodud suggest in that in order to effect a very large and immeshould have their pay raised on entry to 6s. per day, decent mess
place with washing accommodation provided for them in common With the writers and schoolmaster, and their old rank of "nex
after the warrant officers" be restored to them. I have no doub
dom after the warrant officers" be restored to them. I have no doubt
large numbers of good workmen would leave the dockyar fac
tories, and enter the Navy, which would be far better for the ser vice than recruiting from the "wasters" of private factories, and getting men of whose antecedents nothing can be known. The
sacal of pension should also be revised and increased, so that the
artificer should know exactly how artificer shoul
after any num anter any number of years service. Furthermore, in case of being a warded for life, irrespective of length of service.
neer officers may be safely reduced by at least 200 without preju that of many other officers of long service, and of most, if of the junior engineer officers. $\begin{aligned} & \text { June } 27 \text { th. }\end{aligned}$ Expritence. June 27 th.

Notation of reciprocal diagrams. SIR,-Discussions as to priority of publication or invention are
somewhat disagreeable, but the matter which I wish to mention to you is one of sufficient importance, I think, to justify me in bring
ing forward such a subject. In a review of Mr. Chalmers' book on
"' "Graphical Statics," last week, you drew attention to what was
called Mr. Bow s notation for reciprocal stress diagrams. I fully agree with your reviewer as to the value of that notation-it is
simply the direct expression of the reciprocity, and it appears not too much to say that without it reciprocal diagrams would have no chance of coming into practical use. I do not in the least wish to
deny Mr. Bow's originality in devising it, nor the great extent to
which it has been used in consequence of his book, but it is only right to say that it had been not only used but, published by my
colleague, गrof. Henrici, some time beofre the "Economics of Con-
struction", struction "appeared. The date of Mr. Bow's work- of which we
have for a fong time hoped to see the continuation-is october
1873. Prof. Henrici, after having used the notation time, brought tit before the hather Maving used the notation fociety in April, some
a discussion upon a paper by Prof
Crofton

referred toin the "Proceedings of the Mathematical Society", vol 3 ,
p. 233. I believe I am right in saying that the notation, as Henrici's, had made its way into actual use in several important this, of course, I have not the slightest intention of questioning thins, of course, I have not the sightest intention of questioning
that it was separately devised by Mr. Bow; but still, if it is to bear any name, it seems right that it should receive that of the man
who first made it public, especially when that man has done so much to bring graphical methods into use for ensineering purposes
as Prof. Henrici has.
ALEXR. B. W. KENNED. University College, London, June 25th.
theory v. practice in chaff cutters.
Sir, - In the analysis of the action of a chaff cutter, it will be observed that the resistance or work to be done is of an intermittent
character, that the power applied is of an uniform character, and
that the that the power and work are more or less equalised in this respect
by the use of a heavy flywheel. But it will also be further observed that whilst the leverage of the power applied remains constant, is accumulative, becoming greater as the cut travels farther from the shaft centre. The accumulated fly-wheel force commences to act, terefore, Hhen the resistance is least, and is appied at the
greatest disanvantage for assisting o produce uniform motion. By
the use of concave instead of conver knives, however, the cond dition the use of concave instead of convex knives, however, the condition
of things is exacly reversed, the greater resistance being then
opposed by the greater force available, and the lesser resistance by opposed by the greater force available, and the lesser resistance by
the lessened force ; and one might reasonably expect, I think, considerabie advantage in practice by their adoption. I lately
suggested the use of concave knives to one of the leading English firgested noted for their manufacture of chaff-cutters, and received a
feply in due course to the effect that the concave knife had been reply in due course to the effect that the concave knife had been
known for the last fifty years, and that it was almost entirely
bsolete, having been superseded by the convex knife. It would obsolete, having been superseded by the convex knife. It would,
Ithink, be interesting to others besides myself to hear an explanation why theory should so entiricely differ from practice in thisis case
Christchurch, New Zealand, May 20th.
W. A. CoMBER.
the channel tunnel soheme.
Sir,--Your very interesting account of this undertaking must have disappointed a good many people who, like myself, have no
ther interest in the success or failure of it further than an intelligent desire to see accomplished what has been looked forvill. It would be presumption on my part to offier eny opinion an the probable issue, yet I do think many of of the difitioulties-
anion
specially those connected with the whil
 of light trucks continually running up one side of the heading and hrough the medium with a powerful dynamo-machine at the open end of the heading. Let the trucks each carry a Swan lamp, and le let there be anumber
of Swan lamps for the men to work by in addition, but no oil lamp or candles allowed in any part of the heading. Let the cutting supplemented by a direct air supply from the pneumatic main. sphe these appliances there would be no vitiation of the atmohave to be provided; and it would not take a very large pneu-
matic main to supply enough, and more than enough fresh air
for the men; or the men, and the coong of the air, on expansion, would keep might be allowed to find its own way out of the cutting. The other difficulty you point out, of the men striking a fault kill in providing a remedy.
The Elms, Princes Park,

Sirs,-While quite agreeing with you as to the impracticability of rivingn a single dritt throung the Channel, I do not see that
there would be any insurmountable difficulty met with in driving a pair of parallel drifts from both sides so as to meet in the centre
of the Channel. Supposing the intended tunnel to be 28 ft . wide then a pair of driftsppttising thate intented could easily be be driven, one on each
the 14ft. of solid rock between the one drift and out the other. The air could be brought from the last throughout to the face with brattice, as in a colliery, until
the next one was put through, and then the old one could be built ap with a brick stopping. 3000 cubic feet of air per minute would dynamite were used. The men could travel in and out the intake,
dand it would not matter what the state of the return was. , the state of the return was. To pair of dirits, eleven miles from the shore, then the ventilating pressure found from the formula $\mathrm{P}=\frac{\mathrm{KS}}{\mathrm{A}}$. would be less than an inch of water gauge. "This is very easily got by an ordinary
centrifugal fan. At many collieries there is a water gauge of 3 in. The amount of work is very good, but
when it is compared with the work that is done every day in our collieries, it is not so remarkable as at first sight it would seem. In a place stt. wide and 7 ft . high two men hew and fill into
wagons 12 tons of coals during eight hours. Supposing them to
. work continuously, this would be 240 cubic yards of material hewn by manual labour in a week; and this does not fall so very much
short of what was said to have been done by the machine. All this could be easily done in the tunnel. All that would be required
could removed is only ordinary tail-rope haulage. The quantity to be to be the shift of eight hours, and this could
ither be run either be run out in one or two races, in both cases the thuss beeing
collected in the return till the race was made up. The speed would not require to be more than five miles an hour. As for the sudden flooding of the drift, there need be no danger if proper precau-
tions are taken. Al that would be necessary would be to keep tions are taken. Al that would be necessary would be to keep
bore-hole 1oft. or 12ft. in advance of the face. If any fissure
were met, the water would only come through this boreWere met, the water would only come through this bore-
hole. An air-tight dam could be made, and air pumped in, and
the pressure kept ap till the water was "tubbed" back, and the pressure kept up till the water was "tubbed" back, and
then the work could go on an before.
When the two pairs of drifts were joined, it could be widened out to the width of the tumnel. in the middle, and worked to both sides, the ventilation continuing as before. This would be better
han bringing the air right through the han bringing the air right through the tunnel, as the workmen
would always be working in fresh air, and the travelling road ould always be fresh.
This system of work.
This system of working would be very much better than any
system of pipes, or even than riving the tunnel its full width, as
o would be impossible to get a division so nearly air-tight as the rock in its natural condition
Although the ventilation, while the tunnel is being driven, is
very simple, it will be no such easy matter to ventilate it when very simple, it will be no such easy matter to ventilate it when
trains are passing through it. The air will require to travel two nd a-half times as fast as in the Mont Cenis tunnel to produce power to do it. Supposing the air in the Mont Cenis tumnel to travel at the rate of 5ft. a second-a common speed in coal minessecond in order that the air in the tunnel should be renewed in
the same time about every two and a-half hours, If we suppose
the area of the cross-section of the tunnel to be 392 square feet, and the perimeter 80ft., there will be 2366 -horse power in the air.
aur best ventilating Our best ventilating machines at collieries do not give more than
0 per cent. of the power applied, so that 4720 -horse power will be Rquthergglen, June 29that

THE ADMIRALTY AND NEW alloys.
SIR, - I would ask your permission to be allowed to make a few
emarks on the article which appeared in your publication on remarks on the articie which appeared in your publication on
"Muntz's Metal v. Naval Brass." If accurately made Muntzz's
metal is superior metal is superior in every respect to the alloy now known as
"naval brass." This is not a new alloy discovered either by
p Professor Thurston, of New York, or Mr. Farquharson in this
country in 1874, country in 1874, as it was patented in 1864, although long previous
to that date it was well known to those accuaninted with the manufacture of Muntz's metal. The advantage of the discovery was so
doubtful, and the character of the alloy as compared with Muntz's metal so thoroughly understood by those acquainted with the
subject, that the manufacture of what is now supposed by the Admiralty to be a new discovery, has practically ceased. The cause the article referred to, is perfectly understood by those who are
accuainted with its manufacture, and such failure never takes place unless either the mixture ort, and such failure never takes The tensile strength and ductility of good Muntz's metal are both of the original patentee of Muntz's metal, and the largest manufacturers of it in the world, have recently been making naval brass in accordance with the Admiralty specification, and we believe for Admiralty use, and the further experience thus gained has only
confirmed the opinion previously formed on the subject. Muntz's Metal Sheathing, Bublt, and Muntz, Managing Director.

Sir,-Having seen in your issue of 24 th inst. proportions of com-

 ponents, of naval brasses, and being in want of a goodpresent, m made some on trial, but I must say that I was greatly
disanpointed at the result, though I strictly adhered to the prodisappointed at the result, though I strictly adhered to the pro-
portions you gave, viz, copper, 62 parts; spelter, 37 parts; and tin 1 part. I got two ingots cast, botir of which I found to exceed ingly brittee breaking easily with a slight blow of a hammer, and
showing hably crystalline appearance at fracture. Whether
this is the fault of the this is the fauut of the proportions or of want of special manipula
tion in manufacture, I am at present unable to determine. You would greatly oblige by letting me know if you are sure of above
proportions being right, and also if you are aware of any special Water Edward Barry, Loco. Supt Terminus, July 4th.
[The article in question contains all the information we possess.
The proportions given are those used by the Admiralty.- ED. E.]
SIR,-The subject embraced by the article in the last number of
THE ENGINERR under the above title is one of so much interest That I venture to offer a few observations, and to add some further information upon it, having for several years past been engaged in perfecting and manufacturing alloys somewhat allied to the
kinds treated of with-as I think will be admitted-considerable

As regards the failure of Muntz metal bolts, there cannot be a to the copper and zinc alloys is of the utmost advantage in preventing corrosion, and much credit is due to Mr. Farquharson for investigation carried on by Professsor Thurston, of the Stevens
Institute of the Institute of New York, who was aided by Lieutenant Tobin of the United States Navy, threw a great light upon the simple alloys of
copper and zinc, but the introduction of tin by Mr. Farquharson copper anded as
the metal was of far greater ime iorgnge, and rolling properties of
 but its character altered as regards galvanic action and corrosion.
With the three metals to which Mr. Farquharson has confined himsiced , he he has made the strongest alloy that could be been accomplished-as I feel sure Mr. Farquharson will admit
by the discovery I made in the use of ferro-manganese. The addition of this metallic compound properly combined has a most The manganese in its metallic state having a great affinity for contained in the melted metals and renders them dense and homogeneous, and the remainder, together with the iron, is permanently
combined with the alloy and imparts increased strength, tought ness, and hardness. This has been proved by numerous compara manganese added and the other without, and in all cases the with But all thesesponding augmentation of haraness and toughness alloys, the compounds of which I have been able to determine by a 1ong series of careful experiments and tests, which has resulted in the production of several qualities suited to different purposes, and are now being manufactured and used for a variety of purposes.
For tensile strength, the quality of manganese bronze employed is somewhat allied to Mr. Farquharson's naval brass, but the addition of manganese enables more tin to be incorporated, and it thus
more nearly approaches gun-metal in character, but it greatly surpasses both in strength and toughness; it can be rolled and forged hot, and drawn cold. Plates and bars made of it when
annealed have an average tensile strength of 30 tons per square inch, and stretch 40 per cent. in length before brealing; when
rolled cold, the tensile strength goes up to over 40 tons, with an
elasticis per cent.; by further rolling and cold drawing as much as 70 tons per square inch have been obtained
Plates, angle bars, and rivets of this metal were supplied for a
torpedo boat built for the Admiralty under contract that they should stand the Admiralty test for steel; and I think I am oorrect in saying that this was the only bronze or brass metal which stood ins test successfully, and it was adopted accordingly. For caststrength and toughness, and e enployed for various purposes. The
strongest of these was subjected to a series of tests in the presence strongest of these was subjected to a series of tests in the presence
of Mr. Farquarson on the part of the Admiralty, in comparison
with the best gun-metal that could be with the best gun-metal that could be produced, the bars being 7 in. square and resting on supports 12in. apart. With a steady
pressure applied in the centre the gun-metal bars broke with 2912 lb , but it trequired 60481 lb . to break the manganese bronze bars, and they sustained nearly 1 ton before any permanent set
could be detected. Steel bars subsequently tested took a permanent set with about 10 cwt., though the ultimate strength was about impact gave the following results, the distance between supports being the same, viz, 12 in., and the weight 50 lb . dropped on the
centre of the bar from a height of $5 f t$: The gun-metal bars broke with seven to eight blows, the manganese bronze bars sustained
from thirteen to seventeen blows, while the steel bars broke with from thirteen to seventen blows, wine manganese bronze bars was
only three. The ultimate bend of the of the steel
These tests determined the Admiralty to adopt the manganese bronze for the propellers of the Colossus, the castinss of which are propellers in the mercantile marine, as well as in various parts of material for and for macellers is quitery generally. As the use of a feature in vessels of commaterial I mar properhaps be allowed to point out some of the reasons
merce,
which have perto which have led to its introduction, and the advantage it possesses
over steel. First, the blades can be made very considerably
thinner, the surface is beautifully smooth, and the form of the
blade is preserved true to its theoretical shape, whereas in steel the
surface is roy surface is rough and the form is always distorted by the annealing
process they have to undergo. These advantages certainly increase process they have to undergo. Mhese advantages eectainy is their
the speed of the vessel ; but another important point in
dife not av not average more than three years. be replaced in less than two ; this is consequence of the pitting and corrosion to which they are subject, whereas the ma
bronze blades are in this respect practically indestructible.
The cost of the bronze blades is about double that of stel, so when at the end of three years the steel has to be renewed the cost
would be the same as if the bronze blades had been adopted in the first instance, but every three years after this there is the additional cost of a new set of steel blades; whereas if the bronze
blades sare used there is onone during the ilie of the vessel, and blades are used there is none during the life of the vessel, band
when the time arrives for the vessel to be broken up the ronze will always fetch 7 d . or 8 d . per 1 b ., while the steel is practically Lombard-street, Southwark,
June Soth
June 30th. safety valves.
Sir, - According to the way " Tommy Fair Play" writes in your
issue of the 24 th inst., one would imagine that the nickel was the解 the pop valve he mentions, but I think had open sesame about the pop valve he mentions,
hesults waulve of the same type as his nickel sated ones. the be been the same, unless there is some sympathetic results would have been the same, unless there is somene sympathetic
galvanic action goes on between the steam and the nickel, which galvanic action goes on between the steam and the nickel, which
is not known to engineers at the present day. Had Mr. Fithian, when he made his experiments with the pop and the common value, only used a more elastic spring and a fata seated-valve, it
would have been impossible for the steam to rise more than
per cent., as this is the accumulation allowed by the Board of Trade,
and hundreds of valves of the common type are passed through and hundreds of valves of the common type are passed through
their hands every year by engineers, who either object to pay for a valve mad
own work.
I have seen the so-alled pop valve with the nickel seat under
steam, and the lift and opening is very similar to what Mr steam, and the lift and opening is very similar to what has in his report; but one thing he has forgoten to tell us and that is, what prossure it lost f from the e time of opening toll it it
closed, because in the one I saw it lost nearly 9 b . before coming closed, because in the one I saw it lost nearly 9 lb . before coming
down to its seat again, and as this is a most important point to enfineers who have to maintain a high speed, the pop valve will
have to be improved a long way yet before being adopted. In all the valves that have come under my notice, but especially those of
the three known makers, the lift has been about $1-24 t h$ of its diameter. This in a 3in. valve would give us an area opening of
$1: 17$ against 1.75 of the pop valve, but those I speak of were Alat-seated valves, and of ocurse eave a larger opening in proportion pop valve I saw, and I have always found that if a valve lifted
more than 1 -24th of its diameter it did not come back more than 1 -24th of its diameter it did not come back to its seat
unless with a much greater loss of pressure than is generall stated by safety yalve makers to be the maximum reduction they allow made in the very same style as his, with a slight addition of it own that does not make it work any better. "Chief Engineer" asked me in one of your late issuus to give him the name of the
makers of a better safety valve than Adams's. It is against makers of setter safety, valve than Adams's. It is against my
principle to push any firm's wares to the injury of another, but the
firm I mean will come to the because of the working of their valves, but the handiness in setting when steam is up, without taking off the easing gear, or removing
any heavy parts-a most important point to anyone that has the any heary parts-a most important point to anyone that has the
keeping of them in repair; they oan be set in two minutes, and locked up complete ready for sailing
anent safety valv the subject will bear a little further ventilation.
Liverpool, June 28th.
Bulay Fatr.

Sir, - The letter of Messrs. Crosby Lockweod and and
Sirs, - The letter of Messsrs. Crosby Lockwood and Co., in your
last issue, makes it necessary for me to ask yet once more for Strahan and Co.-whose name being on the title-p as
 ing that it was the earlier portion that I had written any sugges tions of mine would then have been to I late, written, any sugges felt secure
the belief that, as Mr. Clark had not onsulted me, my portion of
the the work had, been left without any material alteration,
in the hands of Mr. Toung and Mr. Clark upon the plea that dictum that a publisher is justified in treating an aut ortlin notwithstanding his name and addresseating anpear in the the Post-office Directory - unless, as an act of "courtesy " he occasionally reports
himself at the publisher's shop In the 150 pages, which are
In the 150 pages, which are all that now remain of the "Rudi-
nents of Civil Engineering," written by me, there
 emarks in my previous letters. As to the remaining 488 pages whidh I have not yet examined, I I can say nothing,
Messrs. Lockwood having referred to Greory's
for Practical Men," it is only neeessary for me to state t thematics for Practical Men, it is only necessary or me to state that, in my
opinion, the addition of about half-a-dozen notes, amounting in all
to little more than half putting his name upon the title page in the constifes Mr. Young in 5, Queen Anne's-gate, July 4th.
A poor man's plea for cheap patevis.
Sir, -Although I am but a poor man, and obliged to w SIR,-Although I am but a poor man, and obliged to work hard
to keep a large family, I am a considerable inventor. You may
not have heard of me, but I can assure you I often knock off couplo of inventions in the course of the evening, when ack off a my pipe after the wife has put the children to bed. I Iam in the
habitoo noting these things in a book, in the hope that, some day
or other Lis not for the oppressive tax levied by a base and mercenary. Were it
 doubt, have been riding in my carriage by this time. Sir, the
ptent laws of this country exist only for the rich, and almost every week I am doomed to see my brilliant ideas stolen from me
by those who are better off than myself. For this reason the perusal of your weekly abstracts of patents fills me with rage and
envy. In the very last number of THE ENGINER I see notices of
four inventions of mine four inventions of mine, all of which will assuredly be a source of
untold wealth to the respective patentees untold wealth to the respective patentees, One is for an umbrella,
the frame of which revolves when it meets with an obstacle, and
so escapes without inuly so escapes without injurves on the the prineiple of the an obstacle, and
bends unharmed to the blast, whilst the stuborn onk which bends unharmed to the blast, whilst the stubborn ook is uprooted
and destroyed. It in in vain to tell me that this is not new, and
that it hay been patented over and over again. I do not believe it. that it has been patented over and over again. I do not believe it.
Again, some time ago, whilst on an excursion in the country, I
was much struck by the bed was much struck by the bowed and bent aspect of a poor old man
who was breaking stones by the roadside. Is such degrading labour necessary, I reflected? I concoluded that it was not, nand by the the
aplication of a beautiful philosophical principle I invented a
 experiment on a a small scale with some of my whildren's tried and an and it answered admirably; but my hopes of my fime and fortune are are lse has taken out a a patent for this very thing,

Once more-who has not deplored the vast expenditure of power
equisite to draw a glass of beer in a public-house? Years ago invented a system which, if carried out, would effect a revolution in the beer engine trade. I I proposed to put the beer into acy
fitted with a loaded piston, which would force the liquid to any
height, so that the only exertion required of the barman would be height, so that the only exertion required of the barman would be
turning on of a tap. Alas, my idea has been patented by another, turning on of a tap. Alas, my idea has been patented by another,
and is described in your last issue. A scoffing friend of mine, who
believes in believes in nothing, says that this was patented long ago by one I am also the inventor of a ruder running upon rollers for drawing
parallel lines, which I see alluded to at p. 17 . Some time after I had invented it, the sceptical friend above referred to took me to a
shop window in which several of these instruments were displayed hop wind ow in which several of these instruments were displayed tion I got was that the thing had been known for years past, and
that it was actually patented just one hundred years ago in the hat it was actually patented just one hundred years ago in the
name of Eckhardt. I need scarcely observe that I have my own
opinion on the subject.
Oe more instance the hardships of my position as a poor
inventor and I have done. On p. 15 there is an account of a inventor and 1 have done. On p. 15 there is an account of a
method of colleting the dust from grinding wheels by means of a
fan. That also is my idea ; but how do you thenk they attempted o rob me of my originality? , They said that it was to be found i the Society of Arts "Transactions" fifty years ago, and that did away with the unhealthiness of the trade and so tended to bwer wares. Thus they contrived to put an afront upon me as an inventor, and also to insult me through my order.
But for the harshness of those cruel patent laws I should not be Camberin Iysly
P.S.-Sine writit

One is a bearing which requires I have invented two capital things. nary brasses and let the journal run on little wheels which revolve as the shaft goes round. The other is a castor consisting of a ball
held in a sort of claw so that the line of pressure passes directly held in a sort of claw, so that the line of pressure passes directly
through the centre of the ball. Of course you are aware that the ordinary furniture castor is constructed upon the most unsound hechanical principles. Each of these inventions would be worth a
fortune if I only had a few pounds to go to the Patent-office with.
the wrought iron gallery, town hall, reading.
SIR,- -I have read with much interest the article on the above
work in your last number, but it appears to me that although the design is well worked out, and the principles of the "Root and design is " ware correctly applied, the whole affair is made too much of and that the object could be attained by much simpler means, less "Root and Branch" ${ }^{\text {principle is }}$ very simply illustrated by the wellnown mechanical device by which a force can be transmitted the bar being made strong enough to keep its form. The problem before Mr. am Ende was therefore a double cantilever or U-shaped girder and taking the strain as stated, 10 tons $\times 5.33 \mathrm{ft}$. $=53.3$
tons. Now if the cantilever is extended 2 ft . 3in. in a straight line on the other silie of the front eage of a stanchion or bed-plate and $\stackrel{\text { a weight }}{=53.3 \text { tons, which would keep the cantilever in equilibrium and no }}$ strain but a vertical thrust would be on the wall. The weight of brickwork, 12 ft . by 3ft. by 10ft., would give the necessary weight,
but the drawings show more than double this below the line of antilevers but the whole of the superincumbent reasonably be taken into account. The cantilevers might have I should be glad to know the reason or neeessity for adopting the "Root and Branch " arrangement, but without some necessity it Jupears to me an expensive example of engineering
July 6th.

ilidam Parsey

proposed bridge over the douro
SIR,-In THE ENGINEER of July 1st your correspondent, Mr. Reilly, checks, by direct calculation, the results of some of the
strains computed by the graphic method, and appears to think, because this is the case, that the primary strains calculated by him are correct. It is not a difficult matter to check by the graphic
method the strains oalculated in my last letter. Take for insta method the strains calculated in my last letter. Take, for instance,
cases (b) and (c.) Through B draw the vertical Bo, set off B $v=$

$(750 \times 55 \times 50)=855$ tons, draw $v s$ at right angles to $\mathrm{B} o$, then $\mathrm{B} s=$ the thrust on A Bat $\mathrm{B}=1060$ tons, vs s the horizontals strain at $\mathrm{B}=$
the thrust at $\mathrm{C}=632$ tons, the thrust at $\mathrm{C}=632$ tons, or the same as those obtained previously.
This, however, does not prove that I am correct in my method of This, however, , ioes not prove that 1 am correct in my method of
treating the bridge as a whole; ;it only proves that these members are subjected to certain strains from a load acting in a particular manner, whether the strains are ealculated by the graphic or other the structure 1 contend is that Mr. Reilly is wrong in regarding $A_{1} D$ C a and $F_{1} H C$, as the points AD and $F H$ are not connected together in any way and the points B G are articulated, and that
it ought to be considered as composed of two double cantilevers, D ought to be considered as composed of two double cantilevers,
D C and $\mathrm{H} G \mathrm{C}$, supported on two inclined struts $A \mathrm{~B}$ and F G. I think Mr. Reilly is somewhat confused by the moments a bout B,
but have no doubt if he will construct a small model of cardboard weighted in a similar manner and having properly articulatated points as in the bridge, it will illustrate to him the action of the Reilly does this, I hope he will forward the results to Thb Enginerr. In my last letter, in case (e), I inadvertently used 112 tons-Mr.
Reill 's's figures-instead of 5 . tons in the line above-a mistake apparent to any one reading my letter.
July 6tl

Comion Five-eight.

ON STEEL CASTINGS.*

By Mr. Frank W. Diok.

In this paper I propose to give a short description of the steel
castings made at the Hallside Steel Works by the Terrenoire process. Although steel castings are known, appreciated, and great number are either entirely unacquainted with them, or have
conceived totally Much of totally mistaken ideas about their nature and merits. success whis mistanception has no doubt arisen from the doubtrul the crucible steel castings brought before the public some years ago.
The principal defects in
of solidity pripal eefects in these castings were hardness and want of sond that by crucible casting blowholes were less likely to be formed than in casting on a larger scale by the Siemens-Martin or
Bessemer processes ; bence notwithstanding the expense and the Bessemer processes; hence notwithstanding the expense and the
many disadvantages inherent to the crucible method, it has been somewhat extensively applied, both in this country and on the

* Read before the Iustitution of Engineers and Shipbuilders in Scotland,
is employed to insure fluidity in casting, and the subsequent
process of annealing is relied on to make them soft enough for
working In en working. In spite of every care these castings are often so hard
as to be useless. The accompanying honeycombed specimen shows what measure of success attended the first attempts at steel casting rom the
furnace. No matter how strong the material, it is perfectly
evide ing purposes. A further objection which militated against the spots were of frequent their want of homogeneoussess. Hateral. These spots appeared as lumps when the casting was turned or planed, and made it impossible to keep an edge on the cutting tool.
But these objections are fast becoming things of the past, thanks基 everyany practice to get castings moles, which can be hammered
strong, tough, and free from blowhol cold or hot, which welds easily, and in fact, which behaves in
every way like superior wrought iron, with this difference, that it is very much stronger than wrought iron. It may appear strange than iron which has been wrought ; but it has been found from experiments made at Newton (as already noticed by Euverte) that
the properties of a piece of steel (free from blowholes) depend entirely on its chemical composition and its molecular condition, so that if different means can be found to produce similar conditions in steel, the final result is not affected by the method employed. For castings such means are found in annealing and tempering, the effectes of which will be noticed later on.
It has been already stated that the dift
It has been already stated that the difficulty encountered in early attempts to make castings of Siemens-Martin or Bessemer
metal was the formation of blowholes. In the Terrenoire process this fault is entirely remedied by the use of a silicide of iron and manganese. "The presence of a trace of silicon is found to have the singular effect of preventing that violent evolution of gas from
fluid steel at the moment of solidification," which caused the objectionable unsoundness. In the fluid steel there is oarbonic oxide
in dissolution is decomposed by the silicon and silica produced. and afterward silicate of iron, which would remain interspersed in the steel were it not that the presence of the manganese permits the formation of a very fusible silicate of iron and manganese which passes off
into the slag. The metal when run into the mould remains into the slag. The metal when run into the mould remains
perfectly quiet, and a sound casting is readily obtained, possessing perfectiy quaet, and a sound casting
a smooth skin and sharp edges.
A principal characteristic of this metal is its extreme toughness. pinion, which argue the possession of that quality in the material m a high degree. There are also some bars shown which have
been bent cold to an angle which few brands of wrought iron would each. In one sense this toughness is a drawback-it renders the ing ofilithe gates and runners one of extreme difiliculty. them off, they must be turned or slotted off. The breaking strain
varies according to the nature of the casting and the subsequent treatment Plain the nature or the casting and the subsequant metal, while more intricate ones require to be made rather harder, In general the variation and ranges from 29 to 35 tons per square inch. The extension
varies from 36 to 12 per cent. in lengths of two inches, and from about 17 to 6 per cent. in lengths of eight inches parallel. Stronger qualities can be made, but any increase in strength is gained atthe
expense of toughness. The elastic limit I have invariably found to range from $\frac{1}{2}$ to $\frac{5}{8}$ the breaking strain.
ment to which it is subjected after bepends much on the treatthe practices of long continued annealing and I do not refer to with oxides of iron, often adopted in connection with crucible steel castings, but simply to the effects of heating and cooling in
different ways. Before you are three samples of steel taken fromu the same casting. The first, which exhibits a largely crystalline fracture, shows the steel simply as it is cast; the second, which is much more compact in appearance, has been heated to a cherry texture, has (after annealing) been again heated to a cherry red and eoffect of re-heating Beging with the casting in its original state, the the toughness and the extension, to increase a little the breaking strain (except in very soft metals, in the case of which it is not
much cbanged) and to decrease a little the proportion which the elastic limit bears to the breaking strain. By re-heating and
dipping in oil the breaking strain and elastic limit are increased, the toughness and extension are diminished, and the metal is compacted. It will be noticed that the effect of dipping in oil appears to be analogous to that of hammering ; much the same changes
are induced. I have here two bars, Hin. square, cut from the same casting. One is annealed simply, the other is annealed and
dipped in oil. They were tested trynsersely with 3 ft henrings The annealed one took its first permanent set with a load of 0.4 a load of 07 ton. It has been bent through considerably more than a right angle, and is not broken. The one dipped in oil took
its first permanent set with a load of 0.5 ton and sunk when Ioaded with 0.9 ton, bracaking when bent through 90 deg. These regard to the increase of strength and decerense of toughness due to The art of steel founding is now so perfected that it is scarcely too much to say that anything which can be cast in cast iron can
be cast in steel. The applications of steel are already almost necting and bosses, and even the nuts, forsheads, guides, propeliler bliades
aning of all descriptions
- the toothed wheels already cast ranging from a few pounds to as much as 12 tons in weight - anviage rand wam a few pounds to as bogie centres, rolls and rolling mill gear, anchors, , ydraulic
cylinders, steam hammer faces and anvil blocks, and so on. It is soldom that a working stress of more than one ton per square inch
is allowed to be put on cast iron. Hydraulic rivetters of Hallside is aio are in daily and satisfactory use under a working stress of 14
stons per square inch. Here then we have a material which can be moulded to any shape Here readily we cast iron, and which in stronger
mand tougher than wrought iron. Moreover, like wrought roon can be wrought under the hammer and welds with facility. It is
almot from the possession of such a metal. The simple process of casting will, in numerous cases, displace the more difficult method of
forging. In cases, also, where the engineer is tied to weight-as material which is at least six or seven times stronger and more
reliable than cast iron offer one means of securing lightness without the sacrifice of strength.
I will conclude with
bility of cast iron and steel A cast fron worm ine relative durathe turning gear of one of the steam cranes in the foundry at Hallside was found to grind itself away in from two to three days.
The steel worm by which it was replaced lasted eight or nine months. A driving pinion in the rail mill when of cast iron
usually gave way in from one to three weeks and failed through breakage of the teeth. A steel pinion, made to replace one of these,
was taken out at the end of two years' continuous work, and then only because the teeth were so much worn that they did not gear
properly. Steel is invaluable in rolls which are much cut into by properly.
the sections they are intended for. In plain rolls the surface
lasts well. The method of chilling is not used, but the hardness can be increased by increasing the carbon. It should perhaps be
mentioned that the shrinkage of steel castings is about tiv. per foot.
No. 3 W I N D I N G E N G I N E, S I L K S W O O R T H C O L L I E R

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

"With this week's number is issued as a Supplement, a Map of
Machinery Department, Royal Amricultural Society's Shovyard, Machinery Department, Royal Apricultural Society's Showoyard,
Derbyber Every copy as issed by the Publisher contains this
Supplement, and subscribers are requested to notify the fact should Supplement, and su
they not receive it.

TO CORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of in inviry addressed to the
public, and intended for insertion in this solumn, must, in all public, and intended for insertion in this column, must, in ald
cases, , oce acompanied by a large envelope eoibly directed by the
uriter to himself and bearing a dd. postage stamp, in order that writer to himself, and bearing a $2 d$. postage stamp, in order that
answers received by us may be forwarded to their destination. No ansvers received by us may be forwarraed to their destination.
notice will be taken of communications which do not comply these instructions.
** We cannot undertake to return drawings or manuscripts; we
must therefore recuuest correspondents to keep copies. ** All letters intended for insertion in THE THN ENINEER, or
${ }^{*}$ containing questions, must be accompanied by the name and containing questions, must be accompanied by the name and
adreess of the writer, ot nocesasarily for publication, , unt as a
proof of good faith. No No notice whatever will be taken of proof of good faith. anonymous communications.

RODGERS' JET EXHAUSTER
(To the Editor of The Engineer:)

 obligeil, July 4th.
patent fuel-making machinery.
(To the Editor of The Engincer.)

 The Enginerz can subsoriptions.

 Cloth Cases for binding The Exarners Volume, Price 2s, 6 d. ea
Many Volumes of The Exarser can be had price 1ss, each.

ents cannot be Inserted ulless Delivered before Six
o'clock on Thursday Evening in each Week.

THE ENGINEER.

JULY 8, 1881.
marine bollers.
A movement has been set on foot in Liverpool which may lead to very material changes in the construction of
marine boilers. Alterations are suggested - and, indeed, marine boilers. Alterations are suggested-and, indeed,
are being carried out, we understand, by two or three firms independently of each other-and if the changes in design proposed are found to answer, there can be no
doubt that the example set by Liverpool engineers and shipowners will be freely followed. Nor is it unreasonable that a change should be made. The modern high-pressure
marine boiler is by no means all that a boiler should bemy no means so good that it is out of the question to think that it can be improved upon. We may take as a type a three-furnaced boiler, to carry 70 lb . Such a boiler will be about 12 ft . in diameter by 106 ft . long. It will contain
three furnaces, each 3 ft in diameter and a little more than three furnaces, each 3ft. in diameter and a little more than
7 ft . long, and each furnace will have a separate back up-take, and sixty 3 in . tubes 7 ft . long. A boiler
of this kind, if fitted with a large steam drum, will steam well, and may be depended upon with fair coal, to work a pair of compound engines up to 500 indicated
horse-power. Its shell plates will be nearly lin. thick, and horse-power. Its shell plates will be nearly lin. thick, and
its total weight without water will be, roughly, 28 tons, and it will hold 14 tons of water. Its gross weight, there-
fore, will be, under steam and allowing for grate-bars, \&c., not far short of 45 tons. It will have a grate surface of
about 57 square feet, a tube surface of 900 ft ., the crowns of he furnaces will amount to about 100 square feet, and the uptakes may be taken as 120 ft . more. The total heating surface will be, therefore, a little over 1100 square
feet. If we contrast this with a locomotive boiler, we find feet. If we contrast this with a locomotive boiler, we find
that the latter will not weigh, complete with water and in that the latter will not weigh, complete with water and in
vorking order, more than 12 or 13 tons. It will have working order, more than 12 or 13 tons. It will have rate, and it may be depended upon to develope 600 -horses power in a non-condensing engine. The cubical space occupied by the locomotive boiler will not be more than
one-fourth of that taken up by the marine boiler, and it one-fourth of that taken up by the marine boiler, and it
will be, on the whole, quite as economical, if not mor will be, on the whole, quite as economical, if not more economical. Thus, for the given weight and space it
would be possible to have four locomotive boilers for one marine boiler. It will, of course, be urged that the objections to the locomotive type of boiler would prove fatal to its use at sea. When we come to examine these objections, we find that they are-that
it would not be possible properly to fire a locomotive boiler it would not be possible properly to fire a locomotive boiler at sea, because of the position of the fire-door ; that the
tubes would be quickly choked up with soot, rendering tubes would be quickly choked up with soot, rendering small that they would become furred up, and that a great deal of priming would take place. In dealing with these arguments we may point out, to begin with, that a boiler of the locomotive type never yet has had a fair trial at sea in the mercantile marine ; and that when it has been tried in the Navy-as in torpedo boats-it has given great satis-
faction. As to the firing, nothing is needed save a rearrangefaction. As to the firing, nothing is needed save a rearrange-
ment of the fire-door-easily contrived-to settle that point. If proper smoke-burning appliances such as are used in locomotives were employed, the sooting up of the tubes would not present an insurmountable difficulty ; and the water supplied to the boilers being distilled, is at least as pure as that fed to locomotives. There is no reason save prejudice success in steamers making short voyages, say of ten or twelve hours' duration; but we are very far from supposing that the boiler of a locomotive engine if put into a ship would be suitable for Atlantic voyages. Still we believe that it is quite possible to learn an important lesson from railway practice. It cannot be indispensable that a marine boiler of a given power should weigh four times as much as a locomotive engine boiler of the same power. The difference is so great that there must be room for reducing the weight of the marine boiler without impairing its efficiency.
The engineers to whom we have referred, favour the opinions expressed in the preceding paragraph; and we understand that the modifications which they are introducing in marine boiler practice take the direction of reducing the diameter of the shells, and augmenting the draught, and consequently the weight of fuel burned per quare foot of grate per hour, while the furnaces and their rule. This is to say, that the changes are changes in proportion more than in anything else. To put the idea nolved in other words, it will be seen on reflection that two-furnace boiler may be made which will be much more powerful for the weight and space occupied than a boiler with three furnaces. We may cite as an example a boiler of the following dimensions : Grate surface, 23 square feet; heating surface, 520 square feet; number of tubes, 114 diameter, $2 \frac{1}{2} \mathrm{in}$. ; length, 6 ft .3 in . ; length of furnaces, 6 ft. diameter of furnaces, 2 ft . 4 in . ; length of boiler, 8 ft . diameter, 7 ft . ; weight, 9 tons ; weight of water, say 4 tons The total weight would be 13 tons, or, about one-third of that of a three-furnace boiler. Two such boilers would take up in a ship about 3 ft . more in width, 5 ft . less in height, and 2 ft . less in length than the three-furnace boiler. The cubical space occupied would be for the latter $12 \times 12 \times 105=1512$ cubic feet, while the space between them for lagging, 840 cubic feet. At 40 ft . of displacement to the ton, the three-furnace boiler would epresent 378 tons, and the two smaller boilers 21 tons only. Their actual weights would stand in the ratio of 45 tons to 26 tons. The heating surface of the single boiler would be 1100ft., that of the two smaller boilers very nearly the same. The first cost of the small boilers, their safety, and the ease with which they would be made-no plate more than $\frac{5}{8} \mathrm{in}$. thick being required in their con-struction-the augmented strength of their flues, and the comparative ease with which they could be put into a ship and taken out of it, are all strong points in
their favour ; and others will no doubt suggest themselves to our readers.
We do not think it can be generally questioned that improvements are urgently required in the design and construction of marine boilers. The existing boiler is at the best the heaviest and most unwieldy steam generator that it is possible to make. It is extremely costly; it is very easily ruined; for its weight and dimens usuall the case, there is but one boiler in a cargo boat, will totally disable the vessel. Any reduction which can be effected in its size, its weight, and its present cost, without the sacrifice of any of the good qualities it possesses, is to be desired; and we are pleased to find that in so mportant a shipping centre as Liverpool, proposals for fairly discussed, and even put in practice. For the present we cannot speak fully of what is being done in
Liverpool, but at the proper time we shall say more on th subject.
common road railways
JUST now the construction of railways along the sides of highways and parish roads is being advocated by many persons; and the scheme has been suggested as specially applicable to Ireland. So far gold mines have apparently tion ; but there are evidences that the tide is beginning to turn, aud it is very probable that common road railways
will have their day. We do not intend to class them with intensely speculative gold mines ; but it is just as well that the possible value of such lines should be fully understood. to the sense, such railways as the Wantage tramway, are be mast degree speculative. Whether they can or camnot which they are made and worked and conditions under are favourable or the reverse, so will they succeed or fail; but concerning the nature of these conditions it is almost impossible for the general public to know anything, and even engineers may fall into grave mistakes. It will not be out of place to say a few words concerning the whole subject for the benefit of our readers.
As a rule, a proposal for the construction of a common
road railway is based on certain propositions The traffic has become too great to certain propositions, the highway -this applies very rarely indeed. The making of a tramway or railway would be followed by an immense increase
of traffic between the two points to be united. The distric would be greatly benefitted. Shareholders are certain to make a large profit. The whole cost of land for a railway
would be saved by laying the rails on the highway Such lines have proved very the Continent prod very successful in Italy and elsewhere on all the more important arguments which are adduced in favour of any new scheme of the kind, no matter what. Putting sentiment on one side, and away with it, the desire to beneefit country folk, morally and physically, by the introduction of cheap means of transit, we have remaino nothing but questions of pounds, shillings, and pence. Can a line made on a highway pay a fair
dividend to the shareholders to whom it belongs? To say that whether it will or not depends on circumstances, is not to answer this question ; but to say what the circumstances are that will make it pay, is a good answer. Let us see what some of the circumstances affecting the prospects of a common road railway are. Few lines of the kind at present exist in this country, but tainty. The reson ehy roads is to save the purb railways and the construction of earthworks, bridges-in short, the whole substructure of a railway. Given the common road, and the railway company have little or nothing to do but find the permanent way. The cost of a single line in the country will not be great. The rails will weigh 45 lb . per yard, and each 20 ft . length will have eight sleepers. Then for a mile the cost will be, for materials, say $£ 1000$; labour and miscellaneous expenses ought not to cost more than $£ 500$ more, so that it ought to be possible to lay a line for $£ 1500$ per mile. It is very unlikely, however, that the cost will ever be kept down to this, but we shall assume that it can be kept down. To work such a line by steam there must be at least three engines, three passenger cars, and let us say half a dozen goods wagons. These will cost not much less than will therefore be fully on this sum at 5 per cent. is $£ 275$. If the railway were situated in the outskirts of a populous town there would, perhaps, not be much difficulty in making this profit; but we are not dealing with populous towns but with country lines, and it requires no great shrewdness to see that a line one mile long could not be made to pay. As for passengers, they would not care to be carried only a mile, and goods would not pay for the loading and the unloading. We mention a mile line only to impress on our readers' minds the fact that the length of a common road railway is one of the circumstances which may materially affect its prosperity. A certain quantity of rolling stock must be provided, no matter how short a line is; and it may be line is mostlikely that-other has the greatest length for the smallest quantity of rolling stock. Thus, for example, five miles and ten miles may be taken as reasonable
lengths for common road railways. Now in a rural district, three engines, three passenger carriages, and half-a-dozen goods wagons, would probably suffice to conduct the traffic of either line, but on a ten mile line it would be fully employed, while on the five mile line it would not. The total cost per mile of the ten mile line equipped,
would be $£ 1900$, while that of the five mile line would be $£ 2300$. The cost of working the long line ought to be less per mile than the cost of working the short line. We need not say more, we think, to prove torat the length of
a line will be found to exercise an important influence on its prospects.
It must not be forgotten that although a cheap substructure is obtained by using the high road to carry a railway, the route taken is, as a rule, unfavourable to steam traction. So unfavourable are the gradients in some cannot be made to pay. A short steep hill often constitutes the ruling gradient, and the engines are, to use an expressive phrase, "killed by inches" in trying to haul their loads up it. The difference between working on a level or nearly level road-say, one with no incline steeper than 1 in 100 -and working roads with inclines of 1 in 30 or 40 , is enormous. There can be no doubt but that the working of such steep banks has had much to do with the failure ate attempts hitherto made to work tramways with
steam successfully. We have no hesitation in saying that no railway ought to be laid on a common road if the incline in any place, however short, exceeds 1 in 50. It is just because the lines worked by steam on the Continent
are nearly all comparatively level that they have been successful all comparatively level that they have been construction of commone road railways brought before them will do well to consider very carefully what the inclines are. Curves can be managed by radial rolling
stock, but inclines must be got over by sheer power. It sock, but inclines must be got over by sheer power. It inclines of 1 in 50 and even steeper. To this we reply that the proportion of such railways to the great mass of our iron roads is very small ; and the proportion of such
steep inclines to the more level portions of any paying steep inclines to the more level portions of any paying
British road is very small indeed-much more minute than it is likely to be in the case of a common road railway.

Furthermore, there is little analogy between a railway locomotive and the engines which have hitherto been worked on steam tramways. Wher hill has to be overcome, it will be better to construct, even at considerable cost, piece of railway to avoid this hill, than to attempt to upon to pronounce an opinion concerning the merits of a given route will do well to make a very careful personal
examination of the road proposed to be used, and satisfy himself that the gradients are not prohibitive, which they may very easily be

In all cases where rural common road railways are constructed, they will be found to unite a small town to a they will unite a village or villages with some market town, perhaps a seaport. What we have said concerning the
length of line will be seen to have a very important bearing on its goods traffic. It would not be worth while to load garden produce, for example, into railway wagons fonditions, to which we shall come in a moment ; but it might be very well worth the farmer's while to have his to load up his own carts and then haul his corn or roots couple of miles to the station. There is, however, one method of utilising even short lengths of common road attention it deserves. If the goods wagons are so made that they can travel either on the common road or on the the whole labour of carting to the station may be avoided In such a case the farmer could send his horses to the railway for a couple of wagons, these he would have loaded at his leisure, and returned full to the station. They would then be run on the line and taken away by the engine to their clestination at the proper time. Arrived there they might be hauled by horses at once to the quay, the market or the store. A system of working such as this would at the lack of which is now one of its most serious defects.

TEES-SIDE WATER SUPply

The question of water supply for the Tees-side district, and especially for manufacturing purposes, is coming into pro-
minence. It is five years since the Act passed which compulsorily minence. It is five years since the Act passed wnich compulsoriy
took the supply out of the hands of the private company, and
placed it in that of the Water Board chosen from the members of the two corporations of Stockton and Middlesbrough. The Board paid very dearly for the works, and as there was from the
trade depression a falling off in the demand, it did not feel inclined to enter on the construction of those vast works which it deemed necessary five years ago, and for which its compulsory
powers of purchase are fast running out. But for the last year powers of purchase are fast running out. But for the last year
the demand for water has been rapidly growing, and the Board deems it expedient to exercise its powers of pur-
chase before they expire; but there is a serious financial anfliculty. The great cost of the works-between $£ 800,000$
and
rendered the revenue that had given good dividend to the private company insufficient to pay
interest now ; and the balance has to be drawn from the rates the two corporations. Hence there is on the part of many o to prohibit further expenditure till the present supply is present source of supply, not more than $60,000,000$ gallons of water weekly. When it acquired the works it was pumping
about $48,000,000$ gallons weekly-a little more than one-half being for manufacturing purposes. At the present time it is
pumping close upon $58,000,000$ gallons a week-nearly $38,000,000$ pumping close upon $58,000,000$ gallons a week-nearly $38,000,000$ hat there is not an adequate margin for increasing needs Indeed, the difficulty is how the needs of the next year or two
will be met, for any works entered upon must take years to complete, and the demand is rising rapidly, whilst the supply is near its full, and is incapable of being exceeded. Naturaly, as fact that there was in the last financial year a loss on the supply to the Middlesbrough Corporation alone of $£ 6951$, and
that for the year now expiring a loss of about $£ 1000$ was calculated on, shows that the construction of works at a cost of from $£ 200,000$ upwards, would mean a burden of no light weight for
years to come on the ratepayers. It is by no means easy years to come on the ratepayers. It is by no means easy the consumers in the statutory area. of the Board must its full limits, and within those limits a profit is only just possible reluctance of the ratepayers and their representatives to underfor many years to come. If a temporary source of supply could be found by the purchase of water from neighbouring works, this would relieve the Board until the normal increase of revenue and
the decrease of expenses had given a balance in favour of the works, or of the owning corporations rather. Without some
such expedient a financial millstone will be hung round the necks of the two towns for years to come, and even period of construction. The cost of the works may be said, for the capacity they are intended for, to be
low when it is remembered that the two reservoirs in pany, cost nearly a quarter of a million, and that, roughly speaking, their capacity is only three million gallons daily. Board will be completed for the amount named ; but whether it is or not, its carrying out will entail a heavy further
ratepayers in the two towns for some time to come.

THE RIVER TEES.

The Tees Conservancy Commissioners have been greatly roubled during the past spring by the enormous quantity of silt which has been brought down from the upper reaches of the
river and deposited in the navigable parts. This silt, amounting expense if the full depth of the channel is to be maintained. The banks of the river are largely composed of soft clay, loose in texture, and sloping down somewhat abruptly from a consicerable height. Heavy rains acting upon such banks produce a movements are always in progress. The banks everywhere
resemble a series of steps separated by fissures, As the lowest
one falls into the river, a new one separates itself at the top, and siderable size slide down a stage. Trees and shrubs of conare rooted, and eventually float away, unless caught and made secure in the meantime. No practical way has yet been found of preventing this disintegration of the river banks, which operates equally against the landowners and the commissioners, The latter have recently inquired whether they could not compel nuisance, but were legally advised in the negative. Consequently they decided at their last meeting to try persuasive means. They have therefore passed a resolution declaring that henceforth they banks of the river in such a way as their engineer may approve And further, that should they decide at any future time to increase such contribution, then any frontager who may have taken advantage of their present offer shall be entitled to claim
any such excess retrospectively. Dirt has been scientifically, any such excess retrospectively. Dirt has boen scientifically or rather perhaps pedantically described as ". All watter out of unsightly tips, where it is now commonly deposited, and made honourable name hereafter to be invented.

LITERATURE.

Text-Book of Systematic Mineralogy. By Hilary Bauerman. A systematic mineralogy has long been much wanted, which would occupy an intermediate position between the small elementary text-books which confine themselves to giving briefly and in a more or less disconnected form a reneral desciption of minerals, and the large works which partake more of the nature of a dictionary. The author the book connected and systematic throughout. Even if he had not succeeded, credit would be due to him for the attempt. It is extremely difficult in compiling a small text-book so to arrange that every part of the subject shall receive attention in exact proportion to its merits. In the avoid giving meagre descriptions of important things, the author has been forced to consign descriptive mineralogy to have been necessary had a greater amount of knowledge on the part of the student been assumed. In this, however, we think the author has acted wisely. Instead of stating bare facts, he has prefaced them with a brief description of the
principles on which the various phenomena depend. Thus, in treating of the optical properties of minerals, the various theories concerned, such as that of wave motion, are firs elucidated. Whether these explanations of points relating to physics will be sufficient for a student without pre-
vious knowledge of the subject, is extremely doubtful; but even if they are not, they will materially assist him in obtaining the necessary information by marking out it the chapter relating to mineralogical chemistry. student would be very unwise to attempt to obtain from this work alone the knowledge of chemistry requisite to any one studying mineralogy; but he may get useful hints as to the points to which his attention should be hints as to the points to
About 200 pages of this book, containing in all about 390 pages, are devoted to physical crystallography. The treatise. The order adopted has, however, been reversed, and the geometrical properties of crystals are considered before their physical shoture. This later arrangemen is, perhaps, on the whole, the more convenient, and further sactioned by custom. This part of the volume is The notation of the faces is by indices on Miller's system, The notation of the faces is by indices on Miller's system,
while the forms are designated in the text by the symbols employed by Naumann. The author tells us in the preface that he would have preferred to adopt the former system exclusively, but taking into consideration that original meme he thongt it better to eive the student original memoirs, he thought it better to give the studen In deportunity of faminarising himself in both show learly the melation hexal the Bravais-Miller notation by indices on four axes has been adopted. Twining and irregularities in crystals are book with which we are acquainted. The same remarks apply equally to hemihedrism and combined forms. That part of the crystallography relating to the hexagonal and being faulty in several places. The mathematical broblems and crystallographic formulæ on page 76 are also by no means free from errors. It is not easy to see why ployed; and, as it is not correctly worked out, the advantage ployed; and, as it is not correctly worked out, the advantage on the substitution is still less apparent. In the chapter on the physical properties of mimerals, we mardnes defined as specific collesive power. It is sumcienly evident that the author has never, designedly or accidentally, sat down on a plece of cobblers wax, otherwise he would neve Lead containing much antimony would be hard, yet its specific cohesive power would be nothing at all compared with that of copper, which is relatively very soft. A sub stance may be hard, yet brittle; soft, yet tough.
It will be new to most people to hear that mineralogists, a a class, look upon brittleness, flexibility, elasticity, and mal leability as degrees of tenacity. So says Mr. Bauerman on
page 212. We are glad to see on page 213 a most useful page 212. We are glad to see on page 213 a most usefu
table of minerals, arranged according to their specific gravity, taken from the Annuaire of the Bureau de Longi tude. In the description of the methods of taking the specific gravity of minerals, mention is made only of the methods in which the volume of water displaced is gauged or some form of spring balance is employed. purposes sufficienty exact determ. We wad this done in the Metallurgical Laboratory of King's

College, London, where, by weighing the water before and after immersion of the substance, a result is obtained not varying on the average more than 0.05 from that obtained with the most delicate balance. On page 218 is the some what astonishing statement that "the same method-i.e, gravity searation of minerals of widely an intermediat density-is applied on the larger scale in the separation of gold from galena and iron pyrites by a fluid of inter mediate density, namely, mercury, in the Hungarian gold mill, although in this case the result is not quite so simple, the metal being, to some extent at any rate dissolve in the separating fluid." Nothing is less likely to hav been the intention of the users of this process than that imputed to them. Mercury has the power of dissolving gold, and for that reason alone is it used. About seventy pages are devoted to the optical properties of minerals
Here, as in the treatment of crystallography, illustrations are plentiful Polarisation and dispersion phenomena are treated very fully and clearly. The statement on pace 291 that chlorophane is a green variety of fluor is misleading. This substance is usually white ; its name is derived from its emitting, when heated to 200 or 300 deg. C., a brilliant green phosphorescent light.
The chapter on blowpipe analysisis, perhaps, the leastsatis factory in the book ; still, though not all we should wish, it contains a great deal of useful information in a comparatively small compass. It is necessary to bear in mind in con sibly be treated as fully as a specialist would desire - th information contained in it must be supplemented by the study from time to time of works treating of special points, and also by actual practice under the guidance of an expert. Inaccurate descriptions cannot, however, by any means be excused. That relating to the reducin of a neutral or non-oxidising character, and is called the reducing flame." The reducing flame is what its name implies. There is insufficient oxygen in it to consume the by a bead of borax hydrocarbon. This is easily shown on a platinum wire. The bead is coloured when held in the oxidising flame, but becomes colourless in the reducing flame. Again, further on, boracic acid is spoken of as ygroscopic, and lower down a bead coutaining nickel is when hot, whereas it the oxidising flame reddish to brown be mistaken for a manganese bead. On p. 307 tin is sai to give no incrustation on charcoal. It gives a white inest for distinguishing between ead and bismuth not The use of potassic iodide and sulphur-Cornwell's test should be known to everyone ; the red incrustation it produces being particularly characteristic.
In the chapter on the relation of form to chemical con stitution, orthoclase and albite, are spoken of as isomor Further on it is stated, in speaking of change by oxid tion, that ferrous sulphate crystals "can only be preserved in absolutely dry air, or in the vapour of a hydrocarbon." This substance effloresces, and therefore the drier the air the less favourable would be the conditions for preserving the crystals; for the same reason hydrocarbon vapour would be useless. Change of temperature is an important have on these cases. In pointing out these whole, but simply to put the student on his guard.
The text is very free from printer's errors. We are cernexagonal for tetragonal, the publishers work, and on having introduced to the public a book which will prove very useful to many. Those who would study mineralogy scientifically will find in this volume what is wanting in others which in respect to price are within the reach of those for whom this series of text-books was reach of
designed.

TENDERS.

LLANSAMLET, NEAR SWANSEA
Tenders for roofs, woodwork of three sulphuric acid chambers, and woodwork of mill and mill engine-house, for the Swansea
Complex Ore Company, Limited. Mr. James W. Chenhall, C.E., engineer.

Thomas Watkins and Jenkins
Thomas White .. .
Isane George
Thomas Willia
 $\begin{array}{ll}f & \mathrm{~s} . \\ 1100 & 0 \\ 125 & 6 \\ 1117 & 6 \\ 1029 & 13\end{array}$

The Council of University College, London, have appointed Mr.
Roger Smith Professor of Architecture, in succession to Mr. G. Roger Smith Professor of Architecture, in succession to Mir.
Hayter Lewis, who has resigned and has been appointed Emeritus
Professor. Mr. Roger Smith has discharged the duties of the post Professor. Mr. Roger Sn
for two or three sessions.
Proteotion.-For years past English newspapers of every class have been denouncing the demand made by some manufacturers for protection, under the name of reciprocity, as nothing short ole doctrine of English economy, and insisted on the absurdity of
"laying burdens on the English consumer, simply because the French or the American consumer was already burdened." Yet the new French tariff has aroused such resentment in England that some of these very papers begin to talk of retaliation by the
imposition of duties on French wines, silks, bric-a-brac, and the imposition far from unlikely. This is a sign of how great the decay
like, as fare has been of orthodox political economy in its native home.
there For thirty years back every foundation of the science has been undermined by the ablest English writers. Mill, Caiffe Leslie, Thornton, Patterson, Ingraham, Bagehot, and a host of others, labouring for the discredit of the principles which strange thing is that these iconoclasts have all been pronounced free traders, some of them violently such. They seemed to think that after they had destroyed every prop on which the free The
theory rests, the theory could stand without their support. The full harvest of their labours will be reaped when England comes to
reject a doctrine which has left her dependent on all the rest of the reject a doctrine which has left her dependent on all the rest of the
world for food, without securing her access to the foreign markets for her manufactures, upon which she has placed her dependence,
visits in the provinces.
SLLKSWORTH COLLIERY, DURHAM.
Of all the industries which have made, and still continue to make our country take the first position in point of importance in the world, none have added more toher greatness Newcastle as a great centre of a rich district. For generation upon generation, ever since the time when King
Henry III. granted the "honest men of Neweastle" liberty to dig for coals, has the name of Newcastle been a house hold word, and its neighbourhood has been the birthplace of engineers and of the greatest engineering projects.
Some few years ago Sir William Armstrong, in his
address before the British Association, explained that when coal was first taken away from this quarter the packhorse, carrying a load of 3 cwt. from the mine to the point of shipping, was the only mode of conveyance to be had.
The insufficiency of this method suggested the making of roads, and on these roads and by means of carts
17 cwt. could be taken as a load; but the roads were rough and uneven, so wooden rails were next
adopted, on which the wheels of the wagons used could run, and thus a load of 42 cwt. might be drawn. Ever since the first discovery of coal in Durham
and Northumberland, the demand for it has been pressing and increasing; but from the earliest times there have been found gloomy men to prophecy the working out of all the mines. In 1611 we find an eminent authority giving twenty-one years as the limit of the life of the pits or
seams of that time, the output being then at the rate of something like 500,000 tons per annum. Less than twenty years ago, Sir William Armstrong gave the life of the
coal-fieldsas 200 years; but about four years ago a report was made by a number of the leading mining engineer of the country, as to the probable quantity of coal still to be mined, with the result that in the county of Northum-
berland very nearly $2,000,000,000$ tons still remained in the beds, and that Durham possessed almost a like quantity. It is calculated that only something like $1,100,000,000$ tons have yet been taken since the beginning. Now the present rate of output is about $35,000,000$ tons per annum,
so that if the deductions of these mining engineers be correct, we have still a fine balance to draw upon, and generations still unborn will suffer from no lack of North
Country coal. As the produce of coal has increased, so as a matter of course has the capital employed. In the year 1829, Mr. John Buddle stated before a committee of the House of Commons, that he estimated the amount of
capital laid out in the coal trade of the Tyne to be $£ 1,500,000$, exclusive of the shipping interest, while the estimated capital employed in the Wear collieries, that is
those of Durham, was just $£ 1,000,000$ sterling. In 1854 those of Durham, was just $£ 1,000,000$ sterling. In 1854
the capital employed in the production of $16,000,000$ tons was estimated at $£ 30,000,000$, some $£ 14,000,000$ of thi representing pit plant, $£ 10,000,000$ railways, and $£ 6,000,000$
shipping. Since 1854 , a revolution has taken place in the shipment of the coal, and now the smart and fast iron screw colliers which carry the coal produce from the Tyne and the Wear, represent a greater outlay of capital than did the
old wooden ships of years ago. Considering this there can be little doubt that not much less, if anything, than $£ 70,000,000$ sterling are invested in the coal trade of the ounties of Durham and Northumberland.
The profits from mining have at all times been small, and before coal and coke became to be so largely used in
themanufacture of iron, disasterupondisasterfollowed those who meddled with coal. However, heavy losses a couple o centuries ago were of rare occurrence, the getting of the coal being then very inexpensive. The collieries were, as
a rule, of limited depth, and worked in a very crude fashion. A report made to the Earl of Mar, in 1709, informs us that the usual depth of pits then sunk in
Northumberland was from twenty to thirty fathoms ; that the expense of sinking was about $£ 55$; and that the cost of the only machine then in use for drawing coals, a horse gin, was
Hebburn Colliery was sunk to a depth of last century,
He fathoms. This was, however, considered a remarkable achievement and on "that account could hardly fail to be attended
with disaster." In the beginning of this present century out of thirty-four sea-coal collieries not more than a dozen were sunk to the depth of 100 fathoms. In 1842 there were no less than twenty-two collieries sunk to the depth
of over 100 fathoms, the total number of collieries then at work in Durham and Northumberland being seventy-seven. The seams near to the surface are gradually becoming
worked out, and so we must look forward to going deeper and deeper, and no doubt great changes will take place in the methods of working, as well as of sinking collieries to a great depth, in a very short time. In some workings the cost in others, and the cost of pumping is very dissimilar in pits even close together. Statistics compiled some years hat of drawing by of pumping in some cases exceeded instances of this may interest our readers. At Tyne Main he pumping engines represented 260 -horse power, a against lo3-horse power for drawing engines. At Heaton
the pumping engines were 304-horse power ; drawing the pumping engines were 304 -horse power; drawing
engines, 113-horse power. The most remarkable case, however, and one that has never been paralleled, is that of Dalton-le-Dale Colliery, where the pumping engines
registered 1150 -horse-power, while the drawing engines registered 1150 -horse-power, while the drawing engines
only did 60 -horse power. When we say this case has never been paralleled, it is meant as a comparison between the coal gained and the water pumped. At the village of
Whitburn, a few miles from Sunderland, in the county of Whitburn, a few miles from Sunderland, in the county of
Durham, possibly the most remarkable case of difficulty Drom the opposition of water is to be found; but as coal has not yet been won, it was not included amongst the above examples. Some three and a half years ago the
Whitburn Coal Company started to sink two shafts, with the intention of going to the Hutton seam-some 300
fathoms below the surface. No difficulty was experienced
until some 23 fathoms had been sunk, when such a quantity of water was encountered as to form an obstacle which could not be surmounted by the ordinary methods of , Under the was undertaken to overcome the difficulty, and all to no purpose. The following pumping sets were continually at work:-Two of 30 in ., having a 6 ft ,
stroke, and making 14 revolutions per minute ; two of oin., havin making 14 revolutions per mave, minute ; and two of 20 in., with a 5 ft . stroke, making 1 revolutions-the quantity of water pumped being at the rate of 10,578 gallons per minute. But this was of no avail, and after a fair trial it was abandoned, and the Belgian or Kind-Chaudron mode of sinking, by means of tubbing, was adopted. This method, which has been most successtul, is very ingenious and elaborate, and is too well
understood by our readers, no doubt, to require description here.
Situated within two miles of Sunderland is one of the largest, and certainly the deepest colliery in the North of England, and its name, Silksworth, ought to be familiar to in the fact of its the country. Its geographical situation, which it is connected by an easy and efficient rail service renders its coal easy of shipping, or of sending to the interior of the country, natural advantages which the Marquis of Londonderry, one of the greatest coalowners of the north, means to heighten, and has heightened, by the introduction of every appliance which is calculated to promote the efficiency, and to meet the prospective wants of the mine. Large permanent workshops have been con-
 epair may be done. At one end of this pile of buildings rchitecture. Next the offices comes a storehouse, with an apper floor for light goods, and then in order come a tore, drilling machines and which there are punching and ive single and two double fires. Next comes a fitting shop, in which there is an engine, lathe, shaping, screwing, and drilling machines. Then comes a hay-cutting room, sawmill, granaries, lamp cabin, and repairing shops, the
whole line of buildings being brought to end by a pickharpening shop, containing four fires, at which competen men ply their busy trade in keeping the tools of the hewer in order. Near to and around the pit head a large and thriving colliery village has sprung up, the first brick of which was laid in the early part of 1868, and since then the brilding of house after house has gone on, and as the rewill tes and workings of the colliery increase, so of necessity Up to the cle colony of its immediate dependents increase. and sone present time over 626 houses have bee bivide into diffe more are in course of erection. different conditions, the miner with but a wife and no children having a house to suit his requirements in the same way as his more lucky brother who "has his quiver houses an find a house of larger proportions. An of class exactly like its fellow. Little plots of ground of about 80 square feet are attached to each house. The whole town is laid down on the system of American towns -that is, the streets are at right angles with each other and seen from the road as the visitor drives or walks from Sunderland, the whole village presents an appearance at once compact, regular, clean, and substantial. In these houses live the 1048 miners who work the colliery, and with them, and depending on them, are women and children to the number of 2156 , making thus a grand total of 3204 , in addition to which there are eighty-five lodgers in the houses not immediately connected with the masters thereof, but who are, nevertheless, engaged in the work of the colliery ; and thus we see that the workings of this pit represents daily bread for no less than 3289 mouths, the men are engaged in the workings during eight of the henty-four hours, and so have sixteen hours a day to three ger ost and and continues till 10 when a fresh batch of men is ready to relieve duty; the second day shift terminates at 4 p.m., when the first night shift begins, and when its eight hours has run the second relieves. The great bulk of the work is done during the day shifts, the men engaged in the night work only driving the winnings, there being but few hewers at work
The work of sinking the pit was commenced on the 16 th of August, 1869, and two years later the first seam of coal was reached; but as this vein was of a poor quality and thin, operations were pushed on, and sinkings were continued. In February, 1873, at a depth of 270 fathoms- 1620 ft - a rich vein of first-class household coal was reached, and this was known to be part of the Maudlin seam. The engineers, knowing that another seam ran close to this Maudlin, continued sinking, and exactly a month later they reached that which has bee termed the Hutton seam, at a depth from the surface of some 1740 ft . The sinkings for the No. 2 pit were conmenced on December 3rd, 1869. The first seam was reached in April, 1872; the Maudlin seam reached on March 3, 1874 ; and the Hutton on May 1st, 1874 downcast shaft to both of these seams is 16 ft ,
diameter, and is divided into two equal parts by means of 3in. wooden brattice. One side of this is used for winding coal from the Maudin, whilst the other works the Hutton seam. Up to the present time the Maudlin seam has been, and continues to be, worked considerably more than its fellow, the present rate of output being-Maudlin, 1150 tons ; Hutton, 350 tons per day. The entire Silksand theyaly extends over an area of some 2,28 an ts, entire of it fitle doubt that both seams extend over he from the but a much greater yield of coal wil be han 17 in , thicker or Maudlin seam, from the fact of its being nesses being-Maudlin, 5ft. 9in. ; Hutton, 4ft. 4in.
It would be a very dificult matter for us, within the
imits of this article, to explain the admirable and elaborate
system of ventilation which is adopted in collieries. Those of our readers who have had the good fortune of visiting some of our great coalfields will be quite conversant with the means by which the air is taken from the downeast shart, carried along and directed to all the workings by having of wooden and canvas walls called brattices unti, and those who have never visited the depths of a colliery could not anderstand it without diagrams, which would lead us into too The upeast somat for the present purposes or the the winding of coals, is 14 ft . in diameter, and at its bottom a large fire is constantly burning: this fire rarifies the air
in the shaft, and with such a column of air heated-nearly 1800 ft . lond and with such a column of air heated-nearly set up in the workings. The coal burnt in this furnace is at the rate of about $6 \frac{1}{2}$ tons per twenty-four hours during the summer, five tons being sufficient during the colder months of the year. When the air reaches the bottom of into welve diffe maudin workings is is spit up different parts of the pit, and so taken round to the upcast shaft ; the longest distance which this air has to travel is about $3 \frac{1}{2}$ miles, and the supply, as tested on the
32rd July, 1880 , was, for the Maudlin, 110650 cubic feet per miny, 1880, was, for the Mau 19,720 cubic feet it is for the 78 deg ., and the rem ace sunk from the brow of a hill, and in the workings the east side are all below the bottom of the shaft level, as they are to the dip, the farthest in places being about looft. of th howeveam inin. to the yard, or 1 in 18 ; in many parts, conv1, fats are to be me. ously, and at some of them the gradient is as quick as 7 in. to the yard, and remains at that incline for a siderable distance. A certain amount of difficulty was felt in getting the coal up these steep ascents, but that has been overcome by the use of a double line of rails, and thus the wagons can be made to nearly balance each other , il . Lach wagon is made to contain 10 cwt . the mines, and whilst plodding along some of the offshoot workings, one may hear a far-away rumbling, which a gallo hase in soun, soon a light is seen afar, and good pace, having his load behind him, the charioteer being comfortably ensconsed on the shafts between his to many others is attached to a steel rone and drawn by engine power to the bottom of the shaft; arriving here, it is run into the cage, and so sent to bank. A large and
comfortable stable is provided for the accommodation of the horses and ponies in the pit, the number employed at Silksworth being 172, and, judging from the sleek, is no doubt that they are well cared for, and that quite as much as many of the carriage hoises which we daily see in this our upper world. Most of them are blind, which is probably caused by the perpetual darkness in which so by the cruelty of their driver, they with the assistance of red-hot irons. Happily this is but rare in any colliery, terror of the law, forbidding such cruel measures. The ventilation of the whole of the workings is, as we have hinted, very good, so much so that there is scarcely any accumulation of gas, and no explosion of any kind has taken place in this pit. A careful system of examination of the lamps used is adopted. The lamps are trimmed miner they are locked, each one having a supply of oil which will keep it in going order during the eight hours an shift. No two locks on any of the lamps are alike, suitable is virtually impossible for the miner to carye however, are themselves fully aware of the danger of so offie. As soon as they reach the botlon of the against used the "Clanny" lamp, but it is now being superseded, and the officials use the "Davy." The engineers are but little troubled with water, a very small quantity being found, and if we put it at 2500 gallons per day we are within the mark. This water is
of which holds about 130 gallons
The coal having been won from the workings and sent one of the main highways, as we have shown-for indeed coliery is in all respects like a town under ground, with along to andeys which coils round a drum. There are in the Maudlin workings, three such drums, two 6 ft .6 in . in diameter, and one 7 ft . 6 in . They are driven by a double cylinder engine, designed of Lincoln, he in to a bed-plate, over which a long boiler, like that of a locomotive, stands. The cylinders of this engine are 18 inn . in diameter, having a , 4 on whe type cine seld though of smaller dimensions, for hauling the coal from the workings of the Hutton seam. Steam is exhausted pipe leading into the upcast shaft. The coal having reached the shaft bottom, it is run into the cage which is there in readiness, and which is able to carry at a load eight of these wagons or tubs, as they are termed in pit
phraseology. The load being secured in its hoist, a signal is given to the engine man at bank, who begins to draw up his load, the weight of which is-Cage and chains, 6720 lb .; eight tubs containing 10 cwt . each, 8960 lb .;
weight of tubs alone, 5 cwt .5 lb . each, 4520 lb .; rope, weight of tubs alone, $5 \mathrm{cwt}{ }^{5} \mathrm{lb}$. each, 4520 lb .; rope,
27 lb . per fathom, 7290 lb .; total weight, $27,490 \mathrm{lb}$., or just,

SILKSWORTH COLLIERY. - ELEVATION OF No. 3 ENGINE AND PULLEY FRAME.

12 tons 5 cwt. The rope above mentioned as weighing 27 lb . per fathom, is $5 \frac{1}{2} \mathrm{in}$. circumference, and is made of improved "plough steel." It is attached to the top of the cage, and of course the weight of the load when close to or at bank is diminished by the weight of this rope, which is then coiled round the drum. The coal on reaching the bank is run out of its cage, and is emptied from its tub over some screens, which divide the produce into various qualities. There are twenty-eight of these screens now in use, and more can be added when wanted. Below the screens a line of railway added when wanted. Below the screens a line of railway
runs, and wagons are put under that screen through which the quality of coal is being run that they are to be loaded with quality of coal is being run that they are sent off to be shipped at Sunderland or at Seaham or they are sent inland by means Sunderland or at Seaham, or they are sentilind sy me two and a-half miles from the pit mouth. and a-half miles from the pit mouth.
he wind the plant at most perfect and the most remarkable in England. We give this week, at page 26, a view of one of the engines, and also above a diagram showing the arrangement of the pitditional drawings and a description of this machinery. It will suffice to say now that the winding engines are fitted with Daglish and Lawrence's automatic expansion fitted with Daghish and Lawrence's automatic expansion in England the cut off in which is controlled automatically in England the

THE AVERAGING MACHINE, AN EXPONENT OF THE PRINCIPLE OF MOMENTS.* By W. S. Auchincloss.
The processes of mathematics and mechanics have, in many respects, mutual relations, like those existing between force, light,
and heat. and heat. Many of the formule of mathematics find direct ex-
pression in mechanical devices, so that the mind naturally glides pression in mechanical devices, so that the mind naturally glides
from one to the other. The greater the attention paid to this flom one to the other. appear, and the more marked the rapidity with which solutions appear, andected. The averaging machine, ,illustrated herewith, is an exponent of the principle of moments. In the development of this machine, the first effort was to determine a simple rule for
computing average dates. For this purpose the principle of computing average dates. For this purpose the principle of
moments was found applicable, and a rule constructed thereby. The next step was to give mechanical expression to the rule. This has been secured by the device represented in the adjoining cut.
The machine consists of a scale and a series of weights. The The machine consists of a seale and a series of weights. The
scale, when not ladened, maintains its equilibrium irrespective of scale, when not ladened, maintains its equulibrium irrespective of
the position of the scale pan. The arm of the beam has thirtythe position of the scale pan. The afm of the beam the the scale
one notches, representing the days of the month, and pan nis hung on an small saddle capalble of being moved from end to
end of the beam. A carrier bar is fastened directly over the scale arm, and upon it a counterweight slides freely. This counterpoise exactly equals in weight the scale pan with its saddle. Two
delicate watch chains are attached to opposite sides of the counterdelicate watch chains are attached to opposite sides our the counter-
weight. They pass around little carrier wheels secured to the extremities of the arm, and are fastened to opposite sides of the saddle. In this way the saddle and the counterweight become, as it were, links in an endless chain, so that the counterpoise responds instantly to the slightest motion of the scale pan, and
maintains the equilibrium of the system, for all positions of the maintains the equilibrium of the system, for all positions of the
same. By this device the weight of the pan is no longer a factor in the problem, but in effect the pan is rendered imponderable. The two balls shown at the extremity of the scale arm are used simply for purposes of adjustment as customary on all scales.
Directly over the fulcrum are the usual index pointers. The Directly over the fulcrum are the usual index pointers. The
platform of the scale has 31 transverse grooves. These are arranged platform of the scale has 31 transverse grooves. These are arranged equidistant, and are capable of receiving the weights. The plat-
form is hinged to the opposite arm of the scale, and is surrounded by a metallic fence, that is shaped like a spout on the far side. This spout serves to guide the weights in their descent to the separator, after the solution of any problem. Each groove is properly numbered from 1 to 31 , inclusive, to correspond with the
number on the scale arm. The various problems of "average number on the scale arm. The various problems of "average
date" are determined by the use of five varieties of weights sliown in the cut, under letters A, B, C, D and E. The A and C balls are made of lead. The B and D cylindrical bodies are made from wrought iron rods. All of these weights are nickel-plated to prevent soiling the hands. Each ball, C , is equal in weight to 10
balls of A, while each weight, E , is equal to 10 of C . In this way balls of A, while each weight, E , is equal to 10 of C . In this way
A, C and E may represent units, tens and hundreds ; or 10,100 , 1000 ; or $100,1000,10,000$; and so on ; expressing as the occasions requires, whole numbers or decimals. The weights B and D are
used for the purpose of economising time used for the purpose of economising time. One of B equals five of
A, and one of D equals five of C. The use of these intermediates * Read before the American Society of Civil Engineers, March 2nd, 1881.
saves tedious counting of the balls, A and C , and their characterstic form prevents possibility of mistakes.
It remains only to deseribe It remains only to describe the separator before explaining the nder thing the machine. The separator is located directly received on an inclined plane, which are covered with rubber to deaden the sound. This incline causes the balls to roll to the front of the machine, where they fall upon a wire screen. This is of
suitable size to allow A balls to drop into their own compartment suitable size to allow A balls to drop into their own compartment,
but retains the C balls, thus effecting a perfect separation. The weights B and D should be lifted from the platform and lodged in cups on the right and left of the separator. When it is required during any month, it is only neeessary to place weights representing the amounts purchased in the grooves representing the days, fill the scale pan with exactly the same amount of weight as placed weights in the pan exactly balance those on the platform. The

ana aco
 解蹋

placed in the groove will balance the weight in the pan, which latter represents the speed of the small pulley. It is evident that if any three quantities are given, the fourth can at once be determined. Again, if the distance of any groove from the fulcrum be
taken as unity, and the scale pan located at a distance in the opposite direction equal to $3.14159+$, then any weight in the pan that will balance a given weight in the groove will represent the diameter of a circle; while the weight in the groove will represent the circumference of the same circle. By using weights of different specific gravities in the pan and on the platform, or else by using specially graduated scales, problems in square root can be
determined with like facility. For every day services these capabilities are of little moment, as compared with the process from which the machine derives its name. They are, however, of interest to the student, for they clearly illustrate the intimacy of the relation existing between the processes of matheaccounts, the machine leaves the workings of the mind far in the
reading of the scale arm will give the "average date" of the purms of to which 30,60 or 90 days must be added according to machine, but as occasion requires, the number of grooves can be greatly increased and the ruires, the number to grooves can be ments. The machine can be used for solving a great variety of problems by varying the grooves, notches, and weights. If, for instance, a vertical line passing through the fulcrum is made to exactly divide the system of grooves and notches, so that all are equidistant, and no blank spaces intervene between the line and the No. 1 groove, or the No. 1 notch; then the machine will solve
a vast variety of problems of direct and inverse proportion: as for instance, the diameters and speeds of pulleys; the diameters, circumferences, and areas of circles, of ellipses and so forth. With speed problems it is only necessary to let the grooves of the platform represent the diameters of the large pulleys, and the notches on the arm the diameters of the small pulleys; whereupon the
speed of the large pulley will be represented by whatever weight

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our own Correspondent.)
THE net average selling price of bars of all descriptions during the months of March, April, and May, was $£ 69 \mathrm{~s} .6^{\circ} 45 \mathrm{~d}$. per ton. Compared with the average price of the previous three months, this is a drop of 3 s . 5 d . per ton, since the prevailing figure of the earlier period was $£ 612 \mathrm{~s}$. 11 d .
But for the
But for the fact that the sliding scale provides a minimum, puddlers' wages would fall 3 d . per ton, and millmen's wages in
like proportion. This minimum figure of $7 \mathrm{~s}, 3 \mathrm{~d}$, has like proportion. Thated throughout the past quarter ; hence there will not now be any change in wages.
Medium bars are quoted about $£ 610$ s. per ton, and common
sorts $£ 6$ to $£ 515$. Marked bars remained sorts $£ 6$ to $£ 0$ los. Marked bars remained at $£ 7$ to $£ 712$ s. 6 d . with only a slow sale. Hoops and strips were reported as con-
tinuing in capital demand at, for the former, $£ 65 \mathrm{~s}$. to $£ 610 \mathrm{~s}$. for ordinary merchant sorts ; and for the latter, $£ 515 \mathrm{~s}$. to $£ 517 \mathrm{~s} .6 \mathrm{~d}$, for gas tube qualities. Cooper's hoops were about £610s. to $£ 615 \mathrm{~s}$. Sheet makers were again in a position to announce grati-
fying sales. Singles were quoted $£ 710$ s. to $£ 8$; doubles $£ 8$ 5s to fying sales. Singles were quoted $£ 710 \mathrm{~s}$. to $£ 8$; doubles, $£ 8$ 5s. to
$£ 810 \mathrm{~s}$; and lattens, $£ 910 \mathrm{~s}$. to $£ 915 \mathrm{~s}$. and $£ 10$. Galvanisers announced the receipt of a satisfactory Australian mail this week, and most of them are very well filled up with orders, Boiler-
distance, for by its aid one can solve 100 accounts per hour with out fatigue, or uncertainty as to results. The machine has an additional advantage, for it can be successfully operated by those who have but little skill with figures. The writer ventures the opinion that for every formula or rule in mathematics-possibly
excepting higher mathematics-a suitable mechanism can be devised which will perfectly illustrate and express the same. It is not claimed that in every class of problem the extreme precision of a mathematical solution can be attained, for as a matter of expense, it may not be expedient to seek a perfection of adjustment that will insure such results. This is illustrated in the case
of the averaging machine. It would be possible to adjust it with the perfection found alone in an assayer's balance, so that the wing of a fly, or even the scratch of a pencil would affect the equilibrium, but the outlay would be entirely unnecessary, and what would it signify? The machine might indicate a certain paybe found at that early hour either to pay or to receive the one could
plates were not improved in demand, and makers found it impos sible to realise better prices. Common sorts were $£ 810$ s. to $£ 9$
and superior, $£ 910$ s to and superior, £9 10 s. to $£ 10$.
The tin-plate trade was somewhat disorganised. Native makers quoted this afternoon:-Cokes, ordinary quality, 16 s .; bes
cokes, 17 s . to 18 s .; charcoal, ordinary qualities, 20 s. ; best ditto, cokes, 17 s . to 18 s . ; charcoal, ordinary qualities, 20.s.; best ditto,
22 s . per box. The chief buyers at present are the United States and Australia.
Pig iron maintained previous strength. Messrs. Alfred Hickman and Son, who are the largest pig makers in the district, quotedcommon, $£ 2 ;$ part-mine, $£ 2$ 10s.; and hydrates, $£ 3$. The
they reported, have decreased upon the month 400 tons.
Hematites were stiffer than for some time. One Cumberland brand was up 2 s . 6 d . per ton upon the quotation of only about week before. The rise left the price at producers' furnaces a 57 s .6 d ., and is due mainly to increased sales to the Sheffield steel
makers. Barrow hematites were-No. 1 foundry, 72 s . 6 d .; No. 3 makers. Barrow hematites were-No. 1 foundry, 72 s . 6 d. ; No. 3
foundry, 69 s . to 70 s .; and No. 4, grey forge, 65s., all delivered in this district. Tredegar hematites were 65 s . to 66 s . delivered. Staffordshire all-mine pigs remained at $£ 3$ to $£ 32 \mathrm{~s} .6 \mathrm{~d}$.; part-mine sorts were $£ 210 \mathrm{~s}$.; and cinders, $£ 2$ to $£ 117 \mathrm{~s} .6 \mathrm{~d}$.
The quarterly meetings come off in Wolverhampton next
Wednesday, and in Birmingham on the following day Wednesday, and in Birmingham on the following day.
manager of the Patent Shaft and Axletree Company connection of thirty-seven years with the concern, But although
he retires from his post, he yet pur.
tions with the works as a director.
tions with the works as a director. Amongst the most recent artistic constructive ironwork that has
left the foundry department of the Coalbrookdale Ironworks Shropshire, is a set of handsome ornamental entrance gates, the prosentation of the Shropshire Horticulturalal Sociecty to to the town
of Shrewsbury. The productions are of cast iron, of renaissance design, and include a double main entrance gate and a rand hat gate, with the necessary three cast iron piers. Each gate was cast in ,
sheet, and the whole forms a splendid illustration of the moulder's sheet, and the whole forms a spendid uastration owsury, in which
art. The castings are erected at the Quarry, Shrewsbur, bee spot the castings are erected at the Quarry, Shrewsbury, in which
successful.
To-day-Thursday-the Association of Municipal and Sanitary,
Engineers and Surveyors is Engineers and Surveyors is beginning its annual three days
gathering in Birmingham. The election of officers and other asso-
ciation business, to formed the first part of the programme. The outfall sewage formed the first part of the programme. The outfall sewage
works and the sewage farm at Salteev were afterwards inspected
and explained by the borough surveyor. The annual dinner, and explained by the borough surveyor. The annual dinner,
under the presidency of the Nayor, concluded the frrst day., Dis-
cussions and papers upo loal works visited form Fridays pro-
gramme, and Saturday is to be spent in an inspection of the Corporation gas and water works.
poration gas and water workss,
The strike among the nailers of the Sedgley and Gornal neigh-
bourhood still continues. Their usual meetings have been held to bourhood still continues. Their usual meetings have been held to
strengthen the operatives in their determination to hold out. It is
stated that efforts from sources extraneous to the trade are being put forth to effect an arreement
Messrs. F. E. Lewis and Alex. MoBean, iron and mineral brokers, Wolverhampton, have dissolved partnership. EEch Eentleman
will in future carm will in future carry on business on his own a
agencies which they divide between them.

NOTES FROM LANCASHIRE.

Manchester-A better feeling is still maintained throughout the various branches of the iron trade of this district,
raw material itself is concerned it can scarcely be said that any raw material itself is concerned it can scarcely be said that any
very material improvement has yet been actuall established. A
considerable amount of business has certainly been done during considerable amount of business has certainly been done during
the past fortnight, but this for the most part has been at about old rates, and inquiries are checked. As 1 have pointed out previoussly, the arge
stocks of pig iron held throughout the country must necessarily act as a dead weight upon any upward movement in values, and
in the face of these buyers, who appear to have pretty well covcred their present requirements by the purchasess recently made,
do not care to buy further, on speculation, at advanced rates. do not care to buy further, on speculation, at advanced rates.
Lancashire makers have been selling pretty heavily at their rates, and this week they are asking an advance of about 1s. s d.
per ton, the uuotations for delivery into the Manchester district per ton, the quotations for delivery into the Manchester district
being now 44 s s. 6 d . for forge, and 45 s . for foundry qualities, less $2 d$ per cent., but at those figures that has been little or no business In outs and transacationands sales seem to have fallen off during the week,
 $2 \frac{1}{2}$ per cent., is asked. Derbyshire and Middlessiough iron con-
tinue practically out of this market at the prices at present asked by makers.
In the m
things seem to be maintained At the large finished ironditionks in the Manchester, Bolton, and Warrington districts the orders at present in hand are sufficient to keep makers going for the next
two or three months, and although no materially better prices are obtainable, sellers are firm. For bars, hoops, sheets, and wire rods there is a good inquiry, and a fair amount of business is being done
in light rails for shipment abroad. For delivery into the Manchester district bars average about $£ 515 \mathrm{~s}$. to $£ 517 \mathrm{~s} .6 \mathrm{~d}$. . hoops,
$£ 67 \mathrm{~s}$. 6 d . to $£ 610 \mathrm{~s}$.; sheets, $£ 7$ 12s. 6 d . to $£ 717 \mathrm{~s}$. 6 d .; and wire rods about $£ 7$ per to
about $£ 6$ per ton.
about £6 pert ton.
Contracts for the fire-proof and other ironwork for four or five
cotton mills which been placed in the market. These have as usual been competed been placed in the market. These have as usual been competed
for by Belgian houses, but I hear on good authority that Lancashire makers have been successful in securing the contracts.
There seems to be a slight increase of activity in
There seems to be a slight increase of activity in the engineering
and machine shops of this district; but this activity does not appear to bring very remunerative prices, and although the workmen are better employed than they were, the position of the
masters continues unsatisfactory, as there is a disposition to fill workshops with trade almost at any price rather than allow them to get into semi-stagnation.
I have heard no little
Chamber of Commerce, which in the French Treaty Megcthester
has been very active on behalf of the textile manufactures of the has been very active on behalf of the textile manufactures of the
district, has done ilitle or nothing to represent the interests of the
engineering engineering branches. of trade. Certainly Manchester, which I
remember Ald. W. H. Bailey recently described as the metropolis of engineering, is of sufficient importance in this direction to
demand attention, and, so far as the interests of labour are concerned, it may be safely asserted that in the city of Manchester
itself, and its great suburb of Salford, there are more adult persons employed in the factories of the engineering trades than in the factories of the cotton trade.
depression could be intinuessified, it it has bull, and so far as the the recent hot
weather which has materially int weather, which has materially interfered with the requirements,
not only for house-fire purposes, but with the consumption for iron-making and mill purposes. In gas-making coals a fairir business
has been done, as this is the season of the year for giving out the has been done, as this is sis season of the year for giving out the
usual contracts. Ensine classes of fuel are in moderate demand at about late rates. Al classes of round coal are going heavily into
stock, and many of the pitt not working more than half time.
Nominally list rates are without alteration, but concessions are so repeatedly made to secure temporary business that it is scarcely possible to say what the actual selling prices really are. Best coal
at the pit mouth averages about 8s. bd., and seconds 6 s . 3d. to
6s. 4 s .6 d . per ton upwards; burgy averages about 4 s . to 4 s . 9 d ., and 4. . .d. per ton upwards; burgy averages about
good slack, 3s. 9d. to ts. 3 d . per ton at the pit.
An important question aftecting the working

An important question affecting the working of large collieries the Manchester Geological Society, Mr. Joseph Dickinson, her of an opinion recently obtained from the law officers, of the Crown
as to the interpretation of the fifty-first section of the Coal Mines as to the interpretation of the fifty- first section of the Coal Mines
Regulation Att, 1172 , it would on b oompulsory for the night
shift or labourers shift or labourers, as well as the miners ordinarily employed at the
colliery, to be out of the mine when shots were being fired, and colliery, to be out of the mine when shots were being fired, and
that only the persons actually engaged in firing the shots would b allowed in the mine at the time gunpowder was being used. As in
some large collieries it requires a very numerous staff of night men and many hours' work to get the roadways and working places in thorough readiness for the ensuing day, it will be seen how
seriously the carrying out of this interpretation of the section will interfere with operations, and the question was naturally raised Association held in Manchester on Tuesday. No definite resoluAssociation again as at it is purore meeting, but the general opinion was expressed that at the time the Act was passed ene mpression was employed at the colliery, and not to the night shift or labourers who were engaged in attending to the ordinary safety of the mine.
The recently established Manchester Coal Exchange has made
good progress, the secretary announcing at a meeting of the
managing committee, held on Tuesday, that the number of subscribing members - which last was 227 -had this year increased to months had, after allowing for rent up to the end of the present year, and all current expenses, been more than doubled.
Barou-- The rather better demand for pig iron which I noted
fortnight ago continues up to the present.
The inquiries which a fortnight ago continues up to the present. The inquiries which
are coming to hand are more numerous, and much of the are coming to hand are more numerous, and much of the
unhealthiness which has aflicted the hematite pig iron market has
disappeared disappeared. Orders are beetng more freely given, and priess are
quoted at slightly higher rates. The output of the furnaces,
which was kept at its highest, has of course been the means of which was kept at its highest, has of course been the means of
increasing stocks very considerably ; but since the tonnage of metal has been reduced at the furnaces, the increased demand has
worked a large quantity of the stock which was held. A heavy tonnage of pig iron remains yet on stock, and the demand must
how a much is thought that a turn for the better has taken place in the market,
and I am not without hope, from what I see and what is told me and I am not without hope, from what I see and what is told me
by the best authorities, that there is some ground for the belief by the best authorities, that there is some ground for the betief
that the market has touched its lowest. Prices show an advance of from 1s. to 1s. 6 d . for Bessemer all round samples, and No. 3 forge brings 54s. to 55 s. per ton at makers' works. The activity in
the steel trade is well maintained, and a push is being made to execute deliveries as quaickly as possible. Aush feev good contracts
have been booked. Shipbuilders and other industries are well have been booked. Shipbuilders and other industries are well
employed. Iron ore in better demand. Coal and coke moderate.

THE SHEFFIELD DISTRICT.
STrockrakrivg is very general in this district tabout the end of
June and first week of til and not a great deal of work has been done in several of the large establishments since my last letter.
At Messtr. S. Fox and Co.s,
, Limited, Stocksbridge Works, Deepcar, there is a brisk demand for cables and other kinds, of wire, and Fox's paragon frames-an important "speciality" at
Stocksbridge-are in great request for the continental markets, particularly France.
An effort is being made to form a limited company for the
purchase and working of Wheathill Foundry, Rotherham, said to purchase and working of Wheathill Foundry, Rotherna, said the 10 shares. The purchase money is $£ 7250$, and a working capital of
E3250 is provided for. The goods produced are stove grates Through the kindness of Dr. Webster, the American Consul here, I am able to give the statistics of exports of Sheffield goods
to the United States for the quarter ending June last, which completes the half year. The results are:-April, , stel $£ 28,169$;
nutlery, $£ 14,700$; total, $£ 117443$. May, of steel $£ 30,103 ;$
 and cutlery of $£ 55,5,77$, the total, for the quarter being $£ 330,588$;
This is an increase of nearly $£ 80,000$ as compared with the previous three months, and is $£ 69,000$ more than the corresponding period
f last year. On the face of it this is very gratifying, but in th reat speciality of steel it is not gratifying to observe a decrease to the value of $£ 24,000$. As the increase in cutlery is only $£ 1200$, it is evident that the gross increase is on the heavy goods, particularly steel rails. These are not now obtainable as a separate item,
as the trade being in the hands of two firms, the figures would, if as the trade being in the hands of two firms, the figures would, if
published, simply disclose their business, which is not the object of Consular courtesy.
In view of the miners' amalgamation in South Yorkshire, face with the fact that the yearly output of coal has reache $147,000,000$ tons, or nearly $14,000,000$ tons of an increase, and all
this, too, with 52 fewer mines in operation. Ont July 1st engine coal was reduced to
On to mines in operation.

THE NORTH OF ENGLAND

THE Cleveland ironmasters' statistics for June were made publi on Sunday morning. They revealed a decreased production of
6488 tons of Cleveland, and of 5107 tons of hematite and spiegel or about 5 pared with May, however, only thirty days, as against thirty-one for May, this
decrease is not much more than is thereby accounted for. ments to foreign ports have increased by 5249 tons, and coastwise by 10,599 tons, the latter being mainly to Scotland. Stocks in
makers' hands have decreased by about tooo tons, whilst in warrant stores they have increased by about 14,000 tons, making a total ster increase of 5472 tons. These returns are regarded as, upon the
nhel
whole unfavourable to producers. They show that a considerable whole, unfavourable to producers. They show that a considerable
portion of the make of the month is, as yet, undisposed of to conportion of the make of the month is, as yet, undisposed of o con-
sumers ; and of what has been sent away, the greater portion of sume increase has merely found its way to Scotland, there, in all probability, to displace so much Scotch pigg, which must be accumulating all the more. If this substitution of English for Scotch pig had not taken place at an increased rate over May, there would
have been a total increase of stocks of 16,000 tons. This almost unexpected result is somewhat accounted for by the loss of tw days during the month a the manufactured ironworks owing to
Whitsuntide holidays, besides some odd days through petty whilst production of pig iron goes on unabated, for no holidays ar observed at blast furnaces. The effect of theses statistics, and the considerations involved by them, was to produce a flat market on
Tuesday, though, perhaps, no actual change in prices could be recorded. Very few transactions took place, producers, con
sumers, and speculators all alike seemed inclined to hold off and sumers, anat the futuruve would bring forth. The price for No. 3g.m.m.b. may
se wonsidered to be 37s. f.o.b.; forge, 36 s ; and warrants, 38 s . The
be quantity of pig ion in Connal's storeses is now 179,833 tons, being first three days of July have been at about the same rate as during The finished iron trade is improving. The 2 s . 6d. per ton
advance which was declared last week has, after being severely contested for a few days, now become fairly established. The ontracts recently made have considerably exceeded the quantities it is not unlikely the price may again advance. This is, perhaps, only to be expected, as the fall of 20s. per ton which has taken
place since February is far more than proportionate to the fall in piog iron. The price of ordinary plates is now $£ 6$ to $£ 65 \mathrm{~s}$. a plates are $£ 1, £ 2$, and $£ 3$ per ton more, according to quality, and building are $£ 5$ 10s. per ton, and superior qualities at propor tionately increased prices. Puddled bars are in demand, o
account of the hot weather, and realise about $£ 315 \mathrm{~s}$. per ton.

NOTES FROM SCOTLAND.

From our oxen
The pig iron market has been quiet during the week. On the whole the demand is good, and the shipments compare favourably
with those of this time last year; but the large stocks and heavy
production retard speculation. This is, perhaps, an advantage to production retard speculation. This is, pernaps, an advantage
the trade, as a whole, although not a cheering stateof matters, a
far as speculators are concerned. Indeed, very little speculative
business has been done in the course of the week, and the fluctua-
tions in prices have been very slight. There are 120 furnaces in blast, producing several thousand tons weekly more than is wanted, the stock in Messrs. Connal and Co.'s Glasgow stores, which to to aggregates 569,000 tons, the past week's shipments amounted to
13,095 tons, as compared with 10,977 in the preceding week, and 12,527 in the corresponding week of last year ; wheceding week, and
of Cleveland pigs have been 6061 tons against 6307 in veek, and 99 in the corresponding week of 1880 . The foreign very much profit. The increase of stocks in Cleveland during the past month has had a flattening effect upon our market.
Business was done in the warrant market on Friday at 46s. 10d. On Monday the tone was dull, although a slight improvement
took place in the course of the day. Business opened in the
forenoon at 4 s . 9 d and advanced to 46 . 46s. 1010 d. to 46s. 11, did one month, the afternoon quotations being 46s. 10d. to 46s. 10.d. cash and 46. 14. 11d. one month. The mond
market was flat on Tuesday, at 46s. 10d. cash, and 46s. 11 d. one nonth to 46s. 9d. cash, and 46s. $10 \frac{10}{2} \mathrm{~d}$. one month. The market certed action was proposed for curtailing production, and to-day-
Thursday-has been firm, with business at 46s. 10d. to 47 s The prices of marked brands are a shade easier, although the
 54 s .6 d . and 47 s .; Calder, 54s. 6d. and 48s.; Carnbroe, 51s. and
 Uarron, at Grangemouth, 52s. 6d. (specially selected, 56s.) and
$51 \mathrm{~s}, 6 \mathrm{~d}$. Kinneil, at Bo'ness 47 s . 6 d . and 45 s . 6 d .; Glengarnock,
 The malleable trade is well employed, and some new orders are reported. There has been a brisk demand for plates and angles,
the latter at full, and the former at slightly advanced prices. The various branches, and manufactured iron trade are active, engi-
neers being busy, and finding new work steadily dropping in. The different departments of the trade are apparently in a healthy state, with fair prospects as regards the future.
The coal trade likewise continues in a satisfactory position.
Owing to the activity in the factories there is a steady demand season of the year, and the shimping demand con is good for the The shipments from Glasgow Harbour in the course of the past veek were close upon 14,000 tons, and taking the returns from all the shipping ports of the country, east and west, they show an increase
on the preceding week of about 10,000 tons. Prices do not seem to have materially changed since last report. Main coal sells f.o.b.
at 5s. 6 d . to 6 s .; splint, 6s. 3d. to 6s. 4d.; and steam at 6s. 6 d . At the collieries all is quiet, the miners being steadily working The judges of the Second Division of the Court of Session have affirmed an interlocutor by Lord Rutherford Clark interdicting the
Shotts Iron Company from calcining ironstone or iron ore, or burning blaze on any part of the lands of Penicuikik, within one mile His lordship averred that the fumes from the calcining materials destroyed his plantations. The judgment, it may be explained, was not unanimous, Lord Young differing from the opinions of the
Lord Justice-Clerk and Lord Craighill. If the law of Scotland sould turn out to be in accorcance with this decision, the present The Lord Provost of Glasgow stated at a meeting of the Clyde Navigation Trustees, on Tuesday, that the revenue of the Trust for
he past financial year showed a large increase, and was by far the greatest on record

\square

WALES AND ADJOINING COUNTIES

Prospects last week in the coal trade showed such a decided brightening up that at the meeting on Saturday of the South
Wales Coalowners' Association held in Cardiff it was agreed to concede an advance to the colliers of $2 \frac{1}{2}$ per cent., dating from 1 st
July. I believe that I am right in stating that the report of the accountants for the last four months would scarcely justify an advance, according to the principle of the siliding saal ; bate conto-
sidering the large exports, the strengthening tone of trade alto gether, and improving prices of late, this advance is justified in an anticipatory sense, and doubtless the quarter's business now
running wil confirm it. The act has been reeeived with marked satisfaction by the colliers, as it shows them that the sliding scale is not a hard-and-fast measure, but elastic, and guided by
discriminating hands. Its prospective action, as in this case, is I am glad to see that the great exports of coal continue, and that prices are decidedly looking up. Large coal is sold now at
Swansea for 8s. to 8s. 6d. f.o.b., but this coal is inferior to the best samples shipped from Cardift. For the best kinds at Cardiff
10s. 6 dob., and even more has been obtained. Seconds are also looking up, and I fully expect in my next to be able to report There is no change of note to record in the iron and steel trades. Tin-plates remain dull.
The Britannia
The Britannia Ironworks and Foundry Company, Newport, is in
bankruptey, and this week the whole of the plant, modern engineering tools, \&c., will be dispersed by auction. There is more colliery plant going to the hammer this month
-all the plant of Tyn Filkins, both pits, and Hope Colliery, Monmouthshire. At the last sale of colliery plant at Llancaiach,
Mon,, coal wagons went for $£ 10$ each, a price suggestive of being worn, out. Colliery wagons are looking up in price. I heard of
large purchase at \&60 each.
A collier was fined $£ 1$ for smoking in a Rhondda pit this week.

Death of Mr. InMAN. - Mr. William Inman, founder of the
Inman line of transs-atlantic steamers, died on Sunday at his Inman line of trans-atlantic steamers, died on Sunday at his
residence, Upton Manor, Cheshire, at the age of fifty-six years. He had been in ill-health for some time, but his death was not antici-
pated, and has caused universal regret in Liverpool, where he was pated in high esteem for his enterprise, his integrity as a merchant,
held
and and his generous support to benevolent institutions. A skecti or
Mr. Inman and his work as pioneer in the emigration trade was
published in the Times of Friday, January 26th, 1877. Mr. James Ashwell.-The father of the Institution of Civil Engineers, and one of the six founders, or, as he used to express it,
"the cadet" of the founders has just died at an advanced age.
Ctedled Craned , whe, when a young man, was sent to Edinburgh as a student
in the natural sciences under Fairbairn and Leslie. In 1855 he
in reported upon the Blaenavon property and works in South Wales,
and, on the formation of the company, assumed the position of
resident director, from which he retired in 1841. He had then resident director, from which he retired in 18ti. He had tuent,
just entered his two sons at Cambrige and he eselect the quiet,
studious occupations of the University for himself, and duly just entered his two sons the University for himself, and duly
studious occupations of the
graduated. In 1845 he returned to active life, and reported upon the survey and project of the Great Luxembourg Railway Com-
pany for a line through the Ardennesfrom Brusess to the frontier
near Metz, and was the resident director and legal representative near Metz, and was the resident director and legal representative
of the company in Belgium for several years. IIE was also asso-
ciated with the projected line between Antwerp and Rotterdam, ciated with the projected line between Antwerp a and Rotterdam,
and during the last three years of his active life from 1857-60,
he was engaged upon negotiations connected with that undertaking.

THE PATENT JOURNAL. Condensed from the Journal of the Commissioners of ** It has come to our notice that some applicants of the
Patent-afice Sales Deparartinent, for Patent Specifications,
Pand

Applications for Letters Patent. * When patents have been "communicated" the
name and addross of the communicating party are
printed in italics. 28th June, 1881.

 2s34. Reverberratory Furnacrs, G. Fenwick, Gates
head,
2ndid B. Cochrane, Durham.

 2ss3. Starering
Gimmingham, Camedens.square, L
and

 2864. Sharpenivg SAMs, F. Myers, vew York, U.S
2865. Purifyina Coal Gas, C. F. Claus, London.

 2nd July, 1881.

 2993. Rallway Carriags, F. C. Kinnear, Lundon.

 2901. Cando sertivg Machines, J. Heckine York.
Cth July, 1881.
2902. Horsbshoz, J. Jalbil, Paris.

 2914. Coantound Resmanilivg Woov, C. D. Abel.-(B)
Hariz, Bohlen, Germany.)
 Englisch, Basle, Svitzerland.)

2922. Cosmbination Furniture, L. Bonduel, Paris.
 Inventions Protected for Six Months on
deposit of Complete Speeifications. 27T4. Suppiving STEAM for Heatina, A. M. Clarkk
Chancery lane, London. $-A$ communication from B.

 2838. Rempuving HA

June, 18si.

Patents on which the Stamp Duty of

 29

 Ashtol-und
June, 187.5 .
2624. GUN-CA
Germany. -1 sht July, 187 s . S . Sombart, Magdeburg
 ${ }^{187 \text { S. }}$. 2667. Decorating Tiv, de., L. Q. Brin, London.- 3 rit
Juy. 1 s77.
262. CLosing Windows, B. Banks, Bradford 265bly, SUGGARB.CANE MuLs, R. Bartlett, London.-3rd 2645. DRyINGG Machines, J. Stevenson, Barnsley.-2nd 2657. Covenisgs for RToss, W. Brenton, St. Germans
Cornwall. - tht Jull 18,1878 .
 263s. TRAsiwAss, J. Gowans, Edinburgh. $-2 n d$ July,
 Patents on which the Stamp Duty of
\&100 has been paid.

 2291. Wravivers Harness, G. Haseltine, London.-

 Wit. DRessing doc, siuk Firerse, J. T. Wright and
W. H. Laidler, Poplar.-Tth July, 1874. ${ }^{2429 .}$ Grindina 1874 Nekdes, A James, Reditch. -10 th

Notices of Intention to Proceed with

 503. Drast day for fling opposition, 22nd July, 1881. s2u. Thery 1 sisic Mink, F. Wirth, Frankfort-on-the-Main, s22. Socker PIrEs, B. C. Cross, Dewsbury. -26 chth Feb S35. CARry Live Mhum, dco., E. J. Gaskell and W.T. Jack-
 Stl. DYYEria Hivks J. Conlong, Lancaster, and J.

 921. Shavinge de., SkTrss, A. M. Clark, London.-A
com. from La Societe Anonyme des Brevets Reunis.

 1097. Vourraic BATTERIES, J. H. Johnson, LLondon.-A
com. from La Societe Anonyme la
Socit
 1140. Amand from for Shoverne A. M. Clark, London.-A

 1419. REservorr Pen-Holders, T. A. Hearson, Groen-

 ${ }^{18851}$. 1 issouns of Boors, W. H. Stevens, Leicester.- 5 th
 from G. J. Capeweil -1th May, 1881.
 May, 188s. Manningham, York,- 30 oth May, 1881.
2479. STIP 24.9. Stip Pance from W. W. Batchelder.-24th June, 1881.

 Last day for fling opposition, 26 th July, 1881.
Toou Houbse, W. Timms, West Hartlepool, 1 1th
s55. Woring Rauway Sigales, J. C. Brush, Dublin.
$-1 s t$ March, 1885 .

 906. SToves, G. L. Shorland, Manchester.-3rd March 15s. Boxss or Cases, A. W. Rooke, London. - A com-
munication from W. G. Parry. -3 rd March, 18s1. manication from W. G. Parry.-3rd March, 1881.

 1001/ VErocir 88 BES . R. C. Fletcher, Preston.-9th
 J. Douglass, Coventry.-11th Marech, 18s1.
110i. Bricks. M. E. Deamnaly, Miriteld, York.-14th
March, 18si.
 1124- STRAMM Engerises, F. J. Burrell and T. T. Burall, Thetford. 15 thl March, 1851 .
1128. Loconotive Excinss, $\mathrm{F} . \mathrm{w}$. Webb, Crew. -16 th Marchl, 1881

 1838. Honss Food, E. J. T. Digby, London.- -25 th

 2573. SUpporring Wires, H. Newton, London.-Com.
from C. A.Hussey and A. S. Dodd. $-14 t h$ June, 1881.

Patents Sealed

(List of Letters Patent which hassed the Great Seal on the
1477. Material to Imitate Ivory, R. Brandon, Paris.
1525. F Astrenivas for Belrs, iW. R. Lake, London.-
 London.-12th April, 1881.
14 thl April, 1s81.
 ,
 Leowisham.
180s. UTuIsisa Liquid, W. R. Lake, London.- 26 th
 Hughes, Bayswater,-2sth A Aprill, 1881 .
1863. CuIp ring Horses, doc., A. M. Clar

List of Letters Patent which passed to
the 18t Jull, 1881.$)$
13. Lirthographi
1881. Revolving

54. Mencrait, Stean Traps, H. Lancaster, Pendleton.-

 66. MuncD Rorıkrs, J. E. Ditchfield and K. Hothersall,

 197. The Janumeryy of isi. Lit Lidon-14th January, 1851. 341. Rock CRUnHERES, J. T. King, Liverpool- 26 the
 403. Vexpluating Pots, T. Bate, Kilburn,-29th Jan-

 10S4. Self-govering Gas-burners, J. B. Fenby,

 London.- 3 oth March, 1881.
14499. FIRE-GRATES, A. MacPhail, London.- 2 2nd A Arril, ${ }^{1851}$ 181. AErtal Balloons, G. E. Vaughan, London.- -20 th
 (List of Letters Pateut which passed the Great Seal on the
stl July, 1ss1.) 5369. Combing Machinery, A. Smith, Bradford.-22nd SST4. Tratitaser of Mineral Phosphates, J. J.
Knight, Widnes. -22 nd Dcember 1880 23. TELEPHONIC APPARATUSE, J. Imray, London,--Sth January, 18s1.
 5. Steam Gentrators, S. and J. Dawson, Mossley.Sth January, 1881.
109. LowERING SHips Boats, J. H. Barry. London.-

 London.-11th January, 1851. . J. Imray, London.148. Sirth January, APPAR1. January, 1881. Mils, H. J. Haddan, London.- -15 th
201. GRINDING MLI Jannary, 1881.
220 . Provecriow of Coid, J. H. Johnson, London.-
 stow, \& W. Strype, Murrough,-1sth, January, 1881.
225. Eikecrric Lamps, G. L. Fox, Rushmore, Wilts.239. Comprumssing Gimound Coffer, C. Pieper, Berlin. 292. BREsshes , J, Worrall, J. Lawrence, Salford, and J.
 367. Starting, deo., Sewing Machines, J. H. Johinson,

 1343. My Maszive Guxs, P. Mauser, Wurttemberg, Ger-

 15s. Hoiding Hasks, w. Graham, Monk Bretton.-
10th April, 18si. 1636. Proonvocing Motions, G. L. Fox, London.-14th
 1918. PRRFFRATED CYLINDERS, W. R. Lake, London.-

 1995. Breankisco. Stoskes, W. R. Lake, London.-Tith

List of Specifications published during the
week ending July 2 nd, 1881 .
 ** Specifications will be forwarded by post from
thie Patent-ofice on receipt of the amount of price and
 High Hoborn, to Mr. H. Reader Lack, her Majesty's
Patent-ofitice, Southampton-buiddings, Chancery-lane,

ABSTRAOTS OF SPEOIFICATIONS.

opared by ourselves expresell for THe Exaivern at the
ofice of Her Majesty 8 commissioners of Patents.

 spondine part adapped to be turned by a key and collar
an uparating the upper from the lower part.
 B. S. Taylor.)- (comptect.)
This selate to spring hasp having a lock chamber
diceer chamber combined with a permutation and keeper chamb
book anad a keeper.

 3471. Separating Ferrocyanides of iron from
 This relates mainly to improvements on patent No.

4078，A．D． 1579 ，and consists in anding to the bluo
proci pitite resulting from the treatment of aluminous

 quen．

 other substances sy
other similar solvents．
 A botho of momten crude or pii iron is provided on

 4．2477

iron，and owing to its concentrated hent and oxy－
 or malleonble iron，and this may bo effected without
any manipulation or admixture，unless such be for some special renson desirable．
4372．Rallways，R．Punslon．-26 th October， 1880 ．
 connecting the rails to the sleepers by means of chairs
consisting of two sepparate jaws A and B ，the sleepers

C being perforated to recoive the jaws．＇In the jaw B
a groove is formed，and throumh it pusses n a taper pin ato the end of which is screw－throanded to receive a nut． 4396．Carper Swebpers，A．C．Hetts．-28 thl october， A brush with hairs arranged spirally revolves by a cord and puley，and is adjustable within a box with
man opening along the bottom，through which the
brush projects． 4456．Holders for Embrobery，Lace，\＆e．，$A . ~$
Duncan．
D．
 removed without destroving the wrapper，，and it con－
sists of folding covers contanining a contral wooden
 lace，so that it may be rotated and allow the lace to
unwind．

This consists in the use of carbonic acid gas，either
 rotating apparatus with a false perf
which the operations are carried on．
4482．Cables ror Telephonio Purposss，B ，George
and J．B．Morgan．－ 3 rd November， 1880 ． This invention has for its object the obviaition of the
effects of induction，to effect which the inventer cover the telephono，wires with an ordinary insuluting
substanco，and imbed or combine with this insulator surface of the insulating substance，is connected to

4．432

parallel to or otherwise in connection with each
insulated conductor，so that when placed together such conductors form a cable ；this is strenenthened by
n metallic core in the centre，and is surrounded by a netwatic core in the centre，and is surrounded by a
network or riband of metal．
or network or rivand of metal．It it carried on supporrs．
or stand ding the cable．
prawing shows the system of sus－
4484．Collapbing Stanal Ball，J．H．Shoebothiam．－ A number of metal rings are jointed together at other，and wheno opened out serve to distend a canvas

 In order to destroy the yenst cells or other living orgniism without injuring the liquid，it it is first
vaporised or atomised，and then subjected to violent
shocks or concussions shocks or concussions．
 The ores are placed in a furnace and reduced to a
molten state，the sulphur or gases escaping through suitablo flues，and the molten metaland slag rumning from whence e it passer throush an aped on a I Iower level，
into a sepurating in the wall 5513 ．
 Cane is split into strips of suitable section，which
aro glucd topether，so se to aro gluod togother，so ons to form a board or plyte，both
sides of which are then covered with webe strong canvas，cloth，or or then sumevered with wwb，strong
dry used as a substitute for loentherial；and when 4517．Cantwo

of the machine and the wear on the edge of the eutting
bntide by the une of am improved fed mothon，which
holds the straw firmly during the pasange of the knife．
4568．Agriculturar Dhills，L．W．Gativarl－-6 th The usual frame．is dispensed with，and a suitable with the mpain and fore axle beds．For stering th Ioro carriage from the hinder part of the drill，chain
or ropes are provided，one end

Lated by bevil wheols fixed upon spindles，which carry
at their other ends a hand wheel or its oquivalent，or at their other ends a hand wheel or its equivalent，o
instend of chains or instend of chains or ropes rods may be employed
which would be operated by the roller spindle or its whicin wout．For raising and lowering the coulters in
equi out of their work the lever bed or bar is made so
and and out of their work the lever bed or bor is made so
that tit anturnin its contre in suitable bearingsor arms
fixed to the drill fixed to the drilll，upon this lever bed are fixed at any
fequired distance apart coulter levers made of steel iron，or wood．
4580．Elevating and Lowfring Drawing Boards
 capable of bing elevatad and owered parauter wis
the board or slate．Adjustable，semi－rotating
radid radiating，connecting support ting bars are connected at
one ond to the olongitudinal bar and at the other to the back of the board，so that by shisting the support
ing bars the height of the elevation of the back may be varied．
4682．Gumping and Sharpenivg Wire Cards in
Carding Exaines，G．Etty． 13 th Noocmber， 1850 ． This consists principally in the combination of an emery whel，or other grinding whel，with a rod or
roller of small diameter，over which the back of the

card passes，and a auard or shield，which is capablo o the required angle against the emery wheel．
4725．Prasofortess，de．，A．Capprct J．B．Rissone，and This relatases to the application of a pidi barrel below
the key－board of an ordinary piano（such barrel bein interchangeable for different tunes），so that the piano may be played either on the keys in the ordinary 4731．Steam Valves，C．Stuart．－ 17 the Norember Thiso．reltase to the method of actuating the valve
能埌g concentric areas acted upon by the steam for the purpose of supplying and discharging the steam
Four valves are used，two for admission and two for

4731）

emission，and they are placed in chambers in the
jacket of the cylinder．Between them mases
别 tube with openings，in it for the steam to pass throrghigh to or
from the valve chambers In this tube is place the
 retical curve of expansion ofrred thereeon，and to it an
reciprocating rotary，motion is imparted．

The invention is chiefly applicablo to tramway
engines，the object being to so govern and indicate the speed that at any time when the ensine attains
defined limit of speed the staam will he shut off and the brakes applied．The governor balls C are free to
rotate so an to ride on the cross bar D fixed to the chting on them through the sliding brass F ，to whinicl
they they are coupled by arms G ．The balls are als

coupled by arms K to the sliding brass H ．On the
brass His mounted a lever N，one end of which is
connected to the come
the brted to the valuave year of the engine and also to
the enpeed indiantur，while the other is connected to 4750 indicator．
 The mouching machine is
or stationary ，and one on，one or more of which is fixed or stationany，and one or more is constructed to slide
or move parailel on qrooved or flanged on rails for the purpose of arrinying the patterns．to
and fro to be moulded by motion fiven or transmitted by pulley，drum，spur－wheel，pinion，rack，and dyy
wheel，or other mechnunical motion．The moulding box or boxes are constructed，not as ordinary iron or
brassiounderre booxes are，with top box part tand drag
（or bottom）puyt，but the top，bottom，sides and ends
an be made in one piece or otherwise，and they are

top，and in some instancess with ends and tops
partially left open to be subsequently fitted or other－
4755．Inprovenants in Eleotric Lamps and AppA
RATUS Consected Therewith，J．A．Berly and J．
 puiled down，detached，dec．，to be regulated or attended
 section of the apparatus．In whatever position the
siding portion of the apparatus may be，the currents

from the circuit wires attached to the terminals N
will be conveved to the strips of metal J and collected by the frivition pieces G ，from trip which，through bolts F ， to which they are electrically connected，the second the conducting wires a tached to the heads of the from dust and whole apparatus being enclosed，is free
ensures resularity to thate to be damaged，which 4762．SCrew－kery or Spanners，de．，W．Thomson．－ The tool is ofrmed in two parts，the gripping jaws or box A ，and the arm or lever B ，connected together
by a swivel joint and capale of being set any any
ngle to each other by shiftine the bein nuired position，in which it is secured by means of a

formed in the rear end of the jaw．A ．The bolt is
pivotted to the lever and one end is formed with a thumb piece，by which its locking end is removed from the recess in the jaw，a spring under the thumb piece
tending to keep it in its locked position
4774 ．Signalinge Apparatus，M．C．and T．J．Denne．
Alongside the line of rails at suitable distances are
 have a pipe leading to the signal box and attached to
disc valve．A pipe is fixed to the middle of each cylinder and also proceeds to the signal box，and is
comnected to an indicator or tell－tale．On the top of

the cylinder is a whistle B．To the pistons in the which are connected to other levers working on rock－
ing shatts，carrying other short levers connected to ny shatts，carrying other short levers connected to to
bridge piceos at one end．The paparatus is worked by compressed air and enables the sigmalman to com－
mumicate with the driver of an engine by cuusing the mumicato with the driver of an engine by causing the
whistles to sound．
4779．An Improved Electroo－magetic Apparatus
 This invention refers to a line of rails and carriages
wetauted solely by electricity or in conjunction with mechanical aid，such as a chain，cto．．bun whore eleo－
tricity plays the principal part．Hot or cold liquids
for
 Which can be set in motion and stopped at will．The
invention mas be emploped in ir breveries，warehouses，
dce，where long distances have to be traversed．
 dec．，H．Feryuson and H．R．Kempe．－19th Nocember：，
1sob． $6 d$. Either the pad for inking the stamp，or the pad on
Which the letter is placed，is mounted on spring sup ports and electrical contacts provided，so that when
suech pad receives the prossure of the stanp a cur－
年 rent is transmitted
nowm construction
4799．Velociredss，\＆ce．，Sir T．G．A．Parkyne．－20th This rambere， 1 Irist，to apparatus for propelling the
vehicle by steam power ；and secondly，to forming the

the water for propulsion and then closed to be drawn
throunch the same without obstruction hrough the same．without obstruction preparatory to form of propelier in which two reciprocating shants
are used，one being connected to the hinge of the blade and the other，by means of a cross bar and con－
hecting rods or links，to the backs of said blades

so that each of them operates to force the
 connected in such manner that neither can move
longitudinally beyond a cortain limit without commul
with
 a top view of the mechanism partly in horizontal sec－
tion，and Fig． 2 represents a side elevation of the
the same，also partly in section，omitting the greater por－ tion of the cylinders．
 This relates to improvements on patents No． 2555 ，
．D． 1869 ；No．2370，A．D． 1872 and No． 242 ，A．D． 1876 ， in which plates of metal and sheets of paper or woven fabrics having finely glazed or polished surfaces aro
nused ot press the fabricis，and it tonsists in combining
sith thes with these plates apparatus for the operation of tenter－ ngy，which operation has the effect of stretching and
drying the material provious to and simultaneously with its beimg passed round and between the pressing
plates． A hollow box is fixed to the machine under or ver the plates，and is capable of expansion telescopi－
ally，so as to give the reauired tension to the mato－ rial，which is attached to hooks on travelling chains，
whereby the lateral strain is obtained and the mate－ thareby the lateral staried forward．
4833．Detrctina and Measuring Siall Quantities Thiveing－－22nt Novenber，18so． $6 d$.
 partly of glass，and the other in a a cap，partly of wire auze and partly of glass．The air or gas to be tested inflammable gas gives out a，andighter plow than the
 to a red heat in an natmosphere cantaining intammabie
cas of low igniting point．A scale is placed within gas of low igniting point．A secle is placed within
the chamber of the instrument．The magenoto－ectetric machine is formed so as to avoid the danger of sparks
produced by the ordinary form of break or commu－
4836．Whip－strtch Sewing Machines，C ．Necker and
 M．D．1877，and consists in mechanism to be added to
the machine therein described so as to obtain a whip－ stitch．To the thread catcher motion is imparted
in three different directions，a sliding motion towards and from the shuttle race，a vertical up－and－down motion，and a swinging motion in the horizontal
plane．Thisis is effected by means of two excentric

sheaves on the driving axis，one imparting＇to the
thread catcher the sliding motion，and the other the
 takes hold of the tight shuttle thread，which is arried
from the left to the right side of the neede．The needle then piorcesthe fibric on the leftecalo of tho
shuttle thrend，which is then relensed from the shutthe thread，which is then relensed from the
catcher，and while the shuttle is moving to the right，
． the thread forms with the needle thrend a scoond loop
on the fabric ack by the returning needle thread．
 Tsso．10d．
This consiss essentially of one or more pairs of
anths containing pickling or swilling liquor arrangod

at a convenient angle，and in which the cradles，
crates，or racks are reciprocated or otherwise
 4839．Propulstox of Bodies IN AIr AND Water，E ． This consists in in the eamber， 1 1ssoo of of the wavo motion of floe cible surfaces to thic o ropurision of bodios in air，
or of vessels in water．The wave motion is produced

 right anglesto ine ind to

 Whion pure ari is introan , in combination therow with

4858

L

 nd after passing betweon the ocyind
4881. Filtrringa Watra, o. G. Pfander:-23rd Noven A verticill metat case contains four radial partititons
 must traversas the other compartments in sticeassion
Nil the compartments are charged with filtering nateri

 tone, and so ar arranged that when the stones are
otated, or thio apparatus cased to orotate between the totoses, and neoesesary prosesura appiodit,the toeth, rirs ridgeses or points of the discs are presed i in
stones, and thus dress the grinding surficess.
 This realatest th the manuruature of sullphataos fof ood
 larger quantatyo by the combustion of sulphurrou

 The Finst part consists of o aylinder, preferahly open

Second part consists of a piston valve formed by a
solidipiston with, by preference, three expanding ring of andy ysual sind working in the valvo cyindidor. Thn
offico of the rings is to make the valve piston work

 peller. In case of the shafte reanking, the two parts.

 nade for coupling the tube to the enfine shats so that it tanay drive
be brokent
4887. Strankive Turss, G. Joemingssand E. G. Brever
 Ceads off, and by other brancheses are compoletud to the
 combined with an eleetrical apparatus, by which 2
 munication froo
the main tube.
889. Lifting Weights by Hydraulic Power,

 provisional specification, No. 2122,2. A.D. 1880 , to these

 cyinder without using an acoumulatoro For single
Sower liits a valve allows the pressure to pass to the
the

the water passing into the hollow pillar. Fora double
power lift the water is cut off from the upper chamber, 4880

any water theredin being

 venumb of eanh piece being taidens outor breaks

 Diace along the breast beaming fine thadia motione
 hifter acted upon by a lever and crank, a pinion
moved by a sector and a bar running along near the moved by a se
4914. Improvenents in Electric Light Apparatus,
W. L Wise.-25th November, 1880.-(A communicaThis invention 4. . Manchlon.) sd. ${ }^{\text {sin }}$.

 is the carbon is consumed it will automatcayy more

[4.914

float J immersed in the bath of mercury, which insulated and traversed by the current. The curved
arm I is so proportioned and arranged that as the gradually ansumed and reduced in weight the floa semerges from the liquid, so that the loss of carbon wil
end be correctly compensated for by a proportional upward
movement thereof. The axis of the balance levers has cone centres. It works in insulated bearings. The
current is conducted first to the mercury bath (itsel current is conducted first to the mercury bath (itself
insulated at the under part), thence through the float stem, oscillating axis, and balance levers, to the carbons. The position of the left-hand carbon when
nearly consumed is shown by the dotted. lines. nearly consumed is shown by the dotted lines
Another arrangement is also described in the present 4917. Bobbin-net on Twist Lace Machines, J. R. The machine is constructed as follows: Two end standards A, and one or more intermediate standard
B, if the length of the machine requires it; thes
standards are connected together by a top tie bar C

and a bottom tie bar. In addition to the standards tandards, either form bearings for or bearings are secured to them for two rocking shafts E ; the upper
ends of the brackets clip the lower flange of the top tie bar, to which they are secured by screw bolts,
ocking shafts carry the levers for operatinn the point
Und revolves in bearings, forming part of or being carried by the standards and brackets; this shaft carries the
cams for operating the several parts of the machine.
4915. Steam Steering Gear, W. Clarke and J. B.
Furneaux.- $25 t h$ November, 1880 . 6 d . This relates to improvements on patent No. 1558,
A.D. 1878, and the objects are to simplify the reversing A.D. Manc, and the objects are to simplify the reversing,
mechanim, obtain moreconomical use of the stam,
with less liability to injurious strains, and facility for being repaired at sea. A bed plate carries the cylin-
ders fitted with slide valves and link reversing gear.
俍 it a spindle. On the crank shaft of the engine is worm gearing with a wheel on the main shaft, an
having on it a sliding clutch to engage with a corre-
sponding clutch on a spur wheel keyed to a boss on sponding clutch on a spur wheel keyed to a boss on
chain wheel free to revolve on the main shaft. On th
other side of the chain wheel a scroll wheel is keye on the main thatit and whears a scroll a sheevee is worm free free
to slide vertically on an upright spindle fitted at top with a bevil whee. The upper spindle, to which the
steering hand wheel is fixed, has on it steering hand wheer is sixed, has on it a double ended
pinion sliding on keys so as to gear either with the
spur wheel on main shaft or with a small spur wheel cast in one with a bevil wheel gearing with the wheel
on the upright spindle. A clutch on the double
ended pinion is connected by levers with the clutcl on the upright spindle. A clutch on the double
ended pinion is connected by levers with the cluth
on the main shaft, so that they move simultaneously. 4920. Ears for Handles of Buckets and Paint
Pots, R. Read. $-26 t h$ November. This relates to a machine in which the oars are first
stamped out by dies from a sheet of metal, then the holes are punched out, and finally they are bent to passing automatically forward to the punch and then
to the shaping dies to the shaping dies.
4921. Lubricating Main Shafting, \&c., T. Monk and
J. Anderton. -26 th November, 18s0., $4 d$. This relates to self-acting lubricating apparatus for
lubricating heavy shafting at intervals. The oil-box A has apertures B, and within it are spoons or ladles
C working on a stud, and caused to reciprocate by a

4

pin fixed on a worm wheel and working in a slot in the lever connecting the ladles. Oil taken up by the
lades runs down the lever and is delivered to the pertures B, from whence it passes to the shafting. 4925. Umbrella and Parasol Ribs, T. Warwicl:-
26th November, 1880 . 8 d. This relates to the manufacture of trough-shaped of the machine and a movarble die over the fixed die, and capable of rising and falling vertically. The lower
die consists of two parallel bars adjustable to the required distance apart by set screws, such distance
being equal to the breadth of the rib. This lower die being equal to the breadth of the rib. This lower die
is somewhat longer than the rib to be made. The is somewhat longer than the rib to be made. The
upper die consists of a plate equal in thickness to the
width of the interior of the trough, and rounded at its ower edge. It is connected by rods to cranks on a 4926. Coppers for Bolling Worts, T. Bloom. -26 th The body of the "setting" of the copper is of brickto below the grate to keep the bars cool. Within the
furnace is an arch to direct the current of air to within furnace is an arch to direct the current of air to within a short distance of the top of the briage at the opposite
end of the grate, thereby heating the air before coming
in contact with the bottom of the copper. At the back in contact with the bottom of the copper. At the back
of the bridge is a chamber to receive the heavy dust, and at the centre of the back of the bridge is a partipass from the furnace. The copper is arranged on a
seat of fire-brick. In front of the "sturr" pipe is an
seat
4927. Closing Stoneware Jars, '\&c., H. Doulton.-

26th November, 1880. 6d.
The jars are formed with a ring or flange on the
neck and there is a narrower raised surface which neck, and there is a narrower raised surface which
stands up from the face of the ring all round. A flat cover also has a raised surface corresponding to the
surface on the jar. A narrow band of metal passes across the top of the cover, and is bent at its ends so
as to take under the flange on the jar. The band is
Iso in the centre it is bent upwards, the cover being recessedd at such part so as to receive a ball, through
which passes a pivot attached to the forked arms of a lever, the ends of the arms being cr
bearing on the top surface of the cover.
4928. Gloves, H. Urwick.- -26 th November, 1880. 6 d.
This consists in forming the slit for the introduction of the hand, and that to receive the thumb-piece in
one, that part to receive the base of the thumb-piece being at an angle across the palm of theglove, whilst the slit in the wrist is in a line with the length of the glove-
By this means the hand can more readily be introduced into the glove.
4930. Pliers, Nippers, ANd Smiths' Tongs, IV. McI
Cranston. $-26 t h$ November, 1880 -- (A communication
from J. F. Cranston.) 6 d .
One jaw of the pliers is curved, and to it is pivotted a tongue piece so shaped that articles of an inclined or tapered, and also articles of a parallel form, may be
held between it and the other jaw. The tongue piece
has has a cutting edge, with which wire may be severed,
the cutting edge in such case being caused to impinge against the fixed jaw. The back of the tongue piece is jaw, to act in conjunction with, the roughened face of
the fixed jaw for use as a wrench, the tongue piece
adjusting itself to the diameter of the pipe to be adjusting its.
turned by it.
4931. Mattresses, W. E. Brovn. -26 th November, So as to enable the mattress to be constantly shifted in position on the bedstead, in order to prevent it
becoming hollow and consolidated in places by the
weight of the body resting always on the same part, it is formed in the shape of an endless band-that is
with its two ends united. By slightly shisting the position of the fo
brought into use.
4939. Garden Seats, A. W. Noel.-27th November,

The seat is provided with a footboard, on the fron seat it may be wheeled to any desired place, and when
not required the seat may be tipped up so as to be protected from the action of the weather
4947. Charconl Box Irons, T. B. Salter and
Asher.-27th November, 1880. $6 d$.

The iron does not require a chimney. In the body
of the iron is placed an inner body with a space al round it, through which the heated air circulates. Ai
enters at holes in the body of the iron and through enters at holes in the boayoucts of combustion escap
slot in the lid, and the product
through openings in the edge of the sides of the lid.
 This relates to improvements on patent No. 2372 ,
AD. 1879, and consists, First, of a novel framing of
metal in two parts joined to metal in two parts joined together; secondy, or an
arrangemert of rowing levers and mode of steering;
and Thirdly, of an improved arrangement of brake
to be actuated by the feet instead of by the hands,
but if desired may also be arranged to work by the but if d
latter.
4951.
4951. Music Seats and Receptacles, H. B. Fox.
27 th November, 1880 . $4 d$.

The combined seat and re
appearance of an ottoman, the top being stuffed, and having in it one or 4954. Facing, Tipping, and Suspending Billiard
Cues, de., C. F. Hengst. The cue is suspended by inserting its end into. of links, and having a lateral movement. Between
the ends of then the ends of the links are two levers, on one side of gudgeon working in gaides fitted with a screw to raise and lower it, the end of the screw bearing on a
horizontal bar. When thus held the cues can beacted 4956. Spinning and Doubling Cotton, \&c., B The First part relatess to the wire boards, to which are fixed the wire guides, through which the threads
pass, and is illustrated in Fig. 1, which represents a ertical section through the roller beam and wir
board. It is also illustrated on a smaller scale in Fig. 2, which is a partial front view of the machine

A being the roller beam and B the wire boards. It is
necessary that each separate wire board should be capable of being raised up independently when
required for piercing or other purposes, and that the wise moved out of the way for doffing. The part relates principally to what is known as th fixing into the spisdle rail F (as shown in Fig. 3) the long sleeve or collar G, in which the spindle
revolves, and consists in the use below the spindle rail F of a loose ring or hoop I fitting round the lowe par of the collar, and provided with chisel-shaped
teeth or projections K on its upper side. The hole in
the spindle rail F is bor the spindle rail F is bored out rather larger than the
diameter of the lower part of the collar G so that the latter can be adjusted in any direction till the spindle is assolutely perpendicular and in the centre of the
ring. The loose ring or hoop I is then placed on the
lower part of the collar G and screwed up by means of one or two nuts L, which will force up the teeth or
of one projections K to take a firm hold of the lower side of
the spindle rail F ; and thus holding the collar G firmly in position.
4962. Chests or Cases ror Screw Stocks and Dies,
de., W. T. Eades.-29th Novenler. The blocks or fittings to be secured in the chest are
ast or formed in moulds either from metal or any plastic material.
4963. Plovars, \&c., J. Hovacrd and E. T. Bousfield.This relatest to means for lifting ploughs and other illing implements out of work and increasing their
efficiency. A A are the land and furrow wheels

carried by the plough beams C , which are braced at
their front ends by a cross tie rod, and are fitted with plough bodies D. The tie rod forms a fulcrum for a To the hub of one running wheel a friction brake is
To thated by a keyed, the strap to act upon it being operated by a
hort rock shaft F , which passes through a frame nounted on the crank of the axle, and is attached to
the opposite ends of the brakee strap. On the rock urther traverse of the implement will canse the brake the plough out of work.
4965. Heel Stipfeners for Boots and Shoess, H. H. from S. L. Bailey.) $6 d$.
This relates to improvements on patent No. 4211, a.D. 1879, in which the stiffeners are made in two
ieces, and it consists, First, in turning over the upper dge of a motal stay so as to form a beaded edge that
vill not cut the counter or lining of the boot, nor irritate the heel of the wearer; Secondly, in corru-
gating the sides of the support so as to give greater
strength and permit the use of lighter metal; Thirdly, the combination of a metal counter stiffener with a counter made of strips of leather; and Fourthly, in
making a stay or support of two or more thicknesses making a stay or support of two or more
4968. Apparatus for Dissolving and Filtering in
Cemical and Metallurgical Processes, J. F.

Within a cylinder of wood is enclosed an inner
cylinder of hard wood or hard earthenware, an annular space being left between the two, and the inner one
perforated and covered with a filtering medium, kept n place by divisions compartments. The matter to be reated is placed in a pulv cylinder with the reagents owhele rotated, the liquid passing into the annular space when at the
but passing back again to the cylinder as it reaches 4972. Fire-grates, A. C. Engert.-29th November; So as to prevent the formation of smoke the coal is first heated in a partially closed chamber before being formed at the back of the grate
4974. Motive Power and Pumping Engines, T. and This relates to the valves by which steam is dis.
ributed to the steam cylinder, and it consists of a
main slide or double piston valve enclosed within a
valve chamber. Cis the double-ported slide valve, the inner steam spaces D of whithch communicate through
openings at each side of the valve with the steam spen of the valve chess or or casing E, and through ports
F conduot the steam to cylinder G through ports H,

seecured and works in a chamber L formed with steam secured exhast porsts, and with a port communictating
and
with steam chest E, and having a common slide valve M . The exhaust port of of chamber L communicates
with the main exhaust. Through valve M, and
the
 spindle is connected to a rod extending to a chamber
at the other end of the steam cylinder, where it is connected in ilike manner toan anthar short rou
ond of which projects into the steam cylinder.
4975. Washisa Machusse J. Mitchell. Soth Novem-
 ap of a number of plates with angular projections on
their inner surface such plates bein seaprat but
overlapping, a side aperture being left between the overlapping a side aperture being left between the
ond
onds of the olpate of the entrance of the wwashing
the
 this consists in making such rollers from what is
 4977. Hyprauuc Presses, J. Waton.-30th NovemTheris, rreltaes to improvements on patent No. 3123,
A.D. 1889, in which the material being pressed is forced between the bars of a grid, and it consists in so shaping
the teeth that the material cannot be forced down between the teeth fare enough to prevent the material
beeing readily removed being readily removed
 This consists in forming a false socket piece for
candlesticks, in which he cando is cilpped, by form-
ind candlesticks, in which the candle is clipped, by form-
ing oorrugations in iss sides, so so to pive it e cortin
amount of elasticity. The false socket can be withdrawn by means of a projecting thumb piece.
4979 . Crreurar Saws, H. J. Haddan. - 30 th November, This relates to the mode of mounting circular saws
 variable width with the same blade. For this pur-
pose the saw is mounted between two annular discs, which turn on pivouts phaceded perpencidiculariar to the the
shaft and attached to the circumference of the nave, which is rigidilly mounted on the shaft. The blade can
be placed obligue to the shaft by means of a crew. 4980. Huskisg Rice, se., J. H. C. Martin.- 30 th
November, $1880 .-$ Not mroceced veith.) $2 d$. A dovember, 18sion- (Not proceeced vith.). $2 d$. horizuntally in combination with a plane or ourved
frictional surface of stont emery, or roughhened steel
隹 placed in tangential contact with the surface of the 4982. Unbrella Cloths, In Critchley. - 30 th Novem. The cloth is formed entirely of cotton, but has the same appearanece of a cloth with cotton, and worsted
weft
or pilit thisilis. effected by weaving the cloth a double 4983. Lamps for Illuvainating Inscriptions, G. Day. The lamp fremere has grodes near the middle to
receive the plates bearing the inscriptions, which are receive the plates bearing the inscriptions, which are
pliced back to back and lighted from the front or
sides. 4984. Treating Jute, Hemp, dco., C. F. Cross,-30th November, 18s0. 4t. 4 . the treatment of fibrous
This relats, First, to the
 or use in the manufacture of textili fabrics or paper which are to be sesubjected to a hight temperature with sulphites, so as toprevent injury to the fabrics.
 This relates mainly to flushing cisterns which have 0 be emptied by means of a syphon, the short leg of
which dips into a cistern holding the water for one flushing, and the long leg connected to aur apparatus
with a piston operated by a handle. The piston moves
 piston being auctuated by a a weight or spring or or other 4987. Masur

 Molasses, or solutions of cane sugar, are brought
togother with ilme either in the form of calciun
oxide or hydrated, and water, in succh manner and such proportions that an intimate and rapid mixture
and combination of the particles of sugar and lime is
 readily be separated from the mother liquid. (Not procedede. with.) $2 d$.
 space enclosed by the portition and wictht the outer aire
The waste pipp communicates by a side opening in
in
 vents the accumulation of sewer gas in the trap.
 This rececatates to an an apparatus for guiding the piston
rod croshhead in a straight line, and consists of two equal trianguar levers in the same plane opposite to
one another on each side of the piston rod and hin one another on eack side of the p piston rod, and hinged
at the lower backwrd anglesto some fixed part. The
meeting anglos of the levers meeting anglos of the levers have toothed segments
gearing togethor and to the upper bock ward angles
uro hinged two links connected at their further ends gearing together, and to the upper backward angles
aro ohingod two links connected at their further ends
to the piston rod crosshead.

bottom, these three t
preventing jamming.
4999 Grooved Puu The object is to form the pulley so that the botton or wearing face of its groove isuley so so that the of 2 septomm
ring capabable of being rephaced when worn.
 This relates to linked metal rods or bars, and con-
sist of ofonecting the rods by a coose eeand an onen
hool, and forming on them near their end joint joite
prongs or barbs. 5009. Grindive Machinery por Manvpacture of
Chuled Rouls, de., F. Wirth. -1 st December, 1880 .
 obiject is mounted in a slightly elastic mymnner in
adjustable bearings on pendant arms formed or fixed

on a sleevo or side that can be caused to travel by
means of a screw sppindle along ahorizontal beana fixed means of a a serew spindle along a horizontal beana fixed
on standards, so that by mimpartinn motion to the side
the roll is the roll is caused to travel in the direction of its
length in front of a large and rapidly revolving grind stone. The neck or axis of the roll is connected by
couplin te couphing to a shaft receiving rotary motion by means
of a pulley and strap, so that the roll is made to revolve
as it travels alonge
 Trim G. K. Strect.) (Not proceded veith.) $2 d$.
The ojbect is ot economise fuel and reduce the escape of smoke from the chimneys to a minimum,
and it consists of a hollow metillic portable diaphram mounted within the fre--box and of the same radius as as the top half of the fire-box door, immediately over which
it fits and extends inwards and upwards to the vertical centre line of the box. The diaphragm is soupplied
with water from the boiler. A second diappragm with water from the boiler. A second diaphragin
extends the full width of the fire-box.
50.

 of the upper side of the rim, and the upper side of the she " "rame is formed somewhat to correspond with
the under side of the brim, butt slightyly hollowed out
where the hrim rest where the brim rests, where it is fitted with a thick
pieco of indiar-rubber bedded into it, and has a sheet
of ind 5022. IvpIcati
 A plug of earisy fusible metal is inserted in the journals and on it bears one end of a weighted lever,
which, when the plug fuses through the heating of the bearing, is released and acts upon a gong and operates a
whistle or establishes electric contact so as to signal the heating of the bearing. 5024. Gas Exalses, E. W. Horne and E. and S. Truee
dale.-2nd December, $1850 .-$ (Not proceded with.)
 atilising compressed coal or other explosive adition to the use of such gases explosively.
 This relates to improvements on patent No. 228 , A.
1874 , in which a pertorated steam pipe is used to cle the flues, and it consists in covering such pipe with cast iron cover with openings at top, so as not to
impede the full blast of steam, the cover servint prevent the pipe being acted upon by hot slag cinders 5026. Sprirt Levels, R. Sutclife.-2nd December
1850 . $4 d$. This relates to a spirit level for indicating the
degree of inclination of surfaces being graduated, and having a screw adjustment whereby such degree may
be compensated for and recorded, and consists in forming a tube with a verticial branno at at each end end
bearing a graduated seale, so that the different levels bearing a a graduated seale, so that the different levels
of the spirit in the two branches shows the degree of 5027. Fire and Burglar Proof Safes, R. Sutclifje. The safe consists of two concentric cylinders, the paceo betwen which is fille with a heat-resisting,
packitg. The inner and outer cyllitiders have doors, and the inner one can be turned after the doors are
locked, so that the two doors are not opposite 5028. Polychromatic Printing Machinks
 This relatases to improvereeneats on patent No. 468, or colour cylinder of unequal diameters revolve in
contact, both having the same velocity at their peripheries, and it consists in forming the perimeter
of the that of the esplon cylinder in the same proportion to maxerimum number of colours to bone bemployed at one
time, if such number is uneven, and exceeding it hy ne if it in sumber, and neither the eengeedh nor the
breadth of the xceod the semi-primeter of the impression cylinder. 5030. Mavure, W. R. Lake-2nd December, 1880 -(A)
communicution from E. Kock.-(Not proceded zith.) This consists in an improved method of mixing tar
and lime so as to obtain immediately a mixture of and lime so an to obtain immediately a mixture of
impulverulent form.
5031. Tox-spINNINa
 applied to chameleon topss which as the top revolves,
cause the discs to revolve excentrically to the top.
 The receuiurirod dies are dissolved in any suitable sol-
vent,
vend and ation of gum or albumen added to fix the dyes, after which they pass into glass or earthen-
ware Ware rate the moisture The dyeast when dry, are
pulverised and ground up with a composition consist. ing of 50 parts sheep fat, 74 parts bleached beeswax,
72 parts sperm wax, 4 parts parafine, 40 parts turpentine, 5 parts poppy or moss oil, and 9 parts
boiled linseed oil The dyes are mixed with the ecm.
. or cut into any requirad design.

placed upona table. The iron balls soon become red-hot,
and afterwards incandescent at a a white heat, but do 503
 The driving wheel a carries the ehaff-cutting knives
B, its periphory being smooth, made broader than

usual. A small roller D revolves in contact with the
driving.wheal, the driving-wheol, the grain passing between the two
from the hopper G, and atter being bruised passes out through the shoor K . The bearings of the
adjustable so as to regulate the pressure.
 The composition is formed of leather (reduced to smal pieces of powder), treacle, and an alkali, such
for example as caustic soda, which ingredients are

The with.) 2 d. . the gases andind fumes is thereffrom, and containing metallic रinc and lighto oxide of zinc in susponsion and
sulphurous acid derived from the ore, are mixed with sulphurous aid derived from the ore, are mixed with
excessof of an, and are brougt into contact with water
in any suitable condensing or absorbing apparatus. 5038. Thaps or Valves, J. L. Corbett.-3rl December
 sists of a two-way cook witter- in insests, seat at the and inlet pipe
and which may be turned and which may be turned to close the inlet pipe, or
to admit water to either of two short pipes, one on eanch side, leating to to ather oflinder shot transversonely and
fixed to them, and which has a discharge nozzle near
ne its centro on the side opposite the inlet tube A par
tition divides the cylinder, and through it passes piston rod with a piston at each ond having a rusbber
fitting to close on a seat in the partition. A small
in hole is pierced throunh each piston to allow the wate
to pass from one side to the other in a fixed time.
5042. Weavina Gavze Leso, de., G. Hargreaves and This consists in the regulation of warp threads by
 taking place from the doup to the slip or the slip to
the doup.

 of one of the holow, hemispheres over the edge of these
other. The hollow hemisphere, which in the finished
 bulbous part of the ornament, which fits on the to
 cup having a half neek similar to the halif neek on the
spherical part of the ornament, nend by the process of
spimining the cup is formed into the required bulbous

505
T:
material for the retention of heat generated by ho water is made with an upper and under cap forming
a compartment between them, and admiting the foet
of persons sitting opposite to anch other while of persons. sitting opposite to ench other while
travelling. 5054. Apparatus for Dividivg Card covered Sur,
facks or Druals of Carding Machinks, P. Pingard
 A of wood or iron of suitable dimentions. The \mathcal{U}-shape slide c clasps the bar A on thre sidess, and is adapted
to slide to and fro theren, and to be fixed in any
required position by means of a screww. The fixed guide cheok C it is either maansened to or arew. in one piece
with the slide B. The movable guide check D is

furnished with elongated holes to admit of its being
adjusted nearer to or further from the check C by means of the set screws 1 , whereby the space betwen thickness of the steel tool E, which cutat or or
wires of the card cloth to the desired width.
 December, 18s80.
The ins
The instrument is composed of a needle attached by
the eye to a plate, which carries a brooch-like hook to the eye to a plate, which carries a brooch-like hook th
secure the point of the needle and keep up th 5057. A

asbestos, pumicastone, fire-clay, or or other suitable
substane, throug the interstios of which air ran
freely pass, while at the sinese time a strong current is
5058. Ampinicis. Tallow, M. de la Vega. - 4 tho
December, 1880 . The tallow is composed of castor oil, solid animal 5059. Wher vegetable oil and whent flour
 The main improvement consists in the application
new disengacing apparatus for throwing out of on into gar the screw or worm which is commonly used 5063. Aparatus for Botruiva Abrated Llquins,
F. Foster and S. Barnett, sen. - -th Decenber, 1880 , 6d. it is desired to obtain a cork with a cham.
Whayen head, b bottling apparatus is employed consist-
pitne
 form, and which is made in two parts hinged together
soas to open longitudinally from top to bottom. One of these parts is fixed upon a convenient support,
and the other is movable atout the linge joint. Bya
Heck locking lever or screw, the movable part of the cork,
compressor can be forced closely up to the fixed part. 5066. Manuracture or Sogar, de., N. de la Vega
and L L. Doliveira.-4th December, 1880. $4 l$. This consistst in separating the sugar from the
water of the liquid by freezing the liquid and drying
the suma. 5067. Oit Cass, . Field.-4th December, 1880.-(Not
proceeded with.). 2 . Throceededed witht. 2 . 2 .
This construction of the oil can for
ubricatings, whereby the supply may be regulated.

 The object of this invention is to avoid the heavy
nsulation necessary where telephones or other lines are bunched or cabied together, rendered necessary by
the fear of induction. To do this provision is made at the central station for couphing eanh wire through
the eall instrument, with which it is oonnected to a separate earth, and also ot the opposite or outer end of
the a able, whene the wires aro led a wato vanious
stations; several wires are coupled through instrul-

ments to separate and independent earth plates having mutator at the cecturan station on ansono shor. arranged that
when any one wire is counled to When any one wire is coupled to any other wire they
may also be coupled to an independent eaxth plate,

 eparate and independent earth plates

 in a similar manner to that of an endicss screw and
worm wheel. worm wheel.
5086. Carding Machines, H. H. Lake.-6th December,
1800.- (A communication From The Whitehead and This relates to a novel arrangement of the parts of
carding machines, and it consists in placing the lap C near the floor, so that the cotton can be fed to the stean of on or about the line of its horricoantal axis.
Beyond the feed rolls E in the direction of revolution of the manin cylinder, and beloct the axis of the
cylinder, a series of dirt troughs G are arranged on a

[5086]

cover. H, and set from one quarter to an eighth of an
inch from the face of the cylinder, the lower trought being as near as possibie to the feed rolls, and the
upper trough at or near the line of the horizontal axis
of the cylinder. The dirt trouths are thuss anranged of the cyinder. The dirt troughs are thus arranged
on the bace of the machin, that is on the side on
which the cotton enters at a point below the horiwhich the cotton enters ar
zontal axis of the eylinder.

Ahoie is formed in the centro of the denture, round Which is fixed an annular metal disc or eyelet. Each
side of the denture round the disc is hollowed, the side or on the upper sidid being (adrantageously) larger
holoun on that on the under side. (nto the upper hollow
than

 and

 This consists prinincipaly, in the combination of
 5102. PIPE Jonsts, N. Talard. - Tht December, 1850.
6i.

SELEOTED AMERIOAN PATENTS.
From the United States Patent office offlcial Gazette, 241,596. Aurovatic Are VAlve, James H. Blessing
Albany, N.Y., assignor to the Albany Steam Trap Compana, same place- Fitean Dcember 22nd, 1879 . Claim.- (I) The combination in an automatic air
valve, of avale which is caused to seat and colose by by
the expansion due to heat, and an independent check the expansion due to heat, and an independent cheok
valve located in a passage connecting with the cham. valve located in a passage connecting with the cham-
ber in which the expansion valvo is placed, amd
ne ber in which the expansion valve is placed, and
operatin ot prevent the eturn of air, substantially as
desaribed. (2) In an automatic air valve, the com-

to seat against the side of said tube, and an indepenthe chamber in which the expanssion coalvecting wiaced, valve provided with an independent check valve having a slot or slots upon its upper surface, whereby
the air is enabled to escape through such slots without wearing the lower surface of the valve, substantrally 241,616. Sash Fastenkr, Walter P. Chamberlin,
Hartord, Conn., assignor of one-half to J. C. Mead, same place.-Fited December 13th, 1880 .
Brief.-Two pendulous spring bolts, one in the
casing and the other in the sash, are simultaneously 241.616

operated by a rotating key. The bolt in the sash is
forced back by the one in the casing. Claim.-In a window sash catch, two opposed pendulous spring
bolts, one located in the sash and the other in the casing, in combination with the rotating operating key g, sin .
241,628. Eleorric Lamp, David W. De Forest, Brook-
lyn, assignor to William Buchanan, Nero York lyn, assignor to William Buch
N. Y. Filed December 6th, 1880. Brief.-Two carbon discsor annular carbons mounted
on shafts, one of which is made adjustable toward from the other, are rotated by clock-work acting through a screw and gear wheel. Claim.- (1) The
circular carbons A and A^{1}, the shafts A and A1, and circular carbons A and A^{1}, the shafts A and A^{1}, and
the gear wheels B and B^{1}, in combination with the

worm wheels C and C , the shaft D , and a mechanism
for slowly rotating the shaft D , substantially as and for the purpose cescribed. (2) The circular carbon A^{1}, tion with the circular carbon A, shaft A, provided with stationary bearings and mechanism for rotating the
same, substantially as and for the purpose described. 241,705. Percussion Drill, Franki H. Ober, Denver Colo.- Filed February 21 st, 1881 .
Caim. (1) In a percussion drill, a revolving hub
having a hammer attached thereto by an elastic rod,

substantially as shown and described. (2) In a per
cussion drill, the combination, with a suitable sup cussion drill, the combination, with a suitable sup slotted head, and a rod provided with a hammer, cussion drilil, the combination of the rod G, having a
knob, a conical hollow clamp GI , constructed in two knob, a conical hollow clamp GI, constructed in two
nut, all arranged and operating substantially as shown
and described. (4) In a percussion drill, he combina tion of a hub having depressions F^{1} F1, with a rod G havd a shaft with a nut, substantially as shown an der, in combination with an adjustable centre post
bearing a series of rotating hammers, and a drillholding device, substantially as shown and described (6) In a percussion drill, the combination of the shait
E and suitable supporting devices with the frame D drill carrier H , sooket I , and pawl K , substantially a
shown and described. (7) In a percussion drill, the combination of the drill carrier C , sockeket I I and pawl
extending outward to receive the blow of the head F , extending outward to receive the blow of the the pur
and having a finger and suitable springs, for the pur poses specified. (8) In a percussics a shaft E and arn
tion of suitable supporting devices, F, having an angular head, with the pawl and ratche 241,700 G 241,706. Gas Motor Enaine, Nicolaus A. Otto,
1881.-Patented in England January 5 th, 1881 ,
Claim.-(1) In a gas motor engine, a working pisto caused to make strokes of different lengths, the rod of
said piston being connected to the crank by the inter-
241.706

vention of a spring, all constructed and arranged for
peration substantially as and for the purpose specified. (2) The combination of the cylinder C, piston A rod B, with collars M M1, cross-head D, connecting
rod E, and crank shaft F, arranged and operating as erein set forth.
241,744. Sprivg Tooth Harrow or Cultivator,
Henry Springer and George L. Ives, Vicksburg, Mich. (1) Iner, 1880.
rock shafts carrying the spring teeth, the middle one

ts teeth extending over the back of the rear shaft,
(2) The box F , having the top piece E , and lower piece F , side flange F , , and axle K , the latter three parts made
in one piece. in one piece.
241,797. Mill Feed Regulator, William Frederick,
jun., Uniontovn, Pa.-Filed December 30th, 1880. jun., Uniontown, Pa.-Filed December 30th, 1880.
Claim.-Ia a mill feed, the combination, with the governor A , of the regulating arm D , having one end
pivotted to the casing at D^{1} and connected intermedi-

ately between its ends with the adjustable feed tube
B and having its other end provided with an adjust-
 241,869. Binding Head for Grain Binders
Sylvanus D. Locke, Hoosick Falls, N.Y.-Filed April Ctith, 1878.
Claim.-(1) In the binding head of an automatic binder, a holder plate E, composed of two pieces of
sheet or plate steel, one having spring temper and the
other hardened, and the two rigidly secured together

combined with an elevated table F, to which said holder is attached, as and for the purpose set forth.
(2) Combined with the cutter and holder D and the
elastic holder plate E , the elevated table F , erected clastic holder plate E , the elevated table F , erectee
upon the head B, as a seat whereupon to secure saic elastic holder plate, as set forth. (3) The table or
head B, provided with the lugs OP, integral with said
head, combined with the vibrating cutter D, as set head, combined with the vibrating cutter D, as set
forth. (4) Combined with the shell A and the cutting
and holding device, the sheet metal bridge piece or
shield P , to cover the cutter and holder and prevent
the entanglement of straw therewith. (5) Combined the entanglement of straw therewith. (5) Combined Wlate B , the shell A, with the lateral extension or roof
B , to cover the opening between said shell and plate B, to cover the opening between said shell and plate
B , set forth. (6) Combined with the shell A and the cutting and twisting devices, the rigidly attached forth. (7) The shell A and its twisting and cutting devices, and the shoulder C , to arrest the compressor,
combined with the upward-projecting part P , as set orth.
241,819. Apparatus for Consuming Sewer Gas,
Williain Herny Oqilvic, Brooklym, N. Y., assimor of William Henry Ogilvie, Brooklyn, N.Y., assignor of
one-half to William L. Bennem, same place.-Filed June 9th, 1879.
aim.-(1) The
is hereinbefore described, in combination with a delivery pipe for the purpose of concentrating and
delivering sewer gas to a gas jet E , substantially as set forth. (2) The combination, substantially as descrived, of the section of sewer head sewer gas con-
delivery pipe, and the vacum head
sumer connected to the delivery pipe, for the purpose

set forth. (3) The combination, substantially as delivery pipe, the vacuum head sewer gas consumer, the stop cook, and the gas burner, or its equivalent,
substantially as hereinbefore set forth, and for the purposes set forth. (4) The combination, substantially
as described, of the delivery pipe, the vacuum head, the gas pipe, and the double stop, cock, so arram hed in
connection with the delivery and gas pipes as to turn them on and off at one and the same time.
241,879. Gear Wheel Cutter, Bdwin L. Parsons,
Providence, R.I., assignor to the Brown and Sharpe
Manufacturing Company, same place.-Filed March
$23 \mathrm{rd}, 1881$.
Claim. -A gear wheel cutter having a line in the

centre of the peripherical contour of one or more of its teeth as a guide in setting the cull as described. 241,909. Phoтophonio Recerver, Alexander G. Bell March 24 th, 1881 .
Claim.- (1) In a photophonic receiver, the sound chamber for containing the sensitive medium, having
a wall transparent to light or radiant energy, but opaque or less transparent to sound, substantially as described. (2) The combination of the sound chamber
having a wall transparent to radiant energy, but opaque orless transparent to sound, with the sensitive medium therein contained, and a sound conveyor or opening communicating with the interior of said
chamber, substantially as described. (3) In a photophonic receiver, the sensitive medium, composed phonic receiver, the
of vibratory material in an open, porous, or sub-
divided condition, substantially as described. (4) In a photophonic receiver, a sensitive medium of lamp-
black or similar material, substantially as described. (5) A photophonic receiver having as the sensitive
medium a deposit of vibratory material in a loose, porous, subdivided, flocculent, or spongy condition,
pubstantially as described. (6) In a photophonic substantially as described. (6) In a photophonic
receiver, the combination of a sensitive medium conductive of electricity, in a loose, porous, or subdivided condition, such as lamp-black, and conductors for is described so that radial vibrations can be thereby converted into electric vibrations, as set forth. (i)

The combination of the lamp black or other vibratory
conducting material in loose particles, the rigid or cunducting material in inextensible support of insulating matierial, and conductors by which the lamp-black can be
included in an electric circuit, as set forth. (8) A cell comprising sheets, plates, or strips of conducting
material, tixed or mounted upon a support of insulating material, with their edges opposite each other and
separated by a suitable distance, and sensitive conseparated by a suitable distance, and sensitive con-
ducting material in the space or spaces between said
edges, substantially as described. (9) A support of isuating material, having comport, as indicated, so that the teeth of the combs intermesh but are not in
contact with each oth. r, substantially as described contact with each oth.r, substantially as described
(10) A silvered plate having the silver film mechani-
cally ruled or scraped, as described, so as to leave parallel lines or stripes of equal width, and with sharp,
clean edges, substantially as set forth. (11) The
insulating plate having on one or both sides a silver
film ruled or scraped, as described, so as to divide the siiver film into two or more conductors, in combinasaid film or films, substantially as set forth. (12) The combination of the insulating plate and ruled silver
film with the lamp-black or sensitive medium included n the ruled or scraped spaces in said film, substangalvanic circuit, of a photophonic cell, comprising a glass plate with ruled silver film thereon, lamp-black tions for completing the galvanic circuit through said with a photophonic cell, of an. (14) The combination, connections for including said cell in one circuit of
said coil, and a telephone cirnit other circuit of said coil, substantially as described (14) A photophonic receiver comprising a sound but opaque or less transparent to sound, a cell having a vibratory sensitive medium, such as lamp-black, electrical connections for connecting said cell in
an electrical circuit, and a hearing tube connected an electrical circuit, and a hearing tube connected
with the interior of said sound chamber, substantially as described.
241,930. Valve For Air Compressors, James
Clayton, Brooklyn, N.Y.-Filed May 31st, 1sso. Claim.-The combination with the disc-like valve seat A and the valve C, of one or more guard bolts F
rigidly attached to the valve and working through the

seat, but having no other connection with the valve or
seat, and provided with shoulders B, all substantially as and for the purpose specified.
242,088. InJecror Condenser, Jerome Wheelock,
Worcester, Mass.-Filed April 14 th, 1881. Claim.-(1) In a syphon condenser, a steam nozzle
provided with a central aperture and one or provided with a central aperture and one or more
concentric annular apertures for the delivery of steam

into the condenser head, substantially as described. (2) The combination of the exhaust pipe, water ejector nozzle with the steam nozzle provided with an contral delivery aperture and one or more winnular
delivery apertures, substantially as described.

CONTENTS.

The Engineer, July sth, 1881.
The Wool Exhibition, No. II.
The Peter the Great.
(Illustrated.

 Apparatus. (Illustrated.)
MAP OF The Derby Showya
The Institution of Civil Enginemps Ratlway Matters...
Notes and Memorund
Miscellanea .. The Lechterfeld Ëleötriö rällway. ${ }^{\text {The }}$ (Iilus.) Engine-room Artificers
 The channel Tunnel Scheme ..
The Adiraty and New Alloys
Safety valves ..
Law and Clark's Cïvil $\ddot{\text { Eingineerring }}$
A Poor Man's Plea for Chear Patents
APoor Mans Plea for chear Patents
Proposed Brdee over tex Douro
Wrought Iron Gallery, Town Hall, Readive

 (Illustrated.).. ${ }^{2}$....\quad.. Leading Artioles-
Marine Boilers..
Comine Bollers .a ..
Tees-side Water Supply..
The River Tees

By Hilary Bauerman.. \quad..
 The averagng Machine. (Ilustrated.) ön or
The Iron, Coat, and Generil Trades of Notes from Lanoashire Notes from Lanoashire -

 Abstracts of Patent Specifications. (Iilus)
Abstracts or American Patent Specifiontions.
(Illustrated.).. Bailer Explosions
Boiler Explosions
New Professor of Architecture
Protection Ashweii
Mr. Jamees
Death of Mr. Inman

South Kensington Museum.-Visitors during the week ending July 2nd, 1881 :- On Monday,
Tuesday, and Saturday, free, from 10 a.m. to 10 p.m., Museum, 10,965 ; mercantile marine, building materials, and other collections, 4350 . On Wednesday, Thursday, and Friday, admission
6d., from 10 a.m. till 6 p.m., Museum, 2156 ; mercantile marine, building materials, and other collections, 424. Total, 17,895. Average of corre-
sponding week in former years, 18,042. Total from the opening of the Museum, $20,113,769$.
"the engineer," july s, 1881.

