MISCELLANEOUS EXHIBITS AT THE ROYAL AGRICULTURAL SOCIETY'S SHOW, DERBY.
W_{E} believe that little or nothing is to be gained by describing year after year exhibits which are perfectly well known to all those who have any occasion to use them, and our notice of miscellaneous exhibits at the Derby Show must therefore be brief.

Probably the greatest novelty was a curious little steam
cylinders in which these pistons work. E is a steam passage in communication with the steam chest H. J and J are steam ports for the cylinders D and D; and K and
K for the main cylinder $A ; L$ and L being the K for the main cylinder $\mathrm{A} ; \mathrm{L}$ and L being the
exhaust passages for the latter. N is the piston rod which works through both ends of the cylinder; and F and F are steam ports through this rod. On referring to
the illustration, it will be seen that the piston G has just the illustration, it will be seen that the piston G has just
completed its stroke from left to right. The ports F have

The machine has never yet been tried in even the smallest way. It is a large heavy affair, intended to be hauled over a field by steam plough tackle. It consists of a long narrow platform of iron mounted on four wheels, and it carries two dredging ladders, each fitted with a chain of buckets. The two ladders are in the same plane one over the other. As it is drawn forwards, the leading ladder takes the top soil of the field for a depth of about 7in, or more, and for a width of about 9 in ., and carrying backwards, deposits it

SECTION
MESSRS. AVELING AND PORTER'S TRACTION COAL WAGON.
engine exhibited by $\$ Messrs. Willdegg Bros., of Burges, \mid been brought into communication with the passage E and on the drain pipe laid on the bottom of the channel whit

Coventry. The cylinder is of D section, and the straight line opening is covered by a slide, in which is a slot, in which works the crank pin, which pin is set on a disc. In the disc are ports, so thet the disc acts as a vilv. Th with it the slide valve B-from right to left; thus steam machine is very ingenious. What it is capable of we have had no means of knowing as yet. Another curiosity is the exhaust injector shown by the Exhaust Injector Company, of Manchester. This feeds a boiler by the exhaust steam from the engine. We shall have more to say concerning it. It is a modification of the ordinary injector, and inasmuch as with an exhaust pressure of a couple of pounds it will feed a brider carrying 80 lb ., it is evident that there are some questions connected with the theory of its action which require more elaborate treatment than we can give them here.
Messrs. J. Evans and Sons, of Wolverhampton, showed Tonkin's patent pump at work. This pump is another of the multitudinous class of steam pumps with steam moved valves, first invented about twenty years since. It is very silent and quiet in its action. They also exhibited some good rotary donkey pumps, coarse and strong, and well titted for rough work.
Messrs. Thwaites Bros., of Bradford, showed steam and air hammers and blowers of various kinds, all good. The greater portion of their stand was, however, taken up by an air compressor, which forced air into a tank whence some blower engines were supplied. This compressor is named as an air cooler in the catalogue, but it is nothing of the kind by itself, and we presume that it is only assumed to be a cooler when worked with one or more of the blowers, in the cylinders of which expansion would take place. The existing compressor has india-rubber valves, which we need hardly say do not answer. The best makers of cold air machines use steel valves, but Messrs. Thwaites are going to try white metal. While on the subject of pumps, we may mention that Messrs. Shanks, of Arbroath, exhibited several. That which is most noteworthy we illustrate in the accompanying engraving. The following description of the working parts of this steam pump, taken in connection with the sufficiently understood:-A is the steam cylinder; B the slide valve ; C and C two small pistons on the same piston rod and connected to the slide valve; and D and D the

MESSRS. RICHARD GARRETT AND SON'S SAW BENCH,
thus forming a cushion for the piston, and rendering it impossible for it to strike the end of the cylinder. The port L is feathered, to prevent the piston ring from striking the edge.
The Victoria Foundry Company, of Newark, show
Robson and Herdman's
on the drain pipe laid on the bottom of the channel which
has been opened to the proper depth by the second or has been opened to the proper depth by the second or
lowermost chain of buckets; these deposit the soil they raise on the top of that dropped by the first one ; the raise on the top of that dropped by the first one ; the
object had in view is the inversion of the natural order of the soils on the field, the subsoil being thus brought to the top. Under the machine is a wrought iron pipe, so
bent that if left to itself it bent that if left to itself it could hardly remain quiet in any position; one end of this trails in the drain, and down it the tiles are dropped, arranging themselves in the drain. It would be unfair to condemn this device until it has been tested and found wanting.
The use of fixed hauling drums on traction engines is being abandoned by most makers, because of the difficulty met with in paying out the rope. The engine has to go to the top of the hill, let us say. The road wheels have to be disconnected and the engine run in back gear, while a man walks back with the rope as it is paid out. When the port K, into the main cylinder A. This operation is the winding drum is left detachable, the engine can repeated at the end of each stroke of the piston. The advance, paying out the rope the whole way. Messrs. the piston G has passed this the port L, and immediately Fowler show two arrangements for working the drum. In attached to the road axle a the upperend; thelowersticks in the road, and when the strain comes on the drum, the engine tends to ride up on the inclined spur or leg, and so the road wheel is lifted clear off the ground and allowed to revolve freely, and with it the winding drum.
Messrs. Aveling and Porter, of Rochester, exhibited a new tipping wagon, which we illustrate. By lining the body with sheet iron it is charged at a less angle by 10 degrees than will do when wood is used, and the whole wagon can as a result be kept wagon can as a result tinks are used to keep the body from tilting when on the road; these are cast loose when the load is to be discharged. Two chains worked very simply by a hand-wheel and axle suffice to effect all the requisite movements. This is one of the ery best and simplest wagons of the kind made, and worth the attention of contractors.
Messrs. Priestman Brothers' stand was as usual a great centre of attraction, one of the well-known cranes of the firm being shown constantly at work grubbing up stones, or clay, or gravel, and dropping them in other places. At
their stand was shown a pretty model of Brown's disengaging gear. By the use of a tail-chain and an open hook
loads can be tipped with wonderful facility by this device. Messrs. Howard, of Bedford, exhibited what we have never before seen in England, namely, ploughs with
poles and seats for the drivers. One of them had three poles and seats for the drivers. One of them had three
mould-boards. The whole is mounted on two wheels : in fact, a modification of the American Sulky plough. In cIder to bout the plough out of the ground at the end of each point, a handle is provided, to the side of which is fixed a projecting stud. This stud can be forced down on the
top of one of the carrying wheels, and as this wheel evolves it causes the handle to rotate about a centre, and so lifts the whole machine. The arrangement is very
similar to one brought out some years ago by Mr. Rollins, if we are not mistaken, in the United States. We need
hardly add that the workmanship of all Messrs. Howard's hibits is excellent.
The Reading Ironworks Company had an unusually fine lot of exhibits, their stand being especially note-
worthy for a fine display of the "Universal" split pulley, which the firm have made for some time. The good opinion which we expressed of them when they were first exhibited has been fully borne out by the results obtained with them. They are now used by the thousand, very perfect machinery being employed in turning them out.
They are for their strength the lightest pulleys made, and are beautifully got up. The firm showed a new bullock gear, specially designed for India, which we shall illustrate in an early impression. It was in the first instance especially made to meet the instructionsand requirements, as laid down
by Dr. Forbes W atson, for ginning cotton and forsimilar work by Dr. Forbes Watson, for ginning cotton and forsimilar work
in India, and to be worked by four pairs of bullocks. For in India, and to be worked by four pairs of bullocks. the general form of the safety gear invented by Mr. W.
Exall, whose death we have elsewhere to record, made for many years by the Reading Company, but by casting a project ng box on one side of the cylindrical casing, a wheel and pinion for obtaining the necessary high speed of 100 revo-
lutions per revolution of the bullocks, without what is known is an intermediate motion, has been included in the gear. It is strong and well-made machine, and for its power is encompassed in a smaller space than
other arrangement yet devised.
Messss. Western and Co., of Derby, had a very good exhibition of wood-working machines. The most note-
worthy feature was a four-sided planer, which was driven by a dynamo machine the current being obtained from another and similar machine driven by a portable engine.
Messrs. Richard Garrett and Sons showed a new portable uw bench, which we illustrate. Saw benches have often been mounted on trolley wheels, but this bench, it will be seen, is mounted on large wheels, those, indeed, of
thrashing machine, and consequently can easily be draw from place to place by a horse. This is a very convenient
arrangement, the advantage of which will be found in arrangement, the advantage of which will be found in
forests, where rail way sleepers and such like have to be forests, where rail way sleepers and such like have to be
produced on the spot, The saw is fitted with the patent
gear made by the firm, which has already been illustrated in our. pages.
Mr. John Higgs, of Coven, near Wolverhampton, exhibitel an implement with which he has already obttained very good results. This is a land cleaner and pulveriser,
and is intended to do work not now done by any other machine or implement. Its purpose is to clear foul land, especially stubble infested with twitch, or scutch, or couch grass, as it is variously called. Hitherto this has been
only effectively done by hand labour, the long white roots possessing great vitality. They can only be killed by eaving them lying loose on the surface of the field. Mr. Higgs's machine is something like a large cultivator,
mounted in front on a steerage, and behind on two small mounted in front on a steerage, and behind on two small traction engine wheels. Beneath are a set of flat shovels,
behind which is a grating to which a shaking motion is behind which is a grating to which a shaking motion is chain move over the grate as the machine is hauled along by steam plough tackle. The shovels pare up the ground to any reasonable depth required, and it falls on the grating, where, by the combined action of the rakes and the grate,
the loose soil is shaken through the latter, while the weeds the loose soil is shaken through the latter, while the weeds are left on top scattered behind the machine. This appears to us to be full of promise, aud it is well worth the atten-
tion of all tillage farmers. We understand that it is becoming highly popular in Mr. Higgs's district.
There was a considerable number of gas engines exhi-
ited. Of the Otto it is not necessary to speak. Mr Tuted. Of the Otto it is not necessary to speak. Mr.
Turner, of St. Albans, showed several of his gas engines, which are not so well known as they deserve to be. These engines, altheugh not quite so economical of gas tittings and arrangements for putting them down. They are also practically quite silent, and as they give an impulse every revolution instead of one drivers of machinery. They also occupy little space. The engines shown are very simple and very well made. Of Bristol, we may have more to say. We may be excused, however, if we hesitate to adopt the maker's statement that it costs less to work it by 75 per cent, than any other gas engine.
Messrs. Hayward Tyler and Co. had, as usual, a very
ne show of steam pumps, Rider's hot air engine, and a Linford cas engine
Mr. Tayler, of Bury St. Edmunds, showed a new saw guard, which consists of a semi-circnlar plate of steel susthickness as the saw, enters the saw cut. It is no doubt to a large extent effectual, but it cannot deal with flying splinters, which often cause bad accidents.
Amongst the sheaf delivery reaping machines was a Hornsby and Sons. The machine is so arranged that when used as a mower the cutter bar is in front of the By this arrangement the combined machine is well balanced, and the objections which belong to a rear knife avoided. It is held by some makers that when a machine
with the forward knife is suddenly stopped by an obstruction, and the driver thrown, he usually falls on the knife side of the machine, but with the rear knife his fall would
take place to the other side. Whether this is generall take place to the other side. Whether this is generally
the case or not we are not in a position to say the case or not we are not in a position to say, but if true
it is a curious fact needing explanation. The rake head for this reaper is of simple construction, and the alteration necessary to cause all or none, or every third, fifth, or sixth rak to deliver, is very rapidly effected by a very simple form of compound cam, stops and switch. The machine is provided
with two speeds, the one for mowing and the other for with two speeds, the one for mowing and the other for
reaping. The rake mechanism is driven by a pitch chain made of links of the form shown in the annexed sketch The links are of cast malleable iron, cast with the small

The main features embodied in the Armstrong gun were (1) the system of the building up the gun by concentric (2) the polygrooved system - of rifting in comection with lead coated projectiles; (3) what may be termed the Armstrons thought of using steel both for barrel and ring at first; but dismissed the idea owing to its umreliable character at the time. He had some correspondence with Brunel on the desirability of constructing a steel wire gun, an idea which it appeared had already occurred to Mr_{1}, Longridge. Eventually this was abandoned, and although or some time wrought iron was preferred The Armstrong breech-loading system was finally adopted for the British service in January, 1859, when it came in in a very complete shape with its equipment of segment shell and time and percussion fuses. It is not desirable here to discuss the various ingenious designs embodied in this equipThe absence of windage, of ignition of time fuses by mean of detonating composition, the application of inertia and momentum to the action of fuses on the projectile first moving in the bore and on striking, the power of adjusting the length of time fuses after they were screwed into the
shells, and a peculiar application of lines of least resistance shells, and a peculiar application of lines of least resistance
to the thick arched walls of the segment shell, as well as other minor matters, of the segment shell, as well as cushion behind the hammers of fuses, that metal in rebound which has generally elasticity preventing the of fuses of a similar claracter. It is important especially to note the features embodied in the guns We have said that for some time the guns were made wholly of wrought iron, but not wholly in the form of fibre of the iron rumning longitudinally, was employed in many of the eulio longitudinal strength. The breech screw and stopper and breech closing arrangement have been superseded, as might be expected, by others. We can now see faults in i. The closing of the joint depended too much upon the which were brought in contact to close the joint. The lever and tappet ring was undoubtedly a powerful meaus of closing a joint, and lives to this day, being, in fact adopted by Sir W. Palliser in his new breech-loader. The lifting of the vent piece has been found inconvenient in any but very light. guns, and there was not sufticient provision against accident from firing the piece when the breech was not screwed home. These are matters which must be learned in the school of actual service when gum become subject to usage more barbarous than is likely to be believed generally. It is, however, to be borne in mind that the breech screw and stopper were only introduced for comparatively light guns ; the Admiralty, in consulta tion with the War-office, having at that time limited the weight of ordnance that could be carried by the navy to six or seven tons. About 1864 public opinion went over to
muzzle-loading guns. For field guns there is much to be muzzle-loading guns. For field guns there is much to be urged in their favour. Experiment has shown that the cover afforded to a gun detachment by breech-loading guns in the field is very inconsiderable umless steel shield. be used on the axletree arms, and in that case the disad vantage of a screen which opens and causes shells with percussion fuzes to act with terribly increased effect, has to be weighed against the advantage of cover against bullets Then, again, breech-loaders require contimual attention to keep them in good working order, whichmay entail harassing duties on men in a severe campaign. For a long time with very heavy guns, either great difficulties were experienced in closing the breech, or in the wacture of steel guns hence Italy and England took the lead with 100 -ton and 80 -ton guns in 1875 , the former being made at Elswick on the original coil system as it had been applied to muzzle loaders. About this time, however, the attention of the English Goverument had been drawn to the possibility of obtaining greatly increased results from the action of large charges of powder made to burnslowly in long bores by Capt. Andrew Noble, of Elswick, who had long worked at the subject, and had so far satisfied himself as to what could be done as to press urgently for trials to be undertaken by a committee, of which he was a member, taking the
responsibility of the results on himself. The first Governresponsibility of the results on himself. The first Govern-
ment trials which were made in this direction were comment trials which were made in this direction were con in menced in 1874, and continued with the 80 -on expedient, to give the increase in space which would have been more advantageously provided by adding to the length. In February, 18i8, a new type 6in. gun of
78 cwt. was issued from Elswick, which was fired 18 cwt. 1 las . of powder, discharging a projectile weighing
with 33 porth
70 lb . with a velocity of nearly 2200 ft . per second. In January, 1878 , 8in. muzzle-loading and breech-loading new type guns were submitted to the Government
for trial. A series of results obtained with the sin. muzzle-loading gun were published in The Engineer of November 5, 1880. Some of these trials took place in June, 1879. The question as to priority in the development of power in guns by means of increased ength and slow-burning charges has been raised between Elswick
and Krupp. It is hardly possible to avoid touching this question, but we desire as far as possible to confine ourselves to stating the facts as far as we know them, being willing to ald any further facts that may be given us beating on the question either way. In July, 1878 , an
Elswick new type 8 in. gun of $11 \frac{1}{2}$ tons fired a 180 lb . projectile with over 2200ft. velocity. This result was published in the Times at the time. Previous to this Krupp had spoken of 500 metres velocity as an achievement
which he compared with the results of our old type English guns. Some time after this we find high velocities obtained by him. In August, 1879, indeed, Krupp obtained very high velocities from several guns;
with a 5 zin. gun he got, we believe, 2135 ft per second, with a 57 in . gun he got, we believe, 2135 ft . per second,
being 561 foot-tons work per ton weight of gun - see pemphlet, "Armstrong and Krupp," translated from the
GENERAL PLAN OF THE ELSWICK WORKS, NEWCASTLE-ON-TYNE

TURNOVER HYDRAULIC CAPSTAN.

well as Nordenfelt, Hodgkiss, or Gatling guns. The ships draw about 15 ft . of water. These vessels are made
for ramming, and ought to be very formidable if well for ramming, and ought to be very formidable if well any armour, except that of the Inflexible, and Duilio, and Dandolo.
Present Condition.-We give herewith a plan recently made of the Elswick Works. It will be seen that they cover an area of ground lying between the river Tyne and the railroad; alongside the latter runs also the high road and tramway from Newcastle to Scotswood. The facilities for transport are therefore unusually great. We do not attempt to give any sketch of the works, because, as may be surmised from the plan, they are too extensive to admit of any satisfactory general view being taken. The east end is devoted chiefly to ordnance work, the west end being the so-called engine works, where the engineering structures we have described, such as bridges, iron lighthouses, dock machinery, and hydraulic machinery are made. The offices are between these two departments, and the principal road and jetty near the middle point. We do not propose to attempt to give a description of the works in any general sense, but merely to notice a few features such as characterise the works or should be noticed by visitors to Elswick, especially engineers who may have a special opportunity this summer of visiting these works. We suppose the works to be traversed in the order adopted, as far as we understand, on the last public day.
Commencing at the point forming the right hand top corner, or N.E. corner of plan, the first objects of interest are the 6 in . and 40 -ton breech-loading gun mounted en barbette. The method of mounting and working is shortly noticed above. It is well to observe the system in action, and the cover afforded to the detachment. Close to these guns is a shrinking pit, 37 , for ordnance from the 100 -ton gun downwards, also nineteen gas producers for furnaces. The shops then may be taken in the following order :-No. 32*, Coiling: The largest section of bar has been $12 \mathrm{in} . \times 10 \mathrm{in} . ;$ length of coiling furnace, $180 \mathrm{ft} . ;$ gas furnace for heating barrels, also for tempering, with an oil well 50 ft . deep, over which stands a hydraulic hoist. Forge, No. 28: The large hammer here, made by Thwaites and Carbutt, Bradford, has a 48 in . cylinder and 12 ft . stroke ; weight of piston and hammer head, 35 tons. Blast Smelting Furnaces, one furnace building, two in work and running from 900 to 1000 tons a-week, chiefly Nos. 1, 2, and 3 pig, made from Spanish and Elba ores, most of it sold for steel making. The blast is at present heated by horseshoe pipes, but Cowper's patent heating stoves are in course of erection; temperature of blast, from 750 to 800-about the melting point of zinc. The engine for
the furnaces is made by the firm. Carriage Shed, No. 29*: the furnaces is made by the firm. Carriage Shed, No. 29*: There are band saws cutting iron which may be noticed,
and Albini carriage on short-recoil and self running-up system. Projectile Store, No. 33^{*}, containing finished projectiles: These are chiefly made with bands only up to full diameter, which saves work and leaves to the projectile body the strength of the uninjured skin of the cast ing. The Palliser chilled projectiles will be generally found with sharp-pointed heads struck with two diameter ogival. Foundry No. 27*, containing ten cupola furnaces, of which four are generally in work: Forty tons is about the maximum weight of casting made in the foundry-a much larger one, such as the bed of the steam hammer, weighing 137 tons, being cast on its own ground. The system of hydraulic cranes should be noticed. They are fixed so as to work in pairs or three together for heavy work. Engines: Near this are the engines for the east works, and also those for the west ordnance works. Horizontal double Corliss engines are employed, with four boilers, three working at a time. Jukes's bars and system of stoking is applied to all. The jetty may probably be conveniently visited next, near which are more horizontal engines, 100horse power, working on the accumulators; the waterpressure maintained is about 700 lb . per square inch. Five
or six locomotives are generally employed in the works. or six locomotives are generally employed in. the works.
On the east end of the jetty are two fixed hydraulic cranes for lifting 5 tonsand 30 cwt ., and between them large hydraulic sheers; made by Day and Summers, worked by a directacting hydraulic cylinder, 40 ft . stroke, lifting 120 tons. The back leg moves so as to bring the lifting cylinder about 30ft.
out, 15 ft . inboard of a vessel. The foot is moved by a screw 50 ft . long with hydraulic engine and gear, with three different powers. Along the jetty run pipes with hydrants
from 18ft. to 36 ft , apart, on which work five from 18 ft . to 36 ft . apart, on which work five movable
cranes, each lifting about 30 cwt., being placed in position cranes, each lifting about 30 cwt., being placed in position
to suit the holds of the vessels by means of telescope tubes to suit the holds of the vessels by means of telescope tubes
attached to the nearest hydrants. The Finishing Shop, attached to the nearest hydrants. The Fimishing shop,
No. 14*, may be taken next in order. The proportions of new type guns should be noticed also ; the breech-loading fittings and apparatus for firing by electricity and also
mechanically. No. 12^{*} shop is for small machine work completing Gatling machine guns, hydraulic valves, \&c No. 26* is a machine slop containing planing machines, \&c. No. 2* may come next, chiefly for turning, finishing, and boring work, commencing on the solid ingot. At the east end, guns are bored vertically in a pit 23ft. deep. No. 11*
is a large machine shop for turning, boring, and rifling is a large machine shop for turning, boring, and rifling. screw-cutting, and riffing, taking a job 44ft. in length, 36in. centres. There is also a convenient one made by Fairbairn, Kennedy, and Naylor, modified at Elswick, taking a chuck job 20ft. in diameter, 4 ft . 6 in . long, or a job 34 ft . long and 8 ft . in diameter ; it is fitted with slide rests on independent beds. There are chambering and rifling machines. There may be steel ingots here deserving of notice, such as one now waiting between operations, supplied by Vickers, 32 ft . long, for a 13 in . breech-loading gun inner tube, and a steel tube replacing the " 2 A"
coil for 100 -ton gun supplied by Whitworth. Close by this building is another Corliss engine, 169 -horse power No. 4*, Forge : Crank shaft, and gun work, coil welding, dc., performed. The steam hammers here, from 24 ton to 15 cwt., chiefly Morrison's make. No. 1*, small machinery, turning and boring out short coils. There is a large endless band saw $1_{1} 11$. wide, which cuts directly through iron cylindrical work about 16 in . in diameter. Its speed is from 76 ft . to 129 ft . per minute.
Engine Works.-The engine works come next. The shops are not numbered like those of the Ordnance Works. They may be taken, however, in the following order:Bridge and Boiler-yard (15 on plan) : containing plate planing, punching, and multiple and radial drilling machines, \&c. The work turned out is chiefly crane work and other structural ironwork, such as a lighthouse now going to Brazil, pedestals of cranes, \&cc. Blacksmiths' shop (3 on plan): Boiler and rivetting work, cce, is done here. There is a hydraulic rivetter: made by the firm. At the back of the building is the chain-making shop (6 on plan), where all chains for the firm are made and tested by a hydraulic machine, either up to 30 tons or 100 tons; 25 cwt. is the lowest test of the machine. A Corliss horizontal engine working to 190 -horse power, with boiler and Jukes's grate, dc., is fixed here, which supplies power to the whole engine works. A fitting and machine shop (21 on plan) comes next. The east end of this was the first shop erected at Elswick; planing, boring, drilling, and turning are done here. The west end is used for erecting hydraulic machinery. There is a hydraulic testing machine for testing cylinders and valves up to 3000 lb . per square inch, and a drilling and tapping machine by Muir. Behind this is the brass foundry (23 on plan). Phosphor bronze is employed for gun carriage work; its cost is considerable, but it works well without lubrication. Pipes are tested in a small building (9 on plan) up to 3000 lb . per square inch by a hydraulic testing machine, next to which is a pattern shop, in which may be seen working Richard's planing machine, and also circular saws with adjustable spindles, with guide and graduated are for setting work at any required angle. The work is so smooth as to enable planing to be dispensed with. An erecting shop (10 on plan) for engines and large work comes next, such as a 45 -ton crane for Valparaiso, and an accumulator for Swan-
sea. There is a jetty (19 on plan) adjoining these sea. There is a jetty (19 on plan) adjoining these works with 12 -ton and 5 -ton hydraulic cranes. The works yard
is furnished with hydraulic capstans and snatch heads is furnished with hydraulic capstans and snatch heads for hauling wagons about the yard, and other appliances. There are five pumping stations with accumulators. (1)
Near the blast engines, 34 ; (2) on low ground near gas Near the blast engines, $34 ;(2)$ on low ground near gas
works at $40 ;$ (3) behind foundry, $27 * ;(4)$ close to railway; (5) at engine works erecting shop, 10 .

SILKSTORTH COLLIERY, DURHAM.
 No. II.

IT has been pointed out in our first article upon this subject that the coal-fields of the great northern coalproducing counties-Northumberland and Durham-are almost inexhaustible, and that many generations yet unborn will be unafflicted with any scarcity of this most needful mineral. Colliery owners smile at the terrible prophecies of clarmis, and instead of feeling anxious as to the life of their pits, they day by day, and week by week, make improvements in their machinery and pit gear in order that a still greater supply of coal may be sent "to bank," and from thence through our home countries, and to the hundreds of steamships which are ever ready to carry it to the utmost limits of the earth.
At Silksworth, the colliery more immediately under our notice, some 1800 tons of coal, per day of ten hours, are brought to bank by the pair of engines illustrated in last week's issue of The Engineer. These engines were designed to wind 1000 tons per day each, and there is no doubt that they are capable of doing still more ; in fact, it is intended, as soon as certain arrangements have been carried out in connection with the workings, to make a demand on them for 1200 tons each per ten hour day, and his they will be obliged to draw from a depth of some 600 yards. Additional machinery is shortly to be erected at the pit-head, which will enable the quantity of output to attain the respectable figures of very nearly 4000 tons per day.
At present no less than sixteen steam engines are engaged in the work of this colliery, of course neglecting the locomotives which take the winnings away; they are :1) No. 1 winding engine, double horizontal, 20in. cylinders, sft. stroke, geared 3 to 1 , drums for flat ropes 10 ft . diameter at lift. (2) No. 2 winding engine, double horizontal $48 \mathrm{in}$. cylinders, 6 ft . stroke, arum 25 ft . 4 in . diameter, 8 tons counterbalance chains, variable automatic expansion valve gear. (3) No. 3 winding engine-illustrated last week-same as No. 2, conical scroll drum varying from 15 ft t to 28 ft . diameter. (4) "Apparatus" ellgine-small coal -double horizontal, 16 in . cylinders, 26in. stroke, variable automatic expansion. (5) Engine working self-firing furnaces and feeding boilers, single 15in. cylinder, 30in. stroke, 6 in. ram. (6) Engine pumping to reservoir, single, 15 in . cylinder, 30in. stroke, 8in. ram. (7) Pumping engine, staple, compound differential first cyllnder 23in. diameter, second 42 in ., stroke 5ft. (8) Crab engine, double horizontal, 10 in . cylinders, 24 in . stroke, geared 32 to 1 . (9) Jack engine, double horizontal, $9 \mathrm{in}$. . cylinders, 18in. stroke, geared 6 to 1 . (10) Mortar mill engine, double, $6 \frac{3}{3} \mathrm{in}$.
cylinders, 9 in. stroke, geared 10 to 1. (11)
Hoist engine ingle, 15 in . cylinder, 48 in . stroke, geared by chains 8 to 1 (12) Portable shaker engine, single, vertical sin. cylinder, 12in. stroke. (13) Shop engine, single horizontal, 12in. cylinders, 24 in. stroke. (14) Underground hauling engine-Maudlin-double horizontal, 18 in . cylinders, 24 in. stroke, (16) 16) Underground hauling engine-Hutton-double horizontal, 11 in . cylinders, 16 in. stroke, geared 6 to 1 , three drums, 6 ft . diameter. The two last mentioned of these engines are built on the well-known type of Messsrs. Robey, of Lincoln, having their boilers standing above them, but all resting on the same bed-plate. \$1am is supplied to all the engines at bank by a group of eighteen boilers. Six are cylindrical egg-ended boile, 44t. long, fft. diameter; they are fired by vicar's self-feeding and stoking furnaces, and only require the services of one man, as water tender. Besides these, there are twelve doubleued Lancashire boilers, 3ofl. long, $7 t .6 \mathrm{in}$. diameter. The tubes are 3 ft . diameter, and are tapered to 2 ft .6 in . at the fue erd. This sor borl ofter by the engineer in charge, and it is found that the patent given a minimum is economical in every way as it fires neatly and replay, ispenses with stokers, and is perfectly eatly and regularly, dispenses with stokers, and is perfectly easy of adjustment firing slowly or rapidly as may be desired
The winding engines we illustrated last week are amongst the finest specimens of colliery engines at present to be seen in England, and they reflect equal credi- on their designers, Messrs. Daglish and Lawrence ; on their builders,
the Grange Ironworks Company ; and on Mr. G. W. Ross, a

No. 3 WINDING ENGINE, SILKSWORTH COLLIERY-DETAILS.

well-known north-country engineer, and president of the In- piston in horizontal engines is a very serious matter, and if stitution of Colliery Engineers for the year 1879, under whose this plan of Mr. Lawrence's will cure it, it will prove watchful eye, as mechanical engineer to Silksworth Colliery, of great importance to all heavy horizontal engines. It they have worked since their erection. During this year they have worked since their erection. During this year
Mr. Ross has obtained a still larger field for his energies than Silksworth offered, and the best wish we can express to this colliery is that its machinery may be now as efficiently cared for, and as closely watched, as it was during the time of his service. The cylinders of these engines are, as stated above, of 48 in . diameter, with a stroke of 6 ft ., and they are steam jacketted. The inner linings of the cylinders have internal flanges jointed to the front ends of the jackets or casings, and at the back ends these form expansion joints, to allow for the unequal expansion of the inner linings and the jackets. Experience has proved that the wear in the bottom of the cylinders of long-stroked, heavy pistoned, horizontal engines may be very great, and it

6 FULL TUBS ASCENDING TIME 48 SECONDS
was deemed desirable, in addition to fitting the pistons of these engines with double piston rods, so that the weight could be supported on guide bars at the back ends of the cylinder as well as the front, to have stuffing-boxes of an unusually large surface. Notwithstanding-boxes precautions, however, it was found, on taking the cylinder cover off and putting the piston-of No. 2 engine, not so with No. 3-at the far end of the cylinder, that the rod was down $\frac{3}{8}$ in. In order to provide against this in future, an ingenious and simple method of adjustment was designed by Mr . Lawrence, manager of the Grange Ironworks, which we illustrate above The neck bushes at each end are in halves, and are hung in wrought iron slings, the ends of which are screwed with a very fine thread, and are fitted with nuts. Doors are provided in the false covers at either end of the cylinders, through which these nuts may be readily got at and adjustment easily effected the brass being lifted as it wears, This plan is quite novel, and up to the present has worked admirably. This sagging of the
is a curious thing, and, perhaps, somewhat savours of mechanical conservatism, that horizontal engines are retained at all for colliery use, and it seems difficult to understand this on any other ground. A larger enginehouse would not be required for vertical engines, for though obliged to build it somewhat higher, we should gain in all other dimensions save height ; and the advantages of a more equal wear and tear, and of a straighter lead for the rope from the drum to the pit pulley, ar

The steam and exhaust valves are of the double beat type, of ample area to prevent back pressure, and the expansion gear is beautifully simple and efficient. It is almost the first application to a winding engine of automatic governor gear in England. The engine-man has always the full power of his engines to start his load; but as the speed increases the governor puts on the expansion or cut-off without his control, and when the speed decreases takes it off Above we give elevations of the valve chests attache to the stermplinders a the steam valve spindles; B the therst valve spindles; C are the steam valve levers; D are the sliding wedges or movable bleam valve levers; D are the shang wedger and adjusting screws to an arm which is keyed fast on the
weigh bar; on this same weigh bar is keyed at any convenient part the double arm or lever H fitted at each end with swivel guide pieces ; through these at one end works the rod I leading to the governor, and at the other end the rod leading to the engine attendant; L are wipers, and M are the lifters or tripping portion of the steam valve levers, at the end of each of which is attached an adjustable roller cased with india-rubber.
When the gearing is in the position shown in the drawing the engine can be started with full steam. Motion is then given by the engine attendant to his rod, by which the sliding wedges or movable blocks D are worked in and out, and give the necessary amount of expansion indepen dently of the governor ; but as soon as the engine arrives at its fixed full speed the governor gives motion to its rod, and thus regulates the position of the sliding wedges or movable blocks D D, and thereby the amount of expansion independent of the engine attendant.
The power of the engines is exerted in turning the large

8 FULL TUBS ASCENDING
E EMPTY " DESCENDING
38 LBS. STEAM PRESS.
TIME - $50 \frac{1}{2}$ SECCNDS
wrought iron conical drum, round which at either end runs a scroll, on which the steel ropes bearing the weight of the cages, wagons, and coal are wound. The rope at one side is engaged in hauling up a cage with a number of laden wagons, while that at the other is lowering an unloaded one, the engines being called upon to exert power to the extent of the difference betwee the moments of load in foot-pounds on the engine with the conical or spiral drum. In this diagram the top and bottom figures represent the load on the engines in foot-pounds per revolution, and for this purpose it is merely necessary to read them as thousands. thus, where ten isread, it will be understood that 10,000 footpounds is meant : and where 370 is marked, 370,000 footpounds will be understood. Thefigures to the leftrepresent the number of revolutions of one winding. The left-hand line of the diagram is the ascending full load, and the one to the right-hand side represents the empty tubs descending. The variation of both of these lines is caused by the increase or decrease of the weight of the rope as it coils or
uncoils round the drum. The one of these lines deducted from the other gives, as a result, the middle line, and this represents the actual work done by the engines, As, for 157,000 , e have at start 215,000 foot-poundsontherwhe 157,000 on the empty one ; deducting one from the other we
shall have 58,000 foot-pounds as the result-see top of result line. Again, say at the twelfth revolution, 329,000 footpounds for the full cage and 210,000 foot-pounds for the empty one, we see at once that at that particular moment the The double engine in is represented by 119,000 foot-pounds average load, taking the average diameter of the drum On looking closely at this line it will be seen that the average load on the drum is 100,000 foot-pounds, but for the sake of getting the engines into speed as quickly as the start, and the proportions answer well at the end of the winding, for it takes much weight to pull the engines power which has to be expended. It will be seen at glance that we have at the finish 133,942 foot-pounds, an it is established by practice that all this is required to The the engines up without puting steam against then steel, it is $5^{1} \mathrm{in}$. in circumference, and weighs from 26 lh to 29 lb . per fathom according to maker.

We also give a reduced copy of a continuous winding diagram. The dotted lines are the reproduction of the always in one direction, link each diagram to the next succeeding. We give also a similar set of diagrams taken
on one card. It will be seen that in the continuous diagram we have omitted all from seven to twenty-three, the omitted diagrams being all precisely alike. The
terminal drawings show the action in the cylinder while the engine is being stopped. The gradual cutting off as the imertia of the lond
shown by these diagrams.

LETTERS TO THE EDITOR.

[We do not hold ourselves reasponsible for the opinions of our
THE ADMIRALTY AND NEW ALLOYS.
SIR,-I fear your correspondent, Mr. Barry, is under some mis-
apprehension as to the purpose for which naval brass is intended. apermit me, therefore, to explain that it is not intended for cast
Pork, and is unsuitable as cast for any work requiring much trans-
verse strength. The metal is adapted for rolling and forging hot, verse strength. The metal is adapted for rolling and forging hot, processes. It is to be observed, however, that the fracture he or any other brass Your other correspondent, Mr. Albert Muntz sweeping statements wholly unsupported by facts, and to be
received on his authority as an experienced manufacturer; but that is a position which does not necessarily afford the best opportunities
of acquiring a knowledge under the various conditions of use, in of acquiring a knowledge under the various conditions of use, in
which alone the edefects ocour which led to the introduction of
naval brass. Yet he boldly naval brass. Yet he boidy asserts that the causes of decay
mentioned in your previous article are perfectly understood by
those acquaited with its manufacture. He thus speaks on behalf
of the whole trade whe of the whole trade, who may be presumed to know something of
their usiness. During the time the matter was under considera.
tion Thad tion I had opportunities of consulting several manufacturers with
large practical experience, none of whom suggested that the cause lay in the manufacture; moreover, any error in the proportions of
the composition are readily discovered, and in none of the cases examined have the unaffected parts differed much from Mr. Muntz/'s
specification, and I am satisfied that it is not due in any material specification, and I am satisfied that it is not due in any material
degree to any of the causes suggested by Mr. Muntz, whose theory degree to any of the causes suggested by Mr. Muntz, whose theory
is that of very young students of the question, and which is slays
given up on becoming familiar with actual facts. It places the given up on becoming familiar with actual facts. . th places the
whole responsibility of failure on the manufacturer,
hint to tives no
hinno
the manufacturer is dealing honestly with him or not. He appears to
have misapprehended the object sought in introducing naval brass. It was not on account of any supposed superiority in
strength or ductility, and the discovery made was not, as strength or ductility, and the liscovery made was not, as
he seems to suppose, viz, the means of making the metal.
I claim to have sugsested before any tests were made, that the introduction of a manall percentage of tin would render the metal free from the peculiar and insidious change which had in many
cases occurred, and my anticipations have been justified by all the tests yet made, but it yet has to receive the better confirmation of
actual experience under the numerous trying conditionsto which it
may be put in actual use. I was not aware, and am still doubtful, may be put in actual use. I was not aware, and am still doubtful,
about the previous application of the alloy to which Mr. Nuntz
refers in vague and general terms, and will be glad to learn any facts as to its behaviour in use, or the names of any users who facts as to its behaviour in use, or the names of any users who
tried it ;but if it was manufacturer's patent, taken in anticipa-
tion of demands which did not come in, he need not trouble about it. Although, as already stated, increased strength or ductility
was not the main object sought in naval brass, I am not at all prewas not the main object sought in naval brass, I am not at all pre-
pared to odmit Mr. Muntz's statement as to its inferiority ; at the sane time I am well aware that these poroperies may vary con-
siderably, according to the quality of the materials used in its
manufacture ; but these are points that can be tested beforeland, manufacture, but these are points that can be tested betorehand,
and which are tested by the Admiraty before reeeit. The
mechanical tests specified for naval brass are the same as for Muntz's metal. If, therefore, the naval brass made by Mr. Muntry agreeably surprised to find it was not rejected. $\frac{I}{}$ am able to
furnish your readers with the facts, and ask them to judge his statements by them-the only naval, brass made by Mr. Muntz for the Admiralty was rods for making bolts, and these when tested
atter being finished, stood a tensile of 26 tons
per square inch, which is four tons above the Muntz metal standard. They bent cold in the screwed parts on their own radius without fracture to an
angle of co deg. or soabove the etest required.
Pomona House, King's-rood, Fullham.
the proposed bridge over the douro. SIR,-The geometrical construction by which your correspondent,
A Common Five-eight,", seeks to justify his calculated results A Common Five-eight," seeks to justify his calculated results is
equally fallacious with the calculations by which those results equary previously obtained. The resolution of a vertical force sup-
were pl to act at B into oblique and horizontal components at that
posiut would only be correct if the two points $B G$ were directly
poin point would only be correct if the two points BG were directly
connected by means of a horizontal compression member replacing
the actual superstructure or if the point C at the crown of the bridge lay in the horizontal line joining B and G.
The determination of the primary forees which are in question,
 direct calculation as explained in my succeeding letter published
July 1st, rests equally yupon elementary principles of statics which to criticise the working out of a comparatively simple problem in structural mechanics,

It does not, therefore, appear either neecssary or useful to add
owhat has already been said on the subject, and I do not think that I need again trespass on your valuable space with reference to
this matter.
HENRY REILIT. Lonsdale-chambers, Chancery-lane, July 11th.

Sir,-Having read the discussion on the strains connected with the above bridge with great interest and not without profit,
venture to offer the following remarks. The difference between the strains for the fixed load, as computed by Mr. Reilly and "A Common Five-eight,", appears to be based upon the assumption by
Mr. Reilly that the two cantilevers act mutually, the horizontal thrust of one cantilever balancing the other, and the assumption
 H G C acting separately about the points B and G respectively,

then calculating the horizontal thrust after abutting the cantilevers at the entre with the altered centre of gravity and the extra
weights. The fifty-five tons weight or holding.down force required
 "A Common Five-eight's" method would be correct if the points B and G were acting in the line of horizontal thrrust, in which case
the thrust would pass through the points round which the moments would be taken, and therefore have no resistance to turning about
Holose points.
HEMR A. CUTIER, Stud. Inst. C.E. those points.
Upton, July 11th.

Henry A.
Law and clark's "civil engineering.
SIR, -So it appears, from Mr. Law's recent letters in your last
and previous numbers, that whilst he has time enough to make broad assertions, and indulese in unmeasured charges, he has no
time for discussion. It is the last resurce in time for discussion. It is the last resource in a bad case, to plead
busy-ness as an excuse for avoiding the proper discussion of busp-ness as an excuse for avoiding the proper aiscussion of
improper charges-a discussion opened, and the charges made, in this case, by the busy man himself. I, too, am busy; but I mus It further appears that Mr. Law has discovered sixty-two errata
in h his part of the new issue. I have analysed his list of errata-of which, Sir, Mr. Law sent you a copy-and, with your permission, that my only claim on your space is that my logic should be as publicly circulated as Mr. Law's dogmatism. affirm that they are not errata at all. What is an erratum?' The esteemed Nuttal defines an erratum to be an error or mistake in
writing or rrinting." Now seven out of the eighteen are in reality Mr. Law. Obviously these are not errata. For instance, the clause, page 116, "timber sleepers are almost universally employed
at the present time," has been correctly reprinted. But he desires to alter "universally" into "generally", and he makes an erratum
of his desire. How would it read? ", Timber sleepers are alnost
 truss mar not incur settlement." He says that "incur", should be read produce." Be that as it may, "ncul.
from the MS., and is not an erratum at all.
Again, three more errata are specified, which are really Mr one errata, the net balance, most of which are but trifling and onvious. Knee-strap, for instance, is printed "knee-trap., Of
these, I accept the responsibility of nine; the remaining thirtytwo are chargeable to to the printers' readers.
Clearly this is not the place to seart
Mr. Lawry beliisves he has pained somedegegree of notoriety, he should be content. Otherwise, we must settle the matter elsewhere. He
was only five-and-twenty or six-and-twenty when he wrote lis book and it brought him kudos. Obviously he could not, at that age have accumulated the experience detailed in that book-though he
has contradicted my assertion that he appropriated much of the studied the theory of the arch, likewise that of retaiming walls he must have contracted many a mile of road ; in the theory and practioe of locomotive engines he must have been an allept; in ralikays, docks, briges, canas, The, he must have been an Admi
rable Crichton of science. True foct is, truth is stranger than fiction.

Buckingham-street, Ad
London, July 12 th.
[We can publish no more letters on this subject.-ED. E.]

engine-room Artificers, p.n.

SR,- 1 it is with such great interest that I have read the corre that I am led to make a few remarks rcgarding, not only my own but the opinion of most with whom I have spoken. To begin with, engineer and artificer?" I must plead ignorance, as far as actual personal experience goes, but from what I have learnt from men
who should
Whow This explanation, though short, to my mind expresses all that is
required. Your correspondent, "Experience "-by-the-bye that is a big name- Iour contes that andififters were introduced to do work which was formerly done by scientific men holding the position of officers
Now surely the true reason for their introduction-and again, far as I can find out, I have a heavy weight of general opinion with
me quote his words: "They were introduced with the double object of bringing men of more direct ' mechanical skill' 'into the ensine
room, and to reduce the number of commissioned officers in the roon, and to reduce the number of commissioned ofticers in the
steam department." Myself, I would state the chief reason thus
Tle They were introduced to do work that a skilled mechanic alone could do properly. My sea experience convinced me entirely that
the man to take charge of engines commenced at the bottom of the ladder $\begin{aligned} & \text { c.e., } \\ & \text { e.e., entered in the the thest }\end{aligned}$ pos served the stated periods, and risen, if endowed with brain capacity for a decent amount of theory, by means of examinations,
from blow-off and to the top, when he will be fitted to control the whole stean departunent. This is the only system that can teach a man num
berless small particulars in comnection with the working of engines
Whish which must be known before a sweet working engine can be
obtained. Moreover, having been through it himself, he will know by the turn of the suborrinate's hand whether the proper adjust
ment, tuc, be tiven. ILet the engineer commence as the artifice ment, dce, be given. Let the engineer commence as the artificer dhere will be quite enough of intelligent men to fill the higher
theritions. No doubt the gentleman would not enter. Well, to my
to
mind, the engine room is not the place for him-unless, indeed, he
will first stop to the hammer, dirt, \&c. I I lon't for one moment wish to be thought the champion of the boasting, swaggering
engineer one meets ashore, with the civilian suit, big watcl chain engineer one meets ashore, with the civilian suit, big watch chain,
ring, cigar, and, to top the lot, brass-bound cap $\begin{aligned} & \text { rar from it. } \\ & \text { sutfered too much at their hands myself. In ali branches of the }\end{aligned}$ trade-I gave up the term profession with my youth-whether on
water or land, one meets gentlemen and the reverse. I met men in the engine room who were fully entitled, both by birth and
behaviour, to be called gentlemen; and among the officers the very behaviour, to be called gentlemen; and among the officers the very
reverse. Nevertheless, these latter, of course, looked with utter contempt on the black squad.
There is a paragraph in the letter from "Experience" that I can-
not pass without a remark, viz, the comparison he draws between candidates for appointment as engine-room artificers and engineers from the mercantile marine. I offer my humble apology if I
misunderstand him. As I take it, he expects a man who has hee engaged on shore in the making and erection of engines to be experienced in the driving of engines
Is the tea the place to learn this?
I presume the whole nation are agreed that our naval engineers should be thorougly practical as well as theoretical men. To
otatin such men I would suggest the following:--The artificer and
the to be stiffer as the stages rise, though I think a little of the science might be cut out with advantage; but the more seamanship the
better. The country will then hear much less of those mishans in better. The country will then hear much less of those mishaps in
our Navy which have led to the extensive ventilation this subject is undergoing.
Edinburgh

SIR,- In your last week's issue appears a letter, signed "Experience, commenting on my le fairly understood my quotation from
what he says, he cannot have fan the Admiralty Circular of 1868, authorising the entering of prac-
tical mechanics in lieu of junior engineers, or he would never have tical mechanics in lieu of junior engineers, or he woud never But
rushed into print and have said that my statement was false Bhot
considering that "Experience " is evidently misteading the whole considering that "Experience" is evidently misleading the whole
question when he says that "an ordinary engine fitter is no more entitled to be called a practical engineer" than a " navvy is to be called a civil engineer,", or a scavenger a sanitary engineer, one
need not be surprised at other glaring anomalies and inconsistencies need not be surprised at other g,
which may appear in his letter.
readily see that I did not average amount of common sense could really see that 1 did not mean sea-going knowledge when I used
the term practical knowledge. I meant rractical manipulation, thorough workmanship; trained men, who would know how to go
to work when a smash-up took place, without having to go to "Molesworth", or "Ansley" to see what they said about it; men Who, if they had alculation to find out the breaking strain, the tackle required to lift it. It is the reference to these men
which has so ruffled the serenity of "Experience's" existence. Who were the engineers of thirteen years ago who became so mighty position? Those that have been compelled to resign throurd drunkenness and other misconduct are trying to drag out a miserable existence from shop to sho e throughout the country.
Was not the majority of them taken from the private factories, Was not the majority of them taken from the private factories,
the same as the engine-room artificers of the present day, of whose service, I am quite ready to admit. But whose fault is it? Why did not "Experience," when he had the entering of engine-room
datificers see that the candidates were properly
 could have drifted into the service. It is entirely due to the laxity
of the examining officers that "wasters" are entered fulfil the requirements of the Admiralty the candidate must have a good knowledge of marine work, and also produce indentures of
apprenticeship or a written character from where he may have served his time, and in addition to that, he is required to do a test
job, taking from four to five days. This job varies at different ports. At Devonport, a knuckle joint rough from the forge; at Chatham, a set of Whitworth stocks and dies. Now, Sir, candidly, coutd ac waster execute any of these
pieces of work to the satisfaction of the foreman of an average London shop? No, he could not. It is only because the examining officer fails in his duty that so many misits, with intluence
belind them, slip into the service. To say that the engineers are inclined to listen favourably to the claims of the engine-room artificers is simply nonsense. Where is the evidence of their friend-
ship? Did the engineers Wend obnoxious badge from their arms? Have they ever asked for upon to relieve them in their duties? But as "Experience", makes no distinction between the engine-fitter and the navvy, scavenger, \&.c., there cannot be the slightest doubt about the
fostering care that the engineer officer evinces for the engine-room artificers.
If the
If the engineers are so eager to see some system constituted
which would supply the Navy with trained, good, practical men, Which would supply the Navy with trained, good, practical men,
why do they not assist in removing some of the grievances from which the engine-room artificers are now suffering? Let the engineers treat the engine-room artificers as helpers, and not as
slaves, and then better men will join the service, not as drudges, but as mechanics.

Ily
doch fron gallery-reading rown hall. SIB,--Although I do not consider myself bound to give an regard to a more economical construction of the aillive than the
one adopted, I will give an answer to Mr. William Parsey's, because the same idea might strike others at the first glance.
Wris, then, is not a case of neessity, but one of expediency.
Wrought iron is stronger than brick. While wrought iron is strained with 4 tons per square inch, it is customary to strain brick with not more than about 04 ton. Having, then, a compressive
force of 33 tons in one lamina of iron, and a tensile force of 23 tons in another lamina, it is not expecient to transfer these tivo orces independently of each other th the brickwork, which conse$33+23=56$ tons, but it is expedient to arrange so that the brickwork may have to resist altogether ouly $33-23=10$ tons
M. $\triangle \mathrm{M}$ ENDE.
high-speed locomotives,
Sir,-Can "Running Board, of Swindon," explain why their narrow-gauge locomotives are allowed ten minutes longer on the
journey to Swindon than the broad-gauge loconotives. This
jon equiredexplanation woulustion. A loss of ten minutes in every
interested in the gauge question seventy-eight miles would be a serious item with some of our
enterprising railway men.
E. J. W.
the buenos Ayres exhibition,
Sir, - Will you kindly insert in your journal the following
nformation referring to the South Ameriean Exhibition, to be held at Buenos Ayres? The exhibition will be opened on the 15th Febuary, of 1882 . "La Plaza del 11 de de Setiembre ", has been
reserved for machinery, and the new and improved machines will be specially welcome. I am authorised to receive applications for places until the 15th of December next, and the despatch
maclines must be done before or on the first days of January

Southampton, 8th July. Consul of the Argentine Republic

RAILWAY MATTERS.

The directors of the Birmingham Tramways and Omnibus Company, Limited, have declared an interim div
Messis. John King and William Kerser, vice-presidents of the Baltimore and Ohio Railroad, have resigned. Mr. Robert
Garrett and Mr. Samuel Speneer have been elected as their suceessors. In connection with this railway a new steamship line begins, sailing between Baltimore and Barrov
Unusually rapid progress is being made with the Hull and new railway and dock was cut, and work commenced by Messrs. new railway and dook was cut, and work commenced by Messrs.
Lucas and Aird, the contractors. The progress has been rapid
beyond expectation, half a-dozen miles of temporary line for beyond expectation, half a-dozen miles of temporary line for
the carrying of material along the permanent way being already aid.
A serious accident recently happened to a tramway carriage on
its way to Roslyn, a suburb of Dunedin, New Zealand, injuring cleven persons and causing the death of one. India and thie
Colonies says, " The tramway is worked by an endless wire rope, to which the carriages are attached by gripper carriages provided with powerful brakes. On the occasion in question the car had gone
some 600 yards, when, in a part where the gradient is 1 in $7 \frac{1}{2}$, the some 600 yards, when, in a part where the gradient is 1 in $7 \frac{1}{2}$, the
gear got wrong, and the car rushed down the hill at a fearful speed,
tore through the heavy work at the terminus and 3 ft. of metal oad, and then turned over on its side."
Bridges and structural ironwork are still to be bought at the low rates of from $£ 12$ to $£ 15$ per ton, but the movement downwards
to ruinous prices which last year had become so serious, has been etarded by the failure of some of the weaker firms, who competed not so numerous or extensive as they have been for the last few years, but some more bridges of very large span are projected, and
re likely soon to be carried out. Bridges for Canada, South Africa, and Australia, are being ordered, those for the latter
colony coming frequently through local contractors, with whom it seems the policy of the authorities to deal, instead of always

On the 14th ult. a big blast, in the promontory at the upper end
Shell Rock, twelve miles above the Cascades, and in the line of a new railway, was fired. Chambers had beean run into the cliff
from nearly opposite sides, and charged with $14,000 \mathrm{lb}$. of powder from nearly opposite sides, and charged with $14,000 \mathrm{lb}$. of powder.
The cliff is of basalt, projecting into the river, above which it
stood at the height of about 150ft. The extent of its base was stood at the height of about 150 ft . The extent of
about 200 ft, and the lateral depth of rock which it
move was 75 ft . to 8oft. About $40 ; 000$ cubic yard
been blown off into the river, and the work of constructing the railroad at that point will now be a comparatively easy one. Rapid
progress, says the Portlend Oregoniun, is now being made all along
the line, and there is every reason to expect that by September the the line, and there is every reason to expect that
rails will be laid from the Cascadles to the Dalles.
Railway construction in England is being carried on mainly for
hort or branch lines, the Hull and Barnsley Railway being the short or branch lines, the Hull and Barnsley Railway being the considerable total of smaller contracts for widening lines and improving station accommodation, the increasing trade of the
manufacturing districts stimulating in this direction the rivalry of manufacturing districts stimulating in this direction the rivalry of
competing companies. The London and North Western Railway Company still continues to let important contracts of this kind, and
the Great Western scheme for a railway into Southampton is also likely to be carried out shortly. Tramways, which were so slow of
introduction in this country are now at work in all the principal provincial toms, and the conditions of stccess are becoming well understood. The problem of working by steam is still an unsettled
one, and probably if engine power becomes adopted, considerable country as well as in France, Belgium, and Germany, In this of all kinds of railway equipment are busier than last year, and though prices are still low, the cheapness of material and the
saving which a larger output permits, leave a profit unattainable a year ago.
On Monday when giving evidence before the Select Committee on Eassern Railway Company, was examined. It had been stated, he which was 174 miles, and from Leyburn to Kelso, which was 154 miles, were the same. The explanation was that there was a
shorter route by the Midland from Hawes to Kelso of only 127 the cattle dealers the privilege of sending by the longer route at the cheaper rate. If they had not given facilities of this rind there
would have been no ground of complaint. The North-Eastern Railway Company were largely complaint. The North-Eastern continental rates as charged over similarly short distances to those pany, he had found that the Cleveland rates were rather less than the foreign rates over the same distances. For instance, in France
the charge for 30 miles was 2 s . 4td., while in the Cleveland district of the North-Eastern Railway it was only 1s. 11 $\frac{1}{2} \mathrm{~d}$.; while for limestone for the same distance the rate on the Continent was
2 s . 3d., while in the North-Eastern Railway district it was 2 s . O d.
Whereas the owner of a blast furnace in France would have to pay Whereas the owner of a blast furnace in France would have to pay
$£ 162$ for the week's materials, in the Cleveland district he would
have to pay only $£ 143$.
The railway tunnel under the Mersey to connect Liverpool an Birkenhead, by which a railway distance of 30 miles will be saved, successful completion is now only a matter of time and funds. A ither side of the river, two engines and two double sets of pump provided, and the tumnel headings carried more than 200 yards on
the Birkenhead side, and about 100 on the side of Liverpool. The the Birkenhead side, and about 100 on the side of Liverpool. The from shaft to shaft is 1600 yards. The engincers part of the tumnel will be in compact new red sandstone, and that eakage through occasional fissures, which will be readily kept
down by the pumps until the tunnel is lined and completed. Uyly fissures sometimes appear though, such as that which drowned the
Severn tunnel. The average thickness of rock above the crown the tunnel will be 30 ft, and the minimum thickness 25 ft . From either end of the tunnel the railway will be carried, mostly beneath
streets, to effect junctions with the chief lines by which the traffic of Liverpool and Birkenhead is at present conducted ; uniting at
Tranmere with the Birkenhead Joint Railway of the London and Church-street, Liverpool, near to the Central Station of the Mid land, Great Northern, and Manchester, Sheffield, and Lincolnshire
companies. There are to be stations at Tranmere, and near Hamilton-square, Birkenhead, and in Lord-street and Churchand near St. George's Docks, Liverpool. The opening of the tunnel of the Great Western Railway to Liverpool, and a much mor direct connection than at present exists between Liverpool,
Chester, and the Welsh coalfields. The Birkenhead Docks will,
taking, including the tunnel, railway, connections, and stations, is
taking to a public company to complete and work the line. The

NOTES AND MEMORANDA.
The census returns were not at latest advices complete for New Zealand, but the following approximate figures have been published,
viz,, Europeans, 489,500 ; Maoris, from 40,000 to 45,000 . If the "natural increase", continues at its present rate during the current white inhabitants. Of the chief towns, Dunedin, with its suburbs, has a population of 42,800; Auckland, 40,000; Christchurch,
30,970 ; and Wellington 22,000 .
A MAP of the Transvaal appended to the last Blue Book of South berg is the largest; in it are 364,250 Kaffirs, 654 Bouts, 160
Europeans other than Boers; Waterberg comes next with 174,045 Europeans other than Boers; Waterberg comes next with 174,04 .
Kaffirs, 714 Boers , 50 Europeans ; Lydenburg is next in size, with
123,300 Kaffirs, 1286 Bore 123,300 Kaffirs, 12866 Boers, 292 Europeans. The largest number number of Europeans other than Boers is in Pretoria, where there
are 1810, The total in all the Provinces is 774,930 Kaffirs, 33,739

 amonsen nes nior

AT the observatory of Campidoglio, Prof. Respighi has lately

 Mire or min il diandeteri, thanp iron pooint at the extememty

W. Warne ghas is sued fora a large number of purposes in the arts

 Yater ghass solution to torm a p pastic mass winaen sis preased inte
 chloriolo of osidim formed at the tame time being remored by

 of 1 per cont. o. the the sas.

 3, 1

MISCELLANEA
The honour of knighthood has been conferred on Mr. Frederick
Bramwell, M.I.C.E. The old-established Co
A tuxser under the Thames between Greenwich and Poplar is Board of Works.
THE Societé des Acieries de Longwy in France is erecting
large new engineering shops, steel works, and foundries. The plant will produce 100,000 tous of steel per annum, and thie foun-
dries and shops are to be fitted up to turn out from 80 to 100 tons per day.
A Fine Art and Industrial Exhibirios is to be opened in ardirf on the 29th inst. The collection includes (1) paintings and
nee arts; (2) statuary, porcelain and curiosities; and (3) machinery Ine arts; $($ statuary, prorelain and curiosities; and , machinery.
It is intended to make the exhibition of especial local interest,
especially in the sections 1 and 2 in whlich a special feature will be especially in the sections 1 and 2 , in which a special fee
Nantgarw china, and pictures relating to South Wales.
THE new bridge at Battersea, as now sanctioned by both Houses, Wridge ant an estimated cost of $£ 231,000$. The width will be
brime bridge, at an estimated cost of the number of spans decreased
incrased from 2ft. to 4 oft., and the
from seventeen to five, the centre of which will be 173 ft . wide. The new bridge will be fftt highere than the present one, and will The fo above minty hign-water mark.
THe roof of a church at San Mateo fell in during service on the
morning of the 5th inst., killing ovcr thirty of the worshipers morning of the sth inst, killing ovcr thirty of the worshippers
present, the greater number being women. The church was being partially rebuilt, and while a parity of men were working on the
roof, one fell through, and the sudden rush of all the others at the oof, one fell through, and the sudden rush of all the others at the
moment in their endeavours to get off caused the remainder of the roof to collapse. Twenty of the workmen were THE
There was recently put in the blooming mill of the Siemens-
nderson Steel Works a new 70 -ton vertical shear, made by Cavitt And Mcknight, Pittsburgh. It is said to be the largest in the
United States. The body of the shear is 9 ft. wide, and its height United states. The body of the shear is 9 git. wide, and its height
is 1 bift, while the roller table attached to it is 22 tt. wide. It is,
accordiny to the American MIanufucturer. desimed to acording to the American MAnufacturer, designed to cut stee
bloms sin. by Sin., or plates 3 fini. by tin. hot. It does the work with the greatest ease and micety, and
operation cutting blooms 7 in. by 1lin.
A st.Ttistrical atlas of England, Scotland, and Ireland, edited
y Mr. G. Phillips Bevan is being publishen K. Johimston, several of the fifteen parts in which it is to be comprised, being already issued. Each set of three maps in a Part, is
accompanied by letterpress, giving in figures the statistics shown graplically and locally in the maps. The third part which we have
received gives the statistics of the industrial condition of the received gives the statistics of the industrial condition of the
United Kingom. The seventh parat is devoted to the agriculture
of the United Kingdom. From this it appears that upwwards of of the United K=ngdom. From this it appears that upwards of
346,0 ono out of the total of 473,638 holdings are of 50 acres each or Scotland, out of 50,101 holdings, 52,280 are of 50 acres or under, nd 79 only exceed 1000.
Tive first stone of the Vyrrwy Waterworks, for the supply of
Liverpool, was laid by the Earl of Powis on the 1thl inst. The
Lake Tyinw is to be formel by the constretie to Lake Vyrnwy is to be formed by the construction of a masonry
embankment across the south-eastern end of the Upper V yrnwy Valley; the length of the lake will be 4y miles; ; area of lake,
1115 acres ; contents of the lake, above the level at whidl water will' be drawn for the supply of Liverpool, $11,900,000,000$ Wallons a available drainage area contributing to the lake, 22,000
acres ; the length of masonry embankment from rock to rock will be 125 sft .; its height from lowest part of rock foundation to coping
of parapet, 139 ft ; and its height from river level to coping,
gift.; ength of contributing tunnel from river Marclant to lake, about
lat. 13 and its heigh 13 miles ; length of contributing tumnel from river Cowny to lake,
about 1 t miles. The length of the aqueduct from the Lake
Lake Vyrnwy to the reservoirs of the Liverpool Corporation at Prescot
will be 67 miles ; this aqueduct will ocnist of a triple line of pipes
and of three tunnels, two of seven-eighths of a. mile and one of and of three tunnels, two of seven-tighths of a mile and one of
1 I miles in extent: On the line of aqueduct there will be several filter-beds ald minor reservoirs. It is estimated that the daily
water supply to Liverpool from this source will be-including com-
pensation- $2,000,000$ gallons. The Egyptian newspapers just arrived give an account of the
trial of a steamer at Alexandria, one of a ficet of vessels being itted with compound engines to replace ordinary engines which for many years have propelled the vessels, The steamers are the
property of the Egyptian Government, and are worked by an nimmistration named the Postal Kheedival, under the direction of English ofticials. The Damanhhoor, a boat of 1000 gross tonnage, is
24titt. long, 3oft. beam, amd 18 ft depth of hold, has been fittel up
for the Red Sea traftic, with large declk and cabin accommodation to carry passengers to and from Je ldah during the pilgrim season,
and for generally carrying trafic. The new engines are of 120 nominal horse-power, yuaranteed to indicate 610 liorses, and have
been supplied by MIessrs. Day and Summers, of Southampton, an erected on board the vessel at the arsenal, Alexandria. On the rial a speed of 11 knots was obtained with an indicated power of
706 horses, being sto-lorse beyond what is guaranteed. Consumpion of fuel, 92 tons in 24 hours. The great improvement efirectel
will be better appreciated in comparing the above results with that will be better appreciatest in comparing the above results with that
with the former engines. viz, 6 bi knots per hour with a consump-
tion of 20 tons of coal in the 24 hours. NIesss. Day and Summers are now sending out the sixth pair of these engines for vessels for
the esme service, and have in hand also two pairs of 200 nomina
morser
 through the agency of Messrs. J. Matthewson aud Co, of Heaten.
hall-street, who for many years have supplicel through their
Alexandria House, machinery and engineering materials to the Alexandria House, machimery
several Egyptian Administrations,
A seiv Marine Parade Fence at Brighton commenced at the
cend of July 1808 , has been completed during the past week It commences at the entrance to the aquarium, and terminates at
the junction of the Madeira-roal with the Marine Parade, not far the junction of the Madera- oad the town. The straight portion of
from the Eastern Boumdary of the the
the fence, which is fixed at the edge of the cliffs, is tioft. loxg,
 4) wwt. and a top rail of teak 4 in. diameter is fixed above,
forming a very comportable rest for visitor to lean over. At
intervals there are ten balconies which form recesses for seats, from which an uninterruptede view of the sea, the beach, and the Madera-
Cod below can be had. There are four flights of stone steps nearly
 aded to the straight part gives a total length of G160it. of
ironwork. The standardls are placed on a bed of Portland coment
Thend concrete, and a wall of the same material is formed round and
between them forming a facian and coping about 2 ft. Gin. .ligh on
the front. The stone steps and footpath have anso been relaid the front. The stone steps and footpath have aiso been relaid
throughout. Altogether there are about 350 tons of iron and 750 cubic yards of Portland cement concrete. The fenco was designed
by Mr. P. C. Lockwood, MI.C.E., the borough survecor, nat the Works. have been set out and superintended by Mr. W. Parsey,
W.M. Inst. C.E.; Messrs. C. Reed and Son, of Brighton, surphice
N. and fixed the ironwork, and Mr. J. G. B. Marshall was contractor
for the concret and other work. The fence has been eryy
carefully ranged to stright and curved lines on the top of the old
ond wall, which is not quite repular on plan, and the er radients of the
wase
fence have been arranged to give as near as possible a uniform fall wance have been arranged to give as near as possiblo a uniform fall
fone hat water to the kerb. Altoether the work has a very good
for the wate
TANK LOCOMOTIVE, DUTCH RHENISH RAILWAY.
MESSRS. SHARP, STEWART, AND CO., MANCHESTER, ENGINEERS. (For description see page 66.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

** Next week a Double Number of The Engineer will be published containing the Index to the Fixth-first Volume. The Index will
includea Complete Classified List of Applications for and Grants of Patents during the past six months. Price of the Double
Number, 1s.

TO OORRESPONDENTS.

In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a $2 d$. postage stamp, in order that writer to himself, and bearing a 2d. postage stamp, in order that
answers received by us may be forvarded to their destination. No answers received by us may be forvarded to their destination. No
notice will be taken of communications which do not comply with notice will be taken
these instructions.

We cannot under
 We cannot undertake to return drawings or manuscripts; we

 ${ }^{*}$ All letters intended for insertion in The Engineer, or containing questions, must be accompanied by the name andaddress of the vriter, not necessarily for publication, but as a proof of good faith. No notice whatever will be taken of
anonymous communications.
An Enecror. - For a single-cylinder engine divide the result by tivo.
C. W. - An ordinary Cormish, that is, single-flued, boiler, vell eaporate
about 6 lb. of vater for every pound of comnon engine coal burned on the
 and show in your sketchere The weight of the lever must be batancat by carying
it out at the opposite side of the shajt, or else it must be alloved for in
making your calculations.

THE EUPHRATES VALLEY RAILWAY.
Sir, -Can any of your readers supply me with the names and addresses
of the engineerrof the Euphrates Valley Railway now in projection?
Higham, July 19th.

SAINTÉ'S COUNTERS.

To the Editor of The Engineer.)

BRONZE CASTINGS.

To the Editor of
 $====5=5=5$ ised in statue
July 16th.

SUBSCRIPTIONS.

SUBSCRIPTIONS.
THE ENGINEER can be had, by order, from any neosagent in tovon or country
at the varous raulhay statozons or it can, if preferred be supplied direct
trom the oftice, on the following terms (paid in advance);

credit occur, an extra charge of two shillings and sixpence per
be made. THE ENGINERR Cloth Cases for binding The Engineer Volume, Price 2s. 6d. each Many Volumes of The Enginerer can be had price 18s. each.

Foreign Subscriptions for Thin Paper Copies vill, until further notice be received at the rates given belowo. Foreign, Subscribers paying in advance at the published rates ovill receive THe ENGINER veekly and post-free. Subscription sent th Post-oftce order must be accompanied by letter of advice to the Publisher. Thick Paper Copies may be had, if preferred, at increased rates.

 Remittance by Post-ofice OOMder.-Australia, Belgium, Brazil, BritishColumbia, British Guiana, Canada, Cape of Good Hope, Denmark, Egypt, Columbia, British Guiana, Canada, Cape of Good Hope, Denmark, Egypt,
France (Paris only), Germany, Gibraltar, Italy, Japan, Malta, Natal,
Netherlands, New Brunswick, Newfoundland, New South Wales, Netherlands, New Brunswick, Newfoundland, New, South Wales,
New Zealand, Portugal, Roumanin, Switzerland, Tasmania, Turkey,
United States, West Coast of Africa, West Indies, China via Southamp-
ton, Cyprus, $£ 1$ 而. India, $£ 2$ 0s.6d. ton, Cyprus, 111 16s. India, £2 0s. 6 d . Remittance by Bill in London. - Austria, Buenos Ayres, Ceylon, France,
and Algeria, Greece, Ionian Ilands, Norway, Parama, Peru, Russia,
Spain, Sweden, $£ 11$ 16s. Chili, Borneo, and Java, £2 5s. Signapore, anem

ADVERTISEMENTS.

* The charge for Advertisements of four. lines and under is three shillings;
for every two lines aftervards one shilling and sixpence oud lines are
charged one shilling. The line averages seven words. When an
tisenent
 single advertisements from the country miust be accompanied by stamps in
paymentt Altennate advertisements woill be inserted woith all practical
regularity, but regularity cannot bs guarantead in regularity, but regularity cannot be guaranted in any such case. All
except weelly advertisements are taken subject to this condition.
Advertisements cannot be Inserted unless Delivered
o'clock on Thursday Evening in each Week.
* Letters relating to ddvertisements and the Publishing Department of the
paper are to boaddressed to the Publisher, Mr. George Leopold Riche, all
other letters to be addressed to the Editor of THE ENGINEER, 163, Strand.

On the 13th inst, at MARARRIAGESS.

Manchester.
On the ith inst., at St. Thomas's Chureh, Portsmouth, ARCHIBALD
Court, Paymaster R.N., H.M.S. Victory, second son of the late Stephen
C. Court, C.E., M.I.C.E., to ELIZABETH JANE WILIS (BEsSIE), younger
daughter of the Rev, W, MEYYotr FATH DEATHS.
On the 14th inst., at Holy Brook House, Reading, William Exall, C.E.,
aged 7.2.
On the 10th inst., at High Elms, Hackney, Annie, the beloved wife of
JoHn TopHam, C.E., aged 49 years.

THE ENGINEER

JULY 22, 1881.

COOPER'S HILL COLLEGE.

The existence of Cooper's Hill College is imperilled. has long been known in certain circles remarkable; and it changes must be made in the system under which its
said on the subject. Until a new scheme was proposed it would have been impolitic to announce that unless a new
scheme was adopted the college must be closed. On Friday scheme was adopted the college must be closed. On Friday
last the Duke of Argyll, in reply to Lord Belper, gave last the Duke of Argyll, in reply to Lord Belper, gave
some explanations. The college, he explained, was founded during his administration at the India-office, and he had always taken a great interest in it. The reason why it
was brought into existence was to be sought in the fact that a proper supply of trained engineers could not be got for service in India, and the civil engineers who were there were incompetent. To use his own words, "The
Indian Government lost annually enormous sums of money by the carelessness and incompetence of many of the civil engineers in India, and when holding the office of Secretary of State for India he found that it was hardly possible to obtain in the open market a sufficient number of competent men to conduct the public works in India on a scale
such as that on which they were then being undertaken such as that on which they were then being undertaken.
Some of the civil engineers in India at the time to which he referred were very distinguished persons, but there called 'hard bargains, were hard bargains. On one occasion some millions India in the construction of new barracks. It turned out, however, that these buildings had been erected that they were mere 'sun traps,' Principles, and that they were mere 'sun traps.' They were
tremendously hot, and in consequence the health of the troops quartered in them suffered severely. Many of them were so insufficiently built that it was found they would not last for more than a few years, and in some cases even
the lime that had been used was pronounced to be bad. In this way the Indian Government were annually losing hundreds of thousands of pounds in bad engineering. The insufficiency of the engineering service having been
brought prominently before the notice of the India-office, Hill Che corities formed the idea of the erection of Cooper's Hill College. The project was opposed by a number of
persons, including many members of Parliament but eventually it was successfully carried out." Furthermore he explained that as economy and retrenchment are called for in India, the construction of public works was discon-
tinued to a very large extent, and it would not be worth while to maintain Cooper's Hill for the sake of educating ten or a dozen pupils a year. What the details of the new scheme are remains to be seen. The papers will be produced in the House of Lords in a day or two it is to be
hoped. Broadly stated, the idea is that Cooper's Hill College is to be made self-supporting. As many pupils over, say, 100 as can be got are to be taught within its
walls, and of the best of these ten or a dozen are to receive appointments each year for service in India. The success or failure of the scheme will depend on the action taken by parents and guardians.
The formation
The formation of a training college at Cooper's Hill was not perhaps in itself a mistake; but the reasons assigned considerable want of appreciation of the facts. In the first place, the mistakes made in India and on which the Duke dwelt with such emphasis, were not made by civil engineers,
but by military engineers, who were called upon to dis charge -duties for which they were unfitted. We do not mean to assert that all civil engineers serving in India have been highly competent men, but they have, on the
whole, done their work fairly well. The military engineers whole, done their work fairly well. The military engineers
were placed in false positions. Esprit de corps, not to use a harsh term, kept them from seeking counsel
from their civilian brethren. Unfortunate dissensions from their civilian brethren. Unfortunate dissensions
arose, and want of harmony between the two departments was followed by the usual results. The Duke of Argyle is quite in error when he asserts that good men
could not be got in England when he wanted them. They could not be got for the wretched wanted them. offered by the Indian Government. This statement admits of illustration. Some years since an effort was made to candidates had engineers for service in India. The candidates had to pass a very simple examination,
intended not so much to test their attainments as to intended not so much to test their attainments as to ascertain the facts of their previous career. Business
was not very flourishing in England at the time, and we know that many engineers went in for the exami-
nation, were accepted, and then declined point blank to serve, unless the rate of pay was raised from $£ 400$ a believe that at the time we speak of plenty of excellent men could have been had for a five years covenanted The Government would not give these salaries, and Tri Government would not give these salaries, and
driven to their wits' end, started Cooper's Hill, and a very expensive-for parents and guardians - education was given. A good many young men joined
the college. After a time, as they began to find their way to India, it was discovered that they were practi cally useless. Book learning they had in plenty, and nothing else. To get over this difficulty arrangements were made with some leading engineers in good practice for the admission of pupils for six months to their offices, work, and the way in whight ingineering operations are really carried on, might be obtained by them. Far be it from us to attempt to disparage the education given at
Cooper's Hill. Of its kind it is, and always has been, the best possible. If it were but practicable for a young man under some large contractor, Hill, and then four years under some large contractor, or in carrying out works
under the eye of such men as Sir John Hawkshaw, Mr. Hawksley, or many others whose names will at once suggest themselves, then, indeed, there would be a prospect can afford to spend eight or nine years of his life in thas can afford to spend eight or nine years of his life in thus tainly held out no inducements in pay or position to tempt the budding engineer to undergo such a woefully long apprenticeship. Consequently, the Cooper's Hill men nately, the men of pure theory have never yet done any engineering work of importance. They have always needed
dry nursing either by contractors or practical men. But in India there are no contractors in the sense in which we use the word, and the practical men of ability are either equally scarce, or so absorbed in work themselves that they cannot teach theorists. For this reason we fear we
must say that Cooper's Hill has been a failure. We have must say that Cooper's Hill has been a failure. We have
taken much pains to arrive at the truth; we have made taken much pains to arrive at the truth; we have made
inquiries in India from time to time ever since Cooper? Hill men began to work there, and the replies we have received all harp on the same string. Cooper's Hill turns out educated gentlemen, trained mathematicians, good linguists, admirable draughtsmen, but it does not turn out engineers in the full sense of the term. When they reach India they have to learn their business and to unlearn some things taught at Cooper's Hill.
It may be said that we write harshly of able young men.
We do nothing of the kind. The fault does We do nothing of the kind. The fault does not lie with them, but with their !teaching. College training is not only good, but invaluable up to a certain point; yet we
cannot too strongly insist on the truth that it will cannot too strongly insist on the truth that it will not make engineers. No amount of book learning t will enable him to determine what are the proper proportions of all its parts. It is the essential characteristic of such a training as that given at Cooper's Hill that it is accurate and precise. Butin actual engineering there is nothing accurate and precise in the same sense. There is always some difference found between what a material or a man ought to do according to books, and what it or he does in practice. To the theoretical man called upon to discharge practical functions the unforeseen is always occurring. To the practical man of experience it is not 00 much to say that the unforeseen never occurs. In India ome years ago a great dam had to be erected; a bed was ut for it in what the engineer believed to be the solid rock. His reading had taught him that rock such as this was always solid. The dam was made, and an attempt was made to fill the tank, and without success, for the water escaped through fissures below the dam, of the xistence of which the engineer, a military man, had no suspicion. It is to the last degree unlikely that a practical engineer would have made such a mistake; his training have calion, consequently he would would have supplied informationed, and his explorations not upholding the so-called "practical man," the rule-ofthumb man, who knows nothing save how to hide his ignorance. We speak of men who have had large experience in dealing with materials and forces under all sorts of circumstances and conditions. These men possess at once a definite which cannot possibly be paralleled in any way by college life. To use a homely illustration, the most careful study a cookery book will not enable a man to cook a good dinner. It is quite possible to have admirable dinners cooked by persons who never looked into the pages of he true, Mrs. Glasse of respected memory. Bue f all that has been written-in modern days at least-on the subject, with consummate practical skill. In the combination of practice with theory lies the way to the highest excellence. Cooper's Hill can only teach theory
The truth ought to be carefully put before the public by those who prepare the new scheme to which we have guardians that 95 to be made quite clear to parents and get nothing in India, and that the college can only give a heoretical training. Under the circumstances we suggest that the duration of that training be shortened. Taking five years as the term of pupilage, then, let two of competent engineer. It may be urged that two years is oo short a period to teach all that is wanted. This, we submit, depends on the way in which the teaching is done. No time must be wasted. In the first place, no one should be admitted unless he could pass an examination intended to show that the pupil could understand what he would be taught. Again, the year's instruction should not consist of three terms of two months each, or thereabouts; and no subjects should be taught which were not certain to prove useful. A diligent student, who had a course careully marked out for him, could acquire an enormous quantity finformation in a couple of years at Cooper's Hill. Undertaking to turn out trained and competent engineers, it will deceive the public. It will outstep its own province, and, attempting all things, will achieve nothing. If, on the contrary, it honestly professes to give a sound theoretical preparatory engineering education, it will come honestly before the public, and we see no reason why it should not be a success. There is plenty of room for work of the kind; and the results obtained in the past supply a guarantee that the work of the College will be thoroughly well done in future. Only, let it be clearly understood that the College will not pretend to train engineers. It will civil engineers. ducation of the risin some assistance it would appear at times that the Institution does not realise its own importance, or know of what it is capable. It certainly does not as yet do all that it may be legitimately expected to do.

THE BOARD OF TRADE AND LAND BOILERS.
ONE of the most important chapters in the annual report medougal, the chief engineer of the Boiler Insuhich and Steam Power Company, upon one section of boilers which have been subjected to wear. After pointing out the untrustworthiness of the system of inspection present pursued by the Board of Trade, as compared to he Admiralty practice, quoting as an instance the th known case of the Humboldt, the superheater of which exploded immediately after its inspection, in July, 1878, under circumstances fully described in these columns at the time, Mr. McDougall refers to the extroordinary difference between the general land-boiler practice and the Board of Trade rules and ideas. It appears from statistics he has collected from the mass of information in possession
of his company, "that certainly one-third, and probably one-half, of the land boilers at present at work in the United Kingdom would be put out of use if those rules
and the ideas of the Board of Trade officers, as exhibited in recently-published reports, were put in force." He further remarks:- No doubt in many instances the
margin of strength allowed at present is lower than is advisable, and possibly competition among boiler inspection and insurance societies, as suggested in some quarters, has tended to prevent a higher margin being generally,
provided. Probably the practice of the Steam Users Association - a body which, although very limited in its operations, is the oldest of the boiler inspection societies-
has had most to do with the low factors of safety prevalent has had most to do with the low factors of safety prevalent
among the older boilers in the Lancashire district. It appears to be still the practice of the Association to sanction the working of boilers at 60 lb . pressure, even if
of extreme age, with single-rivetted shells 7 ft . diameter made of $\frac{3 i n}{}$. plates, and with the rivets in the longitudinal seams spaced less than $2 \mathrm{in}. \mathrm{apart}$. Assuming, as in one
of the calculations made by the Board of Trade ofticers for the Walsall Rastrick boiler, that the efficiency of the joint is here 39 , and that the tensile strength of the iron, impaired by use, at the seams, is 19 tons per square inch, the
factor of safety becomes 2446 . Or, taking the strength of the iron at 20 tons, and the efficiency of the joint at 44 , the factor will be raised to $2 \cdot 93$. The latter calculation gives a much higher result than would apparently be
considered by the Board of Trade officers as representing the true strength of a boiler of extreme age ; but even assuming it to be admitted by them as approximately
correct, the margin of strength aliowed would not at all meet their requirements. In a recently-published report one officer lays it down that the ratio of the bursting pressure to the working pressure shrould never be less than,
4 to 1 ; and another states that the 'best authorities' recommend that in steam boilers 'the working pressure shall, according to circumstances, be from one-sixth to
one-fourth of the bursting pressure, one-fourth of the bursting pressure.' From a communica-
tion I have had from the Board of Trade on this subject, it appears that, in the first of these cases, at all events; the officer had expressed his own opinion, without official
sanction or direction." According to this, it appears that the opinions expressed by Board of Trade officers during coroners' inquiries are not always to be regarded as "official
utterances." Referring to the Board of Trade rules for marine boilers, however, we find that the highest working pressure which would be allowed for a new boiler, of the dimensions given above, would be 43 lb . This pressure
would only be allowed where the boiler had been open to inspection during the whole period of construction, and the iron used was known to be of the best quality. Where the quality of the iron is doubtful, and the boiler has not
been open to inspection during construction-which is the been open to inspection during construction-which is the
case with most old boilers reguired to be passed by boiler inspection societies-the working pressure allowed for a new boiler by the rules would only be 30 lb ., or just onehalf that allowed by the Manchester Steam Users' Asso-
ciation for an old boiler of the same dimensions and construction.
A communication recently addressed to a contemporary by Mr. Fletcher, the chief engineer of that Association, between his practice and the Board of Trade rules and made some years ago by his Association, a single rivetted joint was shown to have a strength of $57 \cdot 11$ per cent. of
the solid plate when burst by hydraulic pressure in the actual boiler ; and he points out that the bursting by ticulars of which we published at the time, showed the inaccuracy of a calculation made by Mr. Richards, a Board rivetted joint to be only 39 per cent. of the solid plate As will be observed, the same calculation is referred to in proved incorrectness is pointed out in another part of his in fact positive proof that the strength of a single rivetted joint in a boiler is considerably higher than laid down by boiler , but, on the other hand, is it at all certain that it single experiment made by his Association? Mr. Fletcher states further in the communication to which we have was shown to be 64.72 per cent. of the solid plate, and we certainly should not ourselves expect that the single
rivetted joint would so nearly approach the strength of this as to give $57 \cdot 11$ per cent. We should also be exceed-
ingly chary of basing our calculations for the strength of ingly chary of basing our calculations for the strenth o
so ticklish. a structure as a boiler on the results one experiment, more especially where the factor of
safety would be a low one, even assuming so high an efficiency of joint to be correct. Thus even taking the
strength of the joint at $5 \% \cdot 11$ per cent. of the solid plate, and the tensile strength of the material at 19 tons-quite high enough for the iron at the joints in a boiler of
extreme age-the factor of safety in a boiler of the dimensions quoted above by Mr. McDougall would be only $3 \cdot 6$ Association. In the event of accident to a boiler of this kind, say from' over pressure, to what standard could the Association appeal in support of this practice, in order to against accidental increase of pressure or carelessness ? Under the Employers' Liability Act, the only rules whose correctness is recogmised for all purposes connected
with the Act are those framed by the Board of Trade, and the only rules available at present in regard to boilers are
those issued by that body for marine boilers. According to these, as we have already shown, only one-half the pressure sanctioned by the Association we have named
should be allowed, and if the bursting pressure of the boiler were attempted to be calculated, it would be found that the efficiency of the joint assumed by this Association

Board of Trade officers in their calculations. Such differences in the practice of two public bodies, both professing
to be authorities on boilers generall to be authorities on boilers generally, are utterly discreditable to us as an engineering nation; and we entirely consome reasonable standard for the strength of land boiler On the Continent the difficulty has been practically solved by the enforcement of a test pressure bearing defined and reasonable relation to the working pressure care that the joints, of whatever character they may be are sufficiently strong to bear the stipulated test pressure without giving way. We are afraid that a measure of this kind would be altogether too simple for the Marine
Department of the Board, whose rules and fondness for fancy calculations have so frequently driven the marine engineers and slipowners of this country to the verge of desperation.

the metalliferous mines bill.

A Bits has been brought in by Messrs. Joseph Pease, A
Macdonald, C. M. Palmer, and Thomas Burt whid Macdonald, C. M. Palmer, and Thomas Burt, which is
entitled "A Bill to amend the Law relating to the use of Gumpowder in certain Stratified Ironstone Mines." It proposes from the eighth general rule under the Mines Act of 1872 , by which the use of cartridges is enforced. The question is one of
considerable interest to iron mining districts. When the Mines considerable interest to iron mining districts. When the Mines
Act was passed it was not expected by the owners of ironstone mines that these mines would be included in its operations a they have been, and hence little attention was paid by them to its provisions. One or these, in working, has been proanctive o mines to the danger it was intended to remove. It is that general rule which provides for the use of gunpowder in cartridges only for blasting and other like purposes. In mines such as the large ironstone mines of Cleveland, the drills used in prethe recent investigation as to the complaints that the Cleveland mine owners and miners make as to the restriction, it was proved danger that attends the use of gunpowder loose. Hence the giving of power to remove that restriction is not only a con vemience, but it is believed that it will reduce risk. Mr. Pease proposes in his Bill that one of the principal Secretaries of State
should have the power to grant exemptionof a mine from such rule should have the power to grant exemption or a mine fromsuchrue question There will remain to the Secretary of State the powe to revoke that exemption after giving twenty-four hours' notice of the revocation at the mine; whilst it is also provided that a ist of the mines exempted under the Act shal appear in the clear that in the case of Cleveland this Act will supply a want that is felt, and that has been long felt. It is not alone the eighth general rule in their case, the miners have also show their disapproval, and the reports, of the inspectors of mines,
well as the investigation of the chief inspector, have conclusively shown that the change is needed in the interests of the safety of the mines. How far the need for the Act-should it become such -will be lessened by the adoption of drilling by machine cannot be said, though at the present time there is an increasing quantity of ironstone in Cleveland being won after the drilling stone is won after hand driling, and as it seems clearly proved
that the allowance of the use of loose powder for blasting pur poses would add to the satety of the mines, it is to be hoped that the measure of Mr. Pease will pass-the more especially because
the names of the members that support it may be fairly said t the names of the members that suppoit it more than one of the represent both mine owners and miners in woso that it may be
different mining districts of the country,
regarded as a measure for the benefit alike of employers and regarded as
Railway rates on iron and ironmaking materlials.
The British Iron Trade Association has been doing a most opportune and useful work. Through its officers it has just making materials in every affected district in the United Kingdom. These rates have then been grouped together into es per ton per mile, and the averages phaced able to see how they are being served in comparison with their competitors
ho
Hit Hitherto this has been practically impossible, for no individual could be expected to find time or energy to do such dry, tedious,
and difficult work, in addition to fulfilling the claims of his own and difficult work, in addition to fultiling the claims or his on business or profession. The following
result, reduced to nutshell dimensions

District.	Ironore.	Pig iron.	Manufactured
$\overline{\text { Cleveland : }}$	0.9	11.19	1.4
North Staffordshire West Cumberland ..	0.93 1.85	${ }^{117}$	${ }^{1.48}$
Northamptonshire..	0.35	(1.00	
Linincolnshire	3.08	1.18	1.87
	0.8s	$1 \cdots 2$	1.57
Average	136	1.06	1.59

The above statistics are exceedingly opportune, in view of the Parliamentary Commission upon railway charges now sitting. The results are curious in many respects ; we might have sad
curious and startling ; so much so that their publication is likely to lead to alteration even before they come to be dealt with by the Commission. Let us glance at the first column. What possible excuse can there be for charging for the conveyance of iron ore in Cumberland double what is charged for similar Work in
Cleveland, North Stanfordshire and South Wales, and nearly four times what is charged in Northamptonshire ? On what authority do the railway directors in Lancashire-we presume in
Furness charge three competing districts we name, and about six times what is charged in Northamptonshire? Surely these things should
not be. We suspect the solution to our questions will
亚 be found in the higher intrinsic value of the Cumberland
and Lancashire ores. Until recent years these ores
could alone be used for making hematite pigs. Their could alone be used for making hematite pigs. Their
purity and their richness made them from two to three purity and their richness made them from two to three
times the value at the mines of the poorer carbonates elsewhere
obtained. This enabled the railway companies to impose rates or conveyance higher in proportion to value, even though the

This principle, which we may call the ad ralorem, in contradistinction to the "specific " rate principle, we see everywhere cropping up as the guiding star of rainway companies. They sity work we do in conveying. Like other men of business, we will increase our profit where we see a chance. In proportion as the bear a higher rate, so we will charge. If we did not, it would be so much more in the pockets of the owners of royalties, who are only too well off as it is. It will bo for the Royal Commission
to decide whether such a policy is justifiable or not. Turning to the column under the head of "Pig Iron," we find very little difference as regards the several districts. The highest is South Wales, which pays an average of $1 \cdot 22$ pence per ton; and the lowest is West Cumberland, which pays 0.96 pence, or about one farthing per ton less. We must point out that this favourable
average for West Cumberland no doubt results mainly from the charges of other than the local railway companies, Who are alone responsible for the high charges for the conver-
nice of ore. Referring now to the last column, we find very little difference between the districts except as regards Lancashire, where the charges are 1.87 d . per ton, or nearly td. more than in
Cleveland, where they are 1.44 d . If we now add the three averages together and take the mean between them, we shall find it about 1.3 d . per ton per mile. An inspection of any of the reports of our leading railway companies having a traffic in iron
and iron-making materials will reveal the fact that the actual cost of conveying such traffic in quantity is only about 4 of a penny per ton per mile, or about 30 per cent, of the charge to
the public. But a far more important question for the whole country is a comparison between the cost of transit as between his and foreign countries. In Belgium, the nearest competing into England, the averace rates are about $\cdot 6$ of a penny per ton per mile. Presuming that the cost of transit is the same in both countries, it would appear that the Belgian railway administration are satisfied with a charge of 50 per cent. more than the Working cost, while in England 150 per cent. is demanded and enforced! Surely, then, these are two questions for the british public, and for their representatives, the Railway Commission,
to deal with. The first and minor one is the re-adjustment of nates as between one district, one town, or one freighter and
nother. The other, and by far the more important one, is the nother. The other, and by far the more important one, is the
lowering of the rates altogether, so as to relieve the heavily burdened trade of the country from one of the forms of oppresson to which it is now subject. If the railway companies can eduction if a change were made, it is quite legitimate that they should do so, but we have not heard this point urged and it is possible that the increased traffic which would follow on the reduction in rates would compensate for the loss. At all events, we trust that the valuable statistics we have been considering will lead to some considerable alterations in those railway charges which at present are neither creditable nor justifiable.

LITERATURE.

Lid-Book to Engineering Enterprise Abroud. By Ewisa Matifson The original character of this aid-book removes all opportumity for criticism by comparison. It is unique in conception, and remarkable for the completeness with which that conception has been worked out. Chiefly it is written or the acvantage of intending investors in ellgineering ngaged in similar enterprises at home. It in reality takes the place of a consulting engineer to those wanting preliminary information and advice in making a proper selection of the character and design of machinery and naterial required in public works, factories, and elsewhere. It does much more than this; for the information given apon the various questions relating to contract and purchase in the engineering trades is of the soumd character perly defined conditions of purchase, indefinite specifications, and insufficiently ascertained requirements, previous to commencement of negotiations. This volume is the sequel
and conclusion to the volume published in 1878 , which dealt more especially with the conditions which determine, technically and commercially, the success or failure of engimeering works of various kinds. This second part may to be a general guide to the selection ares a concise and sufficient description of all these, with the reasons which determine selection under various circumstances, the whole representing an enormous amount of work, combining the knowledge of the engineer with that of the commercial man. It is divided into sixteen chapters,
and the titles of these may be usefully given. They are : - Contrict and Purchase in the Engineering
Trades ; Purchase for Export; The Establishment of Factories; The Transmission of Power; Commerce in
Coal, Iron, and Steel ; The Purchase of Steam Engines Coal, Iron, and Steel ; The Purchase of Steam Engines
and Boilers : Pumping Engines, Fire Engines, Tanks, and Boilers; Pumping Engines, motive and Rolling Stock; Machine Tools ; Smithy Tools and Steam Hammers; Cranes; Excavating Machines,
Boring-Tools, Rock Drills, Dredgers, Pile Drivers, Diving Boring Tools, Rock Drills, Dredgers, Pile Drivers, Diving
Apparatus ; Portland Cement ; Iron Roofs and Buildings ; and Lighthouses. Under all these various heads the author anticipates and answers the questions which would occur to anyone in considering a scheme of enterprise,
namely, what class of things are required? which are the namely, what class of things are required ? which are the approximate cost? No fault can be found with the arguments employed, for in almost all parts of the book, and especially in that part on contracts and purchase, the author gives instances in illustration of the question under consideration, which serve the same purpose as examples
of the working of a rule in arithmetic, or of the applicaof the working of a rule in arithmetic, or of the applica-
tion of algebraic formula. We have endeavoured thus far to aive Matheson's book, having commenced reading it with some intention of speaking in detail of the way in which the different subjects are treated, but the subjects are so
numerous that to do this would be like reviewing a dicnumerous that to do this would be like reviewing a dic-
tionary word by word. It should be mentioned that the chapter entitled Commerce in Coal, Iron, and Steel, is not wholly statistical as might be inferred ; but is chiefly occupied with questions which should determine the selec-
ion of one or other of the materials under consideration, the relative value of different kinds of coal in distant narkets, the quality and sections of iron and steel which may be most economically or advisedly used in structures
in different countries, and the effect of these considerations n design.
The firstPart of the work we noticed at greater length, but would be useless to extend this notice, for we can only repeat what we said of the first volume, namely, that it is
a book which will be sure to find a place amongst those of the consulting engineer, the capitalist, contractor engaged the consulting engineer, the capitalist, contractor engaged
on foreign works, young engineers likely to be employed on nch works, and ol promoters and ins in engineering enterprise. Like he riss wone it is profusely provida me ilugationex noses, and where use wh type illustrations, and the index to the whole, a very
important part of such a work, is complete, as may be mportant part of such a work, is complete, as may be oathered from the

NEW WATERWORKS FOR LIVERPOOL

Os Thursday, the 14th inst., the first stone of the embankment for the V_{y} yrnwy Reservoir was laid by Lord Powis, in the presence of the Mayor of Liverpool and of a large number of
members of the Corporation of that city, representatives of the members of the Corporation of that city, representatives of the
several towns and districts which will be supplied with water from the new works, and other officials. The day was fine and by special train to Llanfyllin, the nearest station to the works, where carriages were in readiness to convey them to the scene of the day's ceremony, a distance of about ten miles. On reaching Powis, who is the lord of the manor and a considerable landowner in the district, and has rendered great assistance to the
Corporation in obtaining the necessary powers authorising the construction of the works. The stone, a massive block of granite,
with a bronze plate let into it, inssribed with the names of the with a bronze plate let into it, inssribed with the names of the
mayor, engiueers, and other officials, is in no sense a foundation mayor, engineers, and other ofticials, is in no sense a foundationt
stone, and, in fact, will not form any part of the embankment, being placed above the level of the top of the bank on one side
of the valley, and facing the road which will eventually cross the alley on the top of the embankment.
fter the cre hall erected for the wred guests sat down hich will be fitted up as a cocon, refreshment the wornding-roon Earl Powis, in responding to the toast of his health, proposed he Romans and the subterranean water pipes of the present day and compared the waters of the Vyruwy to the nymph
Arethusa, who changed into a stream, disappeared from the niddle of the Peloponnesus, and, passing under a portion of the Iediterranean, bubbled up again
water supply for the city and district of an additional source pied the attention of the Corporation. At present the supply derived from two sourcco, In, INington, sit five LancaLiverpool, and from wells sunk in the red sandstone in the immediate vicinity of Liverpool. At Rivington the water is collected from about 10,000 acres of moorland, and stored in eight reservoirs containing 4268 million gallons.
The quantity of water delivered from Pivington is about 103 million gallons daily, and the quantity obtained from the
wells is about 5 million gallons per day, making a total supply of $15 \frac{\text { million gallons per day. The area supplied }}{\text { with water by the Corporation of Liverpool is about } 60 \text { squer }}$ miles, and contains by the last census 720,000 inhabitants, the supply being at the rate of $15 \frac{1}{2}$ gallons per head after deducting the water used for manufacturing and other purposes. In 1865 , iter a period of great drought, there was only ten days supply hort period in each day This alarmed the Corporation, who instructed their engineer, the late Mr. Duncan, to report upon
the best means of obtaining an increased supply. This he did by recommending that the waters of Bala Lake should be conveyed to Liverpool, thus supporting the opinion of Mr. Robert
Rawlinson, C.B., who sugqested Bala Lake in preference to Rawlinson, C.B., who suggested Bala Lake in preference to
Rivingtom, before the works were commenced at the latter place. The season of drought having passed away, Mr. Duncan's improve the existing sources of supply, by constructing an ing energetic measures to prevent the waste of water: have investigated many lone or in conjunction with Manchester plan for utilising the waters of the Brock and Calder, and constructing a reservoir at Bleasdale, near Lancaster. This scheme
was abandoned, owing to the unfavourable nature of the site of the embankment, and the objectionable character of some of the water. Eventually the Vyrnwy has been adopted, upon the for the construction of the works were obtained ons, and power 1880, the opposition of the Severn Commissioners and many other public bodies interested in the river Severn, of which the Vyrnwy is a tributary, having been successfully overcome, and
the Bill was practically unopposed, although some members of the committee were of opinion that Liverpool was abstracting water which belonged naturally to the midland towns. Their
objections were overruled, and the powers songht for granted to Liverpool, provision being made that water should be supplied to Warrington, Widnes, St. Helens, Oswestry, and other places
near the proposed pipe line upon certain conditions. The waternear the proposed pipe line upon certain conditions. The water-
shed from which it is proposed to collect the water is situated round the small village of Llanwddyn, in Montgomeryshire, at an a direct line south-west of Liverpool. The area of the watershed from which water would naturally flow into the proposed reservoir is 17,583 acres, and it is from
this in the first instance, but, as the demands in Liverpool increase, additional water will be brought into the lake from two streams, called the Cowny and Marchnant, which now fall into the
Vyrnwy below the proposed embankment. These streams will yrnwy below the proposed embankment. These streams will
be brought into the lake by tunnels respectively $1 \frac{1}{4}$ and $1 \frac{10}{8}$ mile in length. The Cowny and Marchnant will give an additional the lake, when all the works contemplated by the Act bersed of carried out, 22,300 acres. The water to be thus collected will be of the usual excellent quality derived from the Welsh hills Previous to the application to Parliament for the Water Act of flood and drought by Dr. Frankland, Dr. Tidy, and Dr. Brown.
Their reports were of the most favourable character, though
chemical evidence is scarcely necessary where, as in this case, in the purest and best possible condition for potable purposes There is probably no district in Great Britain of equal area that is so thinly populated. There are no mines or mineral workings,
and the only dwellings remaining will be a few scattered sheep farms. The hills are precipitous and sterile, and the slate rocks
of which they are composed throw off the mainfll with great farms. The hins are precipitons and sterile, and the slate rocks
of which they are composed throw off the rainfall with great
foll facility
The village of Llanwddyn will be submerged in the reservoir
and some roads which now traverse the valley will have to be and some roads which now traverse the valley will have to be
reconstructed at a higher level. At Llanwyddn the valley attains a width of over half a mile, and then following the cours a-half miles below the village its width, at the narrowest part, is not more than about 300 yards. Across this gorge, through embankment, the total length of which will be 418 yards, and the top, measured to the water-line, will be about 8 ftt . above the present valley bottom. The effect of erecting this
short embankment will be to dam back the river so as, without any further enclosure than the natural valley sides, to form lake which will be four and three-quarter miles long, with
water area at the surface of about 1115 acres. The surface are Water area at the surface of about 1115 acres. The surface area
of Bala Lake is 1100 acres. The contents of Lake Vyrnwy above the level at which water will be drawn off for Liverpool than the storage capacity of the Loch Katrine works of the Glasgow Corpoation The Vhe Loill turne therks of the ficial reservoir in the United Kingdom the next in size being the Vartry reservoir, for the supply of Dublin, which has an area of 410 acres, and contains $2,400,000,000$ gallons, as compared with

LIVERPOOL NEW WATER WORKS.
The embankment is to be built of masonry, and will be the first specimen of this class of work on a large scale in England although many masonry dams have been constructed on the Conproceeded with, notably that at St. Etienne, which has a height
 one-third the length of the Vyrnwy bank. The excayation of a trench for the foundation has been commenced, and it has been ascertained by trial holes that a solid rock bottom will be obtained at a depth which, in the centre of the valley, does not exceed 41 ft . below the natural surface. The total height from the bottom of the foundation to the top water--line of the embankment will therrfore be about 121 ft . This will be spamned
by arches carrying a road and footways, having a total width of 1 ift. between the parapet walls, the height from the water-line of the dam to the top of the parapet walls being 14it.
The embankment will contain 214,000 cube yards of
Il of embomkment all of which will be set in Portand cement. Suitable stone can
be obtained-close to the site of the embankment; But the 20,000 tons of cement which will be required will have to be carted for ten miles over a very hilly road from Llanfyllin, the nearest railway station, and it is unfortumate that the Corporaway or light railway, as the carringe of materials will form a very heavy item in their expenditure. Any overflow from the lake will pass through the central series of arches, and down the and byewashes of ordinary earth embankments will be dispensed with. The greatest width of the embankment at the base will be over 100 itt . For the discharge of the compensation water will be two tumnel outlets, with necessary sluices and appliances through the embankment
The quantity of water to be supplied for compensation is from Lake Vyrnwy to Liverpool will be formed partly by tumnel. ing and partly by cast iron pipes. Where the aqueduct is in tumnel it will be made of sufficient capacity to convey as much water to Liverpool as the lake will be capable of yielding, but
where pipes are to be used it is intended to lay, in the first where pipes are to be used it is intended to lay, in the first
instance, only one pipe, which will be larre enonch to deliver instance, only one pipe, which will be large enough to deliver
about one-third of the calculated total yield available for Liverpool from the watershed. The aqueduct will commence at the mie by a tumnel about 7 ft . in diameter, and two and a-quarter
miles in length, starting from the north side of the V yrnwy Valley, and terminating in the Hirnant Valley, From the outlet of the tumnel a cast iron pipe of about 42 in. internal diameter
will be laid through the Hirnant Valley across the river Tanat, and to the north of the village of Llanrhaidr-yn-Mochnant, near
which place the first section of the pipe line will terminate in a
small reservoir or relieving tank to be constructed at Parc Uchaf Some of these pipes will have to be carried a distance of nearly 18 miles. Thence it will be laid through the parish of Llansilin counties, whence a tunnel on the borders of Denligh and salop driven to the west side of the Morda Valley. There will be a raised aqueduct over the Morda River, and from the east side a
second tunnel of second tumnel of one mile long, terminating in a small reservoin
to be formed on elevated ground, about a mile to the west of Oswestry. At this point filter beds are to be made, if filtration hould be required. From Oswestry the cast iron main proceed in a north-easterly direction, through the parishes of Whitting.
ton and Ellesmere, Hanmer and Malpas. In Malpas there will ton and Ellesmere, Hanmer and Malpas, Th Mappas there will
be another relieving tank on Oat-hill. Thence the pipe will be continued through Bunbury and Beeston, passing at about a ton-hill ; thence through Delamere Forest, and under the fiver Weaver, near Kingsley Ford, through Aston, to a tower to be erected at Norton. From the Norton water-tower
the main takes a northerly direction to the Mersey, which it crosses at a point two and three-quarter miles to the east of the Rumcorn Viaduct. After crossing the Mersey the pipe follows an
almost straight line through Farnworth and Rainhill to the almost straight line through Farnworth and Rainhill to the
existing reservoir of the corporation at Prescot, near Liverpool. The total length of the aqueduct from the Vyruwy to Prescot is sixty-seven miles. The Corporation have already entered into
contracts with Messis. Cochrane, Grove, and Co., Dudley, and Messrs. D. Y. Stewart and Co., Glasgow, for the supply of about twenty-seven miles of pipes, and pipe-laying has been com-
nenced at Hirmant by the Corporation workmen. The rives Vyrnwy is at present subject to great fluctuations in flow. During heary floods the discharge at the point of proposed interception exceeds 700 milion gallons per day, while in seasons of
drought the discharge falls below two million gallons per day. After the lake has been made the Corporation will have to send down the river the statutory supply of compensation water, instead of the present irregular flow, will be a great improvement instead of the present irregular flow, will be a great improvement
to the river, and a great advantage to the residents on its banks. The total estimated yield of Lake Vyrnwy watershed, including the compensation water, is estimated at 5. The of the works is about a million and a-quarter. With regard to the time of comthat may arise in the execution of such an undertaking, but it is confidently anticipated that he whole of he ope nected with the first instalment will be so far completed as to enable the water to be delivered into Liverpool in the year 1885°. The engineers for the works are Mr. Thomas Hawksley, of London, and Mr. George F. Deacon, of Liverpool, under whose superintendence the drawings and specifications are to be made
and the works to be carried out, Mr. Deacon having been relieved and the works to be carried out, Mr. Deacon having been reieved
of all responsibility for the existing Rivington and Liverpool of arks in order that he may devote the whole of his time to this
wor large undertaking

TRIAL TRIP OF THE STEAMSHIP
Ox Tuesday a large number of engineers and shipowners assembled to witness the trial trip of a fine new cargo steamer,
the Armathwaite. This vessel has been fitted by Messrs. John Nones and sons, st. George s Engine Works, live Gool, with a stroke. These engines have Turton's patent built up crank shaft, and steam is supplied by a pair of Turner's patent boilers. We shall in an early impression illustrate these boilers and the crank shaft. It must now suffice to say that the trip was in all respects a success. The engines gave no trouble whatever,
although they had never been under steam before, save for a few hours at the dock side. They indicated 630-horse power with a pressure of 70 lb ., and 67 revolutions. The boilers are intended
to carry 80 lb ., but they were fired very casily, as it was not deemed necessary to push the engines in any wail ter alluded last week. It is of the locomotive type, with a fire lrrick furnace instead of one with water legs. Althongh very little is known
about this boiler outside of Liverpool circles, it has been gradually gaining in favour since it was patented in 1878. The first of Bagieda, built at the Canada Works, Birkenhead, to the order of Messis. Herscheli, African merchants, and under the superintendence of Messrs. Ashlin and Asbridge, consulting engineers of Liverpool. The vessel is 81 ft . long on the water line, 9 ft . 6 in.
beam, 5 ft deep moulded, and 3 ft . 2 in , draught of water loaded, beam, 5 ft, deep moulded, and 3it. 2 in . draught of water loaded, the guaranteed speed being ten knots. per hour. The engines are
on the high-pressure non-condensing principle and of $13 \frac{1}{2}$ nominal on the high-pressure non-condensing principle and of $13 \frac{1}{2}$ nomina
horse-power, and are supplied with steam of 80 lb. pressure per horse-power, and are supplied with steani eo having 2172 square seet of heating surface, and a grate with $10 \frac{1}{2}$ square feet area. This vessel has now been constantly at work on the river volt for more than two years with very satisfictory results, hand no current or tide at the tims. The owners are now on the point of ordering a second vessel of larger size than the Bagiedia The second vessel fitted with these patent boilers was the twin screw tug and tender stemmer Gamecock, buit at the Canadi
Works to the order of Mr. Beckett Hill. This vessel is 155 ft . long by 25 it . beam, and is fitted with two pairs of compound surfice condensing engines of 180 nominain hoss-power,
on trial $116 t$-horse power. This vessel has noen above sixteen months at work, giving very sitisfactory results upon a very small consumption of coal. The yacht Mizpah is now under
steam on her second yachting season, since she has been fitted steam on her second yachting season, since she engines, and a
with a pair of compound surface condensing er Turner's patent boiler of 12 nominal horse-power, the working steam pressure being 110 lb . per square inch. The engines indicated 75 -horse power on the trial trip. The Nottinghill, now on her voyage to Calcutta, is sted pressure of 125 lb . per squard inch. The engines are of 570 nominal horse-power, anilar vessels
indicate above 3000 -horse power. Two other and similar are now being built for the same company. The tug steamer on the low presure jet condensing principle, the boilers liave on the low pressure jet concens, the results being very satis-
been above six months at work , factory, and the consumption
than with the former boilers.

Messhs. James Cartlisi Ayd Soxs, of Birmingham, have carried off at the Melbourne Exhibition the gold medal for general
brass foundry, in addition to the first class award of merit for superior quality, artistic design, and general excellence of their superior
exhibits.

TANK LOCOMOTIVE, DUTCH RHENISH RAILWAY.
WE illustrate on page 62 a tank engine for passenger service, built by Messrs. Sharp, Stewart, and Company, Limited, of
Manchester, for the Dutch Rhenish Railway Company. The engine is, as will be seen, of the "double-ender" type with inside engine is, as will be seen, of the "double-ender type with inside
cylinders, four coupled wheels, and a pair of ruuning wheels at
either end. These are fitted with radial axle-boxes, on an arrangeeither end. These are fitted with radial axle-boxes, on an arrange--
ment designed by the makers, which ensures the perfect contact
of the sliding surfaces in all positions of the wheels, allowance ment designed by the makers,
of the sliding surfaces in all positions of the wheels, allowance
beine made for the vertical inequalities of the rails, as well as for being made for the vertical inequalities of the rails, as well as for
the lateral curvature, all risk of the jamming of the slides when one wheel is raised higher than the other being thus avoided.
The lateral movement of these boxes when on a curve is controlled by means of spiral springs set in their places with considerable initial compression, so that the wheels are held much more
stiflly in the central position when the engine is running on a stiflly in the central position when
straight road than is usually the case; and the oscillation when straigning on the straight which has been
runne
The water is carried partly in side tanks and partly at the back of the footplate, under the coal bunker, a very even distribution
of the weight being thus secured. The advantages of this type of engine, especially for local and branch line traffic, are obvious,
the radial axle boxes being at either end. The engine runs with equil facility in either direction, passing the curves with ease, while the long wheel base renders it very steady vertically, and
much lighter on the permanent way than an engine of the much lighter on the permanent way than an engine of the
ordinary description, which would pass curves of the same radius. These engines have now been running for some months, during which time they have given very satisfactory results, and the
makers have supplied engines of the same type to the Dutch South, Eastern Railway Company, where they are giving equal
satisfaction. We append a list of the principal dimensions, and weights :

Wheels and Frames.
Diameter of leading and trailing wheals
 Distance between eentres of leading and driving wheels
Distance between centres of couple wheols
Distance between centres of hind-coupled and trailing
wheels Thhells
Total wheil beise
Wiath of tires

Length of barrel
Thinck chess of barrei plates.
Thickness of smoke-box tul
Boiler:

Diameter of barrel plates inside
L.enth of fri-box shell outside
Width of fore.bor shol at botom
Depth of fire-box below centre ine
Depth of fre-box below centre line of boiler
Length of fire-box inside
Width of firebox inside
Height of fro-box inside

 Dengmter of of tubes bet otween
Diumber
Number of tubes (iron)
Number of tubes (iron)
Heating surface, tubes
Heating surface, fire-box

Capacity

TRIAL TRIP OF THE DE BAY.
No doubt it will interest many engineers and shipowners to know that a series of close, crucial, comparative, and in every
way trustworthy trials of the elative merits of the patent De Bay propeller and the ordinary screw is being carried out under the
supervision of engineers appointed by the De Bay Patent Directacting Propeller Company. Messrs Capper, Alexarder, and Co.
have recently added to their flet a new yessel, which has been named the De Bay, and it is their clesire, having carefully gone into the matter, to have this vessel fitted with a
propeller, or rather pair of propellers, on the De Bay propelier, or rather pair of propellers, on the De Bay
principle. The De Bay is a first-class cargo steamer, and
reflects great credit on her builders, Messrs. Palmer, and Co., of the Jarrow Shipbuilding and Engineering Works. She is
an exceptionally strongly built, commodious, highly-finished an exceptionally strongly built, commodious, highly-finished
cargo steamer.
Her length is 250 ft .; beam, 3 fit. 4 in.;
depth of hold, $23 \mathrm{ft}$. .; and with a mean draught of 21 ft , she wil cepry of hold, 2500 tons of cargo. Hean draught of 21 ft . she will
cangines are compound surface condensing, with cylinders of 30in. and 55in. diameter,
respectively, having a stroke of 42 in., and are capable of
indicating with all the latest improvements in engineering, and in every part indicate the care they have received at the
hands of Mr. Gibb, of the Jarrow Works, under whose direction they have been constructed. In the engine-room is to be
found Durham's patent marine governor on a new pattern, in which he has abandoned the gearing to which some shipowners had objected. In this his latest design the water cylinder re-
volves, and its position on the main shaft or spindle -at right volves, and its position on the main shaft or spindle -at right
angles to its position in the original design-obviates of course
the necessity for gearing to drive the internal fans. On deck the necessity for gearing to drive the internal fans. On deck
the steel hawsers, on neat rollers, fore and aft, attract notice, and are for mooring a ship, a vars improvement upon the
untidy, uncouth, and unwieldy cables, which for too long a untidy, uncouth, and unwieds cables, which for too long a
time have retained their places on the eccks of our steamers.
The wheel-house is fitted with a steam steering gear, from the
patented design of Mr. Nelson, and is worked from the upper
bridge by means of a very small wheel. Should an accident occur to the little engine which works the steam steering apparatus, a lever may instantly throw the apparatus into gear for
steering by hand, for which purpose alarge hand wheel is attached to the machine. We have said that Messrs. Capper, Alexander, and Co., had determined to have this ship fitted parison might be made as to its behaviour, it was arranged trials under certain known conditions should be made, and that the De Bay should make her first voyage with it, At the conclusion of the first voyage the De Bay propeller will be
attached and trials will then be run under exactly similar conditions. On the 30th of June the first of the series of trials
was made in the presence of several shipowners and engineers. On this occasion the steamship was unladen, having only sured mile a little to the north of the river Tyne, runs at "full speed," "half speed" and "slow," the best speed obtained being the luncheon, after the auccess of the steamship De Bay had been proposed by Mr. Gibb, duly honoured and responded to, Mr.
Capper in felicitous terms proposed success to the De Bay Capper in fecicitous terms proposed success to the De Bay Pro-
peller, which toast was acknowledged by Mr. De Bay, who expressed himself confident, that good as was the performance of
that day, he would beat it very considerably under the same onditions, when the time came for trial with his propeller. On the 11th of July the second of the series of trials was 2400 tons. Several runs were made over the mile at the same engine speeds as at the first trial. The highest average
of the full speed runs was $9: 50$ knots, as nearly as may be and this may be regarded as an excellent result. At the conclusion of the trials the De Bay sailed for Cronstadt, from hence she returns to London, where she may be expected in a
month. The De Bay propeller will then be fitted, and trials will again be carried out, when all the figures resulting from the trials will be made public. That Mr. De Bay has an excellent
performance to beat there is no doubt, but both he himself performance to beat there is no doubt, but both he himself
and Mr. Folkard, who is consulting engineer to the company, peller in point of economy of power, with increased se bay pro peller in point of economy of power, with increased speed.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our own Correspondent.)

AT least one of the marked bar houses who during the past
quarter have quoted their prices 10 . per ton above those of the quarter have quoted their prices 10 s. per ton above those of the
bulk of the makers intends to still adhere to this course. This appears from the following circular which has been issued by the
"We beg to inform you that our prices of, 'Lion' iron for the
Curent quarter and yout that our prices of ' 'Lion' iron forther the
crotice will remain as follows
'Lion' 'Lion' bars, $£ 7$ 10s. per ton; ditto hoops, $£ 8$ per ton; ditto sheets
and plates, $£ 9$ per ton at works. We also beg to remind you that we are makers of strip iron, and of bar and railway iron, at ou
Ruabon Works in North Wales ", The firm's doubon best scrap ditto, $£ 10$; plating bars, $£ 8$ to $£ 9$ 1s.; bes
durning bars, $£ 11$, rivet iron, $£ 9$ and $£ 10 ;$ angles, $£ 8$ bs
 and fender iron is $£ 810 \mathrm{~s}$,; best sheet iron, $£ 10$ 10s.; best boilè plates, $£ 10$; double best scrap plates, £11; and chequered plates,
£11 10s. This circular was issued on Tuesday. Its effect on
The Ctrange in we lhernampton yesterday - Wednesday -was to
tenden of all the bar firms, and to help the tendency to fil which must be te the graase in some few instances 3s. 9d. per ton. The demand was slightly improved, notwithstanding the sales at last week's quarterly
meetings, and the minimum rate of $£ 515 \mathrm{~s}$. for common bars was meetings, and the minimum rate of £5 15s. for common bars was
less difficult to secure. A little more was done in marked bars at less dincult
$£ 77$ for the colonies, and for South America, and at $£ 712 \mathrm{~s}$. 6 d . fo
the "Round Cable bars sold better, and partly manufactured iron, as puddled bars, was in great demand, but small supply, even at better prices
than have ruled for four months nast. than have ruled for four months past.
The Australian mail, delivered on
The Australian mair, delivered on Tuesday, brought a good the advices speak of quotations at Melbourne being on the whole exceedingly well supported. At the time the mall left ordinary
brands of 26 W .G. were selling at $£ 20$ 10s.; best brands wer offered at £21 10s. to $£ 22$; 200 cases of "Gospel Oak " and
Walker hha been placed on private terms " "Orb" was still going off at $£ 2115$ s.; and 100 cases of "Stork" were sold to arrive
Black sheets were moving quietly. Assortments of Nos were selling at $£ 11$, while for Nos. 20 to 26 , $£ 1310$ s. was obtained Plate iron was firm at from $£ 10$ to $£ 11$; bars and rod irons

were moving off at $£ 9$ to $£ 11$; and hoop iron for trade | purposes was offered at $£ 10$. Tin-plates were offered at 15 per |
| :--- |
| cent. on invoice for good assortments, say 19 s . Gd . per box for I . | cent. on fnvoice fire, ghen the mail left, was rather quiet. Nos. 6 7,8 were quoted respectively $£ 12$ 5s., $£ 13$, and $£ 15$. Pigs iron

was in moderate request at $£ 410 \mathrm{~s}$. for small lots, and $£ 45 \mathrm{ss}$. in quantity
The last previous mail from Australia was so very bulky that this week's, though a good average mail, was yet unequal to it.
But the orders were enough to sensibly augment the inquiries in WWolverhampton on Wednesday and in Birmingham yesterday Offers were made by buyers to take sheets for galvanising a present prices right into the middle of next year at the rate
50 tons a week. The offers were rejected, makers. deelining to commit themselves beyond the two months' work which they hav mostly upon hand. Occasionally $£ 810 \mathrm{~s}$. was secured for smal
lots of doubles, but buyers hesitated to give the $£ 10$ which was asked for latens, though they would some of them give $£ 9$ 15s.
For singles the quotation remained at $£ 715 \mathrm{~s}$, but it was not universally secured.
Messrs. James Russell and Sons, Limited, of the Crown Tube Works, Wednesbury, have just secured another tutensive contithirty miles in length. In their construction upwards of 600 tons of iron will be used; and before they leave the works each tube
will be subjected to hydraulic pressure of 2000 lb to the square will be subjected to hydraulic pressure of 2000 lb . to the square inch. The whole order will be executed in seven or eight weeks,
notwithstanding that it will involve some thousands of feet of sotring.
strengthen strengthened makers' quotations for heavy strip. Ordinary strip
and baling hoop were still inquired for, and $£ 6$ 5s. upwards was demanded for coopers' hoops.
Plates varied from
Prates varied from $£ 7$ to $£ 9$, according to quality. A slightly
better business was done at the latter figure for boiler-making
purposes.
Firmness characterised the quotations for pigs, yet orders were mostly sought after. Staftordshire all-mine qualities well
sustained the quotation of $£ 32 \mathrm{~s}, 6$, to $£ 3$. 5 s ., but Shroes sustained the quotation of $£ 32 \mathrm{~s}$. 6 d . to $£ 3.5 \mathrm{~s}$, but Shropshires
were easy to buy at $£ 3$. ${ }^{\text {Consumers }}$ of hematites asserted they were easy to buy at £3. Consumers of hematites asserted they
could buy a $£ 3$ 5s. easy, and they held off from giving makers full rates; yet most hematite firms ecclined to evie way. Blast furnace
firms hereabouts are advocating a concerted reduction in make, not
by Cleveland and Glasgow alone, but by Northampton also. In
that event, some Staffordshire houses would be prepared to take that event, some Staffo
part in the movement.
Constructive engineers and ironfounders are receiving more valuable inquiries, chiefly on colonial account. An effiort will be pipes for the Bhundarwa Waterworks, Bombay ; also that for the 100 iron-covered goods wagons needed by the Madras Railway. Railway carriage and wagon work generally is looking up for
export, though the home demand is less active. The new inquiries are conspicuous for underframes and body underwork for wagons and carriages. Steel coach springs are going in fair quantities to
India and South America, and the spring and axle makers of Wednesbury are doing an increasing business with, more especially, the Austraian colonies, the Cape, and other parts of south Africa.
There are indications of improved prices being obtained in the hardware trades. Resulting from the higher prices of sheets, the firmness of the tin market, and the continued active demand, the
frying-pan makers have advanced prices between 10 and 15 per frying-pan makers have advanced prices between 10
cent., and the buyers are not withholding their orders.
Merchants still report that orders from various Australian
markets for American hardwares continue to be received. The markets for American hardals, nails, carriage bolts, saws, lemon The Birmingham gun-makers are doing a very good business on est and cheap sporting guns, in most part for the United States. Sut in the mintary department there is hittue doins, all arm com. panies are now manufacturing bicycles and tricycles, for which there is a large and increasing demand.
In the hope of improving the style and design of the local manufactures, an opportunity is to be afforded extan examples of indus-
mingham for the inspection of the finest extant en rial art. The memorial stone was laid there on Tuesday is nevा rected by the £100,000. The proposal originated with Councillor Tangye, of Messrs. Tangye Bros, who has given a donation of $£ 10,000$.
In North Staffordshire orders for iron feely freely. The home demand, which has been stagnant for some
time, is showing more signs of life, and a steady trade is doing with the colonies and a few European markets.
the,

NOTES FROM LANCASHIRE.

(From our oun Correspondent.)

Manchester:- In the iron trade of this district a steady tone is maintained, with a moderate business doing; but higher prices are
till very difficult to obtain, and although there is no doubt hat business, taking it all through, is better, it would be premature at present to conclude that a really permanent material
improvement has been established. The most that can be said is that a considerable business has been done during the last few weeks, which has left a more hopeful tone generally throughout
he market, and that, to a limited extent, better prices are being realised ; but the figures which sellers can command are still too low to leave anything like a profitable margin.
stated in a previous report, they have recently secured new orders for a considerable weight of iron, and these have been followed by further large sales of local iron made at the Birmingham quarterly seeting last week, here Lancas The result is that local makers in some cases, are now fully sold for the next three months, and they are very firm at 44 s . for No. 4 forge, and 45 s . for No. 3 foundry less $2 \frac{1}{2}$ delivered equal to Manchester, which represents an advance
of about 2 s . per ton upon the lowest prices which have recently been taken.
In outside brands there is no material change to report. Lin-
colnshire irons are still being sold in this district at about 44 s . to 45s. per ton less 2 t delivered equal to Manchester, but Derbyshire and Middlesbrough irons cannot realise in this market, unless under special circumstances, the prices now asked by makers.
In hematites a moderate business has been doing at about 67 s . In hematites a moderate business has been doing at about In the finished iron trade there is a stiffer tone. Manufactan are gradually getting better employed, and in some cases, as I mentioned last week are holding out for an advance upon late rates, but it is exceptional where this is being actually realised.
For bars, hoops, and sheets, there is a fair demand both for home consumption and shipment, and the average quoted prices for these £5 17s. 6 d . to $£ 6$; hoops, $£ 67 \mathrm{ss}$. 6 d . to $£ 6$ as. 10 s ; and sheets, $£ 710 \mathrm{~s}$. up to $£ 715 \mathrm{~s}$. and $£ 717 \mathrm{~s}$ s. 6 d . per ton.
During the week I have been through several of the large engineering establishments in the district, and I find generally a very fair amount in hand. Locomotive builders are tolerably
busy both with heme and colonial orders, but there is still a very keen competition to contend with, and so far as the continental trade is concerned English makers have really no chance against
the low prices which the German and other firms are able to the low prices which the German and other firms are able to ordinary size, a good many are now being made for shipment, and wheelwrights, tool makers, and machinists are, in many cases, very fairly occupied. There is, however, still one general complaint, and this is that work has to be taken at such low prices that it results in little or no profit to the employers.
Amongst other estabishments to which I paid a visit was Messrs. Ashbury and Co.s well-known carriage an wagon worts, the state of things existing when last I had an opportunity of going over them. Numerous orders were on hand fore
and tram-cars, botl for English and foreign companies. Amongst these 1 noticed several carriage underfames, 54 ftt. long, constructed on two six-wheeled bogies, and there were also a number of railway
iron in one continuous bar; the vans for abroad, specially constructed for carrying sugar, with an inside framework of wood coated outside entirely with iron plates and bound with iron ribs. Of turntables and other ra.
plant the firm had also a considerable quantity in hand.
Mr. Bernard Samuelson, M.P., has contributed an article to the considerable a and as some of the facts upon which it is based were not only
collected in this district, but furnish very suggestive material for consideration, a brief reference to one or two points will not be out place. The subject specially, buat in an indirect manner referenece is made to the mechanical engineering trades. After showing
how, at the town of Chemnitz, in Saxony, Enlish manufacturers of woven fabrics generally are finding an ever-increasing band of
rivals, the writer proceeds, "The demand for railway loco motive engines, and for power looms and frames, had led to the creation of a prosperous establishment for the manufacture of thes various machines-that of M. Hartmann-which gives employment
to 2800 mechanics. Its central position and the cheapness of fuel have caused the workshops of the Saxon Government Railways to
be placed there. These employ 5000 hands, and there works in which stationary steam engines, jute spinning frames brewing machinery, engineering tols, and, in fact, all kind o
mechanieal appliances are produced." Further on the writer, after pointing out that English inventions and contrivances ar
copied in these shops from English models, proceeds to deal with cost of labour, and in comparing the wages o
skilled mechanical engineers at Chemnitz with those in Lanca-
shire and Yorkshire, facts of a rather startling characte shire and Yorkshire, facts of a rather startling character
are set forth. Mr. Samuelson takes as a basis of comparison a are set forth. Mr. Shamuelso says :-"It appears that in the loco-
locomotive-making shop, and says
motive factory at Chemnitz the average wekly wages of the
mechhanics and labourers in $1866-70$ were as s.ow as 13 s . But they mechanies and labourers in $1866-70$ were as low as 138 s. But they
rose to $18 s$, in $1873-4$, and have declined again to 16s. 44. at the present time 1 have aseertained that the average weekly wages
at a similar factory in this country are more than 23s., or 40 per at a similar factory in this country are more than 23s., or 40 per
cent. above the Chemnitz rates; and that the lowest wages of its
unskilled labourers are higher than the average of the skilled and unskilled labourers are higher than the average of the skilled and
unskilled in the Chemnitz shops." To this Mr. Samuelson adds nother equally important factor for an accurate estimate of the entire case, viz., that the skilled artisans at Chemnitz not only
work for 40 per cent. less than their English rivals, but also for
twelve or fourteen hours more each week than is worked by the mechanics in the shops of this country.
Singularly enough, almost simultaneously with the appearance of
Mr. Samuelson's article a curious commentary has been furnished Mr. Samuelson's article a curious commentary has been furnished
by Mr. Guile, the secretary of the Ironfounders' Friendly Society, rade in all the centres of our staple industries it really appears if we had lost our lead in cotton, worsted, silk, lace, and general articles of utility in iron. Take, for instance, Manchester and its
surroundings, Bradford, Nottingham, Macelesfield, and Birmingham, and view their state for the past two or three years, and we are
compelled to ask-Where has the trade gone? Mr. Guile adds that the subject is too large to enter into in the brief space of his report, or no doubt good reasons might be found for present
appearances; it might be suggested that Mr. Samuelson has
furnished some tolerably good reasons, which deserve a little study the coal trade is withor and employed.
both on the part of emplood reasons, which
The
Allthough business continues extremely dull, and although Allthough business continues extremely dull, and although
colliery proprietors do not care to contract very far forward at
present rates, stocks under bond are pressed upon the market for $=2$ the pit mouth are about as under : Best coal, 8s. to 8 s .6 d ;
seconds, 6s. to $7 \mathrm{~s} . ;$ common coal, 4 s .6 d . to 5 s . $3 \mathrm{~d} . ;$ burgy, 4 s .3 d .
to 4 s .9 d ; good slack, 3 s .9 d . to 4 s .3 d .; and common, 3 s . to Barroov. - The demand for all qualities of hematite iron is steady. The output of the furnaces is maintained, and there is reason to
believe that deliveries which haveincreased during the past few weeks will further increase during the season. A large number of
steamers has arrived here lately to take in cargoes of iron and steel for other countries, and it is expected by this means that
stocks of metal in this district will be reduced considerably. The stocks of metal in this district will be reduced considerably. The several furnaces have been put out of blast. Blooms are beginning
to form a conspicuous part of the cargoes of metal shipped from ocal ports. The price of iron is unchanged, 5os. per ton being the
average value of all-round parcels of Bessemer pig iron, and 54s.
the value of forge iron of No. 3 quality, inferior qualities realising One of the features of the week has been the launch of the pany, on Saturday last. This vessel, which is the first of two, has
been built to the order of the Societé Génerale de Transport Mariime, Marseilles. The launch was most successful. The vessel is of 4000 tons gross register, and measures 400 ft . in length, 40 ft . in beam, Accommodation will be furnished for forty first-class, forty secondclass passengers, and about 1000 emigrants. The Navarre, along launched in a couple of months, is intended for the Brazil trade Her engines are of the compound, inverted, direct-acting surface
condensing type, the cylinders having a diameter of 49in. highcondensing type, the cylinders having a diameter of $49 \mathrm{in}. \mathrm{high-}$
pressure, and 90 in . low-pressure, the stroke being 3 ft . 11 in . These vessel at a speed of $12 \frac{1}{2}$ knots at sea.

THE NORTH OF ENGLAND.
(From our own Correspondent.)
There was but a small attendance at the iron market held in Middlesbrough Exchange on Tuesday, none but the usual attenders cent. reduction awarded under the sliding scale was the principal
topic of discussion. It commenced on Saturday last without a moment's notice, and affected twenty-four furnaces belonging to Messrs. Bolckow, Vaughan, and Co., and Downey and Co. The initiators of the strike were the mine fillers, who are all Irishmen. There is
little doubt but that the recent extremely hot weather had been very oppressive to these men, and had put them out of temper. The reduction happening to come just when they were in this state own their tools despite of reason or fear of consequences. Their leaders and the cheap press were against them, but as is usual One of their own union officials who made a feeble attempt to and had to fly to save himself from injury. The strike lasted from
Saturday till Tuesday afternoon. The men were, however, far aturday till Tuesday afternoon. The men were, however, far but for a time the malcontents prevailed. On Monday gangs of endeavoured to induce the men to come out and the district, and general. In this, however, they were unsuccessful. Disheartened thereby, they were eventually willing to listen to the now stronger The damage done in the meantime to the fo work on Tuesday. reat, indeed it cannot be said how great
The danger of suddenly stopping furnaces without adding coke arises from loss of heat, leading to "scaffolding" of the materials, ome time to come. As a bye consequence several mines and coke ovens had to be temporarily laid off. The associated masters comutside firms had delayed enforcing the reduction till they saw it safely accepted at their neighbours' works; and one firm within
the association did the same. The omission was attributed to the the association did the same. The omission was attributed to the
oversight of a clerk; but this explanation is generally regarded as nanner singularly opportune for the interests of the firm in question. The general effect of the strike -still current - upen the
tharket was to cause a rise of about 3d. per ton in the value of pig ron. No. 3 changed hands at 37 s . 6 d . f. fo.b., warrants being sold t 38s. 6d., and forge quality at 36s. 6d. The quantity of iron in Thease of 1337 tons during the week.
The manufactured iron trade continues about the same as when last reported. Ship plates are $£ 6$ to $£ 65 \mathrm{~s}$. per ton ; bars, The coal trade is nominally
ave recently taken place at a little less the several transactions The joint meeting of the Stockton and Middlesbrough Corporaincreased water supply was brought to a conclusion, after two onsiderable majority "That in the opinion of this meeting the the proper course to adopt at the present juncture." Immediately after a meeting of the Water Board was held, and the law clerks
were instructed at once to give the requisite notices to treat for pur chase of the land. This action will lead to an immediate expenditure of nearly $£ 60,000$, and three times that amount within the
next two or three years. The money will be spent in the purchase of land, pipes, pumping engines, and in general labour and con

THE SHEFFIELD DISTRICT.

espondent.)
A heavy order for steel rails for Australia was competed for by English manufacturers a few dayy ago. The Sheffiele, Welsh,
Barrow, and other rail-makers have all been beat by Messrs. Bolckow, Vaughan, and Co., of Middlesbrough. The price has not papers announce that Messrr. Wilson, Cammell, and Co., Limited Dronfield Steelworks, have secured a similar order for the States This firm are at present making heavy deliveries on American acount. Hime companies are now placing contracts sather during the eariier months of the year. Railway extensions, which hav not been unimportant this year so far, have assisted to make the
demand brisk for railway material, particularly permanent way and roling stock.
In the coal
In the coal trade there is continued dulness. At several of the pits the coal put to stock has on some days exceeded the quantity
sold, and though there is little complaint as yet heard among the miners themselves, the reduced employment must soon tell upon
their condition. Their wages have not been high for two years, but up to this spring they have had pretty full work, and adversity has no doubt taught trem to husband their resources. At presen
the state of the coal trade is causing great anxiety to the lessees of Collieries, especially where house coal is workxed. to the lessees of
Neerotiations are at present proceeding with the Italian Government for compound armour-plates for a new war-ship that Power
proposes to build. It is expected that the order will be divided proposes to build. It is expected that the order will be divided
between the two firms who produce the new armour-the Atlas and the Cyclops works. Italy was expected to leave off the
building of monster vessels after her experience with the Duili and the Dandolo, and the resolution to build another maritime of iron armour. The new ship will not need compound-iron and stee-so thick
sidered equal
is

A speciality which is rapidly rising in importance are steel rim

for gear wheels. At the Show at Derby solid steel wheels wer shown. Messrs. W. Jessop and Sons, Limited, Brightside, and
Mr. R. Hadfield, Atterclifte, are showing great energy in this department, which is destined to prove a profitable one.
lighter, owing to the advent of the hot summer, when the Ameri cans do not take kindly to "trade." July and August are noted for the dullest months of the year in the American trade Fortunately the manufacturers are fairly well oor for orders to last them till the cooler weather sets in. A singular feature of
American trade is the demand for razors, which has been excep tionally brisk for two years, and continues heavy. The American water is said to be unfitted for the proper "tempering" of razors,
This idea is scoffed at by the Americans ; but the continued This idea is scoffed at by the Americans; but the continued something which militates against the successful production razors in America
Disused collie
securing thorough ventilation. In Pinderfield's-road, Wakefield is a colliery which has been laid down for some time, the mouth of
the pit being covered with sleepers of wood, and soil, and fenced round with wooden rails. On Monday a loud report was heard and flames were afterwards observed to come out of the shaft, the caught fire, probably from the extreme heat imniting the old tarry
sleepers. One of the barge fire-engines had to be called in to seevers.
extinguish the flames.

NOTES FROM SCOTLAND.

From our

Owisg to the annual fair holidays, business in the public works of Glasgow and the surrounding manufacturing and mining comThe iron market was closed from Thursday last until Tuesday, and the shipping trade has likewise been to some extent interrupted.
The shipments of pig iren have, nevertheless, amounted to 11,150 tons, being 672 over those for the correspondang week of last year is in a fairly satisfactory condition. Upwards of 1000 tons of pigs have been added to the stock in Messrs. Connal and Co.'s Glas only temporarily for repairs, and there does not appear to be any immediate i.
production.
The warrant market opened with a firm feeling on Tuesday When business was done at 47 s . 4 d . to 47 s . 6 d . cash, and 47 s . d .
to 47 s . 7 td . one month and business was done down to 47s. 1. 1d. The tone was firmer
again to-day-Thursday-with transactions up to 47 s . 6 d . cash, and 47 s . $7 \frac{1}{2} \mathrm{~d}$. one month
Makers' prices are also a shade firmer in tone, the quotations
 Olyde, 50s. and 46s.; Monkland, 47 s s. 6d. and 45 s .6 d. .; Quarter,
do., do.; Govan, at Broomielav, 47 s . 6 d. and 45 s. 6d.; Shotts,

There is nothing new to report with reference to the miners. In they are fairly well employed at low but comparatively steady
wages.
The monthly meeting of the Mining Institute of Scotland was
held a few days ago at Hamilton, Mr. Ralph Moore, inspector of held a few days ago at Hamilton, Mr. Ralph Moore, inspector of
mines, in the chair. Mr. M'Beth read a paper descriptive of the mines, in the chair. Mr. M•Beth read a paper descripitive of
coal measures of Stirlingshire, demonstrating their similarity to Fife; Mr. John Drinnan, Arden Colliery, Airdrie; and R. T.
Moore, C.E. B. Sc, son of the president, atterwards submitted a elaborate report of a visit they paid to various collieries in Scot land, England, and Wales, at the request of the Institute, with the object of inquiring as to the methods in operation in thes
mines for supporting the roofs and sides. Upon the whole, they gave it as their opinion that the methods adopted in the North
Englan England of having their work done by deputies, each representing propping should be continued and improved in a fashion such as is have prescribed by the manager a rule stipulating the extremed dis tance between the props and
report at a future meeting.

WALES AND ADJOINING COUNTIES. (From our own Correspondent.)
THE old ironworks of the past are destined to become obsolete Pentyrch Works, but not a bid was forthcoming. The remark made by the auctioneer, as a stimulus, that they had been in
operation 100 years, had rather a repelling effect than otherwise. The iron trade has entered upon a new life, and the less of the
antique about it the better. There are mills at Plymouth which
俍
make of bars, but capitalists will not look at them. Steel, and not
iron, is likely to be the one thing needed iron, is likely to be the one thing needed.
In the neighbourhood of Swansee there
addition of seven Siemens furnaces to various works short time an the best for cheap steel rails, but a Siemens furnace is required to ntilise the scrap ends. The future ironworks will not only have its Bessemer and siemens, but its tin-plate mils, and the tendency of things at present in Wales points strongly to that end. I hear a
whisper of important iron and steel works in Monmouthshire being on the eve of starting tin-plate works. Managers say, "we are making tin bar, and there is a fair demand, but tin-plate manufilturers are in many cases in a doubtful position, and returned
ind and bad debts are becoming frequent incidents. Query if we had not better utilise our scrap, and make our own tin-plate." At Treforest the modification of another furnace is going on.
Unlike the plan at Dowlais and Landore, where the Whitwell stove rthe Cowper stove is preferred, the ironpipe method is adopted, and the able manager is able to obtain a yield of one ton of iron per ton
of coke. This has slightly been exceeded by the Blast Furnace The Siemens-
nything produced for her Majesty's shipbuilding yord plate, equal to anything produced for her Majesty's shipbuilding yards, at Milford.
I have heard, but cannot positively verify the statement in the absence of Mr. Crawshay, that the lease is settled, and all matters in good trim for a start into the steel line. It is not yet known Who will have the engineering orders. For Swansea Docks the
selection laas been of the most complete order, and Messss. Armtrong and co. will supply the hydraulic machinery. last week amounted to 9000 tons. The quantity of coals was close apon 140,000 tons, and of patent fuel 7000 tons.
The most prosperous industry in Wales at present is unquestion-
ably that of coal, for though Baltimore, San Francisoo, New York, nd New Orleans continue tolerably good customers for rails, the small. In coal, on the contrary, the pressure for cargoes is sucli, that for best samples coal owners are able to obtain improved
prices, at Cardiff especially. The state of the trade is well shown by the monthly statistics, which indicate, as compared with the corresponding month of last year, that
increase of 160,000 tons, or 50 per cent.
The facilities at the Bute Docks, Cardiff, the improved discipline, and special advantages afforded by the changes in manage-
nent, or administration, have already told well. None are quicker nn learning and appreciating this than the. None are quicken sailers and steamers. The whisper of a difticulty with men is The French trade is slow, and for shippers
Coasting also, as a rule, can be had at lowest rates, there being such an influx of new men into the business. A screw steamer, 2400 tons burden, was launched at Wallsend last week for Stallybrass, of Cardifl. Speculations are eagain beginning to suggest the
feasibility of shipbuilding on Cardiff shores. Since Scott Russell's a

Most of the works have appliances for turning out plates.
patent lift invented by Mr. Thomas, of Merthyr and Cardiff, nd which wasexhibited at the Royal AgriculturalShow, has proved a
reat success with the improvement that was lately added.

$\overline{\underline{ }}$

South Kevsington Musevin.-Visitors during the week ending July 16th, 1881 :-On Monday, Tuesday, and Saturday, free, from
10 a.m to 10 p.m., Museum, 9879 ; mercantile marine, building materials, and other collections, 4208 . On Wednesday, Thursday, 2243 Friday, ardmission 6d., from 10 a.m. till 6 p.m., Museum, 545 . Total, 16,875 . Average of corresponding week in former
years, 18,584 . Total from the opening of the Museum, $20,144,681$.
THE NEW CUNARD LINER SERVIL.- While this splendid new
vessel, built by Messrs. Thomson, of Clydebank, was proceeding lown the Clyde a few days ago, with the object of having her experimental trials made, in was unfortunately observed that a
crack was opening out in the main crank shaft. Although it might have been possible to work the vessel for some time with the hath, yet it has been deemed advisable to have it taken out and will, it is expected, occupy about two months. The shaft was made at the Lancefield Forge, Glasgow, and is probably the largest
itherto placed in any Clyde-built steamer. The Servia is a vessel of 8500 tons, 530 ft . in length, and the largest merchant vessel yet
wilt, with the exception of the City of Rome, recently launched t Barrow-in-Furness, excluding the Great Eastern.
Patent Office Fers. - From a return just issued showing a classification of the whole receipts from the Patent-office for the
cear $1880-81$, including stamps, under five heads, viz: Initial tages ; third year fees; seventh year fees ; other fees, certificates, information : The amounts made on petitions for letters patent on applications with complete specifical

 $£ 3544$; and designs and trade marks, e4992 and te3784, respeetively, or
f191,529.
Sanitary Instriutr of Great Britain.-At the anniversary neeting of the Sanitary Institute of Great Britain, hell
Royal Intitution, Albemarle-street, on Thursday, July $14 t h$, by Prof. F. S. S. B. F. De Dhaumont, M.D.,., F.R.S.,., chairman of the
council, entitited "Modern Sanitary Science," and the medals and certificates were awarded to the successful exhibitors at the exhibition held at Exeter, in October, 1880. At the close of the address Carpenter to propes yote of thanks to Prof. F. S. B. F. De F.R.S. Earl Fortescue, in putting the motion, spoke of the pleasure with which he had listened to the address, and fully endorsed taken in the sanitary condition of the army. A vote of thanks to
Earl Fortescue was moved by Mr. W. H. Michael, Q.C., and Earl Fortescue was moved by Mr. . . . Carpenter, D.. H. C.
seonded by E. Chadwikk, C.B. Dr. A. .
Bartlett, E. Chadwick, C.B., Dr. B. W. Richardson, F.R.S., Earl Bartlett, E. Chadwick, C.B., Dr. B. Bong those present.
Death of Mr. Wilidan Exall.-We announce with regret
the death of Mr. Exall, one of the founders of the Katesgrove Ironthe death of Mr. Exall, one of the founders of the Katesgrove 1ron-
works, , ow the Reading Ironworks. Mr. Exall was a man of great
ingenuity. He took out several patents, the first of which was Mranted in 1846 for wheel--makering patechinery and for rolling endless
grates and band saws. A patent of 1848 has reference to a method
ires tires and band saws. A patent of 184 has reference to a method
of constructing concaves of thrashing machines, and regulating the
distance between the concave and drum, and it also includes distance between steam engines and boilers, horse gears, and in
improvement in
wheels with wooden teeth. In 1851 he had a patent for chaffcutting machines, thrashing machines, mowing machines, and agri-
cultural engines. In the following year the subject of bread and cultural engines. In the following year the subject of bread and
biscuit making was attracting his attention, and he took out a
and biscuit making was attracting nis ary for kneading and treating
patent for improvements in machinery
dough. His name also appears in the patents in use for the years dough. His name also appears in the patents in use for the years
$1854,1855,1856,1858,1883$, and 1867 , in connection with chaffcutters, thrashing machines, sawing machinery, valve motions for
steam enines, and boilers for portable stear engines. In Reading
Mr. Exall was much liked and highly respected. He died at Holy Hr. Exall was much liked and highly respected. He died at Holy
Brook House, Reading, on the 14 th instant, aged seventy-two,

THE PATENT JOURNAL.

Applications for Letters Patent

 * When patents have been "communicated" thename and address of the communicating party are ${ }_{12}{ }^{2}{ }^{2}$ Jull Jut, 1 Ss1.

 T. R. Ogilvio, Greenock.
sobis. Proprluive SHIPs, F. A. Brydges.-(J. B.

 - 1the Juy, 1851.

 mingham. J. Clayton and T. Richmond, Burnley.
ios. Lions,
Bossi. Unis Is;, W. Dawes, W. © D. Thompson, Leeds.

 Sos9. Heative Watrr, J. Frrsere \& E. Welch, London.
090. SADDLes, W. F. D. Schreiber, Roundwood. Merrers, T. R. and T. W. Harding, Leods.
TExTrent
 F. MI. Lechiner, Richice, W. Nathi. Nather, Manchester, and
Fis.

 selt (I010. RALIWNAY Brakes, w. Parsey, Brighton

${ }_{10 \text { tith } \mathrm{July}, 1881}$

 Bread, G. IV. Simmons, London.
METALHC PLATTYs, R. Jones, Abercal

 18th July, 1881.
s116. Raising Bunds, G. Furness and J. Robortshaw

 124. Boors and Shoess, J. Robertson, London.
125. Dritive Machive, W. Allan, Sundorland.
126. Boilse Towes F.
 Scerille, suitesersiand.
 130. evaporathtivg Appabatus,
Mo.s. R. Inventions Protected for Six Months on
deposit of Complete Specifications.

 Patents on which the Stamp Duty of

 1575.
st6. Costing Shirs' Botrons, H. A. Harvey, Ply

 Sot. spissinc, dec., Firbses, E. and S. Tweedale,

 Knower, Compton, street, London- 1 Tith July, isis
K56. SEwING Machives, E. Hunt, Glasow, - 1ith
 Sise Melathio Sprisg Laths, C. S. P. Wood, Bir-mingham.-1sth July, 1578. C. . . Bureell and R. Ed Wards, Thetford. -19th July, 1878.

 siti. Propelines, de., Vesseis, A. it. Clark, Chan

Patents on which the Stamp Duty of
\&100 has been paid. 230s. Cigarbitres, J. Schloss, Camnon-street, London 203s. Curitic Wood, M. Glover, Wortley, near Leeds.
-2 Sth $\mathrm{Jvil}, 18 \mathrm{i}$.

Notices of Intention to Applications. Proceed with

 spposition, sth Avjust, 1881. 948. Mircerse Machise, W. A. Barlow, st. Pauls.churchyard, London.-Com. from Willelm v. Krause. 100.5 Whar Bolliskes, A. Specht, Hamburg. - Com. from
 1035. CLEANANG, dec, Kyvives, H. Courteen, Clapham-
road, London. $-10 t h$ Hurch, 18SI

 107.2. RALILWAY SwrTriss, A. E. MeDonald, New Tork,
U.S. $-12 l /$ Mevelh, 18ss.
 ${ }^{\text {Marche }}$, 1881 .

 1815. Watyk-cioser cisterns, H. and W . Sutcliffe

 Jine Che issiling Apparatus, w. M. Llewellen, Bristol.

 road, Mnidstone, Kent.- 1 lith June, 181.1.

 3041. TUBISG, \&ce, A. S. Murphy, Philadelphia, U.S.-
11th July, 1881.

Last day for fling opposition, 10th August, 1881,

 111s. Dromive, de., Machisery, C. Binney, llford
 113T. SHEekters, dec, of Tiv, F. H. F. Engel, Hamburg - A communicition from the Now Tork Hamburge
 1146. Watrer Heatrrs,
London. $-16 t / 2$ Merch

11is. TAB Consectors, t. Walker, Birmingham.

 1230. Unbreakable Coaltosittoos, A. C. Henderson
 1243. Cusmovs, S . Newivinton, Riddern 1260. Reveversimi Garamets, W. E. Gedge, Wellington

 Berlin--2th Merveh, 18sil, 1 , Sthampton-building
 1.3estminster.- 25 Sth Marcel, 1851 . .
 Maurch, 1ssi.'
135i. SIITTNEG Cinvers, T. Bradford, High Holborn
 Merch, 18ss.
1406 . Coatrict PLites of Metal, J. Lysaght, Bristol.
30th March, 1 ,SS1. H. Westwood and E. T. Wright,
1330 V AvvEs, WV. H.
Durd

 2494. White Confounds of Lead, A. French, Morri 2525. Gr.axiva P Peprr, T. R. Johnston, Edinburgh. 10 th Jure, 1881.
2550 . Producing Alumina, J. Jebster, Solihull. $-14 t / 1$
 ton-buidings, Londion.-A commum

 ${ }_{2} 15851$.Windisc, de., YARN, J. and T. A. Boyd, Shettle ston-2th Jeme, 1 Ss1.
2825. SERARATING STEE, E. Hunt, Glasgow.-Com.
 Southampton-buildings, London-Com
Wood
 mingham. - 1 st July, 1881.
2si9. Rastwav Sienilusv, E. Tyer, Ashwin-street,
 ${ }^{\text {1847. Cleaning }}$ 29ibrous Matrials, w. r. Lake 2947. Cheanivg Fibrous Matrrials, W. R. Lake,
southampton-buildings, London--Com. from C.

List of Letters Patents Sealed.

216. The the 15 till July, 1 ssi.) 216. TRaction ED
January, 1851.
217. Separativg Criders, T. H. Williams, Long Acro 224. PowEr Hammers, J. F. M. Pollock, Leeds, and T
 Jantury, 11851
218. Foort-coverning, P. Martin and T. H. Suesd

219. BRekeh-Loadicg Fire-arMs, J. T. and J. Roger

i2s. Merlinisesa

 Thuildings, London--20th April, 1881.
 1860. suear
 1914. Exhbrrise Cands, N. R. Lake, Southampton104t. Reviligentive Machives, M. J. Klein, Ney York, U.S.-4th Mcy, 18s1.

 May, 188

24. Hentixa Apparatus, E. De Pass, Fleet-street Londoln

 26s. VILverts, dce., H. Lister, Huddersfield. -21 1st Jean Mary, 18ss.s.

 30.. Ges. STowss A. . He, Henderson, Southampton-
buildings, London.-2th Junuery, 1881 . 30s. Corbs. for Brspina FoDbrer, y^{3}. Wetter, strand

 street, London, and D. H. ON. Neale, Elim-terraco
WWoodforc.- 26 til J anuaury , 1ssi. 407. Loons, J. Kenyon, Bhackburn.-20th, Janucry,1881
432. GRINDING RAZor BLADEs, H: H. Lakke, Southamp

 492. $\begin{gathered}\text { cry } \\ \text { SasET } \\ \text { Sas }\end{gathered}$

Fedruary, 18si, Lamps, V. Ragosine, Moscow.-5th

 18st Vempluatise, dc., H. Mestern, Berlin.-10th 673. SAFETY VALVES, J. D. Adams, Marshall-street,
London. 1 bith Eadruary, iss1.

 Landore.-26th March, 1881.

 street, and H. A. C. Saunders, Old Broad-street,
 2115. Curuivce, \&c., Harr, J. Careless, Birmingham.-

List of Specifications published during the
week ending July $16 t \mathrm{th}, 1881$.
 $* *$ Specifcations will be forwarded by post from
the Patent-ofice on receipt of the amount of price and postage. Sums exceeding 1s. must be remitted by
Posts-ofico order, made payable at the Post-otice, 5 , Patent-office, Southampton-buildings, Chancery-lane

ABSTRAOTS OF SPECIFIOATIONS.

4548．shearating Inon vroa Charionl，Sugar，（ke． Consists in an arrangement of magnots（either per－－ cing passod slowly across．
4652．Cossumisc smoke，J．Teale－－11th Noccuber， Two bridges are constructed inside the flue with nin
assage betweon rogulated by a valve．The smoke passes through passages in a fire－brick linin
peing hot causes the smoke to be consumed． 4675．Foldisa Cover，A．and E．Lloyd．－13th Nocem－ Relates to an arrangement by which the couch can
ne used either as a sofa or bed．Consists in the mouser of hinging side and top frames to the bottom
frame，so as not to be inconvenient to anyone lying 4754．Steerino Gear，dec，n ．Wotherspoma．－18th This rolates to a inuffer to be linked up in the steer－ ing chains so as to take up sudden shocks，and it
consist of two shackles composed of eyes B and bolts
C，which pass throngh disc platos，and are held by 47754

成 $\%$

nuts． 1 spring F is comprossed between the discs．
1 piece of square iron fits between the bolts，so as to Mrm a sold filling to the spring，and also acts as a fuard to take off the strain from the spring when it
vecomes oxcessive．The whole apparatus rests on
whieels H which run on the deck． 4768．Ona amentation of Glass，dc．，J．Coupei：－19th Consists in applying to the back sufface of the glass he blank parts of a pattern already produced．The nittern may be produced by printing，or transferred
wing secured to the glass ly a backing of stucco arnish，de
 Consists in an arrangement of a cutting knife in a
liding frame，with a regulating board．The arrange－ ent allows the apparatus to be readily folded up when
not in use，and is provided with wedges and groove not in use，and is provided with wedg
4786．Trapots，IF．II．Andrec．－19th Nocember， 1850.
Relates，First，to a stirrer connected with the knob
the pot or otherwise ；and Secondly，for reheating on the pot or otherwisi a and secondly，for reheating
the tea by introdncing hot liquids in suitable vessels
rotited on the stivrer． 4788．Folding Pape
bed，1880．－（Toil．）4d．，J．Davies．－19th Nocem－ parts，and trimmoning the edges．The setion of the
olding is as follows ：The sheot on passing over the
old olding is as follows：The sheot on passing over the
olding．cylinders is forced by the knife into a groove
cut in the cylinder．It tis there cut in the cylinder．It is there gripped at the fold or
crease by a series of grippers．It then passes on
through gripping rollers to a second fold．At the last old is an arraugement for supplying wire，which is pressed in the act of folding into the form of the letter
U roumd the last fold．The specification further
describes an arrangement of knives for cutting and round the last fold．The specification further
describes an arrangement of knives for cutting and
trimming the edges，actuated by suitable mechanism． 4809．Prbananext Way for Rallways，P ．Becrell
end II．Valpy．－20th Noceubler，lsso．Sel． Describses an improved form of sleeper and rails，
wheroby the bearing surface is increased．The sloopels
consist in the uso of plates，cither square or with consist in the uso of plates，either square or with
curved edges，placed diagonally along the length of the mils，and connected with eachi other by cross tie bars． The plates may be slightly arched．The improved
rail，hating a broad base，is formed in two pieces
provided with grooves and projection for interlocking nrovided with groooves ande，is fojection for in two pinterloces
4938．GAS SToves，W ．Wymen． 2 －ith Nocember，isso． The improved form of stove consists of two metallic the bottom by a tube；two other shells are placed one are connected at the top by a tube．The top margins of the two inside shells are closed by a top casting，
and the top and bottom of the two outside ones arc and the top and bottom of the two outside ones are
also closed．The bottom of the inside shell is
also closed．The outside shell is provided，top and bottom，with two apertures，connected by a tube having a throttle valve．The stove is heated by jets
of gas underneeth．By this construction a thorough
circulation of the heated products is maintained． 4964．Velocipedes，\＆c．，J．C．Gurood．－29th Novem－ The objects of this invention are，First，an improved treadle provided with springs or projections to grip
the boot；Secondly，improvement in the steering，by mploying a friction rack and pinion；Thirdly， original one；Fourthly，mechanism for effecting the
working by giving a circular motion to the legs ： working by giving a circular motion to the legs，
Fiftlily inprovement in roller bearings，and consists
in making a groove on the opposite sides of the lever． 5062．STEAM Engines，J．J．Miller and G．J．Teppe．－
This relates to a mothod of reversing steam and
other engiues by making the inlet and exhantst

Chnngeable，so that the inlet when running forwards
becomes the exhaust when rumning backwards．The
隹 becomes the exhaust when ruming backwards．The
drawing shows the manner of effecting this by means
of the four way cock Λ ，in which，B, C, D ，and E are
the four mifice the four orifices．
5064．Regulating the Flow of Gas to Buraers，
T．Thorp cand R ．Tckler：－4th Decouber， 1850 ． $4 l$ ， the exlinder is open at bottom and closed at top with
which a crown of a central recess，into each side of Which a cross passage communicating with the burner
opens，Within the recess moves a tube perforated at
top，so ns to wolk top，so no to work overess moves a tube perforated at
fitted to the wors passage，a disc being
to raise the and upon which the gas acts，so as
abe． 5079．Callpers

it to the other arm D，tho latter currring a sliding
gange point E which is moved longitudinally with thie gange pint which is moved tongitudinaly with thie
arna by an inner ttibe and pin ，actuated by the the
sledge link K ，which travels by roller bearings L，orie of which embraces the arm like a strap，so as to keop
the sledge link in its place on the arm．This sledge

E 난는

link，and with it point E ，is caused to travel simul－
taneously with the arm A by means of pin L＇capable of sidng in hole II in arm A．The links B canse arm
of sliding
A to travel oitwards from arm D in a parallel manncr Ahe amount of travel corresponding to the distance of the points C and E from one another，and may be
ascertained from seale N passing through slots in arms Land D．
5119．Skates，III．Bezer．－Sth December，1Sso．Gil．
Relates to skates attached by springs to the boot． Consists principally in a spring bearing plate，which
supports the hollow of the foot；and describes the mechanism for forcing the front clips and the heel
clip into the boot，by the pressure of the foot，the clip into the boot，by the pres
mechanism being set by a screw，
5120．Holding And Reglating Window Blind
Cords，$\ell: E$ ．Gilison．－Sth December， 1850 ．Girl． The cord passes between two rollers supported by a carrier and pressed towards a back plate by springs，
the ends of the cords hanging loosely down beyond the rollers
5121.
5121．Gas Burners，C．Defries．－Sth December， 1850 ． Relates to a form of burner for obtaining a double lower part of the burner，one for fraught ind the other for gas．The draught chamber is provided with a perforated cover．Round the burner or burncrs a
conical casing is placed rising to within a short conical casing is placed，rising to within a short dis－
timce of the flame and resting on the air chamber，to convey the air．
5123．Turkish Bathe，de．，II．Jomes．－Sth December， This relates to forming the bath above a separate
and indenendent heating chamber，the fumes from which paps up the chimney in the room，or through
5135．Holders For the Botroms of Trousers，A ．M．
Clark．－sth December， 1850 ．－（A commenicution jomm A band of leather，metal，cardboard，or other stiff
but flexible material，is placed round the bottom of the trouser leg，and retained in position by spring
clip of stecl，whalebone，or other material，and when clip of stecl，whalebone，or other matcrial，and whon
turned up retains the turned－up part effectually in position．
5136．Siaft Couplings，A．M．Clark：－Sth December This relates to means for connecting shafts placedat at
ngles to one another．A is one shaft，and B the other

to the end of each a crank is attached and connected ay a
tubular socket projecting from a sliding tube or rod D ． 5142．Manuracture of Bobbins，W．anel J．Dixom．－
sth December，1sso．G\％． This relates to bobbins，tubes，and spools used for hole accurately true with the circumference．On a rame are mounted two radiating arms connected by
rods attached to a double lever secured to a rock shaft On the upper arm a set of pulleys are mounted，and on the lower arm two sets of revolving pulleys driven
by a suitable belt．The bobbins are placed separately by a suitabie belt．The bobbins are placed separately pheries，and are held by bringing the arms towards each other，so that sufficient pressure is put by the
pulleys upon the bobbins to canse them to revolve and puileys upon the bobbins to cause them to 1.
overcome the resistance of the cutting tool．
5147 ．Lasps，T．Rolje－－ 9 th December，18S0．Ghl．
Relates to a form of lamp for oill ，\＆c．，which will immediatcly right itself on overturning．The lamp is
weighted at the bottom or the reservoir may be weighted and supported inside the lamp or case．
5149 ．Hydraulic Lifts，E．B．Ellington．－9th Decem－ 5149．Hvdraulic Lifts，ES．B．Ellington．－9th Decem－
Ger， 1580 ． 6 ．l． This relates to constructing the lift so that both the variable weight of ram，resulting from its greater or
less protrusion from its cylinder，is compensated with less protrusion from its cylinder，is compensated with－
out the use of chains or pulleys．The drawing shows an arrangement of effecting this，and it consists in
conmecting the lift cylinder A by pipe B with the
lower end of a cylinder C fitted with a trumk piston lower end of a cylinder C fitted with a trumk piston
D．The upper end of C communicates，by pipe E ，

51 잘

with an accumulator，and the trunk of piston D is G ，the upper end of which is comneeted by pipe H
with the working valve K ．Tho later is connecter with pipe L ，supplying water under presssuro from the
accumulato 0 the lift cylinder can be charged when required．
5151. Hopsesios Nails，de．，J．A．Coleman．-9 th
December，18s0．©d． This relates to improvements on patent No． 55 ，
A．D． 1850 ，and it consists of the frame A carried at
the upper part of the manin shaft to actuate the
rariouss parts．In the middle of this shaft is an
excentric，which actuatos at pair of punches B ，shated so as to punch a a puir of blanks of the apporoximate
shape of the nails from a bar C which is fed forward eapch time the punch uscends，the feed being also
effected by a cam on the main shaft．The punched effected by a cam on the main shaft．The punched
blank is forced between spring arms E whieh turn on

thair axes and deliver the blanks to the rolls D ，from
whence they pass to the rolls D1，both sets of rolls having derressions to receive the blanks and being
partially rotated so as to shape the blanks，after which partially rotated so as to shape the blamks，after which
they are，by the pump H，forced through the finishing
5154．Winding Gear of Steam Cultivating Appa－ RATUS， R．Hitchcock．$-9 t h$ December， 1880 ．Gid．
This relates to the manner of mounting the guide解
the drinm used to cause the the rope to be wound evenly on
A is the lever to which an mp－and－down motion is imparted，so as to distribute
the coils of the rope evenly along the drum from the coils of the rope evenly along the drum from end
to end．The end of the lever is forked，and through it
［5I5］

passes a spindle B．The parts C with spindle B form a rectangular rrame，which carries the screw D，so as
to adjust the frame in relation to the end of the lever A．The guide rollers are mounted on frame F secured
to the upper bar C by a hooked bolt I ，and small lo the guper bar bide rollers H are mounted on vertical axes in
lateral
front of and behind two rollers G ， 5158．Forming Moulds for Iid

This relates to apparatus whereby cylindrical moulds
practically perfect can be more rapidy formed than ordinary methods，and it consists in causing a
revolving pattern revolving pattern C ，provided with knives D，to cut its
way into a solid body of sand，sleekers or smoothers

being placed behind the knife to polish the surface of
the moulds．The revolving patterns are made hollo the monlds．The revolving patterns are made hollow
to receive the sand removed by the knives．Fig． 1
shows a number of the patterns mounted on shafts it and Fig． 2 is a detatched view of the pattern．The 5159．Straning Paper Pulp，A．Pelisley．－10th This relates to the suction apparatus used in con－ A is a revolving strininer supported in bearings of the receptacle B for the paper pulp．A tube Cextends
from the driving end to near the opposite end of the strainer and carries the suction apparatus．At each

air space of the tube C a cup－like flange or conical dise E is secured，the large end of which fits intoa recessed
plate F secured to the strainer．When the strainc revolves，a reciprocating motion is imparted to tube C
whereby the cups E are alternately urged forward and drawn back，causing the larger end of E toslide in plates
F，thus producing a suckingaction，whereby the pulpin
Fent F，thus producing asuckingaction，whereby the pulpin
recentacle B is drawn through the slits of the plates of
res

5161．Making Bottles for Use with Intersal
STopprs， B．Brefite－10th December， 1850 ． $6 d$ ．
The tools to form a rebate or ledge in the neck of the
bottle are formed with the plug fixed at such an angle
with the swiller as to enable the work
 The objoce of the invention is to ecfect the antom iont
weighting and letting off the yarn from the warl 1 ， beam，so that only as much is let off as is taken up， sion of the warp maintain a constant and uniform ten－ is jor at one or both cards of the warp beam，and to it is jointed an arm K ，the lever being pivotted to the
frame at such an angle to the arm K as to include the
neek or collar of the warp beam．The ends of lever H neek or collar of the warp bearm．The ends of lever H
and arm K are hollowed out to embrace the neck，and
they are compected wy they are commected by a spring L ．The warp beam in
nearly balanced by weight G carried by lever H，and
is freely suspended by means of the warn which is freely suspended by means of the warp which
passes over a rounded bar E at the bock of the looni． The upper phrt of comes in proximity to a movablo
cam D．The warp beam when lifted earries with it
the lever and arm，the upper ond of which is brought
［516］

with increasing pressure agaiust cam D ，and as soon grip on the neck of the warp beanion in of seleased，and the the
warp beam actnated by that portion of its weild the balanced by weight G revolves and fanls，carrying with
it the lever aud arm．The top of arm K being thus it the lever and arm．The top of arm K being thus
removed from cam D，the spring again causes the grip
on the neek of the warp beam，and prevents its further revolution and despent．
5164 ．Drain Pipes，E．Brooke．－10th December； 1850. Relates，First，to forming ribs horizontally along
the pipes，or the pipes may becorrugated；Secondly，in the pipes，or the pipes may be corrugated；；Secondly，in
forming the joints by cement made in segments of which fit into each ot
166．STANDS FOR Bottles，dcc．，J．E．Binghicm．
10th December， 1880. bd，
The bottles are pivotted separately each in The bottles are pivotted separately each in a
separato compartment，so that they may be tilted
in order to empty the contents． 5169 ．
y，J．Loccing．－10th Decem－ Relates to a method of keeping clean the gauze or
straining frame by causing it to revolve or be in con－ stant motion．
5171 ．Rifw Vehicles，II． 5171．Rallway Vehicles，W．R．Leke．－ 10 th Decem－
ber， 1580 ．（A conmunication fiom J．W．Chisthelut．） This relates，First，to preventinglateral movement be－
tween the vehicle body and the truck，and consists in making the lower shaft，which is secured in revers bolster of the vehicle，and which passes through the lower ends of susponsion links，so that its ends jus shaft which passes throngh the upper ends of the link Secondly，to adapting the suspension link principle to
six－whloel trucks by using two sets of susponsion
link at links，arranyed so that one pair is between eech
adjacent two pairs of wheels，the set of links with

517］

their shafts nearest the end of the vehicle body bein linde as above described，and the other set having thi are free to move laterally in reured to the vehicle bod to the truck，si as to allow the triuck and body to swivel relatively to
each other．Thirdy，to the framework of the trick； 5175．Perforating，Stasping，or Marking Dock－
ments，dece，A． Il．Robinson－－11t／Decomber，18se，

This relates to improvements on patents No．1242，
A．D． 1800 ，and No． 1270 A．D 1850 ．According to one arrangement，a set of finger keys are used to operate
the perforators，stamps，or markers． 5176．Posing Table for Autists＇
Consists of a December，turntable provided witl friction rollers on which the model is placed．The
position of the sitter operator ly means of a stick or cord，without movidg
5177．Lasps，S．Pilt．-10 th December，1380．（ A con A candle consisting of a core of bibulous paper
coated with a＂magma＂or＂compost＂of powdered chalk or other mineral，and a mucilaginous or othor
bond，insoluble ey and impervious to mineral oil is placed upon a layer of springy filurous material forming
the feed wick，by compressing which the amount of oil rising to the top of the candle（where it is con－ 5179．Spinsisg And Doublisg Cotron，de．，T，
Coulthead emel J．M．Hetherington．－10th December； This relates particularly to ring and traveller
spindle apparatus known as＂self－contained＂spindles and consists，First，to means for preventing the
pindle from being lifted out of the bolster when the bobin is removed for piecing or doffing，os as to dis
pense with the use of hooked pins，sliding bars，de．，
ksually employed，and in aftording facilities for
removing the spindle from and replacing it in working
position within the bolster, and without the necessity position within the bolster, and without the nocessity improved method of mounting the spindle apparatus
in the bolster. Fig. 1 shows the first improvement, and consists in forming on the upper edge of the oil so as to overlap a flange on the projecting inwardly,
metallic sleeve of thached to the spindle. On the flange metallic sleeve attached to the spindle. On the flange
are helically-shaped projections A , which enter helical
slots in the inner edge of the lip or cover C. Fig. 2

shows the second improvement, and consi.ts in
mounting the lower end of solf-contained spindles in a separate bush O , which enters a hole in the bolster
rail. A tube of felt N , or other elastic medium, is interposed between the lower end of the spindle an 5186. Tran-atis, J. Sharp and J. T. Tong.-11th
December, 18s0.- Not proceeded with.)
2ℓ. The rail is made in two parts, the foot and web being flange at top to fit into a groove in the head of the
rail, which is rolled separately and has a shank on rail, which is rolled separately and has a shank
its underside, by which it is bolted to the web. 5187 . Wide, by which it is bolted to the web.
scales.-11th December, 18so. 4l. 4 .lines, J. Summer
srangement of levers for rocking attached to the bottom of the tub. The tub is fitted with projections for breaking the action of the water. The wringer is
worked by a spur wheel from the fly-wheel, and can
be thrown out of gear when required. 5188. Panvt, P. M. Justice.-11th December, 1880--(A
comnuunication from Mcjor F. I. R. Seaver.) $4 d$. The object of the invention is to protect submarine pole, tops of railway carriages, and similar materials, coating them with a paint manufactured from the suboxide of copper and carbolic acid, with which is incor-
porated a drying oil or other suitable substance. 5189. Safety Fastening for Envelopes, J. Fleury
and B. Perier.-11th December, 18so.- (Not prooeded The four flaps of the envelope each have a row of closed, and three of them have also a larger hole, which also corresponds. A cord is passed through the holes
and tied and secured by a small seal. 5191. Treatment of Fats and Oils for Manufac-
Ture of Soap, C. A. Burghardt.-11th December, 18so. $6 d$.
The raw
The raw material is placed in a jacketted retort
heated to from 260 deg. to 360 deg. Fah., and, when heted to from 260 deg. to 360 deg. Fah., and, when
the fat begins to volatilise, air is blown in above the iquid oil and into the vapour arising therefrom, which
it carries off to be condensed and collected in a suit able apparatus. In manuufacturing soap soped the vapour of
the fatty acids and oils is passed directly into the caustic lye
192. Spinning Machinery, J. C. Fell.-11th DecemberThis relates to the construction of solid metal
carriers so as to allow the spinning and twisting machine to be driven at an increased speed, and at cotton or yarn, and it consists in improvements on
cone the

5192

patent No. 2047, A.D. 1880. The saucer carrier D is,
aceording to the improvements, extended upwards, so as to allow of it partly overtopping the upper end
of the bolster or fixed tube B , within which the spindle A rotates. The carrier runs loosely on the bolster, and
has its bearings at the top and bottom only 5193 . Forsterg the top and bottom only
193. Footsteps for Spindles and Shafts, J. Green-
roool, jun, G. A. Hellivell, W. Hemmond, and S. A footstep A of cast iron, brass, or other metal is
pored at the top with a hole at B to fit the form the spindle or shath. Then with a larger tool C is is
bored in the reverse direction from the lower side bored in the reverse direction from the lower side
upwards, thus forming an enlarged chamber D , and

5193

caving a portion only-say about $\frac{1}{1}$ in. thick-at the
upper side, bored with the smaller sized hole. plug E of hardened steel or other suitable metal and he required diameter, has a shallow conical hole bored
in its upper side at E to receive the pointed end of the spindle C, and it is creewed or driven fast into the
lower side of the footstep A. 5194. Furnaces for Meltivg Glass, D. and J.
Warren.-11th December, 1880. 6d. The invention is also applicable to other than glass
furnaces, and its object is to effect complete combus-
tion of fuel or gases, while the reverberatory flame at
an extremely high temperature is directed with great
energy on the molten glass or other material, thereby saving time and fuel. The flames pass from th furnace F, over the bridge B, and play on the glass in
tank T, where it is met by currents or blasts of heated tank T, where it is met by currents or blasts of heate
air, which are forced through openings C in the crown

of the furnace, and leading from a common flue D,
The air forced into flue D by the blower is heated $b y$ waste heat from a hot flue Ey formed above it, through
which the waste products of combustion are led from which the wa
the furnace.
5195. Smoke-consuming Grates or Stoves, H. S. This relates to stoves in which the grate is caused grate are made cylindrical to occupy a socket in the tove, and the covers at top and bottom are hinged The cylindrical sides are made solid, and the pivot is
mounted in a frame fitted with friction rollers. spring handle and catch are provided to revolve the 5196 and hold it in any desired position.
5196. Screw Clamps, H. Methan.- 11 th December;
18so. 6d. The two arms Δ are hinged at their lower end, and
at their upper ends carry jaws C Calso hinged. Aright
and left-handed screw E passes through eyes near the

middle of the arms, where it engages with nuts F pivotted in the eyes of the arms. A clamping jaw capabe of gripping a joist or timber may be applied
to the upper end of each arm in place of the jaw C
5197. Dies for Metals, \&c., J. T. Andreus.-11th

This consists in making castings in steel of the dies, and whilst still hot and capable of being moulded by factured. The pattern is placed between the acting
[5197]

faces of the pair of roughly-shaped dies, and by
hydraulic or other pressure they are forced against the acting faces of the pattern, so as to impress upon the roughly formed dies the exact configuration of the
pattern. The drawing shows a hydraulic press 5198 .
5198. Carburetting Apparatus for the Manufac-
TURe or Treatment of Litiming Gas, de., W. L.
Wise.
 from V. C. Devobz.)-(Not proceeded with.) $2 d$.
Atmospheric air is forced under pressure into a recelver, and passes thence to the carburetter through
a rose so as to divide it into fine jets. The carburetter consists of a series of circular superposed parts con-
nected together, and between each two are diaphragms
of metallic gauze to produce an intimate mixure of nected together, and between each two are diaphragms
of metallic gaze to produce an intimate mixture of
the ascending air with the combustible vapours. The the ascending air with the combustible vapours. The
mineral oil is contained in the lower part of the
carburetter. 5200. Turning Over Leaves of Music, M. Volk:-
11th December, 1880 . (Not proceedel reith.) $2 d$. 11 th December, 1880 . - (Not proceeded woith.) $2 d$.
A rectangular box is open at one end, the other end being of metal, and a space is left between its upper
part and the top plate. In the box are a number of rms with springs at their inner ends tending to move them from right to left. The arms project from the
ox and have holders to hold the leaves of music. A lever when struck by the finger releases one arm,
which then turns over its leaf. 5201. Trough Water-Closets, B. C. Cross.-11th De-
cember, 1880.- (Not moceded rith.) This relates to improvements on patent No. 2324,
A.D. 1878 , in which the contents of the trough were A.D. 18 , o, in which the contents of the trough were nearly full is the urine to a small tank, which, when bend in the outlet pipe, so as to discharge the trough. 5204. Makisg Paper Bags, tce., R. Woods. -13 th
December, 1880.-(Not proceeded vith.) Paper is led in a continuous web between two ollers which cut it into suitable strips, after which
the paste is applied, and by means of rollers the paper is ormed into a bag
5202. Stuffing-boxes, C. E. Heger:-13th December,
1880. 6d. This relates chiefly to means for connecting by a
steam-tight joint the pipe C to the moving cylinder steam-tight joint the pipe C to the moving cylinder
A , and it consists in making the recess D of larger
diameter than the collar or head of the pipe C, which
works in a prolongation of the recess, whilsta loose
ring or false bottom E of the stuffing-box takes all
[202]

the end pressure of the packing, thus preventing
friction between the collar and the bottom of the recess in which it works.
5205. Steam Engines, D. McPherson.-13th December This relates to means for economising steam by forming a vacuum in the cylinder. By a jet of steanu
the air is exhausted from the cylinder, and impulse given to the piston by the introduction, of a slight jet
of steam against the piston head, which is then carried to the opposite end of the cylinder, where a
valve admits the steam into a tank, in which it is valve admits the steam into a tank,
condensed by a small strenm of water,
5207. Splinter Bar For Carriages. W. Booden and
J. Garvard.-13th December, 1880.-(Not proceded

The roith.) 2 d . The rollers to which the traces are attached are
fastened by a band and hinge the the splinter bar, the
beinges being held by bolts, which when released hinges being held by bolts, which when released
permit the roller to revolve, thus releasing the traces. 5208. Shaking Straw Passing from Threshing
Machines, R. G. Morton.-13th December, 18s0.-
(Not proceeded with.) $2 d$.
A rocking shaft is placed across the frame of the
threshing machine under the end of the shakers freshing machine under the end of the shakers
furthest from the crank shaft, and to its opposite ends wipers or spanners are attached and connected to the scillating standards or hangers, so as to balance the hakers. The rocking shaft is actuated so that the
wipers rise and fall in unison with the throw of the crank shaft.
5209. Shirts, W. and G. Benger:-13th December;
18so. 4d. This consists of a shirt which is furnished with and back, but is open along the top of the shoulder, 5210. Manteacture of Shirts

Piece, W. and G. Benger:- 13 th December, 18S0. $4 d$. This consists in the combination of a shirt body and drawers or legs, with flaps which overlap each other
in front and are fastened by two rows of buttons and button-holes.
5212. Ash Pans for Fireplaces, B. Banks.-13th The ash pan is fitted at top with a grated box, which catches the ashes falling from the fire, and allows the
ashes to pass into the bottom part of the pan, while ashes to pass into the bottom part of the pan, while
the cinders are retained on the grate of the top box. 5213. Liquor Stands or Frames, \&c., J. Burley.A bar slides vertically over the bottles on two up-
rights, to which it can be locked in the required posirights,
tion to prevent the removal of the bottles.
5214. Spinning, Twisting, AND Doubling Silk, J.
L. Mevourrn.-13th December, 1880.- A. tion from J. L. A. Aubenas aine.) $6 d$.
The object is to permit at all seasons of the filament First, of a round pan A intended for the beating and clearing of the cocoons and the finding of the filaments; and
number of spinning compartments Q to form a corree-
sponding number of threads. The water in pan H is sponding number of threads. The water in pan H is
heated by steam, and the pans B are heated at their

ends and for a portion of their length only. A pipe ensure a regular and uniform temperature of the immersed partly in the water of the different pans, so that the cocoons which are prepared for spinning the improved apparatus for doubling, which consists
of a shaft A carrying two discs C and B, the lo sa shaft A carrying two discs C and B , the lower one
supporting the twisting spindles E wheels R and S gearing with wheels Q, the object 5215 botain a differential motion.
5215. Sewers and Drains, W. Edes.-13th December;
18so. 6d. This relates to constructing drains so that gases
evolved will escape through the tops of the drain pipes evolved will escape through the tops of the drain pipes above. For this purpose the upper side of the sewer or drain is formed with perforations preferably taper-
ing from the out to the inside of the drain. ing from th 5216. Spinning Machines, A. Munzinger. - 13 th
December, 1880 . (Not proceded voith.) $2 d$. Each spindle is fitted with two drawing rollers rotating round their axes, and also round an axis peris toothed and the other faced with felt or leather, the former mounted in fixed bearings, and against it the catter is pressed by a spring. The toothed rolle
a bevel pinion gearing with an internally screw-threaded ring. By these means a regular twist capable of adjustment and a uniform tension are
obtained. 5218. Metallic Alloys, G. Höper:-13th December, 1880 . 6 d .
Alloys ofent hardness are obtained by com-proportions:- $-3 \frac{1}{2}$ per cent. to 8 per cent phosphorus, $\frac{1}{2}$ per cent. to 15 per cent. tin, and copper sufficient to make up the 100 parts. The alloy can be cast
5219. Gas Motor Engines, A. Fiddes. -13 th December,
18s0. $6 d$. This consists, First, in constructing a gas engine
with a slide valve of peculiar construction working in the cylinder of the engine, by which the length of he cylinder is reduced internally at the time of firing, also ully compressing the charge and maintaining
such compression up to the time of firing; Scondly,
in admitting water to the charge at the time of firing,

5219

which is converted into steam so as to increase the
power, and also clean the internal parts ; Thirdly, in power, and also clean the internal parts; Thirdly, in
the valve arrangement for forcing the flame into the charges; arrangement Fourthly, in the employment of tha
oscillating cylinder. B is the piston; F is the slide valve worked by cross levers C from cam plates on the 5220. Fire

18so. 6 drates, J. R. Pickard.-13th December; The object is to produce an intense heat from the
commonest fuel, and also to prevent the carbonised vapour or smoke from the chimney, or to enter the room. Near the grate one or more chambers openings to admit air. The smoke passes into the 5221. Grinding M ber, 1880.- (A communication from R. Schneider.) This relates principally to the peculiar arrangement
and shape of the grinding teeth, and in the manner of suspending the runner C . The grinding surfaces radially ascending rows of teeth shaper like the step of a staircase, there being less teeth on the runner
than on the inside of the surrounding shell B. The

522]

runner has projections round its base, which are
bevelled tofitit into an annular recess in the shell runner is connected to the central shaft D by a balance
E , with two grooves at right angles to each other, one E, with two grooves at right angles to each other, one
at the upper and the other at the lower face. A pin atses apposs the shaft and through the lower groove,
phile the upper groove supports another pin attached while the upper
to the runner.
5222. Loons, E. M. Heatley.- 13 th December, 1880° -

- (Not proceeded rith.) This relates to means for operating the picker and
shuttle, and also to the temples. The picker is shuttle, and also to the temples. The picker is
actuated by the picking stick or an arm connected
therewith aterated by the picmiles have two or more roughed
therewith. The temples
surfaces having recessed spaces, and are carried by supports, the outer ends having
regulate the grip of the rollers.

5224. Printing Machinery, J. Daries.-13th Decem-
ber, 1880 . $8 d$. This relates principally to a mode of operating the
movements of the tables of perfecting or single. cylinder printing machines, so as to drive them at a
uniform speed during the time the impression is being

taken. A is the driving shaft by which the printing ing at either end bevel pinions gearing with wheels D keyed to vertical shafts. On each wheel D is a crank respective tables F carrying the formes of type and the inking slabs, and are so situated that in moving in-
wards one table overlaps the other. At the end of engagina antiriction bowles are mounted, one of them while the other two work in a frame G.
5225. Obtaining Coloured Coating for the Pre-
paration of Skins, \&e., E. Fembuch -13 th Decent
ber, 1880 . - (Not proceeded with.) 2 dd .
powders or liquid colouring matters of any shade
Powders or liquid colouring matters of any shade
are mixed with any kind of greasy matter, so as to
form a coating of any desired colour,
 The framo is made in two halves, the lower one
connected to the velicle and the upper one bolted to the 1 owerer one. In the frame A is a circularseat for the
ring B, capabile of revolving with silght friction, an

naving a boss C through which passes a square pin
comnected to a forked lever D, and also to the brake connected to a forked lever D, and also to the brake
rod E. On thie frame are ratchet teeth with which gears a pawl S.
 The drawing is a diagram show ing the main feature of the invention whinh consisist in the matuat feature the
striking tools Z by attaching them to two slipper plates ${ }^{\text {s, capable of sliding one on the other and }}$
letuated by the rod Q, bell crank 0 , and connecting

5228

rod K from the crank M ; the tools attached to one late action ondirection, The hides or skins are supported either upon a circular
cylinder which is caused to rotate.
5230. Hiding or Filiniva up Corners or Skitrings
 Mc Fee, $R . A . A$. Kellond, and D. E. McFee.)-(Not mro
ceeded vith.)
$2 d$. This relltest to a piate of metal formed to fit the being to prevent the accumulation of dust and dirt, 5231. Svarr, H. Stokes. 1 1thl December, 18so- (A This relates to the convertion of saccharine solutions na juices into clear crystaline sugar at less cost and tions and juices are submitted to the action of gase
nid vapours of aceetate or sugar of lead mixed with leohol and water, ammoniac or ammoniacal crystal
or liquid mixed with aleohol and water, and the fumes
of sulphur which is passed through water before

mixing with the first two agents. The drawing shows
the apparatus to effect the operation; A is the sulphur
 water in esseal C ; G is the retort containing acetat
of lead, alcoon, and water; H retort containin and water, the retorts being comnected by pipes witl mitted at L and escape at M. The jeector 0 drs are
 The object is to equalise the diameter of all the
sections of warp and the length and tension of the
farn of each section yarro of oach section Two sectors A and B are placed hathe presser shaft, the former keyed thereto, and
having a graduated scale on its rime while th
 gearing with a worm F , and the sector B has teeth

eecured together by a bolt and nut. The motion of
the second shatt is imparted intermittently to the
 rytexhentric and. rod G and lever H . Pawl F drives
rithet wheel I fixed on a shaft parallel with the by a train of change wheels. 0 on the ratchet shatt is a worm gearing with a wheel L, on the axis of which
is an index finger pointing to divisions on a graduated
disc \d ssc M. The draving is a plan of the apparatus.

Ti. T. Glocer and G. F. Janes. -1 the December, 18s0

5237

(0)

speed, the distance between them being ndjustable so
ns to suit different thickness.
B are the tops of th is to suit different trivekness. B are the
5238. Cossumina Sroke, \&e., W. Hitlon and T.F.
Pearson. $-14 t h$ December, 18so. (Not proceelel reith.)

The flues of the boiler are connected at the firing end
by a casing, and at the end of each is a revorving
damper caused to act automatically. When one flue is
damper caused to act automaticully. When one flue is
fired, the damper at its is end is closed, and the smoke ared, the damper at its end is cosed, and the smoke
and gas are drawn through the other fire and con-
5239. Loovs, R. Greencrool and W. W. H. Hayh hurst.
-1 th December, 1 sso $0 .-$ Not throceeded reith.) 2 . This relates to stopping the loom oocet the completion of a given length of fabric, and in consists of a banc
which is wound from one roller to another, and passe through a slotted lever comnected with.
ndjustable stop is secured to the band.
5241. Brushrs for Machinery for Dressiva ant
Finishing Pile Fabrics, J. Wortall J. Lnarivenc 14 th December, 1sso. bi. A.D. 11sso, in which rotarmy brushes and card rollers
were caused to act upon cut pile fabries while in wet state, and it consists in anpplying perforated metalic lags to be placed over the roliler. Trubes are
inserted in the perforations and receive the tufts of rristles which are secured by wire ties or cement
fine brass wire 5242. Weighing and Measuring Machines, W. h. Baxter:- $-14 t h$ Decenber, 1880 . $6 d$.
This relates to improvements on A.D. 1580 , and it consists, First, in means for prevent the beam. Wear and tear caused by the return motion of the beam is mounted on an axis a metallic piece so shaped as to remain always
against one of two stops, and having a hook capable of
 Secondy, to increase the speed of the machine the
cylinder is divided longitudinally, so as to form two compartments; and Thirrdy, to addapting semi-anto-
matic weighing or measuring machines to the weighing natio weighing or measuring machines to the weighing of fluids
144h Stoppering Bottirs, Jars, de., H. Smith.-
 piece, and through the stopper passes a matalilis strip,
one end of which is hinged to the U-shaped lie the other end is turned down and provided with a tongue which enters a slot in a thumb-piece pivotted to the wire round the neek at the opposite side to the
U-shaped piece.
 In the boiler A a coil is placed and supplied with steam to bring the liquor or wash in the boiler to a antal temperature. Above the boiler is a col wmin

baflle the ascending vapours. From the top of the column the vapours pass to a refrigerating condenser
C , similar to a tubular boiler with between the tubes. The liquid condensed flows into receiver D. An exhaust and forcing pump E Exhausts
the boiler column and refrig the boiler column and refrigerating tubes, so that the operation is carried on in a partial vacuum corre-
sponding to the desired boiling point of the alcoholic
liguid. 524 liqui.
5246. Discharge and Trans-shipment of Cargoes,
H. Aldams.-14th Decomber A floating pontoon is formed with passages holding sufficient depth of water to float any ordinary barge.
The cargo vessels are moored to the outside of the The cargo vessels are moored to the outside of the
pontoon, and the passages are through the body of the pontoon, and the passages are through the body of the
pontoon, leaving a narrow crane deck only between
the vessel and barge. 5247 I and barge.
5247. Increasing the Illuminating Power of Coal
Gas, J. Macdoncld GAs, J. Macdoncla.- 14 the December, 1880 . $6 d$.
This consists in apparatus for charging coal with a
carburetting material, by causing it to pass through sponges saturated with such material, the gas after-
wards being heated so as to convert it into a permawards beis.
5248. Bats for Lawn Tennis, de., S. W. Trimainings.
-14th December, 1850 . This relates to means for tightening the strings, and
consists in making the strings double and passin them through eyes, by turning which the strings will
be tightened by tivisting 5249. Sтоски
5249. Stocking and Sock Suspender Clasp, L. von
Hoven.-14th December, 18s0.-(Not proceded voith.) The clasp consists of a parallel slotted tongue,
within whose slot the stem of a double-headed button
is free to slide is free to slide. The tongue has jointed near its upper
part a motal plate, between which and the stem of part a metal plate, between which and the stem of
the button the etop of the sock is held. The clasp has
a a 5250. Cthe attachment of the webbing.

Hoven.-14sp For Suspendiva Stockings, dee, L. von
2d
A clip of metal has a claw at one end and a slot at
the other, and it is bent at its centre to form a loop
by which it is supported. The top of the sock is nipped between the claw and the slote. 5251. Bows and Pendants for Watchrs, IV. R. Lake

- 14 th December, 1880 . (A communication fiom . Hirst.) 6 d. . The pendant is formed in two sections provided on
the inner faces with depressions, which, when made
to oo correspond, form cavities to receive spherical o

5252. Overhead Sewing, A. Storer:-14th December.
18so.-(A communication fiom L. and J. Bollmann.)

This relates to improvements on a patent dated 11th August, 1879 , in which a revolving shuttle, reciproca-
ting needle, and a reciprocating hook were employed
The frame carries two shafts The frame carries two shafts each having employ, one the other through an in a surmedable motor, and driving wheel, which also
the actuates the shuttle driver through bevel gearing,
The shuttle is driven by vertical pins on the driver, The shuttle is driven by vertical pins on the driver,
and extending down and working in guides. The extensions have notches which gear with a curved rib
on the shuttle race, so as to be withdrawn, and allow the thread to pass over the shuttle. The shuttle has
an oblong cavity to receive the cop, and is fitted with a spring nipping lever, operated by a cam, so as to
release the thread when desired. The motion of the
feed is feed 1850. Gun Carriages, F. C. Glaser:-15th December The rear end of the carriage can be connected to
different sized tail pieces, so that t great variation in
then different sized tail pieces, so that a gre
the angle of elevation can be obtained.
5255. Spinning and Twisting Wool, \&c., J. B.
Farrar and W. Lumb.-15th December, 1880. $4 d$. This relates to a new arrangement of parts, and upon which are mounted tubes C having wharles D ,

the upper flange of which is larger than the lower
one, so as to afford greater frictional surface to the one, so as to afford greater frictional surface to the
bottom of bobbin E. The rings and travellers F are mounted on a rail G , to which a rising and falling
motion is imparted to wind the yarn on the bobbins. 5256. Wire Rope Tramways, G. Brown.-15th Decem-
ber; 1850 .- (A communication from G. Kilgoure:) (Not trocceeled with.) $2 d$. and consists in mounting it to move or oscillate on a entre, so that the curved rail or part in which the
wire rope lies shall be free to accompany the rope in its longitudinal movements.
5257. Gas Burners and Regulators, J. L. Corbett.-
15the December, 1880 . 6 d . The object is to provide means for controlling the
upply and pressure of gas, and it consists of a tube supply and pressure of gas, and it consists of a tube
of glass fitted in a ring at each end, the lower end terminating in a coniner trine to fit in a socket of the packing, and to it is fitted a gas burner. Into the taier are inserted thin loosely-fitting discs of metal
piecred centrally, the holes being smaller in the lower dise than in those above, and are preferably heavier. When gas is admitted through the tube all the discs are singhty raised, and one or more of them bear
against a shoulder on the upper ring, or on the under
surface of the packing surface of the packing.
5258. Carding Engines, G. and J. Aimers and D. The machine has three carding cylinders A of
smaller diameter than usual, and three doffers ${ }_{B}$ arranged alternately, the doffers being driven in the reverse direction to the cylinders, the latter at a high
speed, and the former more slowly, so as to take off
and carry round the wool from one cylinder to the

5258

next in succession, and a stripper D being interposed
between each cylinder and doffer to carry forward any
win wool not taken by the succeeding cylinder. A fancy
worward and roller is provided for each cylinder. Over the intake
Garnett roller G are mounted smaller rollers $G 1$ havin inclined dises near the end, by which when they to them.
5259. Cutrers for Forming Butrons, C. G. Elrick.
-15th December, 1880 . - (Not proceeded vith.) 2%. ing the cuinting beature of the invention consists in formfrom and adjustably fitted to the holders, which are
constructed so that the blade fitted in each tool acts constructed so that the blade fitted in each tool acts
as a rotating planing iron to cut or "shave" the
surface of the material to the desired shape. 5260. Coupling and Uncoupling Pipes to Water
and Gas-meters, \&co., W. Brcte and I. AND GAS-meters, sce., W. Brett and J. B. Abbey.
15 th December, 1880 .- (Not proceded 2oith.) $2 d$. A pipe formed with a thread has two flanges, one
fast and the other placed losely thereon. One end of
the pipe is screwed into the meter pipe, and the other
into the supply pipe, and the loose Hange is then
screwed up against the end of the pipe, so as to form a lock nut.
5262. Safety Apparatus for Mine Cages and
Lifts, G. B. Richards.-15th December, 1850.-(Not The raising and low lowering rope is fastened to four their fulcra on pins in the cage frame. A spiral spring prolonged beyond the fulcrum and formever, which is which, when the rope breaks, are forced by the spring 5263. Preparing Colouring Matters, de., J. H. This consists in the preparation of colouring matters of the indigo group by the action of reducing or
deoxidising agents upon the orange-coloured compound resulting from the action of sulphuric acid upon thonitrophenylpropiolic acid, also to the employ ment of sulphurous acid for rendering the blue
colouring matters so obtained soluble in water. 5264. Bottles for Gaseous Liquids, de., F. Trotman. The neck of the bottle is is formed with a conical gainst which an internal ball is forced by the pressure of the gas inside.
5265. Covering or Sheating Metal Busks and
SEcuring them in Stays or Corsets, W. R. Lake,
 I. Fouillet chevance.) 4ld.
The busks are placed in tubes of woven fabrics with-
out seams. The tubes may be formed with lists out seams. The tubes may be formed with lists or
edges by which they may be sewn on the stay or
corset. corset.
5266.
5266. Withidrawing or Forcing Atr for Ventila-
ting, \&c., W. and B. Verity. 15 th December, 1880 .

This consists in surrounding the central inlet open-
fans with a cylinder proiecting ing of revolving fans with a cylinder projecting
outwards from the end of the casing parallel with the axis, to which fan or screw blades are secured and
and
ontained within the cylinder. A is the fixed outer contained within the cylinder. A is the fixed outer
casing; B the axis carrying fan blades C and screw

5266

blades D surrounded by cylinder . The drawing
represents the fan as being driven by jets of water represents the fan as being driven by jets of water
imppinging on the toothed wheel G. The top of the axis ends in a cone point entering a recess in the
bottom of the oil vessel M capable of moving vertically
in guides, in guides.
5267. Fastenings for Neckties, \&ce., E. de Pass.-
15 th Decenber, 1850 - (A communicution fiom . The fastening is composed of a base plate with guides in which the pin slides, such pin having a knob the necktio, and serving to move the prong so as to
cause it to engage with the end of the band 5269. Locomotive Engines For Tramways, J. R.
Wighem. $-15 t h$ December, 1880 .- (Not proceded The engine may be driven either by gas, steam, or compressed air. The motion of the driving shaft is speed pulleys.
5271. Automatic Sheet Registering
for Printing Mabaratus Vieillemard.). $6 d$.
Instead of placing the sheet by hand upon needles or points, a mechanical device is employed to ensure machine. The sheet, upon the edge of which triangu-

guiding bars A, the position of which corresponds
vith the notches on the paper. Needles or points B, which, as well as bars A, are operated mechanically points enter the holes, the grippers or fingers size the
sheet, and before the cylinder commences its movesheet, and before the cylin
ment the points are lifted.
 This consists in applying sliding pointers moving
over suitable plates with figures in the handle of
the bat. the bat. Joining Leather Straps for Driving Belts
5274 . Jind ceeded deith.) 22 . 1 . 10 are cocember, 1850. - (Not pro
The ends of the strap are connected by a dovetail The ends of the strap are connected by a dovetail
or tenon connection, which is then stitched or sewn. 5275. Electrio Lighting, \&c., D. G. Fitzgerald.-
16th December, 1880 .-(Not mocecied vith.) 2%. The carbons used have any degree of hardness im-
parted to them by treating them with solutions rich n carbon, also with salts of the rofrractory metals, and
with salts such as those of magnesium and cadmium
vhich, when decomposed, furnish an infusible enrtl which, when decomposed, furnish an infusible earth
or oxide. To facilitate perfect contact with the marbon, the terminals are coated with any son in
metal, is prefred to enclose the carbon in
lassel filled with ncetylone, cyanogen, olefiant 5278. Dredaing Apparatus, J. Standjeld and J. L.

connected by cross bars, and brought together at top top
where thoy yrer irvetted to a drown plate B. At about
the middle of the frame is a pair of beams C from

5278)

 the scoop axis is a pulley, on each of which his wound a
chain to caus the scoop to turo orer, heo ther end of
which is secured to so spranding beam or butterfly chain
which
nut L.
 ISso. edd
The essential feature consists in treating the yarn
the

 drying or stoving, or to air and steam or steam
alone for ageing and steaming.
 This consists of three bowls placed one within the
other, so that the smoke in passing from the middale other, so that the smoke in passing from the middle
one to the outer one deposits sull nicotine, which runs
ond one to the outer one deposits sil nicotine, which runs
down into amal ap at tho bot of the outer
bowl, the smole passing up through the stem.
 The cheekes 8 and Bl of the block are connected by a
ross bar C. The pulley D turns on its journal E.

5283

pening at the top and bottom of each for the inser-

 ngles to prevent displacement.
5284. SUpplying Pure Arr to Cities, de., 0 . Seydel. Pure air is conveyed in pipes from the senshore or
other
deliverent to honient houses or or tht by ber means of fans, and delivered to houses or other places through suitable 5285. Tricycless, de., J. Stee'e.- -16 th December, 1880 .
sid This relates to the mode of transmitting the motion
of the pedals to the driving shaft, and to to mans for of the pedals to the driving shaft, and to means for
reversig the motion of the latter, so as to move
beckwards.
5286. Punsss, \&s.e. W. R. Lake. 1 16th December, 1sso.
(A) communication from W. Leisler cund Soln.)-

 wat sate oy means or a suitable tool. The middle
partioion ist the rim sewn to the folds, this being the
only seam in the purse. 5288. IRox, P. S. Justice. -17th December, 1880.-(A

 substantially non-fowing glazing slag for the purpose
of preserving the tewly-formed metal from oxidisa-
tion. The iron and other materils tion. The iron and other materials are moulded into
forms which will present the greatest surface to the
action of the heat of a furnace.
.
 To the hub of the wheel A is attached the grooved
brake pulley H , round which pasces a hrake band
having blocks B to fit the groove, and connected by

5289

links C. From one end of the band a rod D proceeds,
and is secured to
anale block E to bear on the
 or wire G connected to the foot or other lever fo
applying the brake.

 groove at their base across the width of the blook to
cuase them to adhere better the fusible live or to
Iydrulic mortar placed on the ground. The blocks cause them to adhere better to the fusid The brocks
hydraulic mortar placed on the ground
are coated with a plastic waterproof material. 5292 . Puxps, R. G. Abercrombie.- 1 tith December, 1880 . This relates to pumps in which a prossure regulator
is required, and it consists in making the elpunger in is weq parts, an inner plunger A, and an outer annular
tlunger B. On the plunger Aa collar disc D is secured,
d. plunger B. On the punger Aa collar dise Dis securen,
Detwean which and the top end of punger Ba prring
is inserted, the plunger B being loaded with weightsF

5292

placed on collar disc D so as to exert the necessary
pressure. The plungers are. worked by links G from excentrics H on shaft K driven by suitable gearing.
When the pressure ein the filter press exceed shat of
the the
 emaining at res
 An intermediate wheel is used to transmit the motion, and it consists of a wheel, the periphery of
which is recessed, and has a flange on one side of shich is recessed, and has a flange on one side a,
similar loose annular fange being securod on the
opposite side. Bushed holes are formed at intervals
int in the flanges to receive the pivots of balls gradually
tapering to a truncated conical shape at each end, the tapering toa truncated conical shape at each end, the
pivots revolving in the ase-hardened bushos ot the
flanges. This wheel gears with a toothed wheel flanges. This wheel gears with a toothed wheel
driven ob the pedals, and transmits its motion to
another toothed wheel actuating the driving wheol. 5297. Tranwass, W. F. Clarki. and A. Werd.-1Tth
December, 1sso. (Not procelele with.)
2l. Thecemberes. to the permanetent way in which the
rails are supported by metal chairs or sleepers, and it rails are supported by metal chairs or sleepers, and it
consists i the use of atat rail with a groove for the
whe wheel, and side cheeks which embrace a longitudinal
wooden bearer. ho the side chbeeks are holes, and
corresponding holes are formed in the jaws of the wooden bearer. Tn the side chieeks are holes, and
corresponing holes are formed in the javs of the
chairs to reccive the bearer, and through the holes dogs are driven.

vith.) $2 d$. .i.
A stationary mould-plate with suitable shaped holes

cylinders, he ram of ench being fitted with punches corresponding to the holes in the mould-plate. 5300. Iron and Stert, S. Pitt. - 17 thl December, 1880 .

- (A communication from M. Rollet.) This relates to the manufucture of steel from sul-
phurous and phosphatic cast irons, and it consists, First, in submitting cast iron ata high temperature to
a reducing action to the oxygenised compounds sulphur in the presence of a slag, which will be more and more basic as the iron is more and more sulphu
rous; Secondly, in finishing the refining of the cast rous; Secondily, in finishing the refining of the cast
iron sotreated, in a basic converter, or in a furnace
with a basic sole. 5301. Obtanivivg Motive Power, E. W. Hughes. -1 Tth This rolates to means to enabedea a f fith or driving wheel
to be constanty revolved without ther to be constantly revolved without other motive power
than gravitation and centrifugal force.
 This relates to machines for forming sheet metal,
card, leather, or other materials into shapes and forms

5305]

are driven by fast and loose pulley E , and carry a
toothed wheel C cearing with another whel G on the shant of the top roils D, corresponding to the shape
the rolls B which have

 otherssry roliers L.
 Onectare part of the the invention relates to obtainin
Ontary rotary motion without the use of ar arotating crank,
and another to obtaining rectilinear motion for feed-
ind ing metals or otheraining reectilinear motion
5309. Markng or Decoonatisg Vitrebous or Glazzd
Surfaces, 0 . Vallette- $-18 t /$ December; $1880 .-($ Not proceate with.)
vitrifinbel colour in
fot
fatrtitiable colour in a powder, borax, and some
fatys substance, are mixed together and placed in a
fask. A stamp, consisting
 applied to a phate, is used, and the mixture is applied
thereto and the
mented, which in thilied then the surface to be orna-
 TTis relates to the treatment of tobacioo with
quinine or other drugs possesing properties to
neutraise the poisonous neutralise the poisonous matters contained in the
tobacco.
5312. Heativg and Coourse Human or Antial
Bobirs for Medcal or Suracical Purboses , dce.

 5313. Mertaurc Atrovs or Compounss, G. A. Dick.C. A. J. Dick. A S
this consints of an alloy specially applicable

castings, and composed of over 50 per cent. wrought
iron or mild steel combined with not more than 25 per

also contain not more than 2 per cent. of phosphorus. 5314. Regulating or Governing Patterns of Work
 A rotatary shaft drive
A rotary shint driven from the braiding machine
carries a cam to impart the lifting motion to the
side slide carrying the lifter bars. bThe directors
as well as the stop actions of the briading machine
are connected with hooked wires combined with as well as the stop actions of the braiding machine
are onnected with hooked wires combined with
levers or guide rollers. The wires pass through loops levers or guide rollers. The wires pass through 1oops
of horizontal needles operated upon by perforated pattern cards, as in an jacquard apparatus, the
hooked wires being lifted by the lifter bars in the

 in one piece with the sleeper, the top surface being
chilled, , and anchoring jaw, extending downwards
hat
 crossings, points, and junctions are similarly formed,
and a movalibe opoint or switeh which can be taken up
with without disturring the reial sleperer, is employed, and ish
maddo of Bessemer steal
sin swinging on a a cylind
of phosphor bronze.
5327. Colouring Matrers for Dyerig and Print-
ing, J. A. Dixon. -20 th December, $1880 .-($ A communication from Dr. C. Kexig.) 4 d . This relates to the manufacture of yellow colouring
matters, consisting of tetranitro-naphthol, obtained by energetic nitration of a monoholagen compound o
naphthalene so naphthalene, so as to produce the corresponding
tetranitro halogen-substituted naphthalene compoun and in then substituting in the latter hydroxyl for the halagen, so so so produce the tetranitro naphthol, or
its sodium or other salt. 5351. Surp other salt,

The main objects. ${ }^{6} d$. condenser of smacts of the invention are to produce at large condensing surface, and using a minimuln
quantity of condensing liquid, at the same time also affording a facility for being increased in size to
almost any extent, and also avoiding the stmie amost any extent, and also avoiding the strain on
tube joints by unequal expansion by heat. The condenser consists of a chamber of a U form, the two
arms of which diverge outwardly from the bend. It arms of which diverge outwardly from the bend. .
is made in two halves bolted together, and through it passes the pipes or chatmbers, contanining the gas or
vapour or tem
 through the intermediate space in the opposito dire
tion to the passage of the gas or vapour or stean To increase the size of the condenser any width of flat
rubber or rubber or corrugated intermediate chamber may be
placed between the two placed
223. Apparatus for Glaziva Rige, Coffer, de,
H. J. Haduan.- 1 Sth January, 1 ssil.- (A communication from A. Leevtens.)-(Complete.). 4d.
The eapparatus is composed of a frame of any suitable shanings construction, provided with discharg opaft, which setse the apporatus in motion the drow thi
shat rrame rests the fixed stone E made of (Venetian) tale
or of or of any other suitable material. The upper part ol
this stone is surrounded by a metallic sieve F , through

which the glazed rice is conducted to the fall pip blades, and with a brush for removing that whit results from the shaking, and from the friction of the
rice between the poishing plate D and the stone E.

SELEOTED AMERIOAN PATENTS,

From the United States Patent Ofice oficial Gaze
 Company, same place.-Filed March 3rd, 1 iss1.
Claim.-In In grain-binder, a support E for the com

prossing and tripping fingers C , hinged to the binding
ram, in combination with a pin C , on support E , and arm, in combination with a pin C, on support E , and
a lip C , om the binding arm, all arranged to
substantinally as and for the thurpose specified.
 - Filed March 16 th, 1 ssi

Claim,-(1) In a single-cylinder steam pumping
ongine, an oscillating fat valve arranged in an auxiliary

The combination of the separate annulus, convex and flat, as deseribed, with the two pipe-sections or ellows
thereof adapted to such annulus, as explained, and
 242,488. Cominutator for Dynamo-mlectric Ma chinss, Fihiur Thomson, New Britain, Conn.-Filed Brief-By a peculiar construction of the commu-
tator-piates, each one of the three plates extend 180 deg. around the commutator. Claim.-(1) In dyree ore ectric machine, a commutator containing
thre more described, each block covering an angle equal to the angular distance of the cormutatornarrushes apart connection with both commutator brushes when at or
near the neutral point.
(2) In a dynamo-electric

machine, a three-branched armature coil system, the
free terminals of which are conneeted singly to three segments of a commutator-ringe, eachen segmenten corer-
ing an angle of 1 so deg., substantially as described
ind ing an angle of 180 deg., substantially as described,
and provided with pir of commutator brushes
and resting on diametrically opposite portions of saic
commutator-rings. ($($ I) In a a y ynamo-electric machine a system of armature coil terminals connected success:
sively to segments of the commutator, and adapted to sively to segments of the commutator, and adaptead
be put sucosisivel into commetion with booth com
mutator brushes when at or near the point of neutral mutator brushes when at or near the
polarity, substantinlly as described.

CONTENTS

pumping engine, an oscillating flat valve arranged in
an auxiliary steam-chest formed upon one side of the main stean-chest, and having direct communication
with it, in combination with a piston-ralve with it, in combination with a piston-valve and the
steam-cylinder A, substantially as and for the pur-
 auxiliary steam-chaste formed upeo arranged in an main steam-chest, the seat of sad valve having the
oblong ports $h l l l$, whereby to cause the slide valve E
 for the purpose specified. of t In In astaen pumpen,
engine, the combination of the flat oscillating valve
G provided G, provided with a stem of and pendant arm 1 , with
the rod \mathbb{H}, having gibs l, and the fixed said rod, all constructed and arranged substantially as specified. (5) In a steam pumping engine, the combi-
nation, with the side valve E and its stene-mowed nation, with the silide valve E and its steam-moved
piston, having piston heads at each end and arranged in relation to such valve, substantially as describibed, of an oscillating flat valve provided with a face recess,
and arranged in an auxilinry steam-chest tommuni.
catin cating with
described.
242,464. Txpucrion Prpe for Boars Loconorives,
TVuliam Mason, Taunton, Muss.-Filed April 2nd, Claim. - (1) The connecting-bolts and the springs
applied to them as set fort in combination with two
ne

ear the neutral point. (2) In a dynamo-electric

On the Clyde about 300,000 tons of shipping were , about half ordered at the beginning the year; about hall about 100 vessels more are on the stocks. The output on the Tyne has increased
proportionately, an average of two steamers per week having been launched since January. The total tonnage on the Wear has even surpassed
that of the Tyne, while on the Tees the total much
of 1880 .

