THE FOUNDING OF THE BRITISH ASSOCIATION.
The British Association for the Advancement of Science is fifty years of age at the present time, and begins its "jubilee" meeting next Wednesday at York, the city in which it was born. Special pains have, therefore, been taken to make the meeting a good one. Men of considerable scientific eminence will make a point of attending to take part in the proceedings, the Archbishop of York will be among those who will welcome the guests; moreover,
the central position of York, and its being on the high the central position of York, and its being on the high road between London and Scotland,
which tell in favour of a good meeting.

The English scientific world is in a state of glee at this its approaching " jubilee," a word suggestive of Sundayschools, tea and cake, flags and banners, a word which falls strangely on the ear when it is uttered by lips accustomed chiefly to the deliverance of technical phrases. The etymology of "jubilee" is greatly disputed, but the most general belief is that it is derived from the horn of a ram, and that the year of jubilee is "the year of the blowing of the horn." The jubilee was a Jewish festival, held every fiftieth year, and it embraced three main enactments, namely :-(1) That the soil should rest untilled during the year, and man live upon its natural produce; (2) that all landed property should go back to those former proprietors who had been compelled by poverty to sell it ; (3) that all slaves should be set free. The day was ushered in by the blast of a trumpet, a straight ram's

Incited by the success of the German Association, and by some ideas put forth in a work by Mr. Babbage, entitled "Reflections on the Decline of Science, and Some of its Causes," Sir David Brewster determined to start the British Association for the Advancement of Science. He selected York for the first meeting, because it was a central place, and had a philosophical society which had been in existence for eight or nine years, and he wrote the following letter to Mr. Phillips, the secretary of that society :-
"Allerby, by Melrose, Feb. 23rd, 1831.
"Dear Sir,-I have taken the liberty of writing to you on a subject of considerable importance. It is proposed to establish a
British Association of Men of Science, similar to that which has British Association of Men of Science, similar to that which has
existed for eight years in Germany, and which is now patronised existed for eight years in Germany, and which is now patro. The arrangements for the first meeting are in progress, and it is con-
templated that it shall be held in York, as the most central city of the three kingdoms. My object in writing to you at present is to beg that you would ascertain if York will furnish the accommodation necessary for so large a meeting, which might
perhaps consist of 100 individuals; if the Philosophical Society perhaps consist of 100 individuals; if the Philosophical Society would enter zealously into the plan, and if the mayor and influ-
ential persons in the town and in the vicinity would be likely to ential persons in the town and in the vicinity would be likely to
promote its objects. The principal objects of the society would be promote the cultivators of science acquainted with each other; to stimulate one another to new exertions; to bring the objects of science before the public eyc, and to take measures for advancing
its interests and accelerating. its progress. The society would its interests and accelerating its progress. The society would
possess no fund, make no collections, hold no property, the expense of each anniversary meeting being defrayed by the members who are present.
"As these few observations will enable you to form a general

Phillips, the Rev. W. Scoresby, Sir John Sinclair, the Rev W. Whewell, and Sir Alexander Wood.

The first official report of the first meeting of the British Association was published in February, 1832, by Messrs. Thomas Wilson and Sons, High Ousegate, York. This was reprinted in 1833 by Mr. John Murray, of Albemarle-street, London, and bound in the same volume with the report of the second meeting of the Association, which was held at Oxford in 1832. The third meeting, 1833, was in Cambridge.
The opening meeting of the Association was held in the theatre of the Yorkshire Museum, on Tuesday, the 27th present ; the total number of tickets which had been issued was 353 . The meeting began at twelve o'clock at noon. On the motion of Dr. Brewster, Viscount Milton was voted into the chair, from which he gave a presidential address of five minutes' duration. He expressed a hope that the Association would be a useful body, and tlat from a small beginning it might rise into importance. He hoped a small beginning it might rise into importance. He hoped
it would remove obstacles to the progress of science. For instance, the fiscal laws of the country offered obstacles to instance, the fiscal laws of the country offered obslacles to
scientific improvements; the regulations relating to the scientific improvements; the regulations relating to the
manufacture of glass greatly hampered the progress of the manufacture of glass greatly hampered the progress of the
science of optics. The Rev. Wm. Vernon Harcourt, chairman of the committee of management, then sail a few words to the effect that the Association was formed upon words to the effect that the Association was formed upon
the model of one which had existed in Germany for several years. After Mr. Phillips had made a statement aloout the

FIC 2

FIG.E.

S LIP W A Y S.-(For description see next page.)

horn instrument, with a gold mouthpiece. According to the Mishna Rosh Ha Shana, on this day every Israelite blew nine blasts, so as to make "the trumpet sound throughout the land," nor is there any reason to suppose that the members of the British Association will be behindhand in the performance of this duty ; a few of them have always displayed an aptitude for blowing their own trumpets, especially the small minority who have had wares to advertise in papers read in the sections.
written Mrs . Messrs. Longmans, and dedicated by permission to Sir Roderick Murchison. It is a closely printed book of 219 pages. She sets forth that, practically speaking, the Association was started by Sir David Brewster, and that Sir Humphrey Davy, Sir John Herschel, and Professor Playfair had been about that time promulgating ideas showing the necessity for some such step. Sir David of scientific men like those which had proved of so much value in Germany. The German annual congress of scientific men was founded in 1822 by Dr. Oken, of
Munich. The first meeting was held purpose of making students of natural science and medical men acquainted with each other, and it was attended by but twenty residents in Leipsic and twelve visitors. importance, that of 1827 being held in Munich, and patronised by the King of Bavaria. On the 18th September, 1828, the congress assembled in Berlin under the patronage of the King, and the presidency of Baron Von
Humboldt; Mr. Babbage was the only Englishman present, and he recorded his opinion of it in an article in the "Edinburgh Journal of Science." At a soiree given by the president on the same date, 1200 persons were present, before the founding of the British Association, the German Congress met in Hamburgh, and among the 285 Johnstone, Dr. Traill, Mr. Babbage, and Professor Pillans, Professor Johnstone wrote a full account of it to the "Edinburgh Journal of Science."
opinion of the object in view, I shall only add that the time of 18th or 25th of July.-I am, dear Sir, ever most truly yours,
'J. Phillips, Esq.
The Philosophical Society and the Mayor and magistrates of York received the proposition favourably; so also did the Archbishop of York, who offered hospitality to the leading members of the Association at his palace. Among the scientific men who warmly supported Sir Roderick Murchison, Mr. Robison, Mr. Forbes, Professor Johnstone, and Professor Phillips. The month of September was tinally fixed upon as the best for the holding of the opening meetings.
At Oxford, shortly before his death, Professor Phillips described to us his anxieties about this first meeting. In the morning he took a walk in the Museum Gardens in the hope of meeting illustrious strangers and scientific scientific meeting after all proved not so bad for a first start.
The following were the first officers of the British Asso-ciation:-President: Charles William, Viscount Milton, F.R.S., President of the Yorkshire Philosophical Society. President elect: The Rev. William Buckland, D.D., F.R.S., Professor of Geology and Mineralogy, Oxford. Vicepresident: The Rev. William Vernon Harcourt, F.R.S., presidents elect: Sir David Brewster, LL.D., and the Rev. William Whewell, F.R.S., Professor of Mineralogy Cam bridge. Treasurer: Mr., Jonathan Gray, of York. Secre taries: York-Mr. William Gray, jun., and Mr. John Phillips, F.G.S., secretaries to the Yorkshire Philosophical Philips, F.G.S., secretaries to the Yorkshire Philosophical -Mr. J. Robison, secretary to the Royal Society of Edinburgh; Oxford-Mr. Charles Danberry, M.D., and the Rev. Baden Powell, F.R.S. The Association started with Rev. Baden Powell, F.R.S. The Association started with Mr. Babbage, Sir D. Brewster, Dr. Christison, Mr. John Dalton, Mr. Charles Danberry, Sir Philip Egerton, Sir John Forbes, the Rev. W. Vernon Harcourt, Mr. Charles Lyell, Mr. R. J. Murchison, Mr. John Phillips, Sir Thos.
number and nature of the invitations to attend the meeting which had been sent out, Mr. Vernon Harcourt read extracts from the letters of those who could not attend, including one from Mr. Faraday, who put forth the plea of pressing engagements elsewhere. Mr. Harcourt next explamed the plan of action which had been laid do also incide Association, and its proposed constitution, Society, which orily described the founding of Dr. Brewster, Mr. Roderick Murchison, Dr. Pearson, and Mr. Robison also spoke to various resolutions proposed at the meeting. It was resolved unanimously:- "That an Association be formed to be called the British Association for the Advancement of Science, the objects of which shall be to give a stronger impulse and more systematic direction to scientific inquiry, to promote the intercourse of those who cultivate science in different parts of the British Empire with one another, and with foreign philosophers, and to obtain a greater degree of national attention to the objects of science, and a removal of any disadvantages of a public nature which impede its progress."
The sectional work began before the Association was actually formed. The opening meeting just described was held on a Tuesday, yet the preceding day-Monday-Professor Phillips had given an account of the most remarkable phenomena in the geology of Yorkshire. On the Tuesday nearly all the time was occupied in the formation of the Harvey F.R.S was read on "The Geometrical Analysis of the Ancients" On Tuesday evening, Mr. Abraham delivered a lecture on magnetism, and exhibited his magnetical apparatus for protecting the eyes and lungs of the Sheffield grinders from particles of steel. On Wednesday, Dr. Brewster communicated a paper on mineralogy, and an essay by Dr. Henry on "The Philosophical Character of Dr. Priestley," was read. On Wednesday evening Mr. R. Potter, jun., read a description of his new opticians now who weuld not object to give an evening opticians now whe British Association on their improvements in mi of the blowing of the horn." On Thursday morning, Mr.

Dalton read a paper "On Food and its Influence on Secretions," after which Mr. R. Potter, jun., came to the front again with some remarks on one of Fresnel's theories
about light. The place of abode of the active Mr. Potter was Smedley Hall, Manchester. On the same day Mr: William Hutton read a geological memoir, and Mr Roderick Murchison criticised the same. Mr. Johnston described vanadium and its ores, Mr. Witham read a botanical paper, followed by a note by Dr. Henry on the yellow copper pyrites of Anglesea. On Thursday evening Mr. Scoresby gave an experimental lecture on magnetism, and finished it on Friday morning.
Brewster read a paper on the crystalline lens in the eyelogy of Preston. Dr. Daubeny spoke of hot springs and volcanos. On Friday the indefatigable Mr. Potter, jun., described some experiments on electrical discharges in
vacuo, and Dr. Warwick, Dr. Daubeny, and Mr. Osborn vacuo, and Dr. Warwick, Dr. Daubeny, and Mr. Osborn lescribed some physiological observations, Mr lescribed a beryl belonging to Don Pedro, Mr. Robison lescribed his linseed oil barometer, and Mr. Forbes read an essay on the barometer. Sir James South sent in a communication on the satellites of Jupiter. On Saturday evening Dr. Daubeny called attention to experiments with ooal gas, and the Rev. W. Vernon Harcourt Dr. Brewster contributed an essay on spectrum analysis, and Professor Gazzari another on detecting traces of writing which have been fraudulently erased. Thus three or four scientific papers per day sufficed for the first members of the British Association.
The share of the British Association in various disoveries and inventions made during the first thirty-three years of its existence was summarised by Professor 865. He said :-"We had a part in all. In some of them we took the foremost place by the frequency of our discussions, the urgency of our recommendations, the For others we gave all our strength to support the Royal Society and other institutions in their efforts to accomplish purposes which we approve. In all instances our elastic system responds quickly to pressure, and returns
the friendly impulse. If we look back on the work of previous years, it is easy to mark the special action of the Association in fields which could hardly be entered by any other adventurers." He added that many valuable labours were undertaken in consequence of the reports of the Association on special branches of science, and he gave
illustrations how the Association had promoted physical astronomy, researches relating to the tides, deep-sea exploration, waves, lines for ships, meteorology, magnetic observations, earthquakes, electricity, the influence of the ing iron and steel. His remarks on these heads occupy about three pages of the 1865 Report.

The Progress of the British Association.

Year.	Place of meeting.	Attend- dance	Amount received,	Paid out for scientific purposes,
1831	York	3 ¢®3	s. d.	ו.
1832	Oxford			
1833 1834	Cambridge Edinburgh	$\begin{array}{r} 900 \\ 1299 \end{array}$		
1835	Dublin ...			167 ${ }^{20}$
1836	Bristol	1350		435
1837	Liverpool	1840		92212
1838	Newcastle-on-Tyne	2400		9322
1839	Birmingham... ...	1438		159511
1840	Glasgow	${ }^{1353}$		154616
1842	Manchester	${ }_{1315}$		${ }_{1449}^{1235} 17$
43	Cork			156510
				98112
1845 1846	Cambridge Southampto	$\stackrel{1079}{857}$		$831 \quad 9$
1847	Oxford ...	${ }^{1320}$		${ }_{208}^{685}$
1848	Swansea	S19	70700	275
1849	Birmingham	1071		15919
$\begin{aligned} & 1850 \\ & 1851 \end{aligned}$	Edinburgh	1241 710	$\begin{array}{rrr}1085 \\ 60 \\ 60 & 0 & 0 \\ 0\end{array}$	345 3918 39
1852	Belfast	1108	108500	3046
	Hull	876	19300	205
	Liverpool	1802		380
1856	Cheltenham	2133 1115	$\begin{array}{lll}2311 \\ 1098 & 0 & 0 \\ 10\end{array}$	48016
	Dublin	2022	201500	50715
1858	Leeds	${ }^{1698}$	193100	61818
	Aberdeen	2564	278200	684
1861	Manchester	${ }_{3138}^{1689}$	$\begin{array}{ll}1604 & 0 \\ 3944 & 0 \\ 0 & 0\end{array}$	${ }^{766} 19$
1862	Cambridge	1161	108900	129316
	Newcastle-on-Tyne	3335	364000	1608310
1864	Bath . .i.	2802	${ }^{2965} 000$	128915
18	Birmingh	${ }_{2393} 199$	$\begin{array}{lll}2227 & 0 \\ 2469 & 0\end{array}$	1591710
1867	Dundee.	244	261300	1739
	Norwich	2004	204200	1940
79	Exeter	1856 2878	1931 3096 0 0	${ }_{1572}^{162}$
1871	Edinburgh	2463	257500	1472
1872	Brighton	${ }^{25933}$	2649 ${ }^{2649} 0$	1285
1874	Belfast	1951	1979	115116
1875	Bristol	2248	2397	960
1876	Glasgow	2774	302300	1092
1878	Dublin ...	12578	126800	${ }_{725}^{1128}$
1879	Sheffield	1404	142500	10801111
1880	Swansea	915	8990	731

On the 14th of February, 1868, a biographical notice, a column long, of Sir David Brewster, was published in The biographical sketch, and from these two sources the following items in relation to his career are gathered.
Sir David Brewster was born at Jedburgh, December 11th, 1781, and was educated for the Church of Scotland at the University of Edinburgh. He, however, had a taste for science, more especially optics, and in 1808
became editor of the "Edinburgh Encyclopædia." The kaleidoscope was invented by him in 1816. In 1819 he
and Professor Jamieson established the "Edinburgh Philosophical Journal," and in 1831 he was the chief founder of the British Association for the Advancement of Science. In 1815 he obtained the Copley medal of the Royal Society for an optical discovery, and soon afterwards was elected a Fellow ; in 1816 he received half the physical prize from the Frerch Institute offered for two of the most important discoveries made in Europe during the preceding two years; in 1819 the Royal Society awarded him the Rumford gold medal; in 1832 he was knighted, and had a pension conferred on him; in 1838 he was chosen Principal of the United Colleges of St. Leonard, St. Salvador, and St. Andrew's; in 1849 he was elected one of the eight
Foreign Associates of the French Institute-a mark of Foreign Associates of the French Institute-a mark of
very high scientific distinction. He presided over the very high scientific distinction. He presided over the
British Association at Edinburgh in 1850 , and in 1851 over the Peace Congress held in London. In 1859, on the death of Dr. John Lee, he was chosen principal of Edinburgh University. He was also a magistrate of the county of
Roxburgh. He was a voluminous writer, and his principal Roxburgh. He was a voluminous writer, and his principal works consist of "The Edinburgh Encylopedia" (eighteen 4to. vols), in which the optical articles are principally by
him ; the "Treatise on New Philosophical Instruments", him; the "Treatise on New Philosophical Instruments",
1813; the "Treatiseon Optics" in "Lardner's Encyclopedia." 1813; the "Treatise on Optics" in "Lardner's Encyclopædia;"
the "Letters on Natural Magic," 1832 ; a "Treatise on the the "Letters on Natural Magic," 1832 ; a "Treatise on the
Microscope," 1837; the "Life of Sir Isaac Newton," 1828, Microscope," 1837 ; the "Life of Sir Isaac Newton," 1828,
re-published in an enlarged form in 1855. "More World, re-published in an enlarged form in 1855 ; "More Worlds
than One," 1854 ; "The Martyrs of Science," 1856 . "Th than One," 1854; "The Martyrs of Science," 1856 ; "The Stereoscope, its History, Theory, and Construction," 1857 and "The Kaleidoscope, its History, Theory, and Construc tion," 1857. His numerous scientific papers were con-
tributed chiefly to the "Edinburgh Philosophical Transtributed chiefly to the "Edinburgh Philosophical Trans-
actions." He died on Monday, February 10th, 1868, aged 87.

THE INSTITUTION OF MECHANICAL

ENGINEERS.
THE last paper read at the Newcastle meeting was by Tr. William Boyd, of Wallsend-on-Tyne,

On Slipways.

The author described at some length the various systems employed for hauling up vessels on slipways. There are Tyler and Co.'s hydraulic, Fig. 3 , Day, Summers, Hayward described in The Eraivers Thompson's system, Fise 4 and 5 . Bi by Mr, Thompson's system, Figs. 4 and 5, designed by Mr. John Thompson, of Newcastie, and Mr. T. B. Lightfoot, in us Palmer's Shipbuilding Compeland and Co., and Messrs Palmer's shipbuilding Company, on the Tyne; at Penarth
Docks; and at Messrs. Raylton Dixon and Co.'s Works Middlesbrough, and consisting of a treble-powered hydraulic

Ficis.

hauling apparatus placed at the top of the ways, and connected by means of suitable crosshead and rods to a the bottom of the ways. The three powers are obtained by allowing the pressure-which may be taken either direct from a pump or from an accumulator-to act respectively on the centre ram alone, on the two outer rams, or on all three together, and lastly, the Wallsend system, Figs. 7, 8,9 and 10 , used at the Wallsend Slipway. Its chief pecinliarity lies in the length of the slips, which measure 1000 ft . from the end of the rails to the end of the hydraulic cylinder. The machinery was constructed by Messrs. S. and H. Morton and Co., of Leith, in the year 1873; but the system was first designed by the late Mr. Morton in the year 1819, and was carried into comparatively general use of timber framing, 173 ft . long, and extended by "ekes" in the centre to 284ft. long. These "ekes" are balks of timber surrounding a wrought iron bar, and rumning tudinal timbers, which are supported by transverse balks resting on a slag foundation, are fixed cast iron rails, weighing 3 cwt. per rumning foot for the centre rails, and 1 cwt. per running foot for the outer rails; on the latter cradle fun two extensions or continuations of the main which support the sliding bilge blocks. The weight of the whole structure is about 160 tons. When a vessel is "relieved," as described hereafter, these arms swing on the cradle to be removed entirely from under the vessel The motive power for each slipway consists of a hydraulic cylinder, the ram or plunger of which is 15 in . diameter
and 10ft. stroke, corresponding with the length of the links. Water is forced into the cylinder by three pumps, each $3 \frac{1}{2}$ diameter and 12in. stroke, making in quick gear strokes per minute. Attached to gear twenty-five the ram is strong Attached to the outer end of are two wrought io crosshead, and connected to side the cylinder; these rods, passing backwards out second crosshead, to which a series of link logether dow the slipway to the cradle are series ofsively attached. Thes links are of wrought iron, each 10 ft . long from centre to centre of the eyes, and 33 in. diameter, giving a sectional area of 11.04 square inches. The pins are of steel of same diameter: In connection whe the sarimg of the pumps is a chain-wheel working an ordinary short-link chain, called the "back chain," which is used for pulling up the empty cradle after a vessel is launched, and also for pulling it down into its final position to receive a vessel coming on for repairs. The mode of operation is as follows:-The cradle is run down into the water by its own weight, assisted occasionally by the back chain, which is sometime rendered necessary by the accumulation of mud lying at the lower ends of the slipways, into which the cradle has to force its way; again, in the case of large and long vessels, the lower end of the cradle is often pulled 40 ft . or 50 ft . over the rails, and rests on the hard mud-bank existing outside. The vessel to be taken on the cradle is then guided into an approximate position by ropes carried to capstans on the jetties. Attached to each end of the cradle are two long iron rods, each hinged at the lower ends, and fixed a few inches on each side of the centre line of the cradle, so 2. to enable them to be raised from a horizontal to a vertical position ; the outer ends of these rods are buoyed, and when the vessel is approximately in the proper position light ropes fastened to the rods are passed on board ship and hauled up tight. The iron rods, thus raised to a vertical position, form two guides between which the vessel can be accurately placed on the keel blocks, guided by the controlling ropes on shore. The cradle is then hauled slowly up the ways by the hydraulic ram, till the stem grounds and settles on the foremost "eke," the stern being still afloat. Two similar rods to those described above are attached to the lower end of the cradle, and the stern of the ship is in like manner guided between them, whole the concurrent upward movemenine of keel blocks The sliding on the transverse arms, are hauled into position against the bilge of the vessel by ropes passed on to the nearest jetty, and when pulled home the ropes are passed then saf the vessel and there made tight. The The operation of hauling up now commences. The length of each link is loft., corresponding with the stroke of the hydrallic ram, as before described. Each time the ram with its crosshead is forced by the pumps out of the cylinder, the cradle with its burden, and the connecting series of links, advance the length of one link, or loft. The outlet valve is then opened, the water escapes, and the vessel falle, which catch into teeth weight brings the ram back into the cylinder; a link is removed by means of a small travelling crane, and a new attachment is made between the crosshead of the ram and the next link of the series. This process is repeated until the cra
water.
When a vessel is to be launched, the reverse process takes place. All the pawls, except one or two at the fore end of the cradle, are tied up; these two are worked by hand till the vessel is lowered far enough down the slipway to allow of launching, when these in turn are also up and the vessel rests for a shor is then disconnected paw or dagger. knocked away, the cradle with its burden runs down the ways, and, as deeper water is reached, the vessel floats connected to the toothed wheel at the head of the slipway, and by its means the empty cradle is pulled up the slipway till it is again required.
The actual rate of progress up the slipway is about as follows :-With single rods, for light vessels in quick gear, $2 \frac{1}{2}$ to 3 min . per rod ; with single rods, for heavier vessels $\frac{1}{2}$ slow gear, $4 \frac{1}{2}$ to 5 min . per rod. When the size and of rods is laid, connecting the crosshead of the hydraulic ram with a similar crosshead attached to the foremost eke. Hence, although when the vessel is actually moving the rate of progress remains as stated above, yet owing to the the total time is about as follows :-Double rods, comparatively light vessels, quick gear, 5 min . per rod ; double rods, very heavy vessels, slow gear, 6 to 7 min . per rod. The total distance traversed by the cradle from the point where it first receives its burden is about 2401 ., , ath single time occupied may be taken as about two hours, exclusive ods, and three and a-hal hours rion lace vessel on the cradle, which is usually about three-quarters of an hour. The author then compared the slipway with dry docks, and stated that 714 vessels have been taken on these slipvays since their opening in Jamuary, 18 ge to kind has happened to any one vessel by reason of defect or insufficiency in the system employed
He then described the mode by which the upper portions of the slipways are made available, which nables two vessels, each say 300 ft . long, to be slipped one behind the other on each slipway clear of measure 1000 ft . long from end to end. When it is required to use the upper portion of the slipways, e.g., when extensive repairs or alterations are in question, or when a vessel is to be lengthened, the cradle carrying the vessel ways, leaving space for another vessel between it and high
water. When in this position the operation of "relieving"
is undertaken. This is commenced by placing between is undertaken. This is commenced by placing between each pair of arms strong blocks of timber as bilge
blocks, capable eventually of carrying the whole weight of blocks, capable eventually of carrying the whor weinemor
the vessel. Commencing just forward of the foremost arm, and simultaneously on the port and starboard, these new bilge blocks are very tightly wedged against the bilge then removed from the bilge blocks sliding on the arm, and taken by the new bilge blocks resting on the ground. The bilge block on the arm is then slid out from under the vessel, and the arm is free to be moved from a transverse
to a longitudinal position. This process is continued till all the arms on each side of the vessel are free of it ; and the ship now rests solely on the new bilge blocks, and on
the keel blocks upon the cradle. These latter are disconthe keel blocks upon the cradle. These latter are disconnected in their turn in the foilowing way. On the centre
line of the cradle are short hydraulic presses, which are connected by pipes laid beneath the surface of the ground with the pumps used for the hydraulic cylinder. These being set going, water is forced into all these presses
simultaneously, and the whole vessel is raised very slightly simultaneously, and the whole vessel is raised very slightly blocks. When the pressure is relieved, the vessel sink gradually back on to the new bilge blocks just described. cumbent vessel. The cradle is then allowed to move down the slipway, and is ready to be used for the reception of other vessels for painting or slight repairs, till the heavier
work upon the "relieved" vessel is completed. She is then placed again on the cradle by a process exactly the converse of that just described, and is lowered down the a table for launching. In conclusion the writer appended required to haul up a number of vessels-of which he had been able to obtain the exact displacement weight-as ascertained by the registration of the gauge attached to
the hydraulic cylinder, and compared with the theoretical power required, as obtained by calculation. From this it excess of that found by calculation.
No discussion ensued on this paper, which was read in a great hurry at the last moment, very few members remain-
ing to hear it read. The slipway was visited in the afternoon of the same day.

THE ELECTRIC LIGHT AT KING'S CROSS.

 The installation of the Crompton light at the King's CrossStation of the Great Northern Railway will enable any person, who may be desirous of so doing, to easily compare the more
prominent of the electric light systems. He can see the effect of the Jablochkoff system onthe Embankment, of Siemens's in the streets of the City and at the British and Kensington Museums,
of the Brush at Paddington and Charing-cross and in the City, of the Brockie at Cannon-street and the Post-office, and so on. The superficial observer can, however, gain no idea of the
eoonomy of the systems - he gains a knowledge of.externals only. This light to him has violent fluctuations, that has periodic fluctuations, the other is less brilliant. To such an observer we
think the Crompton light would specially commend itself. During our visits to King's Cross it has been very steady, and the station
has been well lighted. A closer investigation of the subject has been well lighted. A closer investigation of the subject
shows that such a result was to have been expected. Mr. Crompton seems to have made a deliberate study of not only the salient requirements of electric lighting, but also of those minute
details the perfection of which go far to make a system successdul. The reader will gather, from the sectional view of the station shown, an approximate idea of the position of the lamps
when at work. The station proper is divided into two bays, each 105 ft . wide, 880 ft . long, and 72 ftt . high, but to the arrival platform must be added the cab stand, 40 tit. wide, which has to be bay, and two larger lamps at the corners of the station in front. The area lighted by each of the inside lamps is over 18,000 square
feet, or nearly half an acre, the total area lighted being 220,000 square feet.
The lamps, which were illustrated and described in The ExarNEER, 30 th April, 1880 , are suspended at a height of about 28 ft .
from the platform on the departure side, and 32 ft . on the arrival from the platiorm on the departure side, and 32 tt. on the arrival
side. The twelve lamps are arranged in four circuits of three lamps each, two circuits in each bay, the alternate lamps being in different circuits, so that if any accident happens to one of the
circuits, only the lamps in that particular circuit are affected, the light of that part of the station being diminishedo one-half. The
light from the lamps in one circuit is found practically sufficient for all necessary purposes. Each lamp is hung with a counterpoise, as shown in figure, which represents a double lamp-or a
lamp with two sets of carbons-so that it can be hauled down, examined, and replaced in a few seconds. By a very simple and
ingenious cut-out arrangement, should any lamp fail to work, it is at once automatically cut out of its circuit, without in any way affecting the other lamps in the circuit. The drawing shows the
arrangement. The current from line enters the apparatus by the binding screw as shown, passing through the wires of the electromagnet, causing an attraction of the armature, which presses down a spring. The first binding screvw is directly connected to another
fixed at the end of the armature, which under certain circumstances makes contact with a binding screw connected to the
second lamp. Ordinarily the current the magnet coils to lamp B. If, however, this lamp fails, the magnet no longer attracts the armature, the spring exerts its
influence, and contact is made direct to lamp A. The roads of the influence, and contact is made direct to lamp A. The roads of the
currentareshown by the dotted lines. Iti s not, however, sufficient to be able to cut out any lamp, but it is necessary forsteadiness that the sible. Mr. Crompton therefore arranges that on cutting out a into the circuit. This arrangement is better shown in the diagram of the wire connections in the interior of the station. A the machines coming through the station roof, C representing the return wire common to both circuits. The wire x leads from line to cut-out apparatus, y from the cut-out to the lamps, and
as previously explained these are the wires ordinarily conducting the current-but should the cut-out action come into play the current passes from the apparatus through the coil and wire shown
by z. We may here state that the two outside lamps sy z. We may here state that the two outside lamps are on a
separate circuit, and are placed at a height of about 7 Oft. These
lights against 4000 -candle power each of the inside ligh po
The electric current is supplied by five Bürgin dynamo
are specially constructed to run at a high speed. Two small dynamo machines are ustd to excite the field magnets of these machines. The construction of the machine will bee better under-
stood from the sections herevith given, and special notice should be directed to the armature. A number of separate sections are vound upon a core formed of iron tape. The number of sections The armature is composed of any number of such elements. In the three-light Bürgin machine the armature has forty-eight of wire being 25 lb . The field electro-magnets of four coils, each
760 ft . lena 76 fft. long, with a total weight of 140 lib. The resistance of the the magnets, $1 \cdot 2$ ohms, giving a total resistance between the
terminals of 2.8 ohms. The E.M.F., at 1500 revolutions per terminas s f . 2 ohms . The E.M.F., at 1500 revol 20.5 polts
minute, is given as 195 volts; at 1600 revolutions as 206 volt through $13 \cdot 16$ ohms resistance. The weight of one of these
machines is a little over 6 cwt . The core or ring of each machines is a little over 6 cwt . The core or ring of each
element is supported by arms radiated from a hub. It will be noticed that the method adopted in winding the coils of the ence of the field magnets than if wound regularly. The coils are connected successively with each other, the end of the last corm a single elosed circuit. Each of the joints is connected with the corresponding plate of the commutator, which is composed of
the same number of plates as the cylinder has coils. The current is taken from the commutator by brushes in the ordinary way. The following were figures obtained at King's Cross
with three lights in circuit. On July 12th the mean of twelve experiments gave a sixteen Weber current with 1480 revolutions with three lights in circuit, a sixteen Weber current was obtained with 1460 revolutions, the horse-power absorbed being per light $1 \cdot 48$; and on the same day with 1340 revolutions, current obtained. The resistance of three lamp carbons and
culd arcs found as the result of numerous experiments is about
$9 \cdot 36$ ohms, using Carrés carbons 13 mm . diameter, and adjusting the lamp arc to give the greatest light and steadiness. The total resistance of each circuit is about 13.26 ohms, thus 9.36 ohms in lamps, $1 \cdot 10$ in conducting wires, and $2 \cdot 80$ resistance
of dynamo from terminal to terminal. From these figures it is calculated that 63 per cent
The dynamo machi
The dynamo machines at King's Cross are driven by a semishall, of Gainsborough. The engine is of 12 -horse power nominal, but will work up to 35 -horse power, about 29 -horse
power indicated being required when all the lamps are in action

THE ITALIAN NATIONAL EXHIBITION AT MILAN.
Iv my previous communication I summarily noticed the various horizontal and vertical engines exhibited at this show,
without in any way attempting a detailed criticism, or a close without in any way attempting a detailed criticism, or a close
technical comparison between those engines. It is but a similarly short notice that I propose with respect to the locomotives and Italian make partake more of the English than of the French character or style, and this is no doubt due to the fact that few such motors have been imported from France, and many, on the contrary, from England. The reverse appears to be the case with English constructors, such as Messsrs. Beyer, Peacock, and Co., Sharp, Stewart, and Co., Stephenson, and some other of your
engineering firms have supplied many locomotives for the Italian railways.
There are six railway and three tramway engines of Italian build, besides a tank engine by the Esslingen Works, and an Agudio s rope locomotive for steep inclines. As many as seven
or eight years ago I recollect noticing locomotives by the Impressa Indum these name of the Comendar Cottron Exhibition, but I notice the designer of one of the locomotives, and prominently comnected with some of the cars and carriages constructed at other works. The first place is undoubtedly held by the Turin Locomotive Works of the North Itakian Railways, under the able to turn out anything worthy of being sent to the Paris Exhibi tion, but now, three years later, we have proofs of a very
different state of things, and these works have contributed a very fine, substantially built, and well finished passenger engine Exhibition. The engine is named Torino, and is designed to run on lines having sharp curves and considerable inclines, such four coupled wheels and a bogie truck, and is fitted with the Smith-Hardy vacuum brake, and with Chiazzari's patent injectworkinp, as well as with Mazza's patent injector. All the Without detracting from the general merits of the engine, may notice occasional roughness in the finish of several parts,
and led to believe that this is due not so much to the short ness of time allowed for contruction-less than six months - as to the want of high-class machine tools, such as Messrs. Smith and
Coventry, Whitworth and Co., Sharp, Stewart, and Co., supply from their establishments. The following are some of the maii data of this engine :

Height of firr-box in froint
Heightof foreboox at back
Vumber of tebbe

Areato of fire.grate
Heatiry surface
Fire-box
Trace

Total length over buffers
Weight (empty.
Adhesion of traction weight
Tender:

Tender:-
$\begin{gathered}\text { Weigit (empty) } \\ \text { Capacity } \\ \text { Water } \\ \text { fuel }\end{gathered}$..

The same railway administration exhibit two other locomo-
ives-one, coistructed by Gio. Ansaldo and Co, of Sampier-
larena, named Genova; the other, named Napoli, by the

Pietrarsa and Granili Ironworks, near Naples. These two eminently substantial, well-built goods engines of fifty-eight tons weight, in working order, including tender. The a total base equal to 3.370 metres. The total heating surface is 125 square metres, there being 195 tubes and 1.500 square metres fire-grate area. These engines carry seven tons of water and three of fuel, and together with tender measure
14.637 metres over buffers. With respect to finish there $14 \cdot 637$ metres over buffers. With respect to finish there is
little choice. The Napoli is perhaps more carefully fitted. A cood little choice. The Napoli is perhaps more carefully fitted. A good
rough finish is observable in both these locomotives, which, rough finish is observable in both these locomotives, which,
though calculated to travel on steep gradients, present no particular features
I understand Messss. Miani, Venturi, and Co., of Milan, are completing for the Alta Italia Mountain lines, an eight-couplee
locomotive, having a wheel base of $4 \cdot 100$ metres, and a total weoght of about 78,000 kilos. in service, together with tender. This engine was designed by the locomotive department of the ays, which had severdt, so The Meridional Railways Company show a fine six-wheeled tank locomotive designed for sharp inclines, and the wheels of which are consequently coupled. I notice the ordinary serew brake, and nothing novel in any respect. The exhibitors have omitted to say where the engine was constructed, but it may b remarked that its workmanship is very creditable.
A fine engine is that constructed by the Pietrarsa and Granili
Works, on the designs of Signor Alfredo Cottran. Worlss, on the designs of Signor Alfredo Cottran, It has been
built for the Palermo Marsa la Trapani Railway, and is adapted to goods as well as passenger service. The Mazzara-such
is the name it bears-is a six-wheeled engine carried on invert is the name th bears- is a six-wheeled engine carried on inverted coupling rods. The cylinders, situated under the smoke-box are inclined, and work upon the axle cranks of the centre pair o wheels. The springs and some parts of the mechanism appear
to me too lindeed, inconveniently and dangerously close to
the the ground. The crank axle is of foreign forging, and would piece of such importance in Italy. The Roman Railways Company also contributes a locomotive, which has two coupled wheels and a leading bogie, like the Torino. The working parts are
externally situated, the cylinders are horizontal, and generally the engine is well made and of good appearance, but without built, but presume in the company's own workshops.
Locomotives are generally looked upon as among the most difficult of mechanical constructions, and consequently the partial success attained in this class by Italian ironworks is an Italians are the first to admit they have room for gegeat progress, and this warrants the belief they will make it. It is true that
many of our railroads are excessively tortuous and unlevel, and require especial characteristics in their engines by which speed nd graceful appearance are necessarily excluded. Still there are many tracts of road on which the English express type of engine
could run advantageously, and I shall be glad to see Italian works tuirn out engines of this nature, uniting as they do all the
elements of mechanical skill, and the sight of which suggests power, speed, and durabilit
Were visitors to judge of the number and importance of steam tramways in Italy by the show of tramway engines at the pre sent exhibition, they would be greatly deceived. Perhaps in no
other country has this means of locomotion developed so exten sively or so rapidly. The causes of this development, which is likely to continue, are easily discerned by all who have any culture, and industries.
It is not, therefore, without some degree of disappointment wo Milanese firms three tramway locomotives-constructed by have been expected that, seeing the speedier growth of tramways, and the relative facility in constructing these engines as
compared to railway locomotives, there would have been an mportant show of tram engines, such as would have placed Italian makers to the front, and obtained for them a lead in thi branch of construction in which they had a good chance of high
achievements. Two out of the three engines are built by Cerimedo and Co., the third is by E. Saffert and Co. In principle and general design these engines resemble each other
ho though there is a marked difference in the appearance of Saftert' alike, save in size and power, one being a 60 -horse power, capable of hauling 15 tons up an incline of 5 per cent., and the other a 40-horse power, calculated to haul 15 tons on an incline of only $3 \frac{1}{2}$ per cent. The model of these engines appears to be that of the Henschel tram locomotive, which was illustrated in ThE Evariverr of December 5th, 1879, as an accompaniment to Note,
on North Italian Tramways, by my esteemed friend Mr. R. G. on North Italian Tramways, by my esteemed friend Mr. R. G.
Elwes, M. Inst. C.E. In the present instance the cylinders are placed externally and horizontally, an arrangement which is good as placing them within easy reach, but is they are much exposed to mud and dust, nuisances, by the way, of no small importance on most of our roads, formed as they are with lime or other soft stones. The boiler is of the ordanary tubular type, horizontal, and is placed in the centre of the
truck, reaching from end to end of same. Firing is done from the right side of boiler, and looks a cramped-up arrangement. The driver's position is at left side of boiler, where he has the ready command of steam valves, pumps, gearing, and brake.
Under foot plates, the tank and condenser, between the four Under foot plates, the tank and condenser, between the four
wheels, which are coupled, form, together with engines, a good wheels, which are coupled, form, together with engines, a good
steadying base. As to steam dome and other parts, they are cylinders and all the gearing are covered by iron flaps, which serve, I believe, not only to hide them from view, but also to keep dust out of these worlal.
engines is good and substantial.
The foregoing description serves also for Saffert and Co,'s tram
engines which would appear to be of from 30 to 35 -horse power entines which would appear to be of from 30 to 35 -horse power.
It is not so carefully made or finished, and has an awkward, uncouth look about it, nor does it seem as though it would resist
the jolting and jarring of tramway travelling for long. This is a lazarded opimion which may possibly prove wrong.
Excepting Hughes,', Beaumont's compressed air, Francq's
Greless, and Mekarski's compressed air engines, I think we have seen pretty well every known tramway locomotive on our provinseen prety well. One point seems pretty well settled by general
cial tram onays.
opinion here, viz., the preference for the horizontal rather than
the vertical boiler. With respect to compressed air or other systems in lieu of steam, they have but a remote chance of being
adopted here, because, as s stated in my former notes, Italians
donally usually prefer less economical working to heavy first outlay for
the sake of uttimate economy. Let us admit, however, that steam Mrsus air or water is still an open question.
Milan, Augnist 20th. ArTvio Galuco, M.I.S.H.. Ing

TRACTION ENGINE WITH COUPLED ROAD WHEELS.
the durham steam cultivator company, ripon, engineers.

Several attempts have been made to connect the leading \mid shafts and axles are of Bowling iron. The boiler contains 140 ft . wheels of a traction engine with the driving wheels, so as to of heating surface, and is made entirely of Bowling iron, with the make drivers of all of them, and thus increase the tractive longitudinal seams welded. The gearing is fitted with two | power of the engine, and to afford greater facilities for getting | $\begin{array}{l}\text { speeds arranged to travel at } 1 \frac{1}{2} \text { and } 3 \text { miles per hour, and the } \\ \text { along soft ground or out of holes. The wheel with continuous } \\ \text { front or hind road wheels can be put out of gear when not }\end{array}$ |
| :--- | :--- |

railway and the india-rubber tires have been employed to gain the required adhesion, but these wheels have been too costly,
and the attempts to couple driving and leading wheels have failed. The arrangement for making the leading wheels into drivers, illustrated on this page, has been recently brought out by the Durham and North Yorkshire Steam Cultivation Company, North Bridge Engine Works, Ripon, the design being by Messrs. Johnson and Phillips. The invention consists in mounting the leading axle in a ball and long socket, the socket being rotated in fixed bearings. The ball having but limited range of motion in the socket, is driven round with it, but is free to move
in azimuth for steering. This encine has now
traction and thrashing work, and, we are informed, withonths in success. The illustrations represent a 7 -horse power, with a cylinder 8 in . diameter by 12 in . stroke, and steam jacketted. The
required. The hind driving wheels are 5 ft .6 in . diameter, and the front wheels 5 ft .; weight of engine 8 tons.

,

IMPROVED STAMP CANCELLING TOOL.
Offers were several times made a few years ago by the American Government for an effective stamp cancelling apparatus by which the amount lost yearly from the re-use of
cancelled postage stamps should be reduced. At present, the Scientific American says, no adequate means of cancelling stamps, so that they cannot by any possibility be used again, has been a device Government.
surface is shown in the annexed cancel a stamp by abrading its that journal. . The handle or body A of the canceller contains a sliding nut C , which is attached to the handle D , and receives
the screw B, attached to the revolving cutter head E, which is retained in place by an internal flange at the bottom of the handle and sy an inserted collar E.
Between the handle D , and the top of the case A , there is a spiral spring which returns the parts to their normal position. Tile in different directions, so that in detail in Fig. 2, is cut like a the engagement of the nut C , with the the head is revolved by the stamp is abraded, and if the cancelling stamp is previously

supplied with ink, the ink will be absorbed by the abraded surface, and the effects of cancellation are complete. The stamp cannot afterward be restored. This invention was recently patented by Mr. Frederick E. Grothaus, of Borem, Texas.

WOOD'S SHEAF BINDING MACHINE
In our impression of the 13th inst. we briefly described the operation of the binding mechanism of Mr. W. A. Wood's machine. The construction and operation of this machine may be ascertained by reference to the accompanying complete draw ings we give in this impression, wherein Fig. 1 exhibits a plan view of the improved grain binder detached from the harvester or reapers; Fig. 2, elevationing the paliances for collecting is a vertical secthe straw into the bundle, and the means for and compacting the ism. Fig is an end elevation of the machine, showing the appliances tor controlling the tension device, actuating the needle arm, compressor and discharging arm ; Fig. 5 shows in transverse elevation the apparatus for transmitting motion to and governing the action of the knotting mechanism ; Fig. 6 exhibits the con-

WOOD'S SHEAF-BINDING REAPING MACHINE.

struction of part of the tension device, as connected with the compressor arm ; Fig. 7 is a top view of the knotting mechanism elevation projected from Fig. 7; Fig. 9 is a plan view of the base plate which supports the knotting mechanism, showing also such parts of the knotting mechanism as fall below the plane of the horizontal transverse section shown, which section is taken on the line 1-2, of Fig. 8 ; Fig. 10 is a view in elevation projected from Fig. 7 of the side of the knotting mechanism opposite to for grasping and severing the binding cord, and shows the grasper in the act of seizing the binding cord. Fig. 12 shows in perspective the position of the cord as held by the grasper after the severance of the sheaf band and the retreat of the needle arm ; Fig. 13 is a longitudinal vertical section through the shafts, which carry the looping arms ; Fig. 14 is a transverse horizontal section taken through the friction head shown in Fig. 13; Figs. $15,16,17,18$, and 19, exhibit in inverted plan views the several positions successively assumed by the knotting devices, and the binding cord during the operation of tying the knot in the band. To thread the machine preparatory to setting it in operation the end of the binding cord is carried from the twine barrel T through the guides t, \downarrow, and through guides provided therefor on the underside of the machine to the tension device, through through the needle eye c^{2}. The end of the cord being held securely, shaft S is given a single revolution, the result of which is that the needle arm C^{5} carries the thread up into position as in the act of binding a sheaf. Here the cord is seized by the grasper, and is drawn back, and held between the grasping jaws, the surplus end being cut off. As the needle arm retreats it leaves one end of the cord held by the grasper while it lays the cord itself across the upper side of the looping arms of the knotting devices, and leaves it stretched from this point across the interval to the eye of the needle c^{2}. The machine is now ready to commence operations. The cut grain, as it is delivered on to platform P from the harvester, is seized by the fingers $a a$ of the
gathering wheels, and deposited against the binding cord in the space beneath the base plate F^{19} and the platform, and this attained such proportions that further addition to its bulk by

the gathering wheels forces the compressor arm A^{14} against the projection a^{12} of latch tripper A^{18}, the opposite end of which,
impinging against latch $\operatorname{arm} a^{10}$, causes the shipping latch A^{11} to
be elevated, thus permitting coil spring a^{18} to force cam clutch A^{9} into engagement. The moment this is accomplished, the shaft S commences its revolution, $\operatorname{lng} a^{5}$ of shipping lever A^{8} is depressed, and consequently clutch H is thrown out of engage ment, and the action of the gathering wheels ceases, simultan eously the inner concentric part of cam E moves around so as to permit the tension spring e^{b}, which checks the free transit of the binding cord through the tension device, to act, thus impeding the passage of the cord os will be necessary to accomplish the tying of a seond knot. In the meantime the needle arm C^{5} has been moving up on the back side of the bundle, while gear B has rotated, so that friction bowl b^{1} has come in contact with arm B^{2} of rockshaft B^{5}. The further progress of bowl B^{1} elevates $\operatorname{arm} \mathrm{B}^{2}$, and consequently swings arm B^{3}, which is cranked at its lower extremity against the compressor $\operatorname{arm} \mathrm{A}^{14}$, compelling it to advance toward the approaching needle arm, the bundle being then clasped between the two arms immediately under the knot tying apparatus. While the movements just described have been transpiring, flange cam a^{8} has rotated to a point in advance of the end of guard spring a^{a}, thu permitting shipping latch A to drop into the se the need the hub and cam farges or chation indi cated in the elevation in Fig. 4, and in plan in Fig. 9 ; the position of the binding cord being substantially as shown in Fig. 9, except that the looping arms of the knotting device have made no advancement. Crank pin C has now entered the concentric portion of the slot of lever C^{1}, hence the needle arm will remain stationary until the crank pin has traversed such concentric portion. Next in order the toothed faced F^{1} of gear F engages with the segment pinion F^{4}, and tooth sector $\mathrm{F}^{6} \mathrm{~F}^{7}$, initiates the reciprocatory movement of knotting pinion F^{8} and its appurte nances. It will be seen from Fig. 5 that the first half revolution of pinion F^{2} will impart motion to knotting pinion $\mathrm{F}^{\mathbf{r}}$ in one retrograde movement, and return the several parts to the posi-
tion occupied at the outset of the movement. The operation of the knotting devices and the manipulation of the binding cord from this point forward will be more readily traced in Figs. 9, 15, 16, 17, 18, and 19, of sheet 5. In Fig. 9 the parts are shown in right plan view, but in Figs. 15, 16, 17, 18, and 19 they are shown in inverted plan. The point of the needle arm is not
shown in the five figures last named, as it remains stationary during the whole time, but its position would be nearly parallel with the straight portions of the cord, shown with the eye on the right of the grasper and pointing away from the looping arms, Fig. 15 shows the position of the cord and knotting devices at the moment the pinion F^{8} commences its movement. The cord s passes from the grasper jaw out under-as it appears in this
series of inverted views-the looping arms, thence up around the bundleforming theloop or band L , and back again over the looping arms to the needle eye. Clamp spring F^{10} prevents the rotation of the lower looping arm until the rear end of slot n^{7} has moved up to the pin or stud n, Fig. 14. This movement of the upper looping arm in advance of the lower opens or
separates the two mandibles $f^{3} f^{ \pm}$, preparatory to their moving separates the two mandibles $f^{\circ} f^{4}$, preparatory to the secondary
around to grasp the binding cord which is to form the ser loop. A quarter revolution of the looping arms brings the guard
spur f^{8} into the position shown in Fig. 16. The point of said spur f^{δ} into the position shown in pig. 1the rotation progresses
spur passes below the double cord, and as the it will be seen that the double cord so cast under the spur f^{8} will arms have advanced to the position shown in Fig. 17, which is
under the hook jaw of the grasper, as seen in Fig. 11. The withdrawal of the grasper within its socket will effect the severance the binding cord by drawing the binding cord up against the cutting edge of the knife or chisel F^{17}, whereby the same will be
severed, as shown in Fig. 12. The same backward movement of grasper F^{15} which effects the cutting of the cord also grasps the remaining end between the grasping jaws, as at F^{21}, same Fig. The further backward movement of the looping arms carries the secondary loop l^{\prime} as grasped between the mandibles through the primary loop, which remains impaled on the point of detaching
hook f^{7}, as shown in Fig. 18. Hook f^{7} completes the tying of the knot by casting the primary loop entirely off the ends of the looping arms and over the secondary loop as held by the mandibles, the weight and elasticity of the dependent bundle
being sufficient to draw the knot tight enough that it will not being sufficient to draw the knot tight enough that it will not
untie. The bundle is then left hanging by the last loop to the muntie. The bundes, as see in Fig. 19. Pending this, bowl B^{1} has run off arm B^{2} of rock shaft B^{3}, which permits arm B^{3} to fall back, thus leaving the compressor A^{14} free to recede from the bundle. Needle arm C^{5} now retires from action stretching behind it across the looping arms f^{1} and f^{2}, as it recedes, the cord s, as shown in Fig. 6. At same time cam A^{17} acts upon the system of levers
A^{16}, A^{15}, with which the compressor A^{14} is cannected at a^{1+1}. By such action the compressor is lifted so as to leave an unobstructed pathway for the delivery of the bound sheaf. Dis
charging arm D^{6} is then brought into action by the engagement
tary. The visitors were received by Mr. Horace Wilmer, the cting engineer, and by him conducted over the works. The extending from Bishopsgate eastward to Brick-lane, and there is a roadway surrounding the basement, while two inclined roads, having gradients of from 1 in 27 to 1 in 30 , lead from Bishopsgate-street and Wheeler-street to the main platform level. Towards the front end of the station the basement arches form offices, porters' messroom,
\&c., while further back it is intended to devote those \&c., while further back it is intended to devote those
on the northern side adjoining Bethnal-green-road to an extenon the northern side adjoining Bethnal-green-road to an exten-
sive fish market, while those on the southern side will become a potato market. Hydraulic hoists are to be provided for lowering and raising wagons from the upper platform; but at present this Fennel. Its dimensions are 25 ft , by 14 ft ., and it is raise or lower the entire lift of 25 ft . in three minutes, by means of two three-horse power gas engines driving a worm and wheel, The temporary lifts to the upper floors are also worked by gas engines. Very little of the old work has been utilised in forming the new station, although it has been found of the most substantial character, built in Roman cement, and contrasting strangely with the temporary timber staging, now from thirty to forty years old, and thoroughly rotten and decayed. The new piers are built of dark-coloured glazed bricks, set in a mixture of Portland cement and ground brick rubbish, and the building
done by the contractors, Messrs. Vernon and Ewens, of Chelten-

the limit of their advance movement, it will be seen that the double cord so passed around the looping arms and slipped over the hub will have formed a complete noose l around the looping
arms, which noose is designated as the primary loop. It should here be observed that loop l, in process of formation, passed under the hook f^{7}, which was forced up into the recess f^{0}, Fig. 10, so as to permit said loops to pass under it. That part of the cord where it leaves the looping arms and passes around the bundle below the base-plate will be carried around the notch n^{11} in the base-plate, as seen in Fig. 9, which prevents the same from slipping or getting misplaced during the subsequent processes of tying the knot. In executing the last part of the movement just described, the mandible f^{3} will have passed over that part of the double cord connecting the grasper and needle eye with the loopment of the pinion F^{8} commences. stationary for a moment, while the mandible f^{3} having in its retreat caught the double cord within its grasp rotates backwardly until said double cord is firmly grasped between two mandibles, The further retrograde movement of the looping arms carries loop l around so that it is caught by the detaching hook f^{7}, which retains a secure hold upon it. During the retreat movement of the looping arms, the point of the detaching hook f^{7} is, by means of the guard f^{6}, prevented from lifting, so that the loops might escape thereunder, and at the same time sides or bears against the convex or outside edge of the looping $\operatorname{arm} f^{1}$, consequently as arm f^{\prime} retreats, the point of detaching arm f^{7} is carried further and further away from the hub of the hook, still being the mandibles have grasped the double cord and commenced their retreat movement, such cord assumes the form of another loop l, which is designated the secondary loop, as seen in Fig. 18. In process of forming the secondary loop and carrying it around in position preparatory to drawing it through the primary loop, a certain amount of binding cord is used up, and inasmuch as neither end of the band has been released, such take-up is compensated for by the oscillation of grasper socket F^{14} on its pivot,
which oscillation or yielding permits the grasper socket to be which oscillation or yielding permits the grasper socket to be drawn by the binding cord towards the knotting devices. At this stage of the proceedings, while the grasper socket is drawn on and in passing it brings the grasper F^{15} into action ${ }^{\text {, }}$ it is thrust out of its socket the end of the band shown in Fig. 17 as grasped at F^{27}, is released and the bevelled end of thie grasper traverses the other or parallel cord, bringing the same
and co-operation of segment gear B with segment pinion D, and the intermediate mechanism and coming up in the rear by a machine, and then retires from action. While the discharging arm is retreating the compressor A^{14} descends into its normal position again. At this stage of proceedings the flange cam a^{8}

will have come into contact with guard spring a^{9}, and in passing it cam clutch A^{9} will be forced out of action, and the rotation or shaft S, with its appurtenances, will cease; at the same time, through the action of shipping lever A^{8}, clutch H will be thrown packing finement, and the action of the gathering wheels and packing fingers will be resumed

GREATEASTERN RAILWAY NEW GOODS DEPOT. On the 17th inst. the members of the Society of Engineer: sion of the 12 their summer visits, as mentioned in our impres sion of the 12th inst. to the site of the old Bishopsgate Station of the Great Eastern Railway, where a very extensive goods depot, company. Amongst the visitors were Mr. Arthur Rigg vice president : Mr. W. MacGeorge and Mr. Joseph Bernays, past presidents ; Mr. Robert Berridge, Mr. Charles Gandon, and Mr W. Schonheyder, members of council ; and Mr. B. Reed, secre-
ham, is of a most substantial character. The warehouses and arches contain upwards of $50,000,000$ bricks and about 12,000 tons of iron girders and columns, and the station buildings might be contained in a square of 425 ft . A very extensive warehouse floor, calculated to carry 5 cwt. per square foot, covers the whole area of the main platform, and the largest wrought iron girder supporting this floor has a span of 50it., and weighs terminus, it may be mentioned that the temporary fruit-shed on the south platform receives regularly 300 tons of fruit per day in the season, and this enormous quantity is often exceeded. Thanks to the courtesy of the railway company in giving facilities, and to the kindness of their engineer, Mr. Willmer, and Mr. Vernon, the members of the Society enjoyed an interesting and instructive visit.

The Whitworth Soholarships, Session 1880-81.-Science and Art Departament South Kensington.-The following is a list of the successful candidates in the competition for the Whitworth Scholarships, 1881:-Ernest Lousley, age 26, engine fitter, Wal
lingford, scholarship £200; Alfred Sutton, 21, engine fitter, lingford, scholarship $£ 150$; Robert W. Grace, 20, engineer apprentice, Liverpool, £150; Archibald Shar, 18 , engineer apprentice,
Glasgow, £150 ; Arthur E. Wild, 20, engineer apprentice, and Glasgow, $£ 150$; Arthur E. Wild, 20, engineer apprentice, and
Henry G. Jordan, 23, engineer, Manchester, £125 each; Edward Murphy, 21 , engineer apprentice, Liverpool, £ 100 ; Richard Parryson, 22, draughtsman, Greenwich, £100; Arthur H. Barendt, 21, son, 22, draughtsman, Greenwich, $£ 100$; Charles Herbert, 19, mechanic, Oldham, £100;Edmund J. M. Davies, 20 , engineer student, Bristol, £ 100 ; Travis Platt, 21, millwright, Manchester, £100; William. Savage, 22, engineer, Crewe, £100; John Tyson, 25,
engineer, Liverpool, $£ 100 ;$ Albert G. Hadcock, 20 , fitter, Woolwich, engineer, William Martin, 20, engine fitter, Brighton, $£ 100$. The following gives the results of the examination for Whitworth Scholarship Prizes, 1881 , the marks obtained, and the Scholars appointed in 1878 :-William Groves : Theory, 1700 marks ; practice, 1185 -first prize, $£ 100$. Thomas Mather: Theory, 1940 marks; practice, 873 -second prize, £60. William H. Tozer
Theory, 1365 marks ; practice, 1066 -third prize, £50. Joseph E. Needham : Theory, 1943 marks ; practice, 444 -fourth prize, £40. Thomas Duckworth : Theory, 1186 marks ; practice, 419 -fifth prize, £30. Zachary H. Kingdon: Specially excused from the examination in theory; practice, 897 marks-sixth prize, £20. In
the final competition, William Groves obtained in the three years the final competition, William Groves obtained in the three years
a total of 7606 marks, and received the first prize, $£ 200$; Joseph E. Needham obtained 6910 marks, and the second prize, £100.

RAILWAY MATTERS.

THe construction of a new tramway line has just been begun for connecting Wolverhampton and Dudley, which will prove of great
benefit to the district. The line is to be five miles long, and it was
commenced a fevw days back by the contractors, Messrs. Burleigh commenced a few da
and Green, London.
The last ring of the treble granite arch in the windy stretch, the treacherous part of the St. Gothard Tunnel, under Andermatt, has
been completed, and as the rings previously made slow no signs of been completed, and as the rings previously mat
yielding, it is hoped that the difticulty which
trouble to the engineers is at length overcome.
Ov the 18th inst. a train was fitted up like the Manchester
express, which came into collision at Blackburn, and the jury express, which came into collision at Blackburn, and the jury
were conveyed with the colief official of the railway company to
Rimmington, on the Hellifield line. By means of the Westing. Rimmington, on the Hellifield line. By means, of the Westing-
house brake the train was stopped in 25 sec., in a distanee of 231 yards while descending a gradient of 1 in 82 at the rate of forty
miles per hour ; with the hand brake on a level it took two minutes and 18 sec. to bring the train to a standstill.
A sohexe for the extension of railway commumication in and about Liverpool is said to have been devised by one of the leading
railway companies laving connections with that city. Its main
features, the Standard features, the Standard says, is the construction of a network of
underground lines, for both passengers and goods, by means of which residents in the suburbs can reach the business part of the city, whiie travellers arriving in Liverpool by any of the existing lines can, by availing themselves of the underground railway, pro-
ceed to any part of the city or suburbs, or under the Mersey to the
Cheshire side. The scheme will doubtless be submitted to all the Cheshire side. The scheme will doubtless be submitted to all the
railway companies having termini in Liverpool, with a view to
securing their cooperation
securing their co-operation.
AT the conclusion of a report on the collision which occurred on
the 4th of June at the London-rood goods yard, near Carlisle, on coupling, which connected no less than eight vehicles absolutely coupling, which connected no less than eight vehicles absolutely
without brake power, to the ordinary train of nine vehicles fitted
with the Westinghouse brake, Maior-General C. S. Hutchinson, with the Westinghouse brake, Major-General C. S. Hutchinson,
R.E., says:-This accident resulted from the failure of a coupling of a passenger train, and as such failures is by some railway
officers held to be most uncommon, he gives a a table which shows that in the last six and a-half years there have been altogether
forty-six such failures reported to the Board of Trade, or an aver-forty-six such failures reported
age of about seven per annum.
The ten a.m. train from Oban to Dalmally, when running at a
considerable speed near the Falls of Cruachan on the 17th inst., and on going roound a sharp curve about 100 yards to the west of collision with a large stone, about half a ton in weight, which rolled down the mountain side on to the rails. The engine kept the rails,
but the tender and several empty wagons which were attached behind, between the engine and carriages, were thrown off the line, the engine dragging them about a distance of 60 yards, when
it came to a standstill, close to the railway bridge, and at a very dangerous part of the line. The tender, as well as seareral of the
empty wagons, were very much damaged, but the carriages conempty wagons, were very much damaged, but
taining the passengers escaped without injury.
ON the afternoon of Monday, the 22nd, a passenger train near
Burn Hill, on the Benfieldside and Saltburn branch of the NorthEastern Railway, hedna a remarkaable escapep. Thet of train, which North- left
Burn Hill at 1.50, was proceeding on its journey, when, nearing a bridge which is only one sipan across the line, the the bridge neell, com-
pletely blocking the rails upon which the travelling. The engineman, Charles Baxters, seeing it frall,
thang
immediatelyapplied his Westinghouse brake, and brought the train immediately applied enginemant, Chartings Baxter, seeing it fall,
to a stand within a few yards of the derake, and brought the train
accitent thus averting a bad accident. A delay of about three-quarters of an hour ocourred
thronght the train having to put back and come along the down
line. The undermining of the foundation by the recent howy line. The undermining of the foundation by the
rains is considered the cause of the fall of the bridgo
AT the usual half-yearly meeting of the Midland Railway Com-
pany, held at Derby on the 16th inst., the chairman said that the
renewals of thirty-five engines had been charged to revenue. There renewals of thirty-five engines had been charged to revenue. There
had been an additional train mileage of $1,280,498$ miles. In the
coaching department there was a decrease of ten composite velicles coaching department there was a decrease of ten composite vehicles
and a decrease of thirty third-class carriages They had broken up twenty smail composites, which cost $£ 340$ each, amounting to
$£ 6800$, and instead of these they had built ten new bogie carriages,
which cost $£ 548$ ench which cost $£ \check{5} 48$ each, amounting to toution, the ne reducuede varue varriages,
$£ 1320$ and they had broken up sixty third-class carriages, which
cost $£ 182$ eache cost $£ 182$ each, and built thirty new bogies, cossting £446e each, the
whole amounting to $£ 13,380$; so that, altogether, there was a net Whole amounting to $£ 13,380$; so that, altogether, there was a net
increased value of \&1140. There are three or forur companies in
the South of England who might follow the example of the Mid
and so save the cond and so save the cost of constructing a museum.
to the Isle of Grain, constructed in connection with the SouthEastern Railway, is rapidly y approacching complion with. the South-
of this line will perhaps possess more than local signifieance, inasmuch as it is internaps tod tossess more thate than local significance,
of a competing Contineninus the centre
countries Grat tratfic with Belgium and other countries. Griniin is sitinutatal on tratic wie with Belp balkium ond and other
opposite Medway, naval and dockyard town of Sheerness, and exceptionopposite the naval and dockyard town of Sheerness, and exception-
ally good facilties are, the Times says, offered for the anchorage of
vessels in Sheerness harbour. A pier, 40 oft. in length, is being vessels in Sheerness harbour. A pier, 400ft. in length, is being
ereeted at Grain in connection with the railway, and, ts there will
be depth of oft. of water at low tide, as soon as the line is in
working exter
working operation, it is proporosed to to tide, asply for poon as ther to line is is in
extensive docks and wharves. The railway wil be in direct
communication between Woolwich Arsenal and Sheerness. AT the meeting of the Midland Railway Company, on the 16th
inst., the chairman said, with reference to continuous brakes, that
they the they had 57 engines and 209 vehicleses fitted with theu Westinghouse
automatic air-pressure brake appliances ; 202 engines and 2074 automatic air-pressure brake appliances; 202 engines and 2074
vehicles ffitted wwith the Saunders and Bolitho automatic vacuum
brake, with which So brake, with which 80 engines and 809 carriages were fitted during
the last half-year. They had 29 engines and 116 velicicte fitted
with Smith's vacuum brake, of which 6 were fittd with smith's vacuum brake, of which 6 were fitted last hall--year ;
and 2 engines and 11 carriages fitted with the Barker brake. These
brakes were calculated to brakes were calculated to make up continuous brake trains. The
Saunders and Bolitho and the Westinghouse fulfilled all the Saunders and Bolitho and the Westinghouse fulifiled all the
requirements of the Board of Trade When freprting an the
acident an Manchester, Major Marindin said, that the results of
the collision were the collision were no worse was doubtless uae to to the fact that the
driver had at his command an efficiet brake. He alluded to it
because it commended the course the direct He because it commended the course the directors were adopting of
fitting the engines and vehicles as fast as possible with the Saunders
and Bolitho brake. Major MArinnis's report on the accident which occurred on
the 19th ult. at Matlock Bath Station, on the Midland Railway, when a young man who, it is stated, was looking out of theilway,
 within a few hours, seems to indicate that there was little blame
attachabele to any one except the foreman loader, who by regula-
tion should not have been loading such trees when a train was due. tion should not have been loading such trees when a train was due.
It appears, however, that the tree had aceidentally got fastenedin
such a way that the men could not move it and the crane could not be applied. " "udghing from the amount of the crane could
train, and from the marks upon the to the train, and from the marks upon the tree, it would seem that the
statement of the foreman looder, 'that an inch would have saved
it,' is accurate enough not beceurate enough; and if the young man who was killed had
not beon loking out, perhaps upon feeling the brake sharply
applied, it is dift applied, it is difficult, to peer hows he heon teuld have been seriouse sharply hyt.
The fact of only two vehicles besides the vans with projecting sides
being being touched shows also how small was the amount of timber foul
of the line."

NOTES AND MEMORANDA.

ONE of the readiest and simplest tests for ascertaining if water is free from organic pollution, is to cork up a small bottle nearly
full of it, in which a piece of lump sugar has been put. If by
thus excluding the air, and letting it stand in the light for two or three days, there is not a milky cloud seen, but the water remains
clear, it may be considered free from the phosphates with which clear, it may be considered fr
sewage water is impregnated.
Too ascertain if water contains iron, take a glass of water, and add to it a few drops of the infusion of nutgalls, or suspend a nut-
gall in it by means of a thead for twenty-four hours. If iron be
present, the water will become of a dank brown or black colour. Prussiate of potash is a still more delicate test for detecting iron.
If a crystal, or a drop of it , when dissolved, bo added to a glass
of of water
colour.
To ascertain if water contains magnesia, take a quantity of the
water, and boil down to a twentieth part of its bulk, then drop a few grains of carbonate of ammonia into a small glass of water.
No magnesia will yet be precipitated; but on adding a small quantitit of phosphate of soda, in any magnesia be present, it will
then make its appearance and fall to the bottom of the glass. In
In this experiment
THE population of Canada in the last decade has increased from vinces-Prince Edward Island, Nova Sootia, New Brunswick,
Eder Quesec, and Ontario -hows an increase ranging from 12.4 to 18
per cent., but it is in the new districts that the more rapid stride are apparent. Manitoba heads the list with 289 per cent., British Columbia follows with 78.64 per cent., while the north-west territory has
tion of 1871 .
THe Electrician quotes from a French contemporary, which galvanisation of an engine piston, which took place at Cette,
Hérault. The boiler having become much incrusted, some scraps of zinc were introduced to loosen the coating. Several days after wards the piston began to work with difficuty; when it was take This is supposed to have occurred from the particles of zinc capried with the steam into the copper steam pipes forming a number o minute galvanic elements in combination with the copper ; the
vibration of the piston then attracted the copper molecules to itself whilst the heat and the electric properties of the steam are con

THF importance of covering the face of pulleys with leather is
realised by but few persons having charge of machinery. Full 50 racissad by but few persons having charge of machinery. Four th
per cent. more work can be done without the belts slipping if the grain side to the pulley will not only do more work, but will last longer than if used with the flesh side to the pulley. This is
owing to the fact that the grain side is more compact and fixed than the flesh side, and more of its surface is brought in contact
with the pulley. The smoother the two surfaces, the less air will with the pulley. The smoother the two surfaces, the less air will
pass between the belts and the pulleys. The more uneven the surface of the belt and pulley the more strain is necessary to pre-
vent the belt slipping; for what is lost by want of contact must be made up by extra strain on the belt. Leather belts, with the
grain side to the pulley, can, according to Calvert's Mechanics grain side to the puley, can, according to Calvert's
Almanack, drive 34 per cent. more than the flesh side.
Le Charbon says that M. Leguin, of Paris, has patented a process
for increasing the resisting power of iron goods to tension, bending or torsion, by immersing them wholly or partly in lot diluted turpentine in five or six pacts of or in a mixture of one part o metal is raised to cherry red h heat, and then dipped in a solution of of water, In the turpentine methoc, the mixture must be
and kept constantly stirred, lest the spirit should float upon the
surface and take fire, on the introduction of the glowing metal. surface and take fire, on the introduction of the glowing metal.
In either process, the metal is held in the solution till it has sunk cold water. The various implements, such quickly thrown into beams, \&c., subjected to thise process, , need only be partially
immersed in the solution, the portions selected for treatment in each case being of course those which will necessarily be subjected The followi
TEE following in a summary of the population of the several
provinces of the non-Hungarian portion of the Austrian Empire,
extracted from the repor for taking the census last Decem :- Lewer Austrio 2309 so1 Upper Austria, 760,879 ; Salaburg, 163,566 ; Styria, $1,222,367$
Carinthia, 348,670 ; Carniola, 481,176 ; Trieste, Istria,
 Bukovina, 560,599 ; Dalmatia, 474,489 ; total for the Austrian
Crown Lands, $22,130,684$. This gives a total in the eleven years of $1,734,054$, or 8.5 per cent. This is a satisfactory
result, as compared with the Hungarian provinces wher the increase for the ten years $-1870-1880$-was only 124 per cent.
The total population of the Austro-Hungarian Empire last Decem to which the Hungarian an increase for the decade of 1,925,450, It is worth observing that while the annual rate of ince 191, 39 provinces of the Austrian portion of the monarchy averaged only
772 per cent., in Prussia it averaged during the last five yeal $1 / 2$ per cent., in Prussia it averaged during the last five years
1:179 per cent., being more than one.third higher. The popula-
tion of the chief town in

On the 5th and 15th July respectively the temperature in Paris rhis century was $36 \cdot 75$ on 31 st July, 1803. M. Me Parville, whe
the has written a paper on the subject which appears in the Journal
des Debats, says that the dryness of the present summer could have been forseen. Having referred to the influence of solar action on
the atmosphe also shown that the moon, . wl very long series of observations has hemisphere to the other, influences the direction of the great atmo-
spheric currents. The changes in those currents in spheric currents. The changes in those currents, in consequence of
the prevailing moisture or dryness, are intimately connected with the relative position for the time being of the sun and moon. The
distance of the moon from the equator- that is the the moon's path to the plane of the equator-varies every year passing from a maximum to a minimum limit; and the meteoro-
logical character of a series of years ampears to dent upon the change of inclination when those extreme limits cold weenters, and hot summmers return periodically, and coincide with certain declinations of the moon. In our latitudes the rainy years occur when the moon's declination has touched its extreme
limits of 28 deg., 26 deg, or 18 dea rated from each other usually by periods of about three years and then six years. He gives a table tracing backwards this connec-
tion between the rainy yearsand themoon'sgreatestdeclination. The severe winters as a rule coincide, at least, within a year, with thie
same declination. The dry summers come naturally in the middle of the period which divides two wet years. Aplying the rule
which this experience suggests to the summer of 1881 we find that the next wet year ought to coincide with the declination of 18 deg.
therefore, with the year 1844 , si the last was 1879 with the deli-
nation of nation of 26 deg. Consequently the dry summers should come
about the middle of the intervening period between those two
years-that is, they should be 1881 and 1882 .

MISCELLANEA.
On Saturday 2000 persons were carried to the top of the Righi
by the rack railway-the greatest number that ever ascended the A Daily News telegram of the 21 st says that the project of a
second Suez Canal under English auspices is the subject of seconated discussion in the local press. The advantages proposed animated discussion in the local press. The
include a quicker transit and a reduced tariff.
Iv consequence of the probability of a local famine, it is proposed to make a railway from Bangalore to Tunkur and Siptur a
a relief work, and the district officers lave been instructed to pre pare all necessary relief measures.
The weakest part of most screws steamers is still the screw-shaft. the shaft of the Cunard steamer Catalonia, which recently had to complete, by putting a heavy iron band around the fractured por-
tion to make it strong-enough for the return voyage. She sails for Liverpool to-morrow.
The necessity for occasionally annealing crane chains was again being hoisted by a steam crane attached to Simmonds's, Wharf,
Tooley-street, and when it had attained a considerable height the chain snapped asunder. The bag fell upon a man named Donovan,
and killed him on the spot. The Mining Institute of Scotland held a meeting at Ayr on mines, when forty new members were. added to the list, bringing
up the membership to 400 . Several papers which were read at previous meetings of the Institute were discussed, among them
being Mr. M'Bett's paper on "Stirlingshire Coal and other Minerals.
THE Polytechnic is closed. Its death affords another proof of matter. A good many people continued to use the place as a
mation mass of pleasure-seekers or those who sought relaxation, and the instruction was not sufficiently thorough in any branch to be deemed A Disidy istrous boiler explosion occurred on Monday at the Dividy-lane Colliery, near Longton, North Staffordshire. The engine-house was entirely demoinshed, and the engineman wa
buried under the ruins, and had a narrow escape with his life engine was lifting water, and fortunately there were few men about the colliery., Three men who were in the pit were extricated THE Admiralty have just approved of an estimate for the
building, at Portsmouth, of the Imperieuse, an armour-plated steel cruiser, whe will be not resemble any vessel afoat. The cost of her
hull alone will with four barbette turrets, and have an outer casing of wood, the

THE week before last a waterspout burst in Clear Creek Canyon Colorado, thirty-five miles from Denver, a rich gold--mining region.
The flood swept through the mining vilages Central City, Black
Hawk, Dry Gulch and Hawk, Dry Gulch, and Idaho Springs. The inundation lasted
 temporary says, is estimated at 120,000 dols. The Colorado
Central Railroad was buried for miles under the debris, which was piled 20 ft . high in some places
Frow a return recently issued showing a classification of the
whole receipts from the Patent-office for the year 1880-81, it appears that the amounts paid on petitions for letters patent was appears that the amounts paid on petitions for letters patent was
£2,, 60 ; on applications with complete specifications, $£ 1100$;
notices to proceeci, $£ 20,230$; warrants, $£ 18,300$; letters patent, $£ 18,275$; final specifications, £16,625; notices of objection to
grant, £82, notices of objection to sealing, £20; on oppositions
E122; $£ 122 ;$ giving a total of $£ 102,819$. Third year fees came to
$£ 50,300 ;$ seventh year fees to $£ 26,100$; other fees, certificates sales, \&e., to $£ 3544$; and designs and trade marks, $£ 4982$ and therefore, been £191,529.
We understand that Messrs. John Warner and Sons, of Cripple-
gate, E.C., have purchased the large collection of valuable waterworks pumping encine and machinery patterns of the late Mr.
Frederick Mason, of Ipswich. These comprise tho ford Waterworks, Colchester Waterworks, Bradfield and Bramford Steam Mills, Bishop Stortford Waterworks, Wimbledon Sewage
Works, Kidderminster Sewage Works, Sheorness Hertford Waterworks, Abingdoni Sewase Worrks, Harlow and
Epping Waterworks, Ipswich Asylum, Kettering Waterworks Epping Waterworks, Ipswich Asylum, Kettering Waterworks,
Notting Hill Trirmary, Marylebone Union, Shepherd's Bush
Brewery, Edmonton Union, Kettering Sewage Works, Hampstead Brewery, Edmonton Union, Kettering Sewage Works, Hampsteal
Brewery, and Kidderminster Waterworks. A special meeting of the Shoreham Harbour Trustees was held
at the Town-hall, Brighton, on Monday afternoon, to receive at the Mown-hall, Brighton, on Monday afternoon, to receive a
report from the finance committee on the proposal of Mr.. J. Orrell
Lever, M.P., regarding a scheme for the further development of the harbour, The committee reported that they had considered the letter submetce to them, and also a second letter from $\mathrm{Mr}^{\text {L }}$ the approval of the trustees, for the purpose of acquiring Shorethe trustees should favourably entertain Mr. Lever's proposal, and that negotiations should be proceeded with on the basis of such proposal, but with such necessary modification as might appear to
the trustees to be essential to the protection of the trustees and THE engineer in charge of the boring operations being carried
out for the Panama Canal reports that the borings had rioceeded
to a depth of about 10oft. from points, the altitude of which earied
from from 2000t. to 260 ft . above the level of the sea, without encounter
ing the rock in i itu. The material was apparently a more or less embedded in argillaceous matter. The fragments of rock are in a state of decomposition, and, after exposure to the atmosphere, a
slight touch will cuse them to sepparate into concentici layers,
leaving a compact central nodule. The existence of these globular blocks on all sides, and distributed over the surface through the col to be cut through will 1 prove to be similar throughout, more
especially as the rocks met with most abundantly on the Isthmus are conglomerates and tufa.
THE rocks which constitute the southern island of New Zealand
consist principally of gneiss, granite, mica sclist, pliyllite, quartzite, and felsitio Trocks. TThey, are partly covered by palleozoios strata,
which are folded up into innumerable troughs and saddle-backs throughout the province of Canterbury, and which partly belong
to the carboniferous period, so that there are prospects for a future
disco discovery of coal beds. By far the greatest interest, however, is
offered by the extensive volcanic phenomena of the island, and
omong them the extinct volcanoes upon the Banks peninsula, east
 cumurch ond Littleten, which has pierced through the walls of a
colcanic cone, and thu has laid bare its structure of suceessive
ver streams of lava and beds of scorix, ashes, and tufe, which are
gain intersected by dikes of younger volcanic rooks. Thisi is,
perhass the first volcano through which a railway has been con=
tructed.

THE ELECTRIC LIGHT, GREAT NORTHERN RAILWAY STATION, KINGS CROSS, gesshis. R. E. CROMPTON and Co., LONDON, ENGINEERS.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
uriter to himself, and bearnng a 1d. postage stamp, in order that urriter to himself, and bearung a $1 d$. postage stamp, in order that
ansvers received by us may be forvarrded to their destination. No notice will be taken
these instructions.
these instructions.
the We can
then

** We cannot under
 must therefore rex ake to return drawings on

SLab glass to stand sudden changes of temperature.

smoke-Consuming apparatus.

 Sir,-I shall be much obliged if any of your readers will give mehe names of persons who manufacture smoke-preventing apparatus for furnaces
Salford, August 24th.

OVAL CHUCKS.
(To the Editor of The .

UNDERSHOT WHEELS.

the prussiate of potash process.

 ADVERTISEMENTS. *** The charge for Advertisements of four lines and under is three shillings, for every tioo lines afterwards one shilling and sixpence: odd lines are charged one shilling. The line averages seven voords. When an advere tisement measures an inch or more the charge is ten shillings per inch. All single advertisements from the country must be accompanied by stamps in payment. Alternate advertisements woill be inserted woith all practical regularity, but regularity cannot be guaranteed in any such case. All Advertisements cannot be Inserted unless Delivered before Six other letters to ve adaresal to the Bultor of The Enginere, 163, Strand.

DEATHS.

year of his segne, son of the late John Rennie, C.E., F.R.S., in the
on the 16th inst., at Margate, John SLATE, C.E., late of Trinidad.

THE ENGINEER.

AUGUST 26, 1881.
the sheaf-binding trials at derby.
The trials of sheaf-binding reaping machines at Derby
have not given satisfaction. Of this there can no longer have not given satisfaction. Of this there can no longer
be any doubt. The dissatisfaction is not confined to the
competitors. competitors; on the contrary, there is reasoin to thinik
that it is widespread, and includes all the agriculturists of the country who have taken an interest in the proceedings
of the Royal Agricultural Society and of its judges. No one of the Royal Agricultural Society and of its judges. No one tors, or that they were not carried out with every possible
care by the judges and engineers. The prominent defect is to be found in the fact that the conditions under which the trials of the competing machines were made were
adverse. In other words, the trials were not calculated to adverse. In other words, the trials were not calculated to
supply the information which the judges ought to have possessed before they pronounced their verdict. It is fully
understood that the sheaf-binding reaping machine is the most complex and expensive implement ever put into a harvest field. Durability, in the sense of power to work through a harvest season without requiring much if any
repair, is an essential qualification in such machines as those tried at Derby. Capacity on the pact of the sheaf-binder for working without the aid of skilled attendants is hardly less necessary. On neither point did the Derby trials
elicit any information whatever. The machines during the experiments made with them were in the hands of their inventors or the skilled representatives of the inventors, and the test conditions were therefore very
unlike those under which the reaper would be actually worked in English corn fields. Again, the duration of the trials was ridiculously short ; the aggregate duty done by
any of them did not much exceed about half a day's any of them did not much exceed about half a day's
work. A good sheaf binder will do ten acres a day in a heavy crop, and as much as twelve acres may be got
through. The total quantity cut by each machine at Derby consisted of half an acre of oats, half an acre of barley, half an acre of wheat, two acres of light wheat, two
more acres of oats, and two acres of heavy wheat, or in all more acres of oats, and two acres of heavy wheat, or in al
seven and a-half acres of corn. Several days were spent in doing this, and we do not hesitate to say that such a test
could not supply adequate information to the judges as to could not supply adequate information to the judges as to
the durability of the machines tried. But this was not the durability of the machines tried. But his was not
all-the corn was for the most part cut while wringing wet; that is to say, under conditions which could not
possibly exist in regular farm work. We have heard it possibly exist in regular farm work. We have heard the
urged in favour of the trials that the more adverse the conditions the more severe the test; but such an argument possesses no force whatever. It might as well be advanced
that by running a locomotive on a hard paved road a good idea could be gained of its powers of working on a railway. It is, no doubt, proper that machinery should,
when tried at all, be tried with due severity; but unless the trial takes place under working conditions its results can possess little or no value. Thus it would
have been quite fair to test the machines tried at Derby in have been quite fair to test the machines tried at Derby in
fields of very heavy corn, full of grass at the roots; but it fields of very heavy corn, full of grass at the roots; but it
was not legitimate to test them in corn saturated with rain, and during a heavy downpour of rain. There are thousands of sheaf-binding reaping machines in use in the United States which could not work in heavy, tall English crops ; and the weight of the crops cut may, with strict propriety be used as a factor in appraising the value of a sheat-
binder ; but to cut wet corn, power of a machine to deal with corn in a shower, i simply absurd because no farmer in his senses would
think of working a machine in wet corn and a torrent rain. Furtherm a machime in wet corn and a tonco approximately certain, that it is more difficult to bind wet corn than dry. Indeed the chances are that the straw lying closer and heavier when wet than dry, may be more readily bundled and tied than it would be if fit for cutting. When thatch is being made or "pulled," the straw is always wetted, to make it lie close and take the spring out of it, and, reasoning by analogy, it seems not improbable that we corn may be more easily dealt with than dry by a sheat binding machine.
We regret to say that in carrying out the sheaf-binding trials at Derby, the Royal Agricultural Society appears to have forgotten how important a position it holds. It is indeed to the verdict pronounced by its judges, and the award of a prize to any machine or implement does a great deal to ensure the sale of the prize implement to the public. It is, therefore, not enough that the policy of the Society in dealing with inventions should be rigorously to think of than the inventors All the exhibitors have no doubt, more or less to complain about in the conduct of the late trials, because they all wanted to have their machines fully and fairly tested. That in a sense the tests were fair, and that no man was placed under better or worse conditions than his neighbour, will not, we hope, be disputed ; but there was nothing like the full trial which it was not only desirable, but imperative should have take place. As matters stand, the prize awarded to the McCor of little service to the recipients
of little service to the recipients,
It may, of course, be urged th
It may, of course, be urged that the Royal Agricultura Society was not responsible for the weather, and that it did all that could be done under the circumstances. To plead this is at once to deprive the trial of all value. It is
to admit at once that a gold medal and other awards have been made without any good or sufficient reason for making them. It is to assert that the conditions of trial were known to be unsuitable, and, therefore,
radically bad. We may be asked, "What was the radically bad. We may be asked, "What was the
Society, to do?" The answer is supplied by the
Society's Society's own programme. We understand that competitors were notified that each machine might be
called upon to cut and bind 100 acres of corn. This would have been an adequate test, for any machine which could successfully deal with this acreage might
reasonably be depended upon to work steadily through a whole season without much derangement. Why this plan was not followed it is not difficult to explain Prober the idea
not one competitor believed for a moment that not one competitor believed for a moment under which
would be carried into practice. The system und the Society works is inimical to any extended test of field implements. The judges are all busy men, who can be Not together, even if the Derby trials had been postponed, they vould not have been carried out at all. But the fact that
difficulties are encountered in testing machinery is no
excuse for making inadequate and delusive experiments excuse for making inadequate and delusive experiments,
Either no trials should be made, or they should be made Either no trials should be made, or they should be made
properly. The thing wanted is a reorganisation of the whole system of testing machines and implements and we have no doubt that it is quite practicable to effect this reorganisation. For example, certain agriculturists, practical men of high standing and large experience, might be affiliated to the Society and employed to report on the work done by implement handed over to them for trial. Thus, for example, the
half dozen machines tested at Derby might each have been handed over-selections being made by lot-to a many independent farmers, by them to be used during the harvest. Each machine should have to attend it and work it one man supplied by the inventor. The trial might extend over one month, and the machine would be used just as the farmer thought proper. A committee of
three judges or inspectors should be appointed who would three judges or inspectors should be appointed who would
from time to time visit each farm, say once in each week from time to time visit each farm, say once in each week
for a few hours at a time, to see how things went on, and to supply independent testimony as to the character of the crops cut, their condition, and so forth. At the end of the month the machines would be returned to the inventors, a report could be prepared by each of the farmers
who had used a competing machine, and from thes independent reports, Anderson, whoports, and that of Messrs. Eastons and month's work, a final report could be drawn up which would possess real value and on which the award of a prize could be, with propriety, based. Of course
we know we know that a hundred objections may be raised
to this scheme, but the only objection which would hold water cannot be urged; namely, that such trials as thos of Derby are better. If the Royal Agricultural Societ cannot carry out tests of machinery and implements, the results of which will guide agriculturists in making thei purchases, then it is much better that they should not be made at all. This conviction is gaining strength day by day, and the time is not far distant, we fear, when firms of eminence and reputation will refuse to compete. N doubt such a result of bad management on the part of the Society would be deplorable, but it is none the less, we fear, imminent. There is yet time for change, but one or two more fiascos like the Derby trials will greatly its awards things to be eschewed rather than coveted.

wind pressure on railway structures.

Towards the conclusion of the inquiry into the causes of the Tay Bridge disaster it was announced that a proan investigation into the question of wind-pressures on railway structures, with a view to the determination of a of thum which should be assumed in the determinatiol made to the idea that the Board of Trade should be sole arbiter in such a matter, and a committee was subsequently appointed to consider and report on the question, in which Colonel Yolland was the only officer representing John Hard, the other members of the committee being sin low, and Professor G. G.Stokes. Thereport of thiscommittee has just been made public. It contains, firstly, the report and recommendations of the committee ; secondy, an at stations in England, Scotland, Ireland, and from a few places on the Continent and in India; together with table of wind-pressure and explanation of the method of deducing it from the maximum run of wind in any one hour during a storm; letters relating to the direction of heary gusts of wind, and list of accidents to trains cause wind-pressure diagrams taken at Bidston, near Liverpool, Glasgow, and Greenwich.
The report is not a lengthy one, and the recommenda tions are not numerous. Most engineers will look upon upon which some of them are based are not given, and ar not to be inferred from anything the report contains. The method of procedure by the committee seems to have been to obtain from a large number of stations or observatorie the records of wind velocities and pressures, as obtained by Robinson's cup anemometers, and Osler's self registering anemometers. At most stations the obser vations are only of the velocity of the wind; but at therefore necessary, in order to utilise all the velocity observations, to determine the general relation between velocity and pressure as shown by the records made at the stations where both velocity and pressure are simultaneously registered. For this purpose the Bidston records were employed, with which one the comme had to deal The Bidston observatory is on the top of a range of hills on the south side of the Mersey, the hills rising abruptly from the sea level on both sides, and especially on the west side. The anemometers are placed 56 ft . above ground, and 251 ft . above mean sea level. In dealing with these records, three sets of subsidiary tables were first to 31st December, 1878, the maximum hourly runs of the wind lying between 35 and 45 miles an hour, 45 and 55 miles, and 55 and 65 miles, with the maximum corresponding pressures. Three sets of average velocities and
pressures were thus obtained, and from these it was found that the pressures were very nearly proportional to the formula $\frac{\mathrm{V}^{2}}{100}=\mathrm{P}$ served, with tolerable accuracy, as the basis for the computation of a table connecting the maximum run V of the wind in one hour with the pressure P in pounds per square foot at any time during the storm place was computed by this formula
From the information acquired the committee recommend five rules as sufficiently meeting the cases referred
to it for consideration, and although we give the report elsewhere, they may be briefly repeated here. They are 1) that for railway bridges and viaducts a maximum wind pressure of of per square foot should be assumed for sides and as high or higher than the top of railway vehicles the full pressure of 56 lb . should be employed for the whole vertical surface of one girder, and that when the taken as that of the length of the girder by the height from the bottom thereof to the top of the vehicles (3) that for lattice or open girders the pressure of
56 llb . should be applied to one girder, as though the girders had closed sides from the level of the rails to the top of the train, and the same pressure to be applied to above the top of the train. The pressures to be applied to the inner or leeward girder, one only, in addition to the below the rails and above the train, and are, $a, 28 \mathrm{lb}$. per square foot when the open spaces are not more than two-
thirds of the area included within the outline of the girder $b, 42 \mathrm{lb}$. when the open spaces are between two-thirds and three-fourths the whole outline area; and $c, 56 \mathrm{lb}$. when the open spaces are greater than three-fourths of the whole area ; (4) the pressure on arches and piers should a factor of
tained in conformity with these rules; and (5) a 4 should be employed in all these casses in calculating the necessary strength, except when wind pressure is
counteracted by gravity only, then a factor of 2 is considered sufficient.
Now a good many engineers will ask-Upon what data have these pressures which are to be applied to the actual
area of the ironwork of lattice structures been determined? There is nothing in the report to indicate in what way tion, for lattice girders of large spans are more likely to be used in the future than they have been hitherto, and whole area of the maximum pressure of 56 lb . to the to the windward girder must have an important effect the committee possessed information which led to the conclusion that the effectiveness of wind-pressure is greater on the inner one of a pair of lattice girders, roughly speaking,
as the actual area is less-though this relation has hitherto been a matter of question-and that the effective presintervention of a girder the open spaces of which are at all greater than three-fourths the whole outline area. Again, to 42 lb . respectively for girders the open spaces of which are two-thirds the outline area and for girders having open and that some formula should be given which would assign more satisfactorily a relation between pressure and area. The jumps from 28 lb . to 42 lb . and 56 lb ., and from two looks, without information to the contrary, very like of wind-pressure on large and small-mesh lattices does not seem to have received the attention which it
must get before the question can be settled. Two girders, for instance, of the same span and depth might be designed so as to have an equal amount of open space area, and yet the mesh or the area of each opening might
be very different. Yet the rules laid down by the committee would require the application of the same assumed mittee would require the application of the same assumed that the smaller the mesh, the greater the effectiveness of
wind pressure. Thus more definite rules are certainly wind pressure. Thus more definite rules are certainly required on this point. The report is one of undoubtedry ments need to be made, in order that rules more generally and consistently applicable may be made.

LANCASHIRE AND YORKSHIRE RAILWAY-COMPETITION FOR proposed new station, liverpool.
Thes award in comnection with this competition has been made; the directors-acting, presumedly, under the advice of
Sir John Hawkshaw, who was called in to assist them in their deliberations - having given the premiums to three local
architects of by no means world-wide fame The competition -differing somewhat from an ordinary architectural competition inasmuch as considerable engineering skivll as well as artistic
taste had to be brought to bear on the problem-has ended most taste had to be brought to bear on the problem-has ended most
unsatisfactorily to the competitors and not creditably to the prounsatisfactorily to the competitions and not creditably to the pro-
moters. The instructions, issued for the guidance of the com-
petitors, clearly invited designs for " "New Station petitors, clearly invited designs for a "New Station," and the
spirit, if not the letter, of these instructions implied a wish on
she spirit, if not the letter, of these instructions implied a wish on
the part of the directors to secure a comprehensive and liberal scheme which would suffice for the requirements of the public
for very many years to come. In spite of this, however, we find the first and second premiated designs consisting of plars
for crude additions to the existing buildings, utterly for crude additions to the existing buildings, utterly wanting in
anything like architectural dignity, badly designed as regards the approaches and exits, and quite devoid of any originality, and
unworthy of so important a city as Liverpool, and of so wealthy unworthy of so important a city as Liverpool, and of so wealthy
a company as the Lancashire and Yorkshire Railway Company.
The third premiated design is, perhaps, the best of the lucky The third premiated design is, perhaps, the best of the lucky
ones, unt it bears a family resemblance to the others, and cer-
tainly the strange coincidence that all the the tainly the strange coincidence that all the three premiums go to system-taken with the fact of all the successful competitors
using in the old buildings with as little alteration as possible, points only to one conclusion, and that is, that valuable informa-
tion as to the wishes and intentions of the directors has been conveyed to part of the competitors and not to the
whole. If this has been so, it is certainly a most unfair
and unjustifible whole. If this has been so, it is certainly a most unfair
and unjustifiable proceeding. The two best designs in
the competition are that signed "Rectus," by Mr. James
 Mn great detail by drawings weall conse. The former is shown executed. The general effect of the elevation is commanding
and well balanced; the booking hall centrally placed and of ample size ; and all the offices and conveniences planned on a liberal scale and easy of access. The gradient from Tithebarn-
street is carefully worked out and easy, although it would
perhaps have been better to have made the approach and exit
road somewhat wider, and to have divided it by a dwarf wall as to keep the ingoing and outgoing traffic separate, and also to have kept the entrance and exit gates on the ensily effected level apart, especially as this could have been easily effected
without altering the general arrangement. The other design mentioned above is most certainly entitled to one of the premiums if for nothing else than its atmirable soution of erie
approach difficulty. Nothing could be simpler, and therefore nothing more satisfactory for the working of the traffic than the
parallel slopes, one outcoing and the other incoming placed in pront of the main building. The fact of the main building being placed so far back from Tithebarn-strect might be preju-
dicial to the elevation, but on the whole the scheme is a good one and the general arrangements liberal in scale and well thought out Among the e est of the other designs are those malked Ditect, under one roof after the manner of St. Pancras ; "L. and Y." approaches ; and "Centaur." In many of the designs consider-
attrine aple engineering skill and ingenuity has been shown in the construction of the roofs and in utilising the space under the platably god worl of the building and the liberal amount of the premiums, it is surprising that more first-class designs have not been sent in. The
competition, however, is most remarkable on account of the extraordinary disposal of the premiums, and many if not all of the forty unsuccessful competitors who have been left out in the their talent and energy to the tender mercies of the Lancashire and Yorkshire directors.

LITERATURE.

Handbook of Electrical Testing. By H. R. Kempe, M.S.T.E.
\&c. New
Edition. Revised and enlarged. E. and F. N Spon. 1881.
IT is almost impossible to give a correct idea of the value of
this work, There is none other with which it can be compared. Rivals it has not any. True we have books that treat of testing. We have indeed small works, such as that of Hoskier, devoted entirely to testing, but in most cases testing is discussed in one or two chapters in books
which deal with electrical matters generally. Mr. Kempe however, has made testing the subject of his book, and any other subject that is discussed is discussed solely because of its connection with the principal subject. Now a fair knowledge of testing is as necessary to the electrical
engineer as a knowledge of certain branches of applied mathematics is to the engineer who undertakes the designing of bridges or similar constructions. Testing is a system of measurement, and implies a knowledge of the tools used as well as a knowledge of the properties of the their measurements are instruments of oreat delicacy and precision, and have a scientific as well as a practical value. The work before us describes these instruments, clearly showing the principle upon which the instrument is based and the best methods of using it. It is with a cera seeming deficiency. The recent astonishing development of electric light apparatus opens a new field for testing operations, and we should have liked to have seen a chapter devoted to this special branch of the subject. Of course it mat the slightest difficulty apply his knowledge can with as no new principles are involved, and only care to be as no new principles are involved, and only care to This work deals with testing from the standpoint of telegraphist and has in view a thorough description of the tests requisite during the manufacture, laying, and repairing of a submarine cable. The value of the work arises not only from its comprehensiveness, but more from the supplies tests as devised for special purposes, and duly give supplies tests as devised for supecial purposes, and and freely the best conditions for making the test. The author is fully imbued with the idea that no effort should be spared fore," and therefore he almost always illustrates his fore, and therefore he almost always illustrates his
description by a numerical example. Thus to enable our description by a numerical example. Thus to endicate the
readers to judge more easily our meaning, we indical method pursued in the discussion of Poggendorf's method of obtaining the E. M. F. of batteries. The method is in the first place described with the aid of a diagram, then a numerical example of the method is given, followed by
remarks on the best conditions for making the test, and concluding the special subject by considering the possible degree of accuracy attainable. The method adopted by an author may be admirable, while his matter may be involved and difficult to understand. In this case the matter and method are equal, the former being clear, concise, and to the point
It would be difficult to indicate exactly the contents of the work. Starting, however, with one of the simplest experiments, in order, we should imagine, to indicate the
principal instruments used, we then have these instruprimcipal instruments used, we then have these instruments described, this portion of the work concluding with
certain tests of these instruments, such as those applicable to galvanometrical resistance, the internal resistance of batteries, and the electro-motive force of batteries. The chapter on testing for faults. Special pieces of apparatus,
chat such as keys and condensers, ane described before chapters on cities. Thomson's quadrant electrometor and its uses is
ciser explained, the latter part of the book treating cable work carefully and exhaustively. A unique feature is a contract specification for the manufacture of a cable, with specimen sheets of the tests taken during manufacture.
Various useful tables are given at the end. V arious useful tables are given at the end.
This work purnorts to
This work purpors to new edition, but in reality it is a new work, there being little connection between the previous edition and the one before us. This volume is much more extensive, and that portion which reminds us written. of fixing the symbolic nomenclature of the subject, for we
notice that as far as possible the letters used are the first letters of the words naming the objects they represent,
and in cases where it is required to indicate, e.g., current and in cases where it is required to indicate, e.g., current
received or current sent, a subscript is used, thus C_{r}. C_{6} so received or current sent, a subscript is used, thus $\mathrm{C}_{r} \mathrm{C}_{5}$, so
that the reader has no trouble in understanding what the symbols mean. We have attempted to give a somewhat emphatic opinion as regards this work, without entering
into a detailed criticism, which the nature of the work into a de
precludes.

THE BRITISH ASSOCTATION AT YORK.

ALL the beds at the following chief hotels in York have already Station Hotel, Harker's, the North-Eastern Hotel, Scawin's, the Black Swan, the Great Northern, and the Queen. A heavy sale of tickets for the "jubilee" meeting has already been made, and the North-Eastern Railway Company has most liberally arranged to
issue very cheap British Association tickets to and from nearly all issue very cheap British Association tickets to and rom nearly all
the chief towns in Yorkshire, available during fourteen days for as many journeys as each holder chooses to make. Altogether
hen, those who arrive in York early and allow themselves plenty of time to obtain lodgings will be on the safe side.
Those who have not visited York by the Great Northern Railway within the last four years will find the old system of enterback over the same branch to go on to Scotlond abolished the accompanying diagram, B shows the position of the old
terminus, and H that of the new station, which is built over

part of a sharp curve in the line. AE is part of the line from the great Edinburgh, K is the branch to Scarborough, and F is The dotted line D represents the old town wall, which was in the way of any extensive enlargement of the old station. The new hotel, managed for the railway company by Mr. John Kaye, has
150 bedrooms, five out of six of which will hold two beds. The Great Nooms, five out of six of which wil hold two beds. Hing Great Northern Railway ends near Doncaster, but
powers over the North-Eastern Railway into York
In addition to the liberal steps already mentioned, the NorthEastern Railway Company will lend a steamer for nothing, to take an excursion party or geologists and others close alonsiout sixty miles. Most of the chief officials of this company reside in York, and in every way they have been working to promote the objects of the meeting. The Corporation, tlie clergy, and the good people are all working in harmony to make the "poeties. in a town so combine for the benefit of the British Association. The local secretaries have long had substantial offices in York, In the shape of a house-No. 3, Blake-street-lent them by the the British Association always falls chiefly on the local secre taries, who in this instance are the Rev. Thomas A.. (London),
(Cantab), and Mr. Tempest Anderson, M.D., B.Sc. Mr. Adams was formerly on the Geological Survey; he is now York, colleague, Dr. Anderson, passed with high honours at London University ; he is surgeon to the North-Eastern Railway Company, and to the Eye Institution. He is the inventor of a new ope eye, and whether it is at the proper focal distance from the required to perfect the vision. This instrument obtained a firstclass award at the recent International Medical Congress.
The programme of the local arrangements for the Jubilee Meeting forms a small volume, which will be presented gratis to every member of the Association; it is practicily a
a very good guide to York and its vicinity. It is by the retaries ; Mr. W. Denison Roe to it on zoology; Mr. Thomas Gough, B.S.., an article on
botany; and Archdeacon Hey an article on the founders of the British Association. It contains information about the post, mexcusions, the and, in short, aboth thing which the visitor would find it useful to know; a map is also bound up with its pages.
The excursions will be to Scarborough, Castle Howard, Helmsley and Rievaulx, Brimham Rock and Harrogate, Bolton Abbey,
Cleveland, along the coast from Middlesbrough to Searborough Gristhore Speeton, and Scarborough, Whitby, Wensleydale, and Aldborough. The tickets are at exceptionally low rates. Those who have offered hospitality to certain of the eward, Mists Castle Howard, the Earl of Carlisle's residence, twelve miles from York, and the Local Board of Commissioners, who, at Harrogate, will entertain two hundred guests. On September 8th, Mr. Lowthian Bell, F.R.S., will entertain some excursionists at the Cleveland Ironworks. Admiral Chaloner, C.B., and Mr. J. W. Pease, M.P., will be among those who entertain. The local
Philosophical Society and friends will welcome the excursionists Philosophical Society and friends will welcome the excursionists
to Whitby, and hospitalities will be extended to visitors to Scar borough.
The receptinn room will be at the Guildhall, a venerable otd edifice erected in 1446. The hall, which Las windows of stained glass, is divided into a nave and aisles by two rovs of octagonal
oak pillars ; the remarkable thing about the pillars is, that each of them is the stem of an oak tree, all in one piece The great Council of the North held its sittings in the magistrate's room of the Guildhall, and the $£ 200,000$ paid to the Scots for assisting the Parliament against Charles I. was given to them in this chamber. The stained glass windows of the hall are modern, and
presented chiefly by aldermen. The Guildhall is used for legal presented chiefly by aldermen. The Guildhall is used for legal
and municipal purposes, but the local authorities will give up the and municipal purposes, but the local authorities wi
use of it during the visit of the British Association
The presidential address will be delivered in the Yorkshir and narrowish wooden structure, the strength of the supports of
the galleries of which it is to be hoped have been well tested, bearing in mind the warning and precedent furnished at the
Welsh National Eisteddfod once held in a wooden structure at Swansea. In adjoining rooms are some valuable paintings, and Swansea. In adjoining rooms are some valuable paintings, and
doors at one side of the hall open directly upon grounds belonging to the Institution. Sir John Lubbock, the president for this year, is the right man in the right place, a good and entertaining speaker, a
fic world.
Section G, Mechanical Science, will meet under the presidency of Sir William Armstrong, in the Corn Exchange, a large building, with small attempts at architectural beauty inside and none at all outside. It was built recently. It will accommodate an audience of at least a thousand with ease ; and as the average
attendance at Section G after the first day may probably not attendance at Section G after the first day may probably not
exceed fifty, Section G will be in the position of a very small hermit crab in a very large shell
lewe Lord Mayor of York and Mr. Joseph Wilkinson, the Town Clerk, will do their part in promoting the objects of the meeting. take leading parts in welcoming the Association. The Archbishop of York will probably not be present. He is said to be living in retirement.
The first general meeting will be held on Wednesday next at 8 p.m., when Prof. A. C. Ramsay will resign the chair, and Sir
John Lubbock will assume the presidency and deliver an address. On Thursday evening, September 1 st, at 8 p.m., soiree; on Friday evening September 2nd, at 8.30 p.m., a dis-
course on the "Rise and Progress of Palmonto course on the "Rise and Progress of Palæontology," by Prof
Huxley ; on Monday evening, September 5th, at 8.30 p.m., discourse on the "Electric Discharge, its Forms and Functions,
by Mr. W. Spottiswoode, President of the Royal by Mr. W. Spottiswoode, President of the Royal Society ; on
Tuesday evening September 6 at 8 p.m., a soiree: on Wednesday September 7 th, the concluding general meeting will be held at
The following are the chief officers of the York meeting:-
pesident Flect. Sir. John Lubbock, Bart, M.P. Vice-presidents President Elect: Sir John Lubbock, Bart, M.P. Vice-president,
Elect : The Archbishop of York, F.R.S.; the Lord Mayor o York; Lord Houghton, M.A.; Archdeacon Creyke, M.A.; Sir W.
R. Grove, F.R.S.; Professor G. G. Stokes, M.A., D.C.L.; Sir John R. Grove, F.R.S.; Professor G. G. Stokes, M.A., D.C.L.; Sir John
Hawkshaw, C.E.; Mr. Allen Thomson, LL.D ; and Professor Allman, LL.D. Generat Treeasurer : Professor A. W. Williamson,
Ph.D. General Secretaries : Capt. Douglas Galton, C.B.; and Mr. Philip Lutley Sclater, M.A. Acting Secretary, Mr. George Griffith, M.A. Local Secretaries: The Rev. Thomas Adams, M.A.; and Mr. Tempest Anderson, M.D., B.Sc. Local Treasure

The officers of the sections are as follows
A. Mathematical and Physical Science.-President : Professon Sir William Thompson. Vice-presidents: Professor J. G. Adams,
M.A.; T. Archer Hirst, Ph.D. Secretaries : Professor W. E. Ayrton, F.R.S.; Professor Oliver J. Lodge, D.Sc.; Donald MeAlister, M.A.; Rev. W. Routh, M.A
B. Chemical Science.-President : Professor A. W. William-
son, Ph.D. Vice-presidents : F. A. Abel, CB. . Pre son, Ph.D. Vice-presidents: F. A. Abel, C.B.; Professor Odling,
M.B.; Professor Thorpe, Ph.D. Secretaries : Harold B. Dixon, M.A.; P. Philips-Bedson, D.Sc.; T. Gouch, B.Sc. LL.D. Vice-presidents : Professor Prestwich, M.A. Promsay W. C. Williamson, F.R.S. Secretaries : J. E. Clark, B.A.; W Keeping, M.A.; W. Topley, F.G.S.; W. Whitaker, B.A.
D. Biology.- Professor Richard Owen, C.B. Vices Professor J. S. Burdon Sanderson, M.D. Departmen of Zoology and Botany.- Professor Owen will preside
Secretaries: Rev. W. C. Hey, M.A.; Professor M'Nab, M.D. Howard Saunders, F.L.S. Department of Anthropology.
Professor W. H. Flower, LL.D., F.R.S., will preside. Secretaries Professor W. H. Flower, LL.D., F.R.S., will preside. Secretaries :
G. W. Bloxam, M.A.; W. L. Distant; H. E. Spencer. Depart-
ment of Anatomy and Physiology.-Professor J. S. Burdon Sanderson, M.D., will preside. Secretaries: W. A. Forbes, F.Z.S.; W. North, B.A.; John Priestley

Francis Galton, M. A.: Professor Sir C. Hooker. Vice-presidents Secretaries: J. W. Bary ; H. W. Bates, F.R.S.; E. C. Rye
F. Economic Science and Statistics.-President: The Right
Hon. M. E. Grant Duff. Vice-presidents: Sir George Camplell, D.C.L.; James Heywood F R S Secretaries : Constantin Molloy, W. W. Morrell, J. F. Moss.
G. Mechanical Science--President: Sir W. G. Armstrong.
Vice-presidents: W. H. Barlow, F.R.S.; C. W. Siemens, D.C.I Secretaries: A. T. Achison, M.A.; J. F. Stephenson, H. Trueman Wood, B.A
This list of sectional officers will be completed and will be
submitted to the General Committee on Wednesday, August 31 .
SILICATE COTTON OR SLAG WOOL.
Iv The Exginerr of the 12 th March, 1880 , we gave the
results of some experiments made with a view to test the rela results of some experiments made with a view to test the rela
tive value of this material, which is entirely made from blast fur nace slag and other materials as non-conductors of heat and
sound. We understand, however, that its application in the raw sound. We understand, however, that its application in the raw
or loose state has been found to be, in some cases, attended with some difficulties and disadvantages which have somewhat wise have had. To overcome some of these difficulties, Mr. table material with the slag wool in such a way as to a produce silicate cotton composition or boards, flat and curved, and rings
for covering steam boilers, pipes, and cylinders, to prevent loss of for covering steam boilers, pipes, and cylinders, to prevent loss o The by raciation.
The principal objection to the silicate cotton in the loose state
is the costly maner in which it has is the costly manner in which it has to be applied, viz., by
stuffing it under sheet iron or wooden lagging or other materials stutfing it under sheet iron or wooden lagging or other materials
to keep it in its place, and Messrs. Dade and Co. claim that they have entirely overcome this objection. The silicate cotton composition is very easy of application, and is applied as though
it were mortar, but the curious fact is that the composition is not hard throughout, for when set and dry the interior is soft and
porous, whilst the composition forms a hard and smoth surface porous, whilst the composition forms a hard and smooth surface
of its own, which can be made easily waterproof by tarring or painting it. It is also extremely light, and is so far
tenacious that it will not crack or crumble away through the alternate expansion and contraction of the iron. Owing to the
fact that the interior of the boards or layers of the composition when applied wet, dry perfectly porous, the non-conducting properties of the silicate cotton itself are not in the least degree
impaired, it is stated, as is the case when silicate cotton is mixed impaired, it is stated, as is the case when
with clay or any other solidififying matter.
position rolled cotton boards are made of the silicate cotton compuppplied either flat or curved to suit the shape or circumference
of any boiler. These boards have, of course, the advantage of being easily applied, and as easily removed, and they con
applied to cold surfaces, so that it is not necessary first to get up steam, as is the case with many compositions. The non-conduct ing rings or tubes are ingenious applications of the material, an we should think that they will gain a good deal of favou non-conductor to steam or water pipes to the minimum They constitute a complete covering in themselves; they open the one side-lengthwise -and are simply clasped round to overlap each other at one end. We notice that the boiler
the which drives the machinery and the electric appliances exhibited at the Fine Art and Industrial Exhibition at Cardiff has been
covered by Messss. Dade and Co. with their Silicate Cotton Composition, and that the surface of the covering is cool though but $1 \frac{1}{2}$ in. thick.
and domestic potton is now used in various forms for building and domestic purposes. As sheeting it is used as fire and cooking stoves, and refrigerators.

WIND PRESSURE ON RATLWAY STRUCTURES THe following is the report of the committee appointed to con To the Riglt Honourable the Pr;esident of the Board of Trad London, May 20th, 1881. $\mathrm{Sir},-\mathrm{In}$ compliance with the instructions from the Board o Trade-a copy of which is given in the appendix-to consider the them on the subject, we have made such inquiries and procure such information on the subject referred to us as we deemed
necessary, nad lave now the honour to report the conclusions at which we have arrived.
It was necessary in the first instance to ascertain as accuratel as possible from the sources which were accessible to us what the highest pressures of the wind in this country amount to. With
this object we obtained from those observatories and stations where the pressure or velocity of the wind is measured, the state ments which we give in the appendix. In order to exhibit the lithographed copies of wind diagrams taken by means of self registering apparatus at Bidston, Glasgow, and Greenwich.
At some of the stations
At some of the stations from which we have obtained returns the pressure ensemometers, at others the velocity orly of the wind measured by Robinson's rotating anemometers, the velocity of the wind being taken at three times the velocity of the revolving cups, For some stations the only published information is the run in
miles of the wind during each hour. There can obviously be no miles of the wind during each hour. There can obviously be no pressure experienced during the hour. To utilise for our purpose isservations taken at stations where the velocity only of the wind elements are recorded, have been employed as furnishing a means
of connection between the two. In the case of high winds, with of connection between the two. In the case of high winds, with
which alone we have to deal, it was found that the greatest pressure recorded in an hour was tolerably well proportional to the square o the mean velocity during the hour, and that the empirical tormula $100=\mathrm{P}$, where $\mathrm{V}=$ maximum run in miles of the wind in any one hour and $\mathrm{P}=$ maximum pressure in pounds on the square foot at
any time during the storm to which V refers, represented very airly the greatest pressure as deduced from the mean velocity for an lour. We have accordingly given in the appendix a table from observed velocities
In addition to the tables obtained from English, Irish, and
Scottish stations, which are those only that are strictly applicable to our inquiry, we give as matter only that are strictly apphaablo It will be seen on refer stations on the Continent and in India. vary greatly at different stations, This no doubt, mainly arises from difference of exposure of the stations to the action of the wind in consequence of the geographical and local circumstances of in the instruments used for measurement. Thus at Glasgow the lighest recorded pressure per square foot is 47 lb,, while at Bidston,
near Liverpool, the indicated pressure on one ocasion amounted to 90 lb ., and on another occasion to 80 lb . But the pressures at Bidston seem very alnormal, being much beyond what have been notieed at any of the other stations. The conformation of the ground on which the Bidston Observatory stands is such that the velocity of the wind there might be greatly intensified.
It will be noticed in the lithographs that the
exceptionally high pressures indicate a very brief the records of inquiries we have made, we are satisfied that these records are not referable to instrumental error, depending on the recording instrument being carried by its momentum beyond the position of
equilibrium under the wind pressure acting at the moment, but represent a real phenomenon. But whether the exceptionally high able space in a lateral direction, or on the other hand are extremely ocal, is a point on which we have not been able to find experi mental evidence.
The differences of the wind pressures observed at different stations lea usto consiter whether there were any onther modes of we refer to but in not withstand pressures so extreme asjoinin ground, and the obstruction to wind by adjoining buildings, trees and other surrounding objects, would render conclusions drawi from such cases unreliable. It occurrea, however, to us that some railways themselves.
series of ex that on existing railways that have been long in use them, have for many years been carried on, for over them trains have been running at all times of the day and night on high and unshelte
cases
30 lb , to 30 lb . to 40 lb . per square foot, is sufficient to overturn the ordinary railway carriages that have been in use during the last twenty-five or thirty years, and we thought it useful to inquire from the been overturned compthe force of the wind. The only cases of this
bithe this repert. hee brought to our knowledge are appended to inquiries we have made, and from the consideration we, have given
to the subject, we are o the subject, we are of opinion that
ciently meet the cases referred to us.
(1) That for railway bridges and viaducts a maximum wind ressure of 561 lb . per square foot should be assumed for the (2) That where the bridge or viaduct is formed of close girders,
and the tops of such girders are as ligh or higher than the atd the tops of such girders are as brigh or the total wind
top of a train passing over the bridge the by applying the full pressure of 56 lb , per square foot to the
entire vertical surface of one main girder only. But if the top of a train passing over the bridge is higher than the
tops of the main girders the total wind pressure upon such pressure of 56 lb . per square foot to the entire vertical sur-
face from the bottom of the main girders to the top of the (3) That where the bridge or viad
open construction, the wind pressure the outer o windward girder should be ascertained by applying the full pressure of 56 lb . per square foot, as if the girder were a
close girder, from the level of the rails to the top of a train passing over such bridge or viaduct, and by applying in
addition the full pressure of 56 lb , per square foot to the ascertained vertical area of surface of the ironwork of the same girder situated below the level of the rails or above
the top of a train passing over such bridge or viaduct. The the top of a train passing over such bridge or viaduct. INe wind pressure upon the inner or leeward girder or girder
should be ascertained by applying a pressure per square
foot to the ascertained vertical area of surface of the ironvork of one girder only situated below the level of the rails or above the top of a train passing over theve said bridge or
viaduct acording to the following scale, viz: viaduct, according to the following scale, viz:-
(a) If the surface area of the open spaces does not exced outline of the girder, the pressure should be taken outline of the girder, the
at 281b. per square foot.
(b) If the surface area of the open spaces lie between two thirds and three-fourths of the whole area included
within the outline of the girder, the pressure should be taken at 42 lb . per square foot.
(c) If the surface area of the open spaces be greater than outline of the girler, the pressure should be taken at the full pressure of 56 lb . per square foo
(4) That the pressure upon arches and the piers of bridges and viaducts should be ascertained as ne
formity with the rules above stated.
(5) That in order to ensure a proper margin of safety for bridges and viaducts in respect of the strains caused by wind
pressure, they should be made of sufficient strength to withstand a strain of four times the amount due to the pressure calculated by the foregoing rules. And that, for
cases where the tendency of the wind to overturn structures is counteracted by gravity alone, a factor of safety of 2 wil is counteracte
be sufficient.
With regard to the eighth paragraph of the report of the Select
Committee on the North British Railway (Tay Bridge) Bill, to which you have drawn our attention, we where trains run between girders they will generally be sufficiently
protected from the wind, the degree of protection afforded by the girders depending upon the extent to which the girders are open or close; where the girders are so open as to afford insufficient protection, or where trains run, as is in some cases they may do, on the tops of girders, we assume that the engineer will provide a aufficient
parapet, but we are indisposed to go further into detail on thi parapet, but we are indisposed to go further into detail on this
subject, as it might tend to stereotype modes of construction subject, as it might tend to
which we think is undesirable.
In conclusion we beg to point out that the velocity of wind, like that of every other moving body, is more or less retarded by fricver which it be affected , wicch ar. It will follow, therefore, that other things being the same, rea retardation by friction. Though we are of opinion that no briage or waduct is ikely to be built in such a situation as to enpose it thated by the disc on the Bidston Observatory, yet even if that were possible, a bridge or
iaduct constructed according to the rules we have given would not be subjected to strains nearly equal to its theoretical strength. ude or ind pressure we have assuned, and where the application of th Some modifion of the rules may also be
Sonsension or other bridges of very large required in the case will be of rare occurrence, and we recommend that they should be specially considered when they arise

We have the honour to be,
Sir,
Your most obedient servants,
John Hawkshaw,
W. G. Armislew
G. H. Barlew
G. Stokes,

We, the undersigned, concur in the above report so far as it goes, The evidence before us does not enable us to judge as to the lateral extent of the extremely high pressures occasionally recorded by anemometers, and we think it desirable that experiments should exceptionally heavy gusts should prove to be very small, it would in the requirements of this report
W. G. Abmstrong,

The following is the table above referred to as given in the appendix.

Wind Velocities and Pressures.

$\begin{aligned} & \text { Maximum } \\ & \text { hourly run } \\ & \text { of the wind } \\ & \text { in miles. } \end{aligned}$	Maximum pressure in sq. foot.	$\begin{aligned} & \text { Maximum } \\ & \text { hourly run } \\ & \text { of the wind } \\ & \text { in miles. } \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { pressure in } \\ & \text { 1b. on the } \\ & \text { sq. foot. } \end{aligned}$
40 40 41 43 43 44 45 46 47 48 49 40 50 51 53 54 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 70			

Naval Engineer Appointurnts.-The following appointments have been made at the Admiralty:-Edward Price, engineer,
the Malabar, vice Parsons; Janes Armstrong asistant enineer,
to the Malabar, Vice Barnes ; W. J. Anstey, E. J. Taylor, G. W.
 and J. W. Fleming, acting assistant engineers, to the Asia,
additional, for torpedo instruction,

THE PARIS ELECTRICAL EXHIBITION

No. II.

Forty years ago M. Moleyns designed an electric lamp which contained the germ of the present race of incandescent lamps. It was the first incandescent lamp, and consisted of a spiral of platinum enclosed in a globe, the spiral being rendered incandescent by the passage of the electric current. In 1845 Mr . Starr improved upon the design of M. Moleyns, and designed an incandescent lamp, the heated material of which was in a vacuum. For
thirty odd years the lamps on this system were looked

upon as incapable of producing light economically ; indeed, it has not been till within the last two or three years that improvement has been sufficiently pronounced to bring the incandescent light within the domain of practical MrequeFox, and others have, however, given us lamps which not only rival gas in cheapness, but possess many advantages which commercially give them a good start in a competition. The lamps of these various inventors are very similar to each other. They all use a carbonised vegetable

fibre placed in an exhausted globe. The carbon may in one case be prepared cotton, in another prepared bamboo,
and so on, the principle being the same. The differences and so on, the principle being the same. The differences are differences of detail, such as the exact form of globe, the method of introducing the carbon, the contacts, \&c. The later lamps differ from the forms of the earlier experimenters in the size of the material to be rendered incandescent; formerly it was comparatively large, now it is as fine as possible. The latest modification of these incandescent lamps is in the form of miners' lamps shown by Mr. Swan, Mr. Crompton, and Mr. Edison. We recently alluded to experiments made under the auspices of the Mines' Accidents Commissioners at Pleasley; and still more recently to the installation of the electric light in the Earnoch Colliery, near Glasgow. It seems that when Mr. Swan described his lamp last winter before the Society of Telegraph Engineers, Prof. Tyndall remarked that it might possibly be adapted to mining purposes. This remark led Mr. Swan to design a lamp for such work, which, with a few modifications introduced by Mr. R. E. Crompton, was tried with success at Pleasley. This lamp is shown in Figs. 1 and 2. A is the Swan lamp enclosed in a thick protecting glass globe E. This globe is supported by a brass collar D, which is connected to the brass tube B, into which is fitted the wooden cap C. The part of the lamp liable to be broken is surrounded by guard wires F. The modifications introduced by Mr. Jamieson will be seen by comparing Fig. 3 with the above. Here the-S L-Swan lamp is covered with wire gauze, enclosed in a strong glass globe
G G, with guard wires W W. An insulating handle I H made of wood contains the stalk of the lamp, and has side contact pieces S C, S C, which are soldered to the conductors of the leading wires L L. In connection with the lamp, Mr. Jamieson has devised several forms of contact to prevent dangerous sparks when the circuit is completed. Thus Fig 4 sts will easily be understood from the Figures. Thus Fig. 4 shows one form of gravity contact, the conductor C in the covered cable L L being electrically ball; B. Fig, 5 shows a double serew action drop, or metal ball; B. Fig, 5 shows a double screw action, the platinum
tipped screw making contact at C in the cable L. M. Mr.

Edison's miner's lamp consists of his incandescent lamp placed wholly in a containing vessel of water. It is too early to express an opinion upon the merits of these lamps, but the direction in which these gentlemen are working is one that is intensely interesting to nations like England will meet with a hearty welcome.

Messrs. L. Clark, Muirhead, and Co. show an instrument designed by Mr. E. H. T. Liveing for the detection and measurement of inflammable gas in the atmosphere of mines. The instruments hitherto designed for this purpose are either such as (1) depend for action on the physical properties of the gaseous mixture, or (2) upon its chemical properties. Under the former are the instrulatter those of M. Coquillion, Dr. Angus Smith, and Mr. Liveing. The principle of the apparatus under considera-

FIG. 4.
GRAVITY CONTACT

tion is based upon the following facts: A mixture of marsh-gas-fire-damp - and air in which marsh-gas forms less than 5 per cent. by volume, is not ordinarily explosive or capable of continuing its own combustion at ordinary temperatures and pressures, because the heating value of marsh gas is insufficient to raise the large excess of If, however, such a mixture is exposed to some sufficiently

FIG. 5.-SCREW CONTACT.
heated object, especially if that object be platinum, it will burn in its immediate contact and neighbourhood, and in so doing add materially to the temperature of the object, and themore so the larger the percentage of gas present. The apparatus consists of a narrow wooden box A B, Fig. 6, about 8 in . in length, the lid of which is provided with a narrow glass window C, and also with two short entrance tubes D and E. At each end of this box is arranged a fine spiral of platinum wire F and G ; through these a current from a small magneto-electric machine is made to circulate, both
wires being in the same circuit; and offering equal resist-
ances to the current, and having equal radiating surfaces, become equally heated on turning the handle of the machine. One of these spirals is enclosed in a small tube, having a glass end and containing pure air; the other is exposed in a small cylinder of wire gauze with glass end, to whatever gaseous mixture enters the instrument for examination. So ling as the atmosphere examined is free from combustible gas, both spirals glow alike, but if the air entering the gauze cylinder contains above $\frac{1}{400}$ of its volume of marsh gas, the exposed spiral increases in brilliancy, the This difference of brilliancy is the test used. To measure

BASE OF INSTRUMENT CONTAININC
MAGNETO ELEEJRICAL MACHINE

FI3. 6.-LIVEING'S GAS DETECTOR

it, a simple photometer is provided, consisting of a wedgeshaped screen H, the two opposite surfaces of which are illumined by the glowing platinum spirals. The observer ooks of the neans of the rod K, and the ano on the scale l. The screon is our the sy acting as the une that is sur mination on each side is equal. According to a table prepared by the inventor, with a percentage of marsh gas $-\mathrm{CH}_{4}$ - of 3 and 4, the relative llaning power of the spirals is respectively $1: 22$ and he explosive point is reach thes the screen from 60 to 70 times as brilliant as the unit spiral.

TENDERS.

WAVERTREE TRAMWAYS

Tenders for supplying and laying with steel rails and cast iron sleepers, on Mackison's patent, about $1 \frac{3}{4}$ mile of single line of tramway, and paving the entire width of the road in which the tramways are to be laid. Mr. C. H. Beloe, M.I.C.E., engineer.

Messrs. Holme and King, Liverpool-a
Messrs. Fawkes Bros., Great Crosby ..
Mr. Joseph Speight, Southport $\ddot{\text { Mirmingham }} .$.
Messss. Jones and Fitzmaurice, Birmin
Messss. . Smith and Co., Southport.
Messrs. G. Smith and Co., Southport ..
Messrs. W. B. Dick and Co., London.
.
Mr. Peter Smith, Manchester
Mr . James Nuttall, Manchester
Mr. W. H. Worthington, Manchester
Mr. J. Heaps, Birkenhead
Mr. J. Heaps, Birkenhead $\ddot{\text { Messrs. Maccabe and Cornish, Liveroool }}$
Messrs. Ridley and Co., Newcastle-upon-
Messrs. Maccabe and Cormish, Liverpool Ridley and Co., Neweastle-upon-Tyne
Mr. B. Barker, Manchester
Mr. B. Barker, Mancheste
Mr. D. Speight, Leeds
> $\begin{array}{ll}10,606 & 12 \\ 11,738 \\ 11,450 & 0 \\ 11,550 & 0 \\ 11,620 & 0 \\ 11,636 & 0 \\ 11,791 & 19 \\ 11,942 & 0 \\ 12,552 & 11 \\ 13,00 & 0 \\ 13,037 & 3 \\ 13,680 & 0 \\ 14,108 & 16 \\ 14,400 & 0 \\ 16,500 & 0\end{array}$

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our own Correspondent.)
The demand for Staffordshire finished iron is maintained. Numerous good foreign and colonial orders are about, and they re relising full rates. The Round Oak brand secures $£ 712 \mathrm{~s}$. 6 d . the New British Iron Company's bars, and those also of Messrs John Bradley and Co., fetch $\& 7$ 10s.; but there is a larger proportionate sale of the B.B.H. brand at $£ 7$. Some other makers o acknowledged repute taper down to $£ 610$ s., but $£ 6$ will secure month ago. The makers of bars who quoted down to $£ 512 \mathrm{~s}$. 6 d . at the earlier date mentioned now require $£ 515 \mathrm{~s}$. and $£ 517 \mathrm{~s} .6 \mathrm{~d}$. Hoops and strips of the sort which will bear stamping, and tha are used by the coopers and the hardware manufacturers respec tively, were not to be bought to-day-Thursday-in Birmingham o yesterday in Wolvernampton and $£ 615 \mathrm{~s}$.; while the "marked" house quoted £8. The makers reported themselves full of work at price up to $£ 610$ s.; but the demand is for the moment only quiet. Ye more was done to-day than yesterday
The heavy rain of Tuesday, following upon the showers of the previous fortnight, checked business very appreciablay the shee makers were to-day even firmer in their demands for full terms Nearly every sheet mill in the district is running full time, and the iron is mostly fetched away by the galvanised corrugated roofing firms, who continue in the receipt of new orders from the Cape, the Australias, India, the Woes are down upon the recent maximum from 7 s . 6 d . to 12 s . 6 d ., the sales there keep large. A perceptible increase is noticeable in the Cape and the Indian consumption.
The wire mills of Shropshire report themselves busy upon fencing sorts, but competition has brought down prices ins Girder plates, with T and angle iron, are going off at unaltered Girder plates, with T and angle iron, are eglected at from $£ 910$ s. prices ; and go
Pigs uphold last week's rates. Cinder qualities may be got down to as low as $£ 117 \mathrm{~s}$. 6 d. ; part mine were yesterday quote $£ 25 \mathrm{~s}$., and for all-mine $£ 3$ up to $£ 3$ 5s. was requred or hot-blas sorts. Cold blastwone, and the make is going into consumption. alight is now forty-one, and the maice, and steady in sale.
There is much room to fear that the sinkings at the Cannock and Huntington Colliery, which were being carried on by the Chaudron process, will have to be abandoned. All the $£ 100,000$ capital has been expended, andent to keep out the water. The directors have issued a report, in which they express fear that it will be difficult to raise the required additional capital, and they state that it will be for the shareholders, at a meeting which ha been convened, to determine upon the course now to be pursued. Since my last letter there has wases have for some time past been stationary, and seem likely to remain so for some time to come, there has lately been no need for its existence. The district lodges still remain, but they are poorly supported, and are likely soon to die out. In any case of emergency, however, there would be no difficulty in re-construeting the association.

THE ENGINEER.

The negotiations reported last week as going on between
employers and employed in the nut and bolt trade have now employers and employed in the nut and bolt trade have now
ceased; a fresh scale of wages for the ensuing year has been cased; and men in the Darlaston and Smethwick districts have
framed, and
given notice that on and after the 1st of September they will given notice that on and after the 1 st of Septe

NOTES FROM LANCASHIRE

Manchester.- In the iron trade of this district the market continues steady, so far as prices are concerned, but there has been suspension of any important buying in pig iron, and althouph the
few small transactions, to which the business now doing is confew
fined are on on the basis of ofd prices, the market can scarcely be eaid
to be quite as firm as it has been. Buyers who would come into to be quite as firm as it has been. Buyers who would come into
the market for anything like quantities appear to be holding back
in anticination of some downward movement in values ; here and in anticipation of some downward movement in values; here and
there offers are coming forward at under current rates and
although I do not hear as yet of makers accepting lower offers to any although I do not hear as yet of makerss accepting lower offers, to any
extent, there is apparently a disposition on the part of sellers, at any rate, to negotiate for good orders.
Lancashire makers of pig are still.
Lancashire makers of pig are still quoting, for delivery into the
Manchester district, 44s. tor No. 4 forge, and 45 s . for No. 3 foundry,
less 21 per cent; byt the less 2.1 per cent.; but at these figures they are only selling a few
very small lots, and I hear that in some cases they are now being undersold by outside brands.
There is also extremely little doing, in other district brands.
Lincolnshire iron, which is still about the only outside brand Lincolnshire iron, which is still about the only outside brand which
at present meets this market,
at quoted at 4ts. to tis. per ton, less
at for delivery equal to Nanchester. but I believe there are now 2t for delivery equal to Manchester,
sellers at slightly below these figures.
 per ton. has been rather a slackening off in the inquiries for
There
finished iron. Many of the large buyers appear to have pretty well finished iron. Many of the large buyers appear to have pretty well
covered themselves for the present, and the shipping season, so far
as the Russian ports, with which a large business in sheets has been done, are concerned, is now well advanced. There is, however,
still a good business being done, and as most of the makers have aiready quite as much work in hand as they can get through at
present, they are very firm in their prices, which in some cases are fally. per ton above what would have been taken a few weeks
back. For delivery into the Manchester district quotations remain
at $£ 6$ to $£ 62 \mathrm{~s}$. 6 d . for bars, about $£ 6$ b 12 s . 6 d . tor at $£ 6$ to $£ 62 \mathrm{~s}$. 6 . for bars, about $£ 612 \mathrm{~s}$. 6 d . for hoops, and
$£ 715 \mathrm{~s}$. up to $£ 8$ per ton for ordinary merchant sheets, with doubles
ransing from $£ 817 \mathrm{~s}$. 6 d . to $£ 9$ per ton ranging from $£ 817$ s. 6 d . to or $£ 9$ per ton.
Although the new
engineers have still to be competed for at very low figures, which empioerser, ase a rule, complainp leed for at at very low fig for mares, which
there would certainly appear, judging from the last reports prott,
thent in there would certainly appear, judging from the last reports sent in
to the Amalgamated Society of Engineers from the prinipial
manufacturing centres of Lancashire, to be rather more work manufacturing centres of Lancashire, to be rather more work
stirring throughout the district. Although it is exceptional where
trade strining is reoroghed "good," the general tenour of the reports is more
tratis
satisfactory. In the Manchester and Salford districts trade is reported as improving, and there is again a s.rall reduction in the
number of men out of employment. In Liverpool and Barrow-innumber of men out of employment. In Liverpool and Barrow-in-
Furness trade is reported as good ; in Bury, Patricroft, and Rochdale as improving; in Boiton, Blackburn, Accrington, Oldham,
Birkenhead, Chorley, and Preston as moderate; in Ashton-under-
Lyme as bad and at Wigan as bal and worling short time Lyme as bad; and at Wigan as bad and working short time. of the 2 s . per week taken off in 1878, amongst the engineers and
steam engine makers in the Manchester and Salford district, to meeting of the Iron Trades Employers' Association, held at the Manchester offices on Truesday. As I a atticipatedid the employers most
decidedly held the view that there has been no sufficient improvement in trade to warrant any present advance in prices, and it was
unanimously decided that the request of the men could not be unanimously deciced that the request of the men could not be
complied with. It is not anticipated that this decision on the part the part of the men.
The Ince Halling Mills, Wigan, were, pursuant to an order made by the Master of the Rolls, in connection with the
winding up of the company by whom they were owned, offered winding up of the company by whom they were owned, offered
for sale by auction, at the Mitre Hotel, Manchester, on Tuesday.
The Ince Rolling Mills have been erected since 1871, and at the present time are capable of procuceng 300 tons of puddled bars
and 270 tons of finished bars and hoops per week, and are in full working order. They were offered as a going concern, but although there was a fair attendance at the sale, the only bid was a nominal
offer of $£ 9000$, and the property was withdrawn offer of $£ 9000$, and the property was withdrawn.
Although it is not a matter which directly conce
I may mention that a well-known Leeds firm have just come district, working upon a large order for the complete equipment of a ssanll-
arms arsenal for the Italian Government, and which will be supplied with all the latest improvements for this special branch of The proposal Irwe proposal for completely bridging over a portion of the river
Iwell, near the new SSalford station of the London and NorthWestern Railway, to which I referred the other week, is for the present in abeyance.
The coal trade
withe whal trade remains in much the same position as last week, off rather bettor, and other classes of fuel for iron-making and manufacturing purposes are also of meeting wirthen-a somemewhat
increased demand. The consumption, however, is still a long way
ind short of overtaking the present means of production, and as a
consequence prices continue very low, with colliery proprietors in some cases willing to sell forward at present rates. There is, how-
ever, a strong determination generally not to oive way further in
prices, and except where stocks have to be forced on the market prices, and except where stocks have to be forced on the market,
quotations are eveneall being maintained at late rates. The
average prices at the pit mouth mare about as under:-
 Sol and Garston averaging about 6 st .ad. to toad. per tond at Liver-
polthough the colliers in the Manchester district have submitted
Alt quietly to the recent reduction in wages, there is a very nueasy
feeling as to the course of action the miners generally throughout
Lancashire may possible renewal of the struggle between the mastors and the men,
it may be interesting to call attention to the serious loss last strike entailed upon the railway to companies, and which, of course, is only one item of the enormous cost of that struggle.
Two meetings of railway companies have been held during the chairman of the London and North-W Resterned, estimatinating then, toss to the company as the result of the strike at no less than £100,000,
whilst Mr. Baines, the chairman of the Lancashire and Yorkshire, puts down the loss to that company from the same cause as somecost in carrying coals, during the strike from a greater distance
than that from which they hard in in Barrowo,- - I am glad to be able e to report that there is a better
tone noticeable in the hematite pig iron trade, and that a fair
business is being transected in business is being transacted in all qualities of metal. With a
good inquiry from all quarters, good inquiry from all quarters, users a are purchasing with greater
freedom at the improved rate of prices than they slowed when
inen iron could be bought at 2 s . or 3 s . per ton cheaper, as I reported
was the case a month or wo ago. Pig iron I note is now selling
at ta anut 60 . was the case a month or two ago. Pig iron I note is now selling
at atout 60 s. per ton for Nos. 1.2 and 3 Bessemer, and 57 s. for
No. 3 forge at works. Some makers are declining to sell the
former quality of metal at less than 60 s. per ton, but this position
is more especially noticeable where makers are well sold forward is more especially noticeable where makers are well sold forward,
and where they have already made themselves responsible for the delivery of heavy parcels of iron and steel. I am authod; andel
told that the inguiry from America is fairly maintained ; and on continental account the business doing is on the whole satisfactory The Colonies are also buying, but not in such large quantities
Stocks of iron large, but I expect before the end of October there witivity large decrease. There are evidences now of increase in. connection with the steel trade are running night and day in. connection with the steel trade are running night and day.
Makers, I hear, are heavily sold forward, and the exports sto
foreign users are already considerable. This, it is expected, will foreign users are already considerable. This, it is expected, will
continue during the whole of the year. Blooms are to be shipped
in in large quantities to America. The iron ore trade still continue demand all round being steady. The shipbuilding trade is exceeddemand airk round being steady. The s
ingly brisk. Shipping fairly employed.

THE SHEFFIELD DISTRICT

(From our own Correspondent.)

IN the iron trade there is more firmness manifested, full standar prices having lately been demandded, and makers recusing these signs steam fuel the iron trad there is more doing in steam fuel than in household sorts, though, if the present damp and unfavourable weather should continue,
the coalowners will soon impose winter rates. Engineering houses are fairly well employed, though the limite companies in that line do not report very favourably as to the pro-
fitable nature of the work in hand. In rails there is a cessation in the American demand, no heavy orders having been booked
from the States since those reported a few weeks ago. Other sorts from the States since those reported a few weeks ago. Other sorts
of rail way material, such as tires, axles, and springs, are in re-
quest, the wagon builders having been well employed all the

In the armour-plate mills there is full time worked, and ever prospect of abundant employment for this year at least. The ture in armour-plates. Up to this time, compound armour has been made, or is being manufactured for, in adition to our own
Government, the Argentine Republic, Brazil, Peru, France, and
In the rolling mills rods are being largely turned out. Crucible steel is briskly called for on foreign account, and Bessemer, in
spite of the recent advance of 5 s . to 8 s . a ton, is ordered very freely. Very little is doing in the saw and file trades generally, during June. The best class of goods seem mainly to be calle for. The edge tool trade is in a rather better state, but there is still much room for improvement.
Sheep shear makers report a prosperous state of things. Very
rarely have the South American, Australian, and other distant markets yielded forwarge orders. Heavy consignments are con-
tinuously being forwarded. In spite at the Cape, there is no great business in that quarter, such as was expected to follow the advent of peace
The leading cutlery houses are well employed on orders for the best qualities of goods. America is a very large customer for the
finest makes of table cutlery, and the standard houses who main tain quality as well as price, have that trade very much in thei is positive languor in the markets where inferior goods are mainl sold.
change for the worse has come over the scissor branches, who produce scissommon of the keen competition of German firms, who produce scissors at prices with which our local manufacturer
cannot contend. A few of the local factors keep the German scissors in stock to be supplied when cheap scissors are inquired
after. Though there is not a little of second-rate manufactur
. put upon the market, the German made scissors are not all inferio In tailors' and similar sorts they produce a very fair article at After
After eight years' fighting against the water, the proprietors of
the Magpie Lead Mine in Derbyshire have at last ' their mine to a depth of 95 fathoms. A tunnel has been carried a
 profitable working is now anticipated
The Swinton Ironworks (Messrs
works, Sheffield) were re-opened on Wednesday, Brown and Co., Atla closed for several years. Their recommencement is a proof that the firm experience a distinct improvement in the iron trade.

THE NORTH OF ENGLAND

There was a much better attendance at the Middlesbrough iron was done. Prices, haw, compared with last week, more busines iron was concerned. Makers still endeavoured to obtain 37s. fo whatever business was done, was done by merchants at about噱 otherwise take place. Unless they alter their policy a stiff battle may be expeoted bed merchancs to determin which party can do the longest without the other. In all proba-
bility the announcement of the state of stocks for the end of August, which will be made in about ten days' time, will settle the matter. The accumulation is expected to be very great, as both
the shipments and local consumption have fallen oft consid whilst the production has remained practically the same. Warrant are now freely offered at 37s. 9d. f.o.b., and forge iron at 3Js. 9 a
The stock in Connal's Middlesbrough store is 186,268 tons, being an increase of 568 tons during the week, At Glasgow they hol 1800 tons per week. Ironfounders continue to complain of slac work, low prices, and no profit. In the finished iron trade there is
a slight change for the better. That is due to the rather incereased demand from America, and to the diminished local consumption, Plates of shipbuilding quality now command $£ 6$ per tont hars angles are £5 $^{2} 12 \mathrm{~s}$. 6 d . - all subject to $2 \frac{1}{2}$ per cent. discount for cash
Mr. C. E. Miiller's Erimus Works are still incomplete. Active preparations are, howely, going on, and it is expected they will be
in full operation shortly Limited directors of Palmer's Shipbuilding and Iron Company half-year, meaking, with the 2 . per cent. already der cented. for the
cent. for the year. This is
ponsidered very satisfactory in the present state of trade.
northern iron trade that so well knon to all connected with th industry as Mr. James Laing, of Sunderland, is likely to be returne for the northern division of the county of Durham, in the place of the late Mr. Joicey. Mr. Laing was brought up as a wood ship-
builder and glass manufacturer, and was the first to commence a yard for iron ships on the Wear. This occurred about twenty-five
years since. He is now the largest shipbuilder and one of the Years since. He is now the largest shipbuilder and one the River
largest shipowners in Sunderland He is chairman of the
Wear Commissioners, also of the Wear Rolling Mills Company recently started, and fills several other important public oftices
The more the House of Commons is composed of such men, the
more more likely are the interests of trade and co
attention which ought to be given to them.
Arrangements are being made for those

Association who so desire to visit Middlesbrough on the 8th prox-
An excursion train will leave York early in the day, and the An excirsion train will leave York early in the day, and to
visitors will be shown the Eston. Steel Works, the new boring for salt at Port Clarence, and various other places and objects of interest.

NOTES FROM SCOTLAND.

The Scotch iron trade is in a good position so far as the manufactured departments are concerned. At the malleable works
steady employment is being obtained, although new orders do not forward so well as could be desired. Owing to the continue ronfounding trades are busy; and general engineers and maker of machinery are also fairly well supplied with work. Good contracts are likewise held by the steel manufacturers, and by
locomotive engineers. The pig iron trade, however, continues to lack life and vigours. on account of the large production and heavy stocks. The latter still increase day by
probably not do so to the same extent prober number of furnaces in exhast has been reduced from 120 to
as the
111 . This reduction is not the result of 111. This reduction is not the result of any arrangement to limi production, , ut has arisen by the damping out of eight furnaces a
Gartsherrie, and one at Eglinton by Messrs. William Baird and Co who are said to about to introduce an improvement in the manufacture of pig iron which will very materially reduce the cost limited, and in the course of the past week makers are reported to have shown rather more, anxiety to sell. Cleveland pig iron is in steady request for use in our ironworks. The demand for scoteh
pig iron from abroad is quiet, and as the season is now getting well
avanced it is doubtful whether any will now be experienced. For hematite the demand is very good,
there being a fair business at home and also in shipments to Business was done in the warrant market on Friday forenoon at Business was done in the warrant market on Friday forenoon at
from 46s. 1d. to 46s. 2d. cash, and 46s. 3 d. one month the after46s. 3d. one month. On Monday the market was firm at 46s. 1td.
 cash. The close was nominal. To-day-Thursday-there was no
market owing to the Royal Volunteer Review at Edinburgh. The market will be closed until Monday.
Although makers' prices have been rather easier there is not
much change in the actual quotations. They are as follows much change in the actual quotations. They are as follows:-
Gartsherrie, f.o.b. at Glasgov, No. 1, 54s. 6 d .; No. 3, 48 s . 6 d
Gel

 No. 3, 47s. Eglinton, No. 1, 47s.; No. 3, 44s.; Dalmellington, No
17s. 6 d .; No. 3, 44s. 6d. As regards. the coal trade, it is alleged by some of those who profess to be well-informed, that in Fifeshire the inquiry has very
much settled down, but the shipments from the Fife ports during the past few weeks, and particularly from Burntisland, have been very large. In the west the trade continues good, but the com parison with last year at first sight brings out rather too satisbusiness was much interrupted by a strike of miners. The inland trade is also good, and the output continues fully equal
requirements, so that there is no material change in prices.

WALES AND ADJOINING COUNTIES.

There is now a fair prospect that the whole of the works of of the West of England Bank, will pass into other hands, and i all likelihood be energetically carried on. Mr. Spence, who was connected with Mr. shaw in the Cwmavon property, has made an
offer for them ; and if the Court accept, the bargain will soon be closed. The works include those of Melingrififith and Pentyrch known publicly whether hatite quarries, collierie himself, or simply float them. Their closeness to Cardiff, and tho excellence of the collieries-which have been ably managed by Mr.
Edmund Howells for some years-make the speculation Edmund Howells for some years - make the speculation a good one.
Tin-plate manufacture, it is true, is not in the most prosperous state where exclusively made, for there it is hampered by old and already 1400 boxes per week are turned out, and the manage ment is preparing for increased make.
The United States
and some fair quantities have market for steel and iron rails, well, and managers say that a tolerable warranty for future trade路 again coming into the market, and bette prefused. This movement in old rails is due, I imagine, to the
reser reduction of the import dutios in France on old iron. Presen
figure, 7.50 francs per ton. Various good orders are coming infige of them, a Belgian order, for 4000 tons.
one A great deal might be made in old iron by our Welsh ironaside since the discontinuance of Welsh iron ore mining. I have seen large stocks of these at Cyfarthtia.
Foreign ore has now completely superseded Welsh. Last week little short of 35,000 tons
Judging from indications at Treforest Iron and Steel Works, Tredegar, the Welsh ironmasters are making vivorous effortst to take the lead in the make of steel reils, and having cheap labour
at command, good coke, and lessened cost of foreign ore they seem The exhibition of local works, at Cardiff, of the iron made and machinery turned out is satisfactory, and commends itself. Good
udges are beginning to wonder why Wales has lagged so long udges are beginning to wonder why Wales has lagged so long
behind, and persistently sent its scrap steel away. Siemens furup effectually. This, and the addition of tin-plate make to the old-established ironworks, is only a question of time.
I am glad to note a healthy condition of the Welsh coal trade. At Swansea business is decidedly looking up, and the local export
has materially increased; trade, too, is good at Newport, and at Cardiff it remains very much, the same; prices are firm and con-
tracts are only entered upon at improved prices. 11s. f.o.b. is now an ordinary quotation for best, and obtained.
Steel rails are quoted at S wansea $£ 6$ to $£ 6$ 2s. 6 d . Efforts in that quarter are being made to push up prices of tin-plates, but not
sucessffuly. Franee continues but a moderate coustomer. The tocesssully. France continues best last moeerate camestomer the the to
total exports of coal from Wales lat
average which existed a month agoon namely, 140,000 tons, and out
t this Cardiff alone sent of this Cardiff alone sent away 112, ,ooo tons. This wass, good wouk,
considering that excursions are now the order of the day, and that considering that excursions are now hhe order of the day, and
the colieries are giving frequent holidays to enable their men to
visit the Cardiff Exhibition. I have been much pleased of late to visit the Cardiff Exhibition, Thave been much pleased of late to
see large booides of men acompanied by their managers, and the
outing thus conducted is orderly and with practical benefit.

THE PATENT JOURNAL.

 Condensed from the Jourranal of the Commissioners of ** It has come to our notice that some applicants of thePatent-ofice Sales Deppartinent, for Patent Specitications, havere caused much urnecessary trouble and annoyance
both to themselves and to the Patent-ofice officiuls by
 of giving the proper number of the Specification. The
mistake has been made by look ing at THe ENGXER
Indee and piva

Applications for Letters Patent.

 * When patents have been "communicated" thename and address of the communicating party are name and indilics.

 Tith August, 1881.

 3577. Sirtivg Cenevt, G. Butler, G. Skudder, and H.
Fabian, London.
 Weighivg Machinss, T. H. Ward, Tipton.

 359. ELEcTric Lasps, C. Lever, Bowden.

 19th August, 1881.

 3609. STritrcibrs, J. Furley, Sevenoaks.
36io. Ribed FABmics, H. M. Mellor, Notti

3625. Pickers, I. \& A. Wallwork, Asl

 22nd August, 1881.

 Inventions Protected for Six Months on
deposit of Complete Specifications deposit of Complete Specincations.
65. Fsstrenks for GIovEs, W.. Lake, Suthamp.
ton-buldings, London.-A communication from A.

 A. communication from
U.S. 18 th Aupust, 1881 .

Patents on which the Stamp Duty of 3139. Prosectriles, A. C. McLeod, Salop.-Sth Aujust,
1STS.
.

 land, Birmingham. 20 th August, 1sits.
32s7. Harrows, W. N. Nichilson and W. Mather,

 Salford.-29th August, 187s.
3276. BuiLDINs, de, A. W.
 20, Aufust, 1 1878.

Patents on which the Stamp
\&100 has been paid. 1056. Typrss, dce., J. Greene, Pall Mall, London.-10th
 den. -20th August, 1874. .

Notices of Intention to Proceed with Last day for fling opposition, oth. September, 1881. 1635. Boxes for Threads, J. Darling, Glasgow. -1 thl
Ahril. 1 Iss1
164s. PAckags for Carring Paint, R. R. Gray,
 meunication from A. L. Thibuitt. 14th, Apori, 18si. J. R. Cumming, Ilford. -14th Appil, 18s1.
166t. TRicyurss, de., W. H. Bliss, Forest-lill, Kent.-

 2326. Ast-PANs for Loconorives, A. M. . Clark, London.
 Higighate.-1st June, 18s1. 4th June, 1881 .
250.2 . STran Griv Drimes, A. M. Clark, London.-A

 $-\delta$ thl July, 1 S81.
3021. ENTGINE REOLTOR, R. M. Marchant, Clerken-
well London.

Last day for fling opposition, 14th Septenber, 1881.

1692. Registering Distaver Traveluep, W. Thomp-
son and A. Morten, London. - 19 th Ap Apil, issi.

 1804. Countvativa Plants. without Soil, J. Imray,
London.-A com. from A. F. Poullain-Dumesnil.1812. Coxcrerter, A. E. Carey, Newhaven, and E.

 - A com. from Dr. K. Schnabel. Wha May, 1881.
 hall.street, London. Tit May, 1881. J. F. Harison,
2009. Machivery for Combinc Wool, J. Bradford- 9 th May, 1881.
206s. STEAM ExainEs, J. H. McFerran and W. Remie, Newry, Ireland. - 1 tell May, 1881. 1sth May, 18s1.
2218. PADLocks, T. Harby, Liverpool.-20ul May, 1881.

 Bagnal.-9th June, 18s1.
2637. CITARRITrs , , Black, Blackfriars-road, London.

 12th July, 1 ssil

 cation from G. Ligowsky.-1sth August, 188

Patents Sealed.

(List of Letters Patent vhlich passed the Great Seal on

 496. VALVEs for Punrs, A. Beldam, London.-5th Feb-

 -27 The Mea, 1881.
(List of Letters Patent velich phassest the Great Seal on
 S04. Fooo for formining Decoctioss, E. and J. Williams,
 sot. Alyili isit, \&c., Navigation, F. Wirth, Germany.Sos. Bushes for Woonen block Shenves, J. Gordon,
 S22. Sockert Prives forsiswers, B. C. Cross, Dewsbury.

 S67. Combinined gas Evgines, F. H. Wenham, London.
 Marreh, 1851.
Sii. Row Loocs for SHips, S. S. Hazeland, Cornwall.-

 926. Dico 940. Rekd ORANS, W. R. Lake, London.-4th Marach, 1881. Milss, H. J. Haddan, London.-9th
997. Rectur
March, 1881. 1037. MAccl, 1881 Cl . Material, W. R. Lake, London. -10 tho

 1334. Bowning Paspr. STock, A. M. Clank, London.-
2 2th March, 1881.

 1629. Sharpensisc Drilis, E. e. Bentall, Maldon.1659. Mass Wriscres and Capstass, E. E. and F. A.
 1991. Unrarkis.as, H. A. Davis, Finsbury Park
London. -7 th

 sea, and W. Ramsay, Durham.-2sth May, 1881.
23ioo. Slime Vanves, H. E. Newton, Chancery-lane,

1804. Amticherevss to Lifts, F. W. Haddan, London.

List of Specifications published during the
week ending August 20 th, 1881 .

** Specifications will be forwarded by post from
the Patent
 Patent-otifice, Southampton-buildings, Chancery-sane,
London

ABSTRAOTS OF SPEOIFICATIONS.

ofice of Her Majesty's Commissioners of Patents.

97. Knitting Machinery, I. Stubley.-Stl January,

Thisis consists in the splicing of knitted fabrics in the

olain jack and sinker rotary knitting machine, by | plain jack and sinker rotary knitting machine, by |
| :--- |
| means of one or more extra thread carriers, working | mainly the row of needles in conjuanction with a maing

thread carrier working mindy above the row of thread carrier working mainly above tio
needles, all the carriers being pipe carries 135. Stonerbreakiva Machines, IV. Taylor:-12th This rolates, more partitularly to the arrangement of the eracker ri aw. Fiis. is is an elevation of the face of
the cracker jaw. The grooves or furrows are caused to converge from the middale of the jaw face towards
the upery and lower eddes of that tace respectively so

ferences touching and overlapping at the centre of the
said fice. Fig. 2 is a side elevation of the whole
 acting cylinders C , and also the method preferred for
giving motion to the cylindrical riddale. The motion
 imparted by a ratchet wheend worked an equavent
from the piston-rod crosshend, or in some equilent 139.
9. Apparatus for Relieving Strains on Ropes Vessels, \&ce., C. Mace.- 12 Mhe Jonaury, 1881. Gd. At some part of the rope or chain (preetrably at onc other form of spring, or some elastic material, such as india-rubber, through which the tension upon the
rope or chain will be transmitted without sudden
strain. As applied to anchoring ropes or chains, the

windlass is fixed on a sliding, frame, controlled by
springs or some elastic material, in such a way that it
 tension. As applied to wire repe tov lines or warps
the compressor is fixed in a similar silding frame controlled as before described, or the spring or elastic
material is attached at either end, or at some inter-
 tion, party in section, of a sliding compressor con-
trolled by srings, which is firmly bolted down to the
deck of the vessel, preferably near the bow, and is principally used for towing purposes.

 cooin is dropped into the till it pushes a lever to one
cide in its descent. This lever actuates a ratchet on he first of a sutable upon the corresponding dian, and the egisters one upon the corresponding dial, and the
overe is then forced back to its original position b
 62. Ventilating Buildings, de., T. Rozan.-13h Thanuary, 1881. ©d.
pparatus for ventilating build dings, water-closette, hips or vessels, de., whereby a constant and regular therwise treatod) air, is insured, with means for jecting the vitiated or impure air.
191. Loons, dc...J. Northropp.-14th January, 1881. 6 d This leans of operating the heddles for chanyes of shed ding in looms for weaving, so as to give less pressure
on the warps, and for maixing thie shed without Unching the going part of the loom; ; also allowing of ing, making it easy to find the pick when the weft is
broken, and allowing of weaving with two shafts, up down, without altering the speed for either plain an fance, farrics, by which menens the tappets and
oreadles heretofore in use are done awny with, econdly, to means by which rotary motion may be iven to rotary circular shattle boxes ocontaining series
of shuttle chambers in the order desirided, missing or "skipping" of one or more of the shuttle
Uhambers in solection of the shuttles brounght into so ; Thirdly, to stopping looms having shouttlo boxes teach end when the weft breaks or is rum off.
 Fig. 1 is a sectional elevation showing one modififiation of apparatus for regulating the operations on
sheaf-binding mechanism, and Fig. 2 is a vertical section (at right angles to Hig. .1) of a portion of the
gearing. The binding mechanism is diven by means
men firough a combination of three bevel wheels $21,22,23$ nown as jack-in-the-box motion, or it might be hootlicd spur wheels and differential plane tery pininions,
 loosely when the motion is not being transmitted,
nad causes the transmission on being arrested by catch 24 , which engares with teeth on as wheel 25
chade in the same piece with the wheel 23 . The middle one $f 22$ of the three bevel wheels is on on stud the shaft 20 , and made to turn it by meanss of a key Loose on the boss 26 , and is in the the same piece with the rrst 21 of the three bevel wheels. The third bevel
rheel 23 and catch wheel 25 are also 1 1oose on the oss 96 , and after being put on are held in in position by a collar 28 fixed on the boss, which collar is grooved
for a claw guide 29 fixed to the bearing, and arranged

10 keep the boss 26 and parts on it up to the bearing notwithstanding any end on movement on the s delivered in order to be bound, there are fixed on
 lever 33 , on which a a weight is is adjustably fived The weight is a ajusted to correspond to the weighto o
thenf desired to be made and when the quantity rop received in the hopper, io and unon the rods 3 ttains the desired weight, it causes the rods 32 to cscend a short distance, and then a short lever
fixed on the spindle 31 , acts on the catch 24 and tuses the hinding mechanism to commence working The atch 2 is on the end of al lever 35 , which has i oonnected by a rod 37 to the lever on the spindle 31 on a supporiting rods. 38 , ane stritut holding shown thas resting on a supporting armm 38 , and holding up the catch 24 , 2 ,
and on the rods 82 being weightod down by the
portion of cop the 8 , and then allows the catch 24 to descend and urn for each complete binding operation, and in so
 or wiper fixed to the collar 28 of the boss 26 (or it may be
carried round by the shaft 20 in any other convenient way), and the arm 38 at the end of its turn acts as a a
viper or cam to lift up the strut 36 and make it raise wiper or cam to lift up the strut 36 , and make it raise
the catch 24 out of gear from the wheol 25 . 199. Sterring Gear, J. K. Killoung and The draniung is a ssectional elevation illustrating a
 199

threaded screw or spirrul bolt. A is tho serew or spiral
bolt for transmitting motion to the rudder stem, B the
screve or syimi boit
 the number of which correspond to the number of
 A is the valve sheili provided with diaphragm to
separate the inlet and outlet sides ; B is the valve

[203]

composed of two rings E connected by bars, the lower ring fitting accurately the opening in the diaphragm,
the bearing surface for the valve being truly formed within it, while the upper rinn screws into the socke 204. Brake Gear for Locomotives, b. Lébebure.This relatestang, on anrangement of brake gear whereby al the brake blocks, so that an equal wear and tear is secured and no strain put on the axle guards and
boxes. A shatt A is used to eeach pair of wheels, and is suspended by bracketes from the frrame at any point
istween the brake blocks. On it are fixed levers setween the brake blocks. On it are fixed hevers

mitted to them by rods E either directly or through thhese elerers C may be dispensed with when the power
acts directly on levers D, the arms of which are of acts directly on levers D, the arms of which areo of
equal or unequal lengths, according to the lengths of equal or unequal lengths, aceordiang to the lengthy of
the brake block hangers Hand are connected by rods
$I J$ IJ to cross-bars K , the ends of which are coneneeted do
the braks blocks. L are rods connecting the shafts A the brake blocks. Lare rods connecting
to keep them the proper distance apart.
205. Condevsirg And Distuluisg App

This consists in the construction of a condenser or cooler by winding two thicknesses of sheet metal in
volute form so as to present a continuous inner wol space for steam or rapourt to be condensed or liquidid to
be cooled, and a continuous volute outer space be. be cooled, and a continuous volute outer space be.
tween the successive convolutions for the passage of tween the sliceesid.
207. Stean Engines And Condessers for Tranway
Vehteles, do., T. Robectson, jun. -1 oth January

Vehroles,
1.8st. 6 d.
A is a high-prossure cylinder, and B is a low-prossure or expansion cylinder, into which the exhaust steam
from the cylinder A is led by the piipe A1. Into this
. pipe a jet of live steam from the boiler is led by the
pipe Cl and injected, pref the orife
pit pipe C1 and injected, preferably at or before the orifice
of the said exhaust pipe or passage $A 1$, when it opens
207)

into the valve easing B1 of the low-pressure or expan-
sion cylinder B , so as by the force of its injection to

$[07$

the engine of a tram-car, showing the improvemments
combinied therewith. Fis. 2 is a longitudinal section combined therewith. Fi, 2 is a lonitudinal section
of a part of the valve casing and exhaust pipe.

This realeses orin employment of a peculiarly concan be prepared, scoured, crabbed, boiled steated tentered, dried, and caled cered by any one or portion
of these processes sinly of these processes singly, or in conbinantion acocrding
to the result desired to bo produced on the fabrics.

This consists in the employment of twisted, plaited,
woven on flat wicke mado in such onamier as to proWoven, or flat wicks made in such manner as to pro-
duce at the moment of combustion the necessry curvature for the supply of the wick in contact with the
air, composed of any dosired mumber of oqual ow un-

210. BEDs or Couches For Isvalids, \&c., G. Lowny. This reintes partly yo the application of an ondloss
sheet for the purpose of enabing invalids or others to sheet for the purpose of enabling invalids or
lie in or be raised to any required position.
211. Sizing, Drying, and Warpisg or Beaming of
Worsted, Wool, de., C. Anderson.- 15 th January,

18si. 6 d . ll . is placed on a shaft provided with of warp B passes between rollers C covered with indial
 pressur being applied by levers E. From these rollers
the threads of owarp pass toar revolving drying frame
F and thence round rollers mounted in a hot room

G, both being heated by steam-pipes H. The thread

viith.) $2 d$.
This rentes to means for adiusting each flat sepa rately while in position on thio earding engine, and
consists of as emicircular s.ide with two excentric
onds studs attached to the end of the flat. On the excentric
of this stud is placed a sleeve with notches in one end which are driven into a plate screwed to the end of the flat. On the first tube is placed a second tube 216. Traction or Evo

January, 1881. 4t1 Engines, J. F. Dyson.-17th The object is to obtain more grip on the hind wheels B of the engine and it consists in forming the part A A
of the frame hollow so as to constitute a wagon,

리주

in which the stone or other material to be removed is so as to prevent them slipping.
 January, 1881 . 6 d.
A metal vessel fits the space beneath the grate, and grating, through which the ashes can fall, the cinders being retained on the bars of the grating.
219. Machinery for Digarng Lavd, W. E. Crossby.This consists of a portable or traction engine com
bined with die y n tools, which move up end down in bined with dieg g'ng tools, which move up and down in 220 , and af ensily

 The particular and distinct features of thisisinvention
are that the absorbent is non-volatile, and not capabile are that the absorbent is non-volatile, and not capable
of vaporising under a limited vacuum produced
and mechanically by an aspiration and compression pump,
and the absorbed material volatilises alone under the

vacuum, producing a lowering of temperature, and again liquefied byb being rearabsorbed in then non-volatile
material, and that a special mechanical contrive material, and that a special mechanical contrivance,
such as a double erfrigerator, is used to effect the absorption of the vapours of the volatile absorbed
material, so as to re-coust tote the saturated liguid
 ayoided. The drawing representss sectional elevation
of an apparatus for carrying out the process 221. Apparatus for the

This consists in an an apparatus for the manufacture of viningans, of one or mores esiries of she mavesuractoctured
with cloth or other fibrous material, and arranged one
 above anotior she sif after traversing it and its covering,
fall fromo
upon the shelf next below, and traverso it and its covering in a like mame
 The main object is to econominise limestone, 1 acid and manganese in the manufacture of chlorinee, buta anart
of the invention is applicable also to the puritication
 chloric acid may be afterwards applied, and it consists
in removinu sulphuric aceid from commereitl hydro-
interic
 secondyy, combining with the employment in thio
manufacturo of chorino of hydrochioric acid, from
which sulphuric hacid has been so removed, the
 226 of what

Thisi, consists. ©in. the employment of any convenient
number of removable steel spikes, commonly known
 as ind
which rouphs are inserted into smooth round holes in
the phoor plate.
224. Powre Hanners, \&c., J. F. M. Pollock and T This refers, First, to an improved power hammer
 application and use, in combination with a powe hammer of an elastic anvil for carrying a set or chise
in such on In such manner that the blow can be transmitte
through the said anvil as the blow of a hand hamme is trnsmitted through the chisecol or canalking tool in
the hand of a workman ; Thirdly, the combination of

2e24

a power hammer and anvil with a suitable frame (fixed or portable) to render it available for general workshol
purposes. The drawing is a longitudinal section of the improved power bammer with elastic anvil, in
which, by a set screiv or otherwise, can be fixed a set or chisel.
225. Inprovengxts in Electric Lamps, and in the
MEans or
Turnivg on or off the Eletric
 The latest form of lamp 's seen in the first figure. The
contacts between the carbon filament and the plati num holder are made with Indian or Clinese ink, and this is the first claim, The method of carbonising the
thread, string, or vegetable fibre used, is claimed.

225
 grooved graphite cylinder, into which a strin of of
serrated stee has ben placod, to that the senrations
are just above the normal level, is taken, the thread wound on it, and intensely heated in an hermetically
closed crucible. The thread contracts, and is cut by

the steel into equal lengths. The threads thus the steel into equal lengths. The threads thus
obtained are rendered incandescent by means of ant
electric aurrent, and their resistance lowern thed to the electric current, and their resistance lowered to the
point required.
is obtaine thick in ing of the ends of the wire
on Is oing bred by electro-deposition one form of the appa ratus for current operations is shown in Fig. 2. It con F sists of a permanent magnet Eand an electiro-magneetire
The coils of Form part of the circuit of the line wire
T. On sending a current through the line wire the A. On senaing a current through the line wire the
movement of the manget at overy lamp in the esiris
is caused, by coming in contact with peg G or moving is caused, by coming in contact with p.
from it, to turn on or off the current.
227. Chests, Traveling Boxes, de., J. H. Johnson.
$-18 t h$

- Jinumy, 1881.
B. Geneste.)- (Not troceected revth.) 22 .
This consists in constructing the chests, se. of a
 and celerity.
 This consists in the employment of a sand blast or a or conminationsuan or the above materials, which is
orrected into the interior of the casks or other vessels directed into
to be cleaned
 This consisists in forming the "iron" with one or mores theroon at that part or the parts where the
edges the
ment tinkes place, viz, at the "treand" of the greatest wear takes place, viz, at the "tread" of the
sole and hieel, the provections or plates and the rim of
ind the iron (forming the improved "iron ") being in ono
 231. Perambu_ators, dec., J. Watteroorth. -19 hh Junuary, 1881. - (Not procected veith.) $2 d$.
This consists parlly in making the velicle in the
 Theorellys. is composed of lamine of wood tied
 several strips or pieces of leather are separated at the ends and on them are latid segmental steol platee
which form the outer peripheral portion of the wheel,

233. Closiva on Stopperisg Bottres, dec., R. Lanhan

The stoppering consists of a vertical pieoo of motal or
ther material, having at its lower end a loop through which passes a wire or other ligature fastening or
tying it beneath the collar. To the upper end of this
piece, which is level with the top or mouth of the ottle, is hinged or otherwise attached a plate, to the or any elastic, semi-elastico or other material. Attached to or forming part of this phate is a spring catch,
which, when the stopper is fully inserted, will catch under the collar, and keep the stopper, plate tite tight
lown upon the mouth of the bottle, or in lieu of using spring catch, this fastening may be hinged to the 33.
on to Soribbling, Carding, or other Machines, rectangular receiver A is provided, into which the B and C constructed in the form of of its vertical sides heet and attached to the bottom of a latereofe or frex flexible
wo sides may be fixtures, and formed of solid piece two sides may be fixtures, and formed of solid pieces
and not attached to the bottom, or they may also be o
a lattice or flexible construction and attached thereto

[334
 (9)

The latitico or fexible esidso of the receiver aro caused
To rise with the bottom, this being effected by means

 ach sheot visible, the widt buing

 pieces of leather through which the textile strip
pass. 239.

 arm, is mixed with a small quantedt, and while yel

 hus prepared is compressed into blocks or tablets by 40. Pictiv Jhis conv, 1881.- (Not proceeded with) Taylor:-20th application of a woven fabric orm bands suitable for ase in looms for weaving, in leu of the leather bands or straps at present used for
connecting the "picker" actuating the shuttle with
the picking stick 241. Rallways and Tramways, J. G. Hardie and T This consists, first, in applying steel or iron inser-
ions, of any suitable description and hardness, in both point and crossing plates, so as to be easily removed
when worn out without disturbing the foundation secondly, in fixing the steel rail of the form described
in patent No. 1455, dated 12th April, 1879, to timbe leepers, fixing such sleeper and timber on to a meta fing them on this chair
243. Discharging Apparatus for Water-closets
and similar Cisterns, de., J. Shanks.-20th January, 1881.- (Not proceeded uvith.) $2 d$.
This comprises an improved construction of float 244. Heating Wapper, de., J. McAllister.-20th A number of tubes are employed, through which
he water or other fluid is passed, whilst the heating gent acts on the outside of them
245. Improvements in Apparatus for Lightina
Gas, C. L. Clarke and J. Leigh.-22nd January, This invention refers to improvements on the
electric lamp for gas lighting, patented on the
(st June, 1880, No. 2229 . The improvement consist in the construction of the battery and the method preparing the wire of the induction coil. The battery
is formed of thin silver fiil, coated with dry powdered
chloride of silver lvent chloride of silver, kept in place by being wrapped in
bloting paper. Zinc plates are then laid on the sides
of the plate thus formed. The whole is then wrapped
in the in blotting paper and strapped by two or three elastic taining a solution of chloride of zince. To give greater
tonductivity to the in conductivity to the iron wire of the induction coils, it
is taken in the tank and wound on to a t tubular iron
bobbin. Two or three layers of coarser wine wound above ir tor protection. It is then placed in urnace, raised to nearly welding heat, then with
drawn and immediately plunged into a vessel con
taining powdered charcoal, entirely exclude the atmosphere, being afterward
allowed to gradually cool. After this it allowed to gradually cool. After this it is saturated
with paraftine, wound off the bobbin, and formed into
a coil. 246. CASK STopper, L. A. Groth.-20th January, 1881

- A communucation fiom E. O. C. Atarkgraf.) - (No A conical ring with a six-cornered flange is placed in
the bung-hole, and secured therein by screws. This the bung-hole, and secured therein by serews. Thi
ring is furnished on its inner side with a rim, which is notched in two or more places. The plug or stopper
is fastened to the ring, and is furnished with an eye for the reception of a small chain. The face of the
rim, which is turned towards the inside of the cask, is shaped into inclined planes rising slightly upwards.
The flange of the said plug or stopper is contained in
the conical ring is placed an india-rubber ring. The cylindrical part
of the plug or stopper is furnished with two projections, which have on their sides next the flange in
clined planes corresponding to those on the rim.

248. Apparatus for Heatina by Hot Water and
Steam, E. de Pass. $-(A$ communication from E KTEAM,
Kiting.). $6 d$. 6 .
The draws. by way of example, to an apartment to be heated.
is the boiler, which may be of any construction; he steam pipe; C the surface heater or primary heat ing machine, in which the water surrounding the
team conductor C gets heated by the steam passing
[24B

tiroughthe conductor; F Fthe hot water stove or second trye surter, unding airr; E the roturn pipe for to the
 an oerfi
to F .
t.
 The regulator is constructed on the priniple of

249

 or close
furnace.
 Jutlet pussages are formed bot between the serew and the revolving top. The ordinary casing does not
oxtend to the revolvinin top, so that openings for the
x.
 y means of conicallyshaped deateotors, whico arn effector only may
252. Woven Bags or Receptacles, W. A. Carr:-20th
January, 1s81.-(Not proceeded vith.) This relates to the production of bags woven in a tubular form. The bag is complete when cut from th web, Pors part them for Illumination and for Transmision o Power, C. G. Gumpel. -20th January, 1881. 10d. To produce the currents the envic machine, so as to btain with a given velocity of the rotating armatur more numerous and powerful currents than are
usually produced, at the same time avoiding heating of the coils. The armature is made
ollow open-ended shell of magnetic material, th middle being larger than the ends. The ends are
divided by projecting fins. The shell is formed of divided by projecting fins. The shell is formed of
number of rings fixed on a shatt electricall insulated
from one another, each ring being provided with th from one another, each ring being provided with the
necessary peripheral projections like teeth, so that when, these projections corresponding to each othe orm the ribs or magnetic extension pieces. These or the reception of the insulated conducting wires,
he method of winding which is then described. The nventor also describes his mode of applying th
current generated by his machines to the steering of ships.
Gelf-Feeding and Smoke-consuming Furnaces, The furnace consists of an iron stand for holdin
two inclined sets of fire-bars, two dead plates,

hopper, and brick bridges, two or more ventilators air, said hot air being raised by the arrangement
of heated air passages or pipes, through which the ail
is caused to
the flames at a high temperature when the combustion
takes place, and the hydrocarbons being decomposed, takes place, and the hydrocarbons being decomposed,
thus the mmoke is destroyed, and increased heat given
255. Apparatus for Driving Potters' Wheels, sce.
T. Willett.-20th January, 1881.- (Not proceded

This consists of a small rotary steam engine acting
directly upon the spindle of the potters' wheel, lathe igger, or other machine requiring to be driven. 256. Roller Bearings for Axles, de., W. R. Lake.
$-20 t h$ Jenuary, 1881. - (A communication from J. E. A is the outer journal-box, within which is fitted a when the box C does not revolve, can be successivel brought into bearing as the previous one wears. Th
anti-friction rollers E are turned down at the middle o

256

eir length, and between them in the reduced parts are placed separate rollers of a smaller diameter
enclosed by two rings X and Y. The cap D fastened roove in which the ball K is placed, and serves to pre ent endwise motion of the axle B.
257. Fastenings for Bracelets, Negklets, \&c., 0 This relates to a fastening, consisting essentially of one or more single springs, or of a double spring, each single spring or the arms of each double spring having
h hooked bevelled head and a pusher or releaser, the hooked spring or springs beeng attached to one end o
part of the article to be fastened, and taking into and ngaging with the edge of an opening, or openings, in the ether end or part of the article to be fastened, an 258. Machines for Countivg, Registering, and

A series of discs are employed equal in number to the "places" of tigures which the machine is intended to periphery the series of numerals one to nine both nclusive, each series being preceded by the cypher
symbol o. Each disc has a single notch in its edge between the cypher and the numeral 1. The dises ar placed and turn freely upon a common axis. B
means of arms or levers and toothed gearing thes 259. Tricycles, \&e., G. Illston.-20th January, 1881 -(Not proceeded veith.) $2 d$.
This consists in improvements in those parts by which the motion of the crank shaft is transmitted t
one or both of the travelling wheels.
261. Chiminey Tops and Exit Ventilators, W. Jones,
 shaft with an outer shaft of nearly the same length-
say 3ft. to fft. and say 5in. greater in diameter fixed,
say, two-thirds of its length below the level of the nouth of the inner shaft about one-third above it.
double cone is also added about lin. in diameter double cone is also aded about
greater than the mouth of the inner shatt, apd ace acu-
rately fixed in the centre of the outer shaft, with the rately fixed in the centre of the outer shaft, with th
lower point placed at the centre of the inner shaft. 262. Clasps or Fastenivgs for Chains, \&ce., T. and
A. Osborn-21st January, 1881.-(Not proceded This consists of two parts, male and female, one of
which is attached to each end of the article to be which is attached to free dome and loop; the mal part is formed of a solid plug split longitudinally to
give a certain spring action, and furnished with iive a certain spring action, and furnished with
mall nib or stud at the end; the female part consist a tube with a bayonet slot cut in it, which slot als
dmits the nib on the male part when the plug i nserted in the tube, and by giving the parts a hal
urn they are securely locked together. 263. Knitting Machines, \&c., J. H. Smith.-21st Each machine consists of two end standards and one or more intermediate standards when the length
of the machine requires them; bearings are secured of these standards to carry the apparatus applied to
the machine, and for one or more cam shafts carrying he cams ne, ans for to give the required movemen the several parts. The frame portion of the rocking levers operated by cams, a rising and fallin ach division, and sinkers depressed by slur cocks to divide the loops, the traverse of the carriers and slur
cocks being effected in the well-known manner. Each sockser is provided with a spring to raise it after th passage of the slur cock.
264. Apparatus for Producing Light by Electric
Curkents and for Generating and Measurinc Such Currents, A. Apps.-21st January, 18s1. 6d which measures the force with which two platinum studs are brought into contact (the manner of contact
being effected according toa former patent $\mathrm{No} .177,1867$).

The dynamometer is constructed on the spring-balance
principle, and is furnished with a gauge indicating in principle, and is furrished with a gauge indicating in or variations of the currents. The Second portion refers
to the multitubular form of magnet and of conductor contained within the inductor, which secures bette
insulation than heretofore. The Third part refers t apparatus for the production of light, which the in U U are two holders, the first being stationary, and
the other movable. Rod W has a platinum stud the other movable. Rod W has a platinum stud
screwed into the ends, by which contact is made
with the mercury in tube V. A light guide ro
moving in a suitable guide maintains the proper axis
of the parts during the descent of the holder U1 in relation to U; glass plate Y sustains the rods and Y1, with lugs and suitable screws, fixes ring holde vessel to the glass base plate. Oxygen is consumed
quickly on passing a current through Z, which may be of car
265. Turning on Gas Jets and Igniting the Same,
J. Darling and R. Murdoch, -21st January, 1881.The plug cearries neith.) $2 d$. . The plug carries near to the gas jet a holder for
ohlding the pellets or pieces of composition of phos.
phorus, by which the igniting flame is produced, there phorus, by which the igniting flame is produced, there
being two receptacles or recesses in the said holder for these pellets, the said receptacles being ransverse to the gas supply pipe whene, the gas is
urned off, and which is brought coincident with the line of the gas pipe when the gas is turned on by 268. Velvets, \&e., H. Lister:- 21 st January, $1881.2 d$
This consists, First, in the combination of mohair and silk when used in the raw state; Secondly, the ombination of alpaca and silk when used in the raw
tate ; Thirdly, the combination of camel hair and silk tate ; Thirdly, the combin

69. Looms for Weaving Velvet, dec., H. Lister.-

 This relanuary, to introducing the wires by self-acting 270. Portable Heating Apparatus, c. D. Abel.- 21 s.Jonuary, 1881.- (A communication from A. Morel.

As a foot-warmer for a vehicle, the apparatus con-
sists of a close rectangular water vessel rounded at
the top having an elliptical fire tube extending the top, having an elliptical fire tube extending
through it from end to end. The fuel burns in this tube, being supplied wit
the middle of its length.
271. Automatic Syphon Tap, II. J. Allison.-21s

Clairac, Millot, et Berger.) 6d. The interior of the key, which may be fixed or a vertical hole descending into the stem and turning
off at right angles in a line parallel with and above off at right angles in a me paralel with and above
he hole the tap through which the liquid runs out.
When the key is turned this hole is brought to coinWhen the key is turned this hole is brought to coin die with a similar hole made in the thickess of air
top of the tap, and continued horizontally as an air conduit to the extremity of the screw thread whicl pee conduit turns slightly upwards and opens out
thards. The opening for the passage of liquid is below he air conduit, and runs from one extremity to the preferably continued horizontally beyond the part bent downwards and through which the liquic plup, and serving to refill the barrel when empty
vithout having either to remove the tap or use othe means than a suitable funne
273. Knitring Machines, J. Wetter:-21st January,
18si.-(A communication from J. Bufield.)-(Not The mechanism consists essentially of an adjustabl nd connected by suitable the motion of the machine cams arranged to operate sliding yarn carriers, each
carrier directing to the needles a different coloured arn, and operated by the cam mechanism referred to The yarn from each carrier is knitted independently
nd is held so that the needles, while knitting the yarn from one carrier, cannot interfere with the yarn
held by the other. 76. Valves of Percussive Rock Drills, J. H. Hai This relates to the valve gear employed in controllin the admission and release of the working fluid; G i
the drill cylinder, H the piston and rod to which the boring tool is attached. The valve V is made like length as the drill cylinder. The working fluid i dmitted on its upper side through a hollow fulcrum , which does not pass through the valve, but stop
hort of the metal forming the bottom. On the opposit
ide to the inlet, ports P are formed and correspond

effected by small pistons R on is effected by small .pistons R on opposite ends of
the valve, but at the same side and at right angle to its longitudinal axis, and moving freely in cylinder nd from these valve pistons is controlled by the move ment of the drill piston, which at suitable points Y in dill cylinder to the valve pylinder. The eaxhanst from trs stroke unce
dill cylinder
he cylinders space between the double piston in the drill cylinder 277. Ore Separators, R. H. Brandon.- 21 st January Holbrook, and E. L. Goddard.) $6 d$. This separating rocky or earthy substances from
ores susceptible of being influenced by magnetic
ttractions, consists in spreading said ores and

earthy substances over the surface of a moving wire
cloth or other suitable porous apron, and while so moving lifting out the light particles by an upward
air blast and carrying off said particles by an exhaust-
ing air current, and then subjecting the materials
remaining upon the apron to the attraction of an remaining upon
78. Match Filling Machines, C. R. E. Bell. $-22 m$ To the machine are adapted two counterweighted treadies, such treadles being connected respectively
to the lower feeding roller and to the knife in such : manner that when one of the treadles is depressed the
levers connecting it with the feed roller will be W2x tapers to be cut off; the other treadle being now lepressed, the knife, by means of a suitable arrange
ment of levers, is brought down so as to cut off the ment of evers, is brought down so as to cat onf the
ength of wax tapers brought forward, and the lengths
cut off rest on the board in the usual manner. The rrame is then lowered and a fresh board placed i re raised to their normal position by their counter veights ready for the next operation.
279. Looss, J. Holdiag.-22nd January, 1881.-(No The shuttle guard is attached to the " cap bar" by means of steel springs, or other yielding attachment
re employed which give way and permit the guard to easily approach the cap bar whenever the guard and n the guard comes into con act with any
280. Metallic Alloy, W. Koppel.-22nd January,
is81.-(Not proceeded with.)
$2 d$. This reates to an alloy to be used for axles or shafts,
nd consists of spelter 18 to 20 parts, iron 10 parts, and copper 10 parts.
282. Velocipedes, E. R. Settle-22nul Jenuary, 1881 This relates to an adjustable step for mounting
velocipede; Secondly, to a novel form of twin pedal rubber (one on each side of the crank pin), conisting of thio rubber cylinders two prevent them turning round on the pins; and Thirdly, to an improved
spring tail slide. 283. Apparatus for Shaping Plates and Sheets of
Metal, T. Turton end R. Roberts.- 22 ned Jenuary, Two concave shaped rolls are carried in bearings in
the frames, placed in the same or nearly the same hori-

zontal plane, and a convex roller is placed over and The drawing shows a side elevation of the apparatus. 285. Sizing Machines, H. Livesey, jun.-22nd JenuThis consists of machinery to regulate the drying of driving to drag roller, and friction motion to dorive the
beam fitted with a clutch or catch-box with levers and fork for uncoupling (to avoid having to uncouple the fiction plates when doffing the beam)
6. Improvements in Telephones, F. H. F. Engel.-
22ne Janarary $1881 .-$ (A communication fiom J. H.
Konigslieh $)$,

The object of this invention is to increase the power of transmitting and receiving sounds by the thelephone. phone which is below the diaphragm massive, a thin
walled wooden box is placed beneath the diaphragm mad a second casing of wood is placed beneath, and
some distance apart from this boo the some distance apart from this box, this casing forming
a sounding-board. The magnet may be passed from
below through the into the free space beneath the diaphragm, or it masing oe introduced into the sounding-board through the
ppright circumference sideways, hand the ends
of the magnet, which must in this case be bent t right angles, will be introduced through the bottom of the box into the free space between box and
diaphragm. The sounding-board may have soundholes in it.
287 . Stov
287. Stoves, \&c., J. W. and B. E. Midgley.-22nd The back of the - stove is consedtructed of any suitable material, so as to be adjustable and pivotted at the
bottom, close to the ribs preferably, and can be reguated to any nicety, so that the fife presents a large
heating surface to the interior of the room with a much less quantity of fuel than ordinarily.
89. Production of Benzaldiacetate, \&c., J. A.
Dixon. $22 n d$ January, 18si.
jiom Dr . K. Koenig and Meister, Lumunius antion Britining.) $4 d$,
This consists of
This consists of a process for producing cinnamic
cid from benzal-chloride or benzal-diacetate, and for cid from benzal-chloride or benzal-diacetate, and for
producing the eclor, brom, or nitro substitution com-
pounds respectively, of cinnamic acid from the chlor, rom, or nitro substitution compounds respectively of benzal-chloride or of benzal-diacetate, and extract-
ing the said acids in the form of their sodium salts 280. Smelting Zinc, J. Binon and A. Grandills.- 22 nd
January, 1881. $2 d$. Zinc and the carbonaceous matter required for its
duction are mixed with sufficient lime or other cheap binding material to make the mixture cohere the retort or mumffle, into bricks of suitable size to feed 291. Looms for Weaving Carpets, \&e., IV. Adam. This consists in slackening the weft thread on the

passage inwards of the weft inserting needle D by
means of cam I and lever J, and allowing the means 292. Bnyerse, J, IFown, J, Lurcerce ane 2, nit Jonuery, $11581.6 d$,
thin metal cylinder
tufts of bristle, wire, or fibres. This cylinder is
mounted upon two, three, or more hubs of cast iron, which are keyed to the brush axle, and around the cylinder are arranged helically groups of open tubes
of copper or other metal, into which have been inserted the tufts of bristle, wire, or fibre.
293. Creaming Milk for Preserving the same, ©ce.
F. W. Unteril p,-22nd Jenuary, 1881.-(A communiThis consists in Bubj. to a temperature eranging between 120 a deg. and 185 deg.
Fah., and maintaining it at such heat for two hours or thereabouts, the gases developed during such heat ing being allowed to escape, and acces
interior of the vessel being prevented.
294. Transmitring Motion, A. M. Clar
ary, 1881.- (A commenication from

Samper.) - (Not procecded with.) 6 d . Denis and A. of bands, ropes, or chains, wound spirally on drums or surfaces receiving rotary motion,
296. Grass-box for Lawn Mowers, C. D. Barrett.-
22nd January,

Messrs. Lloyd, Supplee, and Walton.)-(Not pro-
The box is constructed of a rectangular-shaped of the frame projecting beyourd the bottom; the bottom rods of this frame extend forward and are thereon, so as to keep the box from the ground, and the ends of the said rods are formed into eyes to fit
over the projecting ends of the axle of the mower. Over over the projecting ends of the axle of the mower. Ove which forms the box properly so called, a hole being left at the top to allow of the cleaning out.
297. Stair Rod Exes, M. and M. M. Lenzberg.-22n

This relates to the manufacture and use of adjust-
able stair rod eyes to suit carpets of different thick-
298. Magmesia, C. Scheibler:-22nd Jenuary, 1881 This consists in the manufacture of magnesia or
hydrate of magnesia from magnesiferous limestone, from magnesian limestone, or from calciferous magne-
site, using a water solution of sugar or molasses. 299. Rotary Engines, \&c., J. Mattheozs.-22nd January, 1881 . 10d.
This consists in the general combination of parts
forming the improved rotary, steam, air or forming the improved rotary, steam, air, or gas
engine, in which a piston, such as B, works in an engine, in which a piston, such as B, works in an
annular chamber, the central part of the ceylinder
being filled by the boss, such as D, the abutment being filed by bermed a hinged flap or shutter swinging in
being
a plane transsersely to the direction of motion of the

piston, and operated partly or wholly by the piston longitudinal section; Fig. 2 shows a cam. lever arranged to be acted on at one end by the piston B_{1} so as to
depress that end within a recess, thereby causing the ophers end to be pushed in the eppopsite direction, and
othereby to impel the abutment flap so as to start its thereby to impel the abutment flap so as to start its
movement back into its chamber, and out of the way of the piston B.
301. Production of Oil for Illuminating Pur-
communication finsum. F. F. Rohart.)-(Not pro-
This consists in submitting bitumen or other
matural hydrocarbons, being either a natural product Ratural hydrocarbons, being either a natural product
or obtained in any process of manufacture, to the combined action of an alkali or alkaline earth (by
preference lime), and of heat in an alembic for distillpreference theat being maintained for several hours near the boiling point of the hydrocarbon under treatment
before proceeding with the distillation. 303. Murnw
303. Machin
1881. Sd.

The barrels and their breech chambers are mounted, together with the closing, loading, and discharging mechanism, upon a horizontal frame. This frame is
capable of a side or horizontal motion upon an under support, the latter turning in and being supported by a
pedestal on a base-plate or foundation. This under pedestal on a base-plate or foundation. This under
support permits the rough horizontal adjustment of

the barrels, and the upper frame by means of a worm and tangent wheel, permits of a fine or exact hori-
zontal adjustment of the barrels. By means of a screw worked by a hand wheel at the rear of the
upper frame, the pivotted barrels may be adjusted vertically. The drawing shows a longitudinal vertical 304.
304. Carbon and Graphite, de., R. Wenlermum.
2.2nd Jenuary, 1881 . 6 d . This relates to the manufacture of carbon by car-
bonising a mixture of sugar, wood pulp, cotton, hemp, flax, or the like, with oil, resin, tar, or other
hydrocarbon. 305. Gss Stoves, A. C. Henderson.-24th Jenuary,
18s1.- A communication from Messrs. André and

This consists in adapting to the lower part of the parabola, permitting of the rot

heat 306

306. Elevators For Flour. Milis, \&e., J. D. Geuldie
and T. A. Marshall.- t th Jemeary, 18S1.-(No This relates to improvements in elevators in which
an endless belt, fitted with buckets, is carried and
worked by suitable
307. Apparatus for Preventing the Freezing or
Water in Water Pripes, J. Rule.- 2 the Jonuary, This consists in the application to ball-cock cistern supply appliances of an air supply vaive to the ball cock and a draw-off outlet in connection with the supply pipe, so that the water standing in the supply
pipe is drawn off therefrom by the closing of the supply of the opening of the draw-off outlet, the air nd or balicock being enerion of the pip.
308. Cords For Binding Fodder, dc., J. Wetter:-

Rollier.) $4 d$.
Each end of the wire or string is provided with : loop, one of which is permanently attached to a
metallic connecting plate, while the other can be attached to or detached from a hook forming part of 310. Wire Brushes, S. Abraham. 24 th Jouvary, 1881 This consists in employing steel wire that will not
311. Ornamenting Various Surfaces, H. E. Neicton.

- wese in combination of a veinin paste and colouring matters a pplied by hand to the 312. Apparatus for Testing and Indicating Pre in Air-Espechilly Applicable in Coal Mines,
A. W. L. Reddie.- 24 th Jenuary, 1881 .- (1 comThe apparatus consists of an exploding chamber A traversed by a platinum wire, with the exploding gases
acting on a manometer D holding mercury. A has also two outlets, as shown, one connected to a pair o
bellows worked by clockwork, the other receiving the ir to be tested. The action is based on the decompo-
(312]
aliculy

ition of marsh gas at high temperatures, such as that nected to A are sealed and unsealed by means of
electro-magnetic action, the various contacts being made by clockwork arrangement. The bellows ade by clockwork arrangement. The betlow
periodically take in air. The platinum is twice heated
or a known period. The resulting decomposition causes changes in the height of the mercury, which 314. Gyinastic Apparatus Worked by the Muscu-
Lar Strength of the Patient, G. Zander.-24th

This consists in the use, for exercising the muscles
ad producing mechanical effects on the human frame, apparatus to be worked or operated by of the person using it, constructed in such way that
the resistance opposed by the apparatus to the musthe resistance opposed by the apparatus to the mus-
cular force in the various stages of movement is modi-
fied according to the mechanical principles of the fied
lever.
315. Roofing Tiles, R. C. Robinson.-24th January
1881.-(Not moceeded The clay is expressed through a die in the ordinary
manner, the formation of the nib and head of the tile being effected by placing opposite the mouth of the which the clay as it exudes from the die is pressed. The mould or stop is provided with a suitably shaped
recess corresponding with the form of the nib to be 316. Gi

Gower, GTiC Apparatus Worked by Machine
. Zarder:-24th Jazuary, 18si. Sd. This relates to gymnastic apparatus which have for human body, such as extensions, shakings, choppings, 317. Brakes for Puw,

The brakes are comnected with weighted or sprin levers, which, when at liberty to act, withdraw the brake blocks from the carriage wheels. When the said
levers are raised they cause the brake blocks to press upon the wheels, and thereby bring the carriage to
rest. The raising of the said levers is effected by a rest. The raising of the said lever.
chain or cord wound upon a drum.
324. Cards, , M. M. Sombart.-25th Januery, 1s81.-(A
coinmunication Som P. Leclerc.)
6id. This consists in cards, the lateral faces of which run
out in a concave line from the large back into the edge out in a concave line from the large back into the edge,
and terminating in a very long point. 325. Brass Hinges, c. H. and F. W. Brampton. This consists in the manufacture of hinges from
plate metal in two or more thicknesses, the various plate metal in two or more thicknesses, the various
thicknesses being fastened together by sheets of
fusible metal, or by soldering, or by brazing. 326. Sewing Machives, \&c., R. H. Brendon.- 25 th January, 18s1.- (A, com.
Morley.) - (Complete.) 10 .
This consists in mechanism for automatically sewing
shank buttons on to fabrics, and in means for carrying

out said operation in sewing buttons on to shoes and
other articles, and the further object of the invention is to form a double-threaded trassverse stitch on the
top side of the material being sewed upon transversely
to the direction of feed, and on the reverse side of the
the first-named ones, to make alternately long and
short stitches, and to so feed buttons to be sewed by the said machines as to present them at the proper
time and in the proper place to be operated upon time and in the proper place to be operated upon.
The drawing shows a front elevation of the machine e take-up and the tension remove
Waters, J. Wulliemson.-25th Jemvary, 1881. $2 d$ This consists in the use for the production of car-
bonic acid gas and in the manufacture of aërated bonic acid gas and in the manufacture of aërated
water of bisulphate or supersulphate of soda and bicarbonate of soda.
330. Rovghing Appliance for Horseshoes, W This consists of a strip of metal, which extends
across the front arch of the shoe, and has near its ends projecting sharp studs, which aperate near its endinary oughing studs.
341. Rock and Ore Crushers and Putverisers.-
26th Jenuery, 1881. -J.T. King. - (A commanication This relates to machines with a jaw which has a cross the face of the fixed jaw or die, and it consist in the combination of a fixed corrugated die B
and a laterally movable corrugated die C , both

seing formed with a series of lips extending out from the surface, the lips of one die fitting betwee
those of the other, and both dies having a series o angles extending longitudinally across their faces. The
fixed die has its base concave, and the movable die has 354. Pumping Engines, M. Silvester:-26th January, A double-faced valve A, Fig. 1, works between two
valve faces, in each of which are three ports B, C, and D, C commumicating with outlet B, with one end ond
the cylinder, and D with the other end valve face H is adjustable to take up any wear by The valve is exposed to pressure on its upper and
lower and on both end surfaces. The lower valve face

may also be made removable. Fig. 2 shows an ports of a pump by means of a single valve. The case
N has fourapertures $\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}$, the first connected to the suction pipes, the second to the delivery pipes, the
third to the pump suction inlet, and the last to the pump delivery outlet. M is the reversible valve
perated by the spindle P and situated within air
vesse O. 355. T ting Rags and Waste Fabrics, de., c. IV This consists in subjecting the waste fabrics to the 5 lb . on the square inch, either alone or in conjunction 373. Ships' SLeEping Berths, W. R. Lake.-27th
Jenuary, 18s1,- (A communication fiom the BrensThis relates to improvements in ships' berths of that class commonly called self-levelling berths, in which of which is suspended, the object being to prevent the
orth from being raised at the head or foot or tipped by the motion of the vessel. 374. Apparatus fok Hatching, Ruling, and Draw-
ING on Stowe, \&e., TV. L, Wise. 2 th Jenuery,
1Ssi.- A communication fiom Messrs. F. Mentini This relates, First, to means for effecting the feed
or intermittent sideways motion of the marking instrument ; Secondly, to means whereby the amount
of the feed may be automatically increased or diminhed, so that lines may be drawn at gradually
ncreasing or diminishing distances apart; Thirdly,
means for effecting to means for effecting the ruling or drawing of
undulating lines; Fourthy, to the construction and
operation of the slide and holder that carries the operation of 375. Preparation of Bankers' Cheques, \&c., A. This consists in the manufacture of bankers' metallic sulphide or sulphides insoluble in water, but
soluble in or acted upon by dinte or weak acid in
admixture with carbonate of lead or other salt or salts of a heavy metal or metals, in such manner that
if weak acid, or alkail, or cyanide of an alkali, be
if applied to aiter such a cheque or other document, the
sind mixture being acted upon by such weak acid,
alkali, or cyanide of an alkail, will form in or on the
snid cheque or other document salid cheque or other document a dark stain or stains.
390, Respirators, . Rinai cad A. A. Berthier.- 28 h Jenucary, 1881, id.
The respintor is composed of two flat, or nearly flat, sides, with a rim at one end and with a perio-
rated or gawe plate, either in piece with the sides or
attached to them, at the other. The rim is at tho

 thin

central tube being supported independently of the
cylinder at both ends by cast iron brackets or bearcylinder at both ends by cast iron brackets or bear-
ings, one of which rarries afeed hopperand branch pipe
for heated air, and the other is fitted with an exhaust for heated air, and the other is fitted with an exhaust
pipe or chimney and a discharge door or outlet. The
cylinder is supported on frames fitted with rollers, and cylinder is supported on frames fitted with rollers, and
is actuated by means of a tothed pinion working
into an internal spur wheel fitted to one or both ends into an interna
of the cylinder.
437. Decorating or Illustrating Soap Cakee, P.
Chapelain.-2nd February, 18s1. $2 d$. This consists in ormamenting soap cakes by decoor photographs.
449. Valves, R. Schram.-2nd February, 1881.-(A
communication from E. Schenson.) $6 d$. communication from .E. Schenson.) 6 d .
This relates to means for overcoming the suction in valves, and it consists in making the aperture for the
escaping fluid equal to the inner periphery of the
44e]

ifle

valve seat, by means of one or more stopping pieces or
guides A, placed round the outer periphery of the guides A, placed round the outer periphery of the
valve, the total width of these pieces being equal to
the difference between the inner and outer periphery f the
459. Machines for Sowing, Depositing, or Distri-
buting Manure over Land, de., H. A. Borneville
buting Manvee over Land, de., H. A. Bonnerille
3rd. February, 1881 - (A communication from L. Contedu.) ${ }^{6 c}$
This machine consists essentially of two cylinder corresponding grooves and ribs revolving at different
rates of speed, of a hopper, the bottom of which is ovable trap regulating the exit of the manure, of and f disengaging blades.
489. Machines for Nailing Barrel Hoops, IV.
Morgan-Biovn.- \mathbf{j} th February, 1881 . - (A comThis consists in a novel arrangement of device whereby the free ends of the hoops are properly
lapped and clamped in position to be united together; lapped and clamped in position to be united together,
in means for feeding nails, rivets, staples, or other
in fastenings into proper position for insertion in said
hoop ends; in means for driving and clinching said fastenings
509. Kulns for Drying Malt, Grain, \&e., A. S.
Tomkins, F. M. Courage, and F. A. Ciacknall.- - the
Fedruary, issi. The hot plate is a case into which the heat and by one or more chimneys placed at a distance from
the furnace. Air is supplied to the kiln by air duets,
which mar the ash-pit and hot-plate, so that the already par tially heated air has, by the help of bafflers, to pars
under, over, and through hot plates before reaching under, oy
18. Obtaining and Applying Motive Power to
18socipedes, de., W. H. J. Grout.-14th February, This relates to the method of obtaining and applying motive power to volocipedos by the use of o
differential bevel wheels, connected or geared peed may be decreased and prinions, so that the propelling power obtained, or vice versic, and without
stoppage of the machine
117. SElf.acting Fastener For Doors, Window
SASHES AND Frame, J. Woodzoard.-19th February, This relates to the construction of spherical ball
latches. For mortice locks on one end of the bolt in fines. For mortice locks on one end of the bolt
is fixe corresponding in its interior with
section of the circumference of the sphere or ball which seats itself in the cup. In the fore-end is made of the sphere, so as to prevent its escape from the cump,
thereby securing the sphere in its true position for pened and re-action pandle or by pressure upon the sash, door, or frame when required to be opened or closed. The drawing 728. Manufacturing Magnesia, dce., C. Pieper:-19th
February, 1881.-(A communication fiom M. This consists in the method of producing magnesia of magnesium, kiserite, schoenite, or kainite for one
part, and from chloride of potassium, chloride of
sodium, or carnallite for the other or more of the substances of the first part with one or more of the substances of the second part, in such pro-
portion that one chemical equivalent of sulphate of magnesia will be brought together with two equiva-
lents of chloride of potassium or of sodium (or of both chlorides combined) by heating such mixture in a
pulverised state to a dark red heat, and by exposing
it at the same time to the action of steam 760. Inprovements in Telephones, E. W: Anderson
$-23,-2$ February, 18S1.-(A communication from J The inventor connects the diaphragm to the magnet
flexible connections and elastic devices, and also by flexible connections and elastic devices. and also
by inflexible conneetions without the latter. The
figure refers to the former win figure refers to the former. D represents the magnets,
which are fastened at intervals by one end to the post
H, located near the end of the helices C. In this construction two flattened helices are employed, their
long sides parallel with each other, one being a left
and the other a right-hand helix. These are designed
to affect the magnets between them in the same
manner that a single coil would. The ends of the magnets opposite H are free to move. B is the
diaphragm, A ear-piece, and E a cord in connection

$$
\begin{aligned}
& \text { bc } \\
& \mathrm{bc}_{1} \\
& \text { an } \\
& \mathrm{pu} \\
& \mathrm{he} \\
& \mathrm{be} \\
& \text { fo }
\end{aligned}
$$

beating engines provided with a series of ribs which
are recessed radially and laterally, as and for the purpose set forth. (3) A knife for beating engines
having lips forme bevelled or rounded ends, as and for the prided with bevelled or rounded ends, as and for the purpose set
forth. (4) A cone or shell for beating engines pro-
vided with a series of ribs which vided with a series of ribs which are recessed radially
and laterally and combined with a knife provided
with a series of lips upon its side, as and for the wirposeset forth. (5) In a beating engine, a cone or or
phell having a series of ribs formed upon it, in combi-
sher shell having a series of ribs formed upon it, in combi-
nation with a knife having an offtet formed upon it,
nd in contact with and between two or more of the nation with a knife having an offset formed upon it,
and in contact with and between two or more of the
ribs, whereby said knife is prevented from moving ribs, whereby said
toward either end.
243,746. Dinamo-electric Machine, James J.
Wood, Brooklyn, assignor to the Fuller Electical Company, Neu Yorr, N. Y.-Filed Amil 7 thi, 1881 .
Brief.-The circuits from the armature sections are taken separately to the lights or other working
deviecs, then, by a common return conductor, back
through the field mater through the field magnets to the opposite ends of the armature sections. Claim. - (1) An electric lighting
apparatus consisting of a magnetoelectric machine
having an armature formed with a series of two or more distinct coils or groups of coils, and a commu
tator having corresponding sections, with collecting and transmitting springs bearing thereon, in combi-
nation with a series of two or more lamp nected on one side of tho or more of the springs each con one
side of the commutator, and all connected on the side of the commutator, and all connected on the
opposite side to one common or main conductor

connected with the several springs at the opposite
ide of the commutator, substantially as and for the purpose herein set forth. (2) An electric lighting having an armature formed with two or more distinc oils or sections, and a commutator with correspond ing sections connected therewith, with collecting mutually insulated on one side of the commutator, in combination with a series of two or more lamps, each
connected independently on one side with one of the connected independently on one side with one of the
said insulated springs, and all comnected at the
opposite side to the coils of the field magnets, which in turn, connect to the opposite.side of the commutor, substantially as and for the purpose herein 243,765. Electro-magnetic Motor, Moses
Farmer, Neuport, R.I.-Filed March $25 t h, 1881$. Brief.-To avoid the production of induced current moent of the helix wires are connected at the
moment when the current is cut off from the helices the connection being so made that the currents of
induction pass in opposite directions and neutralise induction pass in opposite directions and neutralise
each other. Claim.-(1) The hereinbefore described method of neutralising or destroying the induced current generated in the helix of an electro-magnet
upon the cessation of the primary current traversing pon the cessation of the primary current traversing the respective opposing terminals of the two sections of the divided helix, and thereby forming a closed
circuit immediately upon the disconnection of the generator. (2) The combination, substantially as hereinbefore set forth, of two helices included in the
same current and acting in unison upon the

core or armature, a commutator automatically operated by the movement of said core or armature,
and circuit connections, substantially such as described, whereby the connections of the terminals current is made to traverse said helices alternately in the same and in an opposite direction with reference hereinbefore set forth, of a movable core or armature, two helices or coils arranged to act simultaneously direction, a commutator to impel it in a given the movement of said core or armature and circuit connections, substantially such as deseribed, from the commutator to the helices, whereby the opposing or
like terminals of said coils like terminals of said coils are united at the termina-
tion of the stroke to form a closed circuit bofore the disconnection of the generator.
243,789. Method of and Composition for Lining
Plembago Crucibles, Joo. Pelder, Pittsburg, Pu.
Cluim.-(1) The herein-described process of protect-
ing the inner walls of plumbago crucibles, whether

243.789

y as described
243,733. Securing the Knives Used in Paper
Pulp Grinding Engines, Guvildord Smith, South Windham, Conn.-Fitel Mareh 2 Sth, 1881.
Claim.-(1) A knife for beating engines

with a series of lips upon its side, the said lips being
formed by being pressed or forced outwardly, and
which ad which adapt the knife to be held in a cone or shell
from any radial movement outwardly. (2) A cone for

243,822. Conpound Hose Coupling, Gieorge West.
inghouse, M., Pittsburg, Pa. Filed A Pril 25 th, 1881 . Claim.-(1) In combination with a pair of lap oint couplings, a pair of auxiliary or added coupling
sockets or shells B B integral therewith, for coupling together or uniting the meeting ends of an indepen
dent line of pipe, substantially as set forth. (2) Iu
[243.822]

combination with the clutel couplings A A, a pair of
added or auxiliary couplings for an independent or separate line, consisting of tubular sockets or shells
thimbles and packing rings, and with or withou interlocking or engaging lugs, substantially as set
forth (3) A half coupling A, having a coupling
socket or shell A, socket or shell A, integral therewith, provided with
packing ring E and holding lug S, substantially as set
forth. 243,836. Steam and other Engines, Pierve Besnard sro, and Francis E. Besinard, jun., Nantes, France
Fited Fetruary $1 \overline{1}$ th, 1 ssi . Patented in France
Claim.-The combination of the cylinder, the crank

shaft B, the wrist L, the sliding box K, having ribs or
flanges on its upper and lower surfaces, and the piston composed of the two separable pieces F F, forming the slideway J, in which are grooves receiving the ribs or flanges on said box K, the said members being
structed and arranged substantially as specified.

CONTENTS.

The Engineer, August 26th, 1881.
The Founding of the British Assoclation . 145

 trated.) ..
 Railway Matters ..
Notes and Memoranda
Miscellanea
Leading articles-
Sheaf-binding Machines
Lancashire and Yorkshire Rtructures Rallway-New 15
Literature-
Hand-book of electrical Testing. By H. R

Silicate Cotton or slag wool
Wind Pressure on Rallway Stru
The Pressure on Railway structures. $\because \ddot{\text { The }} 155$

Wavertree Tramways..
Notes from Lancashire
Notes from the North of Englan
Notes from Wales and Adjoining Counties
 (Illustrated.)
The Whitworth Scholarships
Naval Engineer Appointment

151
155

[^0]
[^0]: The New Zealand Railways are increasing in ays:-"The profit on them has within che year increased from $2 \frac{1}{4}$ to $3 \frac{2}{2}$ per cent. on cost of construction. The returns for April, the first month of the present inancial year, encourage the hope able. The total receipts for the period stated amounted to $£ 90,0 \check{1}$, while the working expenses have been reduced from $55 \cdot 69$ in the corresponding
 month of 1880 to $44^{\prime 29}$ per cent. in April, 1881.' South Kensington Museum. - Visitors during the week ending Aug. 20th, 1881 :--On Monday, 10 p.m., Museum, 13,786 ; mercantile marine building materials, and othier collections, 8021 . On Wednesday, Thursday, and Friday, admission 6d., from 10 a.m. till 6 p.m., Museum, 2089 ; mercantile marine, building materials, and other collections, 41 . Cotal, 24,637 . Average of corrcfrom the opening of the Museum, $20,270,298$. Total

