VISITS IN THE PROVINCES.
THE ELSWICK ORDNANCE AND ENGINE WORKS.
No. I.
The Elswick Engine Works owe their origin to Sir William Armstrong's success in the development of water-
mended the application of hydraulic power to the Albert proposed to replace the elevated cistern of water by an air Dock at Liverpool. The Elswick Works were then vessel, in which the air was brought under pressure. In started with a view to the manufacture of hydraulic 1850 the present mode of storing up work by means of a machinery in 1847, and in 1848 hydraylic cranes were loaded plunger working in a large cast iron cylinder was applied to railway purposes in the Trafalgar goods station, proposed by Sir William, hydraulic machinery being by now belonging to the North-Eastern Railway, in New- this brought into its present condition, having been worked
(1)
pressure machinery ; similarly the manufacture of ordnance grew up in consequence of system of ordnance. The former branch of the works preceded the latter by about should be first noticed. In 1836 Sir W. Armstrong conceived the idea of utilising the work due to the descent of water for engineering purposes. His first design was described in the Mechanics' Magazine of December 29th, 1838 . He made a working model of this in 1839, and tried it in Newcastle, when it acted well, though, as he considered it, in an inconvenient and crude form. In 1840 Sir William wrote a paper to the Mechanics Magazine, in which he investigated the question of the employment of water for storing and distributing the work of a steam engine. He dwelt on its value when raised to a high level as a store of power to be drawn off in its descent, on its suitability for transmitting pressure to a distance, and also for supplying power in small or large quantities, just as might be required. just as might be required.
He illustrated his views by the supposed application of a pumping engine and a cistern fixed on a height at St. Katharine Docks, to the performance of loading and unloading ships by means of hoists worked by the pressure of water brought by sure of water brought by
pipes from the cistern. A pipes from the cistern. A
hydraulic crane was erected hydraulic crane was erected hydraulic crane was erected
in Newastle in 1845 , whose
Mr. Hartley, the engineer spite Hartley, the engineer of Liverpool Docks in spite of his having originally entertained a strong
prejudice against the idea, that he at once recom-

out from first to last by the same mind. It is needless to follow further the introduction of hydraulic machinery, which was adopted in the Paddington Railway Station under Brunel, and quickly came in in many places. The principal steps, then, involving the introduction of fundamental features may be traced as follows :-(1) The general conception of the employment of the work due to the descent of water; (2) the distribution and transfer of work to a distance by an inelastic fluid giving rigidity and power of control with precision ; (3) the power of obtaining the mechanical equivalent to multiple gear and lever power without friction ; (4) the storing up of the continuous work of a small engine for employment in greater but intermittent efforts such as are commonly required. Lastly, one other property deserves notice, namely, the safety attending the storing up of tending the storing up of
work in the form of an inelastic liquid, as compared with an elastic gas. This would not be worth consideration practically in ordinary cases, when a little care and calculation would enable steam or air to be employed safely.* It is possible, however, that cases may arise, warlike machines to the fire of an enemy, when it is an advantage that the sudden injury of a storehouse of force should be incapable of proshould be incapable of pro-
ducing a dangerous explosion. The hydraulic machinery manufactured at the Elswick

Works consists chiefly of cranes, hoists, capstans for railway stations and docks, rotary engines, pumping engines,
opening bridges-swing, draw, and lift-machinery for opening bridges-swing, draw, and lift-machinery for
opening and closing dock gates and sluices, bands and elevators for discharging and storing grain, hydraulic pumps, vators for discharging and storing grain, hydraulic pumps,
and winding engines for mines, \&c. \&c. In addition to
these are the steam pumping engines with boilers and these are the steam pumping engines with boilers
accumulators for supplying the water under pressure.
The ordinary forms of hydraulic cranes and hoists as used in docks, railway stations, warehouses, \&c., are so
well known that any detailed description of the several varieties is unnecessary. In nearly all cases where the lifting power does not exceed 30 tons the hoisting apparatus consists of a cylinder and plunger acting on the lifting chain through a system of fixed and movable pulleys which multiply the travel of the plunger to the extent required.
By this means the necessity for any gearing, brakes, pawls, ayd clutches is avoided, and the working of the crane is rendered very simple and safe. The lifting machinery is usually placed in the revolving pillar of the crane itself, lock purposes the crane is usually mounted on pe For dock purposes the crane is usually mounted on a pedestal
of wrought iron about fft . or loft. high, so as to give the jib clearance over a ship's side, and this pedestal is provided with wheels, so that four or five cranes can be brought to bear upon the several hatchways of one vessel. These cranes are either counterweighted or clamped to the rails
when at work, as may be most convenient. The connections to the pressure and return mains is made by sliding pipes attached to hydrants inserted at intervals in the main pipes.
A good example of movable cranes of this pattern is illustrated at Fig. 1. The crane here shown is one of a large number made for the new Royal Albert Dock at
London. The lifting power is 30 cwt., and the length of London. The lifting power is 30 cwt , and the length of
lift 50 ft . The jib is 45 ft . 3 in . high from the quay, and has a rake or radius of 33 ft . The pedestal is higher than usual, and has a passage-way through it, so a
little as possible with traffic on the quay.
When a lifting power of from 30 tons to 80 tons or 100 tons is required, a rotary hydraulic engine acting on
an ordinary chain purchase by means of gearing and a "cupped-drum" is usually employed, and the general construction of the crane is modified by a circular roller
path with live or fixed rollers being substituted for the iron pedestal. For very heavy cranes to lift loads of 80 tons to 100 tons and upwards, Sir W. G. Armstrong and Co. now use a direct-acting cylinder of from 40 ft . to
50 ft . stroke, suspended in gimbals from the end of the jib, and fitted with a piston and rod, by which the load is lifted and lowered without the intervention of chains or gearing. The advantages of this plan in regard to
safety and simplicity are very great, and the ease and nicety with which the load can be handled are very striking. The first application was to the 120 tons sheer legs in the Elswick Works, and the same plan has since
been carried out by the firm in a 160 -ton crane erected for the Italian Government at the arsenal at Spezia, and a 100 -ton crane at the new Princes Dock at Bombay. These craues are on "live" rollers, and are turned by a rotary
hydraulic engine acting on a rack attached to the roller path. An independent chain purchase worked by the slewing engines is provided for lifting loads up to 12 tons or 14 tons. A crane on this principle to lift 100 tons is now being made for the new Langton Docks at Liverpool,
under the direction of the engineer, Mr. Lyster. This crane will occasionally be used for masting, and the powe of the chain purchase is therefore increased to 40 tons,
and an arrangement is made by which the lifting cylinder and an arrangement is made by which the lifting cylinder way when the chain purchase is being used. The height of the jib-head from the quay is 112 ft . 9 in ., and the rake 55 ft .

In Fig. 2 is shown a movable "jigger" hoist, a class of machine now much used in docks for whipping cargo from that it can be worked at pleasure by a man standing on the deck or on a platform on the jigger itself. The lifting power of these machines varies from 5 cwt . to 20 cwt . The
rope or chain, by which the load is lifted, is passed over a pulley suspended from the rigging of the ship. These jiggers are also used
ordinary fixed hoist.
Hoists for shipping coal are much made at Elswick, proach the docks at a low level. These hoists lift the coal trucks to the required height, and tip them into a movable can be aot carried from hopper and end-tipping wacons The lifting cylinders are usually direct-acting, and with a view to economy in the consun on the down weight of the cradle and empty truck is made use of to force back the water from one of the cylinders into the accumulator.
Hydraulic capstans are very much used for hauling trucks in railway goods stations, and in connec-
tion with coal hoists. The bed-plate carrying the capstan-head and engine is mounted in trunnions in
a cast iron casing, and can be turned over when access is required to the engine. The casing is quired. Sir W. G. Armstrong and Co. are now introducing a new pattern of engine for this class of work, which acts directly on the capstan-shaft, and is fitted with
a valve of a peculiar form-Parson's patent-which is a valve of a peculiar form-Parsons patent-which is
common to the three cylinders. Hydraulic capstans are also used for hauling ships through dock entrances, and are made of powers ranging from 3 tons to 11 tons. These worked by hand in case hydraulic power is not available. The hydraulic driving engine is placed in a chamber alongis communuicated to the head by gearing.
Swing bridges may be divided into two classes-one i
which the bridge is lifted bodily from its bearings by which the bridge is lifted bodily from its bearing by a hydraulic press before being swung round, and the other in
which the bridge is permanently on rollers, either fixed or
"live." The combined road and railway bridge erected Queen's Dock at Glasgow, under the direction of Mr. Deas the engineer to the Clyde Trust, is a good example of the top, each 181ft. long and 25 ft . deep, over the centre of motion. The roadway is of timber sheathed with iroi bars, and is carried by a system of cross and longitudinal girders. The width between the main girders is 23 ft . 6 in ,
and there is a cantilever footway 5 ft . 3in. wide on each and . The hydraulic press is 5ft. 3in. diameter, and acts
side. on a transverse box girder rivetted to the under side o hydraulic cylinders The bridge is turned by a pair of to the und cyinders, acting through chains on a drum fixed for very heavy road and railway traffic, and the total weight of the moving parts, including counterweight, is
The swing
The swing bridge over the Tyne at Newcastle may be taken as an example of the second class, namely, that in which the bridge is permanently on the pivot. This bridge is for road traffic, and when open leaves two pas-
sages of 100 ft . wide each, one on either side of the centre. The main girders are each 277 ft . long and 24 ft . deep at the entre. The roadway is paved with wood, and has a clea width of 23 ft .9 in . There are in addition cantilever foot-
ways 9 ft . wide outside each main girder. The bridge ways 9 ft . wide outside each main girder. The bridge
turns on forty-two cast iron "live" rollers hooped with steel. The roller paths are of cast iron, the latter being bedded on the masonry of the central pier, and the upper bolted girders. The total weight of the moving parts of the bridge is about 1300 tons, and in order to diminish the pressure on the rollers, a hydraulic press is provided at the centre of motion which exerts a constant pressure of about 800 tons, thus relieving the rollers to
this extent. The turning machinery is entirely in duplithis extent. The turning machinery is entirely in dupli-
cate, and is on the central pier. There are two steam cate, and is on the central pier. There are two steam
pumping engines, each of 20 -horse power, two multitubular boilers, and two accumulators which are placed in two of the foundation cylinders. There are two hydraulic rotary engines, each of 60 -horse power, acting through gear on a
rack bolted to the upper roller path. The teeth of this rack bolted to the upper roller path. The teeth of this
rack are 13in. wide and 9in. pitch. The apparatus for rack are 13in. wide and tin. pitch. The apparatus blocking the nose end of bridge is worked by hydraulic power, and consists of two pairs of hydraulic presses with rams acting downwards on the abutments and the same number of sliding blocks. When the nose ends of the bridge are over the abutments, the girders are slightly
lifted, and the sliding blocks inserted between them and lifted, and the sliding blocks inserted between them and the resting plates on the abutments. The water is then exhausted from the presses, and the ends of the girders motions of turning and blocking are controlled, is placed on the overhead platform, which connects the main girders. Above this house is a dioptric light of the 7th order. The bridge is approached by two fixed spans, of 109ft. and 81 ft . long respectively. This work was carried out under the direction of the engineers to the Tyne Commission, Mr. J. H. Ure and Mr. Messent.
Another variety of the opening bridge is the drawbridge, which is used where the site is not suited for a turning bridge. The operation of opening one of these
bridges consists in lifting it from its bearings until the undersi is abo and then running it back on this roadway. The bridge is lifted by a pair of hydraulic presses near the quay edge, one under each main girder. The rams of these presses collers fush with rollers, on which and on other (fixed) roller path being fixed to the underside of the main girders. The bridge is run in and out by a pair of hydraulic cylinders.
Sir W. G. Armstrong and Co. are now erecting a bridge
of this class, which is a good example of its kind, over the 80ft. entrance to the Kattendyk Basin at Antwerp. The length of this bridge, which is designed for both road and railway trattic, is 159 ft ., and the width 30 ft . over all. is are two main girders, each 9tt. deep. The road way The total weight of the morres one including counterweight, is about 350 tons. The lifting presses are each $31,{ }^{\circ} \mathrm{in}$. diameter, and 3 ft . 2 in . stroke, and are hooped with
steel. The rollers are 3 ft . 6 in . diameter, and $12 \frac{1}{\mathrm{i} \mathrm{in}}$. wide, and are also hooped with steel, and the roller path on the bridge is of the same material. The hauling cylinders are placed below the rear end of the bridge.
For opening and closing dock gates three forms of appafixed at the back of the wall below the quay level, and fitted with a plunger and multiplying sheaves as in a crane or noist, the chain being attached at one end of the cylinder and at the other to the gate. Two such cylinders are required for each gate, one to open and the other to close.
This method has, for reasons of economy, been to some extent superseded by those to be described below, but has important advantages, especially where the gates are much exposed to the action of waves. In the second with an ordinary barrel or with a cupped drum, and driven by a rotary hydraulic engine. The machinery is kept entirely below the quay level, and a sunk capstan
head is provided by which the crab can be worked by hand in case of emergency, if the hydraulic power is not available. At the new Langton Docks, under the direcof Mr. Lyster, the machines for closing the gates have chain quickly and without waste of power. Rotary hydraulic engines are often applied to existing hand-power gate crabs. The third class of gate machine is a modification of that last described. The chains, instead of being fixed ou the gates, are attached to the lock walls, and pass over crab, which is placed in a chamber in the quay as near the eel-post as convenient. By this device the crabs for the opening and closing chains can be placed side by side and
worked by one hydraulic engine. The necessity for chain-
ways through the walls is also avoided, and the foundaion work is much simplified.
The simplest and best form of hydraulic machine for
opening and closing sluices is a cylinder fixed verticall opening and closing sluices is a cylinder fixed vertically
over the paddle or sluice door, and fitted with a piston and piston rod or plunger attached to the paddle. A hand orce pump, either fixed or movable, is usually provided for working the sluice by hand when required. In some cases a screw is used instead of a hydraulic cylinder, the nut being driven by a hydraulic engine.
It will give some idea of the extent to which hydraulic power has been applied to dock gates and sluices, if we state that at Liverpool and Birkenhead alone, Sir W. G.
Armstrong and Co. have, under the direction of Mr. Lyster, the engineer, erected about 262 sluice machines, and applied power to upwards of sixty-four pairs of gate The steam pumping engines which supply the water under pressure for working hydraulic machinery are for the most part horizontal, and the pumps are worked directly from the steam pistons, the piston rods being placed behind, and in the same line with the cylinders. Conthe larger engines, which are often constructed on the compound principle. Sir W. G. Armstrong and Co. hav now in hand an engine of this description for the Royal Albert Dock, which is a good example of its class. This engine-which is the third of the same pattern made for
the company, the first having been erected in the year 1874 - hanany, the first having been erected in the yea and two low-pressure cylinders 25in. diameter, the stroke being the same in each case.
Ancumul ressel is sometimes substituted for a weighted machinery for This plan was adopted in the case of the of which was constructed in the on the Tyne, the first sequently been carried out in several cases ashore and afloat.
Und
Under certain circumstances, as for hydraulic machinery for working guns on board ship, the accumulator is now to be capable of great and rapid variations of speed.
Sir W. G. Armstrong and Co. have recently introduced new method of adjusting the power of a hydraulic machine, such as a crane, hoist, or engine, to the work actually to be done, so as to economise the consumption of water from the accumulator. This apparatus, which is patented by Messis. Greathead and Martindale, is very simple, and is a description of injector, forming part of the working valve, and by which the water under pressure, as it passes from the pressure main through the valve into the working cylinder, carries with it a certain proportion of water from an open tank near the valve. The amount of water under pressure required to fill the cylinder is thus diminished-the extent of the reduction depending on the
difference between the full power of the machine and the actual force it is required to exert.
Hydrants for extinguishing fire are also made on this principle. The high pressure water from the accumulator being made use of to intensify the pressure of the water in ordiaty service pipes, so as to make it available for this purpose. These injectors are being largely adopted at the
Royal Albert Docks, in London, and are likely to prove of much value.

STEAM ENGINES AT THE ROYAL AGRICUL-
TURAL SOCIETY'S SHOW, DERBY. The Royal Agricultural Society's Show opened at Derby on Tuesday, so far as the implement yard was concerned,
under the most favourable possible auspices. The showyard is situated in Osmaston Park, about a mile from the town; and the site is exactly what was wanted, admirable shade being supplied in various places by noble beech trees, The soil is all gravel, and the ground stands high, so that even should rain fall a great quantity will be needed to
convert the surface into mud. The yard is larger than convert the surface into mud. The yard is larger than $12,750 \mathrm{ft}$. of shedding against 9780 ft , at Carlisle, and it is on the whole, well arranged. The system of numbering is, however, open to improvement. There are 293 stands, and the catalogue contains particulars of 5960 entries which, however, have not all been filled up; Messrs. Paxman, Davy, and Co., for example, having been too busy to exhibit although they took space, and the same may be said of other exhibitors. Derby is a town of 90,000 been found in prove it is, however, much dificully visit Leicester many have had to find quarters ances by rail. The Midland Rail way Company's works have done much for Derby, and it may be worth stating that the station with its works and sidings occupies no less thani 200 acres. another article we deal with the sheaf-binding reaping machines, a competitive trial of which will take place in August on a farm near Derby, and next week we shall speak of suc
mentioned

With three exceptions, the agricultural engineers of England show nothing new in steam engines at Derby Messss. Aveling and Porter, of Rochester; Messrs. Burrell and Sons, of Thetford, and Messrs, Richard Garrett and Sons, of Leicester. Messrs. Clayton and Shuttleworth, Robey and Marshall and Sons, of Gainsboro', exhibit no engines which present any specially novel features calling for description. The same may be said of the "Farmers"
engines, of Messrs. Howard of Bedford; Messrs. Ransomes, Head, and Jeffries, of Ipswich ; the Reading Ironworks Company; Messrs. Barrows and Stewart, of Banbury; Messrs. Turner, of Ipswich; Messrs. Brown and Maxman, Davey, and Co., Mr. Savage, of King's Lynn, and one or two other well-known firms, do not exhibit at all; and it is worth notice that very few firms show engines
in motion. If we say that the engines exhibited although
not new are of good workmanship and design, we say
nothing more than they deserve. Some makers-notably, nothing more than they deserve. Some makers-notably improve in this respect year by year; firms which we improve not name make no advance. They are either unable shall not name make no advance. They ars either una see
or unwilling to take a lesson from others, and so we see or unwilling to take a lesson from others, and so we see year with nuch placid contentment on the part of the exhibitor, whose customers probably never find their wa into a showyard, or avail themselves of any opportunity
the
The three firms which we have cited as exceptions to the
general rule, exhibit compound engines ; and the type of general rule, exhibit compound engines; and the type of
compound engine adopted has obviously been determined compound engine adopted has ansiderations in which the question of economy of fuel does not necessarily play an important part. The compound system for portable and traction engines has
not, indeed, been adopted so much to save fuel as to meet a popular fancy. There is a fashion in steam engines just as there is in ladies' dress; and if the public will bu compound and neglect simple engines, the engineer wil
do well to consult the popular taste ; but it is evident that it is highly desirable that each firm should have a compound engine of its own, and so keep clear of rivals. There is a story told of a clockmaker who undertook to invent new escapement every day for a year, provided they
were not all to be good escapements, anid it is said were not all to be good escapements, and it is said
that he accomplished his task. When such lead ing firms as Messrs. Aveling and Porter, Burrell, Garrett, and Marshall have begun, others must follow
and it is quite as easy to invent new methods compounding as it is to invent new escapements kingdom should not exhibit a compound engine of different type next year. We do justice if we add that up to the present moment
Messrs. Richard Garrett and Sons are the only makers of compound portable or traction engines who have given u any proof that such engines are more economical than the ordinary simple portable engine. Probably the time has not yet come for other firms to do this, and Messrs. Garrett have pernaps been exceptionally fortunate in being in a position to test a compound engine for economy. But statement of the work actually got out of compound engines by the firms making them should not in justice to
themselves and the public be much longer delayed. Is it themselves and the public be much longer delayed. Is it
hopeless to expect the Royal Agricultural Society to test compound engines next year
The compound engine exhibited by Messrs. Aveling and Porter we illustrate fully on page 44. It is intended for use on tramways, in chalk pits, and such like, and as a tentatively as the forerunner of a new type of passenger tram car engine, and it has much to recommend it. It is carried on two spiral springs at the back, and one sustained on three points of support. The crank axle and the driving axle are carried in an H frame at the back of the fire-box, which frame is one casting, and sides of the fire-box, so that the engine can rise and fall without affecting the distance between the driving axle and the crank shaft. As the engine is carried on three points of support, it is not likely that much bending or more prticularly tubes, and the exhaust is taken into a belt round the smoke box, and passing downwards, then rises through a shor above a petticoat pipe, so as to distribute the draught silent, and this end is we believe perfectly attained. The engine is compound, Kingdon's patent. The arrange a Dartmou steam launches. We give a section of the cylinders and No packing is used between the cylinders. The piston rod has a series of grooves turned in it, as shown, are informed, quite inappreciable in leakage is, we deal of travelling be seen that the steam has a good as to whether the engine is more or less economical have hitherto been made by Messrs. Aveling ind Porter we cannot say. The engine was only finished in time for the show with great difficulty ; and its unusual it wence of fimish bears testimony to the haste with which economy has yet arrived. When the test takes place it ought not to be forgotten that the boiler is of exceptionally good design, and will probably give a high evaporative that "careful analysis of a large number in a circular diagrams-Richards' indicator-taken in trials before referred to, has proved beyond doubt that the engine will evaporated per hour, and power for every 1610. in wate at 75 lb . pressure, even in small sizes." It is somewhat The eartening to find engineers writing thus in 1881 no inforysis of a diagram, however carefully made, supplies actually passes through the cylinder. If 16 lb . of water per horse per hour were accounted for by the indicator But the water is very far indeed from being economical actually used, are two very different quantities.
Messrs. Burrell and Sons, of Thetford, show the most illustrate it at another at Derby. We shall probably wish drawings to be published. It is what is called a 10-horse power traction engine, with a Landore steel gear and a new steam steering gear. It is a curious type gear and a new steam steering gear. It is a curious type
of compound engine, but very simple. There are two
just described, but an ingenious conical metallic packing
is introduced between the two cylinders, which packing is automatic. The high-pressure cylinder is double-acting in a sense ; the low-pressure cylinder is single-acting, and plays the part of guides, the end of the connecting rod piston. This piston is fitted with a broad junk ring o take the strain due to the angular thrust and pull of the connecting rod. It is also provided with trunk rumning in a bush, to further relieve the piston. There is one slide valve for both cylinders, as in Kingdon's engine ; steam is admitted first to one side of the small piston. The engine then, as a Cornish man would say, exhausted into the opposite end of the small cylinder and into the space behind the large piston. The small piston is then in equilibrio, the same pressure being on both sides, and the engine "goes out of doors." At the next stroke steam is admitted again to the crank end of the small cylinder, while the steam now in the cylinder exhausts, and so the process is repeated. The diagrams

which we annex will serve to make the action clear. There is, it will be seen, no gap between the two, but instead thkes place the monent the exhaust from the small cylinder takes place. At first sight it would appear as though the whole of the steam passing to the opposite side of the small piston did no work on the expansion stroke and was wasted, but this is not the case. In the ordinary compound engine from the total pressure on the large piston has to be deducted the back pressure on the small piston. In this engine, of course, no such deduction has to be made, and the large cylinder is consequently much less in diameter than it would otherwise have to be, which is an important advantage, as it permits the compound engine to be constructed on the same centres as the ordinary simple engine. The arrangement is, we believe, the invention Mr. Burall, manager to Messrs. Burrell and sons, in our pages. Without drawings it would not be easy to make the mode of its application to this engine intelligible; its action leaves nothing to be desired. We con of Mr . Burall. This consists of two small vertical double-acting cylinders, working by the aid of dog links a small rank shaft, the end of which carries a worm which gears usually fitted to traction engines. The little steering engine is bolted well forward to the side of the water tank under the engine. The admission to and exhaust of steam from the engine are effected by aningenious rotary slide valve, which is a long cylindrical bar, fitted with ports and packing and caused to revolve by the engine. It would be impossible and caused to revolve by the engine. It would be impossiole It must suffice to explain the principle of the action of this valve:-One end of it works in a nut; this nut is caused to evolve by the steersman on the foot plate by a hand wheel. For each turn given to this hand wheel and to the ut the engine will make one turn; the moment the steers man ceases to turn the nut the slide valve screws itsel endways in it and shuts off steam, stopping the steering following the hand ftes always when in motion him. As the slide valve is double-acting the engines will run in each direction, always following the hand of the steersman. This gear seems to be as well adapted to steering ships as steering engines; and would laso be very
suitable for operating the link motion of large marine suitable for operating the litk motion of large marine
engines. It cannot overrun itself, and when left to itself engines. It
The third firm we have named, Messrs. Richard Garrett and Sons, show a portable engine which is new in its wa as is Messrs. burrells traction engine. This is a compound during a test run on the brake we reported in The Engi NEER last year. The novel feature about this engine veEr last year: $h i n e$ novel feature about whis engine
is the boiler, which, with the engine, we illustrate on page 41. The fire-box is of peculiar shape in
cross section, as shown by the diagram, page 41. At the cross section, as shown by the diagram, page 41. At the
tube plate end it is fitted with a vertical tube about 5in. in diameter outside. In this tube is established a rapid circuation when the furnace is alight, preventing the accumu the tube is fitted a swinging door faced with fire-brick Whe tube is fitted a swinging door faced with fire-brick. then these doors are open access can at once be obtaine the fre-box end of the tubes, when closed they make bridge, and over the top of this bridge all the products of combustion must pass on their way to the flues. Six of the top flue tubes are fitted with prolongations which extend through the smoke-box to the outer air. When the fire is alight there will be a draught up the chimney
whether the engine is at work or not, and this draught whether the engine is at work or not, and this draught This air is heated by traversing the smoks in question. boiler, and it meets full tilt the products of combustion oming over the top of the bridge. The result is a mixing of these las prevention of been carried out with a straw burner fitted with this arrangement, with a result of ernite eraporativ duty of nearly 25 per cent. With coal also the result fue tubes for the admission of air to furnaces was tried years ago by Edward Wilson in locomotives. His arrangement has been described and illustrated by Holley. But

Wilson's use of the principle was different from that of
Messrs. Garrett, in that he took no precautions to make the entering air encounter the escaping gases and mix with bridge is, so combination of these air tubes with the bridge is, so far as we can see, quite new. The use of
bridges, we may add, and deflectors of all kinds is very old, but it is quite possible to makee a new combination of The diaphragm shown in the where they have failed is employed only to distribute the hot air equally through the box, to regulate the draught, and to act as a spark arrester in some degree. . The fixed engine which we illustrate. This engine is identical fixed engime which we illustrate. This engine is identical
with that on the boiler of the portable engine. A cast iron tank bed-plate is used, which being of just the shape and dimensions of the portable boiler, the engine will fit either independently. This is an ingenious way of making one set of patterns do for two types of engine, and the also exhibit a tandem compound portable engine. We give sections of the cylinder and valves on page 41. This may, we understand, be regarded as in some sense, an ex perimental engine; only a few runs have as yet been mad with it, and no decided opinion can be pronounced on it performance of the double-cylindand, as yet equalled the it has given very good results.
The engines we have thus described and illustrated are the most noteworthy in the showyard. It may be urged that Messrs. Burrell, by introducing steam steering gear, graded. This is a weak argument. Those who use engine are becoming in some way better educated, and are quit satissied with machines which they would not have though of buying a few years ago. The modern traction engine is all over wheels, and gearing, and pins, and joints, and
cocks, and gauges, and lubricators, and nuts, and bolts and cotters, and clutches, but no one objects. Stean steering gear will be found to meet a want. Messrs Burrell have led the way, and the other makers of traction engines will have to follow. Half-a-dozen engines wil probably be found fitted with some form of steam steering gear at the Smithfield Club Show in December. To attempt to stop progress because a little extra complication trying to ke would, in the present day, be as judicious a Fowler, of Leeds, exhibited the "Yorkshire" Mess a Kilburn for the first time two years ago. Now there are four other important firms, namely, Messrs. Aveling and Porter, Burrell and Sons, Marshall, Sons, and Co., and Richard Garrett and sons, making compund engimes. The sheafless than to which we rer another place. It has come to be understood that farming, to be made to pay, must be conducted on a large scale as a manufacturing operation with the best machinery; and the farmer will no more object now to necessary complication than does the cotton spinner wers that the farmer will not hesitate to take into the field, and to work with success, mechanism which, less well made, would have to be worked, we had order.
Although no other firms than those named show novel to be figmes of a startling character, several engines ar example, horizontal engines of considerable dimensions will Gainsborough, and Messrs. Ruston, Marshall and Sons, coln, well worth examination. Messrs. Marshall also show a great 14-horse power compound engine, similar to that which and Poxnbited at Islington last year. Messrs. Aveling portions have been modified, the cost has been reduced by without any loss of efticiency been diminished by $1 \frac{1}{2}$ tons obtained by shortening the fues and gicis been diameter, while increasing their number. The road wheels and the iron rims, 5 ft diameter instead of 6 ft . engine shown hys are of chilled cast iron. Another for its road wheels, which are 7 ft . high. The rim of each wheel wascast in one piece, of steel, by Messrs. Jessop. These engines made by the Rochester firm are improved year after year. 1881 is no exception to the rule
Messrs. Fowler and Co., of Teeds, show six engines of various dimensions, but nothing new save one engine,
which is different from those built before by the firm in prop in mothing else. It has been constructed throughout from new paterns; it is quite unnecessary to say a word in praise
of either the workmanship or design of the engines made by this firm. Messrs. Hornsby and Sons, of Grantham, exhibit almost for the first time a traction engine. It is as nearly as possible the same as that which they showed
last year at Islington, and it is claimed for it that narrowest engine in the showyard. In order to keep the wheels close in horer it has been found necessary to reduce the size of the vertical wheels of the jack-in-thethat they will be quite competent to bear the strains noteworthy fact that Messrs. Hornsby now make all their own steel castings from the crucible; and with, to judge from the specimens we have
seen, uniform success. These castings are; indeed, as sound and clean and free from holes and pits as those of the most eminent steel makers in the kingdom. The great experience which the firm have had in making maseavith
iron castings no doubt contributes to their success with steel. The steel castings are made from special mixtures, a considerable proportion of old files being used. A Aigly
sight it might be imagined that these would be too highly carbonised for the intended purpose, but this is not found to be the case.

COMPOUND ENGINE CYLINDERS.
MESSRS. AVELING AND PORTER, ROCHESTER, ENGINEERS.

SECTION THROUCH EF
Mr. Darby shows his steam digger, not very dissimilar from that which did such good work at Carlisle last year. There are in this engine certain valuable improvements. It is steered while ploughing from the front now, instead of from the rear. The digging fork frames are no longer connected in any way with the boiler ; each has its length selves are selves are made of wrought iron instead of steel, which wave been in reduced to prevent noise. The throw of the crank has been , tarmented from $5 \frac{1}{2}$ in to 6 in and the crank has been augmented from $5_{2} \mathrm{in}$. (o bin., and where nuts and bolts were used before, and so the encine where be to work, or ready for the road in much less .an be got understand that this digcing machine is growing in popularity. Mr that this digging machine is growing in popularity. Mr. Darby has already done great dean season. Thus the and it are justified by the results of experience. As an example

SECTION THROUGH A.B.

SECTION THROUGH OD.

The Durham and North Yorkshire Engine Company, of Ripon, exhibit a new traction engine. This is a new branch of work with the firm apparently, for the engine is the fifth they have made. In general appearance it much The cylinder is engines of Fowler or Aveling and Porter. the steam, admitted high up, descends through a cylin-drical-balanced throttle valve worked by the governor and is compelled to rise again to get into the cylinder. It is thus a good deal beaten about, and the water is " knocked" out of it on a well-known principle. The cylinder is the only casting bolted to the boiler. The fire-box is enclosed in a species of wrought iron cradle, the top of which forms the cross-bridge for bracing the horn plates together. The engine is carried on coiled springs at the back of the fire-box, very much as Messrs. A veling and Porter's tramway locomotive-page 44 -is carried ; but the designer had here three axles to provide for instead of two, and his bearings are fitted in two cheek plates of wrought iron somewhat of the shape shown in the accompanying

SHANK'S HORIZONTAL ENGINE.
of the opinions entertained, it is worth while to quote a letter from Mr. W. J. Beadel, of Springfield Lyons, near Chelmsford, to Mr. Darby :-
Inclosed is a cheque for $£ 915$ s., viz., $6 \frac{1}{2}$ acres at 30 s. which I pay with the greatest satisfaction. The work done upon my farm last week with your Digger is with out exception the most perfect piece of steam cultivation I ever witnessed. The small portion of the field (clover fed off) which I attempted to plough with horses, but from the hardness of the ground was obliged to relinquish is the only part which resists the action of the Bedford harrows and Cambridge roll, and must remain until rain falls to moisten the clods. That portion dug by your machine (twice in a place), I have been able to get pul verised, and in fact prepared for cole seed or swedes. The difference in the appearance of the field now and seve days since is almost incredible."
Mr. Darby publishes the following statement concerning the cost of digging and ploughing. We express no opinion concerning its accuracy, but we may point out that prices vary with the district to some extent. The figures apply to the relative cost of work per day on ten acres :-

diagram. Thus all three axes are kept at the same relative distance, the plates with the road wheels following the level of the road, while the boiler rises and falls on the springs.

Time would fail us did we try to do more than allude to the engines of Messrs. Dodman, of King's Lynn ; Nicholson, of Newark; Turner, of Ipswich; Bagnall, of Stafford, who show the Tunis, a well designed and finished diminutive locomotive, and a whole host of other makers, who have all earned a first-rate reputationfor small steam engines. At the stand of Messrs. Abell, of Derby, will be found some small engines of neat design, and good workmanship. The connecting rods are of cast steel channelled at the side. These engines are sold at a low price. Messrs. Alexander Shanks and Co., of Arbroath, have a very fine display of engines and steam pumps. One of the engines of a new pattern we illustrate above. It has a great many good points to recommend it, as will be seen from the engraving. Of the pumps we shall have more to say. Messrs. Deakin and

Parker show a componnd engine for the electric light. Two simple engines with distinct bed-plates connected by cross frames drive one crank shaft; externally the cylinders are of the same size, but the high-pressure cylinder is fitted with a liner to reduce its diameter, the space between the liner and cylinder forming a jacket. The fly-wheel has two sets of spokes and one turned rim for a belt; between the spokes works a Hartnell governor, similar to that used by Messrs. Turner, of Ipswich. Both engines are fitted with double excentrics and Mayer's valves. The governor shifts the cut off excentrics round on the crank shaft. This is a very well-made engine and should gire very equable turning. At the stand of Messrs. Priestman Brothers is shown Keable's patent boiler, a section of which we give in the accompanying engraving. This boiler is made with an inverted fire-box, forming a water space, having a single cross tube through which the hot air is conducted into the chimney. By means of the scum cock shown, a very ready and simple method of cleaning out the boiler is provided without drawing off the water.

KEABLE'S VERTICAL BOILER
We have now, we believe, noticed all the engines which call for special remark. We have said nothing, nor is it necessary that we should, of a great many other engines, more or less good in design and workmanship. We have seldom visited a Royal Agricultural Society's show in which less rubbish in the shape of steam engines was to be seen. It was a noteworthy circumstance that compara tively a small number of firms showed engines in motion. An explanation of this fact may perhaps uncertain character of the weather. This is the fist fine weather show held in three years. Kilburn was disastrous, and at Carlisle the showyard wa of mud on the second day. A high price is paid for stands, and little is to be gained by showing engines under steam which have to be reached by perilous and divergent path across narrow planks, a false step fre destruction. It is gratifying to are very busy nearly all the exhibitors can say that they are very busy and ful of orders.

HEAF-BINDING MACHINES AT THE ROYAL AGRICULTURAL SOCIETY'S SHOW, DERBY.
In 1876 the Royal Agricultural Society offered a gold medal for an efficient sheaf-binding machine either attached to a reaper or others entered machines for trial Three of these makers did not, however, send machines

COMPOUND POPTABLE ENGINE, R.A.S. SHOW, DERBY. MESSRS, RICHARD GARRETT AND SONS, LEISTON, ENGINEERS

even for exhibition, and two others who had made degree of perfection had not been arrived at to suit Engmachines for binding with string, withdrew from the lish requirements. A silver medal was, however, awarded field when the trials took place at Aigburth, namely, and high commendation was bestowed on the binding

GARRETT'S STATIONAREY COMPOUND ENGINE.
those of Mr. C. H. McCormick, Mr. W. A. Wood, and mechanism of Messrs. Osborne and Co.'s machine. The Messrs. D. M. Osborne and Co. Some fair work was offer of a gold medal was, however, repeated by the society, done on clean standing barley and oats, but the gold and renewed competition took place in August, 1878, at medal was not awarded, on the ground that a sufficient Abbots Leigh, Bristol. Ten machines were entered for ex-
hibition, eight being intended for competition, but only three went through the trials. These were the machines of Messrs. McCormick, W. A. Wood, and Messrs. D. M. Osborne and Co. ; the Johnston Harvester Company's machine, a string binder, going through part of the trials. The judge in this case awarded the gold medal to Mr . McCormick, as fulfilling the conditions laid down, and highly commended Mr. Wood's machine.* String-binding machines were hardly better represented than at the previous trial, and it is here that the first great difference is observable in the machines previously shown and those at Derby. The latter are all string-binding machines, though some are so made as to bind with wire, with more or less change of parts. In America it seems that the objection is not now very frequently urged against wire, and the National Millers' Association has withdrawn a resolution previously passed respecting the price to be paid for grain from wire-bound corn. Magnetic machines became necessary to separate the short pieces of wire from the wheat previous to grinding; but it was soon found that these machines extracted so many nails and other pieces of metal besides the wire, all of which were highly injurious to mills, that it was evidently economy to use them for all corn. The objection on the part of the millers thus ceased, and Americans say that animals know better than to eat wire in injurious quantities or forms, and thus, in spite of what has been said about wire in fodder, wire is still largely used in America, though England has decided against it.
The machines exhibited at Derby-in response to the repeated offer of the Society of a prize for the machines which shall be proved to be the best at some trials in about a month's time-are divisible into several classes:A. Machines which tie with string only.
A. Machines which tie with string or wire.
C. Machines of which the binder forms part of a combined sheaf-binding reaper.
*The knotting and cutting mechanism of this machine was very fully *The knotting and cutting mechanism of the
illustrated in THE ENGINEER of the 17th August, 1877.
D. Machines attached to an ordinary sheaf delivery

reape

E. Machines attached to a form of horse rake or gleaner, and intended to pick up and bind the crop after cutting by an ordinary reaper.
F. Machines which
F. Machines which ordinarily bind the sheaves by time
at set distances apart. at set distances apart.
G. Machines which bi
G. Machines which bind the sheaves by quantity or veight, irrespective of distance apart.
Most of the machines exhibited belo and C, and to these attention may be first directed. The first met with is that of Mr. W. A. Wood. The reaper
portion is of the general form known as the Marsh machine, portion is of the general form known as the Marsh machine,
in which the crop as cut falls on an endless travelling canvas platform, by which it is delivered to the lower part
of and between two inclined endless canvas elevators, by of and between two inclined endless canvas elevators, by
which it is delivered to the binding platform, as illustrated in The Everiverer, 8th March, 1878. . The string binding
mechanism, however, bears no likeness to the wire binding mechanism, however, bears no likeness to the wire binding
apparatus there and elsewhere illustrated. The crop is continuously delivered to the binding platform, and continuously aelivered a lever by a series of short tines
is packed up against
jointed to a small revolving barrel. The lever against jointed to a small revolving barrel. The lever against
which the packing is done is held in position by a spring, which the packing is done is held in position by a spring, thrown out of gear as soon as a sufficient quantity
is packed for a sheaf of the desired size. By is packed for a sheaf of the desired size by
the same movement the binding mechanism is put
into gear, and the sheaf tied and ejected. As soon as into gear, and the sheaf tied and ejected. As soon as
the ejection has taken place, the packing tines are again thrown into gear, and the binding mechanism out of gear. The whole of the sheaf-binding mechanism is above the
sheaf, which is tied at the top, and a peculiar feature of the machine is that, if the string breaks any where below the binding arm point, it re-threads itself, and it is only known that the string has broken by the appearance of a
very small sheaf. The breaking of the string is thus, it is very small sheaf. The breaking of the string is thus, it is
said, seldom attended with the necessity for stopping the
machine. The knotting of the string in this machine is machine. The knotting of the string in this machine is performed by a pair of open hooks on one small vertical
hollow spindle, the one hook having a motion similar to the other, which it follows under the resistance of a small friction-grip spring belt, by which the hooks are caused to
grip the string for a brief interval during the cutting, grip the string for a brief interval during the cutting,
which is performed by a small knife. It is of course impossible to describe the mechanism of the
knotting and cutting apparatus without the aid of knotting and cutting apparatus without the aid of
drawings, which we are at present without, and can only indicate the general character and essential differences in the mechanism of the machines exsibited. Beside being so constructed that the uniform size of the sheaves is
automatically preserved, the whole binding mechanism may be thrown out of gear by the driver when necessary,
but this will seldom be required, as in turning at the corners, for instance, less corn is cut, and the knotting mechanism is automatically kept out of gear until a
sufficient quantity of corn is packed to make a sheaf. Mr. Wood's machine presents several excellent features, almost all the parts are simple in form, and have obviously been
constructed with a view to cheap construction in large numbers and facility of repairs and renewals.
The next machine met with of this class is Messrs. King and H. King, of Newmarket, near Stroud, Gloucester. The
reaper part is similar in character to that above described, but the binding mechanism is essentially different. Messrs. King and Bomford, like several others in this country, have gone through a prodigious amount of labour in pro-
ducing the present form of their machine, and also like ducing the present form of their machine, and also like office for inventions, many of which have become more or
less obsolete before the present form of apparatus was less obsolete before the present form of apparatus was to replace wire. This machine also belongs to classes A ,
C , and G , but instead of the period of binding the sheaf being determined by its size, it is determined by
weight. The crop, as delivered by the elevator, falls
upon a number of arms forming a kind of grid upon a number of arms forming a kind of grid
platform, a little above the binding platform proper.
This grid is kept up by a weighted lever, and as This grid is kept up by a weighted lever, and as
soon as the neecessary weight of crop has fallen upon it to
depress the grid, the binding and pressing arms and depress the grid, the binding and pressing arms and
mechanism are thrown into gear, the sheaf bound and ejected, and the binding mechanism thus again thrown out
of gear until the neecssary weight for the next sheaf has accumulated upon the grid. The knotting and cutting apparatus in this machine is all under the binding plat compound horizontal slowly-revolving face cam of rather
large dimensions. The knotter consists of a revolving large dimensions. The knotter consists of a revolving
hook within a tube, which receives both a revolving and reciprocating motion from the cam. The binding and
pressing arms in this machine are of considerable size, but pressing arms in this machine are of considerable size, but
do not necessarily take more power to work than the
smaller arms of Wood's and other machines. The smaller arms of Wood's and other machines.
machine is well made, and the parts appear to be of
muther sufficient size and strength to perform the work for which they are designed; but it may be suggested that the
period of binding the sheaf may possibly be affected period of binding the sheaf may possibly be affected and which may sometimes cause the sheaf to descend a
little earlier than the counterbalance weight would allow little earlier than the counterbalance weight would allow
when the machine stands still, or the reverse may take When the machine stands still, or the reverse may take
place. Possibly a spring may be found more effective in securing uniformity than a weight.
Co., and one of those by Mr. Bamlett, need no description, as they are constructed under the patent of Messrs. King and Bomford. Mar. Bamet The knotting exhibits a new machine in this same class. The knotting
and cutting mechanism is beneath the binding platform, cutting of the string is effected by a circular knife, but the knotting apparatus is of the tube and internal hook knotting apparatus is of the tube and internal hook
character. Its exact form cannot be described, as the machine was not completed at the time of our visit, but
was in the hands of the fitters in preparation for the trials,

The next machine in this class, or in the three classes A, C, and G, is that of Messrs. Richard Hornsby and
Sons. In this machine, as in Mr. W. A. Wood's, the whole of the knotting and cutting gear is above the pla form, the knot being tied on the top of the sheaf and in sight. The mechanism is the same in principle as that of
Mr . Wood's machine, but the knotting hook is of the hollow form, with an internal hook of the crochet hook character for drawing part of the string through a loop made by the revolving hook and tube. This apparatus is
amongst the simplest shown, and the parts are cheaply produced and easily renewed; but it would be difficult or impossible to describe it without drawings.
The Johnstone Harvester Company shows the other machine in these classes. The knotting, cutting,
and sheaf-forming apparatus are all above the and sheaf-forming apparatus are all above the the top of the sheaf. The period of binding is automatically determined by size or quantity of corn, the
knotting mechanism being somewhat different from either of those above referred to, though the knot is of the same form. The binding platform is not horizontal as in the other machines, but inclined to the part at which binding takes place, the edge of the table being fitted with flaps, which fall down when the sheaf is tied and allow of its ejection. The knotting hook is of a simple form, and the string is
severed by a simple knife blade. The parts are all such severed by a simple knife blade. The parts are all such
as can be cheaply made and with facility renewed. Messrs. as can be cheaply made and with facility renewed. Messrs.
Samuelson and Co., Banbury, exhibit two well-made machines fitted with this form of binding apparatus and one of their low level binding platform machines, also Thed with this string binding gear.
The next machines to be noted are those which comprise the classes A, C, and F , namely, the combined machines which bind with string and by time, instead of by size of
sheaf. The first of these is that of Messrs. J, and F sheaf. The first of these is that of Messrs. J. and F.
Howard. This machine has not the appearance of bein Howard. This machine has not the appearanse of being
a combination of two American machines. The knotting and cutting apparatus is under the binding
platform, and the binding takes place at set interplatform, and the binding takes place at set inter-
vals, but under the control of the driver's foot. The knotting and cutting mechanism is contained in a small wrought iron box frame, which, instead of being fixed as in the machines already described, has a recipro-
cating motion to and fro on the binding table. Under the cating motion to and fro on the binding table. Under the and 4in. wide, provided with one zig-zag channel ; this takes the place of the moving cams of other machines,
motion being communicated to the mechanism by smal motion being communicated to the mechanism by small rollers projecting into the zig-zag channel. The binding shown, and is of such general form thatit may be produced in duplicate for renewals, \&c., with sufficient facility to make fitting in each individual machine unnecessary. A needle works within the hook, but it is also strong
in form, so that in making the knot it is not likely to break in catching the string, and drawing it through the loop. Most of this mechanism is of wrought
iron or steel, which is perhaps somewhat suggestive of expensive fitting, in assembling the parts, which may not be soseverely felt in the works as out in the field when renewals are wanted. There is no reason, however, why all these parts should not be made as exactly alike as parts of rifles, \&c., and it is noticeable that the price of
Messrs. Howard's machine is lower than most of those
exhibited The arrangement of the device for cutting the exhibited. The arrangement of the device for c
Thenextmachine of classes A, C,F, is that of Mr. G. Kearsley, of Ripon. This machine is also distinct from the American machines in design, and is Mr. Kearsley's invention. The binding and pressing arms are above the binding table, and the knotting and cutting mechanism beneath it. One motion by shat driven by a paird grooved cylindric cam and one small tappet cam, to the knotting hook and to the cutter and gripper, which are in one piece, and in this case travels up to the knotter as the knot is made, so as to binding and pressing arms are simple in form and in machine is less in height than others, and the parts of the binding mechanism are less in number than in some
of the others described. The period of binding is set, but the apparatus is under the control of the driver
The only other machine in these classes belongs also to mechanism, wire may be used instead of string, the extra set of apparatus for wire binding costing a few pounds. London. In thexibited by Messis. Au.nd pressing arms are similar in form to those of the King and Bomford machine, and the binding mechanism is all below the binding essentially different from any others, though the hook with internal tube and looping needle is also found in Messrs. Hornsby's machine. All the mechanism in Messrs. Aultman's machine is worked by one face cam on a horizontal shaft, and no machine in the show tied its sheaf Co. and Mr. McCormick send machines, but not those they intended to show, the machines of both these makers being detained by the stranding of the Britannic. As that time for the trialsif not for show on the last two or threedays. In Class D only one machine is exhibited, and this by Messrs. Kingsford, Fairless, and Co., of Kingston-on-Thames. It belongs also to clery reaper with the quadrant platform removed and replaced by one carrying a number of endless leather belts crossed by wood strips, and running rollers kept tight by springs upon the roller bearings. A
little above the knife-bar is a roller revolving at a sufticient speed to carry the crop on to the endless leather belt platform, and another roller is placed close to the knife-bar to carry the straw when short on to the endless platform. The is placed at the rear of the main wheel of the machine.

The binding mechanism is the same as that employed in a machine of Class E, and consists of gathering, pressing, chanism below the travelling platform all chanism below the travelling platform, all fitted in a small box completely closed with the exception sists mainly of a prong hook and a split crochet hook, the necessary motion to these and the cutter knife being conveyed by one simple connecting rod attached to an interveyed by one simple counecting rod attached of the small mechanism is very compact, and offers in this respect some advantagesnotsecured by other machines. Thetension on the string is automatically varied, so that it runs loose when
the string is being drawn out to encircle the sheaf, and the string is being drawn out to encircle the shea, and is tight when the knotting and catting are performed.
The binder involves no additional levers for the control of the machine by the driver.
Turning now to Class E we may first mention that of Messrs. Kingston, Fairless, and Co. In the front of the machine is a number of rake teeth like those of an ordinary
horse rake, and above is a pair of double or tong teeth horse rake, and above is a pair of double or tong teeth
which take the crop from the gathering teeth and deposit it at the rear of the machine. In passing there it is encircled by the binding string, and one part of the central combined pressing and binding arm, directs the string into the slot in the binding mechanism box where it is caught
by the revolving knotting hook and tied. A feature in the mechanism is that the knot is tightened by it from the supply string, so that the tightening does not depend upon the expansion of the sheaf after it is liberated from the cutter. The knotting and cutting mechanism works smoothly, and though it needs to be nicely made, the parts may be made of sufficient strength, and of forms which admit of facility of production and repairs. The little box containing this mechanism can be easily removed from the machine for storage in winter or for repairs,
and a duplicate of this box of apparatus might advantageously accompany each machine. The machine is mounted on three wheels in the same line, so that should one wheel be over a furrow the others carry
the machine at the proper level. A friction strap-brake is applied to the wheel from which the binding mechanism is driven, so that in case of any obstruction the whole apparatus ceases to operate until the obstruction is removed. control of the driver, so that the machine belongs to classes A, E, and F .
Another machine in Class E, is shown by the Johnston Harvester Co., and this belongs also to Classes A and G. The machine is carried on two wheels, and collects by
tines, but the crop is raised to the binding mechanism by means of an apron of endless tined chains. The binding apparatus is fitted with a pair of packing tines, which press the crop against a lever, the latter being kept in
position by a spring; but as soon as sufficient corn is position by a spring; but as soon as sufficient corn is
pressed in the lever gives way and moves a clutch, by which the packing tines are thrown out of gear and the knotter into gear. The binding apparatus has several points of resemblance to that of Mr. Wood's, and the
new one of Messrs. Hornsby, and the parts are simply new one of Messrs. Hornsby, and the parts are simply
made. The knotting takes place at the top of the sheaf, the whole of the gearing being above it, and consisting of cheaply made and easily renewed parts.
Another machine of this class-and which also belongs
Class B, A, and F-is exhibited by the to Class B, A, and F-is exhibited by the Notts Fork and
Implement Company, of Ranskill, Bawtry, Yorkshire, and Implement Company, of Ranskill, Bawtry, Yorkshire, and is made under the patent of Mr. J. G. A. Walker, of Danes
Hill,Retford. In this machine the knotter is carried in a tube mounted in a slide having a simple reciprocating motion. The string is passed round the sheave by a binding arm,
which takes it from a quantity collected by tines, and passed up a metallic guiding surface or apron at the rear of the machine. The machine presents some good
features, but we cannot describe it without the drawings, which we shall be enabled to give shortly.
The remaining machine, which is also of Classes E, A, and F, is exhibited by Mr. G. Spencer, of Duffield, Derby, as made for him by Mr. W. Abell, of Derby. It is a smaller and, perhaps, lighter machine than either of the others, and is intended, like the two first-mentioned, to gather either after swathe or sheaf-delivering machines. All the machines hitherto described tie either tight slip knots or
double black knots, but this one of Mr. Spencer's simply double black knots, but this one of Mr. Spencer's simply
twists the ends of the binder and tucks them under. This, twists the ends of the binder and tucks them under. This, Theugh not a knot at all, seems to hold firmly on the sheal. ejected, and is put into gear again by the driver when the sheaf is collected.
There are several other matters connected with these machines and others of their class to which we shall refer in another impression. The sheaf-binding machines we
shall more particularly describe when the competitive trials take place in a few weeks time.

English Enginss.-In the United States a startling bit of news comes from Connecticut. We hear that the organisation of a joint-stock company in Hartford to manutacture an Engish engine
is proposed. A Hartford capitalist holds the exclusive right for
it its manufacture in the States, and has sent agents to England to look into the subject. What engine can this be? Can it be possible
that an English engine can be made which is better than the
So product?
South Kevsivgron Musevin.- Visitors during the week ending July 9 th, $1881:-$ On Monday, Tuesday, and Saturday, free, from
10 a.m to 10 p.m., Museum, 8023 ; mercantile marine, building 10 a.m to 10 p.m., Museum, 8023 , mercantile marine, building
materials, and other collections, 3377 . On Wednesday, Thursday and Friday, admission 6d., from 10 a.m. till 6 p.m., Museum, 2232; merantile marine, building materials, and other collections, 425. Total, 141,07 A. Average of corresponding week in former
years, 17,642 . Total from the opening of the Museum, $20,127,806$. years, 17,642 . Total from the opening of the Museum, $20,127,806$.
THE BuENOS AYRES INTERNATITNAL ExHBrITITN OF MACHINERY, sce.-Mrative of thas exhibition in England, informs us that repre now received instructions from Buenos Ayres to the effect that it is definitely arranged to open the exhibition on February 15th, 1882 a a copy of a decree by the Argentine Government granting
the use of the Plaza Once de Septiembre in which to hold the machinery section of the exhibition, and which is signed by the President of the Argentine Repuns anc , has also syres.
Mr . Hayes by the Commissioners at Buenos

RAILWAY MATTERS

The length of railroads built in the United States in the year ending April 1 oft, 1881, we
preceding twelve months.
THE final link of the Darjeeling Steam Tramway was opened on
the 4th inst. Calcutta is now in direct communication with its sanatorium. At a banquet given on the occasion, Sir A. Eden
congratulated Darjeeling on being the first Himalayan station to connect itself with the rail way system, and desc
one of the most remarkable railways in the world
The Select Committee of the House of Lords have refused the application of the Skipton and Kettle well Railway Company to extend their line to Aysgarth, though the Committee have sanc-
tioned its extension as far as Buckden. At present the promoters only intend to take powers for the construction of the line to Kettlewell, thoughl they have made arrangements with the contractors to commen
portion of the line.
THEWesterham Valley Railway has been opened for traffic. The new line commences at Dunton-green, on the main line of the
South-Eastern Company, where it branches off, and goes through or by the villages of Chevening, Ohipstead, Sundridge, and
Brasted, where there is a station, to Westerham, a market of Kent, close to the borders of the county of Surrey. The railway, which is nearly five miles long, serve the purpose of connecting the
town and the fertile district known as the Westerham Valley, with .
When the Bill authorising the abandonment of the Forth Was at cance withrore the Howse of Lords' committe last weok, ithe recent decision of the North-
was
Wastern, Great Northern, Midland Eastern, Great Northern, Midland, and North British Railway Companies to guarantee a fixed and perpetual dividend of 4 per cent. per annum on the share capital instead of a conditional
guarantee on the making of the bridge. The estimated cost of constructing the proposed bridge is over $£ 1,375,000$, or less than constructing the propased bir the late Sir Thas Bouch.
A AELEECT Committee of the House of Lords have passed that it was agreed, should be constructed by the South-Western Railway, but have refused to sanction the branch line, which was to
have erossed Great Bookham-common to join the South-Western Railway at Leatherhead. As the other branches of en surbiton favour of this Leatherhead extension, the Binc as now passed by
the Lords only authorises the construction of the main line the Lords only authorises the construction of the main line
between those two points. The other portion of the line from Surbiton to Fulham, which is to be constructed by an independen
The Lancashire and Yorkshire Railway Company, in order to
meet increasing traffic requirements of the engines working the meet increasing tratic Yequirements of the engines working the
Preston district, have commenced the erection of a large new locomotive shed at Lostock Junction. This shed will be 2 2tft. long by
140ft. wide, and will provide accommodation for thirty-two engines and mechanics ' and other workshops for repairing purposes. The and mechanics' and other workshops for repairing purposes. The
roof will be th thirteen spans of 17 ft., supported upon cast iron
und carry away the smoke from the engines. The shed is being
erected from the designs of the company's architect, and the contractor is Mr. Bridge, of Burscow.
In addition to the parcels postal facilities in France recently mentioned in this column, the French Minister of Public Works
has induced the French railway companies to agree to an arrangement by which packages such as are not admitted to the mail will be carried between any two points in France for 10d when delivered at stations, and for $12 \cdot 5 \mathrm{~d}$. at consignee's address
besides which a Government tax of 2 d , on each has to be paid. The very great convenience of these arrangements to the public is
evident. A lady on the Russian border of Prussia can have her that this must greatly stimulate the trade of the large cities at the expenseof the smaller towns, especially in France, where it brings the
Paris shops virtually to the doors of every house in the Republic. Durive the month of June a number of experiments on the consumption on naphtha have been mada on the Tamboff Saratofi
line by the engineer, M. Poretsky. The following points were of 100 llb on the square inch in two hours, and by burning 4 poods coals aided with wopod three and anhalf hours are required, and
26 poods of coals and wood -936 lb . (2) The apparatus can be 26 poods of coals and wood- 936 lb . (2) The apparatus can be
Kept in use forty-ight hours without stoppage for cleaning, after
which only two hours required to clea which only two hours required to clean out. (3) In rumning
1500 versts it was only required to stop the locomotive twenty
minutes for fuel and the driver and stoker have almost nothing to do, except ing more or less of the feed. (4) The flame is so well thrown
over the whole of the fire-box that after running 40,000 versts it is considered only one-half remount is necessary as opposed to coals
(5) Whilst it was found possible to evaporate 131818
1 lb. of water wit whole runs was 9 lb ., or about two and a-half times more than the
coals used.
In the course of the meeting of the Railway Rates Commission
on the 1st inst., Mr. George Finlay, general manager of the NorthWestorn Company, stated that immediately before the construc-
tion of the railway between London and Birmingham the whole of
the traffic by road and canal was 45,400 tons per annum, while the traffic carried by the North-Western alone in 1870 was 56,000 tons and in $1880,78,741$ tons. This was exclusive of what was carried
by the Great Western or the Midland companies or the canals, the This shorrying more that althon they the did at the time he had mentioned. companies went on, the trattic was constantly increasing. The
traftic between Liverpool and Manchester was carried by canal, at a cost of 15s., per ton, and the time taken was twenty hours,
When the railway was opened the charge for the same class of
traffic was 10s. per ton. In 1841, Pief traffic was 10s. per ton. In 1841, Pichford and Co. charged
between Manchehester and London, for bales and cases, 57 s . 6 d . per
ton, and the ton, and the railway companies now charged 40s. for the sam
articles; and there was a similar reduction in other articles. In
providing providing goods station accommodation the Nowth Western. had
spent $£ 2,300,000$ in Liondon, $£ 812,000$ in Manchester, $£ 250,000$ in
Birmingham, and $£ 1,913,000$ in Liverpool. This was exclusive of passenger stations. The sum actually spent in providing goods
stations in Liverpool was twice as much as was required originally
to construct the Nanchester and Liverpool Rail way The landing goods in London-the loading, and the unloading,
was 2s. 11d. per ton, at Manchester 1s. 8d., at Birmingham and at Liverpool 1s. 7 d. per ton ; and if they added interest upon
the capital laid out in stations at 4 per cent. per annum, less the
ame 4s. 3d. per ton, Manchester 2s. 4 d., Birmingham 1s. 9d., Liverpool
2s. 2 d In
st addition to the expenditure they incurred in the struction of these large stations, they had to provide an enormous
mass of sidings for the reception of train loads. At Willesden they
had or had provided twenty miles of sidings, and at Edge-hill, Liverpool, place another eight miles. This showed that so costly was the allowed for terminals, and he considered that their right was borne out, not only by their statutory powers, but by the necessities of
the ease and by the experience of carying on the business. The
average cost of loading and unloading at each station per ton.

NOTES AND MEMORANDA.

Iv the United States there are 560 cities and towns whic,
hydrant water supply, adapted to the use of water motors.
THE census returns for South Australia show that the population is 278,000 . In 1871 it was 185,626 souls; in $1876,213,271$; and in
1881 , about 147,000 males and about 130,000 females. In the last 1881 , about 147,000 males and about 130,000 females. In the last
ten years the rate of increase in South Australia has been 49.76 per ten y
cent.
Iv a letter on the heat in the tropics, to the cilitor of the Times, Mr. G. J. Symons gives the following as the high:
by the shade thermometer in the years $1874-80$:-

A TABLE which shows that the wages of thirty-six different trades been published by La Statistique de France. The lowest increase given is 40 per cent.-colliers' wages-and the highest 74 per cent.
-bakers' wages. The compiler of the data notes that the rise in wages has been greatest in those trades in which machinery has
come largely into use ; and states that the price of bread remained stationary
The Municipal Council of Paris has recently made a great improvement in the arrangements of the Morgue by adopting the refrigerating apparatus of M. Mignon and Rouart at a cost of
53,000 . The bodies on view will thus be enabled to be preserved or any length of time within reason, and the sanitary conditions of the Morgue will be greatly altered for the better, while the longer ive more frequent opportunities for identification.
A VARIETY of coal, said to be the most highly-carbonised member on the western shores of Lake Onega-Jaberbuch five. Mineralogiecontains about 91 per cent. carbon, 7 or 8 per cent. water, and per cent. ash. This coal is extremely hard and dense, has an
adamantine lustre, is a good conductor of electricity, and has a high specific heat -0.1922 . Although containing as much carbon as the best graphites from Ceylon, it is not a true graphite, inasmuch as
it is not oxidised by potassium chlorate and nitric acid, but behaves towards those re-agents like an amorphous coal.
The authorities of the Paris Mint propose to substitute for the present bronze pieces, now almost as familiar in England as in France, a new coinage of a smaller and more elegant kind contain-
ing 20 per cent. of nickel. Specimen coins have been struck of the espective values of about a halfpenny (5 centimes), a penny, and
wopence-halfpenny. The die used is an old one, cut in the twopence-rairpenny.
troublous time of 1793. Its device is an allegorical head of the
Republic wearing a cap of liberty. It will be well for the Royal Republic wearing a cap of himerty. It the metal is concerned, for a water pipes, a correspondent of the American Manufacturer writes: : 'As a sort of 'shop kink' I give you a curious experiment tried on an engine water supply pipe that had become choked up with lime incrustation. After hammering it for an hour or two
nd kindling a fire all over it, without any result, one end was lugged up, and about a pint of refined coal oil was poured in the other end-all it would hold--leaving it to stand all night. The trying this we thought of throwing the pipe away as useless, an etting a new one
THE summary of the population of the several provinces of the
on-Hungarian portion of the Austrian Empire, according to the eport of the Central statistical Commi sion for taking the censu Austria, 760,$879 ;$ Salzburg, 163,566 ; Styria, $1,212,367$; Carinthia, 348,670 ; Carniola, 481,176; Trieste, Istria, \&c., 650,532 ; 1yrol 305,326; Vorarlberg, 107,364; Bohemia, 5,577,134; Moravia,
$2,151,619 ;$ Silesia, 565,772, Galicia, $5,668,170$, Bukovina, 569,599 ;
Dalmatia, 474,489 . Total tor the Austrian Crown Lands, Dalmatia, 47,489 . Total for the Austrian Urown Lands,
$22,130,684$. This gives a total increase for the eleven years, since $22,130,684$. This gives a total increase for the e
the census of 1879 , of $1,734,054$ or $8 \cdot 5$,er cent.
As a summary of a climatological table for the British Empire for 1880, Mr. G. J. Symons gives the following:- - Highest temperature
n shade, $106 \cdot 9$ deg., at Uape of Good Hope, on December 2sth. owest temperature in shade, $-44 \cdot 4$ deg., at Winnipeg, on December 28th; greatest range, 1347 deg., at Winnipeg; greatest mean
daily rane, 248 deg., at Cape of Good Hope; least mean daily range, ${ }^{7} \%$ deg., at Barbados; highest meane daily temperature,
811 deg., at Ceylon; lowest mean dally temperature, $3 \% 4$ deg, at Winnipeg; driest stations, Melbourne and Mauritus, 72 deg.;
dampest station, Cape Breton, Sydney, 83 deg.; highest temperatumpest stan, 59.5 deg., at Calcoutta; greatest rainfall, $77 \cdot 90$ inin, at
tarbados least raintall, 1770 in., at Cape of Good Hope; most cloudy station, Barbados, $6 \cdot 9$; least cloudy station, Cape of Good
Hope, 3.9 . ONE of the recently introduced substitutes for gold, which has become very popular in some of the jewelry and other manurac-
tories of fine wares in France, is composed as follows :-
100 parts, by weight, of copper of the purest quality of zine or tin, six of magnesia, three and six-tenthls of sal
ammoniac, limestone, and cream of tartar. The copper is first melted, then the magnesia, sal ammoniac, limestone, and
cream of tartar in powder are added separately and gradually, cream of tartar in powder are alded separately and gradually.
The whole mass is kept stirred for half an hour, the zinc or tin
bein being dropped in piece by piece, the stirrng being kept up till they melt. Fmaly, the crucibe is covered and the mass kept in fusion
thirty-five minutes, and the scum being removed. the metalis
poured into moulds and is then ready tor use. The alloy thus made is represented as being fine-grained, malleable, takes a high
HERREN Holetschek and von Hepperger, of the Vienna Observa-
ory, have calculated the comet's path from the data furnished by the various observations taken since it irrst became visible to European observers, and especially those taken at Kiel, Hamburg, and
Leipsic. They estimate that it reached the point of its orbit nearest the sun on the morning of June 17 tha, at a heliocentric
distance of about $14 \frac{2}{3}$ millions of miles. On June 29th its distance from the earth was 7 ax millions of miles. To-day this
distanee will haue increased to 12 millions, by July 2 2srd to 17s milions, and by August th to to 22 millions of miles. As iss
distance from the sun also has been daily increasing, tits brilliancy
must speedily disappear. So long as it will be vishe it must speedily disappear. So long as it will be visibe, , it will
ocupy a position in the heavens between 8 and $11 \frac{1}{2}$ leg. from the
North Pooe, moving in the direction of the midele star of the Little Bear.
The German Imperial Statistical Department has set an example which would be advantageously followed by us., It has
repared an "Agricultural Atlas of the Gen der Bodencultur des Deutschen Reiches - Which whill be pubirished
during the present month. It will contain fiften panied by explanatory text and tables. This will be the first figures and statisticical data, of the amount of land, under cultivation represent generally the state of the thd of cultivation. Four maps the distro, pasturage, meadow, wood. Five maps srewing grain of any kind, two deal with the specially production, two with the growth of agricultural trade, one with actual tillage and fallow land. The tables give figures which represent, not only the absolute acreage employed in any particular
kind of production, but also its proportion to the total area altogether, and the total area under cultivation, or in tillage. The

MISCELLANEA.
The Britannic arrived off Holyhead on Wednesday morning in ow of three tugs.
Messis. Tangere Bros., of Birmingham, have just taken an mportant Admiralty contract for the supply of pulley blocks
They have had the contract, year by year, for the last six years for bel five year.
A PLAN for the construction of sewerage works to deal with the
ewage of the Cole Valley distriet at a cost of $\pm 25,000$, presented sewage of the Cole Valley district at a cost of $£ 25,000$, presented
to the Birmingham, Tame, and Rea District Drainage Board by its engineer last Tuesday, has been approved, and steps are being taken to carry out its recommendations.
MessRs. I. C. JoHNsoN AND Co., Portland cement manufacturers,
of London and Gateshead, have received intimation that a medal and diploma have been awarded to them at the Melbourne Exhibi tion. A medal for superiority of manufacture was awarded to this
firm at the Sydney Exhibition last year. The Municipal Council of Paris
THE Ahumipal Council of Paris are contemplating taxing telegraph and telephote wires placed in the sewers. The proposec
tax is 2iof. per kilometre up to 500,30 . from 50 to 1000,40 . from
. 1000 to 1500 , and so on, with an increase of 10 . for each 500 kilometres. The Electrician says, the number of kilometres of wire
placed in the sewers being about 7000 , the Compagnie des placed in the sewers being about 7000 the
Télephones will have to pay something like 59,500 f

WE learn that at the recent Port Elizabeth Show, South Africa, the first prize has been awarded for Henry Gwynne, of the Ham-
Pump, of which Messrs. John and mersmith Ironworks, are the patentees and manufacturers, as being the best "irrigation" pamp. At the Nimeses (South of
France) trials, held on the 1st inst., the first prize for the best and most economical irrigation pump was also awarded to the maker for this pump.
WE have received from Mr. W. E. Wood, of Darlaston, a copy
of his Chart of the South Staffordshire Iron Trade. The chart is so arranged as to show at a glance the prices and fluctuation therein for the past thirty-nine years, of marked bar iron,
common pig iron, cooal, slack, and cost of puddling. To all common pig iron, coal, slack, and cost of pudding. Io al
connected with the iron trade the chart has speial value, as
affording at a glance information which it would take some time affording at a glance information which it would take some time OUR Birmingham correspondent says that Messrs. J. and S
Roberts, ironfounders, of West Bromwich, have this week secured an order from the Wolverhampton Corporation for 200 tons of irod pipes required for waterworks purposes, "to be delivered as
required by the engineer," a period which will probably exteni
 per ton, and against the larger sizes, for which special prices are Ar the Chicago Stove Works, on the 10th ult., where the union解 iron he accidentally discovered a package containing two pounds of party. Had the powder not been discovered a terrific explosion would have taken place, and it is fearful to contemplate the loss The life and property that would almost rattening and trade outrages are not peculiar to England.
On Wednesday afternoon there was launched from the ship-yard
Messrs. Rayiton, Dixon, and Co., the iron screw steamer Lesseps, which has been buit the order of Norwegian owners Her dimensions are 270 ft . long by 34 ft . 9 in. breadth of beam, and
2 ftt . 3in. depth of hold. Her gross tonnage will be about 1825 , She is built aury about 2500 tons dead weight on 22 ft , draught She is buill on the three decked rule, having main and upper decks
laid, the latter being of iron; water ballast in the after hold and in a large chamber in main hold forward of the engine-room. She
will be fitted with engines of 150 -horse power by Messrs. Blair and

Chrovehout the most important part of the are Soutl Statiordshire affected by the operations of the Mines' Drainage
Commissioners, the water in the mines is being gradually got there has been a subsicence of as much as 11 ft . These results ar mainly due to surface drainage improvements, and to the re-starting of several of the pumping engines of local firms. Messrs.
Addenbrooke's Rough Hay engine, at Darlaston, is that which has been most recently set in action, after standing, for some years. It
contains two 16in. lifts, and can raise close on three million gallons of water per day.
THE truth seems to be coming out about the London water supply. In concluding their report on the water supplied to the
inhabitants of the metropolis tor June, Mr. Crookes, F.R.S., Professor Odling, and Dr. U. Meymott Tidy, who are acting for the
president of the Local Government Board, say:-Judged by our president of the Local Government Boar a, say :-Judged oy our
daily examinations, the water supplied to London is in our opinion whether considered as to its efficient filtration, or as to its proper aeration, or as to its purity and wholesomeness, unimpeachable,
The result of this period of f1122 samples, enable us to to tate that as an excellent
drinking supply it leaves nothing to be desred. The Brest-St. Pierre cable, laid in 1869, which was broken on
the $12 t$ h November last, has been picked up in 1700 fathoms of water, and repaired by the Telegraph Construction and Maintenance Company, with their steamship Scotia, under the superintenC. Forde, acting as engineer upon behalf of thisis company. As a
consequence of the repair just effected, telegraphic communication between France and the United States of America, by this com
pany's cable via Brest has, been restored. The company has now system throughout is in good working order and condition. The Cardiff Corporation have had an able report presented to
them by Mr. Williams, the engineer appointed to report on the various water schemes that are feasible, and there is now a strong
probability, the hias of the engineer being cleariy in that direction that the place selected for engreat being cleariy in that direction, be near the Breconshire Beacons, and six miles to the the north of
Merthyr Tydili. The rocks are sanstone. and the quality of
water admirable. The distance from Cardiffi would be about thirty miles, and cost slightsty yover $£ 2000000$. This scheme would not
be so great as the Liverpool one, which is to get water from the Verniew, North Wales ; but Cardiff will have water of equal purity THE annual meeting of the Municipal and Sanitary Engineers the surveyors, visit which that body has paid to Birminghem. The
total membership is now a little over 200. Mr. W. S. Till, of total membership is now a lresident for the ensuing year, and
Birmingham, was elected per
delivered as his inaugural address a very complete summary description of the borough. In a discussion which took place on
Friday upon the Corporation Sewerage Works, which had been
visited visited upon the previous day, Mr. J. Lemon, Southampton,
strongly protested againt the continance of the intercepting
works at Nlontague-street, which he described as one of the most disgraceful exhibitions of sanitary work he had seen. The present system was likely to spread disease. One of the most interesting
papers which were erea, was by Mr. R. Vawser, of Manchester, on
?. Rivers Conservancy." The author held that the Eill was wrawn Rivers Conservancy." The author held that the Eill was drawn with a due regard to all existing and vested interests, and that
deserved the earnest support of sanitary authorities. At the
annual dinner the vice-president, Mr. Lewis Angell, of West Ham, annual dinner the vice-president, Nir. Lewis Angeli, of est ham,
said that the Association were extremely gratifed with the
reception that they had met with from the Birmingham people.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

$*$ With this weck's number is issued as a Supplement, a Two-page
Engraving of No. 3 Winding Engine, Silksworth Colliery. Engraving of No. 3 Winding Engine, Silksworth Colliery.
Every copy as issued by the Publisher eontcains this Supplement,
and subscriberss are requested to notify the fact should they not receive it.

TO CORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
pubic, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the woriter to himself, and bearing a 2 d. postage stamp, in order that
answers received by us may be forvarded to their destination. No notice will be taken of communications which do not comply with these instructions.
** We cannot undertake to return drawings or manuscripts; we
must therefore request correspondents to keep copies. must therefore request correspondents to keep copies.
${ }^{*}$ Al letters intended for insertion in THE ENGINEER, or
containing questions, must be accompanied by the name and containing questions, must be accompanied by the name and
adress of the writer, not necesarily for pubbication, , tut as a
proof of good faith. No notice whatever witl be taken of address of the writer, not nec
proof of goo f fith. No
anonymous oommunications.
S. T.-The Great EGastern wess launched without her machinery.
W. S. AND Co.-Communications in reply to your inquiry aroait J. H. D.--So far as we are aware the coupling is new, and would probably

 in hilly districts are also os ontted. The existing grakees are as simple and
eftheient that in in
their construction.

Lining tins.
(To the Editor of The Engineer.)
Str, -1 shall be obliged to any of your readers who an give me infor-
mation about a new lining for preserved meat and fruit cans. I beeliove mation about
it is hie inve.
July 1th.
that it is even now very imperfect. Certainly, the " olden times" had not ever and anon to deplore the decimation of a village population by a calamitous explosion in a coal-
mine, for coal-mining is in reality of no very ancient date. mine, tor coal-mining is in reality of no very ancient date. use but a few centuries, yet the interest that now concentrates around it is universal. Upon its quantity, quality, and position depend the material resources of empires.
Great Britain, without the wonderful development of this Great Britain, without the wonderful development of this
material which pertains to her, would be comparatively urknown in the world. America looks to her vast stores of coal as the germ of her present, and still more of her
future greatness. But coal is not to be obtained in the farge quantities required for modern industries without great labour and frequently great danger. The weight obtainable at a surface outcrop is small, and hence the
necessity for deep mining. Over and above the dangers necessity for deep
incidental to all mining operations, in this case there exists that arising from the explosion of the gases gradually excluded from the coal as it is hewn, or more rapidly from
the holes in which it has been accumulating for ages. The the holes in which it has been accumulating for ages. The esting problem to both the practical and the scientific mind. Chemists have analysed the gases, and tell us that the most dangerous is that called light carburetted hydrogen,
or more commonly marsh gas (CH), consisting of one or more commonly marsh gas $\left(\mathrm{CH}_{4}\right)$, consisting of one
atom of carbon combined with four atoms of hydrogen. It is also well known that carbon combines
with oxygen to form a very dangerous suffocating gas with oxygen to form a very dangerous suffocating gas
called carbonic dioxide (CO_{2}), consisting of one atom of
carbon to carbon to two atoms of oxygen. Again, hydrogen combines with oxygen to form water $\mathrm{H}_{2} \mathrm{O}$, which consists of two
atoms of hydrogen with one of oxygen. Suppose, then, a quantity of marsh gas to exist in a mine, it requires to be mixed with oxygen before an explosive mixture is obtained.
If, however, we have a mixture If, however, we have a mixture consisting of four volumes
of oxygen to every two volumes of marsh gas, and this of oxygen to every two volumes of marsh gas, and this
mixture is brought into contact with matter of a sufficiently high temperature, such as a flame, or white hot metal, an explosion will take place, the resulting compounds being
the before-mentioned carbon-dioxide and water. Now the before-mentioned carbon-dioxide and water. Now
carbon-dioxide, whilst having few, if any, active properties upon the human frame, has one negative and deadly one. It is that it cannot be breathel. The marsh gas is the well-known fire-damp; the carbon-dioxide is the choke-
damp of the mine. These are the gases which have so damp of the mine. These are the gases which have so
often proved fatal to large numbers of men. In the early days of mining the sparks from the primitive flint and steel were used to give a feeble light, it being found that the temperature of these sparks was not high enough to
explode the gas. Dr. Henry was, we believe, the first to explode the gas. Dr. Henry was, we believe, the first to
determine that the fire-damp was principally composed of determine that the fire-damp was principally composed of
light curburetted hydrogen, and this was confirmed by the investigations of Davy. The result of Davy's experiments was the well-known safety lamp called after the inventor, the "Davy Lamp." This lamp depends for its efficiency on the good conducting power of metals. Flame is gaseous matter so intensely heated as to be luminous. When the flame comes into contact with a metal surface, it loses much of its heat in consequence of the conducting power of the metal, and the gaseous matter is cooled down to a with small holes, or wire gauze with small meshes not more than $\frac{1}{40} \mathrm{in}$. aperture, were able to cool down the flame to the non-luminous point; and so a lamp surrounded with such wire gauze was made, the rays of light from the flame passing through the small apertures, but the flame itself being unable to do so, except under certain conditions, such as the gauze becoming white hot, a sudden gust of wind, or the enlargement of the holes. At the was working in the same direction, and designed a lamp which was satisfactorily tried, and is known as the "Geordy Lamp." Dr. Clanny, Smith, Upton and Roberts, Martin, Ayre, Whitehead, Fyfe, Elsin, Bosy, Glover, and many others have designed lamps more or less perfect, but hitherto no lamp has been invented that is absolutely safe. on safety lamps, but the conclusions they have arrived at have necessarily been that almost any one among the large variety of safety lamps would render useful service, provided due care was exercised in its use. The necessary care, however, it is painfully evident, is not always taken, and here, as elsewhere, we so often have to record fatal
accidents because familiarity breeds contempt and carelessness.
The in
the introduction of the electric light turned the minds of chose interested in mining operations in a new direcmight be obtained. Messss. Molera and Cerbrian in California suggested a system, which theoretically admits of perfect safety, but its practicability has never been determined. The plan of these gentlemen was to have a divide this light by means of lenses and tubes to the particular points where the light was required. There is large scale the loss by imperfect lenses, and the enormous cost would probably render it useless. Could such a method be perfected, there would be no matter at a high temperature in the pit at all, and all chance of a high from the light-giving material would be avoided.
The success of Swan's incandescent lamp for lighting tions, and Mr. R. E. Crompton, in conjunction with Mr Swan and others, has for some time been experimenting with a view to its use in this direction. We recently near Mansfield, under the auspices of the Mines collieries, Commissioners. In these trials two kinds of lamps were used-the ordinary Swan lamp, fitted with wooden sconces, for the main roads, gates, \&c., and a lamp of special construction for use by the miners. In these special lamps the globe proper is surrounded by a second globe, there taneous combustion of the carbon should the inner globe be fractured. These lamps are made to withstand a con-
siderable amount of rough usage, and the light-giving power is altogether independent of position. It seems,
then, that so long as the external globe is safe, no danger then, that so long as the external globe is safe, no dange can arise from the ignition of the fire-damp; so, again,
should the external globe be broken whilst the internal should the external globe be broken whilst the internal globe remains intact, and also when the internal globe is
broken and the external remains intact; but we doubt broken and the external remains intact ; but we doubt
whether the accidental breakage of both glasses at once in whether the accidental breakage of both glasses at once in
a fiery mine would not lead to an explosion. Has the use a fiery mine would not lead to an explosion. Has the use of toughened glass been tried for the globes of these lamps,
or is its manufacture still too uncertain to admit of its use or is its manufacture still too uncertain to admit of its us in such cases? Is it possible still further to guard against any breakage? For it will be seen that, so long as the globes remain intact, there is no danger from the incan descent carbon. The Davy lamps, and similar lamps, possess one valuable property which the electric lamp has not, inasmuch as they, to a certain extent, enable the mine to tric lamps state of the mine. The connections to the electric lamps are made by means of insulated cables, wires are chat fill wires are kept far apart; but there still remains the
danger of accidental contact by means of a piece of curved danger of accidental contact by means of a piece of curved
metal, and any such contact gives a sufficiently powerful metal, and any such contact gives a sufficiently powerfu
spark to inflame the gas. These details have probably spark to inflame the gas. These details have probably
been well considered, and the risk from such an accident as we have just imagined is so infinitely small that the as we have just imagined is so infinitely small that the
further protection of the insulated wire is unnecessary At any rate, great progress has been made, and the practical use of the system will suggest many modifications tending to increase its utility and perfectness, and we trus that the able engineer who has put his hands to the plough
will not rest contented till he has placed the miner in a far wilt not rest contented till he has placed the miner in a far
better position as regards safety than he is in at present.

the metropolitan and suburban gas companies.

While the metropolitan water companies still continue eight in number, the gas companies have been uniting among themselves until the thirteen companies which existed in 1860, when the Metropolitan Gas Act was passed, are now reduced to four. But while diminished in their , the gas companies have grown in the magnited under interests. In 1869 the total capital employed wa several years past it has been the Field, who for a lengthened period held the office of acccountant to the Imperial Gas Company, to issue an Analysis" of the accounts of the various gas undertakings companetropolis. The disap. mation, has from time to time reduced Mr. Field's pro gramme, until at last he finds it necessary to enlarge his range, and to include the suburban gas companies. The "Analysis" just issued includes, therefore, not only the four metropolitan companies which still remain, but thirteen gas companies situated in the suburbs of the gate to $£ 1,830,000$, the largest being the Brentford, which figures for more than $£ 500,000$, the Crystal Palace Company coming next with rather less than $£ 300,000$, Colney Hatch being the smallest, with a little under $£ 35,000$. All the suburban companies appear to supply 14 -candle gas, but the price varies from 5 s 9 d . per 1000 feet at Barne and Colney Hatch, to 5s. at Lea Bridge, 4s. 9d. at Mitcham 3 s . 3d. the prices elsewhere, down to the minimum pany. The accounts of the Woolwich Equitable Company unfortunately, were not received in time for publication.
The four gas companies belonging to the metropolitan area are now, the Chartered, the Commercial, the London, and the South Metropolitan. The last named has lately grown by absorbing the Phœenix and the Surrey Consumers the capital employed in the combined undertakings being cised to a sum approaching $£ 2,000,000$. The figures w cite are those given in the Analysis as appertaining to 1880. The employed capital of the Chartered Company
thus appears as nearly $£ 9,500,000$. The Commercial and the London do not differ very greatly, the former having $£ 746,000$ and the latter $£ 859,000$. The price of gas to $\pm 746,000$ and the latter $£ 859,000$. The price of gas to
the consumer last year was 3 s . 4 d . per 1000 ft in the Chartered district, 3 s . 3 d . in the Commercial and the London, and 3 s . in the district of the South Metropolitan. The lighting power is said to be 12 candles in the London The lighting power is said to be 12 candles in the London
district, and 16 candles elsewhere ; but as a different burner is used in the two cases, we may perhaps class the lower power as 14 candles. The gas rental of the Chartered Company is only a trifle short of $£ 2,000,000$, while the other three companies take a trifle over $£ 1,000,000$ verifying the customary estimate that the Chartered supplies two-thirds of London with gas. The Chartered Company employs 16 s . 3d. of capital per 1000 ft . of gas sold, being a reduction of tenpence compared with 1876 The London employs 10 s. 5 d ., being a reduction of elevenpence in the same period. At the former date the averag of the metropolitan companies was 15 s .9 d. , dropping
last year to 14 s .5 d . The gas unaccounted for average last year to 14s. od. The gas unaccounted for average In this cent on the make, as compared with 6.38 in 1876 the Chis respect the most economical company now is the Charterea, and the least so the Commer al. The net proceeds of residuals are highest with the South Metropolitan, and lowest with the London. The net proit on with the gas sold with the London. The gas sold per ton of coals carbonised
averages 9529 cubic feet, the Chartered being the highest, and the South Metropolitan the lowest. An interesting
and fact in these statistics is the immense quantity of coal consumed in the production of the London gas supply, the total last year being nearly $1,900,000$ tons 10,220 cubic feet per day. The actual gas made averaged 10,220 cubic feet tion of 10,476 and the South Metropolitan the lowest tion of 10,476 , and the South Metropolitan the lowest, coal, and the South Metropolitan only $3 \cdot 14$ per cent. The Chartered used $7 \cdot 68$ per cent. of cannel, but supplied 5.55 chartered used 768 per cent. of cannel, but supplied only supplied common gas. The London used 5.27 per
It is to be regretted that we have not the complete
account from Woolwich. If we had the statistics of that town would stand much higher. As it is it only figures with $£ 66,000$ of employed capital, and a consumption of coal under 13,000 tons. The total quantity of coal carbonised in the year by the suburban companies appears as
245,000 tons ; the entire quantity carbonised by the 245,000 tons ; the entire quantity carbonised by the
metropolitan and suburban companies combined being in xcess of $2,100,000$ tons. In looking at the economical results it would be obviously unfair to the small suburban companies to compare them with the large undertakings in
the metropolis. But comparing them among themselves, the metropolis. But comparing them among themselves, we find that Barnet employs $£ 2$ of capital per 1000 ft . of being 15 s .10 d . The gas made ranges from $10,870 \mathrm{ft}$. per on at Croydon, down to 9500 at Bromley. The gas unccounted for is as little as 1.77 per cent. at West Ham, and very little more at Bromley, while at Colney Hatch it is as much as $13 \cdot 45$ per cent.; but the make at the lastnamed place is very small, while West Ham carbonises 27,000 tons of coal in the year. The entire gas rental of the suburban companies is $£ 450,000$, Brentford taking the lead with $£ 112,500$, the next being the Crystal Palace Company with $£ 84,000$. The net profit of the suburban companies is nearly $£ 159,000$, that of the metropolitan companies is $£ 1,136,000$, the complete aggregate being $\pm 1,295,000$. These are large amounts, and show how great is the vested interest connected with the production of gas mainly as a lighting
sively so as in former years.

NEW NORTHERN RAILWAY PROJECTS.

Two new railway schemes of some magnitude have been laid before the public in the last few days, one of which has been suggested to the North-Eastern Railway Company as a supplement to jected independently. Thie first is the scheme for a line of railway from Bishop Auckland to Spennymoor, and thence to the east of
the county of Durham- to the sea-coast near West Hartlepool, in fact. The second is a revival of the ambitious scheme o several years ago, which traversed some of the Yorkshire dales
from Skipton, touched Darlington, and ultimately landed at the port of Sunderland. Since this last scheme was before Parliament there have been great railway changes in the North of England; the line which sprang out of the costly parliamentary fight-that traversing Wensleydale-has been made; and in more fully the North Yorkshire part of the district possessed by
the North-Eastern Railway, so that in some degree the ground the North-Eastern Railway, so that in some degree the ground that the Skipton and Sunderland line would have occupied
has been filled. Hence, though it may be possible that the has been filled. Hence, though it may be possible that the ase of the Ayrgarth and Kettlewell project, that it will be case of the Ayrgarth and Kettlewell project, that it will be
carried. But the line from Bishop Auckland-which is the evival of a project of five or six years ago-seems in some years no increase of the means of communication between the east and west of South Durham, though in the interval there
has been an immense industrial growth, and the planting of towns where a generation or two ago there were solitudes.
Between Bishop Auckland and the sea-coast near it there is only roundabout method of communication, and there are many of the intervening colliery villages, populous and growing
which have no means of communication. The district is which have no means of communication. The district is
wholly in the hands of the North-Eastern Railway, and recognising this, the projectors have drawn the attention
of the Board of Directors of the railway to the scheme and though there has been only a cautious reply, yet there are grounds for the belief that in an early session the
North-Eastern will have a proposal to make to increase its service in South Durham. It is evident that when there is so complete a mnnopoly of the district as that now enjoyed by the company, the claims of the industries, and of the growing population upon it are large, and it may therefore be assumed that prophecied is to be staved off, the North-Eastern will have to meet the wants of the populace in its territory, and will have to give unity and completeness to its scheme of lines-unity an jointed and separate lines that were amalgamated to form it.

he palliser gun pressure gauges,

IT may be well to note for the information of those who may have missed the fact in the pages of any contemporary, that the pressure gauges employed in the Palliser gun which was tested
to destruction at Erith registered 44 tons to 47 tons pressure as estimated from an examination in the Royal Gun Factories, to which department the gauges were submitted. It will probably be allowed by any reasonable man that the gun did well to resis We buch a way as to develope this pressure that the setting up the shell was the immediate cause of the destruction of the gun is held by good authorities. We think that the character of the Palliser converted guns has been well maintained by this series
of experiments. We have always held that the combination of of experiments. We have always held that the combination of the loose lining of coiled iron with the complete cast iron case,
which was well calculated to support it, and to supply the required longitudinal strength, was most happy as a system of conversion. We understand that Sir W. Palliser expects to get much greater results from his new guns with cast steel exteriors
This may probably prove correct. We look upon the question of a new gun, however, as a totally different matter from that of con a new gun, however, as atall all commit ourselves to the Palliser
version, and we would not at system for the former. In the competitive trial we advocate is capable of doing.
the water supply of middlesbrough
The question how best to increase the supply of water to the district for which the Stockton and Middlesbrough Water Borr is responsible, has given rise to several side issues of considerabl
interest. For instance, in order to afford temporary relief at comparatively small cost, it has been proposed to sink one or more wells into the magnesian limestone, near the pumping
station at Broken Scar. The water thence obtainable has been proved to be heavily charged with the carbonates of lime and magnesia. The steam users of the Cleveland district are strongl opposing this scheme. Working large numbers of boilers night
and day as they are, they cannot do with any increase of liability to incrustation. The water at present supplied from the river suits them well. Nevertheless, at the usual periodica scaling of boilers, deposits up to a quarter of an inch in thick
ness are sometimes removed; and if this evil was aggravated to to ever so slight an extent, inefficiency, loss, and danger would probably result. Three-fifths of the water at present con-
sumed is for boiler purposes, and therefore the views the steam users are only so, but it has been pointed out that the whole population is indirectly interested in their prosperity; for anything which would be liable to stop the use of steam power, would obviously equally stop the daily bread of multitudes, besides the owners of boilers. The other, or opposite view on the well
scheme, is that a little increase of hardness would not seriously affect the working of boilers, and that if it did, manufacturer are able, and ought to meet their own difficulties in their own way, and at their own expense. This view has at the moment
most supporters, although, if votes were taken according to the most supporters, although, if votes were taken according to the
amount of rates paid, it is probable the tables would be turned This is only another instance of the penny wisdom, which i almost always manifest when a number of provincial ratepayers
are summoned to discuss important questions of public policy The majority go in for keeping the rates down, at any cost, and taking the consequences, if needs be. They want the greatest present advantage, and never mind the future. To be prepared to submit to present self-denial for the sake of a greater future not, we suppose, be expected of every one who can hold up hand at a municipal meeting.

the cautious scotch.

We once remember to have seen an excitable, loquacious, argumentative, bore, most effectually silenced for the time being, by his victim quietly suggesting that he should put his views into writing, and forward them by post. © The Scotch ironmasters seem to have treated somewhat in the same manner, the
request of the Cleveland Ironmasters' Association that they should request of the Cleveland Ironmasters' Association that they should receive an emissary from them, to propose putting out ten per
cent. of their blast furnaces. "Put it into writing," say they, "and then we will see if it is worth our while to discuss it." The men is not a very favourable one for the Clevelanders. I quest, and perhaps a virtual decision thereon before the verbal quest, and per the emissary are heard at all. Scotchmen are not going to allow themselves to be carried away
by the excitement of desperation, or by anything enthusiasm, pulsive nature. They want to see what they are going to get by such a move, which they do not now possess; or what loss which
they are now suffering they will then avoid. They also want to pry a little into the future. They must be assured that thei English competitors will not improve their position in the long run, as compared with themselves, in the close competition which has long been going on as regards certain markets. All these
are fair questions for consideration, and especially when they come from competitors who are somewhat differently circumthe cimilaly leg, whilst his more powerful friend was scatheless. On the Glasgow.
disposed to commend the policy of the men of

LITERATURE.

Mine Drainage; being a Complete and Practical Treatise on Direct Underground Steam Pumping Machinery. By St
Michell. Crosby Lockwood and Co., London. 1881.
We are quite at a loss to understand why Mr. Michell used the words " mine drainage" on the title page of this book. It certainly conveys the idea that the book is what it is not-a treatise on the unwatering of mines. Of its kind, the book is a good book, but then its kind is not very good. It belongs to a low type of literature. It contains little or nothing original ; but none the less, it may be consulted and even read by many persons with advantage. There are literally hundreds of steam pumping machines in the market, and all those best known to engineers are very
fully described and illustrated by Mr . Michell. The descriptions have been for the most part published before in various ways. Some have been written by the inventors or manufacturers of the pumps described; others by the authors of papers read before various societies, such, for example, as the Institution of Mechanical Engineers. These descriptions are illustrated by engravings, only a few of which seem to have been specially prepared for this printed. Messrs. I. ther respects that it is much to be regretted they do not pay more attention to the printing of engravings. As a he, their woodcuts are worse printed than any others in take a are half a century in advance of Englishmen in typography and its kindred arts?
Mr. Michell is very candid and quotes his authorities freely, and without any attempt at concealment, and for this he deserves praise ; but can it be that he is not capable of better things? Is it possible that he will rest content his rife with compiling? Perhaps so. It is certain that treatise, not too long on the principles of mine drainage combined with practical instructions as to the carrying of these principles into practice. Where, for example, is anythe place found on the erection of pumping pran of his engines, now nearly a century old
Those who wish for particulars of almost any steam pump in the market will find them at once in this book. It is a dictionary of sood dictionary too, but it is not a treatise on the drainage of mines.

THE IRON TRADES EMPLOYERS' ASSOCIATION
The annual general meeting of the members of this
ssociation was held on Friday at the Royal Hotel, Leicester, the president, Mr. Richard Peacock, of Manchester, occupying the chair. There was a large attendance. The secretary, Mr. E Hutchings, presented the report of the committee of manage-
ment of the past year. The chief portion of the report is ment of the past year. The chief portion of the report is
devoted to the question of the Employers' Liability Act, and
claims made upon them by workmen under the provisions and clauses of the Act. The committee have its advised upo in the first instance be brought into a county court, but could under certain conditions be carried to the higher courts for hearing, it would be of great importance that the first case or cases should be thus removed so as to secure at the outset the clearest and most conclusive interpretation of the new law available. To this end, in November last, the committee passed a resolution calling upon all members to report, without delay, any 1881, so that it might, if approved works after January liti, up and defended at the cost of the Association. That resolution was still in force, but up to the present time no case had arisen
 complaint book and notice paper in connection therewith had been prepared and sent to all the members of the Associntion for use in their workshops, and these had met with such cordial approval on all hands that their use would probably become general throughout the leading industries of the country. returns brought out the fact that the ratio of risks was very variable. Eventually it was determined to classify the respective industries in the following order :-Class, A, machinists and light industries in the textile machine trades. Class B, engineers, tool makers, locomotive builders; boilermakers, founders, millwrights, \&c. Class C, shipbuilders and marine engineers. In Class A 1 minor accident to every 64 men employed, these figures being based entirely upon returns from manufacturers of cotton, woollen, and lace-making machinery. In Class B the tables showed that there was 1 fatal accident to every 2983 men, and 1 minor accident to every 67 men employed, this division taking in all the leading sections of the engineering trades. In Class C it was found that there was a fatal accident to every 1185 men, and 1 minor accident to every 26 men employed.
The terms upon which the committee had concluded to
issue policies of insurance were as follow: Machinists, 2 s. per cent. upon the amount of wages paid annually ; engineers generally, founders, millwrights, tool makers, locomotive makers, marine engineers, boiler makers, \&c., 3s.
per cent., and shipbuilders, 4 s . per cent. Dealing next there is nothing very satisfactory which can be reported there is nothing very satisfactory which can be reported.
Of the iron trades, with which the Association was most distinctly allied, the condition generally had not improved since the last annual meeting.
On the motion of the President, seconded by Mr. John RobinManchester, it was unanimously resolved that the scheme for the mutual insurance and protection of the members of tbe clauses of the Employers' Liability Act, 1880, as set forth in the committee's report, be hereby accepted and acted upon under the direction of the committee. The general committee of management for the ensuing year were next, in conformity with the nomination of representatives from the several distric branch associations, appointed as under: Barrow-in-Furness, Mr. Cole. Jopeland ; Barnsley, Mr. J. Mitchell, Bradora, Mr. James Cole; Bristol, Mr. J. S. Stothert; Halifax, Mr. John Crossley ;
Huddersfield, Mr. G. W. Tomlinson ; Hull, Messrs. H. S. Brodrick and C. D. Holmes ; Keighley, Mr, R. L. Hattersley ; Leeds, Messrs. J. Craven, D. Greig, and J. H. Kitson ; Leicester, Mr Jessop; Liverpool and Birkenhead, Messrs. A. Bower, and G. Waller : Manchester, and H. Wren ; Nottingham, Mr. G. R. Cowen ; Wakefield, Mr Geo. Rhodes. Immediately after these appointments had been made, Mr. John Robinson, of Manchester, was, on the motion of the President, seconded by Mr. H. Shield, elected by acclama tion also a member of the committee. On the motion of the President, seconded by Mr. J. H. Kitson, of Leeds, a vote o
thanks was unanimously accorded to the committee specially thanks was unanimously accorded to the committee specially appointed to invor accidents in the workshops of the members of the association, and for the great pains they had taken in the preparation the scheme for mutual insurance against claims which migh mility by workmen under the clauses of the Employers' Lia bility Act. It was resolved that the next annual meeting of the
association should be held at Huddersfield. Mr. David Greig, of Leeds, was elected President of the Association for the ensuin year, and the following gentlemen Vice-Presidents :-Mr. James conh, Bradford ; Mr. C. D. Holmes, Hull ; Mr. John Laird, Bir pool ; and Mr. John Robinson, Manchester. Mr. J. Field was re-elected to the office of heasurer, a position which he ha en the proceeding were then brought to a close

WINDING ENGINES-SILKSWORTH COLLIERY.

 We publish this week a two-page engraving giving a plan of engine appeared in our last impression. Next week we shal and descriptive particulars.
TENDERS.

NEWHALL WATER SUPPLY.
Tenders for supplying and laying 5in., 4in., and 3 in . water mains, with valves, hydrants, \&c., for the water supply of Newhal
and Stanton, near Burton-on-Trent. Mr. Charles R. Walker Cannock and Walsall, engineer.

THE DUFFIELD BANK RAILWAY AT Duffield Bank, not far from Derby, Mr. Percival Haywood, a gentleman of independent fortune, has constructed a narrow gauge railway, which engineers visiting the Royal Agricultural Society Show will do well to see. The following description of this little
line has been prepared by Mr. Haywood, and we illustrate the engines from drawings with which he has supplied us.
Objects of the Railvay.- This paper does not pretend to discuss
the whole subject of light narrow the whole subject of light narrow gauge railways, but is merely a
short account of the writer's experimental line, with such notes as may possibly be of use to those interested in gauges of 2 ft . or
under. It it hardly at the present day necessary, as it would have
been when been when this line was first constructed, to offor an apology for
considering such miniature railways as something more than toys. Their quickly increasing popularity during the last few years is sufficient acknowledgment of their rutility unders suitable conditions.
In the year 1871, the writer, after various preliminary trials, determine to construct a model railway of isin. gauge, no less ize 3 ft . byige 1 tt. inside , and the passenger carriages ay ; thitting one on ench seat. The stability of this very small line is perfect enough when
suhampered by persons riding upon the wagons, but man being an unhampered by persons riding upon the wagons, but man being an
uaticle of standard size, it is clear that there is a minimum gauge which will with safety resist his attacks in the shape of sitting on
the edges of wagons, and so on. Rolling stock properly proporthe edges of wagons, and so on. Rolling stock properly propor-
tioned to a 15 in. gauge seems as small as will ensure safety in this
respect ; and, indeed, in France, M. Decauville has arrived at respect; ; and, indeed, in France, M. Decauville has arrived at
nearly similar conclusions in constructing a minimum gauge of
nes 16in. The writer must not be understood to advocate gauges so
small as these, except where the traffic is unlikely to increase small as these, except where the traffic is unlikely to increase
beyond the capacity of such a line, and where the material to be moved can conveniently be loaded in little wagons; his object in adopting it for experiment was to see how capacious the rolling
stock could safely be made cn a given gauge, without incurring the expense of large and unwioldy wagons. It was, however, not only to acquire this information that the railway was constructed, but
to experiment on various questions connected with friction and resistance, and also on the roadway and appliances necessary for a having been finished, a locomotive, carriages, and wagons were
built in the writer's amateur workshops, and experiments carried built in the writer's amateur workshops, and experiments carried
out during several years. Later, the line was extended and deveout during several years. Later, the line was extenced and deve-
loped, and a long timber viaduct erected in connection with a scheme for military railways. The workshops, situated 7ott. below,
were connected with a line by a branch having a gradient of 1 in were connected win a me by binchuch ing sidings, being at the
10 ; the total length of the whole present time about a mile; of which half is arranged in the form
of a pair of speetacles, to admit of a continuous run. The maximum gradients on this part are 1 in 25 , and the minimum
curves half-a-chain. During the last year a six-coupled locome tive, with radial axles for traversing sharp curves, has been built,
and also a closed bogie carriage to hold sixteen persons. The writer is always glad to show the railway to any who are interested in the subject, and also to give information as to experiments that
have been carried out, and of the cost of the various modes of construction.

Constriuction of the Line. - The line, of 15 in . gauge, was at first constructed to carry loads of halt a ton per axle, and laid with
14 lb. iron rails, without fish-plates, the sleepers being 5in. by 2in.,
and 2 ft. 6 in
 as epers of quently required re-pacing. A part, and eventuall
the whole of the main line, was then relaid with various weight of both iron and steel rails, from 9 lb . up to 22 lb . per yard, and sleepers 6 in . to \sin. wide, 2 Linin. deep, and 3 ft. long. The sleepers
were tried both at 18 in. and $2 \mathrm{ft}$. apart, and all rails were fishjointed, the joints being on a sleeper. In every case the new rood
proved far better than the old, the improvement being entiriely
due to the fish-plates and loner with 12 lb steel rails, and sleepers 2 ft. apart, has not been touched since first put down five years ago, although constantly run over.
The writer has for some time been of opinion that a sleeper rathe more than double the gaurge in length will be found to give the Spooner has used 4 ft . bin. sleepers on the 2 ft . gaige Festiniog
Railway with the best results; and if the strain be examinel it will easily be seen why this is so. Unless the sleepers are more
firmly supported outside the rails than between them, the traffic will cause the ballast to become convex lengthwise of the sleepers and so make the road unstable; and by a very simple calculation
it will be found that a length approximating to two and a-half times the gauge will be required in order to make the sleepers sink evenly. When this is the case, and the packing has beep properly
done, the road, if the formation be sound, will be long before
dit
works loose Good fish-plates are a sine gud non, and with the works loose. Good fish-plates are a sine qua non, and with the
ordinary flat-bottomed rail the joints are best on a good broad sleeper, they should also be as nearly as possible opposite one
another, for which object it is a good plan to order a proportion of rails 3 in. shorter than the standard length, then, as soon as one
one rail lags as much as 1 inin. behind, a short rail should be laid on the opposite side. The writer tried "breaking joint," with the
most unconfortable results. The joints will sink, and if opposite one another, the serious
on one side only is avoided. The rails are bent before being laid by passing them under a screw which stands between a couple of
rollers; but the writer designed a simple form of rail bender, on
the the principle of a tire bender, for the Royal Engineer Department
to use on their field railways, by which the rail was continuously to use on their field railways, by which the ral was continuously
bent while being drawn through the rollers. With a little practice, however, rails may be sprung round shar is.
bending but great care must be taken to serew up the fish
very thates
tight before springing, and to avoid overstraining the joint very tight before springing,
which will produce a "dog leg," not to be got rid of without the jim crow." It is needless to enter into a description of the
points and signals the peouliarities in these having to do rather
with full-sized railways than with those of narrow gauge. The timber viaduct, before referred to, is 91 ft . long, nawd variese. The
12 ft . to 21 ft . in height. It is constructed entirely of pitch pine the trestles being so designed that each member is a multiple of the hei bin, wide, bolted together in pairs, one pair under each
deep
rail, the two
 advantages of this are twofold, the timbers can be run forward
from trestle to trestle as the bridge advances, with from trestle to trestle as the bridge advances, without scaffolding
or lifting tackle, and should one trestle sink ,
tinuity of thine, the upper work checks it, and obviates the dangerous ellows so compon in similiar structures, The total cost of the
viaduct was $£ 30$, or under $£ 1$ per yard, the strength being amply sufficient to carry a six ton engine. The details are arranged to
require but little skilled labeng the require but little skilled labour, the comnections being made chiefly
with bolts. Two carpenters in five days framed the five trestles, including cutting the timbers to length; and in three more days,
with the additional assistance of two labourers, the whole was wreted and the rails sliid ready reor for traffic. The viaduet was
eresigned as an improvement on the form adopted for the military
desion designed as an improvement on the form adopted for the military
railways at Aldershot and Chatham, as being simpler and stronger. The length of the part of the line used for experiments
is, as before stated, about half-a-mile, and although there gradients of 1 in 25, , more trying bit for the engine is a curve of
half-a-chain radius, embracing nearly threequarters of a a circle, on
a gradient of 1 in 5 A Aranch abou a quarter of a mile long
leads down to the workshons wibut leads down to the workshops, with a gradient of 1 in $10 ;$ up this
the locomotives haul rather more than half their own weight the locomotives haul rather more than half their own weight;
this, though fairly good, would be exceeded were it not for two
severe curves, which, on so steep a gradient, are formidable
obstacles. This part of the line crosses the fences on balks of
tine obstacles. This part of the line crosses the fences o passage
timber, an excavation being made below to prevent the ba
antle, The ballast is chiefly shhes, which, when to be had, ce
be found toremaina porous far longer than gravel, and also to pro-
duce very little dust, and that less injurious to the engines than duce very little dusut, and that less injurious to the engines than
ballast containing sand. The sleepers are all elm and Spanisk chestnut, fallen and sawn on the premises, and worth from 7 d . to
8d. each. Ordinary dog spikes are used, four to each sleeper, in
 these spikes of first-class quality. With the assistance of two
labourers, the writer has usually laid about thirty yards per day, which includes bringing forward rails, sleepers, and ballast; bend-
ing, spiling, and fishing rails ; packing sleepers, top ballasting, ing, spiking, and fishing rails ; packing sleepers, top ballasting,
and ressing off ; equal to about 5d. per yard for labour. The materials, with 12 llb steel 1 rails, costing about $4 \mathrm{s}$. . bid . per yard.
The line, when laid, coosts therefore about 5s. per yard, exclusive of earthworks and bridges, which in this case average about 3s. per
yard rum. The following estimate gives the cost per yard of a line about 15 in . gauge, to carry one ton per axle, allowing an ample

Cost of 15in. gauge surface line, per yard run

Locomotives.- The two locomotives now on the line were designed
with different objects. The first, an outside cylinder four-wheeled tank engine, put to work in 1875 , was intended to be as handy, material which happened to be at hand was used rather to the prejudice of appearance to save expense; it has, however, run
about 3000 miles with none but trifling repairs, and has proved itself pleasant to handle in every way. This locomotive has four of 2 ft . in., and an overhang at eacl. end of 2 ft . 3in. The boiler to the frame cyinder, with ends suitably shaped for a contains ent short flue, terminating in tubes. The absence of any projecting
fire-box admits of the engine being perfectly balanced on the axles, fire-box admits of the engine being perfectly yalanced on the axles,
and such a boiler, while capable of making as much steam as is required, is not only cheaper in first cost and repairs, but much than an ordinary fire-bo thands of comparatively inexp co clean. The springs are rubber blocks, fitted into the hornbblocks a aovevthe axle-
boxes. It is always asserted that oil destroys india-rubber, but boxes. It is acways asserted that oi destroys india-rubber, but
this is not practically true as rearards the very best quality. The thls is not practicaly true as regards the very best quality. The
blocks in question have been moist with oil for six years, and are as good and elastic as when first put in, the sole sign of decay being peculiarity worth notice is the plan of allowing the connecting rod
brasses to turn in their straps. These latter are bored, instead of orasses to turn in their straps. These latter are bored, instead of
slotted out, in the direction of the length of the rod, the brasses slotted out, in the direction of the ength of the rod, the brasses
being shaped circular to fit. This enables the latter to accommoves to the varying trans springs on opposite sides, thus avoiding all twist on the slidehe above plan was tried. The maximum speed attained over a measured course, taken with a stop watch and checked by a revoluspeed being perfectly steady Wiles an hour, the motion at tender attached, continuous runs of an hour have frequently been made at an average speed of ten to eleven miles an hour, the rate on the straighter parts of the
line being fifteen to eighteen miles an hour, reduced to seven or eight on the sharp curves. The writer considers that on any gauge the maximum speed, if the road be good, may be as many miles an The rule, however, does not at present apply to gayges over 5 ft . n engon locomotive, constructed by the writer, was designed as narrow gauge, and able to take very sharp curves, at the same out making the weight on each axle too great. This engine has six cast steel wheels, all coupled, each pair of wheels being keyed on
hollow axle, within which are axles coupled at their outer end by cranks and coupling rods in the usual way, and running in
ordinary bearings.
The middle hollow axle is capable of sliding laterally on its inner axle, but cannot revolve
on it. The leading and trailing hollow' axles are nally larger than their inner axles, to which each is connected by a central ball and socket joint, so arranged as
to leave the hollow axles free to radiate in any direction, sut compelling them to revove with the inner axles. The middle hollow axle is connected with the leading and trailing
hollow axles by iron straps and links, so designed that when it hollow laterally, as is the case on entering a curve, the other two curve, no matter what may be its radius, providing it is within the
limit of the lateral travel of the centre axle. The space between limit of the lateral travel of the centre axxe. The space between
the frames being thus occupied, the valve gearing is necessarily the frames being thus occupied, the valve , gearing is necessarily
outside; ; and to avoid overhung excentrics, a modification of ment being somewhat similar to what is lmown as Joy's gear. One advantage of this type of valve gear is that it gives a constant
lead, whatever the travel of the valve, so that when closely notched up the diagram is not distorted by an increased ladinm am strain on this gear, the valves, which are circular, are
minimur balanced by a packing ring working against the cover of the steam
chest, a pin-hole being drilled through into the exhaust cavity of the valve, by which any leakage of steam past the packing ring,
which otherwise would destroy the balance, is passed away with the exhaust. The boiler is similar to that already described. The writer found the ordinary serew hand brake so much too slow in action for such sharp curves, that a tender, subsequently built,
vas fitted with an instantaneous friction brake. From the use the latter the advantage of quick action was so apparent that a steam brake only was fitted to the engine now
under consideration. The safety valve is entirely within the boiler, so that it cannot possibly be tampered with.
The draught through the lower rows of tubes is ensure by a petticoat pipe somewhat on the American plan in the moke-box, which also acts in a measure as a spark arrester. There are various other details of peculiar design, but they are of little
practical importance, and will, therefore, not be mentioned. exceptions will be taken to this engine. First, that the motion too near the ground; secondly, that there is to liberal a use of cast iron. The answer to the former is that the engine is almost
toolarge for the cauge, and it was necessary to keep the centre of tor large for the gauge, and it was necessary to keep the centre of
cravity low; to the latter, that the writer is an indifferent smith but a fair moulder. He would not, however, advocate this type of engine except for special purposes. Four-wheeled simple engines
re the best and cheapest for light lines, and, no doubt, if maker had orders enough, they might turn out these with 4in, 5in, and 6in. cylinders, as low as $£ 200, £ 300$, and $£ 400$,
the dimensions of the engines above described:

Length of boilor.. Diameter of ofto $\begin{aligned} & \text { iito } \\ & \text { Diameter of fir-box }\end{aligned}$ flu

 Weight in working Working pressure Vet tractive power

As regards the heating surface, it will be noticed that that of the lesser engine is very small. This was owing to faults in the design,
as it might easily have been considerably more without enlarging
the boilh the boiler. This engine has, howwever, frequently run for an hou continuousty with a train, and kept steam welt; but the following will be found a good rule for proportioning the heating surface o
such engines:- Multiply the diameter of the eylinder by the stroke, both in inches; twice the result will be an ample number of square feet of heating surface. Once and a-half will do very well for ordinary purposes. Any difticulty in getting up steam
may be obviated by a few feet of stove pipe inserted in the chimney.
held only eight Carriages.- The wagons at first built for the line larger size. The present ones measure 2 ft . 6in. by 5 ft inside; the sides are framed together independently of the wagon itself, which is constructed flat, with a rim lin. high. These sides, or "tops,"
as the men call them, are about 1ft. deep, and the wagons can be number of tops can be put on to one wagon to make it of the desired depth. To empty the wagons the tops can be easily
removed. The weight of the wagons varies from 4 ewt. to 5 awt. and they are constructed to carry a maximum weight
2 tons, 15 cwt. to 1 ton being the usual load. To show the capacity of the gauge, one wagon was built 6fit. long. which will hold 30 cwt .
of soil or sand, but it is found ones ; so far as stability is concerned, however, 6 ft . by 3 ft . would be quite admissible. The rule of Mr. SNooner, of the Festiniog,
Railway, seems the best for floor area of small wagons viz, twice the gauge by four times the gauge inside. Besides wagons, the writer has built a brake van and passenger carriages; the former
being fitted with a powerful and instantaneous foot brake. One of the carriages is open, and holds eight persons; the other is closed, The seats are all transverse, seating two abreast. The wheels are mostly 133 iin . in diameter, one wheel on each axle being loose, the The axles are all 1 1 产ind diaumeter in the bearings and wheel bosses, and 2in. where not turned. All wheels fitted during the last two years are chilled iron, cast at the writer's
axles are lubricated from below by a sponge in a small oil vessel the axle-box is of peculiar design, and fitted with an india-rubber spring. The hornblocks, axle-boxes, and oil covers fit together as
they come from the foundry, and are held together by a bolt, after the insertion of which no part can get loose. These boxes for the bolt. They only require lubricating every month or so,
The buffers and couplings are central, a smgle cast iron buffer having a coupler of the same metal hinged to it, being bolted to each end of the wagon by two thread bolts, which also hold the consisting only of two castings and a pin. They are self-coupling or not, as desired, and when set not to couple, the driver can, by a smart tap, bring the coupler down into the coupling position. The
wagons can be tly-shunted either when the engine is drawing or pushing, the couplers sliding out laterally as the wagons diverge on coupling buffer, designed for a narrow gauge line of the Birming ham Corporation, where it is fitted to all the rolling stock. In this case, however, the wagons cannot be fly-shunted without un-
coupling. In the bogie stock the buffers are fitted to the bogies. The writer's principal aim has been to make the wagons as cheap and simple as possible, the cost being about 22ss. per owt. Iron
wagons, no doubt, offer advantages in certain cases; but weight for weight they are scarcely so strong as those of wood; a light
iron or steel body, however, wears well. Tipping wagons are of iron or steel oat
doubtful avantage on small' lineses if the material has to be moved
far, as they do not hold more than half the load of a good box wagon. hey do not hola more than half the load or a good dor Notes on Light Railuayys Generaly. - The writer proposes in the
following remarks to deal with the application in this country of lighth locomotive worked railways of 2 ft . gauge or under, to do work
at present done by horses and carts. The cases in which such lines can be applied may be defined as, firstly, isolated lines; secondly branches from the railway system to works, quarries, farms, or
public institutions, where a line of standard gauge would be would well repay the outlay. The chief condition of success is a
sufficient traffic betwen two definite points, and for this reason isolated lines will rarely answer, as the traffic is generally too varied in direction, except under special circumstances. It is said,
however, that they have been made abroad on several larre farms with advantage, even where unconnected with the railway system; but the writer himself cannot see how a locomotive line can be profitable for clearing land, or such purposes, where a considerable
length of rail must be required, and that continually changing in direction. Light hand trams might answer in this way, but aloco
motive essentially requires a good and cleanly-kept road if it is to work to advantage, and where there are bits of line laid down in this direction and that, which are little used, repairs are sure to be
neglected. It is, therefore, in cases where a large traffic requires to be delivered, on to the railway system, that such locomotive run right up to where the material requaires to be loaded, so as to
entail only one transhipment. The line can be carried unfenced over the fields, avoing arable tha much as possible ing the hedgges on two balks of timber, so arranged with a dyke
below as to prevent the passage of cattle. Even where the land is not owned, an agreement can usually be come to by paying a rent of 3d. to 6 d . per yard run. The transhipment on to the railway
should be effected by a raised platform, which will bring the floors of the small and large wagons to the same level., or,
where the material is mineral, shoots can be erected. Every variety of such apparatus can be seen at work ell the
Festiniog Railway. The gradients of these small lines be experienced in slippery weather, both in hauling anything like a power on gradients may be thus clearly exemplified If a locomoive will haul, as it should do, ten times its own weight on the
evel, it will haul only four times its weight up 1 in 50 , wice
ts weight 1 in 20 and once its weight up 1 in 12. The weight of the locomotive itself its, of course, not included
its weight on en emergen
in the loads hauled. More can be done an emer in the loads hauled. More can be done on an emergency
if the adhesion does not fail, but the abooe give a fair work-
ng average. It will thus be seen how important it ing average. It will thus be seen how important it is
to keep the line as level as practicable. The permanent way
should be made a thoroughly sound obb, as it will then cost but should be made a thoroughy sound be, fish-jointed, and fully
little for repairs. The rails should
strong enough for the load say 18 b. rails for an engine having one ton on each axle, and 261 lb . rails for two tons per axle.
The sleepers may be then spaced 2 ft . to 22 ft . apart ; they sheould be fully double the gauge in length, or a little
more, and amply deep enough not to bend under the load

 sleepers sare in use, and do well where bedded on a road or other
unyielding surface, they are preferabe to wooden sleepers when
the line has to be laid in such places, as the surface requires to be

RADIAL TANK LOCOMOTIVE, DUFFIELD RAILWAY,

disturbed to a much less depth. Dog-spikes are sufficient fastening for the rails; they should be long enough to go just through the
sleeper, and each sleeper should have four; "ins" and "outs" on alternate sleepers do not answer. Locomotives are infinitely preferable to horses for working these lines; horses knock themselves and the road to pieces, and are very unhandy in shunting, let alone the chances of their getting lamed.
A small four-wheel coupled engine is undoubtedly the cheapest and best in all but exceptional cases; but whatever class of engine is employed, all the wheels should most certainly be coupled. Adhesion is a great point, as dirt, grass, or leaves all greatly reduce the grip, and one of the chief difficulties is keeping the rails clean and dry. Having mentioned the basis on which an effective narrow gauge line should be constructed, it remains to
show what traffic is required in order that such a line may pay, and this can best be done by giving the relative cost of horse and cart traction on roads, and locomotive traction on rails. Loading and unloading will not be included, being the same in each case. Taking the distance apart of the two points between which haulage is required as one mile, and the smallest and cheapest gauge as
15 in., the cost of the line and rolling stock will be as follows : one mile of 15 in . gauge at 10 s . per yard run, including the average earthwork required for a surface line, but no fencing,

Say 2000 yards (which allows for points and sidings)
One 4tin. cylinder locomotive, 2 tons
One 4 in. cylinder locomotive, 2 tons
12 wagons to hold 1 cube yard, at $£ 8$ sa
Extrus, say ..
Total cost of one mile of line complete
1500
The above engine would be capable of hauling a gross load, exclusive of its own weight, of eight tons up 1 in 50 , which latte load of eight tons would be equal to a paying load of about si tons, so that, supposing the engine to make one trip every hour 60 tons would be moved in the day; although, with a double se of wagons, 100 tons could easily be managed. If the engine worked one day a week, or, say, fifty days in the year, it would have not be taken into account), and the cost would be of follow :-

Interest on $£ 1500$, at 5 per cent.
Driver and boy, 50 days, 6 as...

Cost of moving 3000 tons one mile

Now, the same haulage by horses and carts would cost in this country about 1s. per ton, and in this case there is the advantage,
especially in agricultural districts, of the horses and cart during harvest time, or for hauling in other directions, which would more than balance the 2 d . per ton saved by the railway. It is, therefore, probable that the latter would not pay unless the engine were required to work two days in the week, hauling, say, a minimum per annum. (or a proportionate number of cubic feet of light stuff) per annum. Beyond this amount the railway would pay well, as
the outlay remains the same, and the renewal need not be put below twelve years. Working daily such a line will move material at 5 d . per ton per mile; the longer the line the cheaper will the haulage be per mile. It will be observed that in the above estimates no allowance is made for way leaves or purchase of land ; accordingly. The writer, in drawing these comparisons, is far from wishing to discourage the construction of light railways, for which he believes there is a wide future even in this country, but it must be borne in mind that where machinery takes the place of manual or horse labour, it is in all cases with one or two objects ; either to do a larger amount of work than is possible without it, or to do it
in a shorter time. Apply the same reasoning to locomotive-worked railways, and it will easily be seen whether they will pay as against horses and carts. The writer has known several ill-considered schemes of this kind which have ended in the whole plant being left to rust away, at considerable loss of capital to the owner, and of credit to the cause of light railways generally. While, there-
fore, strongly advocating such lines, he would equally strongly urge that the question of expediency be first considered, and lastly, that if made at all, the whole should be as carefully surveyed, laid out, and constructed as a full-sized railway. The question of light railways in foreign countries has never had much of the writer's attention, except in the matter of army transport, in experimenting on which, much of his time has been spent. The use of small
lines in sugar plantations and other industries abroad is increasing extraordinarily, and cannot be too highly encouraged. It is often not a question of whether steam is the cheapest means of transport, but whether there is any alternative, and the conditions for success depend so much on local considerations, that it is impossible to offer advice without entering into each
individual case under the guidance of those on the spot. The whole subject of light railways is still in its infancy. It is only just beginning to be understood that these cannot be diminutive copies of full-sized lines; the conditions are entirely different, and we have yet to see the miniature railway developed. Year by year, the clumsy old portable engines have changed, till we now have as
of working, as it seems possible to attain. So the light railway remains to be developed into a simple easily laid, and enduring
roadway, with cheap, but effective locomotives, and wagons of every class carefully designed to carry their loads with the greatest convenience and minimum of dead weight.

COCHRANE'S PATENT ACID VALVE. The construction and action of this valve, the invention of Mr. A. H. Cochrane, of Westminster-chambers, will be readily seen from our illustration. It consists of a lead box and cover being made of brass or steel, working through a cast iron gland, and the lower half being coated with lead, so that the whole of the inside parts are either lead or rubber, as will be seen from

the illustration. The lead cover flange is recessed and a hydraulic cup rubber inserted, so that the valve may, if required, be used up to a considerable pressure. The construction of the valve is very simple, and will allow its wearing parts to be replaced from advantage claimed for it is its non-liability of getting choked by straw, grit, \&c.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our own Correspondent.)

The quarterly meetings of the iron trade of South Staffordshire business done and the tone of the upon the corresponding meeting three months ago. Prices gene-
rally were without alteration upon those fixed at the earlier date. rally were without alteration upon those fixed at the earlier date.
Consequently marked bars were again declared at $£ 7$, and Earl
 Company's brands. The sheets and plates of all these firms were
set down at $£ 110$ s. in advance of bars, and $£ 810$ s. was firmly demanded for "Monmoor" boiler plates. Finished iron of less valuabbe kinds was generally stronger upon the quarter than the
highh-lass sortw. Medium bars were from $£ 65 \mathrm{~s}$. to $£ 6$. 10 s . From
$£ 65 \mathrm{~s}$.

 Sheets of the working-up quality were to be had at $£ 7 \mathrm{~s} .6 \mathrm{~d}$.,
singles gauge ; but for galvanisers' singles $£ 715 \mathrm{~s}$. to $£ 8$ were the figures quoted. Doubles of the same quality. were named a
$\& 815 \mathrm{~s}$. to $£ 9$; and for latens from $£ 915 \mathrm{~s}$. to $£ 10$ had to be given
 Tank plates and girder plates were procurable at from $£ 7$ s. 5 . to $£ 715 \mathrm{~s}$, and common boiler plates were to be had at from $\mathcal{E} 15 \mathrm{~s}$.
to $£ 8$. At the latter figure it was possible to buy a branded plate but of a much less reliable quality
under $£ 810$ s. would be accepted
The finished iron market was mostly remarkable for the pressing appeals made to makers for an earlier and larger delivery of sheets
to the galvanisers. The prices sought yesterday for galvanising sheets snow quarter to the extent of from 5 s. to 15 s . per ton. Hoops for baling
and for coopers' use were in demand at Wolverhampton, a Liverpool merchant, who is amongst the largest buyers of this commodity for export, being amongst the purchasers, and the prices
were better on the quarter from 2s. 6d. to 5 s . Inquiries for quotations for the most kinds of iron rolled in South Staffordshire were more numerous than at the Lady Day meeting, and there was
more of a business air about the majority of them ; but it could not be concealed as to certain of the higher qualities that the growing use of steel exercised a prejudicial influence.
Recent considerable sales of pigs checked the business in raw
iron. In this, as in the finished iron department, the ruling quotairon. In this, as in the finished iron department, the ruling quota-
tions were without change upon the quarter. Lilleshall hot blast tions were winout chire
Shropshire all-mine iron was fixed at $£ 3$, and cold blast at $£ 4$ per to $£ 32$ s. 6 d . Yet while there were some brands for which
$£ 37 \mathrm{~s}$. 6 d . was demanded, there were others-equally all-mine
 £2 10s. to $£ 215 \mathrm{~s}$, and cinder iron $£ 2$ down to $£ 117 \mathrm{~s} .6 \mathrm{~d}$. Hema West Coast and South Wales brands of repute were quoted $£ 35$ s. Derbyshire and Northampton pigs-of which I am assured from
45,000 to 50,000 tons have been sold weeks were freely quoted. £2 2s. 6d. up to to $£ 2$ 万s. Local makes, suitable for mixtures in the forge or for foundry use, were in most
sale. sate. the Birmingham quarterly meeting to-day-Thursday-the
Attendance was as numerous as ever, and the improved tone per-
att ceptible in Wolverhampton was even more conspicuous. There
were were some good transactions in sheets and hoops at yesterday's full
sale rates-in a few cases which involved immediate delivery ever sale rates-in a few cases which involved immediate delivery even
better terms were procurable. All but high-class marked iron was stronger upon the quarter; even ironstone was better by from 1 s .
The coal trade keeps dull. Yet no conspicuous change has yet taken place in manufacturing sorts, the crucial quotation remain-
ing at 9 s . per ton for best Dudley furnace descriptions. ing at 9 s . per ton for best Dudley furnace descriptions.
The number of blast furnaces alight is less than in the quarter. In the interval since the April Quarterly Meetings, the leaving two of each now blowing out of the nine they possess ; the
Madely Wood cold week, in the Dudley disnrices, Messers. Grazebrook have put out
furnace for repairs, and Earl Dudley is about to do the same.

NOTES FROM LANCASHIRE.
Manchester:-Various circumstances have combined to bring about
lull in the iron trade during the past week. The tolerably heavy a lull in the iron trade during the past week. The tolerably heavy
buying which has been going on during the past fortnight has, no doubt, for the most part covered any present requirements on the part of buyers, whilst the quarterly meetings held this week ar
allo an inducement to hold off buying for the moment. Apart,
, however, from these special circumstances to account for the
lessened activity, there is a a good deal of uncertainty as to the
course the market may take, pressed; some people are very confident that a docided nent improvement is being developed, whilst others, in the face of heavy stocks and a large production, have no faith in any present
upward movement of the market. But although there is a very considerahle curtailment in the amount of business doing, sellers
are still firm and show a determination to hold for the slight are still firm and show a determination to hold for the slight
advance which has been asked upon late rates, but which buyers have not, as yet, shown much disposition to pay.
Lancashire makers of pig iron, who, during the
Lancashire makers of pig iron, who, during the last two or three
weeks have sold sufficient iron to carry them over the next three months, have for the present ceased to offer in the market, and pending the result of the quarterly meetings, their quotations are
practically withdrawn. Nominaly the quotations for delivery into
the Manchester district may be less $2 \frac{1}{\text { per }}$ per cent.
So far as outside brands are concerned, any business doing is still
. confined chiefly to Lincolnshire irons, in which a few sales have
been made at prices equal to about 44 s . to 45 s . per ton, less $2 \stackrel{2}{2}$, been made at prices equal to about 44s. to 45s. per ton, less 2 L ,
delivered into the Manchester district. The prices anked for Derby-
shire and Middlestrough irons still keeps these brands practicaly shire and Middulesb.
out of this market.
A fair amount of business appears to be doing in finished iron,
and the principal makers in this district continue well supplied
with inquiry, and bars, hoops, and sheets trade is being done With the exception, however, of bars, for which some of the local makers have been asking an advance of 2 ss . 6 d. per ton this week, no materially better prices are being obtained, and the average quota-
tions for delivery into the Manchester district are about $£ 517 \mathrm{~s} .6 \mathrm{~d}$. tions for delivery into the Manchester district are about $£ 517 \mathrm{~s} .6 \mathrm{~d}$.
to $£ 6$ for bars ; $£ 7 \mathrm{~s} .6 \mathrm{~d}$. to $£ 610 \mathrm{~s}$. for hoops; and $£ 712 \mathrm{~s}$. 6 d . to Amongst founders, engineers, tool makers, and machinists,
better feeling is also generally reported better feeling is also generally reported. New, work it is true has
still to be taken at very low prices, but there is a more confident tone in inquiries, and they result in b In previous notes Ih district by tool makers in the manufacture of American twist drills
and I may now add that there has been recently a considerable
development of the local manufacture, not only of American, but of other small foreign inventions generally. The prohibitory tarifts which are being imposed by competing nations abroad seem
to have roused manufacturers here into more energetic action in taking prompt advantage of any useful improvement from whatever
source, and many small tools and machines which have hitherto source, and many small tools and machines which have hitherto
been sold largely in this market by representatives of foreign houses been sold largely in this market by representatives of foreign houses
are now being made at considerably lower prices by Lancashire manufacturers. As an illustration I may mention that one local mecame so annoyed an the " " protective," spirit displayed across the Channel, that he determined at any inconvenience to produce
himself a speciality which he had hitherto purchased from a French himself a speciality which he had hitherto purchased from a French
house and sold to tis house and sold to his customers. A sample was sent into the being made by his own men equally as well, and at 30 per cent. less cost than the price charged by the French firm. This, a
method of retaliation, certainly more profitable than reciprocity and the same kind of thing, is soinge on in the the manufacture of the
small lathes, slide rests, chucks, \&ce., of which the Americans have previously practically had a monopoly.
In the coal trade extreme dulness cont cases are not working more than sis to seven days a fortnight. All ceses are not
descritions of round cool both for house fre, iron making and
team purposes are very bad to sell and of these heavy stocks are steam purposes are very bad to sell, and of these heavy stocks are
held which are being forced upon the market at very low figures. Engine classes of fuel are in moderate demand, but supplies are prices at the pit mouth are about as under : Best coal, 8s. to 8s. 6d.; seconds, 6s. to 6s. 6d.; common round coal, 4s. 6 d. to $5 \mathrm{~s} .3 \mathrm{~d} . ;$
burgy, 4s. 3d. to 4s. 9 d .; and good slack, 3s. 9 d . to 4 s . 3d., with The inferior quality of Lancashire
ar the country make wher with Dur of its adoption for iron-making purposes, but some of the way makers are now endeavouring by improvenents in their ovens to produce a coke which shall meet the requirements of iron-masters.
In this to some extent they have been successful In this to some extent they have been successful, samples having
already given good results, and for these better qualities of coke already given good results, and for these better qualities of coke
from 15s. to 16s. per ton at the ovens is being obtained, the inferior descriptions averaging about 10s. to 12 s . per ton.
Barrow.-Appearances of better trade in the hematite pig iron drade are more evident this week than for some time past. The orward with their orders much more freely. I Ianticipate a good winter's trade, should the present demand continue, and the likeliis experienced from America and the Continent. Stocks are still very large, in spite of the large deliveries which have recently been
made; but as the shipments of metal have only been light, consiering that the shipping vill in all probability be a very heavy tonnage of metal shipped to will raise the price of pig.
Present qualities of Bessemer are quoted at 59 s . per ton .No.
quality ; No. 2, 5 s s.; and No. 3 at 57 s . No .3 forge, 56 s . ther qualities of an inferior kind at b5s. Makers are not altogether disposed to accept these quotations, and holders of large
parcels are holding back in anticipation of better values. I expect some little time must elapse ere a fair advance is quoted. The steel mills are in active work, and orders are being placed in the They are chiefly employed in the rail trade. Iron ore in fair request t late prices. Iron shipbuilders busy. Engineers and others doing fair business. Coal and coke unchange

THE SHEFFIELD DISTRICT.

(From our own Correspondent.)

THE houses doing an American business are somewhat less actively employed, or, to speak more correctly, there are fewer
orders being received from the States. This is nothing unusual, however, July and August being the lightest months of the year, the Americans giving up business as much as possible during "the
hot season," and this to an extent scarcely appreciated by those hot season," and this to an extent scarcely appreciated by those
outside the trade. With the recommencement of the cooler weather he American orchers again get heavier. At present, for unately, there is a great deal of work in hand for the Unite
States, both in steel and cutlery, as well as in steel rails. Sheep shears are also being largely inquired for by American dealers.
Messrs. Spear and Jackson, of the Etna Works, are exceeding busy on orders for agricultural implements, and for the classes and nachinery and specialitites, such as reaper andmowing sections better and more hopeful feeling evidently pervades the rural districts. During the last ten days I have travelled over a large por--
tion of the Midland counties, and have met both farmers and epresentatives of the great agricultural firms. The latter tell me that they have not been so busy for five or six years. One imple-
nent alone-a sheaf-binding harvester, with automatic actionmanufactured by a well-known firm, has already been ordered this year to the extent of over 10,000 . Last year, which was con-
sidered a heavy year for this particular article, the total number supplied was 4180 .
Messrs. John Brown and Co., Limited, have announced the form in which they intend to obtain further capital. Instead of making a call on the ordinary shares, they 1 issue $£ 50,000$ of 5 per cent. pre-
ference stock, in $£ 10$ shares, which will be offered to ordinary shareholders in the proportion of three preference shares for every
ve ordinary shares. In the event of there being a surplus hares, those who desire a larger number than are allotted to them will have their holding increased to the extent of the surplus. The company state that the new capital is required to work the new
compound iron and steel plates on the patent of Mr. S. D. Ellis,
thpol Ane inventor. The new plates have successfully passed the
Admiralty tests, and their manufacture requires considerable Admiralty tests, axd their manufacture requires considerable
alterations and extension of existing plant. The directors express
and the greatest conficence in the future prospects of the company.
Meanwhile the new issue has caused the ordinary stock to drop to $16 \frac{1}{2}$ and 17 dis. on ' Change. There is a great deal of good and re nunerative work being done at the Atlas Works at present, and
there is no doubt the ordinary stock will promptly recover the present depression.
Messrs. Davy
Messrs. Davy Brothers, Limited, of the Park Ironworks, have issued their report and balance-sheet for the year ending April 30,
1881. The directors state that although the quantity of work urned out has been greater than in the preceding year, the prices and the profits have thus been unfavourably affected. The airectors very much regret such unsatisfactory results, but point
out that they have \upharpoonright been brought about by circumstances over hich they have had no control; and they add that with a general
mprovement in trade, no difficulty would be experienced in realising such prices for their machinery as would again enable fair ompany after writing of $£ 1400$ for depreciation profits of the machinery, amount to $£ 2956 ;$ balance of undivided profit from last
year, $£ 767$; total, $£ 3724$. Interest on debentures year, $\pm 767 ;$ total, £3724. Interest on debentures, mortgage, \&c.,
requires \&1848, leaving for disposal $£ 1875$, which the directors recommend to be carried forward to next year's account, and no
dividend be paid. Mr. David Davy, one of the managing directors,
Dr. Webster, the American consul, in a circular, dated the 12 th inst., intimates that in accordance with the decision of the
State Department of the United States is henceforth to be made in taking declarations to invoices lodged
for verification. This change is made with a view to secure uniformity of charges throughout the United Kingom. Acting
upon the terms of the eircular, the officers attached. to all the consulates in Great Britain will, on and after 20th July in
a uniform statutory charge of 1s. 6 d . for each signature.

THE NORTH OF ENGLAND

TUESDAY being the quarterly meeting of the iron trade a hcluding several merchants from distant towns, Notwithstanding the damping effect of the June statistics, the price of pig iron does shock, it has now recovered and even shows a tendency to advance possible damery on which this can be accounted for is that the possible damping down of some furnaces here and elsewhere may
be acting as a scare, causing some people to buy for future needs,
when otherwise they would have waited When otherwise they would have waited
The reply of the
The reply of the Scotch ironmasters to the proposal of thei that nothing is likely to be done. Indeed the guestion may wel
the be asked, whether the desired curtailment of produetion is not even now going on in a much sounder and healthier manner than would
result from any artificial decision to put out furnaces. It has been shown that there are some thirty to forty fewer furnaces in blast the United Kingdom now than at the beginning of the land district. They belong to outlying localities, and were no doubt previously working at a disadvantage. But it is enough that they have gone out, and that if prices remain as at present,
all others in similar circumstances will also have to succumb. In time the production will thus be brought down to the consumption masters of the situation. These districts need in that case fear no outside competition for years to come. They will have fought ou outsine battle and won foirly, and the result will be sufficiently dis
this
couraging to the fallen to prevent any future resurrection. But if couraging to the fallen to prevent any future resurrection. But if
the production be curtailed by voluntarily putting out good and efficient furnaces, then it is certain that on the least rise of price from the combination and putting them to work again.
The price of No. 3 g.m.b. yesterday was from 37 s . to 37 s . 3 d f.o.t. Middlesbrough. Forge iron was 1s. per to tess, and
warrants 1s. per ton more. Cleveland hematite may be had at warrants 1 s. .per ton more. The stack in Connal's stores is now
56 . fo.t. Middlesbrough. The sto finished iron trade continues steady, the new contracts into last week more than covering the quantities run off. Ship
plates are worth $£ 6$ per ton for large and $£ 65 \mathrm{~s}$. for small lots, free do ples are 10s. per ton more and boiler plates, 20s., 40 s., and 60 s. extra, according to quality Bars, angles, and iron rails may be had for $£ 512 \mathrm{~s} .6 \mathrm{da}$. per ton,
and pudde bar, $£ 315 \mathrm{~s}$. for broad, and $£ 312 \mathrm{~s}$. 6d. for narrow sizes. Old rails are $£ 37 \mathrm{~s}$. 6 d . per ton, c.i.f. Tees. Purple ore is 16 s. per ton, also c.i.f. net cash against documents in both cases.
A shocking and unusual accident occurred a day or two since at
the Niddlesbrough shipyard. It was neeessary to paint the inside of an iron mast which was lying on the ground just completed
The ends were both closed in, and access to the inside was obtain able only through a manhole. A Add, aged 16 , was sent in to creep
through the whole lencth of the interior. He carried a paint-pot, through the whole lensth of the interior. He carried a paint-pot,
brush, and naked candle. In order to make himself the more comfortable, he had wrapped his body over with tow. Suddenly The workmen rushed to the spot, only to find the poor boy The workmen rushed to the spot, only to find the poor boy was on
fire. After a time he managed to work himself along to the opening, and was dragged out. He was fearfully burned all over.
Everything was done that could be done, but it was of no avail.
The poor fellow died shortly after at the infirmary.

NOTES FROM SCOTLAND.

Durivg the greater part of the week the Glasgow iron market large shipments of pig iron being reported, but other influences coming into play, a feieling of fatness set in. A number of hoiders
showed rather more disposition to part with their iron, which had the effect of weakening the market. The chances of an early re duction of the output of pig iron are still regarded as remote; an
so far as can be ascertained, the proposal of the Cleveland iron masters for a sinultaneous damping of a percentage of the fur-
naces has not met with much favour here. The exports of pigs have been good, last weeks anounting to 13,125 to with 10,108 in the corresponding week of last year ; but a large Connal and Co.'s stores have reached the large aggregate of 570,000 tons. So long as this state of matters continues prices are likely to be moderate. The holidays begin this week, and they
will possibly have some little effect upon the trade. At their close, it would not be surprising if those concerned had the ques-
tion of a curtailment of the production again forced upon them. The imports of Cleveland pir iron are comparatively large showing an increase for the year to date of no less than 37,745 tons. There are 120 furnaces in blast as against 117 at the same date Business was done in the warrant market on Friday morning at from afternoon quotations being 47s. 2d. to 47s. cash, and 47 s s. 4d. to 46s. 111 d. to 47 s . 3 d d . cash, and 47 s . $4 \frac{1}{2} \mathrm{~d}$, twenty-one days ; whilst

 market was firmer, at 47s. to 47 s . 2 d . cash and 47 s . 4d. one month.
Owing to the Fair holidays the market will be closed till Tuesday. The demand for makers' iron is quiet, but prices have been pretty
steady. Gartsherrie, No. 1, f.o.b. at Glasgow, per ton is quoted

 Tuarters there are complaints that new orders are not very readily quartined. The marine and general engineering works are busy, especially the latter. For some time the cast iron pipe department
has been dull, and in the course of the past few days a muchneeded order of upwards of 20,000 tons has been received. There
is still abundant room for improvement in this branch. The
Their Sheriff of Hamilton has granted authority to eject from their
dwelling-houses a number of men who have been on strike since
Newton, near Glasgow.
In the coal trade a good business is doing, the shipping depart. ment of the trade bee shipments at the ports, east and west, are
the year. The total shipment
fully 1000 tons larger than they were in the preceding week, and
fij

WALES \& ADJOINING COUNTIES (From our own Correspondent.)
The various engineering works of the district,
notably the Clydach Vale Railway and the notaby the Clydach Vale Railway and the
Pontypridd, Caerphilly, and Newport, are progressing well. As for the first, this will open out
a new field for the Taff Vale, whose stock $£ 100$ -is already at $£ 270$, and holders are confident of its touching 2300 .
The Glamorgan Agricultural Society are to on the first week in Angust, and preparations are going on energetically already. The show at
Cardiff was a great success in implements The coal trade of Wales may be fittingly described as in a most satisfactory condition.
Prices of best coal are decidedly looking up, and I have heard of business being done at an advanced price and a lengthy period.
The last advance
The last advance has had a satisfactory effect
upon the men. There was a little grumbling previous to the announcement, but the rumour that a strike was meditated is, I am persuaded, incorrect. There is too much high-pressure work going on to allow men time for organisation, and in the exports of iron last week amounted 6500 tons from all Wales. There is not much movement in iron. Makers of coke bar complain that trade is dull, and that there is not much confidence in present business. A good deal of it is done by bills, and these are occasionally not met.
A large maker told me this week that several tinA large maker told me this week that several tin Steel rails are in fair demand, and prices are kept up. The Treorest Works had an accident to the machinery some little time ago, but are no making up for lost time. Tredegar is going on same, and the men are shifting for themselves as they can.
Tin-plates remain at 15 s. f.o.b. Liverpool or London, and even best charcoals are at 18 s , Steel rails remain at $£ 52 \mathrm{~s}$. 6d. ordinary section
wrought scrap $£ 3$ to New York. Cardiff and Newport exhibit
save that of patent fuel, a remarkable respect briskness to that which is shown at Swansea. There is no movement in prices there, and those who quote an advance cannot sell. The great
rush unquestionably now is for the best samples obtainable from Newport and Cardiff. Every argument possible is given for Swansea to get
connected with the Rhondda Valley, and thus secure a supply of best coals at easy rates. foreign ore came to hand this week at and other foreign

THE PATENT JOURNAL.

Condensed from the Journan of the Commisisioners of

** It hase come to our notite that some applicants of the

Applications for Letters Patent

When patents have been "communicated" the
name and address of the communicating party are printed in italics.

5th July, 1881.
2924. Steerivg Engines, G. W. Robertson, Glasgow,
and I. Beck, Shefield.

 2949. Cotrov Both July, 1881.

 Antonio Tercas, U.S.).
2964. Burnishive Apparatus, P. M. Justice.-(W. F.

 Birminghnas.
3032. Regulaming Apparatus,Sir W. Thomson,Glasgow 3033. Corsers, A. Henderson, - Jus.

3040. Sorfenirg, \&ce., Watre, J. H. Rorter, London.
3041. TUBING, dec, A. S. Murphy, Philadelphia, U.S.

Inventions Protected for Six Months on
deposit of Complete Specifications.

 San Antonio, Texas, U.S.- 6 tht July, 1881 .
2966. GRAIN, BINDING MAchins, G. E. Vaughan, Chan cery-lane, London.-A A communication from, M. A. A.
Keller, Brockport, 2977. STLHPATTE of A AUMINA, C. Semper, Philadelphia, 299s. Tubinc , ,ci., A. S. Murphy, Philadelphia, U.S.

Connecticut, U.S. . A. communication, from S. E.
Mower, Miliford, U.S. $-8 t h$ July, 1851.4
Patents on which the stamp Duty of 2683. Governing, the Flow, dc., of Water, W. Foulis,
 $J u l y, 1878$.
2720 . ADJUST
southampton-buildings, Londores , W. R. Lake

 249.8. Cutrixa Screw Threads, H. H. Lake, Southamp-
ton-buildings, London. $24 t h$ July, 18Ts.
 2735.. Mactirive Guvs, W. R. Lake, Southampton-
buildings, London.- $\$$ thl
July, 187 S . buildings, London--sth. July, 1s78.

Patents on which the Stamp Duty of

 2411 HEATHING PLLates of Iron, R. Taylor, Llantrissant

Notices of Intention to Proceed with

 Lust day for filing opposition, 29th July, 1881.

 35. Trant Ralls, E. Thompson and S. Tomkins
London. - thl Marcli, 1881 .

41. DE | 041. Deilvering Tickers, March, 18sl. |
| :--- |
| Mebro, London.-4th |

 and W. Ramsey, Durham.-28th May, 1881.
2459. ANIE Puyyyy
4th June, 1881. F. F. Ryland, West Bromwich.-

 Last day for fling opposition, 3rd August, 1881.
 Marchl, 11881.
99s. LINADUS, J. Lewis, T. Hammond, and J. Hiller
Killume
 1012. F URXACEs, B. R. Huntley, West Hartlepool.

 1040 Eth March, 1881.

 112. Lasprs, S. Pitt, sitton, Surrey. -A communica
tion from W. B. Robins.
isth Murcl, 1881 .

 126i. SULPHocravimes, H. E. Newton, Chancery-lane,
London - communcation from
and J. Tcherniac.

 2023. REGU UATror Gis Bursers, H. Z. Zanziger, Vienna,
Com. from J. Janky, J. and C. Rimanoczy.- θ th

 Jtene , Sosp Levs, C. Thomas, Bristol, and A. Domeier,
2462.

 London.- A communication from F. Lambert and

Patents Sealed

List of Letters Patent vehich passed the Great seal on
the Sti July, 1881.$)$

 127. Revoivila Sinucrurss, , Stones, Ulverston, T, T,
Kirby, Barrow-in-Furness, and E. Phillips, Ulver

 142. Useful Products from seawerds, E. C. C. Stan-

 15. HaND STAMPs, G. K. Cooke and E. Hurles, Fleet-

 228. CIENSSILI. WINE, de., M. W. Proudlock, New-
castle-upon-Tyne, and R. Weatherborn, Burton-on-

 254. SELr-FEBDLSG, dC., FurNACEs, L. W. Sutcliffe,
 272. Ratising Trees, S. Newington, Ridgeway, Tice-
hurst ${ }^{293 .}$ Creasinga Mu.k, dec., F. W. Unterilp, Duissel-

 ${ }^{244 \text {. Chandus J. C. M. Sombart, Magdeburg.- } 25 \text { th Janu- }}$.

 55. Sowivg, de., MaNure, H. A. Bonneville, Cannon-

 631. Ranliway brake Aparatus, W. L. Wise, Whito-

 S2. Propelilisa Vessels, dec, L. A. Groth, Finsbury-

 614. Roumer Mils. Mc, W. L. Wise, Whitehall-place,
London London. -13 th Ap pril, issi.
661. VELIOCIPRDEs, W. Hillman, Coventry. -14 th

 Wortley, Leeds.-2nd May, 1 Ish1.
1898. Fouting PARER, J. H. Johnson, Lincoln's-innfields, London.-3rd May, 1858 . Brooko-Hunt, Peer's.
1911. Foon for Crrite,

 ton-buildings, London.-6th May, 18s1. W. Greener,

 (List of Letters Patent which passed the Great Seal on the 15s. Producing Architrotural Ornaments, L. A. A.
Groth, Finsbury pavement, London. $-12 t h$ Jonuary,
 13th January, 1881.
169. PuAAsive, ©C., Wood, G. Richards, Manchester.-

205. Distiulisg Apparatus, T. Rayner, Chancery209. CANDLLES and TMPRERS, E. G. Brower, Chancery210. BEDS for ISVALIDs, G . Lowry, Salford. -15 th 211. Sirzvid sic., Worstrd, C. Anderson, Osborne-

 188. Ridway Signalling Apparatus, J. N. Maskelyne,
 field.-9th Fecruary, 1881.1 .
600. Lises, de., J. D. Sprague, Norwood.- -11 th Febru-
 don. Thth Rebruery, 1881.
 1522. Trmanrsa the Soless of Boors, ©ce., W. R. Rake,
Southampton-buildinus, London, - tith April 1881.

 23ril April, 1881 .
 1936. Curting Chesse, de., J. Richardson, Gains
 Nottingham. -4th Mayl, 1881.
1964. Doon K Nobs, tec., A. and R. Heath, Birming2001. WATtrRproof Casing, H. A. Bonneville, Cannon-

List of Specifications published during the

** Specifications will be forwarded by post from
the Patent-oftice on receipt of the amount of price and

ABSTRAOTS OF SPEOIFIOATIONS.

ared by ourselves expresesly for The Enorverr at th
office of Her Majesty's Commiessioners of Pate
4140. Provision Boxes, \&c., T. S. Colus.-Oth DecemThe box is. furnished with a lid having a rim pro-
 end projecting and forming a ring for the introduc-
tion of a key, by turning which the rim will be torn
off on
4422. Bag.making Machinery, h. Rankine.-29th

Thisis consists, First, in the use of folders of thin ver of the sides to make a pasted joint. Secondly,

 nachine.
 This consists in having a disc or otherwiso shaped
reea, containing one or more revolving pads composed
 other suitabie agents of communication having an
arranged construction to perform various gyrations.
 To reducerce theo. spariks betwoen the commutator and
the collecting brushes, the late latter are divided into parts, and that part which is latest in contact with

any section of the commutator passes the current
through a resistance, thus gradually checking the
current as the contact is broken. Whero the arrange.
ment of the machine is ssch that the armature coils lie in planes paralulel wisth that plane of revolution of
the armature, the latter is thus constructed: The ircumference of a pulloy is surrounded with a serie
of layers of slieet iron insulated from and one or both sides of this ring radini slatar are cut to
admit the insulated wire. When a continuous current is required the coils are placed on both faces of the armature and arranged alternately. Thi field mag.
netst are made similarly to the armaturo. Each coil. packed close against its neighbour, so that each is of of
aproximately quadrintheral form. Fig. 1 shows the
menss for reducing spuntres.
 another cylinder. The space between the evylinder is
illed with a mixture of plumbago nad lampp black aving a suitable resistance ; the ends of the spacean
losed with discs of ivory justed that it remains in contact with any socment of
the commutator for a short space after the other srushes have left contact with that segment. Fig. ${ }^{2}$ ent.
 This consists in the use of a tube, partly or wholly hlaped like a syphon, and sucho tube attached to a kien or other vessel in such a mamner as to form a hydraulic
seal joint or lute, or the tube to be without any seal joint or lhte, or the tube to be without any
liquid or withlout forming a lute, but providing an inlet or outlot at at lower level thant the vessel to which it is attached for the purpose of bleaching, dunging,
soaping, washing, dyeing, stenming, and other operaSoaping, washing, dyeing, steamin
 This invention relates to that class of telephone systems in which a battory curreat or traverses the the
dircuit of wires comnecting the stations, and is quali fed by tension connecting ching and current breaking diaplragm. Its object is to utilise to a maximum degree the force of a line battery connected with a
receiving apparatus, to canse an extended range of reeceiving apparatus, to canse an extended range of
varition in the strongth of the eurrent of the line
battery in correspondence with the varintions of the battery in correspondence with the variations of the
transmitter diaphragm, and to effect an increased transmitter diaphragm, and to effect an increased
amplitude and force of vibration in the diaphragm of the receiver. The figure shows one of the arrange.
ments of apparatus used by the inventor, the operation of which is as follows:- Upon speaking into
the mouthriece of the transmititin given to the diaphragm a to-andifro movement,
the effect of
thich is in increased in forco and amplitude at the circuit closer, viz, the plum-
bago button N and platinum stud i , by means

498]

of the lever F . These rapid movements alternatel
 cause a varying attraction of its sermaturn apparatus, and
ing to the ing to the amplitude of the vibrations, of the
diaphragmo, which cuases a varying oantatet between
the carbon button V and
 the telephonic receiver correspond in numbere and in
varying power to the vibrations of the diaphragm. varying power to the vibrations of the diaphragm.
Several modifications of the above apparatus are also 4988. Thprovenests in Eubctric Lamps, K. W. Hedges. - 30 th Noeenber, 1880 . 6 d .
The frist portion of the specification refers to an
 reguiating the consumption of the carbons in an arc
lamp. The invento employs three carbons, A, B, and
C, as shown in the find C , as shown in the figures, two of these, B, and C,
constitute the positive electrode and lie in open

troughs inclined to one another, the two carbons
descendin descending by bravity, and remnin in contact notwith-
standint their
carbon A ansumption alion lies in in min indin The third and negative
 tion of the carbon against which it bears becomes Wasted away. Contact is made by pieces of metal I
hinged tothe tronghas shown. In order to adjust
the distonnco betwe the distance between the negative carbon and the
meeting point of the positive carbons the inventor moums the trough containing A, so that it can mover
horizontally towards or wavy from those containing
B and C, B and C, and connects it tot the ermaturee of an electro
magnet.' When the lamp is inert, the end of the enegh Magnet. When the lamp is inert, the end of the negin
tive is brought into contact with the positive carbons by a weight or spring, and the lamp being put in
circuit, the current passing through the carbons and criccourg the current passine through nnet carbons and
thr atthacted oil of the electro-magnet, the armature
is is attracted, and a movement is given to the trough of
the negative carbon, withdraving it from the positiv carbons and eatabilishing an an arc. The latter part of
the the specification reforss to an inconendescent lart
arranged that it may be used without glask 4989. Warming Ratiwav CARriaces, c.

This consisits in n method of warming a railwa
 4990. Oprening, CLosing, and Fastranino Casbments The sashes, ac. are hunk upor pivototor hinges
and are caused to be opened by means of levers and
links.
 The object is to render machine guns more safe and
more perfect in mechanismand in taking up the recoil,
and for facilitating the quick change of aim with the gum. Two or more barrels A lie in a h horizontal plane
or in an arc, their breech ends being scrowed to a centre pieco B, and their muzzle ends passing through
and siliding in a front crospiece C Coyed to the trunnion frame, which forms three sides of an oblong, the crosspieco forming the fourth side. Between the

trumnion frame and the sliding frame is a strons | trumnion frame and the siding frame is a strong |
| :--- |
| spring D to take up the recoil. Two spirial springs E | are also compressed when the gun is discharged. The

feed is offected through openings in the cover F , which

allow the cartridges to fall into recesses in the breech
block, which at the time are opposite the open ends of barrels $~$
them when the lever G causes plungers to push
them into the chambers, and carries the breech block forward so as to close the orreccles and fire the 4993 . F

Felting Machinzs, G. Yule.-1st December Felting ad. aprons or rollers acting in concert with felt-
ing beds receive ing beds receive reciprocative and oscillating move
ments in addition to progressive, forward, or rotary motions. In one arrangement two rollers carrying felting apron are mounted aibove a hot wator tank,
which is partly immersed felting be the which is partly immersed a felting bed, shaped to
correspond to the path or traverse of the lower part of
the the said apron, and immersed sufticiently to soakk the
articles to be felted. The bed is
 bed. A reciprocatiuluate nde the upwarip rotary motio
is inpme

 tightly closing a doorway or similar opening having
one or more straight sides,
n swingind doo hor like, and its frrame constructed without trabbet or stop
like
and and with all their corners rounded, and constructed
respe internal bevelled sea
4998. Manveacture And Purification or Gas, The First part of this invention refers to means for
ascertaining the condition of the charge in the retort ascertaining the condition of the charge in the retort
-that is, if gas is still being made or whether all the

to the horizontal branch of the retort, by opening
which (before loosening the cover to remove th Whinch (before loosening the cover to remove the
charge) such vapours can escape. To supply steam to
the the retort, ancension pirpe, or the hydraunic meanin, a
pipe is arranged within the fire chamberabove the tive
 rounding steam generated passing into pipe D surpipe or hipa G, and thence into the retort ascension
purify. hyaulic main. Fig. 2 shows a filter for 5001. Prin
dec., P. D. Hedene Cutive, and Folding Newspapers, This relates to web printing mechinines, , and counsists,
First, in means for adapting the machine to print different sizzs of sheets; ; Secondly, to the cutting me.
for sover. to folding mechanism to fold the sheeets cut lengthi
to ways of the web; and Fourthly, to mechanism to
bring pairs or sets of shoets formed by cutting the Web transversely and slitting it lengthways, one over
the other, and then folding them together. Tub drawing shows an arrangement for effecting the first

55001

and second parts of the invention, and it consists in bearings of the impression cylinder B, of a curved form, and the bearing blocks C of an angular d ployment of different sized cylinders. The typ desired. The cutting knife has a combined recipro cating and vibrating motion, and is carried by rod
fitted to slide through adjustable rocking centres F 5003. Mixing, dc., Various Sudstances, P. Pifeided This relates, First, to means to facilitate the auto owering it down again ; Siecondly, to the employment of a new kind of movable serapers; Thirdly, to varying
the form of the blades or mixers.
5004.
 This invention consists of an apparatus for
measuring currents for electric lamps or other pur-
poses In the
 pins are onfrnged on this cylinder, according to the
number of lights to be registered, as shown in Fig. 2 ,
earh pin actint each pin acting on a set of levers. The action is as
oullows: 1 lever B kept fixed against a stop B has has
attached to causes its extremity to engage with the own weight

 coun of which is in circuit with one of the lamps, it
flaced placed under the arm H, mounted in an iron brackee
G^{1} constituting one of the poles of the magnet. Whem

H is attracted by G , the rod and with it the lever C
are lowered, and E will be propelled one tooth for each revolution, E is moruted on an axis of the same
length as A , and there are as many wheols E as pins

on the cylinder A ; for ench wheel there are the lever 5006. Spinvine Machinerr, do., H. B. Arundel.-1 guide guide A is is pivoted to a plate serewed to the guide rail D. A roll of yarn E, built upon a paper
tubee is slipped on to the metal tube G, which runs
loose loose on spindle F and is driven by the friction
between its washer H and the washer I on the spindle.

K is a spring catch engaging with and rotuining the of dofting or piercing. The guide hang two opporation one
M, to conduct the yarn to the bobbin, and the other L,
to incende the o increase the draft,
5014. Electric Lamps, J. W. Suacn.-2nd December; This specification relates more particularly to improvements in the mothod of preparing the carbon,
for the inventor's incandescent lamps, as describod in Ior the inventor's incandescent lamps, as describod hic
his patent No. 9933, 27th November, 1880. The inventor's object is to thicken the ends of the carbons
so as to facilitate the comnection between them and the metaliic conductors, and to prevent hent at th nventor wraps the euds of the converted cotto

acid, as doscribed in the former patent mentione pressed into shape as shown in Fig. 1 , it is is then car binised. Various other methods are also deseribed Figg. 3 shows a lamp arranged with multiple carbons
so that one or more may be rendered incandescent at the same time, a system which permits of variation in the intensity of the light. The carbon is somotime
also flattened, thus obtaining a greater radiating dsurface and more light.
suthen,

 produce a convex flame from a wick cut flat

This relates to the employment, after waxing the
threads, of coatings consisting of powders, varuishos, bodies to render the

so as to remove excessof wat, Thie thrend then passes
certically to a horizontal roller C revolving in a box containing a powder stuch as talc, which prevents the lastic pads F. coveradiread with a tortile fatric, whic water, which softens the wax on the thread. The

5017. Railroad Waooss for Carryina Ilve
Stock, W. Morgon-Broun._-2nd December, 1880.-
from J. Montromery.) 10d. arrangements of parts of a stock car for facilltating
feeding and watering the stock, and for separating or
staling the same
5018. Refining and Straninge Pulp in the Manu-
FActure or paper,
or and
G. Tidcombe.
 trraining pulp in in pulping genginess so that the bars of the
rollers will be equi-distant, and also to improvements on patent No. 5108, A.D. 1879. Fig. 1 shows an end view pat the skeleton of the improved roll body, formed with dividing plates A set radially in it to receive
between them the pulping bars C secured by the

wedges or fillets D. Figy 2 shows the improved
strainer in which the strainer plates H are set in a hinged frame or box L , and the gate dam, or valve for
allowing the overflowing pulp from the strainer plates allowing the overflowing pulp from the strainer plates
to escap, is placd at to eftec an even cleansing of
the platos. An overfow channel N passes to an 5018

auxiliary strainer, where the overflow of unstrained pulp is further treated. The shake motion iso double
action, adjustable and noiseless, and is actuated by the cross arm W, driven by an excentric.
 This consists in arranging a series of cans, ilevers, and biance weights, the Latter acting as rollers, so
that while the continuos chain motion or any other
kind of ochtinuous motion is given to the ordinery kind of continuous motion is given to the ordinary
box mangle the riser-bars for raising the ends of the loaddod mantle-box are made partinlly self-acting
inasmuch as that when they are celieved of the weight lonasmuch as that when they are relieved of the weight
inasmut
of the mangle-box they wiil automatically rise clear of
 which they engage without personal attention, which
has hitherto been necessary, and will contine in this has hitherto been necessarty, and of the mangle-box is
position until one or other end
end again required to ean rawsed, acomplished by a gentle pressure of the finger upon a small lever forming part
5023. Wripe Roprs And Cabless, A. S. Hallidie.- $2 n d$ December, 18so.-(Complete.) $6 d$. .
This consists mainly in increasing the durability of the rope by the employment of wires which are
flattened, the flattened surface being exposed to wear,

and in laying the same into strands or ropes, either eparatery dhaw showing the machine employed for this purpose. The wire passes from the bobbins A through lattening rolls B, and thence through the laying

This consistst in the employment of a second thread
 gim movement in such a manner that the yarn is sub ected constantly to the same tension during the
ormation of the cop. Fig. 1 shows the thread board
Fin ormed as an abutment T, against which the yarn rubs either periodically or continually, To the threaa
board moving with the copping rail a small blade i

secured, and serves to clean the traveller. Fig. Shows the arrangement for building up the midade novement required to make the cone of the cop, Ba screw. threaded rod supporting a ring E, C a worm
wheel driven from worm D, and having a fin ger G to
隹 take it in or
another cop.
5046. Velociredes, J. K. Starley.-3rd December, 1880, This relates, First, to a novel arrangement of mechanism for transmitting the motion of the crank
or pedal shaft to both or either of the travelling wheels of a tricycle as required; Secondly, to ain
improved arrangement of brake for braking both improved arrangement of orake and Thrirdly, to an
driving wheels simultanousy
improved anranimement of roller bearing for velocipede wheels.
5047. Receptracles for Tea, \&e., c. Chesuright.-

would strike below the propeller and rudder, so as to enable the vessel ol to be beached witho rut havin, so to pro-
tect these parts. Balanced or other rudders EI Ire are tect these parts. Balanced or or oher rudders $\mathrm{E} \mathrm{E} \mathrm{E}^{1}$ are
used, one placed directly before and the other directly used, one placed directly before and the other directly
abatt the propeller F, the two oudders moving simul-
tole abatt the
taneously.
5040. Gas Regulators, H. Devine.-3rd Dceember, This relates to regulators in which a diaphragm is
used 2 st the controlling mechanism and its ohjectis effect a more perfect comenection of that casing with the

pipe projecting from the casing, and being serew
threaded to connect it with the meter. A branch and tail-piece of a union joint connect the regulator
to the supply pipe. 5041. Spinning Machinery, B. A. Dobson and R.C.
 mule or twiner during the formation of the cop bottom. The usual governor horns are mounted on the copping fallers A and counter fallers B, and to them is con-
neated one end of an L-shaped lever C by means of chain passing over a pulley connected to an weight
on the lever. The lever swings on a stud on the
The carriage square. Upon the other end is a tooth-
shaped finger, which, when the counter faller B is shaped riner, which, when the counter fanter in is
lowered by th yann being wound oo too raily,
comes in contact with a hall-clutch-box F, on the face

of which are projections. This clutch-box forms a pulley with $\mathrm{two} v$ groves, and int iurns on a stud
mounted in a bracket, also carrying a carrior pulley,
over
 a removabie lower oil cup, a spiral wire S being
wound round the spindle, and nearly filling the espace between it and the bolste
more perfect lubrication.
5045. Iron Wire, H. E. Neuton.- $-3 r d$ December, 1850 . This rolates to the production of iron wire by a system based on the exclusive use of elliptic grooves,
regularly traced to a methodical rule, and placed so as

5045

to obtaina a uniform and constant rolling or drawing tout motion, such rule consisting in adopting a con stant relation betweon the sections of the grove oe
which follow one another. The drawing shows on arrangement of the machine employed to produce iron wire, and has a series of vertical rolls A and a series
of horizontal rolls B, formed with elliptic grooves as described.
5048. Manuracture of Stockinges, de., h. J. Grics Thold. $-3 r d$ december, 1880 . 18 . $2 d$ d. knitted part of a leather, felt, india-rubber, or other sole, to form a sock, which will serve as a bed-room or house slipper, or as a bathing shoe; ;secondly, to the knitted strap or straps provided with button-holes Thirdly, to the improved knitting machine.
5049. Trimaing the Heris of Boors And Shoes, W This relates to the means for producing automatically or mechanically a varying inclination of the knife so tageous and expeditious manner.
 This relates to boilers. with internal flues, and con sists in improved combinations of the same to obtain a better combustion of the gases and increased heat
ing surfaces, so disposed as to divide, divert, and
 soted upon. The flue tubes are made up of sections
ormed of single tubes B with sections formed of
series of small tubes D . One, two, or more plain
cylindrical sections B are connected together alternately with sections of small tubes D. The cylindri cal sections have each one or more conical or cylindri cal water tubes C secured across them, or they may have water p.
water tubes.
5051. Improvemests in Theriteces Worked bi ELECTrRICTTY, W. P. Thompson. - 4 th December
$1880 .-(A$ communication from A. Lemoine.)
6d. This invention has for its object a system of electric
timekeeping by means of an timekeeping by means of an electro-mannet, which
gives antomatically to the pendulum fresh impul
sion each time that its oscillation fails to sion each time that its oscillation fails to attain
certain amplitude of course. This is done by men ertain amphitude of course. This is ione oy mean
of the light spindle with vane attached mounted on the pendulum, as shown, the vane being of mica o
paper, As long as the range of oseillation of the
per paper. As long as the range of osciliation of the the
pendulum doos not deccend below the nomal limit
the spindle E passes the contact T, without lowering ith by following thes inelined path thet the reseristange
of the air gives it, acting upon its vane. If however of the air gives it, acting upon its vane. If, however,
the oscillation diminishes, the speed of the pendulum

diminishes, and the resistance opposed by the air to the movement of the vane guse equally
such manner that the spindle approachies the vertical.
Tuth It then presses the contact t, which rent traverses the
that the circuit being closed the current electro-magnet, which becomes active. As this effect is produced before the pendulum becomes vertical-
see dotted lines-the armature B is attracted, and the see dotled rinesinthe itrmatrere
pendulum regains its full range of oscilitation under pene infuence of this impulsion i E E gliding over L ,
the in
which anain rises, the pircuit is broken, and the which again rises, the circuit
pendulum oscillates as before.
5052. Butross, de., W. P. Thompson.-4th Dceember: proceeded with.) $4 d$. 1 . 1 . 1 This relates to a machine for the fabrication of all
parts of buttons (with shanks as well as swith holes), partsever be the matetrial, by the aid of which this
fabrication is made or the form it is desired to give fabrication is made, or the
to the product fabricated.
5055. Syphons, J. Delord.-4th December, 1880. 4d. Ais a pipe which can bo moved to ond fro in the
sleeve B which communicates with the liguid to be sleeve B, which com Thide of the pipe A and sleeve B which
syphon ed.
touch each other, are made water-tight. The sleeve B touch each other, are made water-tipht. The sleeve B

5055

lose, which is led to the liquid to be syphoned. The pipe A is furnished with valve C, which opens when
the pipe A is sushed inwards in the sloevee B, and
and
 short movable pipe G and the outlet orifice can be
opened and shut thereby at will by means of the button

 projections in rovideded with an upturneod dedge serrated,
design and
or an upturned edge with points, by means of which or an upurned edge wit
they are secured or held.
5069. Metallio Drums or Casks, \&c., J. Donnelly.-
 This relecteser, to an anarentrour and lid or or over, which
may be advantageous as regards filling and convenient resurds closing and securing
5070. Loors, D. Sykes, P. Pontefract, and J. A.
Gireenvoood.-6th December, 1850 - (Not proceded
whith.) 22 .
This consists in the combination and arrangement of parts, wheraby the rising and faling shuttio-boxes
may be lowered ensily and gradually by selficacting
mechanism with mechanical exactness.
5060. Refrigrrating Apparatus, \&ce, A. S. Haslam.
-4 th December, 1sso. This relates to an apparatus for collecting and separating aqueous vapour from compreased air and
converting it into ice, which is utilised for reducing the temperature of the compressed wir both in the
formation of, and in the melting of, such ice. Also to
the surcharging of the air compressing pumps with
air by means of a fan driven by the compressing engine. The The drawing shan orviven the the the compresesing
collector and separator A with reference to the aid
and compressing cylinaterator A and the reference to the air with the refrigerating apparatus described in patent

Fo. 1484, A.D. 1850, and it consists of tubes fixed in or receiving the air before and after parting with its queous vapour. The collector and separator is placed 5072 St -6th December, 1880. (A communnication from A.

5073. CARTRIDGE Compressors, H. Heed. -6 th Decem This relates to means to compress or turn in the edges of a number of cartridges simultaneously, in
stead of manipulating a single cartridge at a time as hitherto.
5074. Miners' Safery Lamps, \&ce., E. Robathan.-6ti. Decerver, 1880. bd.
The novelty consists in so constructing the lamp as

alteration. The stem H of the reflector A is fitted into Tecess in a projection F cast on the frame G of the
lamp, and the stem of the reflector B is fitted into jecess in the frame D, or fitted into a recess in a pro 5075. Gassing Yarn or Thread, J. M. Ciyer:-Gill The principal feature of novelty consists in so constructing the gas burners that the yarn or thread passes in a evertical dirirection through the flame instead of in a horizontal direction.
 This machine consists of a portable or traction steam
engine and boiler, combined with digging tools or engine and boiler, combined wit digging tools or 5078. Flushiva Dranss, de., S. H. Adams.-6th This consisists of a syphon of a reetangular form,
 purpose of discharging with a small flow of liquid into
the falling or outlet leg of the langer syphon. 5080. CLocks , A. M. Clark. - - th December, 1880.-(A This relates to a clook consisting of the back plate being supported between the ol owwer partst thereofot in
combination with the short front plate C attached to

the uppor part of plate B, the train being arrangod between mechanism by arbor D supportredt in plates A C , and carrying pinion H gearing directly with the
 from A. P. Dubrururiati-- Not proceeded with.) $4 d$. This relates to combiming divers processes more or
less known for the purpose of manufacturing beet less known
sugar without residue of molasses. 5032. Velocipedes, \&c., A. Kirby.-6th December
18so. $6 d$. Thiss.e. ed.e. to combinations and arrangements of
This rates transmitting power to the two road apparatus for transmitting power to the two road
driving wheels of velocipedes by means of self-acting driving wheels of velocipedes by meansose of toothed
equalising , and distributing gear composed of wheels and double-ended pinions.
5083. Improvements in the Manufacturb of Cables

 themselves, 1 all induction between the several conductors is obviated. The mater.s. The outer ring 1 is a la leaden
shown in the figure.

portion of the invention refers to the machinery 5084. Device for Holding tre Drind or Tool iv A

The devico is formed with a socket A to receive the
iston rod C, secured by a cotter or other means. In piston rod C, secured by a cotter or other means. In
its forward end is a parallel hole or socket D to receive

the ehank of the tool, the outer surface of this end
being taper, and over it passes a collar E fitting over Meries of blocks G, inserted in slots in the forward end
of the devico, and bearing on the shank of the tool.

 sed is poured, its fall being regulated by means of a
rough slowly revolving, transporting, or feed roller B. The rain or seed ans it ieves this roilier is purified by
menns of a current of nir produced by the blower C, means of a current of nir produced hy the blower C,
and is conducted over four or more flit sieves D E F G,

placed onc below the other. To compel the grain to
pass successively over the entire surface of each of chese sioves, under the frames of the sieves are placed
solid bottoms H H, so that tho grain in separated into
into
diferent
 thus effected.

 ing to degree of fineness is allowed to take place;

 remains in the vessel in which it was deposited;
Fourthly mechanical removal of one stratum of
deposit from another
 Mhersh.) 10 d. notted cord instead of a twistod wire, and for regn.

quantity of string off the reel, and brings it to the the string carried down as described are then laid hold of by a knotter, and when the knot is formed the
string is severed by a cutter. The sheaf is supported
on the side opposito to the string by one or more cradles
5090
5090. GAs Exornps, W. Foulis-Tith December, 1880.-
(Not proceded reith.). This orlates to impovernents on patent No. 2422 ,
April, 188). Under the present improvements the compression pump, thy means of which the thir and
gas are forced into the cylinder or cylinders of gas
engines is connected by means of a passage or
passages to a chamber or chambers containing layers passages to a chumber or chambers contamissed mix-
of wire gaze, through which the compres
ture of air or chambers accordingly as the engine has one, two,
or more cylinders. The chamber containing the
or or more cylinders. The chamber containing
layers of wire gauze is cooled by a water or air jaket,
which may also extend round the tubular part wherein the igniter is placed, so as to keep the said part at a
sufficiently low temperature. By preference one valve suticiently low temperature. By preference one valve
only is used between the compressing pump and the
chamber containing the wire chamber containing the wire
than one valve may be used.
5093. Screw Propellers,
chrecst.-7th December, 18so. Gd. bined in two or more pieces-that is, two or more

5093

pieces A and B in their length, which pieces are
connected together by bolts and nuts or equivalen fastenings.
5098. Supporting Saddles or SEats of Bicyoles,
Tricycles, \&c., J. A. Lemplugh.-Tth December, 1s80.- (Not procedede witt.) $2 d$.
A framework or plate affixed to the backbone or bar carries, by mens of suitable sockets, one, two, or
more india-rubber arched forms, either longitudinal more india-rubber arched forms, either longitudinal
or crosswise of the backbone or bar for the purpose of reducing the vibration.
5097 .
Thisember, $1850.6 d$. the cone of the lamp, by which it sustains and carries
both the chimney and moon while in the act of both the chimney
lighting the wick
5098. Manufactur
 Company.)- (Not moceded reith.). $2 d$.
This relates to india-ruber balls, such balls being covered with wool dust
5099. Meters, \&c., W. Stead.--ith December; 1880. This consists in the employment of feathering discs
or pallets adapted to a cylinder or case having an or pallets adapted to a cylinder or case having an
expanded acting channel or passage and a contracted return channel or passage, the disise or pallets being so constructed and arranged in relation to each other and stroke they fill and travel through the expanded act-
ing channel or passage, and that they are then automatically feathered or turned upon their axes and return through the contracted channel or passage. 5100. Regulating Pressure and Economising Con-
sumption of Gas, H. Barlow. - ith December, 1880 .

The apparatus consists of two sockets, chambers, or
receptacles, which are screwed together, the inlet end receptacles, which are screwed together, the inlet end
of the lower socket being attached to the outlet pipe of the meter, and the outlet end of the upper socket
being attached to the service pipe. The upper being attached to the service pipe. The upper
portion of the lower socket is provided with a neek友 $\begin{aligned} & \text { phich forms s a seat for a valve, and the lower portion } \\ & \text { of this neck carries a serew threaded llance or collar, }\end{aligned}$ of this neck carries a screw threaded flange or collar,
which engages in the lower socket which is tapped to receive it, and by means of which the two sockets are
screwed together, and over this neck is placed a screwed together, and over this neck is placed a
conical metal cap or valve, which works up and down conical metal cap or valve, which works up and down
in the upper socket. The lower portion of the lower chamber is provided with a hollow screw plug, which forms a seat for another conical metal cap or valve,
thus the lower socket carries the two thus the lower socket carries the two caps or valves
and their seats. Projections in both the sockets guide the conical metal caps or valves in their rise and fall, and against these projections the caps or valves are
forced when all the burners are opened. 5101. Gas Engines, dee, W. B. Richardson.-7th DecemThis, consists in attaching or in casting on to the capable of containing hydrocarbon liquids, such as petroleum and other oils or liquids of a like character. There is also attached to the engine a pump, by means
of which atmospheric air may be drawn in through the carburator in suitable quantity to render the air thus carburated explosive, and fit it for duty as an explosions being made available for using liquids that would be otherwise valueless for such purpose at
ordinary temperatures. 5103. Emptysing, de., Cesspools, N. Talerd.-Tth DeThis relates to a method of and apparatus for empty-
ing and conveying away the contents of cesspools wherein such contents are first drawn from the cessrools into recipients by suction, and are then dis-
charged from these into a floating vessel of special construction on a river or other water-way, by which 5104. Pulverising Minerals, \&c., W. R. Lake.-
ith December, 1880 . A communication fiom F. A. Lucclenbech, J. Wolficnden, end L. F. Holmann.) 6d.
The apparatus is provided with an annular steam The apparatus is provided with an annular steam
or air chamber A, current tubes B B1 with removable
linings, passages or valves C, hoppers D, movable caps

E, inlet tubes H, and supports I, connected by rods
K. The inner tubes B and outer tubes Bl form straight
inler inlet passages for the substance to be pulverised, and
are by preference provided with hardened metal
linings, which may be readily removed when desired. 5105. Slides for Magic Lanterns, E. H. Doubell.-
Tith Decenber, 1880.-(Not proceded with.) $2 d$. This consists of an opaque plate with translucent combination with a movable semi-transparent screen
of gauze, canvas, or other open fabric wound on of gauze, canvas, or other open fabric wound on
rollers mounted on the slide, and to which motion is imparted by winding it off one roller on to another, so
is to impart the desired appearance of falling motion as to impart the desired appcarance of falling motion
to the images or represontations of the rain-drops upon the screen.
5106. Tubes for stram Botlers, Repriorrators,
\&c., W. Scantledury.-Tith December, 1880 .-(Not procected rith.) $2 d$. .
One novel form consists in forming the tubes with
special corrugations or hollow threads from end to end.
so as to offer greatly increased heating or cooling so as to offer greatly incrensed heating or cooling
surface in a given length over that of an ordinary
plain surface tube. 5107. Stean Pumps, \&c., G. Tangye, T, Jefferiss, jun. This relates to steam pumps for constant and vari able loads, when used for the latter the pumps being
fitted with automatic expansion gearing controlled by fitted with automatic expansion gearing controlled by
an improved governor, and effecting the condensation an improved governor, and effecting the condensation
of the exhast steam. The improvements may be used conjointly or separathely, and are in part applic-
able to steam engines other than pumping engines able to steam engines other than pumping engines,
and to other motive power engines. The automatic and to other motive power engines. The automatic
expansion gear is shown in Fig. , in which A is the
expansion valve secured to a spindle, on the ends of

passage are pistons C working in cylinders connected by
passages to opposite ends of the main steam cylinder.
Intersecting these passages, and near the small cylin der, are lift valves D worked by tappets controlled by the action of the governor. The spindle at its
extreme ends also carries pistons H working in air
cylinders the air injury. The springs of the governor act as a counterbalance to retard the rising of the pendulums, and
allow them to be driven at an increased velocity. Fig. 2 show to be driven at an increased velocity
the construction of governor combined with an equilibrium valve controlled by the governor, 5108 s
5108. Securing the Ends of Wipe for Fencing, \&e.,
H. Eyjre and E. Heathifield. - Tth December, 1880 , 6id. This consists in securing together lengths of wire by flattening out the ends of the wires and inserting them 5109. Treativa Gavze, Bobbinet, \&e, o. Wolff:-
7th Decenber, 18so.-(A communication from G. This relates to heating the material by mechanical and chemical means, so that thatererial by mechanions connected
with the process can be carried out in a few hours. 5110. Apraratus For Blowing Fog Honns, \&e., W.
B. Burker.-Sth December, 188日.-(Not proceded The horn is caused to give a long or short sound, so as to indicate by a code of signals the position from 5111. Catchive Berite

This consisember, 18s0. 2d. of a trap coated with an adhesive composition. 5112. Fleshivg Apparatus for Closets, Drains,
बc., W. Wildig.-Sth December, 18so.- (Not proThis consists of a circular drum of sufficient size to hold a regulated quantity of liquid. Internally this
revolves itself spirally to hold said liquid, the weight of which is equally balanced by a metal disc. The drum is free to revolve on a perforated metal pipe connected to the supply and passing through the side of
the tank in which the drum is contained. The liquid is supplied to the drum by the perforated pipe, the
drum thereby being turned over and discharging its contents. By the use of a stop tap the apparatus can
be discharged periodically at any given time. 5114. Support and Fastening for the Rails of
Railways, H. A. Houllier:- 8 th December, 1880 . This consists in the employment instead of the ehairs heretofore in use, of a support divided into two
fish-plate like angle brackets A and B, the upright

cheeks of which are adapted as accurately as possible
to the foot and head of the rail, the horizontal cheeks being secured by suitable means, such as screws G, to
the wooden sleepers H. A screw bolt D connects the the wooden sleepers H. A screw bolt D connects the
two angle brackets and the rail C between them. 5115. Manufacture of Bread and Confectionery,
A. Esilmear and A. Hessall.-Sth December, 1880 .

- (Not mocceded uriti.) $2 d$.
his consists in the employment of bi-sulphates and This consists in the employment of bi-sulphates and
phospho-sulphates of potash, soda, or ammonia, the
said sulphates being used with any suitable carbonate Said sulphates being used with any suitable carbonate
for the production of carbonic acid in the manutactire of bread or confectionery wised.
be use 5116. WATER-METERS, R. SChloesser:-Sth Decenber,
1SS0-(A communication from Messrs.Dieyer, Rosenk:ranz and Droop.) $6 d$.
This consists prinipipaly of a circular shallow vessel
in which is placed centrally a vertical spindle, which in which is placed centrally a vertical spindle, which
is so mounted as to be capable of revolving, and which
is provided with six horizontal arms. Three of these is so mounted as to be capable of revolving, a
is provided with six horizontal arms. Three of these
arms carry small wings or vanes, and as the water fows through the vessel in passing from the inlet to
the outlet, the fluid pressure carries these vanes with it like floating bodies, and the other three form the stops between the inlet and outlet passages.

5117. Dredging Buckets, R. Hadfeld.- Sth December, This consists in casting the buckets in steel, iron, or
5118. Working Hobby-horsfs, de., os Romadabouta 4. Weudington.-sth Decechber , 1880. id.
This consists of a roundabout having hobby-horses or other figures of animals constructed and arranged
in such a manner that they receive a circular lifting
me falling action or motion to resemble the and falling action or motion to resemble the movement
of horses or animals galloping or jumping.
5119. GAs Governors, W. Coican.-Sth December, This consists in placing on or attaching to the
exterior of the roof of the governor bell A, atank B
capable of being charged with water capable of being charged with water, glycerine, or
other suitable liquid, called the water tank, which in some cases may be annular, the central up and down along with the governor bell, to the out-
side of the roof of which it may be either fixed or poon which it may simply rest. Into this water tank there dips a bell D which does not move, but is fixe
to and suspended by a disc, cross-bar, or othe
nitable means. This moving tank with a fixed bell
[512]
 forms a water slide, like that of some gasaliers. Into
this fixed bell gas, and consequently pressure from the
inlet F of the governor, is introduced by means of a
 the governor cone H , it follows that the influence of the initial pressure upon the latter will, under all produced on the former.
5120. Producing Writing And other Marks on
Paper, de., A. Ford. - Sth Decembec; 1880 a d, To the pulp is added a solution of a salt of iron. To produce writing or other marks on the paper made rom this pulp, a solution of one or other of the
following chemicals is applied by a pen or othe following chemicals is applied by a pen or othe
instrument:-Tannin, tannic acid, or gallic acid, or
some vegetable extract contnining these which wil some vegetable extract containing these which wil
produce a black stain, or of the ferro-cyanide o produce a black stain, or of the ferro-cyanide of
potassium which will produce a blue stain, or of the sulpho-cyanide of iron which will produce ar red stain
the per-salts of iron being used with the fero the per-salts of iron being used with the ferro and
sulpho-cyanide of potassium, and the proto-salts of iron with ferri-cyanide of potassium.
5126 . V 5126. Valves, J. A. Mays.-Sth December, 18s0.-(No This consists essentially in so arranging the valve proper in relation to its seat, that when the said valve is open to permit the passage of the water, the area of the outlet aperture or passage corresponds with tha
of the inlet or supply pipe, and the water passes freely 5127. Stoppers for Perfunery Bottles, \&c., E. G.
Brexeer. $-8 t h$ December, $1880 .-(A$ communication
\qquad This relates to stoppers having an exit tube com topper is fixed on a cap, which may be rised o lowered at will by means of a screw-threaded nut or washer
the tul
5128 Coupling the Ends of Mant and other Shafts,
dc., Wo. Pollerd.- Sth December, 1880 .- (Not pro The coupling consists of one or more bush keys of The couping consists of one or more bush keys
conical form each way from the centre, each conn
having a ring recessed internally to the form of the having a ring recessed internally to the form of the
cone keys, on to which they are driven. A key with cone keys, on to which eney are driven. A key wit 5130. Gas Motor Engines, J. Livesey.-Sth December

This relates to an engine worked by the expansion of a mixture of combustible gas and air ignited in : cylinder, the chief object being to employ a com-
bustible charge in a compressed condition when ignited, the compression being effected in the same cylinder as that in which the combustion takes place,
and the same cylinder being also available for working
the engine as a compound engine. The front part of

5130

the cylinder is fitted with n piston having a trumk
C working in the buck part of the cyinder.

 cates with the
its front end.
5131. Trasways, B. Johnson.-Sth Deccuber, 1550. (Not proceded vith.) $2 d$.
Two rails with double heads formed to overhar g one
ide of the web aro arranged with their thit sides
facing inside a double-jawed chair, a key being driven
in between them to seccure theme in position. 513. Trenturg Discased Hop Plants, T. J. Wall.This recatest st apparartuis for causing the fumes of sulphis reato or other supatable material to be thrown on to to
the phants so as to cure or stop the spread of the dis-
ease.
5134. Producisa Light
 This relates, First, to carbon relatesor, , rirst, to imprecgnating air with hydrotaining the hydrocarbon, over the surface of which ch the air is caused to pass. The yessel is placed on a higher
level than the burner, to which the charged air passes through a suitable epipe. The hydrocarbon is supplied by a modification of a " bird fountain."
5138 . Stran Legines, J. McCallum.-9th December,
1880 , $6 d$. This consists essentinlly in arranging and fitting
together a series of high and low-pressure engine together a series of high and low-pressure engine
cylinders to act as double-acting ligh-pressure and

single-acting atmospheric engines, combined and con-
nected to one crank shaft. The drawing is an end nected to one crank shaft. The drawing is an end
elevation, showing a steam engine of small size
s. 5139. Skatres, T. B. Drybrough.-9th December, 18so.The blade is formed in two by liinks which is will permit of the diedere connected
Fint yielding to the elastic action of the foot.
 The magnets ane caused to rotate and come in contact with scrapers on the opposite side to that over which the whent passes, so as
of iron from off the magnets.
5143. Metaluc Becroves, W. J. Loyd. -9 dhi December, This relates to manachinery for manufacturing buttons

 tools; also of a slide ob the motion of which the dise
is thickened and rounded on its edge, and convey to a pair of cupping aund improssing dies.
 19s0. 4d. Distiled water rendered antiseptic by salicylic acid
 5145. Skates, R. H. Bishop and II. F. Hailes.-9th A sole plate is is carried in front by a bracket rivetted
to the blade, and at the renr by by hsort standard to
which it it secured by a serew Carried by a bracket rivetted to the bhede Thand woie
nlate has adjustable clips to hold the sole of the booth. The rear end of the sole-plate overilies the heol phato
and is lolted to allow the adjustment of toe-piece o onter the front of the heal A lorer
actuates the clips and the heel-gripping piece.

The nature of this invention consistst in a fire bos aud long continuous fine through which thio water
tubes pass, and constitute the henting surfico of the

boiler. This flue may bo strraight or turned back and
forth in various ways to suit the place or purpose of use. The drawing is a vertitanl longritudinan sectios of
the boiler and furnaco, as ad apted for heating pur${ }_{5}{ }_{5}^{\text {posses. }}$
 This consists in the combination with gas of air
which las been hleated and passed through water. 515'7. Workive Velociprobs, J. S. Cooke. - 10 th
 Motion has in its inside a groove terminating in a acam
shape, and within it works a plunger with a projectione taking into the groove. Attached to the lower
end of the sheath is a rod jointed to the crank of the driving wheels.
5165. Shirt Collurs, de., G. Berry.-10th Dceember,

 prephred cr
arbunising
5173. Arthicial Maxtres, \&ce., F. J. Bolton anul J. and amunuminal product, wy mixing urine or sewage

 of the moulding block, and it consists in securing the
moulding book A to sides oconected by orods to to
counterweights G, wherebes the block is lifted, but

5150

when desired the slides may be secured in position by
means of excentric levers which bind the slides on the 5172. Lasps, de., F. Siemens.-10ul December, 1880 .
 18s0. In the drawing the eunuer, consising of the
gas chamber A, with tubes C, with centrin chamber B,
throum
 pass downwards, and with an outer chamber E,
throngh which the air supply passes upwards are
similar. in their seneral arrangement to the lamp

 the height of the flame, and the notched air deflector
G. The principal modifications consists, First, in enlaring the gas chamber A, and causing the passage
I for the prod ctat of combintion to pass throunh it
whereby the heat thereof will be more effectually taken

up by the gas; Secondly, in extending the air chamber
Edownwards, so as by the heat imparted by conduce tion to its sides,
within it sufficient to supply a current of the requisite Witensity to enable the flame to burn effectunlly
int
witl witho it the ordinary chimney draught above it,
 small opeming 18 the chimney I^{2}, together with the
pipe 11, temnativit

 will still drawn down thr
the pipe i becomes heated.
5174. Digeisg Machines, H. de Mornay - 10 th The ember, 1sso. -(Not proceedede 2ith.). 2d. 2 .
 the ends of each oroxtisad ane arms carrying rollers which
run in fied provered cams. 5178. Horsishoe Nails, de., H. P. Fenhy.-10th Thecember, 18so. bdil. to machines for pointing
horseshoe nails specialy to make them ready for driving, and to give them such an ang gle that they may emerge
from the hoof at the proper place for clinching. In the main frame four grooves are formed, two opposite each other and atight anglesto the other two, which
are also opposite ench other. In each groove is

mounted a lever C on an axis in the middale of its
length, all the levers oscillating towards a common length, all the levers oscilluting towards a common
centre and coming in contact with an anvil bed E
The front ends of the levers carry steel blocks which strike the unil alternately in pairs
5180. Preparation or Aliali Saits of Sulphonic
Acids, J A. Dixon.- 11 lh December, 1850 . - (com-
 quinone; Secondly, of the sulphonic acids of
rosaniline; and Thirdly, of the mono and disulphonic acids of amido--azo benzol and its homolowese, by
acting

 Bleached yarns of jite are dyed to the required
colour, and are braided in a braid machine or partly woven, and bre braided and in an then starched machine, or ond farthished by
pressing plates. pressing plates.
5182 . Coampres
sed Air Apparatus for Propbluing
A. Nosbaume. $-11 t / \mathrm{December}$, , $1880 .-$ An air reseredorivith.) formed by a series of steel pipes, all connected with a cross brouze pipe, is placed
under the tram-car, and on tho platorm is anmall
boiler heated by gas or petroleum, to as to produce
bter steam, which is mixed with the air and serves to drive
the engine.
 In spindes working in a long collar or bearing
above the wharve an annular recess is made in the spindle above the ehoulder, so as to reduce the frice-
tion TThe legs of the tyers arre curved to an irega-
tar wave shape so as to reduce their tendency to expand.

SELEOTED AMERIOAN PATENTS.
rom the United stales Patent oftice ofiticial Gazett
 March 5thi, 1880.
Claim.- (1) The combination, in an electric lamp, of
a transparent shell or globe, two metalic a transpareent shell or globe, two metalicic rod cont
ducors arranged theron, a carbon rimy forming the
light-giving portion, and carbon clamps holding the carbon ring between them fitting upon the metallic
rod con rod consucors, and serew nhts for tightening said
clamps upon said ross, substantiolly as and for the purpose speciifed. ${ }^{(2)}$ The combination, in an electric
light, of a closed transparent shell or globe, a carbon 242,051

or other light-giving device arranged therein, and two
vases or
chomicals for absorbing oxygen and the other an
substance for absorbing nitrogen, placed one within the other, and arranged in the shell or globe substan-
tially as specified lamp of a closed transparent thell or globe, a a carbon
or other light-giving device anranged therein, and a or oner light-giving device airanged therein, and a
vase or essel for holdina chemica, also arranged in
said shell or globe, and having a silvered surface, Whereby it is made to constitute a reflector, substan-
tially as and for the purpose specified.
 Claim.-(1) A telephone in which a supplemental diaphragm covers the mouthpiece, substantially as set
forth. (2) The combination, in a telephone, of the

ary

usual diaphragm at the bottom of the mouthpiece, a,
dinp he pieco, and a disc Hrbeneath the outer diaphragm, suib-
stantinl y describe 242,160. Wrever, Charles Schole, Dayton, Ohio. Tilect Al fril Tht, 1881
Claim. - (1) In a wrench, the combination of the
following instrumentalities, to wit, a rack-bar with a followngry juw, a sliding jaw, carrying a hinged nut-
stationay bearing arm or rod, an adjust inv nut, Ancocton frame
 with siaid hinged arm and encompassing the rack-bar; and a locking bolt adapted to lock said link and hinged
arm when the engagement of the nut with the rack-

bar is effieted, substantially as described. .(2) In a
wroncl having a siliding jaw carrying a hinged or
pivoted
 carrying rod and a locking link of of a spring-actuated
bolt for holding said oocking ilik and nut in positive
engngement, substantantially as dis described. engagement, substantially as described.
242.165. Devioe for Cuytiva Screw Thrad Axd
Shoulderson Axies, Barma
T. Stovell, Paryyshery,

 on axies, composed of the parts ABC, in combination
with the set screws G, for adjusting them, each part

being provided with teeth E , for cutting away the
shoulder of the axxe, nnd the dies I , for cutting the 242,231. STenam-Actuated Valve, Ancreew V. Smillu
iVashinoton, D.C.-Filed April 19th, 1 SSI. Claim- - (1) A steam-actuated balance valve consistsuppplemontary Diston valve arranged between them,
to be operated by an arm receiving motion from a moving part oi the engine, substantially as shiownand
specified. (2) A balanced valve consisting of two piston-heads secured to a rod and provided with inlot
and outlet openings. in combination with suple.
mentary port,
valve operated by an arm receiving motion from
crosshend or any other moving part of the engine, sul
stantinll
 he combination of two o iston-heads secured to a aro
provided with eollars, with a supplementary val
imparting positive imparting positive motion to the piston-heads, an
arranged to be shifted by mechanism arranged to os shifted by mechansman operated by
moving part of tho engine, substantially as and f
the the purpose set torth (4) II a s steanm-actuated val
the combination of two piston

rod, and to be operated positively with a steami inlet and supplementary ports leading to chambers at eath
ofd of said steam-chest, substantially as and for omic
nurno purpose herein speciited. (5) The combination of two
piston-heads D Di, having inlet and outlet ports, and securred oa a rod E, with a loose supplementarts, andue
L , operated positively by an arm M or its equive , operated positively by an arm M or its equiva
lent and the supplementary ports $I I$ and chamber
A G
G H, all substantially as shown and specified. (b)
The comin The combination of the two piston-hends D D1, having
pockets Eil Eill, and secured to a rod F , with the supplementary valve L, operated by an arm, the
steam-chest A , supplementary ports II 1 , and exhaust ports I K, all arranged substantially as shown and 242,350. Rant-Joint, Georye A. Mead, North Salem,
N.Y.- Filed February 26 2ith, 1850 . Brief. An inside fish-plate itis by square edges to base of the rails, the middle upper edge thereof rising
and forming a halt-tread at the joint in a recess
joint formed in the rail ends. Claim. -The combination
with the railroad rails having the head A recessed for

a short distance from the ends on one side to the
vertical plane of the side of the web, or thereabout, of a fish-plite having a middle extension of the upper
edge rising in said recesses flush with the rail heads, eade rethe end portions ofsesid sid plate extend lon initudid
whily beyond said recesses and
middle extension, and hate their edges closely fitted between square
hhoulders F of the bases of the rails and similar
sital shoulders F of the bases of the rails and similar
shoulderss of the under sides of the heals, subsstantially
ns described. and

CONTENTS.

The Enginerr, July 15th, 1881.
 (Illustrated.)).
 Shear-bininive Machink AT Tuil Royal S̈bow,
 RAtruwar Mïrters .

Literaturveng Machinery
Tinio Trainge
TExDERS-Newhall Water Suppl

 Biraingenar, Wolverhamptox, axd District.. Notrs from Laxcashire

 ABsTracts of
(Illustrated.)
 42
42
54
54

Nayal Enginerr Appointments.-Henry Goldsmid, engineer, to the Pembroke, additional for service in the Starling; and Henry Gallery,
assistant-engineer to the Superb, as supernume rary.
Messrs. Thoyson, of Clyde Bank, launched this week the Spartan, a vessel of 3700 tons, for the Union Steamship Company, to ply between Southampton and Co. launched the Alaska 6800 tons, a magnificent vessel, very similar to the
Arizona for the Guion line of Liverpool and Transatlantic Steamers.
Most of the census returns for the Australian colonies have been completed. The population 100,000 less. But the Victorian gain, during the last decade, has been at the rate of 17 per cent.
only, while the New South Wales gain has only, wher to $48: 81$ per cent. The Conservatives have returned to the battle of free-trade against protection, and are commenting loudly upon the
fact that the relative prosperity of New South fact that the relative prosperity of Ne
Wales is attributable to her fiscal policy.

