THE INSTITUTION OF MECHANICAL The proceedings of the thirty-fourth annual summer meeting of the Institution of Mechanical Engineers began on Tuesday morning at Newcastle-on-Tyne, the meetings for the reading and discussion of papers taking place in the lecture hall of the Literary and Philosophical Society, a
convenient apartment enough, the benches being raised in convenient apartment enough, the benches
semicircular form, rising tier above tier from the centre, where the table for the president, Mr. E. A. Cowper, and the Council is placed, a little in front of and high over the
table being a number of Swan's electric lamps, which, howtable being a numbe
ever, were not used.
The proceedings commenced on Tuesday, August the 2nd, with a reception of the members by the Mayor of Newcastle, Alderman Angus, who, a little after ten a.m.,
accompanied by several local dignitaries, entered the hall, and welcomed the members of the Institution in a few vell-chosen words. He was suitably thanked by the President. The secretary, Mr. Walter R. Browne, then read the minutes of the last meeting, and announced the
names of candidates who had been elected as members. Some further purely formal business having been transacted, the President proceeded to deliver his
address, which we have very slightly condensed.
He began bystating that as members of the Institution of Mechanical Engineers, on revisiting their brother members and friends here in Newcastle, after an interval of twelve years, they came as it were to one of their naturan homes;
certainly to the home of one of the greatest engineers that England has ever produced, and the birthplace of the locomotive, which has done more than any other improvewho have to use them, and therefore to cheapen and extend production in the most wonderful manner. He then went on to say that it seems but a few years ago
since George Stevenson, at a meeting in 1847, proposed since George Stevenson, at a meeting in 1847, proposer
the resolution that the Institution of Mechanical Engineers be formed. He was strongly supported by a
large number of the mechanical engineers of the country and the speaker had the honour of seconding the resolution that he be first president. The intention was that engineers from all parts of the country should join to form a compact body capabete of discussing and Indical subjects and appliances. In this the Institution had been eminently successful, and it numbered among its members, mechanical engineers in every large town
in the country, and has increased in strength and importance. The last twelve years have been marked by many very important changes, whilst low prices have generally ruled. Amongst other causes of fluctuations in
demand and supply (and consequently in values), must be mentioned the occurrence and the threatening of foreign wars, which disturbed the course of commerce greatly for to the sphere of influence possessed by good or bad
manufacturing or engineering. Mr. Cowper does not look manufacturing or engineering. Mr. Cowper does not look and implements as an unmixed evil for this country ; for it so happens that we can better meet such outlay than any other nation, and thus our wealth gives rise to greater
power and security than our neighbours possess ; while power and security than our neighbours possess ; while,
seeing that we are not an aggressive nation, such power seeing that we are not an aggressive nation, such powe
tends materially at once to the progress of this country and to the peace of the world. Having referred briefly to one cause of disturbance to the progress of mechanical
engineering, he named another, which at the present moment is occupying thoughtful men to a considerable extent, namely, the arbitrary imposition of duties and
bounties for the professed object of protecting manufacbounties for the professed object of protecting manufac-
tures, whilst in fact they constitute taxes on a nation for tures, whilst in fact they constitute taxes on a nation for
the benefit of a few individuals. In some countries ex cessive duties have been imposed, as against our manufac-
tures, and it is even proposed to increase them ; whilst in other cases bounties are actually paid out of the public purse to men engaged in a particular manufacture, on
their exporting to this country certain of their wares, as, for instance, beet-root sugar. One extremely
significant lesson, significant lesson, resulting from high duties-which it
may be hoped will not be thrown away upon the American public-is, that whereas our cousins on the other side of the water used to build almost all the American " liners"
of wood, they now find that, with their excessive duties of wood, they now find that, with their excessive duties
against the importation of iron and steel from England, they cannot compete with English iron and steel ship-
builders and marine engineers. This is one of those builders and marine engineers. This is one of those
damaging effects naturally produced by excessive protective damaging effects naturally produced by excessive protective
duties ; which, whilst they enable American ironmasters quickly to realise enormous fortunes, drive the American
merchants to purchase English ships, or entrust their merchants to purchase English ships, or entrust their
merchandise in English bottoms, as it is impossible to merchandise in English bottoms,
maintain protective duties at sea.
Whatever flucturtions

Whatever fluctuations have occurred, it is now pretty clear that several foreign nations have settled down to cultivate and extend their manufactures, and we are
brought face to face with the fact-which has now been for some years growing to its present importance--that many articles which in years gone by we thought it to be our especial province to supply, are now produced in the
very countries requiring them. Even Spain is to the advantage of producing hematite iron from her own excellent ores, with English and Welsh coke carried out in the same ships that bring Spanish ores to this
country. Now with regard to the possibility of any foreign country. Now with regard to the possibility of any foreign
nation eclipsing us in our manufactures, he would say at nation eclipsing us in our manufactures, he would say at
once that any such successful rivalry on their part is far worse than the effect of any duties, even if they be prohi-
bitive ; for it means rivalry in the markets of the world and possibly in our own markets here at home. Therefore way we may be put our house in order, and see in what way we may be enabled to manufacture better, and with
greater economy. Mechanical engineering is of such extreme importance in advancing civilisation, that it is most essential that its progress should be rapid and unim-
peded. Perhaps the very large increase in steam shipping,
and the change from sailing ships and paddle steamers to of recent times, and it is none the less real or important from having been gradual, while the result to this neigh bourhood has been most beneficial. This change has been due in great measure to the introduction of very economical marine engines, chiefly of the compound type, together with better boilers carrying a higher pressure improved, and one small scientific improvement has added much to the safety of traversing such seas as the Atlantic at a high speed-namely, the careful and continual use of good thermometer, to ascertain constantly the temperature floating within a quarter of a mile-or even half a mile, if the sea is pretty smooth-the surface water will be several degrees colder than the rest of the sea; since the very cold
fresh water, resulting from the melting iceberg flots the top of the sea water for some distance. No doubt the use of iron, and now of steel, has contributed most Good arrangements of water ballast have in this country, useful; and steam cranes and arrangements for loading and discharging cargo have greatly promoted the use of
steam colliers, enabling them to make more voya year. Closely connected with marine engineering is the great improvement in the economy of stationary engines,
which has become more fully developed during recent years, both in reference to waterworks engines and factory engines. In aid of stationary engines, "surface evaporator condensers" have been found very useful, particularly where the supply of water is very limited; and at waterworks it is now very common to pass the whole water vacuum without the expenditure of any water, and with the result of only raising the temperature of the water a motives have shared to some extent in the general improvement in machinery. The boilers are better made, and are safer at the higher pressures now carried than they were formerly with a low pressure. Several new valve gears of great promise have been brought forward, both for locomoives and marine engines. Amongst them Joy's motion
hould be again noticed. Mr. Webb says:-"The engine shown at Barrow has been at continuous work ever since he Barrow meeting, and has run 30,273 miles; we had it practically as good as the day it went out of the shop, people who spoke at the meeting seemed to have doubts I do not think you could get a visiting card between the slides and the blocks; in fact, the engine has been sent out Th work again, having had nothing whatever done to it.
The first thing, of course, that will require doing will be the tires; as far as I can see nothing else will want doing or some time."
very fine engineering work has now been accomplished deepening of the channel at the mouth of the Mississippi through the training of the river by jetties and banks. In consequence, ships of large size may now go up the riverbring down grain cargoes, without the expense and inconvenience of trans-shipment, thus reducing the freight of corn to this country. This great improvement is the work of Captain Eads. A somewhat similar improvement was of the river, at the narrow pass of Hell's Gate, near New York. It is to be hoped that these good examples may spur on our friends on the Continent to improve their harbours, so that large channel boats may cross with comfort to the passengers, thus avoiding the excesrovements have been made in the illumination ighthouses by oil lamps; a light equal to 1300 candles has been produced by Mr. Douglass, of the Trinity House, and now two such lights will be placed one above the other,
where required. The electric light has made such numerous and rapid strides that it is impossible even to notice its various applications ; but on the one hand the lighting by Dr. Siemens of four miles of dock frontage at
the Albert Dock of the London and St. Katherine Dock Company, together with the railway behind the ware houses, and the warehouses and ships themselves, and, on the other hand, the elegant and steady domestic light of Mr. Swan, are excellent examples of the two extremes in
this department. I believe we shall have the pleasure of losely observing the Swan light during our visit here The lighthouse electric light is also a noble application of the great power of a single electric light on the are prin-
ciple. The most powerful electric light in the world is situated near here on the coast, between the Tyne and the Wear. It is possible, and even probable, that one of the great uses to which electric force will be applied eventually, will be the simple conveyance of power by means of large wires; and as a higher percentage of power is gradually
being realised, this method will become more economical I may mention that 60 per cent. has already been obtained The invention of Messrs. Thomas and Gilchrist, by which a very large field of ironstone is now, for the first time,
made available for the purposes of making good steel by the made available for the purposes of making good steel by the
Bessemer process, bids fair to make very considerable Bessemer process, bids fair to make very considerable
alterations in the steel-making trade, and in the hands of Mr. E. Windsor Richards it has been made a great success, whilst in Germany there are several works also using the process largely. Mild steel is now being used to a great
extent for the construction of steam boilers as well as of extent for the construction of steam boilers as well as of ships, and in steel castings for a variety of purposes, such
as spur wheels, frames of portable engines, manhole dooras spur wheels, frames of portable engines, manhole door-
frames, \&c. \&c. Amongst the uses to which steel may be rames, \&c. \&c. Amongst the uses to which steel may be
put is the manufacture of steel sleepers in place of wood put is the manufacture of steel sleepers in place of wood.
It is a very encouraging fact that there are now, or rather there were already, at Dusseldorf, in 1880, 70,000 tons of Wron or steel railway sleepers in use in Germany. MrWebb, of Crewe, has exhibited a very promising arrange-
ment of sleepers and fastenings, to be made either of iron

If, now, some clever ironmaster could only accomplish the If, now, some clever ironmaster could only accomplish the increased demand for pig metal would be enormous. It has nearly been accomplished already, by several diferent where the luxury of wood pavement, which wears very rapidly, cannot be afforded, and where macadamising will not stand the wear and tear of the heavy traffic. The use of ingot steel, or very mild steel, for making tin-plates is now an established thing, and manufacturers are now taking this metal for making large tinned sheets up to 7 ft . better than those made by hand, is now an accomplished fact by Mr. Ransome's machines. There are twelve factories already established abroad, some turning out 2000 or 3000 casks a week. This is a good case of English invention taking the lead in a manufacture. Amongst good mechanical appliances that have been proved to be highly valuable to the civil engineer may be mentioned the excavating machine, which answers well for certain soils and situations, Batho, for excavating from the inside of piers in water In manufacturing chemistry, which, with its numerous mechanical appliances, is much indebted to mechanical during the last dozen or twenty years, Aluminium has been brought into practical use to a large extent, it being "Anthracine" tured largely for the purpose of producing the various brilliant dyes now so common. New materials for making candles have been manufactured, in some cases by purely at a pressure of several hundred pounds per square inch neutral grease and water, when the water takes up the base, viz, glycerine, and leaves the grease as an acid boilers, where the same water, without admixture of fresh has been used over and over again with surface condensers. Then, again, large rotating chemical furnaces have been introduced and improved glass furnaces-particularly tank glass furnaces, in which the batch is put in at -hand and the working holes are towards the other end -have cheapened the actual production of glass, and are in this neighbourhood. progress for certain purposes. Besides the improved and extended use of glass in lighthouse illumination, it has again been pressed into our service for other purposes optics. Spectrum analysis has become of practical use, spectrum have bee the various experiment. The such extended knowledge should have been developed by that one little instrument, the lens, is we natural, for the lens is at once the means by which infinite wriks of the Almighty, in the architecture of the heavens, and by which we appreciate to some extent the see with the naked eye At the amo time we feel sure that there are other markings still smaller, as every increase in the power of the microscope has always rendered like telescope developed more worlds and suns far away from our system, and beyond our "milky way." An approach to the infinite in minuteness, and to the infinite in magnitude and distance is thus furnished to us by one instrument alone. There was but one further observation that he would venture to make, and it is this. When one looks back upon the goodly list of clever men and benefactors of the human race, who have lived, say during the last 100 years, one is sometimes tempted to wish that more of those scentic men, who have had the most brilliant ideas, and out the greatest discoverers, should have striven to cale Faraday's beautiful discoveries in electricity. It was, in amanner,left to Sir Francis Ronalds, Professor Daniell, Proother Wheatstone, Fothergil Cooke, Dr. Slemens, and wires," to develope from those discoveries the "intelligence unite nations, and do so much to prevent misunderstandings.
It is gratifying to know that the engineering profession forgotten when honours have been confored Sir William Fairbairn, Sir John Rennie, Sir Peter Fairbairn, Sir Charles Fox, Sir William Armstrong, Sir Joseph Whitworth, Sir John Hawkshaw, Sir John Coode, Sir William Thomson, Sir Joseph Bazalgette, Sir Charles Hartley, Sir Charles Bright, Sir James Ramsden, Sir John Anderson, Sir George Elliot, Sir Daniel Gooch, Sir Henry Tyler, Sir Samuel Canning, Sir Edward Reed, and Sir
Frederick Bramwell With many noble examples before Frederick Bramwell With many noble examples before us, and with signs of an improvement in many branches
of commerce, he trusted that the latter part of the present of commerce, he trusted that the latter part of the present and enterprise on our parts, be marked, not only by numerous small improvements, but by many substantial inventions for the good of mankind

A vote of thanks was proposed by Mr. Abernethy, president of the Institution of Civil Engineers, seconded A paper was then read by Mr. Lowthian Bell,

On the Tyne as Connected with the History of
This paper rapidly skimmed over the life of Newcastlebut it was fluently written, and well read by the author himself. Being in itself almost an abstract of the eventful history of the locality, it does not abmit of being abstracted with advantage, and we must content ourselves with sayin that it left few subjects connected wind press, untouched.
manufactures of the town, theirrise and progren

No discussion followed the paper; indeed, it was not calculated to provoke discussion in any way.
Mr. F. C. Marshall then read his paper

On the Progress and Development of the Marine Engine.

The author began by referring to a paper read at the Liverpool meeting in 1872, by Mr. F. J. Bramwell, F.R.S., on "The Progress Effected in Economy of Fuel in Stean
Navigation, Considered in Relation to Compound Cylinder Navigation, Considered in Relation to Compound Cylinder
Engines, and High-pressure Steam ;" then proceeded to continue the subject from the date of that meeting, to trace out whether any, and if so what, progress had been made; further, to consider whether or no we have reached the finality so strongly deprecated by Sir Frederick Bram-
well in the discussion referred to, and if not, then in what well in the discussion referred to, and if not, then.
direction we are to look for further development.

From a table it would seem that the steam pressures are now much higher, the boilers have less heating surface, and the cylinders are much smaller for the indicated horseaverage consumption of fuel is reduced from $2 \cdot 11 \mathrm{lb}$. to $1 \cdot 828 \mathrm{lb}$, or by $13 \cdot 38$ per cent. The author then briefly
described the modern marine engine and boiler. The three described the modern marine engine and boiler. The three
great types of compound engines may be placed as follows in great types of compound engines may be placed as follows in
the order of their general acceptance by the shipowning community: (1) The two-cylinder intermediate-receiver com-
pound engine, having cranks at right angles. (2) The Woolf pound engine, having cranks at right angles. (2) The Woolf
engine in the tandem form, having generally the highengine in the tandem form, having generaty the highbut occasionally alongside, and always commumicating
their power to one crank. Such a pair of engines is used their power to one crank. Such a pair of engines is used
sometimes singly, oftener two pairs together, working side by side to cranks at right angles ; recently three pairs together, working to cranks placed 120 deg. apart. The
system affords the opportunity of adding yet more engines system affords the opportunity of adding yet more engines
to the same propeller to an indefinite extent. (3) The three-cylinder intermediate-recciver compound engine,
with one high and two low-pressure cylinders, the steam witn one high and two low-pressure cylinders, the steam and thence into the two low-pressure cylinders respec-
tively. The cranks are placed at equal angles apart round tively. The cranks are placed at equal angles apart round
the crank shaft, so as to balance the forces exerted upon the crank shatt, so as
the shaft. These three types may be said to embrace all
the engines now being manufactured in this country for the propulsion of steam vessels by the screw propeller. In the propulsion of steam ressels by the screw propeller. In
their leading principles they also embrace nearly all
paddle engines now being built, whether the cylinders be paddle engines now being buit, whether the cylinders be
oscillating, fixed vertically, or inclined to the shaft. The oscillating, fixed vertically, or inclined to the shatt. The now be said to be universally adopted in this country, and
the question of the relative value of simple expansion in the question of the relative value of simple expansion in
one cylinder, and of compound expansion in two or more cylinders, which agitated the minds of some of our leading engineers ten years ago, is now practically solved in farour
of the latter. The marine boiler of to-day is in all its main features the same as it was ten years ago. The
single-ended boiler, made with two, three, and some-single-ended boiler, made furnaces, is the simplest form, and for all powers under 500 -indicated horse-power is the most generally found more ecouomically efficient than the single-ended form, by as much as 10 per cent. in the writer's own expe-
rience. It is generally adopted for engines of large power, but for small power is inconvenient, owing to its occupying more room lengthwise in the vessel, and also
involving two stokeholds and therefore more supervision At one time great difficulty was found in keeping the length, the unequal expansion due to different temperatures at the top and bottom caused severe racking strains on the bottom seams and rivetting - so severe in some circumference of the shell. This difticulty has now been to a large extent got over, in consequence of
the greater attention given to the form and direction of the water spaces in the boiler itself, so as to induce circulation of water; the introduction of the feed-
water at the top instead of near the bottom; the more careful management now usual on the part of engineers ; and lastly, the use of larger plates, welded horizontal seams, drilled rivet holes, and more perfect workmanship
throughout. A modification of double-ended boiler is that introduced by Mr. Alfred Holt. It has many decided advantages, but is costly to make. The formation of the
two ends into separate fire-boxes leaves the bottom of the boiler free to adapt itself to the variations of temperature to which it is exposed. The separation of the
furnaces from the combustion chamber, excenting furnaces from the combustion chamber, excepting
through the opening afforded by a connecting tube, is an advantage in the same direction, and avoids almost entirely
the racking strains due to iregular furnace the racking strains due to irregular furnace action.
The weight of water carried is less, and that of the boiler may also be made less ; while the elliptical form of the two ends gives greater steam space. A type of boiler
largely used in lier Majesty's Navy, somewhat like a locomotive boiler, is highly efficient in regard to weight and
power developed. Many examples have yielded one power developed. Many examples have yielded one
indicated hooss-power in the cylinders for every 3 square feet of heating surface, under natural draught and with a
very moderate height of funnel ; and this with a convery moderate height of funnel; and this with a con-
sumption of fuel not exceeding $2 \frac{1}{2} \mathrm{lb}$. per indicated horsepower per hour under a working pressure of 60 lb . With
the aid of a steam jet in the funnel, the heating surface the aid of a steam jet in the funnel, the heating surface
per indicated horse-power has fallen below $2 \frac{1}{2}$ square feet. The large water surface afforded for escape of steam
secures almost entire freedom from priming, without the secures almost entire freedom from priming, without the
incumbrance of steam domes ; and the large combustion
chamber allows of the thorongh combistion chamber allows of the thorough combustion of the gases
before their passage through the tubes. The locomotive before their passage through the tubes. The locomotive
type of boiler has lately occupied the writer's attention,
with a view to its more definite introduction into marine work. The difticulties however, which lie in the way of applying it to steamers going long voyages, are very great.
The principal difficulty lies in the necessity of burning a large quantity of fuel in a very limited space and time.

This can only be done either by direct pressure or exhaus action applied at the furnace. In other words we must either exhaust the funnel, which will absorb a large
amount of power, but would be comparatively easy of application ; or our stokers, as is the case with our miners, must work under a pressure of air. The writer stated that his experience in the manufacture and working of steel boilers was satisfactory. 6 ft diameter to 14 ft . 6 in. diameter have left the ing from 6 ft . diameter to 14 t , wh . diameter have the first was made; and in no case has there been a failure of a plate after being put into a boiler, either in the process of manufacture or in working at sea. The mode of working is as follows :- For shell plates, from $\frac{5}{5}$ in. to $\frac{7}{7}$ in. thick, to warm each to a dark red heat before roling, having previously
drilled a few holes to template for bolting the strakes together; the longitudinal seams are usually lap joints treble rivetted, requiring the corners to be thinned, which
is done atter rolling. The furnace plates are generally welded two plates in length, and flanged to form Adamson rings, and at the back end to meet the tube plate; the back flame-box plates are flanged,
also the tube plates and front and back plates, and wherever work is put on to the plate it is annealed throughout. In the putting together the longitudinal seams of the thicker plates of the shells, great care is always taken to set the upper and under plates for the lap to their proper angle before they are bolted together, a The question of corrosion is one which is gradually heing answered as time goes on; and so far very satisfactorily ago which were amongst the first examined a few weeks tending engineer reports, "There is no sign of pitting or corrosion in any part of the boiler; the boilers are washed out very carefully every voyage, and very carefully
examined, and I cannot trace anything either leaking eating away. No zinc is used, only care in washing out, drying out, and managing the water." This is the evidence of an engineer with a large number of vessels in his charge.
On the other hand, some of our most prominent Liverpool engineers always use zinc, and take care to apply it most
strictly. The evidence of one of them is as follows:- "We always fix slabs of zinc to most boilers, exposing not less than a surface of one square foot for every 20 indicated horse-power, and distributed throughout the boiler. This zinc we find to be in a state of oxide and crumbling away in about three months. We then renew the whole, and
find this will last twelve months or more when it renewed again. Meanwhile months or more, when it corrosion; but, on the contrary, the interior surfaces appear to have taken a coating of oxide of zinc all over,
and we have no trouble with them." Then the writer considered our present marine engine as to its efficiency and capability of further improvement. The weight ships has not had due attention in the general practice o engineers. By the best shipping authorities the writer is assured that every ton of dead weight capacity is worth on an average $£ 10$ per annum as earning freight. Assum any ordinary vessel to be 300 tons, and that, by careful design and judicious use of materials, the engineer can reduce it by 100 tons, without increasing the cost of work ing, he makes the vessel worth $£ 1000$ per annum more t in this direction there is much room or inpstatement giving, for various classes of ships, the average weight of
machinery, including engines, boilers, water, and all fittings ready for sea, in poinds, per indicated horse power:-

The ordinary marine boiler, encumbered as it is by the regulations of the Board of Trade and of Lloyd's Committee, does not admit of much reduction in the weight of duction of steel has reduced the weight by about one-tenth but it will be the alteration of form, to the locomotive tubulous, or some other type, combined with some method of forced draught, to which we must look for such reductions in weight of material and water as will be of any weight by reducing its. size and this can only be done by increasing the number of revolutions per minute. It has dependent upon the srize of engines, draught of water, and speed required. This process should be reversed. The propeller's diameter depends on the column of water
behind, necessary to overcome the resistance in front of it due to the properties of the vessel. This fixed, the speed
will then fix the number of revolutions, which will be found much this the size of the engines and boilers will be determined and judicious selection and adaptation of careful design by the substitution of trussed framing and a proper mode of securing the engine to the structure of the vessel, as
worked out in H.M.S. Nelson, by Mr. A. C. Kirk, of Glasgow, and in the beautifully designed engines by Mr Thornycroft, in place of the massive cast iron bedplates and columns of the ordinary engines of commerce. The
same may be said of the moving parts. Tn fine the hull and engines should be as much as possible one structure rigidity in one place and elasticity in others is the cause of most of the accidents so costly to the shipowner ; under
such conditions mass and solidity cease to be virtues, and such conditions mass and solidity cease to be virtues, and
the sooner their place is taken by careful design, and the
use of the smallest weight of material-of the very best
kind for the purpose-consistent with thorourch efticiency the better for all concerned. Coming to the question of the consumption of fuel, a considerable saving has been effected in nine years, as shown in the following table:-

This shows a saving equal to $13: 38$ per cent. in quantity of fuel consumed. Mr. Marshall then read a letter from Mr. Alfred Holt, of Liverpool, bearing on this subject engine and stated his belief would ere long be abandoned for the simple engine. He is endeavouring to feel his way to using the steam in one cylinder only, and so far the results have been encouraging; and he is now fitting a 2200 -ton vessel on that system, He is also endeavouring to do without a crank shaft, the forward end of the screw shaft carrying an ordinary crank with overhung pin. This experiment also promises satis immedinte future is the great improvement of the our boilers. A ton wightse the steam prodailer produces as much steam as 6 tons of an ordinary steamboat boiler. Mr. Holt speaks of the coal account as one of the minor disbursements of a steamer. He does not give the ratio which coals bear to the total disbursements, but from other reliable sources Mr. Marshall found that, according cent.-orr, say, an average of 18 per cent.-of the total disbursements, in a vessel carrying a cargo of 2500 tons, This will represent to-day about $£ 3000$ per annum, and in 1872, at equal prices, the cost would have been $£ 3750$ showing a saving of tiso, equal to a dividend of, say, coal per mile run for such the shipsel in Again, the cost of been at least $16 \frac{1}{d} d$. 13 d . The marine boiler as now made is very efficient, but if the quantity of steam used be considered, in relation to the increased pressure, it will be seen that the boiler of to-day
is little if any more efficient than that of ten yours is little if any more efticient than that of ten years ago.
The present boiler has an evaporative efficiency of about The present boiler has an evaporative efticiency of about is supplied to the furnace by the natural draught. To increase the efficiency from 75 to $82 \cdot 5$ per cent. would require about donble the heating surface, the weight of
boiler and water being also doubled, while the gain would only be 10 per cent. Mr. Blechynden's formula, used in Mr. Marshall's works for weights of cylindrical marine boilers of the ordinary type, and for pressures varying
from 50 lb . to 150 lb ., is as follows :-
$\mathrm{W}=(\mathrm{P}+15)\left(\mathrm{S}+\mathrm{D}^{2} \mathrm{~L}\right) ;$
or $\mathrm{W}=2 \mathrm{~S}(\mathrm{P}+15)$
when $\mathrm{S}=\mathrm{D}^{2} \mathrm{~L}$, which is a common proportion.
Here $\mathrm{W}=$ weight in tons.
$\mathrm{P}=$ working pressure as on gauge,
= diameter, in feet,
= length, in feet
$\mathrm{C}=\mathrm{a}$ constant divisor, depending on the class of rivetting, \&cc. For boilers to Lloyd's rules, and with iron shells having 75 per cent. strength of solid plate, $\mathrm{C}=13,200$.
This formula, if correct-and it is almost strictly sowould give the relative weight of boilers per sq. ft. of
heating surface, for 105 lb . and 150 lb . total pressure, assuming we wish to increase the efficiency 10 per cent., as follows :

Weight at $105 \mathrm{lb} .=105 \times$

$150, \ldots=150 \times \frac{175}{C}=\frac{263}{C}$
 Hence the ratio of weight $=\frac{263}{105}=2.5$

In other words the boiler with the higher efficiency would weigh two and a-half times that with the lower efticiency. boilers of 1500 indicated horse-power, the introduction of locomotive boilers with forced draught would place at the disposal of the owner 150 tons of cargo space, representing $£ 1500$ per an
Mr. Thornycroft has for some years used the locomotive form of boiler for his steam launches, working them under an air pressure-produced by a fan discharging into a losed stokehold-of from lin. to 6in. of water, as may be 7.61 lb . of water from 1 lb . of coal at 212 deg. Fah., with 2 in . of water pressure, and 6.41 lb . with 6 im . of pressure. These results are low ; but it is to be remembered that the nd ng fomperature of the fumnelcosure and 1444 deg . at the 6om 1073 deg. at the fy proportions of locomotive practice the efficiency can be made equal to the best mariue boiler, when working under the water pressure usual in lt thas fallen to the lot of the wrer orsure in closed tokel with boilers ditions, were very satisfactory. The pressure of air would be represented by 2 in . of water, and the indicated horsepower given out by the engines was 2800 , as against 1875
when working by natural draught, or exactly 50 per cent. gain in
Mr. Marshall then proceeded to refute the arguments which may be urged against the use of the locomotive boiler at sea, and which we need not reproduce.
Coming to the engines, Mr. Marshall said that the total working pressure of to-day may be accepted as 105 lb ., or
equal to seven atmospheres. If it were boldly accepted that eleven atmospheres, or 165 lb ., were to be the standard working pressure, the result would be a gain of 14.55 per
cent., provided no counteracting influence came into play. cent, provided no counteracting influence came into play.
Of course, there are forces which war against the attainOf course, there are forces which war against the attain-
ment of the full extent of this advantage, viz., the greater ment of the full extent of this advantage, viz., the greater
condensation in the cylinders and loss in the receiver or condensation in the cylinders and loss in the receiver or
passages. In regard to the former, it may be questioned passages. In regard to the former, it may be questioned whether by steam jacketing the high-pressure cylinder, lue amount of compression in both cylinders, this may not be reduced far below the generally received notion; and the latter cause of loss may be considerably reduced in ts effect by a more carefully chosen cylinder ratio. The ratio usually adopted, between 35 and 4 to 1 , whether the pressure be 70 lb . or 90 lb ., may well be questioned. With a cylinder ratio of 2.95 to 1 , the economic performance is very good, and equal to any with the higher ratio. A lower cylinder ratio has another advantage of considerable
value, viz., that the working pressure can be much reduced value, viz., that the working pressure can be much reduced
as the boilers get older, while by giving a greater amount of as the boilers get older, while by giving a greater amount of steam the power may be maintained-at an ex course, but not so great a cost as with higher ratios.
steam, of steam, of course, but not so great a cost as with higher ration in the high-pressure cylinder usually takes place at about $0 \cdot 6$, and the ratio of expansion has decided the lind cylinders of the higher ad conomic properties way of taking advantage of the higher economic properties it is submitted, not insuperable, and it would be to the interest of all that they should be firmly and determinedly Woolf engine, as usually arranged, will use 10 per cent ore steam than the receiver engine for the 10 per cent. of the three-cylinder receiver type the data are insufficient orm a definite opinion upon; but so far the general vorking of the Arizona is stated to be as good, economically, as any of the two-cylinder receiver class. The surace condensetail altered. In most engines it ago, with prtion of the framing, and as such adds greatly to the portion of the framing, and as such adds greatly to the weight of the engine. It is a question seriously worth onsideration whether or no the surface of tubes can be educe. the boiler surface as a minimum the surface ne-half the boile surace as a to about 2 square feet per indicated horse-power. In prac-horse-power to maintain a steady vacuum of $27 \frac{1}{2} \mathrm{in}$.
Mr . Marshall has just completed six pairs of engines for liameter, and has in each having steel shafts of 10 . diameter, and has in each case run the engines at 120 evolutions per minute, while indicating 1380-horse power from each pair for ten to fifteen hours without stopping ; nd in no case haring or crank-pin was㲘 perfect. In these engines all working bolts, pins, and 11 rods in tension being loaded to 8000 lb . per square inch, The bods in tension being loaded to 8000 lb . per square inch. Che boilers are of the Navy type, made throughout of oles drilled Furnaces are welded and flanged, all holes drilled. Furnaces are welded and flanged; the ubes are of brass. In comparson merchant steamer's iron boilers of the double-ended type,
they weigh, including water and all appurtenances, as they weigh

\section*{| | | | Double-ended Type. | | | Navy Type. | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Weight, tons | \ldots | \ldots | \ldots | \ldots | 135 | \ldots | \ldots | \ldots |}

The screw propeller is still to a great extent an unsolved roblem. We have no definite rule by which we can fix liameter. Mr. Froud has pointer the , namely, the liameter. Mr. Froude has pointed out that by reducing the iameter, and this the perfirmed by anes af ine the 2 ft . Bin., and the Arizona reduced 2 ft . This must of course be qualified by other considerations. The ship has by her form a definite resistance, and a certain speed is required; if the propeller be made too small in diameter, the ship will not be driven at the required speed, except at serious loss in other directions. This question was too large and complicated to be dealt with here, and should, in the first instance, be made the subject of careful and extended experiment, on which a separate paper should be To su
To sum up the whole. Progress has been made during The past nine years, and in the following particulars :-(1) The power of the engines made and making show a great to be possible in vessels of all the various classes. (3) The onsumption of fuel is reduced by 13.38 per cent. on the much less coal than that average, while the quality of the coal is in nearly all cases very inferior, so that it is not unfair to take credit for 20 per cent. reduction. (4) The vorking pressures . built for 120 lb . per square inch, while 90 lb . is the standard pressure now required.

This was an admirable paper and fully illustrated by iagrams, which were, however, hardly needed to make he sense of the author quite clear. It was followed by a in the of the paper. This discussion began when the paper was luncheon, and to visit the works of Sir William up for ror Newburn. It was resumed, however, on Wednesday morning, and, for the sake of compactness, we give the whole substance of the discussion on both days here. It was commenced by Mr. Kirk, who paid the author of the paper a well merited compliment. He agreed with him parallel what had been done before. The result of using higher and higher pressures was that in a sense the advantage of the compound engine in reducing strains
had disappeared, and these strains were now as great as
in the old simple engine. If still higher pressures were used, they would be driven to use more cylinders. He then referred to the engines with three cylinders designed by Rowan. As to the actual consumption of coal at sea that might be taken as 2 lb . per horse per hour with Northcountry and 1.8 lb . with Welsh coal. Concerning the Woolf engine, it was no doubt less economical than the vacuum engine, because there was a greater range of temvacuum engine, because there was in the small cylinder. To Mr. Cowper he thought perature in the small cylimder. To Mr. Cowper he thought engine, in which the small cylinder was kept warm. The tandem type had the advantage that it could be multiplied almost indefinitely on the same crank shaft, as, for example, in the City of Rome. He then referred to the example, in the City of Rome. He then referred to the explain that making engines light made them costly, and explain that making engines light made them costly, and all not always of much importance. As to marine boilers, he regarded the type as fixed for the present, partly by he regarded the type as fixed for the present, partly by
the restrictions of the Board of Trade and Lloyds'. He doubted too, whether great draught could be made to do on long roy wh needs he regarded its use the to ly at difficulty. As to surface condensers, it made no difference
power on 3750 -horse power. An experiment carried out in Germany with a land boiler gave an evaporation of a 30 ft . flue, 4 ft . 3 in . diameter, evapide flues were sloped off a 30 ft . flue, 4 ft . 3 in . diameter, evaporated 8.75 lb . per pound difficulties which lay in the way of manufacturing these flues. He was followed by Mr. J. Head, Mr. Crampton and other speakers, who, however, added little to what had gone before of a very practical character. Mr. Marshall replied on the whole discussion, and a vote of thanks was passed to him. A paper was then read on "Printing Machinery," by Mr. Jameson, our notice of
"Passed was then read or which we must reserve, and a visit was then paid to the office of the Newcastle Chronicle, where the machine described was seen at work. Subsequently the machine and visitors were carried by train to the member luncheon was provided by Messrs. Paterson, wher works of the company were inspected. The annul din of the Institution took place on Wednesday night, and was numerously attended.
On Tuesday, after the reading of Mr. Marshall's paper the members were admirably entertained by the local committee, and then proceeded to visit the works of Si William Armstrong and Co., and the steel works of Messrs. Spencer at Newburn. The first we have already

whether the water was inside or outside the tubes. Their efficiency depended on the circulation of the water. After saying a few words in favour of steel, he said that no connection existed between the size of the engine and the size of the propeller, the diameter of which was fixed more by the peculiarities of the shaft than by anything
else. Mr. Crowe defended Mr. Holt's type of single crank else. Mr. Crowe defended Mr. Holt's type of single crank
engine, saying that with steam handling gear they never engine, saying that with steam han
stuck on the centre or gave trouble.
After a few unimportant remarks from other speakers, Sir F. J. Bramwell caused a good deal of amusement by relating his experiences during a recent trial of the
Anthracite, at which Mr. Thorneycroft was present. He Anthracite, at which Mr. Thorneycroft was present. He
worked the engines until the steam pressure fell to zero, worked the engines until the steam pressure fell to zero,
and then they kept going at 30 revolutions per minute, we presume, on the vacuum. Mr. Thorneycroft had take a candle into the boiler room to find the fire, and carried away all that was left in the grate in one hand. The total consumption, including getting up steam, was at
the rate of 1.79 lb . per horse-power per hour. Forced the rate of 1.79 lb . per horse-power per hour. Forced
draught had been used in American steamers burning anthracite thirty years ago

Mr. Parker held that the working pressure was now more nearly 100 lb . than 77 lb ., as given by Mr. Marshall. The introduction of steel and of corrugated steels had permitted an increase of pressure of 30 per cent. in $2 \frac{1}{2}$
years. If boiler shells could be made up of solid rings, years. If boiler shells could be made up of solid rings,
they would save the 25 per cent, of strength now lost by they would save the 25 per cent. of strength now lost by
the seams, and might carry higher pressures accordingly. the seams, and might carry higher pressures accordingly.
As to the higher factor of safety, 6 to 1 , required by the As to the higher factor of safety, 6 to 1 , required by the
Board of Trade, he did not see that it was needed save to guard against loss by corrosion, and a thick plate suffered less in this way than a thin; and allowance should be made accordingly. As to large steamers like the City of Rome,
he thought twin screws would have been better than he tho

Mr. Rich expressed grave doubts that a higher economy than 1.88 lb . of coal per indicated horse-power per hou had ever been obtained at sea. His experience showed that more could not be got on land with the best engines,
Mr. Nicholl followed Mr. Rich, and spoke in favour of forced draught
Mr. Fox then got up to defend his corrugated flues. In substance what he said was that he has now 3700 flues in use, of which 2472 are in marine boilers. He has had in all eight failures. The evaporative efficiency of his flues
fully described, the second we shall. notice in a succeeding impression. A visit was also paid to the swing bridge. Jesmond Deane by special invitation of Sir William Armstrong.

BREWING IN ENGLAND

The brewery illustrated in our impressions of the 20th and 27th May was a good example of a first-class brewery of large capacity. In describing some of the plant used in such breweries, we may also illustrate that of some breweries of somewhat smaller size. The general arrange ment of a 35 -quarter brewery, erected G. J. Worssam and Son, of London, may be gathered G. J. Worssam and Son, of London, may be gathered
from the section and plan given herewith. The sectional from the section and plan given herewith. The sectional
elevation, Fig. 1, is taken just within the front wall, and elevation, Fig. 1, is taken just within the front wall, and
the plan, Fig. 2, is of the mash-tun stage and tun room. the plan, Fig. 2, is of the mash-tun stage and tun room.
In these a is the cold water tank, b the hot water boiling In these a is the cold water tank, c the wort receiver, d the wort boiling back, e the back, c the wort receiver, d the wort boiling back, mash
malt elevator, f the grist case, g the malt case, h the mash malt elevator, f the grist case, g the malt case, h the mash tun, i the wort pump,,j the under back, k the steam engine, l the malt mill, m the refrigerator, n the fermenting tum, o the cooler, and p the brewers' room. The boiling back,
as made by Messrs. Worssam and Son for this and other as made by Messrs. Worssam and bon tigs. 3 and 4, Fig. 3 being an breweries, is illustrated by Figs. 3 and 4, Fig. 3 being an
elevation and Fig. 4 a half plan. These backs are chiefly elevation and Fig. 4 a half plan. These backs are chiefly
employed for boiling large quantities of wort, and are employed for boiling large quantities of wort, and are
fitted with a double arrangement of steam pipes, technifitted with a double arrangement of steam pipes, techni-
cally called coils, although they do not partake of that form. cally called coils, although they do not partake of that form.
In our illustrations S S are the steam coils, having outlets In our illustrations SS are the steam coins an II passes through the copper pipes in the direction shown by the through the copper pipes in the directiong shown with
arrows, the gun-metal main pipe being cast arrows, the gun-metal ment the steam passing straight through it. A A are two dome-topped copper strainers, which prevent the hops entering the draw-off pipes These strainers can be raised or lowered at pleasure by screw worked with a pair of mitre wheels and the hand
wheel h C C show the gum-metal clains, broken off, that wheel h. CC show the gun-metal chains, broken off, that
are used for raising the coils for cleaning purposes. These chains pass over a pair of steel chain wheels $w v$, worked by means of a worm and worm wheel by the large hand attacher . copper doors hung on hinges, with cast iron frames. This

LIGHT DRAUGHT PASSENGER STEAMER FOR TRIBUTARIES OF THE AMAZON.

board is hinged to the screw, so as to admit of the board tilting up when passing backwards over the yeast, but when being drawn forward the board is rigid. The pipes $c c$ constitute an attemperator, water being admitted at f and passing out at g.
Another form of skimmer with revolving yeast board is shown in Fig. 7, as made by Messrs. Pontifex and Wood, London. In this arrangement the skimming pan is oblong in plan, and a little less in length than the radius of the pended from an adjustable screwed rod which passes through a transom above the round, and the pan is provided with a plug for keeping the yeast back until it is desired to skim it off. The board, which is hinged on a vertical pin at the inner end of the pan, is pushed once or twice round the tun, and the whole of the yeast is thus swept into the pan and carried off by the pipe below, which passes through a stuffing-box in the bottom of the tun. The plug in the skimming pan bottom is raised by a small cord or chain running over a pulley, as shown.

Fig. 2.-PLAN OF 35-QUARTER BREWERY.
A very generally used parachute skimmer, as made by Messrs. Pontifex and Wood, is shown at Fig. 8. Skimming whith this is much more rapidly effected than when done wholly by hand, but even with this a good deal of labour is required to skim cleanly after the plug is raised. The arrangement of the apparatus and its adjustment are In this phow in the engraving.
In this place we may refer to the proposal which has been made to filter worts by means of mechanical filters, before putting them into the fermenting tuns. It has been observed that worts, though bright from the washing tun, and which remain bright in boiling, always leave a deposit in cooling. Most of this deposit is found on the cooler bottom or on the refrigerator surfaces, but a good deal of the substance remains in suspension and finds its way into the fermenting tun. This substance, which might be removed by filtration, is of a viscous and strongly glutinous character ; and it is assumed that when the yeast is added to the wort the vitality of some of the yeast is probably considerably diminished by the tendency which this suspended glutinous matter will have to attach itself
to the yeast cells, and by coating them prevent the endosmosmic action which goes on in the process of within the and yeast cell growth between the fuid yeast cells as are not sufficiently vigorous to grow in the yeast cells as are not sufficiently vigorous to grow in spite vessel. If this view is correct, and affords an explanation of the cause of deteriorated yeast and imperf ferment tion, there would seem to be good reason for rementasuspended matter fom good row be better for the purpose than the filter presees now so largely used in many manufacturing industries.

LIGHT DRAUGHT SCREW STEAMER. The accompanying engraving illustrates a screw steamer built and engined by Mr. Edward Hayes, of Stoney Stratford, Bucks, to the order of Mr. Alex. Mitchell, of Dundee, and specially designed for passenger traffic on the smaller tributaries $15 \mathrm{ft} .10 \mathrm{in} . ;$ ditto, on waterline, 13 ft . $10 \mathrm{in} . ;$ depthamidships, 4 ft .9 in . draft, 4 ft . aft., 3 ft . forward. The frames, of angle iron, 11 lin . by $1 \frac{1}{2}$ in, by $\frac{1}{4}$ in., spaced 24 in . apart.; skin plating of steel, and sheer strakes, ${ }^{\frac{3}{3}}$ in.; rest, ${ }^{\text {tin }}$ The keel, stem, grboar frames, are of bar iron, and are formed throughout in two thicknesses, so as to admit of the boat being divided longitudinally in two parts, each of which is also divided in two transversely, having double frames at junction; this arrangement will greatly facilitate the shipment of boat by dividing it into four sections of moderate size. The passenger accommodation is arranged in a deck-house aft. The whole length of the boat is covered by an iron sundeck, $\frac{1}{16} \mathrm{in}$. thick, carried on light wrought iron columns. The main deck is of teak throughout. The machinery consists of a high-pressure non-condensing engine, ported on a cast iron frame 1 . diameter by 14 in . stroke, supfrom engine. A bilge injector is fitted for clearing the bilge of water, and a donkey pump for feeding the boiler and pumping on deck. The propeller is three-bladed, of cast iron, 3 ft . 7 in . diameter. The boiler is of the locomotive type. The fire-grate 2 ft . 9 in . and 2 ft . 3 in .; having fifty-seven tubes, 2 in . outside by 6 ft .5 in . long, to work at 70 lb , per square inch. The boat is completed, as far as possible, in every detail, so as to reduce to a minimum the work to be done in the way of putting together at Para; the construction of hull and machinery has been carried out under the superintendence of Mr. J. Pollock,

STEEL CASTINGS.

All who have had any experience in producing or obtaining steel castings of rather more complex form or heavier than usual will know that a gold medal for solidity, soundness, and toughness in castings varying from a few pounds up to spur wheels weighing over six tons each is not very easily gained. The Hadfield larly fortunate in their production of however to be particukinds, and especially of steel wheels A steel castings of various awarded for excellence in steel castings at the Melbourne Exhi bition, and especially for steel wheels for colliery and general mining and contractors' use. One of these wheels, taken from stock, was recently tested by hammering when cold with a 14 lb . sledge hammer on an anvil into the form shown by the annexed
llustration, which was done without the slightest fracture, and the makers undertake that all these wheels will stand this, and that they may afterwards be put into a fire and rehammered into their proper form and be as good for work as before. One
user of several thousands of small wheels of this form at work, took one that with others left upon their axles to continue

working, had run 41,000 miles, and carried about 10,000 tons of coal. The wheels being but 9 in . diameter, and weighing 14 lb ., of the made about $96,190,000$ revolutions, and after this the state annexed cut. These facts speak for themselves, but it is not only

with these small steel castings, but with large castings such as those above referred to that Mr. Hadfield's company seems so successful.

Shipbuilding in France and the Proposed Bounties. In France the proposed bounty on steamships is already taking effect, but while the building of many new steamers may be anticipated, new factories are already being established, which by theip-
competition will prevent any increased profit to existing shipcompetition Most of the machinery for these factories is, according to Messrs. Matheson and Grant's "Engineering Trades Report," being ordered from England; the iron trade here will probably also share directly or indirectly in the supply of the material; and
the vessels when completed will have to compete at low rates of freight, with British-owned ships. In America a bounty on shipbuilding, though talked of, is hardly likely to be granted, for it would be useless unless followed by heary subsidies,

LETTERS TO THE EDITOR.

We do not hold ourselves responsible for the opinions of our

the strength of nuts.

SIR, -I shall be obliged to any reader who will give me a rule for calculating the thickness of nuts, so that they will just strip their
threads at the time the bolt is on the poont of breaking. The
strengtl of a nut is a function of its thickness and the circumstrength of a nut is a function of its thickness and the circum-
ference of the hole; but the strength of a bolt is a function of the square of its diameter. Ought not nuts, then, vary in thickness
as the squares of the diameter of the bolts? In using lock nuts which shourld be on top-the thick one or the thin? HELIX. Manchester, July 25 th.

SIR,-Having read the correspondence respecting safety valves,
I beg to enclose tracing of one that has given satisfaction after the I beg to enclose tracing of one that has given satisfaction after the
first few trials. The springs comnected with these valves have been severely tested. The safety valves are set to keep a working
pressure of 80 lb . The valves blow off freely at $82 \frac{1}{2}$ lb. The pressure of were tested in pairs in the following manner:- A d dead
weight of 1899 lb ., 2168 Ib ., and 2439 lo., $=$ to pressures representing 70 lb, so so li, and 90 , ib. on valves, were placed on onsprents,
and springs suspended, and with each weight worked freely,
showng

This shows a depression of spring
of $\frac{1}{10}$ in. for every 10 lb . pressure on valve. After the tests the
valves were connected, and
steam raised in each boiler sepasteam raised in each boiler sepa
tately and the valves lifted
at 75 Ib., being 5 lb. under the at 75 lb ., being 5 lb. under the
working pressure. This loss of
pressure I attributed to
 duced washer to allows 80 lb
to be maintaine. After the
washers were reduced, steam wa Wassers were reduced, steam was
raised in boilers as before; the
first blew first blew off at 80 lb, No. 2 at
78 lb., and No. 3 was also under the pressure. Eased a littlte more
off each of the washers, and for one trip they were correct; ; after
that they hlew off about 2 lb.
under the pressure under the pressure. The valves were overhauled again the first
opportunity, the faces of the
valves were turned up in tothe and re-ground, with in lathe
esult $;$ and on fuithe tion, found that the hoxe in the washer, that takes the thrust
of the springs, was bored out wasnot taken on the whole surssuree
of the collar of the spindle. The collars of the spindles were turned
ti, the washed marked A bushed
twith inon with iron, and washer again rea good 80 lb . pressure. Stean
was raised a gain serarately, and
each boiler blew off at $82 t$ lh. each boiler blew off at $82 \frac{1}{1} \mathrm{lb}$.
They have been working for nearly
two years without any alterator, and cease blowing when the pressure has fallen about 1 lb .
The valve faces are about tin.
thick, but chamfered off to thick, but chamfered of to 1 inin,
and blin. diameter. The evalves
are examined leaned, and the springs show no signs of weakness.
Corfu, June 18sh.

Corfu, June 1881
Sin, - I must crave permision rificers, r.N.
though "Experience" shoulds consider a the the height of impertinence
that I am to say another word on the subject that I am to say another word on the subject.
Does " Experience " allow that there Does "Experience" allow that there is any one living as well
fualified to speak as himself? One would imagine not from the tone of his letter. He may stand high in the engineering world ont for all that I can't see why his doctrine should be accepted in the ludierously humble and unquestioning spirit he seems to wish. No doubt such a being as myself must appear very insignificant
when seen from the ofty eminenee on which he has taken his
stand stand, and my suggestions are of course in keeping. Let me
observe here, as I did in my former letter, that those surgestions I

My object in writing will be found in the first few lines of my
Metter, and if "Experience" will trouble to read it little more carefully he will doubtless find it. If he will deign to look at this one-and notwithstanding the contempt he has expressed I I daresay
he will-I hope he will understand me better. I will not, however, lelay the subject under discussion any longer, but at once come to the point by asking him to allow me to put a question or two, and
if he will lindly favour me with answers I shall be much obliged, as probably a good many interested ones will be. on the ship Sulphyur, prosition as me ask, "WVere a total failure when tried trial favourabe to the end required?" I doubt it. Also, "What
was the 'ause' of failure?". Again, "What is the actual
necessity for tep a higshly scientific man on a cruise? I' I can quite understand of desirability of his presence where experiments under diff erent conditions of steam propellers, weather, \&c., are undertaken, but
I cannot imagine any contingency likely to or action, that a good pontingency likely to happen at sea, in storm Trade frrst-class engineers, could not grapple outh better Board of
the highly scientific mas well as
Perhaps I sound terribly revolutionary to such men as "Experien
in the quite aware of the number of wasters entered as artificers in the navy. Good mechanics can generally pick up work on
shore. This being the case, it is not to be expected that they will
go to sea to serve in the capacity of drudges; but once open the way for them to rise to the responsible position, and d I ont doubt dhe
the result. The U.S.N. works very well, I allow ; but would it not work. just as well without the division ". Experience "auddo-
cates? I imagine it would. Certainly the staff could be reduced.
The scientific The scientific man has his place and the practical man hiss sted,
former in our dockyards and factories designing and carrying the work, and the latter maninulataing and antending that carrying out when
completed, with the exceptions I have mentioned. Once egive the
artificer better nearer the level with the engineers. This, to my mind, is a his
take, take, unless you throw down the division and let the road to the
higher position be opened for him. Otherwise jealousy and illwill
are sure to arise. are sure to arise,
"Exprience, evidently has a very low opinion of the mechanic
-so have I of some-but I do know from -so have I of some - but I Io know from my personal experience
that there are numbers capable of qualifying themselves for a a
position such as engineer on board ship. I am the more convinced
of this since I have been in the north. I Ion't think any one will
question the fact of one ounce of practice being worth a pound of
theory heory. This holds good a hundredfold in the engine-room a sea. The question may be asked, "How about our present staff?",
Iy answer is that they can't be damaged, for if they are good practical men they are quite able to hold their own, and even if
not they would no doubt follow the example of experienced friends -and with advantage one would imagine-for surely they would our naval ensineer department, appears to me to be what I have put forward-viz, Do away with the division, have a decently stiff examination, and let those rise from the ranks who can.
I will close by asking "Experience" to recognise the fact that the opinions of oothers "must" be considered, and that a vas Edinburgh, August 1.
battersea bridge.
Sir, -It is often enough said now-a-days that this is emphatically the "age of iron "" and there certainly can be but small doubt
about it. It is so. All materials are giving way more or less about it. and most certainly that material which once on a time, as in Gothic days, was in as much request-viz, timber. Examples
there are all about us of this wooden or timber building, as it was there are all about us of this wooden or timber building, as it was
in many ways; but in nothing is the change of material as a meang of construction more notable than in the item of bridge building. Old London Bridge, as at first, was of wood ; and the present Battersea and Putney Bridges, even to this year of grace, are of wood. They are pots oway, and give place to the all but, in an
are doomed to pass awa are doomed to pass away, and give place to the all but, in an
engineering sense, ubiquitous iron, Battersea Bridge, which has
so often figured in pictures, and in ibroes studionter in pictures, and in libres studiorum, and otherwise tures over Thamestiver were, and are, very ingenious specimens o pure timber construction, and with some little trouble I here
restore, by way of record, its constructional features, as it must
gold, and W. Bell Davies, of the London School of Mines, in his
report datel the 1st of March last, informs theo directors that even report tated the 1 st of March last, informs the directors that even
with the adantation of "all limprovementsin stamping and milling" With the adaptation of "all improvementsin stamping and milling
they will still always lose 40 per cent. Yet not one of the ores
worked by worked by these companies can be called refractory; the
gold in each instance arises simply from defective treatment.
It is not to be expected that the Indian gold mines will escape
the mistakes and blunders which have produced the startling losses of gold in other countries, and I have cited these losses, not to dis courage the prosecution of gold mining enterprise in India, bu up to the present-judging from some of the machinery which ha bren sent out to India-to have been least thought of, viz, the efficiency of the means employed to recover the gold.
The first step towards preventing or reducing loss is to ascertain
correctly what amount of loss is taling place. The shareholders in every Indian gold mining company should require their officers to make a daily assay of the "tailings " or waste mud escaping from the apparatus. This may be done by the simple plan of placing a and stamped stuff, allowing it to settle, so that the whole of the
solid matter held in suspension is deposited before the water is solid matter held in suspension is deposited before the water is decanted off. The deposit accumulated at the bottom of the
bucket should then be emptied into a tub, and, at stated times, the contents of the tub should be dried, thoroughly mived, mes, the submitted for assay. The results of these assays will afford an accurate register of the shortcomings of the means adopted, and will indicate the necessity for substituting better.
The mete assaying of a few samples, or crushing of a few tons of hitherto been placed before the British public to justify any share being sold above its nominal price. This is the more to be regretted as many of the properties have now been started nearly a year and
a-half; and, with the improved and portable machinery now exist. tornto portable machinery now exist the questions of what it costs to extract the gold, and what loss of

Some of these Indian mines may prove to be so rich as to pay $\begin{gathered}\text { well, despite their defective }\end{gathered}$ ppliances. A sample of such try is the Idaho mine, Grass
tran langey, California, and the rate of 90 per per
lont. priofit per annum, while
cent. saving only 50 dols. worth of or 27 per cent. - in the tail. pay when skilfully traeated, is
roved by the Port Philip and
per Working since Mining 1857 , a., who , who,
woriod
of twenty - three years, have of twenty- three years, have
raised and treated $1,156,071$ tons of quartz, which has pro-
duced 474,484 oz. of gold, or
an average of 8 dwts. 5 gr . pe ton, afrocreng a profit of nearly
half a million sterling. Should
glance how very simple and matter-of-fact the details of this timber bridge building of a bygone day was. There is certainly no attempt
at architecture or ornamentation, of any style or kind; and yet at architecture or ornamentation, of any style or kind ; and yet,
the simple constructional and engineering lines of it are singularly picturesque; ; and thus does a sort or kind of "timber arciverthy these days of transition; for what a curious thing it would be to see an iron bridge worked out in the like way. For those now
built over the Thames-as at Westminster, and the Blackfriars Railway Bridge-are imitations of stone constructions, and with
ornamental details borrowed from a distant past. That the metal iron is taking the place of wood is certain, but when shall we se an iron architecture, as in a bridge, as we see in the past of thing
architectures of stone and wood?
C. BRUCE ALLEN.
gold losses and the future of the indian mines. STR,- All who have investigated the subject know that, as gold
mining is now conducted, the loss of gold throughout the world is enormous. As I showed in my paper before the Society of Arts, on the 1un of last January, miliion pounds of en
returned no dividend -a circumstance clearly traceable to defects in the appliances used for extracting the gold. The enumeration directors and managers of Indian gold mines, that it is not the amount of gold contained in the ore which determines its dividend payimg tapa reasonable cost.
Professor R. W. Raymond, in speaking of the loss occurring in the United States, says in his report to that Government, in 1875 ,
that, "with a few exceptions, from one-third to one-fourth of the assay value of the ores now being worked, amounting to severa Almanin of dars annually, is irretrievably lost.
America, says that, from actual data obtained he loss "is fully 50 per cent., and in the majority of mills all 60 pe cent., of what the ore contains.
George J. Firmin of the waste of gold in America, states in attention to the subject 10 thast, that in the Black Hills, Daloota "t they only obtain from inqui ent ef thronghout the country is that not more than 50 pe Nor are the United States sined on the average.
gold. Edwin Gilpin, A.M., F.G.S., the Jnspector of Nines since returns results, 19,000 tons of pyrites, containing on an average 2 oz. 4 dwts of gold, and $4 \mathrm{oz}, 17 \mathrm{dwts}$. of silver, with a value of $£ 1010 \mathrm{~s}$. pe ton, have been thrown away; in other words, over a million of
dollars has been thrown into brooks and swamps during the last eighteen years." In a letter to me in March last, he characterise
this much as possible through the mill, and turn the tailings into the
nerase nearest brook.
Walter A.
Walter A. Skidmore, United States Deputy Mineral Surveyo gives the following "table of the losses sustand loss of mercury countries :"-Piedmont, 35 per cent.; Hungary, 50 per cent.; Chili,
66 per cent.; Australia, 25 per cent.; Colorado, 40 per cent.; California, 27 per ce
I I have now
F. Guvinness, Warden and Resident Magistrate of the Collingwood melancholy, fact that, New Zealand, in which he speaks of the and the want of knowledgge how to extract the gold, the district,
after repeated trials, has been deserted and gold mining abandoned gave result of gold being obtained, yet the analyses of the quart能e ton having been obtained from stone which Dr. Hector and
myself took out of the reef." Let me now review some individual mines. The St. John del Key-Brazil-Gold Mining Company's ore contains about 15 dwts .
of yold per ton, of which only 10 dwts. is recovered showing one-third- 33 per cent. I am given to understand that the Brazilian
GoldCon loses about one-third of the gold contained in theirorere, The Chontaze
mines yield no larger proportion of the majority of the Indian as recently reported of one company, they have obviously no roon
for imperfect methods, and the recovering that unknown quantity of gold contained in the "tail ngs," the better for all concerned

Alfred G. Look, F.R.G.S.

the buenos ayres exhibition.

SIR, - In your issue of the 22nd inst., I noticed a short letter on Republic, resident at Southampton, stating that he is authorised to receive applications for space from intending exhibitors of
machinery, \&c. \&c. THE ENGINER of the 15th inst, contained a similar notice from myself as the representative of the exhibition commissioners in this country, and fearing that the second notice
emanating from the Argentine Consul at Southampton, whose co-operation in this matter I am glad to have the benefit of, might give rise to some misapprehension to those of your readers likely
to be interested in the forthcoming exhibition, I therefore think it to be interested in the forthcoming exhibition, 1 therefore think
will be as well if in a few words I explain how the matter stands will be as well if in a few words I explain how the matter stands
The Buenos Ayres Exhibition then has been originated and will Ayres some years past, and whose that pertains to science, art, industry, and agriculture. From this were chosen to promote the objects of this exhibition, and to act as commissioners of the same, they again appointing representatives in the various countries likely to be interested, I being officially appointed by them so to act for this country. The commissioners
of the exhibition have also been fortunate in obtaining the assistance and patronage of the National Government of the
Argentine Republic, and the latter by way of promoting the interest of the exlibition as much as lay in their power, amongst other means have issued instructions to Argentine Consuls in the various countries interested to do all they can to help in the matter
and make it a success, hence the notice from the Arrentine Consul and make it a success, hence the notice from the Argentine Consul
at Southampton in above dated issue, who was acting strictly to instructions received from his Government.
With your permission, Sir, I would like here to say for the information of many of your readers, that the Argentine Republic
is one of the most favoured of the South American States, and is rapidly developing the many resources an dindustries that already abound, as well as commencing upon others that have not
hitherto been opened out, so that there is abundant scope for our hitherto been opened out, so that there is abundant scope for our
engineers and manufacturers to supply a demand which is daily increasing, and up to the present has been largely supplied from beginning to find out-as strongly exemplified by thus inviting the Whole of Europe to send machinery to Buenos Ayres to compete at machinery from the United States, though mostly very ingenious and wonderfully cheap in first cost, is, however, very dear in the
end, being generally of too light and fragile a character, and as a end, being generally of too light and fragile a character, and as a
result often times worn out before fairly getting to work; now therefore is the time for us to be up and doing, or we shall have by-and-bye the poor satisfaction of seeing that machinery from the replaced by that from Germany, France, or Belgium, instead of our own, for continental engineers are in several very important
branches which result the last Paris Exhibition, I believe, added not a little. International Exhibition at Melbourne has been placed in my hands, and it is exceedingly gratifying not only to see the mother country so largely and worthily represented at that important gathering,
but also to notice the very large number of prizes accorded to British exhibitors, and I can venture to predict that any firms from embrace some if not all of the following qualities, viz, simplicity in design and compactness, economical in working, portability, climate, and last, but not least, moderate in first cost, that they will find their endeavours rewarded, not merely by medals and stantial and to be desired, viz,, a good and constant supply of
soHY HAYFs. profitable orders.
27 , Leadenhal-street, E.C., July 27 th,

RAILWAY MATTERS,

IT has been announced that the Berlin-Charlottenburg Tramway Company intend to introduce electricity a.
part of its line, about two miles in length.
The tender of Messrs. Wilkes and Company, for the extensions of the North London Suburban Tramways, from Edmonton to
Ponder's End, has been accepted, and the works will, we under stand, be at once commenced.
HustiNg cars have been placed upon the Pennsylvania Railroad
They are fitted with berths, kitchen, refrigerator, ice-chest for game wine closet, gun closet, ammunition room, accommotation
for twelve dogs, and wheels adjustable for broad or for twel
roads.
THE total length of the St. Gothard Rail way, which will connect the Swiss lines with the Italian railway system, will be 152 miles,
of which fifty-nine miles, or 17 per cent. of the entire length is of which firty-nine miles, or 17 per cent. of the entire length, is
represented by tumnels, fifty-nine in number. The total oost will
be f6,800,000. The lenthth of the great St. Gothard Tunnel is tepresented oy. The length of the great tst. Gothatr Tounnel is
be \&f,80,000
nine miles 468 yards-about a mile and three-quarters longer than nine miles 468 y
the Mont Cenis.
ON Saturday last the directors of the North-Eastern Railvay
Company and Mr. Tennant, general manager, visited the colliery villages between Annfield and Clester-le-Street, where it is proposed to construct a new railway for passenger traffic. The
directors then proceeded to Bishop Auckland, and drove to Spenyy directors then proceeded to Bishop Auckland,
moor, inspeting the district with a view of
between Spennymoor and Bishop Auckland. THE report of the directors of the Belfast and Northern Counties
Railway hhowsthat the miles worked by the company was 179 and
while the total train mileage was- passenger 295, ${ }^{292}$ miles, and
 printed in a handy octavo pamphlet form, instead of the ugly anwieldy shape and character that makes one desirous of finding
a waste paper basket immediately on receipt of those of some
companies.
Av interesting pamphlet entitled "Notes of a visit to the works
the St. Gothard Railway, from Monte Cencre, near Lake of the St. Gothard Railway, from Monte Cencre, near Lake
Maggiore, to the commencement of the line at Immensee Lake of
Tun, , Zug," has been written by Mr. C. G. Ethelston, C.E., and published
by Messrs. E. and F. N. Spon. It is accompanied by two plates plans of the north and south approach lines to the great tunnel, and although giving little information not accessible in our own pages
or the Proo. Inst. Civ. Eng., the author's description of what he saw during several day's inspection of the several spiral tunnels,
the great tunnel and the railways, is interesting, and the collected information is comprised in a handy form.
Ar the meeting of the Railway Rates Committee on the 1st inst. atter the examination of Mr. Farrar, of the Boarc of Trade, the
chairman, Mr. E. Ashley, submitted a draft report, in which the chairman, Mr. E. Ashley, submitted a draft report, in which the
following recommendations were made: "That EMe Railway
Commission should be continued as a tribunal to deal with railway cases; that the classification of goods rates should
be revised; that mileage rates should be separated from the erminal rates; that chambers of commerce and chambers of agriculture and other public bodies should have power to
appear before the Railway Commission and that the Commission
should have power to deal with illegal charges and to give damages in cases where such charges have been proved to exist.", A second report was submitted by Mr. Barclay, and in the discussion which
followed a feeling was expressed against submitting any report to
 adjourned until yesterday.
hecomning to the evidence before the committee of inquiry into the Lought 30,124 tons of fish last year to terillingsaite ; the Midany
bridland
 Oondon, Brighton, and South Coast, 605 tons; the Great Western
6724 tons ; the South--⿰astern, 3071 tons; making a totaler, of 86,920 tons; and thens of fish
corried to Billinggate by these railways. Mr. W. Wirt, general manager of the Great Eastern Railway, , said that a return up to to
June 30th shows that every van which entered Billinggate was Lelayed, on an average, four hours at the market. Mrr. Oakley, of
he Great Northern, said that they allowed three and a-half hour for their vans to deliver fish in the market; bbut, as a rule, it took
from six to seven hours, and sometimes ten. In fact, he said it took a man as long to go from King's Cross to Billingsgete with a
load of fish and return as it did to convey the fish by train 200 miles hrough the country.
 visith the object of judging its market. The goods stations of various railways meet almost on
the spot, and might enable the fish to be discharged there without transferring to vans. The completion of the Inner Circle Railway with a station at Tower-hill will also afford facilities for persons
attending the market. The Money Bill of the Metropolitan Board
of Works has passel the House of Lords. The following is the clanse relating in the markets of the metropolis which was introduced on the motion of
Mr. Firth :- "The Board may, as part of their general expenses, pay all costs, charges, and expenses which may be incurred by
them up to the 31st day of December, 1882, of and incidental to any inquiry to be instituted with respect to markets for the sale of food supplies within the metropolis, as defined by the Metropolis
Management Act, 1555, and preliminary to, in, and incidental to the preparing, applying for, and obtaining, an Act of Parliament
with respect to such markets or any of such matket ON Saturday last a trial trip was made between London and
Glasgow on the London and North-Western and Caleconian Pail ways with a couple of new forth- foestern and Caledonian Rail
waylt ant the London and North-Western which have been
built Wolverton. They are thus described in the Timpes:-The paiv are new arranyement is a gangway running from end to end, into
which various small compartments open. At each of the two
extreme ends of the counter seats, seats, avaiable eether as seats by day or as two couches at night,
and with tovosleeping berths
roof, draw down above them from thordine the sleeping accommodation for four passengers, ocoupies the whole breattu of the vehicle, and has a door opening into a compartment
in which an attendant is in waiting. Between the two attendants comppar ments so provided-one at each end-a gangway runs, into
which the doors of the intervening compartments for passengers open. The compartments are enitted compart for four or six piapssengers
oach, and have similar, though somewhat modified, arrangements for providing sleeping berths by pulling forward a couch, which
when not in use, forms part of the walls of the earriage. Each o these compartments is provided with windows and doors similar to
the first-class conn they open into the gangway, which in turn is provided with doors and windows opposite those of the compartments, so that the view
of the passenger is not intercepted and ventilation is secured Lavatories upon approved principles are provided, and the carriage
are lighted with oil gas and heated with recommendation of the new coaches is that while they give to passengers much of the freedom of the Pullman car, they secure
more independence by being divided into a series of small compartments for four or six passengers each. They are beautifully
furnished.

NOTES AND MEMORANDA.
AT equal temperatures the thermal conductivity of water, glycerine, alcohol
and various soluti
nearly the same.
The density of mercury has been re-determined by Herr olkmann, who says that the change of volume of the specific
gravity bottle by expansion and by pressure when employed on heary liquids may materially affect the results. His new determi-
nation for mercury is $13: 5953$,

A registering thermometer for medical purposes has been made
M. Marey, who combines the principles of the Bourdon bent tube and the ordinary thermometer. Thus the Bourdon tubb acts
as the thermometer tube, and registration is effected by an index as the thermometer tube, and registration
attached across a chord of the bent tube
Mr. Enison has proposed a current meter which depends upon he electrolysis of two small pieces of copper hung, in a cell conlever. A known portion of the current is shunted through this
thing apparatus, and as one of the immersed pieces of copper grows less
and the other heavier, the beam tips, moves an index, reverses the current, and the exchange of copper recommences.
From a parliamentary return just issued it appears that the amount of sugar consumed in breweries for the year ending Sep
tember 30 th, 1880 was as follows. England, London 47.306 , 196ib. the provinces, $95,311,008 \mathrm{lb}$; Scotland, $963,2491 \mathrm{~b}$; Irelan $4,325,693 \mathrm{lb}$. making a total for the United Kingdom of
$147,906,146 \mathrm{lb}$. In 1856 the total consumption in the United in the twenty-five years from The whole amount consumed 1856 to 1880 inclusive was
$1,108,244,178 \mathrm{lb}$.

A rine, brilliant, elastic dressing for leather, can be made as
follows : To 31 lb of boiling water add, with continual stirring, a half poumd or whal brown candy. Finally add two and a-half punces of alcolles after the whole is cooled, three ounces of fine Frankfort black The dressing is thinly applied to the leather with a soft brush, and polished with a stiff brush
A correspondent of the American World at Mexico reports the a discovery of a new Aztec calendar stone, by Captain Eavans, under
Indian hut, which stood on the place that once Netzad the favourite garden of the Texcocan "Poet Prince hieroglyphs, and near the centre of it is a clearly cut calendarsimilar to the "Aztec Calendar stone" which is now in the National Museum. Further excavations are to be made on the same site.
Pror. S. P. Langley has made the following calculation:of the Alleghany Mountains to bring to the earth in che min enough heat to warm one gramme of water by 1 deg. C therefore, if concentrated upon a film of water $\frac{1}{500}$ th of a mill metre thick, one millimetre wide, and ten millimetres long, raise $83 \frac{1}{3}$ deg. in one second, provided all the heat could be maintained And sinume the speciric heat of platinum is only 00032 , a strip be heated in one second to 2603 deg . C. -a temperature sufficient to melt it
To illustrate the demand for stationery, it is mentioned in the catalogue of the recent printing exhibition, that in 1878 the number of letters, post cards, printed books and circulars,
newspapers, \&c., delivered through the various post offices in Europe amounted to $5,285,000,000$; through the post offices in America, $1,243,500,000$; through the post offices in Asia and through the post offices in Africa, $3,400,000$. The averages per head for the population of the world were $3: 3$ (letters and post-
cards) and 1.5 (printed matter). In Great Britain the combined Siner the atition
quantities or value of paper manufactured in this country hav imports and exports registered by the Board of Trade Returns 1879, the value of the stationery articles of British manufacture exported was £2,993,828, and of foreign goods re-exported
$£ 223,309$. The value of the imports during the same period was $£ 3,377,481$. There are 354 paper mills at present at work in the country, employing over 560 paper making machines, and about
16,000 persons. It is estimated that the quantity of different kinds manufactured in the country must exceed $300,000,000 \mathrm{lb}$. in weight.
Times, heat in Naples-according to the correspondent of the seval days, he writes, it has been 96 deg. Fah. in the shade. "In 1793, says the Roma, the heat was intenser than ever recorded.
The thermometer stood at 100 . The spring had been cold, and in June fires were found necessary. The present scason has been very similar. We have entered 'Leone' only two or three days, and "Among the years celebrated for their great heat," says oma, were $1793,1822,1832$, and 1842; and 1881 will take its place among them., True it does not last long here, but we
to be able to stand 96 deg. as well as the Italians, after all.
According to the Bulletin de la Societé Industrielle de Mulhouse the difference between emines of one two oylinder
of economy, is very slight. In ranging from 80 to 8000 horsepower, with revolations varying from 25 to 90 per minute, the
expenditure of steam for a given amount of work remains the same expenditure of steam for a given amount of work remains the same
for the same type of motor; the consumptions for two cylinder notors are identical for Woolf and compount way as to give the maximum efficiency; the expenditures of steam in motors of one, two and three cylinders, suitably regulated and
constructed, are so nearly alike that the choice may be governed constructed, are so nearly alike that the choice may be governed
in each instance merely by the fitness of the type of the engine for the particuiar purpose desired.
WATER glass may be prepared by melting together in a crucible
powdered quartz or quartz sand and carbonate of soda small quantity of charcoal is in anduced, but if the materials use are free from metallic oxides and compounds this is unnecessary
Fine infusorial earth is nearly pure silica and makes excellen water glass. Where quartz or sand is employed it is reduced by grinding together with the calcined soda to a powder, the whole of
which will pass through an eighty-mesh wire-gauze sieve. The following are the usual proportions in which the materials are parts ; charcoal, 3 parts. Or (2) Quartz sand, 100 parts ; calcined parts ; anhydrous carbonate of soda, 34 parts ; pow into clay pots
4 parts. The ingredients, thoroughly mixed, are put in and gradually heated to bright redness; carbonic acid and oxide
escape and the mass gradually becomes liquefied. When effervescence ceases and fusion is complete, the contents of the pots are
poured out on clean stone slabs to cool. Cold water searcely diswater it gradually dissolves. If the boiling is continued some time and a sufficient quantity of glass is added, a clear sirupy liquid or a nearly colourless jelly, according to circumstances,
These solutions may be diluted with hot water. The solution con-
taining about 30 per cent, of the glass is most used.

MISCELLANEA.
Messrs. Kennedy Brothers have discovered a large and The opening of the Paris International Electrical Exhibition, which has be
August inst.
We have received from M. L. Poillon, of 158 , Boulevard Mont pump in particular, and containing a great deal of information on the theory of centrifugal pumps in general.
A company of some of the best business men and capitalists of Cincinnati has, the American Manufacturer says, been organised under the name of the American Iridium Company, with a sub-
scribed capital of 240,000 dols., for buying, manufacturing, and selling iridium.
A FINE masonry arch, carrying the Washington water supply
aqueduct over the Cabin John Creek, has a span of 220 ft., and is
101 ft , in height. It was built in $1853-63$ thus being delayed by 101 ft , in height. It was built in 1853-63, thus being delayed by
the civil war. It is not stated who designed it, but General
Montgomery C. Moigs was the Montgomery C . Meigs was the engineer
the largest masonry span in the world.
THE death rate in Paris during the hot period of last month from
the 15th to the 21st inst., rose 50 per cent. The average number of deaths per day in the French capital varies from 112 to 125 .
During the heat it rose to 192 . There has been no epidemic, but 500 people died in Paris that week who would have survived if the Northallerton is looking to the village of Kepwick, situated
at the foot of the lofty range of hills about seven miles to the east of Northallerton, for a supply of water. A stream of water springs
from the hill at this place, and an examination of the surrounding ground has been recently made to ascertain if a suitable site for a
storage reservoir exists, and whether the supply would be sufficient. A new iron screw steamer, the Thetford, has been launched from
the yard of Messrs. R. Thompson and Son, Southwick, of the following dimensions:-Length, 240 ft ; breadth, 34 ft. ; and 17 ft . depth o 100 A 1 , she has a long quarter deck, with short full poop containing cabin.
masts, and chart and wheel house are all built of iron. She will be
engined by Mr. George Clark, Southwick, with engines of 130 engined by Mr. Geor
We learn that Mr. David Brown, of the Chapel Hill Pattern Works, Huddersfield, has recently added to his plant of model or
pattern-making machinery, a massive new wheel-cutting and dividing engine, constructed with every recent refinement, an weighing upwards of 4 tons. The dividing wheel is 7 ft . 3 in .
diameter, and has been divided by a Whitworth's standard. It i noticeable that amongst the cog-wheel patterns, mostly made by
Mr. Brown, the semicircular top and bottom tooth, so largely usei Mr. Brown, the semicircular top and bottom tooth, so largely use largely into
enormously strong
The Plynlimon scheme for supplying Aberystwyth with wate
has been almost completed. The 16 miles of pipes have been laid and the lake on the mountain has been tapped 14ft. below the surface. The Mayor and other members of the corporation were
present. The lake is upward of 11 acres in extent, and the water is among the purest in the United Kingdom. The works have been £16,000. The works have been carried out for the amounts
estimated for. This scheme puts an end to an agitation that has estimated for. This scheme puts an end to an agitation that ha disturbed Aberystwyth for upwards of a
The supply of water is practically unlimited.
AT a meeting at Yarm, on the 27th ult., held to consider the
prevention of floods, it was stated that the erection of embank ment walls for the reclamation of land and deepening the channe by Stockton and Middlesbrough had increased the floods above damage by future floods at Yarm can only be lessened by the Tee Conservancy Commissioners shortening the river at Preston and (2) "That the Tees Conservancy Commissioners be requested to from the arches, and repair all damage done to the property of riparian owners above Stockton Bridge.
A material, called carbolineum, is being largely used in Ger
many, and to some extent in this country, as a preservative of woodwork, ropes, ac.
taining, among other things, about 10 per cent. of carbolic acid and ts, and being nearly as liquid as extent, but does not close the pores. It seems to be very effective as a preservative of wood for outdoor use, for wood buried in the
ground as posts, or wood constantly wet, or wetted and dried. It is much used on German railways for sleepers, sheds, bridges, and
fences, and would be useful to farmers for preserving the woodfences, and would be useful to farmers for preserv,
At a meeting of the Hull Waterworks Committee on the 29 th ult., a report was presented by the waterworks engineer ont the
water supply. The consumption during the previous fortnight
amounted to $83,210,290$ gallons, and was the highest on record. amounted to $83,210,290$ gallons, and was the highest on record.
Owing to the small rainfall and the continued dry weather, with level, and unless there was a rainfall within the next few months,
there was great danger of the supply falling short. During the there was great danger of the supply falling short. water by the
discussion it was stated there was a great waste of publy, lessened. New bores are being put down in connection with the waterworks at Springhead, and the engineer was authorised to
see the contractor with a view to accelerating the completion of
A NEw torsion governor has been designed for use with marine
and stationary land engines, by Mr. E. A. Bourry, C.E., St. Gall, Switzerland. The stationary engine governor really consists of an
intermediate motion having as main fatures two pulleys on one shaft, the pulleys being connected sy the ine pulley receives the motor power, and the levers are thus affected in accordance with the amount of work being transmitted, and as the crank arms, cc., are commected by a
sliding sleeve and lever to the steam engine or other motor, the governor acts in anticipation of the engine. As applied to a screw
shaft it is modified, but the principle is the same, the two end of the springs anditing where a coupling would usually be fixed. The parrangement gives great facility for the attachment of
showing the power being used and the fluctuations therein.
A RETURN issued by the American Consul in Birmingham shows
that in the quarter just ended the exports to the United States from Birminghamand the neighbourhood, Redice $£ 190,000$. This is a falling off, compared with the corresponding quarter of last year,
of $£ 80,000$. Of this quarter's total $£ 160,000$ is from Birmingham alone, and this is a decrease of $£ 73,000$ upon last year. The decline
has been chiefly in iron and hardwares, buttons, chains, and hoes,
$\&$ c. There has been an increase in anvils and vices, chemicals and

 for sheathing, $£ 4925$; and guns and materiall, $£ 4$,
ware sent from Wolverhampton totalled $£ 11,899$.
TANK LOCOMOTIVE.-DUTCH RHENISH RAILWAY.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS

inform order to avosond trouble and confusion, we find it itters of inquiry addreseessary to to inform correspondents that letters of inquiry adaressed to the
public, and intended for insertion in this column, must, in all
cases, be accompanied by a larye envelope legibly directed by the casse, be accompanied by a large envelope legibly directed by the
vriter to himself, and bearing a 1d. postage stamp, in order that answers received by us may be forwarded to their destination. No No
notice will be taken of communications which do not comply with notice instructions.
these inster

* We cannot under rake to return drawings or manuscripts; we ** All letters intended for insertion in The Engineer, containing questions, must be accompanied by the name and
address of the writer, not necessarily for publication, but as a
proof of pood faith. No notice whatever proof of good faith. No
anonymous communications.

 obe $8 \div \frac{\text { radius to centre of balance weight in inches }}{8 \downarrow}$
heating by hot atr.

sack and bag making machinery
Str,-Kindly allow us to ask through your correspo

sUBSCRIPTIONS.

 I/ credit occur, an extra charge of tioo ohillings and sixpence per a
be made. T HE ENoINERR is registerel for transmission abroul. Cloth Cases for binding The Evarsere Vo umue, Price 2s. $6 d$ each.
Many Volumes of The Enarnerr ean be had pmice 1ss eaci Many Volumes of The Exainerr can be had price 18s. eaci

 Remittance by Post-aftice Order-- Australia, Belgium, Brazil, British
Colubiia, British Guinan, Canada, Cape of Good Hope, Denmark,

ADVERTISEMENTS

The charge for Advertisements of fourr lines and under is three shillings,
for every two lines afterwards one shilling and sixpence opd

 regularity, but tegularity cannot be geurrented insed any suith all
except weekly advertisments are taken subject to this condition.
Advertisements cannot be Inserted unless Delivered
o'clock on Thursday Evening in each Week.

DEATH.

THE ENGINEER.
AUGUST 5, 1881.

dredging plant.

Not long since we called attention to the defects most patent in the class of machines used for dredging. Our this subject by the delay, and consequent wasteful expenditure, which have arisen in the dredging operations the island of Ceylon. The history of the machine there employed has been rather an eventful one. She was sent for operations at Batavia, and while on her voyavernment suffered shipwreck in the harbour so celebrated for similar disasters, Galle, in Ceylon. At first considered to be a total wreck, she was purchased as such by an enterprising firm
of Colombo merchants, Messrs. Leechman and Co, who, by a moderate expenditure, succeeded in recovering her, and was fully refitted. After some time spent in negotiation, she proved a fortunate speculation to her purchasers, she
having been bought by the Ceylon Government for the
work we have above work we have above referred to. It will be urged, possibly, that the total cessation of
work by this dredge cannot properly be work by this dredge cannot properly be said to be due to
defective design, as it has arisen from want of forethought -or we may possibly say, accidental delay-as to the supply of the many pieces of spare gearing necessary to the
efficient working of a dredge ; but in pursuance of the efficient working of a dredge ; but in pursuance of the
criticism of our article of September 12th, 1879, we would point out that it is due to the present mode
of construction of dredging machines that an unlimited of construction of dredging machines that an unlimited
supply of spare gearing becomes a matter of such great importance. Perhaps no more cumbrous form of
excavator could be devised than the bucket chain fitted to most dredgers in use. Every part of it is subject to the highest degree of frictional wear, under conditions which render that wear more than ordinarily fatal to longevity The droppings of sand or other detritus from the buckets work into every joint and every bolt hole, and the grind ing process soon ends in their destruction. Now ine mere serious matter ; but it must be borne in mind that directly a bolt on one side or the other of the bucket chain gives
way, there are only the faced ends of the rollers to prevent way, there are only the faced ends of the rollers to prevent
the chain, with its the chain, with its heavy load of buckets-filled perhaps to the very cutting lips with ponderous clay-being swung
altogether off the ladder. As it requires some little time to signal to the engine-room and stop the machinery, the
broken chain is dragged upwards, so that its sound side broken chain is dragged upwards, so that its sound side band, when slipped on the edge of the drum, seeks its central periphery. Hence the chances are greatly in
favour of the chain altogether leaving the ladder and favour of the chain altogether leaving the ladder and
hanging suspended, with its full loaded weight, from the upper and lower tumblers only. Practical dredger engineers know what this means, and the delay that rigging of
tackle, \&c., for rehoisting the chain into position on the tackle, \&c., for rehoisting the chain into position on the ladder causes in such cases. Further, it is often experi-
enced that the shock of the massive chain leaving the ladder rollers parts the bolt which secures the sound side of it, and then there is a rush, and presto, the whole chain and load are at the bottom of the water. It
is all very well to say that the latter accident is not of common occurrence. We admit that, fortunately, it is not so, but it is within our own experience, in a case where a
dredge furnished for harbour deepening was delivered in rather a worn condition, that fully half the time during which she was kept on the work was taken up by the delay and repairs arising from the fracture of the shackles
and their bolts. Now, what do such delays mean in machines of this kind? It is not merely that their crews are to a great extent idle, but the flotilla of barges
attendant for the removal of dredged material, which are maintained at far greater cost than the dredge itself, are for the time thrown entirely out of employment. In the case of the Colombo dredge, these fatalities, which appear
to have been unprovided against, must have cost the colony a large sum. It would not be possible to dismiss the crews of the mud boats during every temporary delay,
and even when it became necessary to cease work altogether and even when it became necessary to cease work altogether
pending the arrival of a supply of bolts and shackles, the pending the arrival of a supply of bolts and shackles, the
dismissal of a body of men whom it might be exceedingly difficult to collect again would be a course of impolicy and expense. We do not here propose to inquire as to upon
whom the responsibility rests for the non-supply of spare gear. It is only our object to take for our text the imperfections which the failures we have referred to indicate as being inherent in the design of this and of most of our dredging machines.
We have named above only the bolts as liable to give rise by their failure to serious and expensive detention; but
the case is far worse, as a rule, when the shoes or shackles to which the mud buckets are rivetted give way. It is the practice to countersink the former so that the rivet heads
holding the buckets may be finished off flush with the shoe, and so enable the latter to travel smoothly-if anything in a dredge can be said to travel smoothly-over the
ladder rollers. Presuming one of these shoes to break, the ladder rollers. Presuming one of these shoes to break, the
bucket is entirely disabled, and must be removed. The weight of this is by no means a trifle, and the chain has to be clamped before its removal can be attempted. It is no
light work to effect this latter operation, and quite as light work to effect this latter operation, and quite as
heavy to place a spare one in its room. Then it often occurs that the chain has slipped somewhat, and screw gear or tackle has to be brought into play to bring the
disjointed ends sufficiently close to admit of the new bucket being shackled in. These are some of the causes of detention which arise from such apparently minor matters as
the wear of portions of the ladder gear of ninety-nine out the wear of portions of the ladder gear of ninety-nine out
of every hundred dredgers in use. How long will it be before they are obviated by more rational machines? We remarked in our former article that fully 60 per cent. of
the engine power of a dredger is expended in overcoming the engine power of a dredger is expended in overcoming
friction; such friction, besides, being most unsatisfactorily friction; such friction, besides, being most unsatisfactorily
developed in bringing about the destruction of the machine and enhancing the costliness of its working. It
does not seem to us impossible that steel wire rope might does not seem to us impossible that steel wire rope might
usefully supersede the present chain of shackles bolted usefully supersede the present chain of shackles boited
together, and the one great element of frictional cause -the sloping ladder - often working comparatively horizontally, be superseded by a perfectly upright
lift to the overhead discharge. To insure the efficient lift to the overhead discharge. To insure the efficient
working of some such system, it would only be necessary to devise a mode of lengthening or shortening the rope to adapt it to the depth of water worked in; and
without pretending to have thought some such plan fully out, it does not appear to us to present any great difficulties. If our idea could be realised, away might go the cumbrous ladder, the creaking, groaning chain, and the anging and slipping of the shackles over the tumbler
faces. In the most perfectly constructed machine these last annoyances are never wholly absent. On a steel rope would be possible, we consider, to fit a greater increasing them, their individual capacity and weight might be proportionately reduced so as to enable their handling
to be readily effected by manual power alone ; and the
renewal of any single one would not be a matter entailin the entire stoppage of work, as its small capacity would render its removal a point of unconcern until the action We hope the was arrested for some more important result our own experience with dredging machines, may induce ome of our young engineers to turn their attention to this class of machinery and its improvement. It is a field m which there is wide scope for the exercise of the inventive faculty, and they may be quite sure that the design of improvements which shall bring the 60 per cent. loss of power down to
gladly adopted by dredger builders.
oligarchical government in technical institutions.
IF any future historian should set himself the task of depicting our times for the benefit of posterity, and, dition a lesson from Macaulay, should chronicle the conand dis under which our great national industries arose ords to ertainly a striking feature of what has been called the "Iron Age." We have our Institution of Civil Engineers, established in 1818; our Institute of Mechanical Engineers, dating from 1835; and the Iron and Steel Institute, which was originated in 1869. These three institutions are all of a distinctly technical character. They deal with applied rather than with pure science ; with practical inestigations which, though rather than with speculative regards the future, cannot be shown to bear upon the present. They are, or aim to be, national, as distinct from local institutions; and they even deserve to some extent to be considered cosmopolitan. We are of course aware that there are other institutions which are also technical Architects, So sin and others. But inasmuch as these deal each with one speciality only, they are not of the same interest to engineers generally, and therefore we pass them by, technical institutions which are ready to receive papers any engineering subject whatever, and in that sense may considered general rather than special in character. But neither do we propose to allude at greater length to these, because as yet they are in the public
rather than national centres of activity.
Our immediate object is to draw attention to the form of government adopted by the three principal technical nsmedions, and to point out with a view to future ance than is likely at first sight to be apparent, and which may otherwise cause serious trouble some day. The constitution adopted in these, and indeed in all societies having their origin in a combination of equally qualified persons for a common yet specific purpose, is essentially people and for the people ; the people in this particular case being the members who constitute the association. The fundamental principle of the body corporate is equality ; equality in qualification required, equality in obligations to be fulilled, equality in rights and in
benefits receivable. This is the theoretical basis of all modern combinations. If conceivably it were ever attempted to found a society wherein privileges were to accessible to any members which were not equall society would not be likely to command support.
But all associations of individuals must have laws, and officers appointed to administer them, or their efforts could not be steadily concentrated in the desired direction. A committee or council must be appointed to work on the lines laid down by common consent of the members, and recorded in their rules. The principle of representation is here the only one applicable, and if adopted and acted upon heartily and thoroughly, in spirit as well as in letter, it can leave no reasonable ground for discontent. We say never discontent proceeds from eccentricity on the part occasional individuals only, it can never gain extended sympathy, and may safely be left to its fate.
It is not, however, always easy to deside at first sight whether discontent on the part of one or a few members, as to acts of administration by the officers, is reasonable o th. In order to test the soundness of questions raised, the officers and the malcontents ought equally to be able we have attempted to lay them down. The officers should in every such case be in a position to reply: We have administered the laws which were made by the body of the members according to the obvious intention in the minds of their authors when they were made."
If they could always conscientiously and truthfully so鲑 should they appear that the officers, whilst sticking to the letter, had departed from the obvious spirit of the laws, and from the intention of the framers thereof, then in our opinion the malcontents could not be put down as unreasonable, nor
their complaints as unjustifiable. And if it should further their complaints as unjustifiable. And if it should furthei appear that the departure on the part of efte officers from
the spirit of the laws should have the effect of practically altering the constitution of the association from a democratic to an oligarchical form, then we think we should not be exceeding our duty if we characterised such
departure as unwise and reprehensible. Let us first consider the case of the Institution of Civil Engineers, and ask ourselves whether there is anything in the policy now and recently pursued by the council which may reasonably be complained of by any important section of the memis something in the policy adopted which practically is something in the policy adopted which practically
changes the government from the democratic, which it ought to be, to the oligarchic form, which it ought not to Incorporation, can fail to be struck by the honest fairness
which is the prevalent spirit thereof. It is clearly intended that the government shall be truly representative-in other rights. But unfortunately it is specified in one place that rights. But unfortunately it is specified in one place that
elections for the Council shall take place at a general elections; for the council shall all questions submitted to meeting, and at another, that a all questions submitted to
any meeting shall be decided by a majority of votes of those present at that meeting. Now, by putting together these two separate detail instructions, and by acting upon
them as if they were one, the Council of the Instituthem as if they were one, the Council of the Institu-
tion has in our opinion virtually converted the constitution tion has in our opinion virtually converted the constitution
from the democratic form, which it was intended to be, to from the democratic form, which it was intended to be, to
the oligarchic, which it was not. The working of the
electoral electoral machinery is thus:- Retirements take place pro-
perly and according to rule. Re-nomination and new perly and according to rule. Re-nomination and new nominations are made in an equally unobjectionable way,
and voting papers are sent round to the members. But
when these are duly filled up, and sent in at the appointed general meeting, none are allowed to count unless personally presented by the voter. As the general meetings
for this purpose have always been held in London, the practical effect has been that all the members who reside at any considerable distance from London are practically Council thus falls into the hands of the small proportion of members who happen to reside in or about London. There is, we believe, nothing in the Charter to prevent the eeneral
meeting from being held in provincial towns, a step which would obviously give a preponderance of voting power for
the time being to residents in any such town selected This, however, would rather tend to encourace a mischievous partisanship than otherwise, and to direct the object entertainable, viz, to put the right men in the right place. The only cure for the evil is to cease to follow the
highly-strained, though perhaps literal interpretation of the law, and to look henceforth rather at the spirit of it; for, so regarded, it is the very essence of liberality, equality, the Charter, by all means let it be altered. If it be necessary to give it up and adopt the limited company
constitution, as the Institution of Mechanical Engineers have lately done with so much advantage, let Institution continue to consolidate itself into an oligarchy. Let not the great mass of members all over the country, and all over the world, feel that they are disfranchised by a quibble, as it were, and for no fault of their own. Let
not the non-residents, who constitute the chief strength of the Institution, and who really make the difference between a national Institution and a mere metropolitan
club, continue to feel that they can only take part in electing the officers who dispose of their money and who manage their aftairs, provided they submit to a fine every time
they vote equal to the cost of a journey to London and The wisdom of deciding all questions brought before Institution meetings by a majority of votes of those present only is obvious in all cases except elections for the dmit of discussion, and lis that those questions may those who, by absence, have not heard what may have been said on both sides. But Council elections do not
admit of discussion at the time. The qualifications of the nominees cannot be suitably discussed openly on the night of election. That is a case where each member should have made up his mind on receipt of his nomination list, and should without discussion make his selection and send in his voting paper. In fact, so clear is the reason for absent is that clear reason in the case of voting for the Council, that we are forced to the conclusion that the inclusion of the latter case must have been an oversight on the
part of the originators of the Charter. Or if it was not an oversight, it must have arisen from the circumstance that when it was drawn up the non-residents were few penny post, any voting by them would have been out of the
question.
Of the Institution of Mechanical Engineers we do not
propose here to say anything further than that their con propose here to say anything further than that their con-
stitution, as recently modified, is absolutely democratic in form ; and, as at present administered, is truly representative and all that can be desired. We wish we could say
the same of the Iron and Steel Institute. Here there is no defect of written law, as might reasonably be urged with regard to the Charter of the Institution of Civil
Engineers. The rules of the Iron and Steel Institute elating to the election of members of Council are almost identical with those of the Institution of Mechanical
Engineers. But the two Councils administer what are virtually identical rules in so different a way that in the one case the democratic principle is maintained, and in the
other case it is lost. other case it is lost.
Let us briefly consider the electoral rules of these two their operations respectively. In both cases there are fifteen Members of Council, five of whom retire annually Iny vacancies which may occur during their year of office. In the Institution of Mechanical Engineers such occasional
appointments last only until the next general meeting. In appointments last only until the next general meeting. In
the Iron and Steel Institute there is no such limitation. In both cases a voting list containing nominations by the
Council, and possibly others by ordinary members, Council, and possibly others by ordinary members, are
ordered to be forwarded to the members in time for them ordered to be forwarded to the members in time for them
to vote and return before the general meeting. Now, as to the difference in practice. The Coneral meeting. Now, as
tion of Mechanical of the Institution of Mechanical Engineers duly send round their voting list. They present not only the names of those retiring Councilmen who are again willing to be put in nomination, but they also add a few new names, the total nominations amounting to several more than the vacancies, so as to give the members a choice. Other names may be
added by the members, but it is well understood that not nominated by the Council has a chance of being elected.

The above is a fair and satisfactory mode of carrying out the rule, and secures the gradual admission into the Council
of those who are considered most deserving of the honour by the members; and, what is not less important, it secures the gradual retirement of may have ceased to have confidence. The point memberst well in view is that the whole of the members may equally take part in elections, and so feel that those who are elected are their representatives, and not the representatives of London only, as is the case of the
Institution of Civil Engineers; nor of a still smaller number of of constituents, as we shall show is the case with the Iron and Steel Institute. The way in which the
Council of the latter Institution works has latterly been thus: If a vacancy occurs it is, of course, known to the matter to fill it up without an election under the provision of the casual vacancy clause. That being done, there is, of course, never any vacancy : There being no vacancy, and the Council not caring to nominate any more than the reed for a contest, or even an election have latterly sent round no voting list of any kind notwithstanding that they are thereby distinctly infringing the rules. Casual vacancies have occasionally been
announced as laving occurred, and in the same breath a having been filled up by the Council. Certainly for some years the members have not been troubled to exercise their electoral rights, although the rules seem to provide care-
fully that it shall be the duty of the Council to see that this be done annually.
Let it not be supposed that in the case of either of these Institutions we are objecting in any sense or nor to any of their nominations. If they were all dis missed, and we were invited to select others, we might probably re-elect the same men. It is not the men who appointment we condemn. This has laid them moden of the imputation that they are not bona fide representatives of the members, as they ought to be, but, on the other hand, merely nominees of the rest of the Council, which keeps all in its own hands like a happy family. And even if it could be clearly shown that there had been always a reasonable suspicion might dwell in the minds of members, which is not a healthy feeling to be permitted to grow up. The words of warning we are giving may by some be conmay be argued that at present all seems quiet among the rank and file of these technical institutions, and that the Councils are composed of really able men who maintain their popularity with the members. We say nothing to question at issue We claim we have shown that, howeve good the Councils and Council men may be, they cannot be said in two of the institutions under notice to represent accumulated funds, and who constitute the body corporate "Peace" is sometimes ejaculated when really there is no peace, or when it is destined sooner or later to be broken which did not ubside effected. We refer to that which ended in locating the Mechanical Engineers in London, and that which gave street the class of Assockate Members at the Great George perceive titation. If once the general themselves into a state of activity which will not subside until a corresponding effect has been produced. What is ism, is altogether to abolish oligarchy and paternal of our techmical instituti democratic rights, and equal privileges in return for their equal responsibilities. This ought to be done and done quickly, and all the better if initiated quietly by existing accomplish not left for discontent and revolution to amusing to outsiders, but are surely humiliating to all immediately concerned.
wages sliding scales.
The modern method of adjusting wages in the coal and iron trades by a sliding scale, whose working is regulated by the expended, is getting steadily into wider adoption. Among the most recent applicants that it may be applied in their case, are
the colliers of South Yorkshire. It is already working well amongst those in Yorkshire West. And though notice has been given for the expiry five months hence of the scale which applies
to the blast furnacemen of Cleveland, and the miners of that district and Durham, the notice should be regarded as seeking only an alteration in the basis of the seale, and must not be
looked upon as a protest against the system. Indeed, it has just been declared by a conference of the operatives concend, that the system has worked advantageously to the men. And it i
gratifying that on the same oceasion a protest was entered against "the action of agitators,"" who were advising resistance to the $2 \frac{1}{2}$ per cent. reduction last declared. With no less firmbranches. The boards at Darlington and Wolverhampton appear soundly established. If in the latter centre there is more need
of funds than in the former, insufficient breaddh of representa tion is perhaps the cause : but this, it is fair to conclude, will be removed, as the result of the appeal which the employers and operatives' secretaries are this week respectively making to the
members of the iron trade in Lancashire, Cheshire, Derbyshire, and South Yorkshire, whose wages arrangements are all regulated by the proceedings of the Wolverhampton Board.

the london water supply.

Consmbrabie attention has been again directed to the London water supply question, chiefly by the local shortness of
water for a few hours during the recent hot days, and the Government have been led to promise legislation on the subject next session. No opportunity is lost by those who imagine all
the evils of an imperfect water supply are to be removed by its the evils of an imperfect water supply are to be removed by its
removal from the water companies, or by those who think
everything is to be made right by going a long way off for a new source of supply; but it is somewhat reassuring to find that the supply is not now so influentially wryed as it existing source of ago. The Local Government Board has provided itself with the means of forming an accurate judgment of the quality of
the water supplied, and the simple fact that a little sewage or sewage effluent finds its way into the Thames the Thames water, but its real effect will be considered. If the very cipitation in the enormous bulk of the rivers' waters, and careful analyses fail to detect any deletereous constituents, any albumi noid ammomia, then there can be no reason for going beyond the Thames Valley for water for a big city in the Thames basin. I is satisfactory to notice that all the analyses of Thames water
are more than ever in its favour, and it is further satisfactory to are more than ever in its favour, and it is further satisfactory to
find that a disposition is evident to acknowledge that however good the water supplied by the London companies' mains may be, the bad water, where that is to be found, is made bad by its
storage in dirty house cisterns. There are thousands of these never cleared out. Many are awkwardly situated, and only a mail proportion of the tenants, of the smaller houses especially boxes, these relics of a bad and wasteful system of supply, system which would be gladly discarded by water com-
panies if they had power to enforce the adoption of good water fittings.

the solent tunnel.

The connection of the Isle of Wight with the main land by railway is again directing attention to the proposals for a tumnel
under the Solent. A tunnel was proposed and designed many under the solent. A tunnel was proposed and designed many
years ago by the late Mr. Vignoles, but a more suitably placed years ago by the late Mr. Vignoles, but a more suitably placed
tunnel designed with reference to existing railways and probable extensions has been now for several years placed probabe extensions has Meen now or several years placed
before the public by Mr. Hamilton Fulton, and last year he prepared elaborate surveys, plans, sections, and Parlia construction of a railway from Southampton to the Isle o Wight, with a Solent tumnel from the mainland at Lepe, near Beaulieu, to Cowes. From the investigations made by Mr Fulton, as referred to by us on previous occasions, the under-
taking would appear to be practioable, and its completion taking would appear to be practioable, and its completion
would accelerate the journey by one hour and a-half between London and Ventnor, bringing London within two and a-quarter An impor it extent the collisions of vessels in the Solent which so often occur, and would facilitate the present traffic. From a letter by Mr. Thomas Price to the Times, it seems that some of the influential shareholders of the Didcot and South-Western Companies are said to be strongly in favour of the under taking, and it is most probable that the Great Western west who now stay away or go elsewhere, because of the crossing by boat. The scheme is one which should command ittention.

LITERATURE.

Sevage Disposal. Ten years' experience in voork:s of Intermittent
Dounvarard Filtration, separarately, and in conjunction voith Surface Doumuard Filtvation, separatetly, and in conjunction vith Surface
Irvigation; with notes on the practice and results of Servage Irrigation; with notes on the practice and results of Servage
Farming. By J. Ballex Divion. London : E. and F. N.
Spon. This may be said to be chiefly a defence of that system of sewage disposal with which the author's name is identified; but it is also a general description of what has been done at the several places whereat intermittent downward filtration has been adopted, together with rules to be observed when adopting that mode of sewage disposal, and notes upon experiences and results of sewage farming. As much abuse has, perhaps, been heaped upon this system as upon ny of the others which thave been prominently placed
before the public during the past fifteen years, but it seems very difficult to get at that part of the story which lies between the two sides. Mr. Denton has told his side of the story, and his opponents have told theirs, and another disp has been told by those who have written on sewage particular system, without any evident partiality for any satisfactory, as in most cases the evidence seems to have been obtained more or less at second hand, as to some of the chief facts which modify one of or, perhaps, the most mportant objection to sewage dispo. In some cases, that which Mr. Denton has to tell under this head, tends to the conclusion that that system is not necessarily in itself expensive, or more expensive than surface irrigation. 1 is might have told more of the actual details of the working of the system-at Merthyr Tydvil for instance. We mention that town because it has been customary to look upon the system as there exemplified; and although some of the xtrenstances under which it was there point of view, Mr. Denton might have said more in reply to certain allegations as to its want of complete success in a sanitary sense, in astance, he might have been expected to ten years experience, the character of the effluent water in the year 1880 instead of giving only the analysis of 1871. From this it is impossible to form any conclusion as to the effects on the filtering areas of long-continued use, and it is left detractors to continue the assertion that the effluent is swage of only 500 people ister and per acre; or that the character of the eflluent is appeatly fected by the large quantity of subsoil water of the Taff Valley, and that without this the effluent would be bad. From Mr. Dentons own statements it does not appear that the sewage of 1000 people is regularly applied per acre to the intermittent filtration area, although it is Merthyr, that occasionally the filtration acres had to receive the sewage of about 40,000 inhabitants for three or more weeks together. The character or quality of the
effluent at such times is not stated; but it may be inferred
that the system is deemed to be in successful operation by the authorities of Merthyr, Aberdare, Mountain Ash, and Treharris, as they have arranged to deal with the sewage of the combined populations, about 100,000 , on ander the Merthyr sewage disposal was previously effected. We are not told what proportion of this is to be prepared as interthat a considerable proportion will be so prepared, as 212 acres is so much less for a population of 100,000 than the 375 acres originally actually secured by
Merthyr authorities for 50,000 , and such a quantity could only be treated on such an area by the
filtration process. Mr. Denton explains that the high cost per head of population of the Merthyr sewage works, is due chiefly to the purchase, with a view to sewage disposal by irrigation, of 300 acres of land, about ten miles from Merthyr, which, it seems, have never been used for sewage
disposal; for the 75 acres near Merthyr were found to be sufficient after the filtration system had been tried. Why this 300 acres, ten miles away, should still saddle the is not wanted, surely Merthyr could let or sell it to those to whom it would be of use, and thus remove, or at least
reduce, this burden. If, on the other hand, this land already pays something, Mr. Denton's objection does no seem to hold good.
Besides Merthyr Tydvil, the sewage disposal works of Barnsley, Hitchin, and Oakham, and works on a small scale at Earlsdon and Radford, are briefly described, and obtained for filtration areas has been of a most suitable character; but at Hitchin the land employed is said to consist for the most part of peat mixed, where shallow, highly diluted with surface and subsoil water. The effluent is, however, satisfactory ; but 22 acres has to be must be allowed in this case for the very unsuitable character of peat, some of which is too boggy for filtration. of $£ 13,000$, out of the total outlay for land of $£ 16,371$ which have never been used for sewage disposal. The cost per head, or in the pound, for sewage disposal at most of
the places where the system is adopted, is given by Mr Denton, as we gather from different parts of the book, tion only, 4d. in the pound, but would be, the author says, reduced to $1 \frac{1}{2} d$. if the cost of the 66 acres were given ; Abingdon, population 6000, filtration and irrigation, farm pays $2 \frac{1}{8}$ per cent. on outlay ; Great Malvern population 4000 , filtration and irrigation, farm will pay 2 per cent. When $£ 5$ per acre is obtained from it in the pound; Halstead, population 6000 -filtration and obtained from it. It does not appear when the income from the Halstead and Great Malvern farms is likely to reach that amount, but it certainly is not a very high filtration do not go well tegether, may think it not realisable. Forfar, population 12,500-filtration and irrigation-farm returns a profit. Barnsley, population 25,000-filtration favourable circumst not filtration farms may be made to dispose of the sewage at no cost to a small town. It is not clear that the farming on a very large scale required for large towns could be conducted with similar success. Mr. not belong the least be said solf any more than it does to irrigation; that the two systems may be successfully worked together, if not on a very large scale, still up to nay be employed than when irrigation only is employed. It is quite clear that intermittent downward filtration areas need to be carefully prepared, and the subsequent operations and farming must be carefully carried often in too reat a quantity to permit the growth of crops, but it is, nevertheless, clear that if sufficient care is taken, crops may be grown on wide ridges with properly kept furrows. sludge coating from the furrows to the ridges at intervals and digging the sludge in when the crop is off; but there is nothing gained without trouble in these matters, and if it becomes profitable to ratepayers to pay for a small farm on the intermittent downward filtration system or that syson a large with irrigation, instead of imst be taken It must not be supposed that the filtration areas can go on filtering sewage indefinitely with equal efficiency, nor can effect of filtration is to increase the porosity of the filtering soil, because the perishable organic substances from the sewage decay and leave the spaces they occupied, while the
solid particles, being chiefly fine silicious sand, remain to act as efficient filtering material. This may be true, but the decomposed organic remains or the semi-fluid particles would not find their way into the earth were there not already interstices for them to go into, and these last must,
therefore, be gradually filled up with finer particles than therefore, be gradually filled up with finer particles than
were there before, and so on, until the bed would be imwere there before, and so on, until the bed would be impermeable. This system, however, provides against that
for a long time by the aëration which the sludge film gets when broken up and laid on the ridge, so that the organic remainsare wholly oxidised and removed, and by the digging
or ploughing up by which the fine sand is worked in or ploughing up by which the fine sand is worked in
with the coarser earth, which may, of course, be from time to time aided by coarser material. Those who object to intermittent downward filtration very commonly argue against it as they would against some highly organised
mechanical and chemical filter needing delicate attention, and only competent to operate upon comparatively pure water. It is, however, clear that there is a wide difference
between an intermittent downward filtration area drained
ft. or ift . below surface and a filter proper of any kind. There have not been many books brought out recently on sewage disposal, and though it is now several months since that we are writing on was published, it will no many afford food for thought and opposition to a good many. It is useful as emanating from one who represents a system holding an important place amongst the best stems, and no doubt will be widely read.
The pages are fortunately furnished with side notes, or it would be somewhat difficult of reference, as the index is bad.
Practical Blow-pipe Assaying. By George Atrwo
London. 1880. Sampson, Low and Marston.
In this volume the author records the methods of assaying adopted by himself during a lengthened period averen travel, for the benefit of investigars who may equipped laboratories or assay offices. The processes recorded are essentially those of Plattner's quantitative blow-pipe assaying, and the illustrations, which are numerous and carefully executed, represent the best forms of apparatus as developed by the skill of the Freiberg instrument makers under the supervision of Plattner and his successors. Besides these we have additions made by the author, including fine and coarse balances, a modificaretorts and condensers for the quantitative assay of mercury ores. These latter have already formed the subject of a communication by the author to the Chemical Society. This application in practice is described in detail in Part III., which is the best section of the volume, containing a full Harkort's scale for measuring metallic clobules which of so small that they cannot be weighed with certainty, and other accessories required for this peculiar branch of blowpipe investigation. Amongst these processes we are glad to see that of scorification prominently noticed. It is exceedingly useful, and may be made more so if practiced casting the softened and enriched lead, instead of breaking up the scorifier when cold, as recommended by the author. The mould in this case may be the top of the flatting anvil. The author's mercury assay methods appear to be simple and practical, and thanks are also due to him for the notice of Domeyko's method of detecting small traces of this metal. We do not, however, find any notice of the most delicate of all mercury condensers-a water cooled gold surface, which is now used both in assaying and testing the waste furnace gases in the quicksilver works of the Austrian Alps
In the section on qualitative determination, the promise made in the preface of laying down methods for the direct very imperfectly fulfilled; and it is scarcely possible that it could have been otherwise, considering that the author has compressed his matter into about fifty not very closely printed pages - a space quite insufficient for even a superficial treatment of the subject. Considerable laxity is also shown in the handling of numerical quantities, and more particularly in the departure from units in common use without sufficient notice being given. Thus, the chemical equivalents given are those of the old notation, and the assay tables for gold and silver ores are computed for avoirdupois instead of troy ounces, changes which should have been
The volume will be useful, as presenting quantitative blow-pipe methods in a convenient form; and to this such works as those of Brush and Landauer, which are confined to qualitative determinations.

ACHILLE DELESSE.

The death of this distinguished man must be recorded. An which we take the following facts. After a training in his native town at the Lyceum of Metz, which furnished so many scholars to the Polytechnic school, Delesse was admitted at the age of twenty to this school. In 1839 he left to enter the Corps des Mines. From the beginning of his career the student engineer applied himsolf with ardour to the sciences to which he was to devote his entire existence. The journeys which he under-
took then, and continued later, in France, Germany, Poland, took then, and continued later, in France, Germany, Poland,
England, and Ireland, helped to confirm and develop the bent of England, and Ireland, helped to confirm and develop the bent of
his mind. He soon arrived at important scientific results, and his mind. He soon arrived at important scientific results, and
was rewarded, in 1845, by having conferred to him by the University the course of mineralogy and geology in the Faculty at Besançon, where Delesse at the same time fulfilled the duties of Engineer of Mines. Five years later he returned to Paris, where he continued his university duties, at first as deputy of the course of geology at the Sorbonne, then as master of the conferences at the Superior Normal School. Besides this, he continued his profession of Engineer of Mines as inspector of the roads of Paris. The first original researches of the young saz ant concern pure mineralogy; he studied a certain number of
species, of which the chemical nature was yet uncertain or altogether unknown, and his name was appended to one of the pecies which he defined. He studied also, and with success, the association of minerals, as well as their magnetic preperties. The attributes of a practical mineralogist aided him greatly in the culture of a branch of geology to which Delesse has rendered f others allied to them. He studied in the field, as well as b investigations in the laboratory, for fifteen years, with an intelligent and indefatigable perseverance, and, aided by the results of the knowledge derived from which threw light upon the priniples of science, from granites and syenites to melaphyres and without. After thirty years of study and progress, other savanas, knowledge of rocks; but the historian of science will not forget that Delesse was the precursor of this order of research. His
studies of metamorphism will long do him honour. The mineralogical modifications which the eruptive rocks have undergone in the mass are the permanemparison of the metamorphic all his attention. The chemical comparison of the metamorphic
with the normal rock pointed out distinctly the nature of the
substances acquired or lost. One of the principal results of
these analyses has been to lessen the importance attributed until then to heat alone, and to show in more than one case the intervention of thermal sources and of other emanations from below, to which the eruptive rocks have simply opened up tracks. It is not only upon subjects relating to the history of rocks that Delesse has touched. Witness his work on the infiltration
of water, as well as his volume relating to the materials of conof water, as well as his volume relating to the materials of con-
struction, published on the occasion of the Exhibition of 1855. The nature of the deposits which operate continually at the bottom of the sea offers points of interest which well repay the labour of the geologist. He finds there, indeed, a precious field labour of the geologist. He finds there, indeed, a precious field
to be compared with stratified deposits; for in spite of the enormous depth to which they form a part of continents, they are of analogous origin. Delesse laboriously studied the producets of the innumerable soundings taken in most of the seas.
He arranged the results in a work which has become classical He arranged the results in a work which has become classical
with the beautiful atlas of submarine drawings which accomwith the beautiful atlas of submarine drawings which accom-
pany it. Though he never slackened in his own especial work, pany it. Though he never slackened in his own especial work, de la Géologie," with which he enriched the "Annales des Mines" for twenty years would have been sufficient to engross the time of a less active scientific man, and one less ready to grasp the
opening of a discovery. This indefatigable theorist never neglected the applications of science-the nature and the changes of the layers which form the under earth; the course and the depth of the subterraneous sheets of water ; the mineralogical composition of the earth's vegetation, were repre-
sented by him on several charts and plans drawn out in proper sented by him on several charts and plans drawn out in proper
form. His maps which follow the route of many of the French lines of railway explain the kind of soil upon which they are laid, and are of daily use. In the pursuit of his duties in the Corps des Mines Having in 1864 quitted the service of the Government of Paris, which he had occupied for eighteen years, he was made Professor of Agriculture, of Drainage, and Irrigation, at the School of Mines, where he established instruction in these before being called to found the course of geology at the Agricultural Institution. Promoted to be
Inspector-General of Mines in 1878, and charged with the division of the south-east Frace he areserved to the end of his life these new duties, for which, to the regret of the School of Mines, he gave up his excellent lessons there. During the year
of 1870 Delesse fulfilled his duties as a citizen, as engineer in preparation of cartridges in the departments.

His nomination to the Academy of Sciences, which took place on the 6th of January, 1879, satisfied the ambition of his lif the Geographical Society ; he was also President of the Geological Society. He was not long to enjoy the noble position acquired malady, which, however, did not weaken his intellect, and he continued from his bed of suffering to prepare the reports for
the Council-General of Mines, and that which recently he the Council-General of Mines, and that which recently he
addressed to the Academy on the occasion of his election. The addressed to the Academy on the occasion of his election. The
greatness and the rectitude of mind of Delesse, his astounding greatness and the rectitude of mind of Delesse, his astounding
power of work, his profound knowledge of science, his sympapower of work, his prof were associated with sterling modesty
thetic sweetness, which wer and loyalty of character, made him esteemed and cherishe
throughout his whole career. He died on the 24th of March.

TENDERS.

brewery at drrby

For the erection of a new 40 -quarter brewery at Derby for Messrs. Stretton Bros. Messrs. Scamell and Colyer, Engineers,
18, Great George-street, Westminster, S.W. Quantities by Messrs. 18, Great George-street,
R. L. Curtis and Sons.

LOCOMOTIVE FOR THE DUTCH RHENISH RALLWAY.
Iv our impression for July 2 2en we we geveral bection of don dobleended taink locomotive, one of several built for the Dutch
Rhenish Railway, by Messrs. Sharp, Stewart, and Co. of Manchester. We now give on page 108 an elevation of this engine taken from a photogrraph
have already said concerning it.

Tre Chesterfeld and Derbyshire Institute of Mining, Civil, and
 members will also visit the
and the Deriby China Works.

THE MORSE COTTON BALING PRESS.

The large cotton baling press, which we illustrate above, and receives the earth from it for pulverisation. On the othe is known as the Morse "Compress," and is being introduced Victoria-street, E.C. It will be seen that the lower part of the press is the moving part, and receives its motion from a pair of quadrants, to which it is connected by two pairs of huge eye rods. The quadrants have a cycloidal pitch line, and receive their motion from a rack, the teeth of which are on a curved pitch line. By this arrangement the greatest power is exerted as the compression is increased, and this is augmented by the fact that the connected rods have the greatest range of motion for equal amounts of compression just as the compression is completed. The toothed rack is attached to a steam piston in a cylinder, 90 in . in diameter, and the total pressure on the bale is strength may be inferred from the weight of some of the main parts :-Cylinder, 250 cwt.; sectors, 196 cwt. each; lower platen 366 cwt.; upper platen or beam, 517 cwt.; four eye bars 89 cwt each ; piston rod with rack, 129 cwt . The pins are $14 \frac{1}{1} \mathrm{in}$. in diameter, and, with the eye bars, made of the best hammered iron. Though very big the press is simple, and seems to accomplish a very great quantity of work, the writer of a testimonial stating that the Jefferson Metropolitan Compress Company pressed 407 bales in five hours. About 44 lb . per cubic foot, or denser than fine pine, is about the average density to which much higher than this has been effected. The value of such presses to cotton shippers may thus be easily understood. The press is complete in itself, except, of course, as respects the boiler necessary to supply steam, and there does not seem to be much or anything in it to get out of order.

COMBINED PLOUGH AND CLOD BREAKER. The implement illustrated by the annexed engravings has been designed by Mr. C. E. Sackett, of the Matilda Furnaces, Mount Union, Pa., and the American Manufacturer, from which we reproduce it, seems to think the combination a very important one. tionable whether two separate implements would not it is quesmuch better. It is seldom advantageous to combine imy time be made to carry out two distinct processes when that combination involves any complication, or when the disarrangement or want of repair of one part involves the standing still of the other. The idea here conveyed may not, however, be wholly useless. The plough is fitted with a skim coulter for the usual purpose. and the implement generally is thus described :- "It consists of a complete iron beam plough adapted in all respects to the uses This is combined with an axle, crossing it at little from one, carrying, on one end, the harrowing wheel or pulveriser, which suns in the furrow last opened right alongside the mouldboard

REAR VIEW
size as the pulverising wheel. These two wheels, with a forward gauge wheel, operating on a sliding post, constitute the running

FRONT VIEW
gear of the implement, and enable it to be transported over the
ragon or sled as without having to be lifted or loaded upon a

Our agricultural implement makers and agriculturists will form their own ideas of what this plough and pulveriser may do, but The implement same method of tillage as that of the best and most costly garden tillage-that is, "hand forking." The wheel teeth, always below the earth, represent the tines of the hand-fork, the wheel spokes a succession of fork handles, each one lifting its and lays the earth in a lighter ond the wheel tosses, pulverises, the most experienced hand labour could do it By the than this implement all after-trampling of the ploughed soil by teams in the usual process of harrowing is avoided. It is well known that the great fault of American farming is that it is not thorough enough. Better pulverisation would in many instances double the crop. Land in England is often ploughed four or five times to produce pulverisation, and sixty to seventy bushels of wheat to the acre is not uncommon. (sic.) The usual western three-horse team is ample power for this implement. It has been tried on several farms in the vicinity of Mount Union, and at Newton Hamilton, Pennsylvania, with most satisfactory
results, and with a two-horse team, mostly also in stiff clay result
soil."

A TRANSMISSION DYNAMOMETER

 AT a recent meeting of the Society of Telegraph Engineers Professors Ayrton and Perry described a dynamometer con-structed by them and used by Professor Ayrton in his lecture at the City Guild and used by Professor Ayrton in his lectures permanently attached mitted by the shaft to any machine is shown. B B ${ }^{2}$, Fig. 1, is a loose pulley used to drive the machine by means of a strap; FF^{1} is a boss keyed on the shaft driven by the steam engine. This boss has four stout arms, Fig. 3, each attached by spiral and the motion of the loose pulley resisted, the springs will be stretched, and the amount of such stretching combined with the speed of rotation, will measure the power transmitted. So far Messrs. Ayrton and Perry have followed General Morin. The stretching of the springs, that is, the relative twist between the loose pulley and the keyed boss, has to be measured. Such a twist produces a tangential motion, and the designers of this

dynamometer prefer to convert the tangential motion into a radial one for such measurement. H C is an arm, which, to combine considerable stiffness with lightness, is trussed in the plane of rotation as well as in a plane at right angles to this, as seen in the rimper part of Fig. 3. This arm turns about C, a pivat on $\mathrm{L} \mathrm{L}^{1}$ attached at L by a pivot to the arm, and at L^{1} by a pivot to the end of one spoke of the keyed boss FF^{1}. If now the

loose pulley and the keyed boss receive an angular twist, the end H of the arm, to which a bright bead is attached, moves H is showncaly towards the shaft. Tit exact C . To measure, then, the power transmitted by the engine to the machine, all that is necessary is to observe on a scale placed in a suitable position the radius of the circle traced out by the bright bead H , and the number of ascertained without stopping the machinery.
An alternative a segment on the pulley. A very small relative angular motion segment on the pulley. A very smis case a great angular motion
of F^{1}, and $\mathrm{B} \mathrm{B}^{1}$, produces in this of the pinion, and therefore of a light arm which turns with the pinion, at the end of which is a bright bead. It can easily be seen that this form of transmission dynamometer would work as well when the machine is driven direct as by the interpolation of a strap.

South Kensington Museum.-Visitors during the week ending July 30th, 1881:-On Monday, Tuesday, and Saturday, free, from 10 a.m to 10 p.m., Museum, 10,422 ; mercantile marine, building materials, and other collections, 5332 . On Wednesday, Thursday,
and Friday, admission 6d., from 10 a.m. till 6 p.m., Museum, 2238; mercantile marine, building materials, and other collections, 683. Total, 18,675. Average of corresponding week in former years, 17,875 , Total from the opening of the Museum, $20,178,475$.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our ove Correspondent.)

UPON 'Change in Birmingham this-Thursday-afternoon, as also
in Wolverhampton yesterday, the increased activity which of late has marked the finished ironworks was reported to be fully maintained. It could, however, be scarcely said that the improvement state of things is pretty much confined still to sheets, hoops and strips, and common bars. The demand from the galvanisers for
sheets is unabated, and, indeed, there was more anxiety displayed sheets is unabated, and, indeed, there was more anxiery disp weed
hy them this week to place forward contracts than for some weeks past. To an almost equal extent there was an of this description. tion on the part of sellers to retuse ofters or this description.
Singles were again priced at $£ 715 \mathrm{~s}$. to $£ 8$, doubles at $£ 810$ s., and attens, $£ 915 \mathrm{~s}$. to $£ 10$. Black sheets are going in large quantities o Australia, New Zealand, Russia, and India
Hoop makers announced, that in many cases they were declining
quote for orders, as they are already booked as far ahead as they to quote for orders, as they are already booked as far ahead as they
think it prudent. Merchants continue to offer contracts freely on think it prudent. Merchants continue to offer contracts freery on
United States account, but now that trade is improved, work for Unis market is regarded with less favour than ever. For Germany,
Italy, and Spain, hoops are likewise being freely bought. In the ast two countries they are required for wine casks. For ordinary hoops $£ 6$ 10s. to $£ 6$ 10s. at the works is demanded, and for superior,
$£ 7$ to $£ 710 \mathrm{~s}$. Common gas strip is $£ 517 \mathrm{~s} .6 \mathrm{~d}$. to $£ 6$. Thin strips for the making of tubes to be subsequently cased with brass and
used up in the manufacture of bedsteads are realising $£ 55 \mathrm{~s}$, at the Boiler plates, it was announced, were without improvement, and makers are unable to secure any advance upon formor prices, which
hherefore stand at £8 10s. to £9 10 s., and $\notin 10$ acoording to quality. Marked bars continue in slow sale, yet makers who
\&7 10s declare that they are meeting with as muert trade as those
Enrl Dudle's common bars still stand at who quote $£ 7$. Earl Dudley's common bars still stand at
$£ 712 \mathrm{~s}$. 6 d . Medium quality bars were upon the market in abundunder $£ 515 \mathrm{~s}$. It is in these two last qualities that most is doing in the bar trade.
Best tin-plate firms stated that they had plenty to do, but that
prices are dificult to get up at all prices are difficult to got up at all.
There were not very many new
There were not very many new sales of pig iron this afternoon,
but makers were in a position to announce that stocks are but makers were in a position to announce that stocks are
leclining and the deliveries are increasing. To-day's prices were
Staftordshire all-mine pigs, deciining and the deliveries are increasing. To-day's prices were:
Stafordshire all-mine pigs, $£ 3$ 5s. to $£ 3$.s. 6 d . nominal ; Shrop-
shire hot blast all-mine, $£ 3$, and cold blast, $£ 4$; Barrow and
Trederent henatite Tredegar hematites, 6「5, without business ; , native part-mines,
£2 10s, Derryshire, Northamptou, and similiar quality pigs, £2 5 s .
nominal ; and Staffordshire cinder sorts, $£ 2$ to $£ 117 \mathrm{~s}$. 6 d . The North Staffordshire finished iron trade fully maintains the recent improvement. It is satisfactory that not only are more
foreign orders arriving, but that the home demand is also improving. Already an advance of a good 2 s . 6 d to 放. per ton has been esta. lished upon bars and some other merchant sections. For the
better class of pigs prices average about $£ 215 \mathrm{~s}$, but for the better class of pigs price
common quality about $£ 2$.
Colliery owners view with undisguised dissatisfaction a proposi-
tion made by the South- Staffordshire Mines Drainage Commissioners to apply to Parliament for powers to double existing maximum ratal on coal, making it 1s. per ton. The expenses of pump-
ing in the Great Tipton District is between $£ 27,000$ and $£ 30,000$ yearly, and the income only about $£ 20,000$ The recent loon of
E100,000 obtained by the commissioners has been nearly all wallowed up in providing for the discharge of old debts and other harges that hung over the commission.
Touching the foreign demand for
Australian colonies is satisfactory, and advices for the immediate future are cheerful. An encouraging lot of work has been received from the Neww Zealand marrests, while British Indian businesses is
increasing for shelf goods, and materials are wanted in large quantities for railway construction, and the erection of large In the hings.
Birmingham Corporatio June 30 the Water Committee of the which after deducting working expenses, an in income of eharges, bad debts, \&c., leaves a gross profit of $£ 35,111$. The reserve again is increased
by the addition of $£ 12,800$, making a total of $£ 40,800$ now availble for contingencies an for depreciation and The sale of gas during the half-year ending June 30th of the of $9,128,800$ upon the corresponding period of last let, an increase leducting the amount supplied in 1880 to the district of West Bromwich not now supplied by the C
$7,31,000$ cubic feet, or about 6 per cent.
The Gas Committee of the Birmingham Corporation have placed contracts for 279,000 tons of coal for the coming year on favourable terms. On examining the tenders it was found that a large
portion of the coal offered could be purchased for two years at present prices, and the committee have, therefore, also made con-
tracts for 245,000 tons of coal to be supplied in the year ending At the half-yearly meeting of the Union Rolling Stock Com-
pany, Limited, held on Tuesday, the directors recommended a dividend on the ordinary shares at the rate of 10 per cent. per
annum-a rate which from the commencement of the company
they they have been able to recommend every six months,

NOTES FROM LANCASHIRE

Manchester.-In the iron trade of this district, business, so far the past week. As is 1 pointed out some been decide bedly dull during
thek, when the recent spurt in trade was commencing, the large make and heavy stocks,
in proportion to present requirements, are too much of a dead
weight to material advance in prices. Just now order books being well filled by the recent sales makers in most cases are firm at the slight
advance upon late rates, but where producers are not so fully sold, signs of weakness are already evident. Consumers on the other
hand having apparently mostly covered their require several months to come, enquiries are tending more towards deliveries for next year, and although there is a strong disinclinangagements, it seems very probable that no very large further business will be done until
the early portion of 1882.
Lancashire makers of pig
near the remainder of the year ind are tolerably well sold for pretty coming in, they are very firm at 44s. for No. 4 forge, and 45 s . for No. 3 foundry, less $2 \frac{1}{2}$ per cent. delivered equal to Manchester.
In some of the outside brands which come into this district th equal to Manchester has ween. quoted at 43s, 4d, iess 2 delivered eq. to 1s. per ton under what has lately been asked, and inferior brands of Derbyshire iron are being offiered at very low figures, but this does not apply to makers generally, those who are well sold
being still firm. Middlesbrough iron delivered equal to Manchester is quoted at 45 s . 4d. per ton net, but there are very few buyers here
The finished iron trade maintains a better tone than pig iron, for
although there has not yet been any largely increased demand for actual home requirements, a considerable business is being done for shipment, and makers generally are holding out firmly for an
advance upon late rates. Local and North Staffordshire bars deli-
vered into the Manchester district are not now quoted under $£ 0$
per t 0
 amount of fire-proof mill work in hand for this district.
The coal trade continues extremely dull throughout, and a re duction in prices which has this week been unexpectocdly made by
the leading colliery firms in the Manchester district has tended still further unsettle and weaken the market. In some cases re
ductuo ductions of 10d. per ton have been made on all classes of fuel,
including both round coal and slack, whilst in other cases engine fuel has only been reduced 5d. per ton. In other distriets no announced reductions have yet been made, the action of the Manchester firms having come a a a surprise, but here and there less
money has been taken for round coal and it is not improbable money has been taken for round coal, and it is not improbable,
although prices already are extremely low, that the downward although prices already are extremely low, that the downward
movement will become more general. So far, however, as engine
clases slack in most of the colliery dis tricts is rather scarce, and in some cases has been showing a ten-
deny towards siftess. dency towards stiffness. The average pit prices may be give
about as under : Best coals, 8 s . to 8 s . 6 d .; seconds, 6s. to 6 s . 6d common coals, 4 s .6 d . to
slack, 3 s . 9 d . to 4s. 3 d .; and inferior sorts, 3s. to 3 s . 6 dd . per tonl
The accompanied by a similar movement in the wages of the men. So
far as the miners are concerned, they are being reduced 10d. per
load, and 3 d . per yard, and the underground day men 1s. per weeks, which is equal to about 15 per cent., and will put the colliers employed at the Manctester pits in much about the same positio
in which they stod in Deember last prior ot the alvane made
previous to the late strike and the further advance which has side been conceded
The bridging over of the Irwell at that portion of the river lying
between the Manchester Cathedral on the one side and the largo new station which is being erected by the London and North-
Western Company in Salford on the which is exciting a good deal of interest here. The question has been raised, in connection with a proposed additional bridge which
the railway company wish to construct as an extra approach to the railway company wish to construct as an extra approach to
the new station, but which the Manchester Corporation have refused to sanction, and it is now being urged that in the place of
two new bridges, which would make no less than five brid crossing the stream with in a very limited area, the whole of the
river embraced within these bridges should be covered in and thus afford additional and valuable space to one of the busiest thorough tion of the engineers connected with the Corporation and the rail way company, and I understand that it is not improbable that
some scheme for bridging over the river as suggested above may be The Iond.
The London and North-Western Railway Company, has just
completed an addition to its London-road station, 50oft. in iron columns, and plate ind the whole of which is carried upon 3ft. 8oft. and the other of 7 Oft. The upper portion of the structure
consists of ornamental brickwork covered in with a roof supported on cast iron columns and lattice girderers similar in design to the old portion of the station. By the adoption of iron columns a
supports for the upper structure the whole of the ground space supports for the upper structure the whole of the ground space
has been economically utilised, and with as little obstruction to the light as possible, for the goods traffic requirements. Upwards
of 3000 tons of iron have been used for the columns and girders which have been supplied by Messrs. Eastwood and swingler, the Victoria Ironworks, Derby, and the work has been carried
from the designs of Mr. Stevenson the The largest girders which have probably ever been construct for railway street bridge purposes are just now being erected by the Manchester and South Junction Railway Company to carry an
extension of their line about 90oft. in length over several streets exdeosion of ther ad ations to the London-road station referred to
adjoining the new addition above. Over one of these streets the girders, which are being portions built into the brickwork, have a total length of 200 ft . They may be briefly described as hog-backed box girders, 16 ft . high
in the centre and 12 ft at the ends, constructed of t in. web plates in the centre and 12 ft . at the ends, constructed of ${ }^{\text {In in. web plates }}$
with flanges top and bottom and 16 plates thick in the centre. the cross girders ten 6 in $\frac{1}{2}$ in. flooring plates. These girders, which weigh about 200 tons each, and are being erected on platforms, have been supplied by the
Horseley Iron Company, and the work is being carried out from the Horseley fron company, and the work is being carried out from the
designs of the railway company's engineer, Mr. Woodhouse. Barrow. - I have to report that no change of any moment has taken place in the position of the hematite pall round and the business which has been done during the past week is quite up to
the general average of the last few months. I note that on foreig the general average of the last few months. I note that on foreign acocunts sales represent a heavy weight of metal, and both America
and the colonies are, I am informed, taking large parcels of Bessemer and forge iron, but the chief export largely shipped, as we as rails, fish-plates, and other accessories of permanent way.
anticipate that more trade is likely to be done in blooms thay anticipate that more trade is likely to be done in blooms thaz. has
hitherto been the case. Steel traders aro selling well, and I am told, on undoubted authority, that in the steel trade orders are in withstanding the extra demand which The consequence of this is, of course, that the whole producing power is a new feature at works in this neighbourhood. It is now possible at Barrow, by new arrangements, to produce more than it was a few years ago. Heavy contracts in the iron shipbuilding
line have recently been booked, and at present the yards are busily line have recently been booked, and at present the yards are busily
employed. In this department of industry there will, during th employed. In this department of industry there will, during the
ensuing winter, be great activity. Engineers are also very busy ensuing winter, be great activity. Engineers are also very busy,
whilst at the same time boiler-makers are busily employed.

THE SHEFFIELD DISTRICT.

Notwithstanding the depressing accounts as to trade during the past six months, and the award of the Board of Arbitrators in
the North of England, because of which some local houses given their ironworkers notices of reduction in wages, there is with this award, the Parkgate Iron Company announced a reduction of $2 \frac{1}{2}$ per cent. on tonnage wages and 3 d . per ton on puddlers wages, the alteration to take effect from the ist Ausust. There is
little likelihood of any serious difficulty arising between the

Last

amounting on the average in this district to about 1s. per ton ; and plate trades are exceptionally brisk, and best boiler plates are no fetching as high as \&14 10s. per ton. Steel plates for similar
purposes- principally used on steamships-where the temperature is more even, are finding a ready market on the basis of $£ 18$ per of the sheet and plate mills are running full time here, with every prospect of increased business during the autumn months
In the armour-plate works there is the utmost activity. The
in tion in the trade, and both M Messms. Johnat Brown and Co., Limited,
tind Messrs. Charles Cammell and Co., Limited, have more orders on hand in this line than they can execute for many months to
come. Such is the result of the patents of Mr. Elis and Mr.
Wis.

Charles Cammell and Co. We are given to understand, however,
that another very heavy order for these armour-plates is about to be issued, and will be received by these Sheffield houses. The demand for Russian and SWedish irons ise on the increase through
he development of this branch of business. The Ironworkers' Conference held at Leeds, and which closed on
Monday, has excited considerable interest in the trade here. There were present representatives from all the iron producing districts,
under the presidency of Mr . Wm. Shaw, of Wigan. The funds of the society were stated to be in a flourishing condition. A long
discussion took place on the working of the "sliding scale," which has led to the late reductions in wages, and ultimately the followng resolution was unanimously passed :-" That in the opinion of
this Conference the sliding scale has worked advantageously to the workmen, and the action of agitators who are advising to resist
the $2 \frac{1}{2}$ per cent. reduction is hereby strongly condemned." This shows the willingness of the The coal districts are distressed. Trade is really bad so far as
the coal interest is concerned, and prices if decline. Many of the South Yorkslire pits are workdng at a loss;
many hundreds of colliers are olly allowed "half time," and in
some instances notices have been given this weel some instances notices have been given this week to the men dis-
charging them. Competition is very keen for deliveries to the
Yonder Yorkshire sea-ports, and Lancashire pit owners on their side seem
to be doing their best to cut up trade. It may seem incredible but many of the colliery owners hereabouts are delivering best Sillk-
stone on the line at 6s. 8d per ton. Out wharves quotations are
 Since the closing of the quarter-day the cotlery trades have not backward. Some good lines in table and spring cutlery are in not ordering quite so freely as was the case three months ago is caused by houses having to await indications of the probabili
ties of the the the the ties of the "Fall" trade. Razor makers have more orders on
hand than they can conveniently execute, and German agents in scissors between Sheffield and German houses is every day becoming intensified, and there is scarcely a factor in the town but is now compelled to keep a stock of these German-made second-ctass
goods. In bealities Sheffield holds the lead, both against
German and American malkers. In the cast steel department there is very little fresh to note,
excepting that the spring-rialway-trade is a shade busier, and oommon quialities employed. Best cast steels are selling freely, bu branded billets, which are now offered of guaranteed "tempers"
for $£ 6$ 15s. upwards per ton. File houses are very badly oft for work, and many file cutters are out of employment. There are
decided prospects of an improvement in the local trades during the decided prospects of an improvement in
autumn and ensuing months of the year.

THE NORTH OF ENGLAND
(From our own Correspondent.)
THE attendance at the Cleveland iron market held at Middles of the ironmasters were at Newcastle attending the meeting of the Institution of Mechanical Engineers.
The price of pig iron was much the same as the previous week, but the tone of the market was flat. No. 3 g .m.b. was sold at 37 s .
for prompt f.o.b. delivery, forge being 36s., and warrants 38s. net cash. Buyers generally held out for lower prices, and not much
business was actually done. The stock of irion in Connt' dlesbrough store) is now 184,510 tons, being an increase of 988 lished. They amount to 87,595 tons of pig, and 25,494 tons of manufactured iron, or a total of 113,089 tons. Compared with the previous month this shows a decrease of 4082,2650 , and 6632 tons
respectively. Under these circumstances no one looks for a rise of prices at present, and it is not improbable that next market day
will witness a fall.
 previous week. which took effect from last Mos por centa, in thas been, on the whole
wages agitators to induce the workmen to strike against it and the attempts were, unfortunately, successful at the Weardale and one
other ine places will remain long out,
The strike of the platers
The strike of the platers' helpers at Stockton and at Middles the helpers by their fore hands, and the shipyards at those parts are now once again in full activity. At Sunderland, however
where the same question is complicated with some other ones, the strike continues, and but slow progress is being made in ship con struction. It is said that the employers there scareely understand local strikes, which are continually occurring in some department or other of the constructive trades, are having a most baneful
effect on the prosperity of the northern counties. They are also industries of the foreign North Sea ports, which are not at al Industries of the foreign North Sea
troubled at present from similar causes
Treatly Ercress steelworks at stockton are showing signs o few weeks since, and has taken charge of the practical operations.
The new machinery has been tested and has been The new machinery has been tested, and has been found generally in August, that is immediately after the Stockton race week, when Easte not known how the sharese are being taken up. As recegards the
Cleveland district, the drainage of capital during reecnt years Cleveland district, the drainage of capital during recent years,
owing to the loss of the iron rail trade, has been so great that not
many shares are likely to be purchased there. Other and distant
distrits wit many shares are likely to be purchased there. OOther and distant
districts must therefore be mainly looked to for the means of proceeding with this or any similar enterprise.

NOTES FROM SCOTLAND.
The different branches of the Scotch iron trade, with the exception of pig iron, are in a healthy state. As regards pigs, the
demand is quieter this week, and business in the market has been
quet sluggish. The inquiry from abroad has so far proved rather dis-
appointing, and the steady rate at which production is maintained, with the consequent increase ind stocks, is opposed to
the expectation of a more lively condition of the market the expectation of a more lively condition of the market
being reached at an early date. There ore 119 furnaces in
blast, producing on an average fully 200 tons per week. Stocks
in Messrs. Connal and Co.s stores amount to 574,000 tons, with warrants in circulation for about 544,000 tons, and it 1s
estimated that there are 340,000 tons in estimated that there are 340,000 tons in makers' yards, besidies
the stocks which are held at the North.Wostern Engish ports, to
which Scotch pig iron is shipeed. The past week's shipments which Socteh pig iron is shipped. The past week's shipments,
coastwise and abood, have amounted to only 925 tons as com.
pared with 12,705 in the preceding week, and 10,015 in the corre pared with 12,705 in the preceding week, and 10,015 in the corre
sponding week of last year. The feeling in the Glasgow market
this week has been somewhat despondent, and unless some nexpectect turn in affairs should speedily take place, the probability
is that prices will decline. If thiron had not been largely held
in strong hands, the quotations must have given way before this

WALES \& ADJOINING COUNTIES. (From our own Correspondent.) THR coal and iron trades retain their firmness,
nd the first industry is in particular brisk and improving. The irm tone which has characterise become settled, and coalowners are not only tardy advanced prices for future deliveries. A large buyer, perhaps one of the largest in Cardiff, was for immediate delivery, and for the ordinary supply periodically in
f.o.b. for best qualities.
Cardiff retains the great lead it has taken, and it is remarkable how little variation there has
been for the last two or three months. In no exports of coal fallen below 100,000 tor foreig One of the leading authorities in the coalworl believes that the maximum of quantity has been in Monmouthshire remain in most quarters virgin fields, and that the deep sinkages of Glamorgan have not come up to anything like the quantity they are capable of turning out, the statemen
may be received with some degree of The Cardiff Art Exhibition was opened las shall defer noticing the leading features until my next. On the eve of my despatch the Glamorganmeeting at Merthyr Wednesday, Thursday and Fridays selected are of implements from the first hasty view tho have had, is a fine one. In the lower part of the country the farmers are yearly showing more the various to avail themselves of machinery in farmers are much bes agriculture, but the hil where there are fine large fields the advance made has been in mowing, where a hors considerable extent
Tin-plate continues dull, and I am assured on the best authority that the trade is coming to the failure of a tin-plate works, and latery tin-bar are in most cases refusing credit. numerous tin-plate makers made the four month credit they obtained for pig and tin-bar thei apital, this shatiing of supplies means ruin. Wales were 140,000 tons during last week from all tributed 122,000 tons. The exports of iron and steel amounted to 5000 tons.
Company, Swansea activity at the Blast Furnace minor industries are doing well, patent fuel The particular.
Rhiwderin tin works are to be started after a long period of cessation.
An important meeting of colliers was held at when it was resolved to agitate for the adoption of the sliding scale throughout the kingdom.

Naval Engineer Appointments. - The following appointments have been made at the Admiengineer, to the Inflexible, complement incotplete; and, William John Anstey to be acting
assistant-engineer from the 1st of July last.

THE PATENT JOURNAL.

 Co ** It has come to our notice that some applicants of the have caised much unnecessary trouthe and annoyuncebooth to themselves and to the Patent-ofice ofticials by

$*$ When patents have been "communicated" the name and address of the communicating party are printed in italics.
 26th July, 1881.
 32 32 32 3
 $\xrightarrow{3258}$ 3259
 ${ }^{326}$

a
3271

 27 th July, 1881.

284. Glycerrine, F. J. Jo'Farrell, Dublin,

 2994. PIANITTA, W. F. Schmolela and
329. SpINIITG YARNs, de., T. Laws
2sth July, 1881
3296. Cosvecrons, E. Alexander.-(A. Violecte, Paris.).
3297. PAPER, to.,
IH. Armstrong, Darlington, and J.

3306. FAstrevis boors, de., E. Wrivht, Birmingham,
307. Wrichivg Machives, J. Cluett \& W. Hanchard,

29th July, 1881 , London.
3311. Vegetable, \&e., Substances, J. H. Johnson.

30th July, 1881
3316. Spivning \&c., J. J. Broadbent and E. Mitchell,
Bradford.

3319. Match Boxes, H. Woood wardon, Birmingham.
3320. Hoons of Couliks, C. H. Mowll Dover
332. Howns of CorLeress, C. H. Mowll, Dover.
332 Loont Pot
Manchester.
332. Costronining Stean, S. Hallam, Manchester.
323: Mountina STIND
32.

3329. Plovars, J. Cooke Liscoln 1881.

Inventions Protected for Six Months on
deposit of Complete Specifications. 3256. PUMPs, H. H. Lake, Southampton-buildings,
London.-A communication from P. E. Jay, New
York, U. S. 3263. Skate ATtachments, H. J. Haddan, Kensington,
London.-A communication from F. Bittner, Rem scheid, Germany.-26th July, 1881.
3269. Criculat Knitring Machines, J. Bradley

Patents on which the Stamp Duty of \&50 has been paid.

 2965. Valves, H. H. Lake, Southampton-building London.-25th July, 1878 .187s. V ENTLATORS,
18, Norris, Wood-green. $-30 t h ~ J u l y, ~$ 3247. Permanent Way, S. Nicholls, St. Clement Danes
London 2979. Biscurrs, J. Taylor, Preston.- 26 th July, 1888.
2983. Boot, ©c., TreEs, L. M. Carmichael, Aldershot. 3025. Plantivg Potators, L. A. Aspinwall, Chancery lane, London.- 30 th July, 1878.
304. PAPER-MAKNG MAcHINEs, G. Holloway, Chart
ham.- 1 st August, 1878 . h1am. 1 1st August, 1878 . Tangye, Birmingham.- ${ }^{\text {Ath }}$ Aupust, 1878 , \&c., G. Tangy,

3036. Fitrers, F. Wirth, Frankfort-on-the-Maine.-

 street, London.-29th July, 1878. T. Ritson, Pollok-

Patents on which the Stamp Duty of
\&100 has been paid.

 2796. Drawing-orf Apparatus, H. W. Whitehead,

 2734. Loar SDGAR, C. D. Abel, Southampton-build
ings, Chancery-lane, London. - ith Augut, 1574 .

Notices of Intention to Proceed with Last day for fling oppoosition, 10th August, 1881. 1278. Makive PuLp, J. Fisher, Southampton-build ings, London.- $23 r d$ March 1 18s1.
12sI. WATCoHEs, H. Aspinall, Liverpool.- $23 r d$ March

 1318. SEwisg Machines, C. T. Bastand, Albarty-road, London-2tth Marcel, issil.
 dyke. ${ }^{34}$. Brewirc, wc., Llevors, C. Clinch, Exeter.--25th 1347. CoohBrNsG. WooL, \&c., J. Midgley, Bradford,-26th
March, 1881. 1370. Burning Hydrocarbon Oils, \&e., A. J. Boult,
High Holborn, London.-A communication from C
Holl

 Sutcliffe, Todmorden.- 30 th March, 1881 .
412. CARBONs, J. Soutt and W. H. Akester, New castle-on-TYne.-31st March, $18 S 1$.
1451. FEEDING PAPER to PRNTING, \&c., MACHINES, P. M. Justice, London.-A communication from the Sedgwick and Stuart Manufacturing Company.-
2nd April, 1881.
462 . Arranging, \&c., Types, F. Wicks, Glasgow.-4th April, 18S1.
1502 Preparing Warps, G. C. Taylor, Huddersfield.-
 Baker, Birmingham.-7th Apru, 1881 .
1536. EEEETrIc Lasps, J. L. A. Dupont-Auberville,
Paris.-A communication from V. Delaye.-Sth
Amil 1881. April, IS81.
1604. Stral Lanteras, F. H. Bailey, Hillsdale. $-12 t_{\text {th }}$ April, 1881.
1704. Refining Camphor, G. Atkinson, Aldersgate-
strit. street, London.-19th April, 1881 .
1730. KEyEEESS WATcHES, H. A. Dufrene, Finsbury,
London. - A communication from M. Villemin. 21st April, 1881.
1901. HARYESTERS, E. P. Alexander, London. - A com
 Manwaring, Banbury.-3rd May, 18s1.
2847. CoLLEctivg Frares, W. R. Lake, London.-A
communication from J. J. Greenough.-29th June 18S1. Crushing, dce, Mmls, W. N. Nicholson and W Mather, Newark-upon-Trent.- -4 th July, 1881 .
 C. Saunders, London.-Tth, July, 18ss.
3031. Earrisas, T. Perks, jun, Birmingham, and B
J. Perryman, Aston.-9th July, is81.
 June. 18 S81. IndCators, H. S. H. and E. Shaw, Bristol.-1 Hth Juty, 1881.
3091. FLID METERs, T. R. and T. W. Harding, Leeds.

- 15 th July, 1881. Last day for fling opposition, 24th August, 1881.
 Peschkes.-14th March, 1881.

1371. OMNIBUSEs, H. W. Hart, Palace-chambers, Lon-
don. $-28 t h$ March, 1881 . 1377. Airing Articles, w. Sachs, Berlin.-29th
March, 1881.
1372. Traveling Trunks, \&ce., w. H. Jones, Wolverhampton. 29 th March, 1881 .
1373. Boors, I. Kay, Sheffield.- 29 th March, $1 \mathrm{sss1}$.
1374. GAs Evgines, J. A. Ewins and H. Newman, B mingham.-29th March, 1881,
1375. Coativg METALIC SHEETS, I. Matthews, Aber1400. Treativa Biscults, F. H. F. Engel, Hamburg.A communication from
1376. Springs for Pistons, D. Blackadder, Sheffield.30th March, 1881.
1377. PNEUMAIIC Revolution Indicators, A. Buden
 beth-road, London,- 31st March, 18s1.
1378. MEAsuring Earthwork, J. Imray, London.-A
communication from J. Canale. - 31 st March, 1881.
 April, 1881.
1379. KEyLess Watches, C. H. Errington, Coventry 1435. Enclosing Materials in a Covering of CylinDRICAL, \&c., Form, W. A. G. Schönheyder, Stoke
Newington, London.-1st April, 1881. .
1380. PHotocraphy, L. Warnerke, Champion-hill, London. 1 st April, 18s1.
1381. Mnustengs, W. R. Lake, London. - A communi
cation from E. H. Streitz. cation from E. H. Streitz. - 1 st April, 1881 .
1382. V ENETIAN Blisds, T. Kauffmann, Cologne. $-18 t$ Ap.il, 1881.
1383. PRPARING ConDensed Mrlk, A. M. Clark, Lon-
don.-A communication from R. Bravais.--2nd
April, 18s1.
1384. Making Wire Headds, \&c., H. B. Barlow, Man-
chester.- 5 th 1487. CoLourivg Matrers, E. G. P. Thomas, Brent-
ford, London.- 5 th Amil, 18si. SS. Machine Guns, T. Nordenfelt, St. Swithin's-lane,
 TIONs, J. Imray, Southampton-buildings, London.-
A communication from J, Buffet. - Th A April, 1881 . S31. Breech-loading Fire-arms, P. T. Godsal, 52nd Re7. AIr Rerrigerating MAchine, T. B. Lightfoot, Dartford.-11th April, 1881.
1385. Uabrella, de., Furniture, G. G. Lusher, Bir-
 stedt, Berlin.--A communication from Frister und
Rosmann. 13 th
April, 1881 .
Currsial
 communication from A. d'Auriac.- 16 tith April, 1881 .
75S. WIRE Brusfrs, G. W. von Nawrocki, Berlin.-A
communication from C. E. Flemming, sen.- $23 . d$ April, 18S1.
1sob. PREPARING, \&e., METAL PIPE or TUBE, A. M.
Clark, London.-A communication from H, von Clark, London.- A communication from H. voil
Hartzand 0 . Fix. $26 t h$ April, 18s1.
1386. ELEccric ARC LAMPs, J. Brockie, Brixton, Lon-don.-4th, May, 1881 . $-25 t h$ May, 1851.
chestenching, Dyeing, \&ce., w. Mather, Man-csester.-20th Mc., MAchines, E. G. Brewer, Lon-
don.-A communication from T. A. Edison.-Tth
June, 18s1. 492. ELEcTRIC LaMrps, P. Jensen, London.-A communication from T. A. Edison.-Sth June, 1881 .
1387. PLative Firrous, \&t.e., Materials, N. Fraser,
Arbroath.-16th June, Arbroath.-16th June, 1881. Lake, London.-A com-
1388. TREATNG GRans, W. R. Lation
munication from T. W. and W. T. Jebb.-2sth June, 1881. communication from F. A. Krupp. - Both June, iss1.
1389. Treatring PAPER, F. Nowlan, Soho-square, Lon-
don.- $18 t$ July, 18s1. 2900. PACking Egas, de., W. J. Young, Bristol.- 2 net July, 18s1.
ham. Growing Water-cress, G. C. Pimbury, Chelten-ham.-4th July, 1881. wear.- 4th July, 1881.
Boiton. -5 the . Jur,
W. Hargreaves and W . Ingi.
 -6th July, 18s1. 157. Boors and Shoes, C. Lion, Spitalfields, London. 3061. Ever--oristed Pencil Cases, W. E. Wiley, Bir-
mingham. 13 th July, 1881 . 995. Minivg Machises, W. Mather, Manchester, and
F. M. Lechner, Columbus, U.S.- 15 th July, 18si. 142. PURIFYING ALCobonte Liquors, W. R. Lake,
London. A communication from the Purifying and
 comi.
1390.

Patents Sealed.

List of Letters Patent which passed the Great Seal on
the 20th July, 1881.) 397. Horizontal Saw Frames, T. N. Robinson,
Rochdale. 23 rd December, 1880 . Rochaate.-23rd December, 1880. Lake, Southampton-
buildings, ForNaEs, London. H . H . List Jonuary, 18ss. buildings, London.- 31 st January, 1881. .
46. Low WATER ALARM and SAFETY VALVE, G. Wilson, Old Kent-road, London- Slst Jony Valve, G. Wilson,
43si. Lamps, W. H. Bulpit, Birmingham.-1st Fcb. ruary, 1881 , Mill Lyne.-2nd February, 1881 .
43s. Hzating Liquid, B. Waughan, Cheapside,
London.-2nd Febrieny, 18S1. London.-2ni Februery, 18s1.
441. Jornts for Pres, J. Fairfax, St. Paul's-road,
London.-2nel Februarry, 18s1. 46. Meral Tubes, J. R. Cassels, Glasgow, and T. Morton, Motherwell.-2nd February, 1881.
452. BLACKSMTTHS' HEARTM, R. R. Gubbins, New-
cross, London.- 2 nel February, 1 ssi. Fi. Brewing, A. Manbré, Finsbury, London.-3red
 Liverpool. - the Februcery, R. Long, Clayton-square,
2. 108. Nailing Machines, W. Morgan-Brown, London. -5th February, 18s1.
 Birmingham.- Tth Felruury, 1881.
538. CuTring, \&c., TEA, D. Whyte, Glasgow.-Sth
Februery, 1881 .
 573. Trasscribivg ali Musical Compositions, A. P.
Hodgson, Paris.- 10 th Eebruary, 1881 Hodgson, Paris. - Cases, W. E. Gedge, Wellington-
street, London. - 15 ti Felruary, 18si. 69. Governors for STEAM Engines, R. Schmitz-
Werotte, London.-15th Felmuary, 1881.
664. PatNTING in Oil upon Fabics, J. Cewburn,
 Lund, Preston. -17 th Fedruery, 1 S81.
69s. Fountain Pen-holders, M. Benson, Chancery-
 and H. V. R. Read, London. - 17th February, 1881 .
714. SEwING MAcHINES, S. W. Worssam, Chelsea, Lon-
 147. Transparent Ice, H. J. West, Southwark Bridgeroad, London.-16th Marlard, Clifford's-inn, London.-
21. Kun, \&c., R. Barch.
123st Morto 181. Horzonti. Wind Motor or WINDMILL, L. A. Purper, Paris. -11st March, 1881 .
1294. GasEs, C. F., A. W, and A. L. Lawton, Rochester, U.S. - $232 d$ March, 1881. . Hawkins, Disraeli-road,
1534. Mover Tmus \& \&.
near Stratford. - the Aprii, 1881. 1876. Brushes, G. W. von N a wrocki, Leipziger-strasse,
Berlis 1971. LLAMING Hooks, \&c., H. J. Haddan, Strand,
Westinster- 6 He May, 8881 .

 side, South Wales. -13th May, 18si.
2150. TRuNKs, \&., W. L. Lake, Southampton-build-
ings, London.-17th May, 18s1.

 (List of Letters Patent which passed
sst. Tobacco Prtrs, C. M. P. H. Triscott, Cheonet

 491. Stecuiso scise Piss, J. Foxlow, Manchester.-

 535. GAs Cosinsssers, F. Morris, Brentrord, and S.
Cutler, Millwall London.

 1301. Toiscco Povecres, H. A. Fleuss, Haverstock-
hiil, London. 23 med March, 1ss1.

List of Specifications published during the
week ending July 3oth, 1881.

$* *$ Specifications will be forvarded by post from
the eatent-otice on receipt of the amount of price and
 Patent-oftice, Southanptonebuildingss, Chancery-lane

ABSTRAOTS OF SPEOIFIOATIONS,

eeparad by ourselves expresely for The Exarivere at the
ofice of Her Mojesty's Commissioners of Patents.
4942. Filtrers G. Nant.-2Tith November, 1880.-(No One of the objests is to facilitate the cleaning of the
 perforated metal diaphragm on which the filterin
 rotaty motion to separate and stir the filtering medium
in colimining it and a vertical motion to compress the
medium to tho oonive 5000. Ran Exarses, R. K. .

 5005. secua
 The two edges to be joined aro subjected to com
pression between two strinted or grooved surfaces as to form projections sund indentations which inter-
lock aud bind the two parts.
 (Void) 2 2d. elvectro--2negnetic induction mathines with multinpe
armatures by which their efficiency would be greatly
incressed. 5019. Wime Naiss, so., J. Shed ion. - 2 nd Dcember,
 the section of the shauk, or of the section of a double
cone, so as to cmable them to be driven truly, 5168 . Irov and Stekt, E. Ellinor.- 10 othe December, This rechates to the romoval of phosphorus, sulphur,
nund othcr impuritios from iron and steel by thie use
of
 oombination with a fixed oilh or fat, or solid or liquid
hyyrocarbon oil; and further, as a modification the
comb hydrocarbon oili and further, as a modification the
combination with the above chemical agents of a

 that in the lamp were boroken tho olectrtic current
thould at once be broken and the light extinguished.
 justing the pistons in position in the cliny ers.
Recesses are formed in the piston running firom the circring is placed and has a plate on one end whick
spring bears against the innor surface of the packing ring.
A plate is also placed at the other end of the spring. and to it is connected a bol
the pressure of the springs.
 oin J. Pigno..)-(Pronisional protection not This consists of a plate with holes cut in it to be
placed over the oost card, and the words written in in
the spncos, the blank spaces bein aterw . Che spaces, the blank spaces being after rards filled in.
The person to whom the letter js sent move similar plate to decipher the writing.

The chisel holderer is attached to in frame for carrying
 machine and is free from contact with the work during 5233. Astr-viction Berim

Dicember, 1850.- (Not moccisas, E. P. Lecoste. - 1411 This relates to wheels which revolve on a fixed axle,
and it consists in forming a groove therein, and also in the hub which revolves on it, a number of steel
 grooves, and maintained at proper distances apart
aring common to all.
5268 . Apparatus for Transmitiva Drawivgs,

 posic erouping of a variable number of metallic con-
the
ducting wires, which are insulated from one anothe ducting wires, which are insulated from one another
by means of otile material the thar
threads being formed by the conducting wires them threads being formed br the conducting wires waem
selves, as shown in Fig. i. In applying this conducting

5297. Chunss, c. E. Aalborn--16hl December, 1850 . A cylindrical coppor vessel is carried on trumnions,
so to tilt tit tot turn out contents, but while being
worked it is retoind worked it is retained bya bolt. Round the rim water
can circulate to regulate the temperature, the water passing through holos in the rimpend para, ing on the
outside of the vessel. The milk is anitited by two
The Outside of the vessel. The milk is ayitated by two
frames, one within the other, and rotated in opposite
diriections.

 into a receiver fitted with a cowl or other means to
produce an induced current, and the receiver is
is charged with coke saturated with carl
other antiseptic or disinfecting materinil.
5329. Jacquard Apparatus, J. Ircing,-20th Decem-

- This, relates to jacquard apparatus emplosed in
weaving goods with figured dosigns, and perticullarly to unake changes in such desisno during the weaving
and it consists in the use of anpulementary jucquard

the change has to be effected. In the drawing A is the oc the filbricp. The mails G operate on the ends which are lifted for weaving the borders and are con-
vected with needles K, operated by set of border
 nected with needles L, and also with needles in the
npparatus B. The mails I operate on the ends liftod to form the ground pattern, and are not woven into hie side bord drs or central design, and are comnecte 5344. Moumpar

in halves, joined together by pins fixed to the pattern
plate and fixed in position in holes in the two halves
 5345. Braxdivg Wood, de., J. Richmond and il The device to be branded is raised on a flat metal plate secured to a heating box connected to to coross-
head sliding between standards. Below the plate is
is
 devic.

5346. Warming and Ventiating Roons, J. Smith $T \mathrm{wo}$ regulated courrents of air are admitted from autside the builaing by separate passages, one serving to supply oxygen to the fire-qrate, and the other to
introduce fresh air for breathing and for chimney draught.
5347. Exarivs Worked by Stean, Air, or Gas
S. Hobinson.-21st December 18so This consists in the use of two pistons. working in
cylinder A with independent rods C passing out at

 between the pistons, forcing them to opposite ends of
the cylinder, and then allow the motor to exhaust,
[5347]

either into the atmosphere, in which case steam, air
or gis is anterwards admitted belind the pistons, or or gas is afterwards admitted belind the pistons, or
into a condenser N of conical form, elosed at its larger emd, and commected to the exhaust passage. It is
made of thin metal nand is cuused to rotate. Within
it it is a coil
incelates.

 penings below the water-1ine in the bows of the
oessels, and also to wans which may be loaded on vessels, and essel, and ghen phaced on supports outside
board the
hese vessel and fircd below the water.line.
Ono mprovement consists of a metal piston fitted bo work

 This riates to an instrument for indicating changes oox-Vidir's system -or the riny-Bourdon's systeminstrument consists of a shaft carrying the indicator and to which a lever is fastened, and gives an inertii
to turm the shaft. Wifthin o turn the shaft. Within a slort distance of the
bant, and parallel to it, a string of
 to the lever by nn eye. The arme exerts a pressure on
the string which forms a convex curve, the convexity of which increanses or diminimisexes wive, the convextery
moisture in the hair, and accordingly the hagrid falls noistare in the hair, and accordingly the hand falls
or rises. A t the same time the strint is subjeet to
the influence of sir
 Bourdon system is musedalit the struing is comnected to pro5387. Tuproveweyts iv M

This invention is is neer, 18s0. ©et. Nsittrers, W. Hughos' microphone. In carrying it out the inventor
 as to cause them to resist the passage of an electrical
 follows:-The positive current from F passes throw ${ }^{\text {and }}$
the primary E of induction coil D to contral block B ;

5387

it then divides between the arms, or takes the arm or
pencil which offers the least resistance, being either
 If contact is homentatarily interrupted in in thection. arm
A, A1 allo ws the circuit to be completed, and vice verses,

 claimed to obviate induced currents and to proctro
clear articulation.
 In the standard slots are punched, and at right
angles at the end of each arecess sis formed to receive
 5390. UTILISING THE Uxconsuane Gasis of Com.

 along the exposed or underside so as to rapidy
radiate the heat and prevent them bunning. They are

formed with a groove through which tubes pass, and
are contimued to the bridge C , so as to supply heated are contirned
air which facilitates the combustion of the smoke and
and gases. A number of bridges or baffles D cause the
complete mixture of the heanted air and gases. Where the air is
fresh air
5394. Manupacture of Bicarbonate of Soda, W.
 A.D. 1sso, in which a cyeyindert divided hinternaaly by a,
horizontal diaphragm perforated with holes was used,

 entering the chambers formed by the vertic
diaphragms through the horizontal diaphrugms B.
 The object is to lock the sigmal lever by hand, and
5404]

aftervards release the locking bolts by electric current
or by compressed air, when thio lever can be operated
the usual mannor. Bridgo piecess aro placod along
the line of rails, and when a train passes such pion Aro doppessed and comploteta a circcitt, whine mangiect K is in line with the curved slot in it. The disc can N to come in contans with the bottom of slotted link , thus moving a short crank downwards, which being notch in quadrant I , and by means of weight F the centre by means of bell crank E coming in contact
with a long stud Q to allow the lever B to be pulled back. 5408. Kilns for Burning Blue Bricks, Glazed
Goods, de., E. E. Street. $-23 r d$ December, 1880. $6 d$. A continuous kiln is formed with burning chambers arranged in detached groups connected by short
underground flues at each end, and in each flue is a
und damper, so that any group can be isolated and effect-
ually closed after the burning is complete. 5412. Rotary Machines to be csed as Motors,
Pumps, Blowers, or Fluid Meters, W. r. Lake.-

Dated 23sed December, 1880.-(A communication from A. Kaiser.) $6 d$.

A rotating piston A fixed on a shaft is of heart or
shield-shape, and hollow, and revolves in a chamber B
with two serien of with two series of inlet, and exhaust ports E separated from ports F by a partition, the admission of the fluid
being controlled by valves D bearing on the periphery

5412

of the piston, and connected by rods with a link action. Chamber B is surrounded by an annula channel G which conveys the fluid to the ports, wher
it is admitted through ports E at two opposite sides of the pimton, so as to act on two faces at once, and
the passes out through ports F at two opposite points passes out thr
5415. Weighing and Measuring Grain, dce., IV. R.
Lake.-23rd Decenber; 1880 .-(A communication from A. Kaiser.) 6 6d.
The weighing machine consists of a scale beam with pended only when in equilibrium, and consequently moves with the beam as if attache to it; the othe end of the beam carries a counterweight. The centre
of gravity of the scale is higher than the centre of its
rotation, so that the momentum in different positions rotation, so that the momentum in diflerent positions
of the scales varies sufficiently to allow the prope of the scales varies sufficiently to allow the proper
operation of the apparatus. The main knife edges of
the beam rest on their steps only for a time just sufficient for correct weighing, and the greater part of the
movement of the beam is around pins. The feeding hopper is fitted with a damper, to which a leever
transmits the motion of the scale. In place of the weighing
the beam.
5436. Furnaces for the Manufacture of Steel,
A. C. Wylie and T. Lockerbic.-Dated 24th December; 1880. The side flues A for admission of air and gas are
built on the main substructure of furnace B, and
entively independent entirely independent of the deflecting roof C , their entering face towards the furnace being turned arches
D concave to the hearth E, which they overhang to a
considerable degree, so as to give an effective impinge-

5436

The regenerators K are so situated in the substructur The regenerators K are so situated in the substructure
that they are directly under the current of hot gase escaping at flue L . N is a cinder trap in each gas exit
flue close to the furnace, the bottom of the pocket over an open area Q communicating round supported
of the fides
o furnace, with ventilation exits R. A valve is 5441. Valve Gear of Steam Enaines, \&c., J. A. A.
Sott.- 27 th
December, 1880.-(Not proceeded with.) This relates to engines with one valve to regulate steam at variable parts of the stroke, according to the
lad upon the engine, by the action of the governor The admission and exhaust valve is worked by rod being actuated by an excentric. Within the Valve, and actuated through a bell-crank lever having
its fulcrum on the slide. The motion of the cut-of
valve is governed by a cam acting on bowls valve is governed by a cam acting on bowls on a rod
connected to the bell-crank lever, the cam being
moved endways on its shaft by the dinect contrifug connected to the bell-crank lever, the cam being
moved endways on its shaft by the direct centrifugal
action of the governor. 5442. Card Grinding Appliances, J. S. Dronsfield.-
27th December, 1850 . 6 . This relates to the grinding rollers used to grind
cards employed in the preparation of fibrous materials to adhere by glue or cement. To cause the particles to pards trate to some extent between the dents of the cards, the emery is mouldca into a fluted form, so a effect. A doctor or a revolving brush is used to keep
the surface of the moulding roller free from clogning the surface of the moulding roller free from clogging
accumulations of emery. A jet of stam or a gas
flame is used to soften the coating of accumulations of emery. A jet of steam or a gas
flame is used to soften the coating of emery to enablo
the moulding to be effected. 5443. Atr-compe effected.
and D. Greig.-27th December, 18so. 4 . 4 .
This relammantes to and compressing pumprsing compent of a steam engin to constitute
a portable air-compressing engine. The engine tit
the form of a portarin the form of a portabresse enginge, angine. The engine is in
the boiler at the the barrel of cylinders of differentent diame-box end are frananged fo wed two
compound engine, their piston rods being
to cranks engnecte
 and in n tuan
them cool.

[5445]

the outside of cock, where it receives a button G. The
solid portion of the valve B is pierced on the side nex the surply pipe, the hole being bedined with a brass
the side ferule, having a
source of supply
5448. Bicycles AND Tricycles, I. T. Torensend.
2sth December, 1880 .- (Not proceded ovith).) $2 d$. This relates, First, to the steering of tricycles, and
consists of cutting a helical groove, which passes through the nut in the end of the arm of a lever hang
on a bracket, the other arm of the lever being attached to the rod which passes on to the lever of the steering
wheel. Inside the nut on the arm of the lever, where the handle stalk passes through, is a friction roller
working in the groove, so that as the steering handle is turned the lever is actuated, and moves the arm attached to the steering rod. The invention also
relates to mounting the saddle of a bicycle on springs. 5449. Fog Signals for Navigation, W. B. Barker.-
2sth December, 18s0.-(Not proceeded reith.) $2 d$. This relates to making different signals by means of
a horn, reed instrument, or whistle, by even sustained norn, reed instrument, or whistle, by even sustained 5451. Mash Cooling Apparatus, W. Brierley.-2sth Mist mor oeceded with.). 2 . This. rofteses, Firist, to providing a continuous o cooling the mash on two cooling surfaces; and
Thirdly, to produce a permanent stream of fresh wate hrough the cooling pipes.
5452. STAY or Corsets, W. R. Lake.- 28 th December,
1880.- (A communication from W. Boover, H. B
Doremus, and A. Fellheimer.-(Not proceeded vith.)
$2 d$.
Three busks are used, and are arranged so that by
being interlaced or folded they hold the two sides of being interlaced or
the corset together. 5454. Skylights, A. Forbes.-2sth December, 1s80.In one modification, particularly adapted for the rounded form of skylights for ships cabins, under the
central frame or sash bar is fitted a bar curved to the
inner side of the frame and jointed to the fixed frame inner side of the frame and jointed to the fixed frame
of the window, below the inner edge of the window
frame of the window, below the inner edge of the windo
frame, to beraised and lowered with the hinged movable skylight frame. The outer end of the bar slides 5455. Ships AND Vessers, F. H. Danchell and R.
Blum. $-28 t h$ December, 18S0.-(Not proceeded voith.) The ship is formed as it were with two hulls one
within the other, the space between them being
divided into water-tight compartments t compartments.
5456. Rotary Pumps, G. Waller:- 28 th December, The cast iron cylinder A is fitted with end covers,
and has an inlet C and an outlet D. Within A is a roller E bored longitudinally at three pointhin to receive
slotted rollers F , through which slides G hinged to

5456

central shaft can work. One end of roller E is pro-
vided with a touthed ring, which gears with a spur-
whed 5457. Blow-prpe Revolving Furnace, de., B. J. B.
Mills.-28th December, 1880.-(A communication O is a fuel furrace. formed with a hearth having a
last underneath and adapted for burning coal, wood, oil, gas, or any preferreed fuel. $\begin{aligned} & \text { A ing a revolving } \\ & \text { cylinder formed with an enlargement } A^{1} \text { at its lower }\end{aligned}$
end, and sumer ond, and supported in inclined position on rollers B
being rotated by gearing C. The lower end is formed

with an annular flange D fitting a recess in the face of The gases passing throuve the products of combustion.
the carried off through
inclined stack L. The ores arre hopper I and delivered in the upper end of cylinder A.
G is a fan for driving a blast of air through a pipe
which is carried through the
purpose of heating the blast.
purpose of heating the blast.
 December, 1880 . - Coloney.) $6 d$.
Mcation and
Thisen This relates to guns of heavy calibre adapted for use
in forts or large war ships. The barrel is made up of in forts or large war ships. The barrel is made up of
three tubes or setions slipped one within another,
secured together at the breech by dovetailed joint secured together at the breech by dovetailed joints
and by a band shrunk on each tube in front of the shorter tube in which it is encased, the simple fitting
of one tube within the other permitting the longitu-
dinal dinal movement caused by unequal contraction and
expansion. The loading is effected by expansion. The loading is effected by a transversely
sliding breech block, made up of a number of plates

5458

bolted together, and having two chambers, one of while the other is in rear of the bore. The chambered is made up of three parts, and hydraulic engines are sed to feed the cartridges in succession to the slide chambers, shift the slide alternately in opposite direc-
tions, and drive the cartridge within the bore, the
engine which effects the last duty also serving to take engine which effects the last duty also serv
up the recoil and remove the empty shell. 5459. MAchine Guvs, B. J. B. Mills. -28 th December,

18s. Machine Guns, B. J. B. Mills.- $-28 t h$ December,
M. Coloney , $6 d$.
This relates. to a machine gun with a horizontal
range of a number of barrels, and a breech slide having a reciprocating movement and provided with one or
two sets of load chambers, each corresponding with wo sets of load chambers, each corresponding with
the barrels, so that when the slide is elevated one the barrels, so that when the slide is elevated one
set of chambers will be in firing position, and when
depressed the other set. The frame \mathbf{A} can swivel on

the carriage and is actuated by suitable gearing, and
has bearings for trunnions B on a plate to which the barrels C are e attached. Behind the barrels the slide
D having two sets of load chambers in caused to move having two sets of load chambers is caused to move
vertically by lever E, the motion of which also serves to cock the hammers and to release them in rapid succession so as to fire the gun. Similar ranges of magawhen one set of chambers is in position for firing the other set is in position for loading.
5460. Pirns and Spindles of Spinning Machinery,
A. W. L. Reddie.-28th December, 1sso.- (A commuA. W. L. Reddie.-28th December, $1880 .-(A$ commu.
nication from J. C. Zeller.-(Not proceded with.)

The springs in the pirns which serve to keep the
bobbins in place are replaced by projecting spirals wound round the tapering shank.
5461. Lithographic and Letter-press Printing
Machinery, W. C. Kritch. $-28 t h$ December, 1880 .

This relates to the adaptation of one machine to
printing by the lithographic process as well as by the printing by the lithographic process as well as by the
ordinary method of printing from type. An adjust-
rble

graphic printing, and is adjusted by set screws until
the surface is brought to a proper position for printing from. When used for to a properpress position for printinting the same or "formes."
5462. Preparing, Spinning, and Rope-making
Machinery, A. M. Clark.- 28 th December, 1880. (A communication from La Societt' Anonyme des
machines, spinning machines for spinning the fibros into yarns, machines for twisting the yarns into into ropes, all four operations being based on the employment of a cylindro-conical device, whereby the
lengths of all the yarns are made mathematically equal, by causing the diameter of the cylinder or gradually and inversely to the increase in the diaa spindle to be placed in a twisting flyer carrying a
boss fixed to a bevel wheel to drive it. From the boss conical pins project, and on them fits a movable disc cylindrical holes corresponding to the pins on the
boss, and it is free to oscillate in every direction. 5464. Furnaces for the Prevention of Smoke, ¿c.,
J. Juckson.-29th December, 1880.- Not proceded Two chambers are formed, one in front of the furthe furnace, and into them air is admitted and passes into the furnace.
5465. Raising Sunken Vessels, dc., W. Aitkinson
$-29 t h$ December, 1880 . This consists of a buoy with suitable valves which
allow water to enter and sink it, and when placed in position on the sunken vessel such water is forced out
by air forced through a tube, by means of a suitable by air forced through a tube, by means of a suitable
pump, when the float assists in floating the submerged
body, 5467. Destruction of Field-mice, \&c., H. A. Bonne-
ville.- 29th December, 1880.-(A communication from A box with longitudinal openings in the four sides near the bottom allows the mine to enter From each
opening an inclined plane proceeds towards the substance is placed. By this means poultry and game
will not be able to get at the poisoned food will not be able to get at the poisoned food
5468. Moving Dampers, \&c., R. Walker:-29th
This relates to the use of various combinations of worm, worm-wheel, screw, rack or ratchet, or a series
of studs with spur and pinion gearing, and it consists in arrangements of mechanism whereby the worm and screw or ratchet may be used to open and clorse one
window, shutter, or damper, or a series of such, the opening and closing being operated from any conveopening and closiug being operated from any conve-
nient point, however distant, and by means of pulleys
and chains or cords, or by cranks and connecting rods. 5470. Velocrpedes, W. Andreevs.-29th December;
1S50.-(Not procecded with.) $2 d$. This relates, First, to increasing the length between ing the length of the head of the steering apparatus ; ing the length of the head of the stee
and Secondly, to a new form of pedal.
5471. Gas Motor Engines, R. Hutchinson. - 29 th The engine is worked with the gaseous mixture in a
state of considerable compression. The power is developed in one or two single-acting cylinders, having
combined therewith another cylinder of reduced diameter. The working cylinder A has two semicircular
castings B, forming passages which, as well as the space

5471

C above the cylinder, sometimes communicates with the open air. The motion of piston D acting as a
double-acting pump causes a strong current of air
through the through the passages, thereby preventing overheating
of cylinder and piston. The compressing cylinder E is of larger diameter than the working cylinder A, and in it is a plunger F which can be moved so as to in-
crease or diminish the capacity of cylinder E , and thus regulate the compression of the charge.
5472. Glazing, \&c., C. F. Elliot.-29th December, 1880 Anchor-shaped iron is used for the sash bars, and the web of the anchor. A cap slides under the clips and the ever them and the web of the iron. The ends of a suitable packing on which the glass bears
5473. Window Sashes, J. Terrey, R. Judson, and G.
Smith. $-29 t h$ December, 1880 .-(Not proceded vith.)

This relates to windows with sliding sashes, and weights are detached, so that they may be cleaned entire
5474. Preparing Seeds for Crushing in Manufac-
ture or Oil and Composition Cakes, C. Eskicte and W. H. Searlle.-29th December, 1880 . 6d.
This relates to machines for preparing the seed for creasing and injury to the coths in which enclosed within the wrapper or envelope. A board fitting the insideotth and seed are in position the board
that when the clot and pressed on the seed before folding
is brought down and is
over the sides of the cloth, whereby the bagging or
overhanging of the cloth is avoided. 5475. Ornamentation or Colouring of the Surfac
of Hard Rubeer, de., W. P. Thompson.-29th D cember, 1880.-(A communication from The Dicken
son Hard Rubber Company.-(Complete.) 2d. The design is produced on the surfacee of hard rubber by a mixture of pigment colours with a thick solution
of shellac dissolved in alcohol, and when dry subject-
ing it to pressure between smooth heated metallic ing it to pressu.
plates or blocks.
5476. Treating and Transporting Human Excreta,
\&c., R. Hoolless.- $29 t h$ December, 1880. - (Not pat This consists in the employment of air-tight carts,
and sleeves so as to transfer the excreta from one receptacle to another without causing any disagreeable it is used as manure.
5477. Saddle Bars, Sir F. Dancer and E. Chappell. The object is to provide a saddle bar which shall
automatically unlock and release the stirrup leather when the rider is thrown. A plate is rivetted to the saddie, and to itare hingea at the hinge end, and the
having a projetion or can
other horizontal and slightly cranked or curved at the hinge end. The lower end of the first bar has an eye
into which the free end of the second bar passes spring keeping it in position. When the stirrup
leather pulls against the saddle bar, the two bars are leather pulls against the saddle bar, the
unlocked and the stirrup leather freed.
5478. Amмonis, H. A. Dufrend. - 29th December, 1880.

- A communication from La Societ' l l'Alzote.) $6 d$. .

 5479 Ontuy

Tha object is to produco motive power by means on

 or coils of tubes, arrarged sod that tho coils hio olose to
ench other, and thus form along pipe, wich is

coiled in the form of a seroll and heat passed within
and without the tirst and other coils, so as t o convert

 5480. Pours, A. M. Clari: -2 2ith
ith.) od This riatese to simplo compact pump tor housedold tegulted at will and it enisistst in the emplogment
 boing therroby comprisesed, the water is is oroced to the 5481. SorA B
 Thuis ralates to a combined dofa or ooungo witha bod, connection with an ordinary sofa frame a morible
buck is isemployed, which a acts both as a back to the
 5482. Telephonic Appar This invention has for its object the construction of r portable telephonic apparatus suitable for use in
military and naval operations, mine explorations, \&c. The apparatus is composed, of a box, with hinged
cover at top, this box is divided into compartments, in cover at top, this box is divided into compartments, in
one of which is the battery, in nnother is the receiving telephone with accessories, in another is the signal
boll. In the upper portion of the box is located a

transmitter, by the side of which is pivotted the switoh
for throwing the bell, transmitter, and receiving telephone in and out of circuit. Theswitch is so arranged battery is cut out of circuit. The box also contains
bell key, button, terminals, binding posts, \&e. The rppar or for other purposes of same nature, is provided
with extra the with extra terminals for an additional wire, and a
sitch is so arranged as to bring the home battery or
an additional battery at the home station into connec an additional battery at the home station into connec he helmet of the diver. For example, Fig. 1 show the arrangement of the apparatus in the box; Fig. 2
shows the arrangement of the switch; B is the tele-
phone receiver, D electric bell, in the compartment phone receiver, D electric bell, in the compartment
marked E is the microphone transmitter consisting of
隹 an arrangement of m

5483. Wheels for Collitery Corves, \&ce, J. Trippett
and T. Walton. -30 De December, 1880.-(Not procecded with.) $2 d$.
This consists of a hollow bossed wheel with, first,
two internal bosses, fitted tightly into the hollow two internal bosses, fitted tightly into the hollow
boss, one on each side, and bearing on the axle, so
that when worn they can be readily replaced; and secondly, a perforated cylinder extending over and
fitting on to the outside of the bushes, through the
perforations of which the lubricant in the hollow boss perforations of which the
passes slowly to the axle.
5484. Pumpisg Apparatus, E. H. Greeven.- 30 th
Dicember, 1880 . $-(A$ communication fiom G. A. This relates, to pumping apparatus known as
pulsometers, in which chambers are provided for effect is obtained by the action of steam the through a
suitable valve on the liquid in the chambers alternately by condensation to create a vacuum for the
inflow, and then by acting on the surface to produce the discharge of the liquid aided by suitable valves.
Small pipes A and B with taps C forregulating the in-
flux of steam,

5484

serves
pipe I.
5485. Water-proof Clothing, J. Nerille. - 30th December, 1880.-(Not morceded with.) 22 d.
This relates to cutting out the material so that the garments have fewer seams than usual.
5486. Cubes or Blocks of Suarr, \&ce., G. Jager, jun.
-30th December, 1880 . $6 d$.
The boiled mass from the vacuum pan is, while still, The boiled mass from the vacuum pan is, while still,
hot pressed into moulds formed in a plate, which rests on a table with a piece of calico beneath it to
form a joint and prevent the cubes running into each other. The cubbes are then put aside to harden, and
afterwards, while still in the molds, are treated in a atterwards, while stis tamps spoced and shaped to fit
stamping mill with stand
each hole. The cubes are then removed from the each hole. The cubes are then removed from the
moulds and conveyed by a belt or hopper into wire
baskets, which are placed in baskets, which are placed in a centrifugal machine, so
as to cause all liquor to fly out, after which they are as to cause all liquor to fly out, after which they are dipped into a trough of saccharine liquor, and again
placed in the centrifugal machine.
5487. Windiva Yarns, Ji Grayson.
18so.- (Not proceded with.) 2 2d.

The spindle on which the cop is wound is caused to rise andy. The rising and falling motion is obtained by a cam, and the rotation by a frictional disc. The
conductor or guide for the yarn is provided with neans tor moreved
is being forme.
5488. Combined SEat and Life-saving Apparatus,
J. Wetter:- 30 th December, 1880 . - 4 conmen Thom B. King.)-(Not proceeded vith.) $2 d$. The ends of the seat are in the shape of hollow sufficient buoyancy to keep several persons afloat
The back is pivotted so as to be capable of turning to allow persons to sit on eether cide of the seat, whine
the footboard is also pivotted so as to turn them int the footboard is also pivotted so as to turn them into
position to be used as a seat when the seat and back position to be used as a seat when the seat and back
are removed, the apparatus being used as a buoy. 5490. Llluminated Clock, C. H. Leycestet:-30th This relates to forming dials so that when illuight, they will give a distinct indication of the time The dial is in three parts, the central one being opaque hour hand. Outside this disc is a ring also opaque
except for glazed slits forming the figures, and outside oxcept for glazed slits forming the figures, and outside
the latter is another opaque ring having one glazed triangular opening with its apex pointing towards the
hour ring, which remains stationary, while the dis revolves once in an hour, and the exterior ring once in
twelve hours. 5491. Web Printivg Machines, J. Foster. - 30th This relates to means for securing facility for placing
and breaking the web, convenient access to place or and breaking the web, convenient access to place or
remove the stereo plates and ink distributors, and to
obtain increased rapidity of operation and accuracy of obtain increased rapidity of operation and accuracy of
delivery. A is the roll of paper mounted in standards delivery. A is the ron of paper mounted in standards
in front, and which, in passing between the first
forme cylinder F 1 and the first impression cylinder I is printed on one side, and then passing between im-

pression cylinders T^{1} and I^{2}, and between I^{2} and the
second forme cylinder F^{2}, is printed on the other side. The web is then carried between the cutting rollers C which partly cut it into sheets that are separated by tapes T. These tapes convey the sheets to the three
rollers Q, round which they are guided as long as the
vibrating roller V is in position shown, so that six sibrating roller V is in position shown, so that six,
seven, or other number of sheets are gathered round
solle rollers Q. When roller V is by a cam moved out, the
sheets collected are directed downwards and are all delivered together on to delivery board S. The forme placing, adjusting, or removing their formes.
5492. Determining Reciprocativg Motion in
Stratgrt Line, H. M. Brund.- 30 th December, This relates to apparatus for determining motion in a straight line by a combination of radial arms rocking on centres but in different planes.
5494. Holdina and Suspending Fabrics, \&c., G
Allex:- 30 th December, 1880.- (Not proceded wilh.)

This relates to hooks or holders for attaching curtains applicable as conneeting links for chnins, and it consists in bending a bar with a broad flattish portion at
one part and a turned-up end, and in again bending nne part and a turned-up end, and in again bending
and curving the end, so as to orm a spring to hold the
ppliance firmly on the rod or other support. The first appliance firmly on the rod or other support. The first
bend is at right angles to the pointed leg to be passed through the fabric, and is again bent parallel with the
pointed leg, the bend being at right angles to bring 5495 .
5495. Regulatisg the Admission of Air . To Fire
places, R. Burchell.- - oth December, 1880. Gd.
 position,
fireplace.
5496. Cemtrifugal Machines, R. Lailecty.-304
Decomber, 1850 .- (Not mockded cith Decmber, 1850.- (Not procedded aith.) id.
This relates to it machino to effect the continuous
separation of liquid from solid matters by providing
means for a continuous feed of the material and a con-
tinuous discharge of the separated liguid and solid
constituente tinuous discharge of the separated liquidid and solid
constituents thereof, and it consists of a rotating receiving vessel combined with a series of separating
vessels connected to and communicating therevith, and a fixed case having separate receptacles
charge passages for the separate constituents.
 This relates to a rest in which the fire-arms are
supported, so as to enable a steadicr aim to be taken. 5498. Tratient of Articless of Cast Iron, J. J.
Shedlock. - 30 Il December, 18S0, 4l. This relates to treating articles of cast iron, so that
they may resist the action of moisture, and also other corrosive agents, whether solid, liquid, or gaseous
and it consists in the formation of the surfaces of th
articles of a anticles of a graphite skin, the pores and surface of
arthe
which are filled and covered with a material capable of resisting oxidising agents, such as a less oxidisable
metal applied thereto, either by electro-deposition or
by immersion in solutions of the metal. 5499. Conpounds, Putties, or Cements for Joints
and Joint Backings in Vapour Engines, \&c., AND Jont Backings in Vapore Evaness, \&c.,
J. R. Blumenterg. - 30 th December, 1880 . 4 t. This relates to a compound capable of resisting the
influence of the vapours of sulphide of carbon, ammonia, and other fluids of the same class used for motor purposes, and also the influence of dampness or
moisture, and high heat. Yellow litharge is used in
combination with lamp-black and glycerine, and forms combination w.
the compound.
5501. Fasteners for Wrndows, Doors, \&e., H.
Filecher:-31st December, 1880 .-(Not proceded vith.)

The lower bar of the upper sash is connected to the
Ther bar of the lower sash by a plate laid over both bars and fastened by screws. 5502. Valves for Pumps, N. Foley-31st December,
18s0. 6d. A suitable metal rod is bent in the form of a coil,
the convolutions of which lie close together, and when the coil is secured to the centre of the valve seat pres
sure on one side will raise the whe on one side will raise the outer convolutions
while on the opposite side it will force them tight
down on the seant. Two or more coils may be placed down on the seat. Two or more coils may be placed over each other, or the rod may be bent into a conoido
helical coil, of which pressure would cause the convo
lutions to separate. 550 separate.
5504. Production of Sulphate of Ayshonia from
Nitrogen of Peat, Turf, \&Ce., IV. L. IVise.--31st December, 1880. (A communtcation from Di.
Grouven.
His. peat or turf by means of glowing steam, in a furnace zontally, and are connected as shown, so as to cause the vaporus evolved in the freshly charged retorts to
pass through all the other glowing retorts before they pass through all the other glowing retorts before they
leave the furnace and enter an ammonium furnace

Secondly, in the manner of disconnecting each retort
from the system by means of the throttle valves B from the system by means of the throttle valves B;
Thirdly, in the renewal at regular intervals of the upper surface of the peat in each retort, so as to prevent
admission of air, and without disturbing the process ; Fourthly, of the construction of an ammonium furnace for the conversion of the vapouss into carbo-
nate of ammonia, carbonic acid, carbonic oxide gas,
and hydrogen gas. 5505. Stean Traps, de., H. Lancester:- 31 st De
cember. 1880 . $6 d$. A box A having at top two loose lids B secured by a
cross bar acted upon by a screw and hand wheel contains a hollow metal ball or float F, connected with a
tube G, having at its front end a semi-globular valve

5505

H, fitting into one end of the exit pipe I. A spring M
bears on the underside of the tube G, its pressure being bears on the
adjustable.
5508. Machinery for Preparing and Feeding
Fibrous Substances on to Soribbling and Card ing Macmises, W. Fox and J. Hell.-31st December, This relates to means for dispensing with the pro-
5500

 suitable gearing. Rakes H are carried on chains 1 ,
and take the material from box A and doposit in in box
K , from which it is conveycd by a toothed sheet I to the
 Iotted or large materinil into box K, untilit is reduceed

 5510. sarzty valvi

 caused to open and allow
boiler to the atmosshere.
 This reatesesto the manner of oconstriciting, support

 In order to simpify the connection of gas rotors to

 Thisis onsisists in in these, construcuction of crucibles and
 dane or

 4. SHupan sut Cole garing.

固

 dearne oror tho passesgo of the spark mo top outho

国 (ब)

vehicle body. The end frames are
penduluos links from the axle-boxes.
10. Photooraphio axd orter Chemical Printina tion from L. Corrbasiereredit Cluristion and A. Lietoct.) This relates to means for obtaining a number of re obtained by photographic papers in ordinary use,
vithout the aid of light, and according to one method it consists in adding a mixture of a suitable binary or
tertiary compound of silver in very small quantitioe to the paper pulp, or to the surface of the paper. The
hegative is placed on the paper with the varnished side negative is place on on the paper with the varninshed side
doowwards and exposed ot light. To obtain the tint
 it it wanhed and dimmersed in a second
if a base which fives the tint desired.

1. Compressing Air, F. Wirth.-1st January, 18s1.This rematasest toan in inproved Hod mothod od of compressing
ir up to ten atmospheres, and consists in using
 piston and compresses it up to the pressure of the air
in the reservoir. into which it is then forced. On the
On other side of the piston, in place of using waters or
teaan to work it, compressed air of the same pressure
to

 ttmosphere;
the cylinder.
2. Motrve Power Exarse, G. o. Tophum.-1st Janu This relntes to or motor in which the pressure of it consists of a, bellows-like apparatus with an inlet shaft. 14. Portable Furnaces, J. Tenaick,-3rd Janucry, The furrace is more particularly applicable for brew-
ing purposes, and it is made of iron and is square, the ing purposes, and it is made of iron ard is square, front plate, in which a door is formed to feed the fuel and
remove cinders. The inside is lined with fire-brick. On the front plate a lever is pivotted and serves to
revolve the fire bars.
On the back end and sides is in dip flange rumning into a bed of sand. The furnace is
mounted on a truck with wheels to run on a rail or on the floon
3. Elevators, W. Dover:-3rd Junuary, 1881.-(Not Aroceatad eothin). an endless chain of buckets, made by a rope to nlow for lateral adjustment. An adjust. to distribute the material elevated. A hydraulic or steam motor is fixed to th
4. Screw Steam Ships, T. F. Irvin.-3id January, object is to increase the speed, facilitate steeringy increase the carrying capacity, and the strength
of the vessel. For this purpuse screw staam ships are made with a single body from the bow to the waist
bunt from the eatfer ant hho hull is idivided at the keel ing in a stern of ordinary form. The central portion where the hull dividess gradually rises, so that from
the stern to the waist there is a sradually
contractim chhnel or why waist there is a gradually contracting
 to form a paste, to which 6 ib. of steamed potatooss are
added and then 4 gallons of boiling water is well stirred in. A wine glass full of the following solutio Thie sozozof ordinany consists of of 4 orers. glass gant is then added 4 oz, alum
 to 5 deg. on the hydrometer. The temperature of the mixture is then lowered to 60 deg. Fah. by stirring in
cold water, and allowed to stand two or three hours to corm water, and allowew of farino sand a little water is is then
ferneent the
nded added and the e
into a dry state
5. Boors, Colonel E. Harnett.-3rl January, 1881. 4d.
 object being to facilitate their putting on or remoroal.
A sit about tincling is formed in tront extending
 of leg pieco. Over this a guard or flap is fitted, and is
kept in place by the front strap of the spur. 20. Dextal Exarse, P. Slawn.-3rd Jonuary, 1881. 6. d. upright arm connected to a tripod, and is situated
near the floor. At the top of the arm is mounted a
honizontal tube, and a brace whose bearings surround the arm.
In the horizontal arm runs a shaft capable of being driven at different speeds by pulleys. The special
feature of the invention is a universal joint attached

 This relates to water reservoirs in the form of a pipes are led all over the vessel, and are fitted with
suitable valves or cocks to control the supply of water to them.
6. Couphiva Apparatus for Raluwar Vehicles, H.
H. Lake- -3rd Junuery, $1881 .-(A$ communication Thiom (G. A. Adeame.) St. [23]

attached to one draw-hend is engaged with a hook draw-head having a bottom plate $A 1$, cheeks or side
pieces with vertical butfer faces and a rear wall, form-
 is the coupling hook arranged centrances with within ; the
draw-head, to which it is pivotted at the back, its

upper part of the face of hook B is inclined upwardly
and backwardy to lift any link which may strike this portion of the face of the hook over the upper claw
and the lower ontion of its face is inclined down wardly and backwardly to cause the link to pass under
claw Y. By raising blade M the link is lifted clear of claw X
7. M
 Clauss.- 3rl Januarry 1881. - (A communnication from
Dr. II. Uelemann.)
4l. To produce a pig iron capable of withstanding the
action of acids Frirt considerably less lime or lime
sto tone is added to the charge of the furnace ; seconiny
so as to be able to run the furnace with the highily
 employed; and Thirdly, the quantity of coke in the
charge is increased. The iron produced is cast in the
8. Holdiva or Skourive Proturrs, Curtan
 Troad part in which is a slot to receive a sliding piece
 cornice and the other a deorative filling
the device which supports the cornice
9. Werghing Yañ or Thread, dec, J. H. Johnson.

This relates to apparatus for determining the quantinis reiates to apparatus for determining the quan-
tity of yarn thrend unvound from askin, in order
be ultimately made up into balls of seiven woider to be nilimately made up into balls of a given weight,
which is a capabe of being changed at pleasure The Whicen is papabese from skein D Dunder a preaser roiller G.
thred
which at the desired moment presses it against a feed
[6

pulley P, which delivers the yarn to a receptacle B phread causes the balance to turn, needies A aree with-
trawn
drom the mercury cups C, thus interrupting an drawn from the mereury cups c, thus interrupting an
electric current, and so cuusing the armature of magnet E to recede from it, and so lift the presser
roller G off the feed pulley P , and stop the delivery of 29. Regeptacless with Autaoraticalux Moving
 or from which it is necessary to exclude air, are fitted 32. Straining Paper Pulp, dec., D. Bentley.-4 January, 1881 . ${ }^{6 d .}$. ${ }^{\text {chlindrical cage }} \mathrm{A}$ is carried by shaft B made to revolve by friction gearing. The bottom of the cage is soid, with exception of openings at H, and the top is
open to admit pulp, while the sides E form the strain-
(32)

ing surface. The fine pulp passes through the sides
E into the outer casing, while the knots pass out 35. Bioxccuss, dc., W. Woolley,-4th January, 1881.

So as to shift the saddle on the backbone, a bar
attached to its underside is made to slide in a doveattached to its underside is made to slide in a dove-
tailed droove and is secured by set serews. The
foum foundation of saddle consists of a steel plate having
a middle bar to fix it to the bicecle, the reare end of the bar carrying a carred plate having the figere of the
rear of the saddle ; and from it noms extend tow the fore part of the saddle.
52 .

being formed in its centre and surrounded by ant
intornal rim to
int ithin box Borevent egress of the lubricant. distribute the lubricant.
 Cecmindidical case is made of two diameters, the
aller being at the bottom and screw-threaded to fot it to the gas pipe, while the upper part receives a
hollow plue to which the burner is fitted, hole in in the
plug allowing the
 the bottom, and to the bottom on aisco is ant acheod so
that it can turn and bring one of s series of holes
opposite the hole in the trg on oppoite the holo end the trayy one of a series of holes hole in the dise
are of different sizes. Ahollow tube is caised to tise and fall so as to open or close openings in a hollow plug
as the pressure varies. 116. Carrisg Exalses for Woot, dec, P. L. Klein and

 means, a soter and regular feed is obtained, and the
wool is not torm. Before passing to the picking
wis. wool in not tonn. Before passing to the picking
roller the cylinder 7 tolos + whe woil from pilke
 the wool through the teeth of roller 6 , so as at to loosen
the burrs, \&c The picking roller 9 turns faster than
7 and 8 and dinws the woo and ${ }^{\text {and }}$, cylinder, whereby the fibrea
of though the teeth
 the burring roller 10 and thrown into reeoptacle 11.
The roller 12 has the same velocity, and rollers 13 and
[176]

14 a greater velocity than roller 9 , thus producing
another draught of the wool, and ns the roller 15 another draught of the wool, and and the roller r 15
revolves faster than roler 1 , the fibre is here again
even exposed to a certain draught, so that the burr rouler 16
removes the rest of the burr and throws it int

SELEOTED AMERICAN PATENTS.
From the United States Patent office official Gazette.
 two converging electrodes arranged to be fed by
gravity, of a block of refractory material provided with converging passages or sockets in which the poles. of
the electrodes are received and hidden from view, the the electrodes are received and hidden from view, the
lower face of the block being cut out like a vault for 242.747. S

the light, substantially as set forth, (2) The combi-
nation of carbons C with guide block M M, and conducting rods T, turning on centres, substantially as and
for the purpose described. (3) The combination of
of carbons C with guide block M , inclosed in casing D , conducting rod
frame turning subtantially as and for the purposes de-
serib scribed.
242,83
242,837. Grats-drill Distriburor, Jumes Navon,
Ingersoll, onturio, Cunada.-Filed December 23rd,
Brife.-The sliding sloeve is provided with wings, one bing above, and the other on or near a plame
passing through the axis of the sleeve. Claim. (1) The combination, with a sealloped rotary feed wheel, of a

slidingsleeve C provided with wings A B, one wing being sliding sleevec provided with wings $A \mathrm{~B}$, one wing being
arranged above, and the other in or neara horizontal plane passing through the axis of said sleeve, substan-.
tially as described. (2) In a grain-drill distributor tially as described. (2) In a grain-drild distributor
having a peripheral seed wheen, a sliding sleeve C,
provide having a peripheral seed whel, a sliding sleeve C,
provided with wings
contre of the peripheral seed locheol above and ond ano near the centre of the peripheral sed wheel, and also provided
with a division plate E, substantially as described, and
for the purpose specified with a division plate E,
for the purpose specified.
242,898. Magesto or Dvxaro Electric Machive,
Thos. A. Edison, Menlo Park, N.J.-Filed Dceamber 15th, 1880.
Brief.-Radial bars or plates of conducting materin

are attached to the ends of the armature, but insulated therefrom and from each other. These plates corr spond in number with the ars. or coils an whin in such
current is generated, and are attached thereto a manner as to form a complete closed circuit. The connections between the radial plates are by means of
curved bars, insulated from all plates except those curved bars, insulated from all plates except those
which they severally conniect. The commutator is formed by binding the ends of certain bars at one enc
of the armature outward at right angles 242,901. Electric Metre, Thomas A. Elison, Mento
 contanining rranslating devices, of an electro-moto
 combinatlon of an electric circuit, an eleetro-motor, stantially as set forth. (3) The combination of an electric circuit, an electro-motor, a fan or blades driven
thereby chered, and resisterink in which the fan orblades are

with liquid, in which the blades or fan are placed, and
registering apparatus, substantially as set forth. (5) An electric meter consisting of a motor having a

-

242.901
definite work to perform or loading to overcome, and
registering devices, substantinally as set forth 242,844. Plovgh, Samuel Seegmiller, Gooderiek, Brief.-A skeleton beam with a cap having divided
arms to receive the esevernl rods, and a concave base to rook upon the spherical head of the standara, and with
slotted plotes sloted plates at the handle end for the two adjust
ments. Ccrim. - (1) The combination with the plough
stand standard A, surmounted with a semi-spherieal head having a conical hole and provided with the open
chamber b of the cap B, concroven its wider face, and
provided with

[242,344]

bifurcaten cxtension D having base plate k, skeleto secured to the standard by a universal joint, substan
tially as deseribed. (2) The combination of the stanard A, having a convex head, and chamber b, cap B constructed as set forth, bifurcated extension D, and
skeleton beam C, with the slotted handle-brace F^{2}
 242,930. Electric Lamp, Chanles A. Husseu, Ne ments, to the Hussey Electric Company, same posioce Flaim. - The November 20 20th, 1880 . body capable of being rotated or turned, containing
within if two whereby, when said body is rotated or turned, the
ends of the carbons are shifted to bring the carbons ends of the carbons are shifted to bring the carbons
successively into the electric circuit substantially as

specified. (2) The combination, with an electic resistance devices arranged upon a common support,
which may be rotated to tring said resistance devices which may be rotated to bring said resistance devices
into the circuit of the lamp, to vary or extinguish the into the circuit of the lamp, to vary or extingulish thio
light, substantially as specified. (3) The combination

 spool by a hand piece, more or less of its coils may be
thrown into the lamp circuit and the resesistance in the circuit varied, substantially as specified.:

CONTENTS.

