CHILLED CASTINGS.

No. II.
IN Tesuming this subject, it must be remarked that it is not sufficient that the founder should find a good mixture for producing castings with a required depth of chill, as so depth. It is very necessary to test the mixture fre lepth. It is very necessary to test the mixture frequently by casting test pieces, and examining not only the character and quality of that part which is chill but the character and quality of that part which is strongly-marked chill should be obtained, having the inner strongly-marked chis soft or as tough as possible. Many mixpures may be easily made which will give a sufficient or a tures may chill by increasing the quantity of white iron used, very deep chill by increasing the quantity of white iron used,
but this may be at the expense of the strength of the but this may be at the expense of the strength of the casting, and hence such changes in the mixture must be made as will secure a chill of the required depth and still should be chilled in a normal state, so that the strength of the casting is not sacrificed. Most irons will on the other hand take a surface chill, but this is rarely of any use, and as all irons are susceptible of variation in character both in the blast furnace and in the cupola, it is highly desirable that great care should be taken in making frequent tests of the ron as it is used from the cupola in making the castings. When any considerable quantity of scrap from various sources is used this is especially necessary, as the castings which have formed scrap will
probably have been made from very numerous brands of proba
pig. Chilled wheels for railway rolling stock are not very often made in this country, but very large quantities are made for contractors' wagons and for colliery purposes. In making these very great care is necessary to secure the proper mixtures of iron. There are several, perhaps many, firms in the kingdom who pay the necessary attention to the many points involved in success in this work, but there are some who evidently do not think that any transpired in a recent action by an ironfounder at Wigan against Messrs. Gripper and Bayless, contractors, having in hand the construction of a promenade at Southport. The ironfounder, whose name it Gipper and Bayless, tion here, supplied to Messrs. Gripper and bayless, a number of wheels supposed to be chilled wheels in the usual sense of the term, but as these wheels wore out very apg, Messrs, Gripper and Bayless refused to pay for them ng, Messis. Gripper an brought by the or the whole of them. An action brought by the ronfounder to recover the amount claimed was tried in he early par the Wigan Observer of the 3rd and other, sep lays of last month, the wheels were certainly not chilled wheels. The servants, including the foreman, for the ronfounder, moreover, seemed to have very little knowedge of the mixtures of iron and the precautions necesary for producing chilled castings, and hence the According to the evidence of the foreman, the iron used Aecordle a 3 , and machine scrap in equal proportions Such o 3 , and mall be scip, in equal proportions. Sua and that which follows, is useless for the purpose to which it was put, although several witnesses whom it might be supposed would possess some knowledge on the subject onsidered the mixture satisfactory. The evidence on the part of the plainne port the cla maing chilled wheels. For the defendents everal witnesses were called who have undoubtedly had everal with mad
 these were Mr. R. C. May, C.E., and Mr. R. C. Rapier, C.E., Ransomes and May-now Ransomes, Head, and Jefferies -a firm which was one of the earliest makers of chilled wheels and other chilled castings, while Mr. Rapier's firm -Ransomes and Rapier-are now large makers of chilled castings-amongst others, the chilled points and crossings originally made under Mr. G. A. Biddells patent, and in which a deep and uniform chill must be combined with strength in the casting as a whole. Both of the mixture mentioned above for making chilled wheels, though when asked what iron should have been used with that mixture, Mr. Rapier was obliged to say that he preferred not to answer the question, as only years of experience and constant attenty by those enable anyone to learn that, and consequently by those who at considerable expense had gained the necessary information it was held a trade secret. Mr. Samuelson, of Darlington,
also gave evidence, stating that 35,000 wheels had been also gave evidence, stating that 35,000 wheels had been
made under his supervision, he having patented the form made under his supervision, he having patented the form of wheel used by the contractors in 1855 . The negative given of what would be the most useful mixture for such wheels as those forming the subject of the action. Some idea of the importance of the trade in chilled wheels for Gripper's evidence, that in the eighteen months his firm had been at Southport 500 wheels had been broken, and

he thought they had been moderately fortunate. He considered the average life of a wheel on contractors wagons not meet with accident, would last ten years. The short time, and beside being without chill, or nearly
so, vere in many cases defective castings.
For heavy wagon wheels cast upon a chill as indicated
in Fig. 6, the following mixture has been found to give a chill of about $\frac{3}{4} \mathrm{in}$., but from what we have said the neces sary changes for producing a chill of less depth will be dily gathered
Blaenavon or Pontypool
Cleator or Brymbo
Cleator or B
Hematite 5
For motion blocks, such as that indicated by Fig. 3, in

which the chills are rammed up in an ordinary mould, and for which a chill of about $\frac{1}{4} \mathrm{i}$. is required, a mixture consisting of the following has, it is said, been found suitable :-

Madeley Wood

${ }_{1 \frac{1}{2}}^{3}$ parts
To this may be added, for deeper chill, some white iron and if scrap is used it must be of grey iron, and some blocks, such as that indicated in For making hammer

mixture has been found satisfactory in producing a chill of about $1 \frac{1}{2} \mathrm{in}$.:-
Lilleshall …
Cleator

For a chill of about $\frac{3}{4} \mathrm{in}$. in depth, the following has been used:
Cleator

Hematite No. 5
2 parts
and for a chill of about lin. Cleator

Lilleshall C.B.
For making axle-boxes upon a turned chill, as indicated

in Fig. 5, the following mixture has been found to chil about $\frac{1}{4}$ in. :

Goldendale No. 5 Blaenavon No. 5

Glengarnock No.
1 ",
The chill, if thinly coated with plumbago, will readil For chilled a slight blow from a copper hammer
For chilled castings exposed to impact shock, such as chilled shot and shell, it is very necessary to secure a mixture which will give a deep chill without a sharply defined line, the chill should gradually fade off or merge into the grey or mottled character. When a shot with a harply defined chill has been fired against an armour plate the chilled part has cracked and fallen off, so that hematite and Blaenavon irons are not found suitable for this purpose. Chilled shot and shells are of course only made in a few places, so that we have not been able to ascertain whether a mixture of other irons with the follow ing will effect the required evanescent chill. Cwmbran iron has been found necessary for the purpose. This iron is in a combined form, as the following analysis will show :-

Carbon, graphite
Sombine
Sulphur
Phosphorus
These shells are cast in hea
Fig. 7, and the following mixture has been found to effect

the required chill, while retaining the necessary strength the unchilled portions:Cwmbran

For the surface of the chill such as that used in Fig. 4, correspondent recommends the use of oil and plumbago, while he also commends the use of plumbago, No. 1450 , Battersea, for the chills and for finishing the mould surface for small castings. In making chilled ploughshares, a
section of one of which is indicated in Fig. 8, a chill mould of

FIG. 8
considerable thickness may be used to secure strength, and a mixture similar to that used for axle-boxes may be used For this purpose a clean, somewhat sharply defined chill is desirable, while the unchilled part should be soft, so that the lower surface retains its form,
the upper part wearing off most rapidly and ing upper part wearing off most rapidly and preventing the share from wearing out of ground or out of land. Other mixtures than that mentioned may be employed, and from what has now been said any founder will be able to adapt the irons generally at command in all foundries to the purpose. In making small chilled castings on chill moulds of closed forms it is necessary to observe that the casting be not of such a form that it so overlaps the outer parts of the mould as to be strained by its own contraction and the expansion of the chill, as this, even when the overlap is only of the nature of an over-run, is likely to break the casting. In making small castings of varying thickness for conversion into malleable iron, chills are sometimes used not to act as chills, white iron being used for the purpose, but to carry away heat from the thick parts and so inducing approximate uniformity in the rate of cooling of the casting, and preventing the fractures which sometimes otherwise occur in cooling owing to differential contraction. The iron for such purposes is best melted in cruibles and in a furnace such as that known as Fletcher's, in which a high temperature and regularity are easily obtained

THE ATALANTA.

With the circumstances connected with the loss of the Atalanta our readers are no doubt familiar to a certain degree. It is known that she was a training ship, and that she has been lost at sea. The history of the ship may thus be briefly stated.
The Juno, afterwards called the Atalanta, was a sixthrate of 923 tons, built at Pembroke dockyard, after the lesigns of the late Rear-Admial She Willam Symonds, then Surveyor of the Navy. She was launched in 1844, and, having been in September by Coptain A by Captain-now Admiral-Patrick J. Blake. After a commission extending over three-and-a-half years, she was "paid off in February, 1849 at Chatham, and remained in ordinary sea service, and commissioned by Captain Stephen G. Freemantle for the Australian station. On her return to Englan, and a paid off, and put into "ordinary," and in 1861 was fitted as water police vessel at Portsmouth, where she remained until 187. In that year the Admiralty, for reasons stated by Vice-Admiral A. W. A. Hood, C.B., decided that a sailing ship without steam would be the best provision for trating the young "ordinary" seamen, depôt ships. and accordingly orders were sent to Portsdepôt ships; and accordingly orders were sent to Portsmouth to have the Juno examined, she being the only for the purpose. On the completion of the repairs, she for the purpose. On the completion of the repairs, she from Juno to Atalanta; and on the 17th Sept., 1878 , shewas commissioned by Captain Francis Stirling, with a crew of 113 officers, seamen, and artificers, besides 170 young ordinary" seamen for training, and sailed on the the of October in that year. After a cruise in Scot est Indies and on the coasts of Ireland and 1879 On ther, 1879. On this cruise she experienced no bad weather, but on her return 10 tons of ballast were, at Captain Stirling's renewed request, added to the 30 tons already on board, the ballast being filled in with 3 tons of cement. Some alterations having been made in the internal fittings on the recommendation of Captain Stirling, at a cost of $£ 886$, the vessel sailed from Portsmouth on the 7 th November, 1879, with orders to. cruise in the West Indies, and to return to England in the following April, but owing to the occurrence of two cases of yellow fever on board, Captain Stirling, in the exercise of his discretion, left the West Indies, in January, for Bermuda and England. He arrived at Bermuda on the 29th of January last, and having completed with provisions and water, sailed with her for this country on the 1st February, since which time nothing has been seen or heard of her.
In order to arrive at the cause of her loss, a Committee of Investigation was appointed, consisting of Admiral Ryder, Captain Randolph, Mr. H. C. Rothery, Mr. R. B. Batt, and Mr. Waymouth. The report of the committee has been sent in, and is in many respects favourable to the ship. The most important question raised was, however, was she likely to capsize in a gale, and on this point we give the report of the committee in full as follows :-
(23) The next question which we propose to consider is the
vessel's stability. All the witnesses who served in her, whether as vessel's stability. All the witnesses who served in her, whether as a ship of war or training ship, speak of her as a safe and stable ship; at the same time they all agree in saying that she lurched
and rolled very deeply. We have no record of the extent of these lurches during the time that she was in commission as the Juno, but we have entries in Captain Stirling's reports, and in the ship's og books, and statements in the evidence, that after her conversion into a training ship she lurched from 40 deg. to 45 deg., and
rolled to windward from 22 deg. to 25 deg., that she put her lee rolled to windward from 22 deg. to 25 deg., that she put her lee
nettings into the water, and that she made from twelve to thirteen oscillations in a minute.
(24) It seems that the pendulum which they had on board was ndexed only to 30 deg ., and that they had no battens for taking the angles of heel from the horizon, and no facilities for using

THE ENGINEER.
Jan. 7, 1881.
them, if they had had any. We were told by Lieutenant the
Honourable A. Bethell, who had served in her during her first two crunouras as a training ship, that the way in which they estimate
the lurches was by observing aprometer which when it the curches was by observing a barometer, which, when it had gon
through an arc of to deg., was brought up by a bulkhead ; and h
stated that if the bulkhead had not been there the would often have shown a larger nongle. He also stated that the entries in the log-book as to the extent of the vessel's lurches ha
been made after conversations amongst the officers ; pression was that she had frequently lurched 40 deg. and over in the water on an average once in every half-hour. On the othe hand, we have the evidence of several officers of very large ex-
perience who have expressed doubts whether the vessel eve lurched to such an extent, and Sir Thomas Symonds, G.C.B
Admiral of the Fleet, said that if she had done so she ought
have been broken up forthwith, but that he didn' (25) There can be no question that the modit of estimating th
extent of the vessel's lurches was wery whilst we are not in a position to say positively that she lurchei as much as 45 deg., or even. 40 deg., yet the fact of her having
frequently brousht her bilge keeld out sea, and the statement of Lieutenant Bethell that in a gale the lee nettings were in the water about once every half-hour, satisfy us
that after her conversion into a training ship she must have lurched and rolled versy deeply. This character for very deep roll-
ing had been reported in her former commissions, vessels of her design being known to have that defect; and it was to remed this that on her being fitted for a training ship bilge keels wer affixed to her. The experience, however, of her first cruise was
unsatisfactory, Captain Stirling reporting at its conclusion that she had lurched 40 deg, and rolled 25 dee.. to windward.
(26) It is probable that if the extent of the rolling (26) It is probable that if the extent of the rolling had been
borne in mind the bilge keels would originally have been fitted in extreme cases, instead of being as they were frequently out o water even in ordinary weather. And it may well be a questio whether it would not have been better to have placed them lowe
down after the first cruise instead of removing them altogether, as they might have added to the easiness of the ship, although, at her stability,
(27) Admiral Sir George Wellesley, K.C.B., the Lord of the
Admiralty, whose province it was to inquire into the matter, stated that his attention had not been called to the fact of the vessel's deep lurching and it of any, and consequence, thus differing from
should not have deemed Sir T. Symonds. Of so little importance do the reports of the ship appear to have been considered, that when Captain Stirling
asked to have the bilve keels removed which they gave to the ship, his application was at once complied deek were at his reauest removed and two 9 -pounder guns substituted for them on the upper deck. On his return from his next
cruise Captain Stirling reported that the removal of the bilge keels had made the ship more easy, although she rolled more
deeply, and he repeated his application for 10 tons more ballast, which was thereupon supplied to him, the ballast at the same tim being filled in with three ton tement
of the armament, and the removal of the bilge keels and the four 64 -pounder guns, as well as the addition of the ballast and cement would tend to increase the ship's uneasiness, by causing her to roll
and lurch more deeply ; but the fact of the ship having lurched and lurch more deeply; but the fact of the ship ated stable ship; on may be said to be the force with which she tends to right hersel may be she has been inclined, or resists inclination from any position
aft which she is," it would seem that heavy lurching and rolling may be quite consistent with stability.
(29) We have ascertained from the
gravity of the Atalanta was lowered, from what that had beentre of Juno, 75 of a foot, and that after her first cruise it was further conclusion, therefore, at which we have arrived is that, if she lurched and rolled very deeply when fitted as a ship of war, it may
fairly be presumed that, but for the presence of the bilge keels she would have lurched dand rolled more deeply as a a training gesip,
still more so on the second cruise, and most of all on her las still n,
cruise.
(30) Amongst the documents for which we asked, and which
were supplied to us from the Constructors' Department of the Admiralty, was the Atalanta's curve of stability. Thinking, how-
ever, that it would be more satisfactory if this were also calculated by some one not connected with the Admiralty, we requested
Mr. William John, an assistant to the Chief Surveyor at Iloyd' Registry, to make the necessary calculations, and to furnish us
with the result. Mr. John's qualifications for the work were unhad calculated the stability of the Captain and of other Adminelsalty, copy of the curves furnished by the Constructors' Department and
by Mri. John will be found in the appendix. much difference between them, and that whilst the Atalanta, from her great beam and the peg-top shape of her midship section, had
very large initial stability, the amount and distribution of her weights, and the small quantity of ballast which she carried gave
her a vanishing stability, according to Mr. John at 85 deg., accord ing to the Constructors at 96 deg., the difference being due to the
latter having been made for the normal condition of the ship, in
agreement with her equipment as first completed for see agreement with her equipment as first completed for sea, and sub-
sequently modified to include the change in armament and the
increase in ballast, whereas the former was in agreemet reported weights, and deduced from the draught of water at the date of sailing on her last voyage.
(32) From these considerations, Atalanta's curve of stability with, those of well-designed merchant
vessels, Mr. John was led to think the vessels, Mr. John was led to think that the vessel had an insuf-
ficient righting moment at large angles, and that it was by no means simprobable that she would capsize, if caught in as squall of
wind, unless very skilfuly handled. M . N. Barnaby, c.i., the
Director of Naval Construction, appeared to share Mr, Toln, the ference for a design with less beam and more ballast, and thought
that for a vessel of her displacement about 90 tons of ballast
would be preferable to the carried, provided that she had less beam and a different midship
cate to 40 ton which the Atalanta section.
(33) In comparing, as Mr. John has done, the Atalanta's curve of stability with those of the merehant vessels to which he re-
ferred, it must be borne in mind that the qualities required in a
ship of war are in many respects very different from those needed for a merchant vessel. Amongst these may be mentioned the por a merchant vesse. Amongst hese may be mentioned the
powe fifhting her guns in a fresh breeze, for which grat
initial stability is required, which it is admitted that the Atalanta initial stability is required, which it is admitted that the Atalanta
had. How far it might be possible in a ship of war to combine
sufficient initial stability with great righting moment at large merchant ships of good design, is a question of the greatest importance, and upon which there is doubtless room for considerable
differenceof opinion, but this, as it appears to us, is not a ques-
tion on which we are asked to report. tion on which we are asked to report.
(34) What we are required to say is, whether the Atalanta,
when she left England in November, 1879 , was a a table ship; and When she ert england in November,
the conclusion to which we have come, after a full consideration o
all the facts of the case, is that she was stable ship, except at large angles of heel; that she was mory stable than when first commissioned as a training ship, and much
more so than in her previous commissions as a man-of-war,

BOILER EXPLOSIONS AT HUGHENDEN AND RUABON.
On the 16th of December, a portable engine exploded at Mr. Lee's farm, near Hugheniden, Berks, killing one man and injuring the driver very seriously. The adjourned inquest was opened on last Wednesday week and concluded the same day. The most mportant evidence was that given by Mr. Spencer Jackson, of Chinnor, who said that he visited Mr. Lee's farm on the 17th
December, where a portable agricultural engine had exploded on the 16th. He examined the debris. The engine was of very old make-by Clayton and Shuttleworth, Lincoln. It had burst
with great violence. He produced a plan showing the positions of the fragments. The crown of the fire-box collapsed bodily, the
force being thus directed vertically downwards, lifting the fireforce being thus directed vertically downwards, lifting the fire-
box end of the engine into the air, causing it to turn a complete sommersault, throwing the near-side fore-carriage wheel into a behind its original position. The off fore-carriage wheel, weirg ing 2 cwt ., was hurled forward, in its flight taking off the top of a tree about 60 ft . from the ground, and embedded itself in the turf at a distance of about 120 yards. The boiler in its first forward 9ft. 22 ft . off, on the top edge of its shell, ricochering sommersault, and, being relieved of the cylinder, fly-wheel, travelling wheels, \&c., and having gained momentum, it bounded
33 ft . more, again taking leaps of 19 ft . and 24 ft . It was finally deposited in the stream on its right-hand side, and 35 yards from its starting point. The cylinder was thrown
surrounded by the driving belt, portions of the pump, piping, kc. A piece of the exhaust pipe, 2 ft . in length, was embedded in the ground 25 yards further. Fragments of the chimney were The smoke-box, with chimney-stump attached, was driven forward 41 yards, but its door was carried backward to the right 20 yards, at an angle of 80 deg . The hind travelling wheels remained hoe, weighing 62 lb , which was attached to the fore-part of the engine, was sent 36 yards to the rear. On examination he found the pump in fair working order, one of the valves only having
rather too much lift. The pump-plunger was packed air-tight. The feed-pipe was clear, and the suction-hose, although considerably perished, would draw, providing the water covered a
fracture 1lin. from the lower end, and after the explosion here was still sufficient water left to do so in the tub, which had not been disturbed. The hose was well bound to the union, and the umion joint air-tight. The pressure gauge was damaged
by its fall, but on taking it to pieces he found the sensitive plate had burst in an upward direction. The syphon pipe was clear he could not find the safety valve. valve was on when he worked the engine, while the other stated that he searched for the safety valve after the explosion, and could not find it.
Mr . Jackson continued-I, however, made a new one, fitting it to the original seat, and tested the spring balance, which was 43 lb . to 44 lb . The water gauge was gone, the taps being broken short iff, the plate were clear. On examination of the boiler I found it different in construction from the present make, as the two barrel-plates were rivetted longitudinaly, and instea nection with the barrel. I also found that the boiler had been repaired in four places-one patch 18 in. by 5in,, being studded side. Round the left-hand mud-hole in the front plate was
sivetted a patch 9in. by sin,, and an angle iron patch, 14in. long rivetted a patch 9in. by sin., and an angle iron patch, $14 i n$. long,
under the barrel, and rivetted to the shell-plate. All the patchee were sound. The barrel of the boiler was partially rent from
the shell of the fire-box, evidently caused by the boiler pitching on end. On looking into the interior of the fire-box, I observed that the fusible prug was gone. On close examination was iron bolt which lay inside had fallen from the boiler stay-joint. as the hole, and it might be supposed it came from it. The and had every appearance of having been red hot. The top flange of the back-plate, to which the crown was rivetted, had first given way, the fracture extending right and left, causing the crown to
lap over the tube-plate. The tubes were of a fair thickness, but the tube-plate was sprung. The front plate and two side plates o the boiler shell were bulged nearly $\frac{1}{2}$ in., although the stays wer
sound, and the plate on being drilled proved to be $\frac{5}{5}$ in. thick and of good quality. I attribute the explosion to shortness of water
and over-pressure of steam. Had the pressure not exceeded 60 lb . and the crown of the fire-box been covered with water the accident would not have happened. It is evident that the safety valve was in some way fixed. It is opssibe sping, but it
balance was screved down to the full extent of the pprin, cannot be ascertained now on account of the loss of the valve and the bending of the balance lever. It might have been screwed
down so as to let a little steam off and still let steam accumulate. All this, however, is only supposition.
The Coroner: The suction pipe was in order, you say. How
was it the water did not get into the engine? Witness : If the engine had been standing some little time and the pump not inject water unless they are rumning.
You mean standing still while the strap was being put on ?Yanno
You mean that the water would be made into steam ?-Ye Isn't it the duty of a fireman to see that his boiler is full water?- Yes, sir. It is evident there was immense strain on the
boiler. That was evinced by the bulging of the front and side
Do you suppose there was more than 80 lb . of pressure to cause
the explosion?-There was certainly 80 lb . if not more. I should the explosion?-There was certainly 80 lb . if not more. I shoul
The Foreman : That of course you can only conjecture ?
The Coroner: But you can say for certain that there was
80 lb ? -hh, yes. I have had 80 lb . on engines myself with front plates as thick and they never bulged.
would be a bursting-charge ?-Yes engine 80 lb . of pressuu weakest place-the flange-provided it was hot.
And you say this engine was only calculated for 60 b
The breaking strain of a new engine is far higher than the What would be the breaking strain?- 601 lb . would be the working strain of this when it was new, not the breaking
strain.

Can you explain why 200 lb . is marked on the dial ?-That has been used for a higher pressure engine. know who go with these engines that 60 mean ?-They all know who go with these engines that
working point. They are not fit to drive an engine if they The jury, after hearing some further evidence, retired for fifty minutes, and on coming into court the foreman said :-
We find (1) that William Coleman, though not an educated engineer, was as generally competent as most men employed to drive agricultural engines. We find (2) that the engine burst from wait or wate owing to the requent stoppages which the suction pipe; we are unable to attribute criminal blame to William Coleman.
The Coroner said that was hardly an answer to his last question-whether there was stoppage of the supply of water
The Foreman : The evidence will not show it in the opinion the jury.
The Coroner: Then you return an open verdict?-that there is not sufficient evidence to show from what cause the bursting took place.
The For The Foreman: There is not sufficient evidence to show Thinal neglect on the part of William Coleman
The Coroner : Nor of any other person?
The Foreman : No. He was the only
Thpose. The Foreman : I don't see how it is possible to come to any other. The jury have very carefully considered the evidence and many of the jury are practically acquainted with the work The Coroner took a note of the verdict of the jury and read The Foreman asked that the exact words he had read should be inserted in the verdict. The Coroner had asked three
categorical questions, and they had given three categorical Teplies
The Coroner said the replies were hardly as he wished them to After some conversation, the foreman and jury agreed to their the special request of Mr. Blagden):-"That the portable engine owned by William Lee burst from want of water, and the present faulty state of the suction pipe, and caused the death of
the said William Harris, but there is not sufficient evidence nan part of William Coleman, the driver, in the working of the said engine.
The Coroner : I can only say that I can hardly agree with your open verdict, but probably it may be a caution to farmers and
others using these portable engines to have competent men to work them. You see the result of this,
The Foreman : We could say a great deal, but we had to go and faithfully returned our verdict
The Coroner: I think it my duty to say so. Addressing Coleman, the Coroner added-I must say you have had a very but the jury consider there is not suflicient evidence to so. You have had a very narrow escape, I think. You should not have undertaken things you have not been brought up to.
And I think the owners would do well to look to their engines and see that they are in proper order, and not have suction pipes in a state like this
case and the explosion A recently took place at Ruabon.
The adjourned inuer om injuries received from this boiler exples men who died the New British Ironworks, Ruabon, on November 20th, was coroner, assisted by Mr. Samson, of the Board of Trade, when the following verdict was returned :- "The death of the six men was caused through injuries received by the explosion of two
boilers in the works of the New British Iron Company; that the said explosion was caused by the thimming of the plates of No. 12 boiler, owing to corrosion within the brickwork ; that we, the urors, find there has been an error of judgment on the part of the New British Iron Company in not having had the boilers stripped for the purpose of thorough examination; and we, the said jurors,
also find that the Midland Company have been guilty of consider-
 nation of the said boilers during the space of the last five years.' thers, and were numbered 12 and 13 , being arranged as show. in the sketch on the next page. Each boiler was about 32 tt . in
ength, and they were respectively 7 ft . 3in. and 6 ft . 4in. diameter No. 12 was fired by hand, and No. 13 by the waste heat from a puddling furnace. Both boilers had flash flues, and were supunknown, though it is evident they were of considerable age. They were made of $\frac{3}{3}$ in. plates, and the seams were single half of No. 12 being placed lengthways of the boiler, and the remainder in the opposite direction. The plates had also been
repaired and patched in many places. The boilers were exposed the weather, the side brickwork covering them in coming to
bout 18 in. from the centre-line. They were fitted with the mountings common to this class. The pressure at which they were worked was 27 lb . to 301 lb . The highest pressure the gauges which have been tested since the explos square inch. The plates of both the boilers internally were square
reduced by corrosion in places from $\frac{1}{1}$ in. to fully $\frac{1}{1}$ in. depth, and
externally, where the brickwork over the flues rested on the externally, where the brickwork over the flues rested on the
ides - from 2ft. to especially along the left side of No. 12, where the thickness was not more than stim.
The explosion took
The explosion took place at 7.15 a.m., when the workmen were ehanging shitt, the engine standing at the time, and it was
considered there was about 30 b. pressure. Rupture evidently commenced at the deeply corroded part at the left side, about the mid. the shock of the explosion apparently caused rupture of No. 13 at a circular seam about the middle of its length, opposite to boilers were scattered as shown in the accompan;
The manager, engine-drivers, and engineer of the
well as the chief engineer and inspectors of the vidand Insurance Company were examined, the most impurtant evid engineer to the Midland. Stam Boiler and Insurance Conty
and that he had oceupied that position since 1850
boilers that exploded were not working in March, 1871, when they were placed under that company's inspection. The inspectors were instructed to examine the boilers as far as possible.
The last internal examination of No. 12 -the firing boiler-took place in 1875, and of the other boiler in 1872. It was their system to send their inspectors over without notice. He thought an improvement might be made in that system. He thought the boiler exploded because the plate was worn thin ordinary working pressure. The plates of boiler No. 13 were nearly their full thickness, but the boiler was seam-
ripped, which was a common way of exploding. Some ripped, which was a common way of exploding. Some
parts of the plate of No. 12 boiler, produced, were $\frac{1}{32}$ in in thickness, and there were other parts $\frac{1}{8} \mathrm{in}$. There was a short length of that plate- 2 ft .- which was specially thin and which would account for the explosion. In reply to Mr . T. B. Acton, he said when boilers were insured, and not merely inspected as those were, they examined the boiler thoroughly
every year. A letter from the witness, dated May, 1871, every year. A letter from the witness, dated May, 1871,
asking for an opportunity for an internal inspection, was asking for an opportunity for an internal inspection, was
put in on behalf of the New British Iron Company by put in on behalt of the New British Iron Company by examination was made. The inspection company had not asked for an opportunity of thoroughly examining the boilers for the last five years. They had internally examined about sixteen boilers on an average annually. Witness said that their responsibility was that they guaranteed inspection by qualified inspectors,
difficulty. The borough on the south side of the river is rained by three and a-quarter miles of stoneware pipe sewers, an iron pipe sewer under the river and across the wash lands After passing under the protection bank of the north level it is emptied into a tank sewer, devised for the reception of the sewage during the time the pumping engines are at rest. It then flows into the wells of the southern outfall pumping station, and is pumped into the gravitation main close to the outfall.
The borough on the north side of the river is drained by nine and three-quarter miles of brick and pipe sewers. The northern arterial main is a brick sewer, egg-shaped in section, of 3 ft . by 2 ft . internal diameters, and 3670 yards long. The main intercepting brick sewer is 1235 yards long, and comprises 149 yards of 3 ft . by 2 ft . egg-shaped, 612 yards of 2 ft . 9 in . by ewers dishorge into a barrel culvert 3 ft 4 in in diameter, 508 yards long which empties into a penstock chamber ; from thence the sewage is taken by two 24 in. iron pipes, laid side by side and for the most part in embankment to the straining tank at the outfall. The sewage from the districts north of the rive Hows directly on to the irrigation area by gravitation. The eological formations through which the trenches were excavated are principally members of the Oolitic group, but in the southward gravels of the post-tertiary period overlay the Jurassic
rocks. The thick beds of hard stone met with in nearly all

The works were designed and carried out by Mr. John Addy, Assoc. Memb. Inst. C.E., of Peterborough, with Mr. John C. Gill, for the buildings were Messrs. S. and W. Pattinson, of Ruskington near Sleaford; and for the engines, pumps, boilers, and machinery, Messrs. Seeking and Ellery, of Gloucester. The works on the main drainage and irrigation farm were partly executed by Messrs. J. S. Cooke and Co., and partly by the Corporation.

CONVERSION TABLES

The large table which we publish this week is the first of a series which we hope to publish by degrees, for enabling French measures to be turned into English, or English into French, at a glance, and without any calculation whatever. Our reason for publishing these tables in this particular form rests on two convictions: (1) that a very large amount of work is done by engineers and manufacturers in converting French and English measures into each other, economy in which work is therefore of value ; (2) that the strictest scientific accuracy in such work is very seldom required, and therefore the long and cumbersome array of figures necessary for such accuracy may very well be dispensed with.
The arrangement rests upon this basis, and may be explained in a very few words. The present table concerns measures of Length, and gives the means of converting metres into. feet, Thus, supposing inches, and kilometres into miles, and vice versa metres, we say, " 233 metres = how many feet?" We glance over the page till we find the number 233 in the number column, and opposite to this we find in the "Metres = Feet" column the number $764 \cdot 4$. We then simply write down for our 233 metres, 7644 ft . It will not be once in a hundred times that we shall want to get a more close equivalent than this, but, i needed, we can still use the tables for the purpose. Thus we see that 200 metres $=650 \cdot 2 \mathrm{ft} . ;$ also that 300 metres $=984.3 \mathrm{ft}$., and these three figures - 9 43st., and δ metres = 9840 . Adding $764 \cdot 473 \mathrm{ft}$ which is the same result as we should have obtained by laboriously multiplying $3 \cdot 281$-the equivalent of 1 metre-by 233.

If a number does not lie within the limits of 100 to 1000 given in the table, it is still easy to apply the tables to it. Thus if the No. of metres be 23, instead of 233 , we look at the No. 230 or move the decimal point one place to the left in the equiNo. be 2335 feet, giving No. 150 It, on the other hand, the point in the equis, we first look at 233 , we move the decimal we then look at No, 500 , and move the decimal point in the equivalent two places to the left, giving as the equivalent to 5 metres, $16 \cdot 40 \mathrm{ft}$. Adding these together we get $7660 \cdot 4$ as the number, but partly a decimal, as 23.35 , all that is necessary is to alter the decimal point in the result to correspond alter the decimal point in the result to correspond, giving for the conversion of millimetres instead of centimetres and so forth.
We have only to add that the table has been compiled with great care by Herr C. Capito, graduate of Copenhagen, and now any hints which may render this and future tables more com plete and valuable.

TENDERS.

SOUTHAM SEWAGE OUTFALL WORKS
E. Pritchard, engineer, 27, Great George-street, Westminster,
W., and 37, Waterloo-street, Birmingham. Quantities supplied by engineer.

> Dotaway, E., Sandford Thames, Oxford
Dovener and Quisnel, Stoke, Staff.
> oowson and Co., Stoke, Staff.
mith, J. W., Westminster-c
> Smith, G. F., Westminster-chambers
> Watson, G., southam
> Cunall and Lewis, Birmingham
> Dewill, J., Harbury
Green and Son, Warwick
> Burkett and Co., Birmingham
> Palmer, A., Birmingham-accepte

SCALE $\frac{3}{10}=1$ 1F00
the ruabon explosion.
and sent a faithful report of the result of such examination to the owners. Charles Jefferies, inspector to the Midland Steam finding the strength of a boiler at hand. The exploded boilers should have been examined once or twice a year. The plate produced was not fit for a pressure of 30 lb . It was only fit for a water tank. Both this witness and Coulson, his successor,
thought they would have discovered the condition of the plates thought they would have discovered the condition of the plates
twelve months before the explosion, and they thought the conditwelve months before the explosion, and they thought the condi-
tion of the plate sufficient to cause the accident. Mr. Courtney tion of the plate sufficient to cause the accident. Mr. Courtney Osborne weeks, engineer to the board of containing a statement of the condition of the boiler, and the cause of the accident, as described above. The opponent against insurance in this case; the boilers having been under the inspection of the Midland Boiler Insurance Company, but were not insured by them.

PETERBOROUGH CORPORATION SEWERAGE WORKS.
THE sewerage works now completed for the Corporation of the city and borough of Peterborough, involved the construction of thirteen miles of brick and pipe sewers, with the necessary man-
holes, ventilators, flushing arrangements, and penstocks ; the holes, ventilators, flushing arrangements, and penstocks; the sewage at the outfall and two miles the straining of the preparation of 96 acres of land out of a farm of 300 acres purchased by the Corporation for the utilisation of the sewage by irrigation; the erection of two pumping stations, with the necessary machinery; and the erection of two cottages
The sewage from all parts of the borough is brought together and discharged at one outfall. It is conveyed by the watercarriage method on the separate system. As about seven-eighths of the entire population of the borough dwell on the north side of the river Nene, it is consequently in this portion that the peculiar situation of the southern district renders the conveyance of the sewage to a suitable outfall a matter of considerable
parts of the north and eastward have caused the excavations to be difficult and costly; but the stone was utilised in the constructi
farm.
The
The pumps by which the sewage at the southern outfall is ifted into the gravitation main are two duplicate three-throw lift pumps, driven by two high pressure non-condensing horizontal engines of six horse-power. The normal speed of the engines when working with a boiler pressure of 45 lb . is 100 revolutions a minute; and each pump working at twenty double trokes a minute will lift four hundred thousand gallons in twelve hours. The sewage on arriving at the outfall is discharged iron strainers ; passing from thence that provided with wrought in a concrete carrier to the land prepared for irrigation arriving at the land prepared for the reception of the sewage the carrier divides into two smaller ones from which the sewase is distributed over the irrigation area by land carriers. The larger concrete carrier is 1098 yards in length, and has a water-way of 6.5 superficial feet. The two smaller carriers are 2159 yards long, and have a sectional area of 4.8 superficial feet. The irrigation channels are 12 in . wide at the top, 6 in . at the bottom, and are 6 in . deep. All the carriers are laid in horizontal lengths with sluices and drops at every change of level. The soil on the irrigation area is of a light alluvial character overlying silt, and ituatana drainage of 4 ft . As the farm of the North allowed to be carried off by their drains, except in dry seasons, and must consequently be lifted over the North Bank into th New Cut of the river Nene. This is effected by two 12 in centrifugal pumps, driven by two 25 -horse power high pressure condensing engines. The normal speed of the engines is sixt revolutions per minute, with a boiler pressure of 60 lb . The cylinders are 1 ft .4 in . diameter, and the stroke, 2 ft . The fly wheels are 10 ft . in diameter, and weigh two tons. Each pump when making 400 revolutions per minute will deliver over the bank one million six hundred thousand gallons in six hours.
The boilers are Galloway's patent with shells. 18 ft . long by 6 ft . diameter.

The STrel Trade,-The great increase in the manufacturing capacity both of Europe and America has alone prevented that
return to high prices which the present demand would have caused; and as, on both sides of the Atlantic, factories are being still further extended, the same counteracting cause will have effect for some time to come. A year ago, the total output capacity of steel rails in England was rather more, and in America rather less, than operation or ready to commence at short notice, the total in each country is about a million tons. In America the present demand for steel rails is so considerable as to tax severely the supplying power available, and the product for at least six months forward is already sold. A deficiency does not at first result in the importa-
tion of rails from Europe, but in the supplementing of that departtion of rails from Europe, but in the supplementing of that depart-
ment of manufacture which falls behind. Thus, while the demand for raw material is generally sufficiently met by Italian or Spanish ores, Bessemer pig iron has to be imported when the local blastfurnaces prove insufficient, and, in other cases, when the blooming mills cannot keep pace with the converters or with the rail mills,
a considerable import of blooms from Europe takes place. This is the case at present, not only for rail making, but also for supplying those smaller steel works which make plates, wire, and other miscellaneous goods, with the blooms and billets the large convert. ing works are at present too busy to supply. If the rail mills in America cannot meet the demands of purchasers during the coming year, by imported steel rails, or by home-made iron rails, or by iron rails from Europe. Both in Europe and America the different modes of making steel are finding their proper place. The Siemens process, with all its acknowledged merits, cannot compete with the quicker Bessemer converters for so cheap a commodity as steel rails. In
England, steel works constructed with the Siemens open-hearth plant are not working on rails, but are making ship plates, railway tires, axles, and other similar articles, or are stopped altogether ; while in America the Siemens process has hardly been applied at all to rail making, and the Siemens furnaces, with or without the Pernot modification, are confined entirely to the smalle industries, and are found extremely convenient for using up the
Bessemer scrap. Both in England and America the circumstances of locality and transport are acquiring enhanced importance in the competition of trade; but while in England even a short land carriage is a disadvantage, in America works uns to local consumers for material are compensated by their contiguity to local consumers,
-Matheson and Grant's Engincering Trades' Report.

THE BASIC DEPHOSPHORISING PROCESS WHAT IT IS, AND WHAT MAY BE EXPECTED FROM IT.*

By Mr. Jacob Reese

sLAG is said to be basic when it is composed of metallic oxides ; or, in other words, when the base of the slag is a metal,
the slag is said to be basic. Oxide of ron, and oxide of calc um,
are true basic oxides, and form highly basic slags. A slag is said o be acidulous when it is composed of a metalloid, such as silicon, phosphorus, or sulphur, oxidised to silicic acid, phosphoric acid, or
sulphuric acid, and these acids combine with
ase forming silicates, phosphates, or sulphates. When these compounds are
resent in a slar in a large degree, it is said to be of a highly acid present in a slag in a large degree, it is said to be of a highly acic
character. When a metallic process is conducted n presence of a highly basic slag, it is called a basic process, and when it is
conducted in the presence of a highly aeid slag, it is called an acid process. The process by which the ancient Romans and Britons
made their iron is known as the Catalan process. It was conducted man
nade open ehamber surrounded on all sides and the bottom with a
ind
lining of charcoal dust lining of charcoal dust., The fuel was used in this metan chamber
admixed with the iron ore and metal. The slas present in this
ald admixed with, the iron ore and metal. The slag present in this
metal chamber and produced by this process was principally composed of oxide of iron; hence the Catane or brick, both of which are highly acidulous; and although limestone is used as a flux, owing
to the silicious character of the ore and ash of fuel, the slag is of to the silicious character of the ore and ash of fuel, the sla
an acid character, as will be seen by the following analysis :

Silicicicacid Lime. Lile
 Alumina Magnesia Mangunaese

Hence, the blast furnace process is an acid process. Henry Cort, who invented the puddling process, was the first to separate the
fuel from the metal chamber ; he lined his metal chamber with sand-silicic acid- the slag was highlyaciduluous, and Cort's puddling
process was an acid process. Dr. Roebuck, the inventor of the refinery fire, lined the metal chamber with cast iron water boshes.
The fuel was admixed with the metal. The refinery slag was The fuel was admixed with the metal. The re
highly basic, as is shown by the following analysis:

Oxide of iron Silicic acid

silicice acid
Mlumina
Magmesia
Hence the refinery $\ddot{\|}$ rocess was a a basic processs.
Samuel Rodgers improved Cort's puddling
iron bottom and iron plates into the puddding furnace, and linging
the metal chamber with oxide of iron instead of sand. The follow-
then ing analysis of the slag shows it to be highly basic

Oxide of iro
Silicicacid
Alumina
He
Hence Rodger's pulding, process is a basic process. The Bessemer process, invented by Henry Bessemer, is conducted in a converter which is lined with ganister-a highly sili
stance. The slag produced is composed of the following

 Protoxide Humina Hagnesia
 Magnesia Oxide of iro

It is a silicious slag because there is not sufficient basic material to engage all the silicic acid as silicates. And the Bessemer process
is an acid process. In the open-hearth process the metal chamber
is lined with sand. When is lined with sand. When metal and scrap are used the slag is
highly acidulous, and the metal and scrap open-hearth process is an acid process. When iron ore is used in the onen-hearth in con-
siderable quantity, the slag is neutral ; and the ore and metal open-hearth process may be classed with the basic processes. We
therefor therefore ha
Catalan
Refinery,
Ren
Rodgers' puddling
Open-learth ore an
Blast furnace
Cort's pudding
Cind
and metal
Bessemer
Open hearth metal and scrap

The dephosphorising problem may be summed up in these words: presence of a basic slag, in order that the acid so formed may unite
with and be held by a metallic base as a phosphate of lime or a lime or a phosphate of iron, and carbonic oxide decomposes a phos phate of iron, the slag must be of a highly basic character in order
that all the silicic acid formed by the oxidation of silicon shall combine with and be engaged in the slag as silicates. And in order
to avoid the revuction of the phosphate by carbonic oxide the dephosphorisation must take place in the presence of a highly
basic slag, and in the absence of carbonic oxide. In the acid pro cesses before mentioned, as the blast furnace, Cort's puddling,
Bessemer converter, and the open-hearth with metal and scrap, the silicie acid and carbonic oxide reduce the phosinhate to a phos-
phide a and as arhosphide has a greater ahtinity for the metal
than for the slag, the phosphorus is returned to the metal. In the blast furnace, however, an additional reaction takes place under the following conditions:--Carbonic oxide being always
present at the zone of reduction, where the ores are doxidised,
the phosphorus accompanies the metal as a the phosphorus accompanies the metal as a phosphide of iron,
In case where the slag in the hearth does not contain over 40 per
cent. of silicicic acid, and does contain 60 per cent. of basic material. cent. of silicic acid, and does contain 60 per cent. of basic material
the silicic acid being held as silicates, the oxide of iron contained in the slag in the free state will oxidise a portion of the phos
phorus, which, uniting with oxide of iron or lime, will form a
phosphate of iron, or a phosphate of lime, and exist in the slag phosphate of ron, or a phosphate of lime, and exist in the slaa
in the hearth of the furnace below the zone of carbonic oxide
under these conditions under these conditions a partial dephosphorisation of metal take
place in a blast furnace working on black cinder. The degree
phosphorus thus taras phosphorus thus taken up by the slag will depend upon dits basi
character and its ability to hold the phosphorus as a phosphate. In the old basic processes-the Catalan process and the refiner
process-the fuel beeing admixed wwith the metal, carbonic oxide
was always present; hence the phoshle was always present; hence the phosphate could not exist, even in
the highly basic slag, and dephosphorisation was impossible. In
the basic open-hearth dephosphorisation takes place before the elimination of carbon commenencess if if the phospphoritico slag ${ }_{2}$ i
removed, and also after the carbon has been consumed and carboni
 period; second, the boiling period; third, the solidifying period.
During the first period the metalis melted and the oxide of iron
is admixed and melted. The chemical reactions which occur in is admixed and melted. The chemical reactions which occur in
this period are the oxidation of plosphorus, and of silicon and
their removal from the metal to the slay. As there is no gas a state of rest, except s. far as asitated by the puddter's' tomals.
the slag be tapped off just before the close of this period, it will b
b found to contain from 70 to 80 per cent. of the phosphorus
previously contained in the pig metal. But if the slag remain
vith the metal until the silicon is reduced down to with the metal until the silicon is reduced down to ${ }^{\circ} 02$, the second
period commences, the carbonis oxidised to carbonic oxide, which, passing upward through the slag, attacks the phosphate and
reduces it to a phosphide, and, as a consequence, all the phosphorus removed from the metal, during the first period, and permitted to
remain in the slag, is returned to the metal during the second period. As she chemical reaction during the second period is the
oxidation of carbon to carbonic oxide (C.O.), ebullition takes Paper read before the Engineers' Society of Western Pennsylvania,
8. A., December 21st, 1850 .
place, and the metal boils. When the carbon has been reduced
down to "08, the ebullition ceases, the cinder or slag "drops," and
 the metal soilidines, and, as the puddiers term it, "is brought to
nature" during the thirr period, During the first part of the
third period the damper is raised, and the metal which extends above the slag is exposed to an oxidisisng flame. The phosphorus
is either sweated out of the metal by liguidation or is oxidised by is either sweated out of the metal by liquidation or is oxidised by
the fluid cinder ; in either a ase, it being oxidised to $\mathrm{P}_{2} \mathrm{O}_{5}$, it again the fluid cinder ; in either case, it being oxidised to $\mathrm{P}_{2} \mathrm{O}_{5}$, it again
enters the slag as a phosphate of iron (.Feo. $\mathrm{P}^{2} \mathrm{O}_{\mathrm{j}}$. There being
no free silicic acid or carbonic oxide in the slag during this third no free silicic acid or carbonic oxide in the slag during this third
period, the phosphorus remains in the slag until the metal is with-
drawn; hence Rodgers' puddling process, when properly drawn; hence Rodgers' puddling process, when properly con-
ducted, is a true basio dephosphorising process, being conducted in the presence of a lighly basic slag, and in the absence of C.O. or
free silicic acid. As phosphorus, silicon, and carbon tend to reduce the fusion point of iron in degree to the amount of these elements which the
metal contains, it follows that the fusion point of iron is greatly raised by the diminution of these elements, and this is the reason
that the iron solidifies during the third period of the that the iron solidifies during the third period of the puddling pro-
cess. In the Bessemer and open-hearth processes the temperature
ind is kept lishg enough to hold the metal in a fluid condition after the elimination of phosphorus, silicon, and carbon, but at the high temperature required, Rodgers' basic lining-oxide of iron-is
fused also, and for this reason the Bessemer converter and the open-hearth have heretofore been lined with a silicious material. The new basic dephosphorising process, by which iron and steel
may be desiliconised, decarbonised, and dephosphorised, and yet be retained in a fluid state, so as to cast it into ingots of iron,
or of steel, is conducted in a metal chamber lined with lime which is a basic material, it being the oxide of the metal
calcium. By means of a lime lining the required temperature to keep the metal fluid may be employed with but little waste of the
lining; and when the lining does waste, it being of wistly ming; and when the lining does waste, it being of a highly basi
character, it tends to form a highly basic slag. When the Besse mer converter is furnished with a lime lining, and the metal is
mown in the presence of a highly basic slag until the silicon is oxidised to silicicence acid, ond and this acid unic slag untes with bases forming silicates, and the blow is continued until the carbonic oxide dis-
appears, and the metal is further blown in the presence of a highly basic slag, a
the phospho and uniting with oxide of iron, remains there as a pho shag iron ($\left(_{\text {FeO }} \mathrm{Fe}_{2} \mathrm{P}_{2} \mathrm{O}_{5}\right.$), and the silicon, carbon and phosphorus are entirely eliminated from the metal. When the slag is of a highly
 oxide be present, it will rob the phosphate of its oxygen, formi carbonic acid, and the iron and phosphorus unite as a phosphide of iron, and return to the metal. But when the phosphorus exists
in the slag as a phosphate of lime, carbonic oxide will not reduce it. If, however, silicic acid is present in a free state,
it will rob the phosphate of its base, forming a silicate of lime the carbonic oxide will rob the acid of its oxygen, and the phos-
horus is returned to the metal. In the practice of the basi dephosphorising process in the Bessemer converter, the silicon, carbon, and phosphorus are entirely removed, and the metal is
very nearly pure iron. If a small quantity of ferro-manganese or
fery erro-silicide is then added to partly reduce the oxygen, and the highly fibrous character, much superior to forbrous wrought iron ferro-silicide is added to thoroughly deoxidise the metal, when colled it will be found to possessa fine crystalline texture. In both ingot steel is desired, the metal, when desiliconised, decarbonised, and dephosphorised, should be removed from the slag, and then deoxidised and recarbonised in the usual manner. When an openhigh temperature in the presence of , highly basic bath, until th silicon and carbon are eliminated, and the silicic acid is engaged as
silicates, and the carbonic oxide disaperens sufficiently basic, the phosphorus is rapidly eliminated, and remains in the slag as a phosphate of iron; the metal may then be
treated with ferro-manganese or spiegel for deoxigenisating and Inearburetting it.
hat the metal should be removed from the presence of the pho that the metal should be removed from the presence of the phos
phoritic slag before the ferro-manganese or spiegel is added, as the chemical reactions which take place when these elements are added, tend to carry a portion of the phosphorus from the slag back into
the metal. The quantity of slag required will depend on its degree of basic purity and on the amount of silicon and phosphorus to be liminated, the essential requirement being that the slag shall ilicates, and all the phosuric acid as these requirements in excess, the weight of the slag will range
from 25 to 30 per cent. of the weight of the metal. In the economy of the new basic dephosphorising process, it is desirable to produce
metal for this process containing as little silicon as practicable, so as to prevent the appearance of silicic acid in the slag so far as source of heat, it is desirable to increase the percentage of phosphorus in the metal in proportion to the heat units withdrawn by
the reduction of silicon. Therefore the most desirable metal for the new basic dephosphorising process is that which is low in silico and containing from 2 to 3 per cent. of phosphorus.
lime-lined converter, and in the presence of 25 per cent calcareous basic slag, the slag when withdrawn will be found to contain $18 \cdot 32$ per cent. of phosphoric acid to weight of slag, or $4 \cdot 58$ any class of ores, suitable for the new basic dephosphorising to economise the cost of the basic calcareous slag, it is proposed o use this calcareous phosphoritic slag as a flux in the blast
furnace in place of so much limestone. When this slag containin 18.32 per cent. of phosphoric acid is used in a blast furnace in
proportion to t ton of slag to 1 ton of metal produced, the phosnd the metal produced will contain 2 per cent. more phosphorus than was obtained from the ores from which the metal was the development of caloric essential to keep the metal in a highly Huid condition in the basic converter, is again utilised by its reduecontrol of the production of a minimum of 2 per cent. of phosphorus in the metal made from any class of iron ticable to eliminininate 2 per cent. of phosphorus from the metal by
he basic process st han it is to do the basic process than it is to dephosphorise a metal containing
but one-tenth of that amount of phosphorus and 2 per cent. of silicon. The essential requirements of dephosphorisation having the presence of a hishly basic. islag, and in the absence of free silicicic
acid and carbonic oxide, it is proposed to dephosphorise molten metal flowing from a blast furnace by treating it at a low temperature in the presence of a highly basic slag, and withdrawing the
metal from the slag after it is dephosphorised and before the oxilation of the carbon takes place, and running the oxidised metal into pigs, or taking the metal and treating it in the acid Bessemer condephosphorise molten metal direct from the blast furnace as before there desiliconise it down to to 025 , and slag, into withdrawing open hearthe dephos-

and malleable castings, and all foundry purposes. It is also pro-
posed to desiliconise and decarbonise metal in the acid Bessemer posed to desiliconise and decarbonise metal in the acid Bessemer
converter, and then run it minus the silicious slag into a basic
. lined converter or open hearth and there dephosphorise and refine it, and then run the metal, minus the phosphoritic slag, into a
ladle and deoxigenise and recarbonise it in the usual manner, and ladle and deoxigenise and recarbonise it in the usual manner, and
cast it into ingots. Having explained the distinguishing character istics of the old processes, and the essential requisites to dephos
phorisation possessed by the new basic process, 1 will a few predictions as to "what we may expect from it," The basic dephosphorising process will eliminate all the silicon, carbon, manganese, and phosphorus contained in the metal and produce
nearly pure wrought iron As the fbrous character of wrought iron is caused by oxide of iron being inter-stratified in alternate
lamina with lamina with the iron, and as the molten metal in the basic conquantity of ferro-manganese be added to it, but not in sufficien quantity to reduce all of the oxygen, the ingot iron produced by
the basic dephosphorising process when rolled down will exhibit highly fibroush texture and possess in a superior degree the properties of ductility, malleability, and welding, which are possessed
by the best Swedish or Norway iron-therefore the importation of such irons will cease when the basic wrought iron importation the market, as the latter will be better and cheaper. And as pig metal designed for the basic dephosphorising process may be made hot blast of the hiskest volum elved in a blast furnace in which metal will be of the cheapest class produced ; and as such metal whether white, mottled, or grey, can be put into fibrous wrough Whether white, mottled, or grey, can be put into fibrous wrough
iron at less cost by the new basic dephosphorising process than it is now, or can be, put into puddled bars by the puddling process, we
may expect that the history of the puddling process will be closed may expect that the history of the pudding process wil be closed
at an early day. By incorporating with the basic metal just sufficient ferro-manganese to thoroughly deoxidise it, the ingot iron
when rolled down will tough and ductile. Thus it is conceived that the fluid basie dephosphorising process will not only produce a superior quality o steel containing any degree of carbon, chemically combined, from
.01 to 2 per cent., but it will also produch on to 2 per cent., but it will also produce wroughtiron, both fibrous by any other process. And as the degree of expansion and contraction between any given temperatures will be increased in proportion to the amount of carbon contained in a metal
and as the fluid basic dephosphorising process is capable of
producing ingot iron fiee from prothing ingot iron free from carbon, we will be able to produce essential characteristics required for structural purposes. Believing as I do, that graphitic carbon is held in the pores of the physical
structure chemically combined is held in the pores of the chemical structure the most pure iron, having its pores empty, when recarbonised will
take up a greater amount of carbon and exhibit greater elasticity and resilience than less pure iron so carburisec. Hence we may expect to produce yy the basic process spring steel of a superioo
quality. As the most pure iron will take up the largest amount
of chemically combine of chemically combined carbon, or in other words will accommodate
more carbon in the chemical pores, when such iron is higly more carbon in the chemical, pores, when such iron is highly car-
burised the steel will be harder and the texture more dense ; there fore we may expect to produce moldboards, land sides, plough points, and other agricultural steels of superior quality by the basi agreeable, mild, and at the same time brilliant lustre, steel pro
duced from such iron will possess a finer texture and be capable of exhibiting a higher polish and a more beautiful lustre than iron o steel of less purity. Hence we may expect to produce steel fo
cutlery, cutting tools, and other polished work of a superio by the basic dephosphorising process. The new process will pro and I believe that rails containing ' 60 to 75 of carbon made by the basic process will be stronger, tougher, and wear double the tonnag of rails now made by the Bessemer acid process. The basic proces and drop forgings than has ever been produced by any other pings It is proposed to produce pure iron by the basic process and then re-carburise it by infusing plumbago into the metal and thus avoic the reactions which take place in re-carburising by the use of ferro-
manganese or spiegel. Basie steel may be produced by this method manganese or spiegel. Basic steel may be produced by this method
possessing the peculiar characteristics of tool steel. Pig metal for the basic process may be made from all kinds or qualities of iron produced shall be low in silicon, and contain not less than 2 pe cent. of phosphorous. Hence by the utilisation of phosphoritic ores the centre of greatest production of in
itself to the economy of the basic process.
In the economy of the basic process the blast furnaces and the as to save fuel and freight on the phosphoritic slag. The metal produced by the hasic process being in a fluid condition, it may be cast into ingots of any desirable shape; and as mechanical opera
tions will be employed to work these forms in large masses, the old rolling mills may not prove economical. As ingots designed fo plates plates, tonk and ship pipates will be produced at less cost than nail are now produced by the old processes. In conclusion, I believe that the fluid process, i.e., the Bessemer and open hearth, with the bashic dephosphorising improvement, will, in time, supersede all
others for the production of iron and steel, and will ultimately enable the United State
and steel in the world.
As the priority of invention relating to all the essential features tion in the cases known as "Reese r. Thoms" of invention is determined it will not be known whether myself o Thomas and Gilchrist will control the new basic dephosphorising
process in the United States. For this reason I have given this paper a general charcacter, and have carefully avoided reference the claims of invention.

Yorkshine Frebinconkr.--At a monthly meeting, on Thursday last, of the General Committee of the Royal Masonic Institution was placed on the list of candidates for election in April next. A
this election there will be 28 candidates, of whom only 15 can be ,

The Institution of Civie Exgineers.- On the 30th of Novem-硍, 1862, this society consisted of exactly 1000 Members of al 1231 M'embers, 1335 A ssociate Mombers, and 569 Associates, besids 686 Students, in all 3839 . Two years ago the bye-laws were : the non-professional Associates, the former being desingated Associate
Social Gathering of Scotch Engineers. - A social gathering of Scotch foremen and marine engineers, representing the principal
firms at the East-end of London, and the various mail companies took place on Thursday evening at the Old Commotore, High-street Poplar. The chair was taken by Mr. Ferrie, the vice-chair being
ocoupied by Mr: Macfarlane, between forty and tifty gentlemen sitting down to supper. The various loyal and patriotic toasts were During the evening a selection of Scottish and humorous vocal and instrumental music was given by various
gentlemen.

RAILWAY MATTERS

The tax on raill
The section of the Northern Punjab State Railway from Rawul has been opened for traffic
The Dundee Chamber of Commerce has agreed to support the
Vorth British Railway Company's Bill for the reconstruction of the Tay Bridge at as low level as
Reporting on a collision on the Highland Railway, Major-
General C. S. Hutchinson says, "It is to be regretted that the Highland Company have hitherto done so little in improving their
A meetivg was held in Halifax, Nova Scotia, on the 28th ult.,
n opposition to the Pacific Railway scheme brought forward by the in opposition to the Pacific Railway scheme brought forward by the
Government, at which it was resolved to call a mass meeting in
order to elicit a decided expression of popular opinion against the order to el
measure.
A contract has been entered into with Messrs. Mousley and Lovatt, No. 1, Westminster-chambers, for the construction of
three and a-quarter miles single line tramway from Warwick to Leamington. Mr. E. Pritchard, of Westminster and Birmingham,
is the engineer. the engineer.
In a report on the collision on the 23 rd of November last, at
Woodside Station, Birkenhead, on the London and NorthWoodside Station, Birkenhead, on the London and North-
Western and Great Western Joint Railway, Colonel F. H. Rich Ways, "If the train had been fitted with continuous brakes, and
the guard as well as the driver had been able to work them, the
collision would probably have ber collision would probably have been prevented."
OF the total car movement on the Philadelphia and Erie Railway
in 1879,30 per cent. was empty, and of the total tonnage, $37 \cdot 2$ per ent. was west-bound. On the Susquehanna Division, 14:3 per cent. of all the cars moved were empty, and $17 \cdot 15$ per cent. of
loaded cars were west-bound. It should be added that the mileage of cars for 1879 was as follows:-Loaded: eastward, westward,
$59,208,331$,
Grfat activity has for the greater part of the past year characterised the American railway world. 5839 miles of new railways new railways are chiefly west of the Mississippi River. It is estimated that next year over 7000 miles will be constructed, as the
capital is ready for extending all the south-western lines, and also capital is ready for extending all the south-western lines, and also
the Northern Pacific Railway. The earnings and profits of the the Northern Pacific Railway. The earnings and profits of
American lines generally exceeded those of any previous year. The Bury and Tottington District Railway, which was pro-
moted and the money found by the owners of the mills and moted and the money found by the owners of the a communication by rail the whole way from their works to Manchester,
Bury, and so avoid the carting they had to employ before, is
drawing towards completion. The line is about three and a-quarter drawing towards completion. The line is about three and a-quarter Wells, Owen, and Elwes, of Westminster, are the engineers, and
Mr. J. Welland Smith, of Westminster, contractor for the line, and it is expected to be open for traffic very shortly.
THe effective service in tons of paying freight moved by each
ngine on the Susquehanna Division of the Philadelphia and Erie engine on the Susquehanna Division of the Philadelphia and Erie
Railway was, in 1874, 197.5 tons; in $1875,222 \cdot 98 ;$ in 1876 ,
$23 \cdot 66 ;$ in $1877,257 \cdot 47$; in $1878,289 \cdot 5$; and in $1879,310 \cdot 15$ tons $234^{\circ} 66$; in 1877, $257 \cdot 47$; in 1878, $289 \cdot 5$; and in 1879, $310 \cdot 15$ tons. tons. This includes the mileage of pushers or helping engines on
grades, of switching engines and the proportion of distributing service, Thitching engines and the proportual distance from Sunbury to Erie is 288 miles, the actual mileage of engines, however,
grades, to haul these trains, is 352 miles.
A report on Mr. Cockburn Muir's "block-sleeper" track for
tramways has lately been received from Mr. Henry W. Ford, tramways has lately been received from Mr. Henry W. Ford,
manager of the City of Buenos Ayres Tramways. From this
report we learn that even where laid upon very indifferent foundareport we learn that even where laid upon very indifferent founda-
tions the tramway has proved remarkably efficient, and has in down about ten years, ample time has elapsed to enable them to
know all that can be known of the defects of the system. They complain, however, of none, but acknowledge its efficiency and the

The Hounslow and Metropolitan Railway, the purpose of whic is to take the District Railway Company's trains, vii Mill Hill
Park and on their Ealing line, to Spring Grove and Hounslow, supplied with railway accommodation, was, after many years opposition, passed this last
session. The engineers-Messrs. Owen and Elwes-are proceeding
with the working plans, and it is stated that the contractors-with the working plans, and it is stated that the contractors-soon as they can get possession of any land. The line is about five and a-half miles in lengtl,
of the Hounslow district.
THE average freight train for the whole of the Philadelphia and
Erie Railway during 1879 was equivalent to $32 \cdot 9$ loaded cars. For the Susquehanna Division it was 51 loaded cars. This includes only paying freight; ; 3.33 per cent. of that carried was for use of
the company, or carried free. In this estimate five empty cars the company, or carried free. In this estimate five empty cars
are taken as equal to three loaded cars. On the latter division thi
year, says the Railroad Gazette year, says the Railroad Gazette, the average train-load for Januar
was $50 \cdot 3$ cars ; for February, 51.5 ; for March, $58 \cdot 4$, for April, $57 \cdot 0$
for May, $56 \cdot 1$; for June, 57.6 ; for July, $56^{\circ} 9$; for August, 57.9 for May, $56 \cdot 1$; for June, $57 \cdot 6$; for July, $56 \cdot 9$; for August, $57 \cdot 9$
for September, $62 \cdot 6$. The average lading of loaded freight cars fo
1879 was $11 \cdot 12$ tons. This year it is expected to approximate very 1879 was $11 \cdot 12$ to
closely to 15 tons.
Express trains are now running between Paris and Bordeaux a 66 kilometres per hour, or 40.92 , say 41 miles per hour, which is only
about $2 \frac{1}{3}$ miles per hour less than the speed of the Flying Scotehman on the long journey of 397 miles, from London to Edinburgh, which is done in nine hours including stops, or at about 43.4 miles per
hour. Some of the French writers are saying that there is no reason why this difference should exist. The journey between Paris and Bordeaux is shorter than some English runs at a much
higher speed than 43 miles per hour, and they say that the French
permanent way, rolling stock, and engines are permanent way, rolling stock, and engines are as good as English
and why not then the speeds. The railway authorities answer that
English travellers pay about or nearly English travellers pay about or nearly one-third higher fares.
The numerous and large orders for locomotives which have been
given out during the last few months have animated a branch of trade which had been unduly depressed. In the keen competition which has taken place during the last five years, the advantage
which some manufacturers have over others in their better plant and organisation has been plainly demonstrated, for profits have favourably situated. The improvement is not confined to this
country, but on the Continent also the railway companis country, but on the Continent also the railway companies have
ordered largely, while in America the principal firms, though
making more engines than ever before, are unable to keep pace with the orders offered to them. In regard to wagons and carriages, so many are built by the principal English railway companies
themselves, and the new factories since $1870-3$ are so numerous, that notwithstanding the large quantities of new stock now being
built, the prices obtainable by private firms are still very low. The use of iron and steel in the underframes, and even in the bodies of "Ergineering and Trades Report," to beextending, and the American
method, which has been adopted by some of the leading English companies, of supporting long passenger carriages on bogie-trucks,
is likely to become more general, even though in regard to the

NOTES AND MEMORANDA.

AN instrument for measuring the amount of electric current flowing through a circuit, or the number of webers that
supplied, is the subject of a recent patent by Mr. Edison.
According to the records of the rainfall in the Severn valley ressive increase ; in the first five years the mean was 24in., in the

In making some experiments on the compressibility of oxygen
gas, M. Amagat used mercury for transmitting the pressure, and found that the absorption of the gas by the mercury even at high
Munich has now a population of no fewer than 228,000 i to 40,000 souls. In 1830 the number was 77,000 ; in $1840,95,000$ to 40,000 souls. In 1830 the number was 77,000 ; in 1840
in $1852,106,000$; in $1861,148,000$; and in $1871,169,000$.
M. Colladon has pointed out that a poplar or other tall tree may, if its roots strike into damp soil, serve as a lightning-con-
ductor to protect a house; and he thinks he has verified this conductor to protect a house; and he thinks he has verified this con-
jecture by examination of a number of individual cases of
lightning-stroke. In the case, however, where the lightning-stroke. In the case, however, where the house stands
between the tree and a piece of water, a pond or a stream, the shortest path for the lightning from the tree to the wet conductor nay be through the hous.
The annual rate of mortality, according to the most recent
weekly foreign returns, was per 1000 in Calcutta 41 ; Bombay, 30 ; weekly foreign returns, was per 1000 in Calcutta 41 ; Bombay, 30 ;
Madras, $39 ;$ Paris, $26 ;$ Geneva, 16 ; Brussels, $21 ;$ Amsterdam,
23 ; Rotterdam, $22 ;$ The Hague, 24 ; Copenhagen, $24 ;$ Stockholm, 31; Rotterdam, 22; The Hague, 24; Copenhagen, 24; Stockholm, $26 ;$ Breslau, 23 ; Munich, 25 ; Vienna, 23 ; Buda-Pesth, 30 ;
Rome, 34 ; Naples, 24 ; Turin, 27 ; Venice, 27 ; Lisbon, 33 ; Alex-
andria, 46 ; New York, 32 ; Brooklyn, 23 ; Philadelphia, 23 ; and Baltimore,
M. De Mollins, of the Société Industriélle du Nord de la France, has communicated a paper on the means of purifying the
rivers now polluted by the acid refuse thrown into them from facories in which wool and hair are treated, by diluting and passing lime and the ferric solution obtained by the action of dilute acid on old iron, or through lime alone. From one dye works alone
in Frankfort-on-the-Maine from 100 to 1000 kilos. of sulphuric cid, at 66 deg., pass into the river per day.
The Austrian Metallurgical Department has recently published the statistics of production of mines and metallurgical works for
1879. The greatest yield in mining matters has been in lignite which amounted to $79,059,352$ cwt.; coal, to $53,786,040$ cwt.; iron
re, $6,282,469$ cwt.; manganese, 34,333 cwt.; graphite, 114,909 cwt The, 6,282,469 cwt.; manganese, 34,333 cwt.; graphite, 114,909 cwt litharge, 32,012 ; zinc, 32,807 ; quicksilver, 4285 ; copper, 2582
in, 332 ; antimony, 846 . tin, 332 ; antimony, 846.
THE first Englishman known to have been a bell-founder by trad Exeter, none of which remain ; and one which is dated 1296 is the most ancient identified in England. A very old bell is still hanging
in the steeple of Cold Ashby Church, which bears the date of 1317 . There Lestershire, 140 of the early period have been found; so that Northamptonshire does not seem to have boasted of a bell-founder till the end of the sixteenth century, being thus about one hundre years later than Leicestershire. Many of the Northamptonshire bells
were made by Newcombe, of Leicester, the two which hang beside ere made by Newcombe, of Leicester, the two which hang beside
"Maria," at Cold Ashby, being by him, with the inscription,
Mons. A. Angot proposes a new formula for calculating altitudes rom barometric observations. The existing method is found to be the season, an elevated station appearing to be higher by day and in summer than at night or in winter. The formula proposed by the height of each station above an imaginary plane at which the barometric pressure is 760 millims. No empirical coefficients as for air and aqueous vapour being taken. M. Angot has, says Nature, recalculated from his formula a new set of tables, nvolving all the corrections that
tables of the Bureau des Longitudes.
Accordivg to Herr W. Birsch, a German process of enamelling
cast iron vessels is as follows :-After pickling and cleaning the vessels, they are covered with a ground made as follows: Quart 50 , fluorspar 7.5 , and borax 22.5 parts fused together. Of this,
16 parts, 6.5 to 12.5 of quartz, 4 to 6.5 of clay, and $\cdot 5$ of bor are ground in a wet mill, with an addition of 2.5 clay and . 6 mass. For the outer coating 2.5 bow, forming mass.
475 tin oxide, 775 bone ash, and 03 to .5 smalt are well mixed
Of this 9 kilos. are mixed with 16 of fine-ground fluorspar, $9: 5$ Of this 9 kilos. are mixed with 16 of fine-ground fluorspar, 9%
borax, 3.25 soda, and 1.25 to 15 nitre, and the whole fused together. The product is powdered, and 30 kilos, of it are w
ground with six cups of about 140 c.c. of white clay, and 3
zinc oxide. This is laid on and burned, completing the work.
In the course of further correspondence on semi-distillation o
oal in gas making, so as to provide a smokeless fuel for London described in this column in our last impression, Mr. ScottMoncrieff says that the scheme has been carried out in practice a a gas work to which he refers. When it was found that the appa-
ratus for making gas on an extraction of six hours was insufficient for supplying the wants of the long winter evenings, the distillation cubic feet per ton. The larger quantities obtained from the coal per unit of time, and the superior illuminating power obtained pe unit of volume tided over the difficulty and rendered the existin charging the retorts. He does not think the difference bed in dis extraction of 5000 and 3333 cubic feet per ton would make material change in this respect. The fuel resulting from a uniforn extraction of 3333 cubic feet per ton is practically smokeless if it
is taken hot from the retorts and immediately quenched with wate

In duplexing long submarine cables it is found, says the Electrician, that one great point to be aimed at is to carefully an exact imitation of the first three hundred miles or so at each lectrostatic capacity of each consecutive mile of cable in it
proper relative position; and for this purpose the "section containing the tests of each mile of cable before it is added to the cable are consulted, and the artificia resistances and inductive
resistances forming the artificial one made to correspond, the remaining portion of the working cable being represented in the that the labour expended on the careful compilation of exact test during manufacture is not thrown away, but is becoming of mereased importance. So sensitive is the balance to this exact slight decrease in insulation at one spot within that distance can corresponding spot along the artificial cable, and this seems to open magnitude of a small fault of insulation. In fact, for finding the distance of a fault in a calle we should have for one side of the
bridge an artificial cable having electrostatic capacity and resistdistance of a fault in a cable we should have for one side of
bridge an artificial cable having electrostatic capacity and re
ances exactly similar to the cable under test when perfect.

MISCELLANEA

A USEFUL index to the technical literature of each montl
ublished in Glaser's "Annalen fuer Gewerbe und Bauwesen." The Royal Agricultural society proposes to hold its annual show Reading in 1882. Reading is considering and encouraging the dea.
The engines of the cable-laying steamship Kangaroo recently topping. THE Hydraulic Engineering Company's offices in London and London, Palace-chambers, 9, Bridge-street, Westminster; Hull,

Messrs. Ransomes, SiMs, AND Head, the well-known agricultural engineers, Orwell Works, Ipswich, announce that, from the Head, and Jefferies, the partnership of Mr. W. D. Sims having expired, by effluxion of time, on December 31st.
The Skeldergate Bridge at York, which was illustrated in ou gers, and the opening for general purposes will take place in the别 660,000 . Mr. Geo. Gordon Page, C.E., is the engineer.
On Monday evening last the workmen of the Streethouse
Colliery of the firm of Hy. Briggs, Son, and Co., together with a few other friends, assembled in the Streethouse day-school, where Mr James Tears, on behalf of 164 subscribers, presented Mr. Alexander gold, as a small expression of their esteem and affection, and their regret at his removal from the colliery where he has during the past eight years occupied the position of colliery engineer
The first application in Glasgow of electricity to street lighting in a permanent form took place on the evening of the 3rd inst. a
the new Herald buildings, Buchanan-street. The proprietors have also contracted with Messrs. Anderson and Munro, electric engirooms of the Herald and the Evening Times by electricity. The Gramme machines are used, driven by a gas engine. The electric lamps are those invented by Mr. Brockie, formerly of Glasgow.
They were described in our Abstract of Patent Specification

THE Custom-house returns show that during last year the sho the previous year. Out of this quantity not less than 285,259 ton were shipped to Scotland, while the amount sent to the United States of America for the whole of the year was only 90,087 tons,
The shipments to France, Germany, and Belgium were much above the average last year, and the total quantity sent out of the por she highed in any onear in the Wrar
What will Mr. Standfield and others say about the oppressed inventions during 1880 were more numerous than in any previou year, having reached 5517. In 1879 the number was 5338 , while
in 1878 they amounted to 5343 . With a few slight fluctuations, there has been a steady increase of business since the passing of th Patent Law Amendment Act in 1852, when a very sudden an of patents pranted reached 523 only; in 1860 the applications were 3196 , and in 1870 they had increased to 3405 .
THE changes which are gradually taking place in the mode and direction of thought of the natives of some parts of India i
perhaps indicated by the appearance in Marathi language of a
small "Treatise on the Locomotive in Theory, History, and Prac tice. It is by ishnu Chimnaji Karve, the station-master a Sanawad, of the Holkar State Railway, and he modestly only advantare of the Marathi members of the Railway Service and for th no doubt find many readers. It is fully illustrated with engraving and etchings sufficiently well executed, and the author deserve every encouragement.
A COMPANY is being formed to work the marble deposits at marble is said to exist in practically inexhaustible quantities, an consists of the purest white and of the dove-coloured varieties, th
two kinds being found on opposite sides of the Sound at a distanc of about a mile and a-half from each other. As specimens from these quarries obtained the first prize and medal at the Sydney
Exhibition, and as vessels can anchor in perfect safety close along side the workings, there appears to be every hope of the enterpris proving successfu.
IT is interesting to notice, as showing that the low price of coal is not due to decrease in the growth of demand, but to greatly
increased means of production, that the export' of coals from the than 300,000 tons, and that the quantity shipped is 150,000 ton
to above that of any previous year. In 1879 the coal shipments were
$1,015,928$ tons foreign, and $2,091,559$ tons sent to other British ports. The Wear occupies the third place in the list of coal-ship place. The increase in the exports of coal has been general at all

The International Woollen Exhibition-to be held in the Crystal Palace-is one of the series of annual international exhibition hearty response from manufacturers at home and abroad. Th various continental and colonial exhibitions have given an impetus
to the subject. Many of the exhibitors at the Leipsic Woollen Exhibition, and the exhibitors at Vienna, Dusseldorf, Brussels, best machine makers will exhibit woollen machinery in motionPlatts Brothers and Company, of Oldham; John Tathan, Edward Sykes and Sons, of Huddersfield; J. H. Robey and Co., of Bury
Hutchinson, Hollingsworth, and Co., of Dobeross, near Man Hutchinson, Hollingsworth, and
chester; Koerting Bros., of Manchester, besides several foreign makers. The directors, at the request of some foreign State,
extended the time for receiving applications to the 1st April
A correspondent informs us that the Government screw
dredger Albuquerque has been dredging the Paumber Channel, Ceylon, for the last eighteen months, and describes the difficulties being met with as very considerable. The Paumber Channel is channel to 18 ft . at spring tices. The soil is very tenacious, and While encountering these the powerful dredger is frequently
frought to a standstill, and the steel lips of the bet away. Notwithstanding this it is again and again put to it till the obstructions are removed, there being no dyname dredging master tomary elsewhere in similar operations.
states it tears its way through, in some instances lifting pieces of
volcanic rock in the buckets of 3 ft . by $4 \frac{1}{\mathrm{f}} \mathrm{ft}$, and that notwith volcanic rock in the buckets onachinery never shows signs of dis-
standing this severe work the mater
tress, tress, though the wind is always blowing strongly, and it is neces-
sary to watch a favourable chance for shifting the anchors and
moorings. The Albuquerque was constructed by Messrs, W moorings. The Albuquerque was constructedment, and steamed
Simons and Co., Renfrew, for the Indian Governmen Channel would out to Ceylon. The deepening of the Paumber Channel would
save 700 miles on the voyage to India, so that it would be to the advantage of the steamship owners if more similarly power
plant was set to work to complete so useful an undertaking.
SIX-COUPLED GOODS ENGINE, LANCASHIRE AND YORKSHIRE RAILWAY.

 We illustrate above one of fifty goods engines recently ordered by the
Lancashire and Yorkshire Railway Company. We shall publish
working drawings of this engine in an early impression, and meanwhile with a stroke of 26 in . The wheels are 4 ft . 6 in . diameter and the wheel base 15 ft . The grate surface is large- $19 \frac{1}{2}$ square feet. The heating surface of the tubes is $943 \frac{1}{2}$ square feet, and that of the fire-box $90 \frac{1}{2}$
square feet- total, 1034 square feet. In sixteen engines the boiler is to
be of Lowmoor, and in in sixteen engines of Bowling iron, and the remainder be of Lowmoor, and in in sixteene engines of Bixtewling iron, and the remainder
be made of either one or other. The inside fire-box and the stays t may be made of either one or other. The inside fire-box and the stayst
he of copper ; the tubes are to be of iron with 6 in. of solid copper tuke
brazed on at the fire-box ends. The tender is peculiar. it it fitted at brazed on at the fire-box ends. The tender is peculiar ; it is fitted a
the front end with Sharp's patent arrangement of cab, tool box and flling
hole combined. The wheels are 3ft. 1 1inin. diameter ; the engine and hole combined. The wheels are 3ft. 1 3in. diameter; the engine and
tender will be fitted with Hardy's vacuum brake.

THE CONVEYANCE OF SEA WATER TO LONDON. Mavy of our readers are no doubt aware that several schemes have
been proposed for conveying sea water to London, and during last
summer a considerable quantity was so conveyed in tanks by the summer a considerable quantity. was so conveyed in tanks by the Great
Eastern Railway Company. Mr. John Hayes, of 27 , Leadenhall-street,
proposes to convey water from the North Sea in proposes to convey water from the North Sea in a specially con-
structed floating tank, resembling the vessel which conveyed Cleopatra's Needle to this country. The features of this plan will be tedededily under und
stood from the engraving. Figs. 1, 2, and 3 represent views of the se stood from the engraving. Figs. 1, 2, and 3 represent views of the sea
water vessel, the dimensions of which are 6 aft. by 1 oft. diameter
and in which A A is the plating or shell of wrought iron Sin. in thickness and in which A A is the plating or shell of wrought iron 3 inin. . thickness
A A are the inlet valver placedo on the bottom of the vessel, and opened
by a screw and wheel at the top of the same, B B are two air outlets oy a screw and wheel at the top of the same, B B are two air outlet.
which allow egress for air displaced by the sea water, c o are wrought
俍 on columns supporting the guard rail also marked c, D D is a strong iron
amework for attaching the tow rope and hook to, E^{1} is a life-buoy
F are two valves secured or kept on their seats by spiral springs F are two valves secured or kept on their seats by spiral springs. ${ }^{\text {F }}$

RAILWAY BRIDGE OVER THE RIVER OHIO, BEAVER, PENNSYLVANIA. (For description see page 16.

INTERMEDIATE BRACINC

FIC 5

MILFORD DOCKS

Considerabie progress has been made with these docks during the last year. Some of the deepest tidal work, many feet below
low water, has been carried out by means of a large iron caisson framing, in the construction of the cill of the large graving dock entrance. The level of the cill is 34 ft . below high water ordinary spring tides, and is in the form of a groove having bearing surfaces on either side, the object of this is to enable the graving dock, dor and 96 ft . wide, to be used as a wet dock or blocks of Cornish granite, the foundation of which is on solid ock, and was excavated to an average depth of 8 ft . The gate o caisson for this entrance is a floating caisson, and the largest o its kind ever made. Instead of having rollers at the bottom they will be fixed to the underside of the ded coverig. has been constructed at the Milford \} Haven Shipbuilding and Engineering Company, whose works are situated in wifne constructed at the same works, all of which will be launched this month.
A large caisson chamber, 100 ft . long and 45 ftt . $6 \mathrm{in}$. deep, and
15 ft . in . wide, for receiving the caisson when opening the graving ock, has also been constructed, the quoins to these walls are of this chamber was cut out of the rock to an average depth of 12 ft . Six large Pulsometer pumps were employed in pumping out the
tidal water during the construction of the cill of the raving tidal water during the construction of the cill of the graving
dock, the depth of water was about 25 ft . and the area of caisson was 60 oft. by 30 ft . This volume of water was discharged in about one hour and a-half. Similar means were adopted in gettingin some
deep foundation work for the walling between the graving dock and entrance lock, the average depth of which is about 30 oft.
belowlow-waterordinaryspringtides, this wall isof Ashlarlimestone belowlow-water ordinary spring tides, this wall is of Ashlarlimestone
masonry obtained from quarries situate on the shores of Milford masonry,
Haven.

Some deep foundations were obtained by means of monoliths constructed and buit in concrete on the surface of the ground
where the foundation is to be obtained ; the interior of the monolith is then excarated, and the weight of the monolith makes
the whole mass to sink , the sides of which are built up as it descends, or this may be built up above high-water mark before the cends, or tis exavated. The largest of these now in operation is at the entrance of the lock, for the foundation of a breakwater.
The size of this monolith is 36 ft . by 2 tft., and the sides average about 6 ft, , and has to go down about 57 ft . below the surface of
the ground before reaching the rock. This mode of sinking fo the ground before reaching the rock. This mode of sinking for
foundations is novel in this country. Piers for bridges, breakwaters, and lighthouses could easily be constructed by this
method. A channel has been cut from the deep-water channel of the Haven to the entrance of the lock and graving dock, and this gives 34ft. of water at high-water ord
width of thiss channel is about 100 yards.
The Great Eastern steamship, which occupied the site of the
large graving dock for repairs, was undocked in October, large graving dock for repairs, was undocked in October, and is past year are chiefly the construction of walls, and the filling in
and forming backing behind the same, as well as making and completing the sea embankment, which is $100 f t$. wide and about 80oft. long.
The dock
ever, the first half will be opened for traffic whilst the other is under construction. The first section of the present contract will be completed in about six months. The large graving dock
having an entrance at either end can be used as a tidal basin or lock, and can be entered from the wet dock as well as from the of about 300 ft . long and is capable of being deepened tock area ships drawing 20ft. of water; an emptying culvert from this little outside the dock wown to the extra depth and discharges itself out of the rock and a puddle trench alongside this cuts off all land
out springs. There will be a large repairing yard, covering several
acres alongside the large graving dock, which is of such dimensions that it will accommodate the largest ships afloat including her Majesty's ironclads.
down in connection with the quays and wharves will be laid
frontage of the 30 acres of the coalfields. The frontage of the 30 acres of the dock will be about 5000 lineal feet, additional 7000 ft . of whar fage when the whole scheme is complete,
with 26 ft . of water over the dock area. with 26 ft . of water over the dock area. The entrence complecte, will
be 50 ft long and 70 ft . wide, with 34 ft . of water over cill at
high-w high-water ordinary spring tides ; one side of this has been built
during the last year. The sea embankment already alluded to during the last year. The sea embankment already alluded to
is used on the the sea-side in discharging vessels bringing
material to the docks. A breakwor material to the docks. A breakwater has been partly constructed,
and will be extended to its full length on the south-western
side of the dock side of the dock, for the protection of the entrance to the lock Two pooverfun electric lights supplied by the British Electric
Light Company, have been in use duving works, and the workmen have become so accustomed to these
splendid light that they could scarcely be induced to descend into the deep foundations with any other light. It is intenced to une
this light permanently when the docks are this light permanently when the docks are opened. There will
be powerful pumps connected with the graving dock, and
hydraulic power for the working of the caissons and cranes. well supplied. well suppied.
with three proximity to of the docks there is a deep-water iron pier,
Railway and South Wales coalfied wited with the Great Western Railway and South Wales coalfields. This pier will be used for
landing passengers, as it can be approached at tide. There are a powerful hydraulic coal-lift and several hydraulic cranes attached to this pier, capable of discharging 1000 tons of
coal in twenty-four hours. This pier is novel in construction being built of wrought iron solid bars or screw piles, and was the
first of its kind erected in England. It was designed by the first of its kind erected in England. It was designed by the
engineer of the dock company, and is nearly 1000 it. long and
40ft. wide. The contracton 4itt. wide. The contractors for the docks are Messrs. S. Lake
and Co., F Westminster, men of great energy and enterprise
and owing to the great interest employed, very few accidents have occurred during the men months. They have erected a large soup kitchen and drying
room on the docks for the cone during the tides. They are supplied with men that work wholesome soup when they leave off work. A quart of gooen 400 and
500 men have daily been employed. the designs of Mr. J. M. Tompored, M.I.C.E. They docks are from
near the old town of Milford, and are about foure miles from the entrance of the harbour. The Mirlford H-haven
dock and railway run parallel to the dock walls fornearly half a anile.

LETTERS TO THE EDITOR.

(We do not hold ourselves responsible for the opinions of our
the de bay propeller.
SIR,-Enclosed you will find a translation of a certificate given
y a pilot of Sulina, who took the Cora Maria up and down the by a pilot of Sulina, who took the Cora Maria up and down the

Danube on her last voyage. The directors would esteem it a | 159, Piccadilly, W., 29th December, 1880. $\begin{array}{l}\text { W. J. TANKRER } \\ \text { Secretary. }\end{array}$ |
| :--- |

icg-CossuL of Grecer. (Signature illegible.)

It having been reported from Lloyds that the s.s. Cora
Maria put back to Bremerhaven with damage to serew, I shall
feel obliged if you will allow me to contradict that report, as the feel obliged if you will allow me to contradict that report, as the
vessel put back on account of stress of weather alone, and the captain has since written to say that the De Bay propeller with
which this vessel is fitted is entirely uninjured though severely Tested by the enale.
De Bay's Patent Direct-Acting Propeller W. J. TANNER,
Secretary. January 4th.

Competitive plans.

SIR, -I was pleased to see in your paper of the 17 th December
last that your correspondent " CC. E ." entered so stron against the system of competition so much in favour with sanitary authorities.
Since the
is of the then two other advertisements have appeared. One, which is of the usual kind appears in last week's Builder, from the
Hindley Local Board, who offer a premium of $£ 60$ for the best scheme of sewerage for their district, and another which merits the particular attention of all engineers who want a good invest-
ment, appears in your papers of 24 th and 31 st December from the ment, appears in your papers of 24 th and 31st December from the
Town Council of the Borough of Pembroke, who offer the munificent premium of £25 "for the best report with plans and specifica-
tions for obtaining and supplying the district with water, estimate of the cost of the same," and it further states that the premium will be paid " only" on the report, \&c., being approved of by the Local Government Board.
Are the Town Council of the borough of Pembroke having a litte innocent Cqristmas amusement, or are they so utterly igno
rant of the adequate remuneration of engineers that they offer a sum as premium that would barely pay expenses, and under such conditions?
Your correspondent, "C. E.," however, overlooked the fact that engineers are so eager to respond in numbers the advertisements
will continue to be made. The remed lies with them steadfastly refuse to submit schemes, and such advertise ments as that of the Pembroke Town Council will cease to appear, and the local surveyors will either have to leave sanitary engineering
alone or mature their schemes without recourse to athe or mature their schemes without recourse to the ideas
Assoc. M. INST. C.E. January ${ }^{\text {5th. }}$

the anthracite,

SIR,-I believe the true reason why the engines of the Anthracite nearly strong enough to bear 350lb on on the square inch in the highpressure cylinder. I fancy that with the draught urged a bit the tity required by the Anthracite engines is very small. The of fact, the engines are only worked to about , because, as a matter power. The attempt was made, however, to work the engines of
the Loftus Perrins ill and was a disastrous failure, ago, that the original steam pipe had to be taken out and a small one
put in, and that whenever the Loftus Perkins got more than 100 lb or 1201b. of steam in the hish-pressure cylinder she broke down. of the ththe same Mr. Perkins could sayanatwhat just as unfit for a heavy strain. If she was crossing the Atlantic, it would be interesting. It was
nothing like that obtained by Mr. Bramwell, I venture to think. It is a great pity that Mr. Perkins has permitted a really good or even a good locomotive designer, could get him out a set of
engines which would engines which would do his principle credit. To carry 350 lb .
of steam in a boiler and work at 120 lh that high pressures are economical. Mr. Perkins should oo all the the
way while he is about it, and employ some one to design his engines who is competent to the task, and able to torn design his
outa job Which will not break down.
Liverpool, January 4th. \qquad Marine Enginerr.
calcareoús or basic linings used in the conversion of cast iron into cast steel.
SIR,-Persons contemplating using the fluorine process in con-
junction with basic linings should
issued issued to other inventors since 1870, as in the patent No. 1051 of
1870 for this proentents and limestone are specified. Previous to thisis limestone had been
used in puddling fer Talabot's English patent of 1857 as a lining for the Bessen Leon verter, but up to the date of my patent there had been no publica-
tion of the use of magnesian lime or limestone applications of them thagnesian lime or limestone. In my first
an ined pulverised, rammed behind
and magnesia bricks vessels with silicious linings, and in the form of pulverised raw dolomite mixed with ; 2 per cent. of pluorspar,
applied dry or mixed with water when used in the hearthe of and whery furnaces, and as bricks when used for the other parts and when applied in vessels having vertical sides, molasses is mixted
with them to form mortar applied plastic, and when it becomes
dey dry is ready for use.
The magnesia burnt bricks, described by Caron, in 1868,
in Dinglers Polytechnic Journal, vol. 189
were were used in the beginning of the year 1872 in. 110 and the Bessemer
process, in gonjunetion with the e-agenter process, in gonjunetion with the re-agents of the Henderson fluorine
process, by Tessie du Motay in his horseshoe-shaped converter

In June, 1872, whilst the writer was showing the process in the
puddling furnaces of the Bowling Iron Company, their superintenpunt, Mr. J. E. Goldwyer, sent a considerable quantity of their
desual
usual usual quality of pig iron to France to be converted in du Motay's
appparatus. Mr. Goldwyer assisted at the trials, and reported on
his retuus. his return that the phosphorus was all removed and most of the
carbon. Steel was thus formed by partial decarbonisation from carbon. Steel was thus formed by partial decarbonisation from
pig iron containing 0 . 65 per cent. of phopphorus by the aid of the
re-agents of the tlo process.
In the
tear 1873 Erdmeyer described, in Dingler's Polytechnic Journal, a burnt magnesian lime brick, composed of certain
specific proportions of lime, magnesia, oxide of iron, silica,
and and patented by Sidney Gilchrist-Thomas in 1878 , who claim that the difference between their brick and that produced by Erdmeyer is that theirs is burnt at a higher temperature, and that it is made for the steel process, whilst Erdmeyers's is made for general uses.
There need, however, be mo controversy over the bricks, as
are unnecessary for lining the hearths of reverberatory fye has they converters, as the basic substance may be appliad plastic, and in effectively, and not contilict with the claims of others.
JAIES HFNDERSON.

certificated enginemen.

SIR,- I have been asked by numerous enginemen and engineers to give my opinion as to what should be done to obtain certificates for
men in charge of engines and boilers to prevent loss of life in this country-the land and birth-place of engines. To reply to all occupy more time than I can afford, and therefore I most them through your journal.
The Maidstone boiler explosion is a simple sample of that which may be expected, corressonding to the sample of men who
 Boilers have exploded in them before, but warehouses and mills, boilers, made of first-class material and workmanship, having been
made a victim, and that gentleman a thorough practical engineer made a victim, and that gentleman a thorough practical engineerl
he has fortunately been brought face to face with the fact that all
 of what was no doubt as good an engine and boiler as was ever turned out of a shop. Mr. Aveling did not surprise me in recom-
mending that enginemen should hold certificates, and specially raction erifith, and that was of course his sphere, but tere exploding boilers, that all enginemen should liold certificates of
no qualification to take charge of boilers. I have held the opinion of seeing the day when all enginemen will hold a Board of Trade certificate. I have given up the idea of anyone else issuing one.
Experience makes perfect, and I think circumstances are every day ending to bring about the realisation of my long-expected hope seeing what engine manufacturers have done for us, and for the
world-done out of their own pockets-that the time has arrived for the Government of this country to do something for enginemen,
that is to see that men are properly qualified to have charge of the machinery that the ingenuity of Enactished to have charge of the enhance its wealth. There is not the slightest doubt but what Mr. onvince him that there is a striking contrast between what is and What should be.
But as his reports will come before the President of the Board of the world but what the present shrewd and business president will see that if there is one thing more than another that demands his instant attention it will be the utter inconsistency of the dangerous hem, and I have no hesitation in stating that at the present noment there are hundreds of boilers under warehouses and paveand the men in charce know mo more than Adam would what likely to be the result, Of course it is lnown 1 at my own cost, some short time ago, to establish a system of
granting certificates which was a failure and a great one to granting certificates which was a failure, and a great one to
myself, but it set a ball rolling which will, in my opinion, never cease to keep moving, until the whole status of enginemen is and boilers shall heald a Board of Trade certificate, and that shall certify that the man has undergone something different from being driver before he is placed in charge of an engine and boiler. It is my intention to place before the President of the Board of Trade offering certificates hundreds of men now working at the vice woul gladly, with others whose competency no one would deny, hail with joy the glad tidings that the trash and humbug which now prevail
in many places is doomed. When Mr. Aveling stated he had to in many places is doomed. When Mr. Aveling stated he had to
make a red mark to point out the working pressure, because the men in charge could not read figures, he not only showed what
mifficulties he was contending with to selure the firm against accidents, but he showed also the insecurity of life an limb, and he clenched the fact by dropping on a man with his
valves locked and the boiler charged like a cannon, and he applied valves locked and the boiler charged like a cannon, and he applied
to a magistrate for a summons and-save the mark!-was refused it. If he had asked for a summons against a cabman for Steckless driving he would have had it. MIchaEL RevNol.Ds.
Stande standeford, Wolverhampton, January 3rd,

the theory of cold air machines.

SIR, - In replying to " Φ. n.'s" '" letter of Dee. 4th, I will dea deny that I ever asserted "that air, if compressed very slowly, wil not augment in temperature", On the contrary, I consider any
suoll statement to be exceedingly unscientific. The rate of comsuol statement to be exceedingly unscientific. The rate of com-
pression, supposing the assumed conditions-whatever they may
then wise - to be fulfilled, has nothing whatever to do with the tempera ture of the gas at any moment during the change in its volume
In saying this, of course I take it for granted that the rate o compression is constant throughout, and that the internal pressure
of the gas, and the external force against whioh it acts, are at every moment in equilibrium, these being the theoretical condi applicable.
material were possible, then the change in the condition at any volume, during the compression of a permanent gas behind a piston
working in that cylinder in working in that cylinder, is quite independent of the piston's speed
In every case it is merely a question as to whether the assumed conditions are fulfilled, and then speed does not enter into the calculation.
From what " Φ. II." has written he appears to be under the expansion that the laws laid down for isothermal and adiabatic expansion are purely empirical. This is, however, by no means
the case; both laws can be deduced from the general law for the variation in the heat or energy of a permanent gas by subjecting isothermal law to the special conditions assumed in the case o a variety of test cases, by which directly and indirectly the accuracy of the general law has been proved, and certain conclusions to
which theory has pointed have been verified by direct experiment. Admitting, therefore, that the general law is accurate, there is no reason for doubting the special oonclusions derived from it by mere
fathematical processes, provided the limits within which the gase

Jan. 7, 1881
-to which the law applies may be considered permanent-are not
exceeded. The general law referred to is, like every other in physies, based partly on theory and partly on well authenticated
experiments, and the number and variety of cases in which it has experiments, and thle number and variety of cases in which it has
been found to agree with practice leave no doubt as to its accubeen found to agree with pract
racy within the speecified limits.
With regr an With regard to " Φ. M.'.'s" denial of my former statement, that
when 1 lb. of air is compressed isothermally the energy contained When 1 b. of air is compressed isothermally the energy contained
in it is the same as before compression, my answer may be taken
from "\$. .'s" own statements. He says: "Acording to M.
 expand adiabatically after having been isothermally compressed to
half its original volume-" about 108 deg. .". Now this half its original volume-" about 108 deg. ". Now this
fall in terperature represents the work done in expanding from a
pressure of 29.4 the per square inch to the original pressure of $29 \cdot 4 \mathrm{lb}$. per square inch to the original volume, and the energy contained in the gas after this expansion is less than its
original energ by exactly this amount; the work done b be epan-
sion in this case is all derived from the energy contained in the air sion in this case is all derived from the ennergy contained in " Φ. 1 ."
before compression, and is therefore not gained, as supposes, in a scientific sense; it is merely made available for
external work. We have in principle a parallel in the case of the application of a condenser to a steam engine , by using a condenser
more work than othervise is obtained from a fiven weight of steam, but it cannot be asserted that the equivalent amount of energy does not in any case exist in the steam, or that the extra
work due to the use of a condenser is only equal to that required for working the latter. The energy, man the case of the air work, in the one case by compression, in the other by the use of a
condenser. If the process of compressing isothermally and expanding adiabatically were repeated, with every repetition the previously, the energy exerted in expansion being not a part of the energy expended on compression-all of which goes, for instance, that originally contained in the pound of air compressed at atmospheric pressure, temperature, and volume.
It would, under certain circumstances,
part of the energy contained in 1 lb . of air at atmosshe to utilise a and if the energy thuse, witilised tirst compressing it isothermally represented by the adiabatic expansion of the air as assumed above, then its condition, after it has parted with that quantity of energy
will be identical with what would have resulted from isotherimal For instance, by causinnt expansion as perpeviously assumed. volume, and pressure to part with a portion of its heat to a body of lower temperature; for example, a bar of iron of such dimen-
sions that the temperature will fall 108 deg. before equality is established, as regards temperature, between the air and the iron, sam we shall-if the volume be maintained constant-have the
same ersultant condition as though the compression and expansio in the manner assumed by " Φ. II." had taken place, i.e., atmo spheric volume, temperature 46 deg., and pressure 11.7 ib . This
is sufficient proof that no energy is gained by isothermal com-
pression apart trom that which is converted into heat pression apart from that which is converted into heat. In a former
communication, " Φ. Π." expressed a doubt as to the correctness of the formula used for determining the work necessary for adia
 $p v$ are respectively pressure and volume at any moment during expan-
sion, and p_{1} and v_{1} initial pressure and volune; hence for the terminal pressure, where $v_{1}=\frac{1}{2} v-, p=29 \cdot 4\left(\frac{1}{2}\right)^{1 \cdot 41}=11.06 \mathrm{lb}$, an against
117 as stated by " ϕ. 11 ." formula for the work done, resulting from the law referred to, and determined by the expression $\int p d v$.
In conclusion, I repeat that the energy contained in 1 lb . of air the same as previousily, and the fact, that if the same amount of energy developed by adiabatic expansion after such compression the same as after compression and expansion, is evidence of the buth of this assertion
Fruth of this assertion.
F. F . Clarkerk done in adiabatic expansion, formula (22), p. 903 of
D.

Sir, - Mr. F. W. Grierson's excellents.

SIR, -Mr. F. W. Grierson's exellent paper on the above subject,
read reeently before the Sociect of Engineers, calls, I think, for
a wider discussion than that allowed for on that as one who was privileged to be present, and to hear the remarks
made thereon by Mr. Hinde Palmer, M.P., and others, I would venture to make a few remarks on the subject. I cordially agree
in the main with the substance of the paper. This said, I would point out that the mere reduction of fees or stamps in itself would not, in my opinion, stem the tide of American encroachments in
the home and colonial markets, and I think the statement made
by a speaker-and embodied in principle in Mr. Anderson's Bill by a speaker-and embodied in principle in Mr. Anderson's Bill-
that "half a loaf is better than none," does not hold good in this
case. case. I mean that no compromise or half legislation will do the
inventor-or the public, which in the end is the same thing-any good in the long run. It is. now more than twenty-eight years
sinecte the present patent law was passed, and if a half measure were to be passed now we mav wase thave wait and ather a halirty measure
or more before we get its defects remedied, the truth of the matter
ore being that few statesmen in this country are alive to the importance of the subject, and fewer still are conversant with the
requirements. While we wait thirty years or more for another
improved patent law the Americans will have gained such a start improved patent law the Amer
that we shall be too late again
What our statesmen as a
What our statesmen, as a rule, do not understand, but what
American statesmen are alive to, is, it seems to me (1) that the American statesmen are alive to, is, it seems to me (1) that the patent law and practice; ; (2) that the more patents there are in
force the better for the nation-vice versa, the more "orphan" patents we have the worse we are off, for a a patent come to an un-
timely death it is nobody's interest to push, and hence no one man nor the whole nation reaps any benefit thereffrom ; (3) that the the
greatest facility should be offered to the poorest to make it worth greatest facility should be offered to the poorest to make it worth
his while to improve existing processes and apparatus, and to in-
vent better ones ; of the nation deinand that there should be a rigid but fair examination as to the novelty of inventions sought to be patented; $;(5)$
that the inventor should not be taxed because he spends his time and money in the public interest, but that he, on the contrary,
should be assisted and encouraged in every possible way, and that he should pay the State no more in the way of stamps or fees than
is found needed for defraying the Patent-office experses, and that any surplus should be solely devoted to model museums or any
other things that directly might benefit the inventor. I need not waste words on the present unrighteous and foolish practice of
compelling the inventor to pay $£ 140,000$ into the Exchequer yearly compelling the inventor to pay $£ 140,000$ into the Exchequer yearly.
But I would again urge that a proper examination as to the novelty
隹 of the inventions sought to be patented is a sine qua non in any new
Bill that shall have the effect of bringing this country back to its eading position as to material progress. I do not say that the
examiners shall have the right to deny any one a patent if he, in examiners shall have the right to deny any one a patent if he, in
spite of their distinct advice, persists in it; but I Io say that the
patentee shall be reauired to put in such discloining elays. examinerss, on appeal to chief chief examinerss if if need be, may advise, in
pate
order that the public order that the public may have the fullest and fairest guidance in
the matter. I believe in having the whole thing above board, and that the whole correspondenee between the patent examiners and be accessible to any one on payment of a small inspection fee. ${ }_{\text {. }}$

As to the keeping in force of patents by means of yearly progres
sive payments, we find such yearly payments troublesome, and sive payments, we ind such yearly payments troubesome, and
should rather advocate a third year's stamp of say at most $£ 5$;
sixth year's stamp of $£ 10$ and a tenth year's and fifteenth year's sixth year's stamp
As long as some of our leading statemen look upon the inventor taxed, I do not hope for a very good patent law; and I say, let us taxea, Io on as we are than uousettling without permanently
rather go me the
helping the.matter. I believe that it is of the greatest importance helping the matter. I believe that it is of the greatest importance
in any future Patent Bill to insist upon distinct provisions as to the in any future Patent Bill to insist upon distinct provisions as to the
examiners being practical engineers and chemists, so that the legal element be kept out almost entirely. In fact, I submit that oping in Germany, but in an improved form, especially by making the examiners mo
the United States.
All who take an interest in the matter would do well to get information on the spot, or from patent agents here, as to how the
American and German patent laws really work, that they might earn the pros and cons, for merely studying the patent laws themI
I trust this may open a discussion that shall prove useful.
33, Chancery-lane, W.O.
SIR,-I have no inclination to enter- into an irksome newpaper
discussion on the very broad subject of cheap patents, and there fore content myself with the following remarks in reply to the two letters which appeared on this subject in your number for the 17 th
ult. I may, however, first remark that in your leading article of the 10th ult. you have unwittingly misrepresented some of my lete paper when printed.
I carefully guarded myself from using any combination of words
which could
be fairly interpreted as a statement that in the Which could be fairly interpreted as a statement that in the United States an inventor can actually obtain a patent for $£ 7$, any
more than that he can in Great Britain obtain a full patent for $£ 175$.
Then These amounts are the bare stamp duties in each case, and the patentee is almost necessarily put to some additional expense; but on the average an unopposed fourteen years' British patent costs
the inventor ten times as much as an unopposed American patent lasting seventeen years. For confirmation of this statement, see

I cannot agree with "Patentee" that there is any fair compariso between a thrree years' patent there and a seventeen years' patent in
he United States, and I doubt if any person can. Of course that " ent. of the 200,000 patents now in force in the United States, ${ }^{\text {" }}$ ny more than "Patentee" can prove the contrary ; but if his at as many as 10 per cent. of the said patents as a fact, he has furnished a a very mowerful argunent for the States, as nothing like that number of British patents are now making money, for there are not 16,000 in force. If "Patentee question that is incapable of being answered, I have no objection to offer to his so doing, but I regret he did not favour me by drawing attention to "the wild and illogical assertions", he
believes to have been made in the paper, when he had the "misfortune" to hear it read.
I have nowhere stated that "this country annually sustains o America solely led artisans of the highest class, who emigrate reigns there," or anything tantamount thereto, but I pointed out hat cheapness of patent grants in the United States is a great inducement to our mechanic inventors to go there.
There being no record of "the names and circu
names and circumstances " of ou of their patents," the information that "Senex" asks and date be had, but many employers of skilled labour know of instances of English artisans taking their inventions to the United States to develope and bring them out there, under their own supervision.
The mere possession of an American patent would not benefit the English mechanic without opportunity of pushing its introduction into use, but when he has gone to the States and obtained a patent, he is in a position safely to make as public as possible his invention, and to negotiate with any manufacturers and capitalists that he pleases, whereas a three years patent here is not long enough safficiently to protect and benefit the inventor. Under the ol and when the present patent law came into force in 1852 the stimulus to invention was so great that the number of patents was a great benefit ; but although they have made great strides sinc then, the American manufactures have made comparatively
greater. There can be no doubt that our manufactures are very seriously affected-or "partly ruined," as, perhaps, "Senex would express it-by our present expensive patent law, the stamp duties under which are the most oppressive in the world; our rades are notorious instances
As an example of the latent invention of the workmen of thi present stamp duties, the result of the award system now in for in the shipbuilding yard of Messrs. Denny, of Dumbarton, may be pointed to. This scheme has been in force for less than four
months, and the highest award that can be granted is only $£ 10$ and yet they have already received twelve claims, of which only three have been rejected, seven have been found valid, and two awarded. Considering the novelty of this scheme, and the very
short time during which it has been in operation, this short time during which it has been in operation, this result must
be considered highly satisfactory. Were all large establishment to adopt some such system, the number of beneficial labour-savin inventions broug
At present Great Britain is, beyond question, the greatest manu-
facturing country of the world, which fully of patents taken out here by foreigners; she is, however, not quit comparatively as she used to be, and the United States are so competition with the mother country is being mation that he seriously felt. The Americans attribute their rapid success to their efficient patent system-vide their numerous trade journals, and
even the official reports of their Patent Commission. Surely will be readily admitted by all that the country is der. Surely it invention for advancement in prosperity and wealth, and that reduction of our exceptionally high patent stamp duties would greatly
desired.
In conclusion, permit me to state that my only object is believe to be the very hurtful action of our exorbitant patent stam duties upon the prosperity of the country, and therefore I do not
think it worth while to bring in irrelevant matters, such as change," or "the persuasive eloquence of the Mormons.""
January 1st.
Frank W. Grierson.
he atalanta
Sir,--It is only in a scientific paper that a point of much public out clearly.
to say is, whether the Atalanta, when she left England in November, 1879, was a stable ship; and the conclusion to. which we have
come, after a full consideration of all the facts of the case, is that
she was on the whole a very stable ship, except at large angles of
heel ; that she was more stable than when first commissioned as a training ship; and much more so than in her previous commissions as a man-of-war.
It has been publicly stated, on the other hand, by a writer having apparent access to all the documentary and other evidence, that here is agreement between Mr. John and Mr. Barnaby that the
alterations made had increased stability at small angles and atterations made had increased stabiity at small angles and
diminished it at the large angles more likely to be reached by heavier rolling.
These two opposing statements have been regarded in some
quarters as consistent with each other. I enclose a copy of the quarters as consistent with each other. I enclose a copy of the curves of stability of the Atalanta and of the Juno before the
alterations as they were sent to the committee and accepted by them, as approximately correct representations of the conditions of the lost ship, in the two distinct periods of her history. The
ordinates of these curves represent, at every angle of inclination

From this you will see that the stability was increased by the would have had no righting power at 7 deg d of inclination from the upright, the Atalanta had as much rightting power at 76 deg as the Juno had at 10 deg. The committee state the facts as to
atis comparison, the writer quoted states what is manifestly inconthis comparison,
sistent with them
The force of of the words of the committee, "except at large
sistent withes
and angles of heel," is that some merchant ships with deep holds and
heavy cargoes stowed low down have considerable righting power a heavy cargoes stowed low down have considerable righting power rat
90 deg. of inclination, if things donot shift their places, and if the water does not enter the ship. Ships of war do not possess this quality,
whatever it may be worth, and the Atalanta did not. It is this whatever it may be worth, and the Atalanta did not. It is this
fact to which they draw attention. It will be interesting to youu readers, probably, to have the means afforded them of correctly appreciating such corce as the
Admiraly, December 30th.
bye-products of the iron manufacture.
S Sir, - With the view of ascertaining whether the fluorine con-
tained in the fluorspar used in conjunction with oxides in the manufacture of steel is evolved as gas or passed into the cinder, the cised wased anitysed mixed tho fluospar and titanic acid was thus insured in the slags, by which means it was readily identified as being the lag of this process, as it is never present in the cinder from ordi nary puddling; this and the presence of lime, and the small per The trial of the process was made at the B reating cinder pig iron in a furnace that was fitted $\begin{gathered}\text { Ironworks } \\ \text { with slags }\end{gathered}$ ccumulated from puddling the refined metal made at these works. The fluorine in the mixed fluorspar an
cent. by weight. The analysis is :-

sasumiona
Aluide of
Oxide
Phasph
Phime
Lime

iron ... of iron

.. ..

The bar iron made from this pig iron contained 0.012 per cent. of phosphorus. The slag from puddling the refined metal by their
usual process, according to analysis by Riley, contains :-
 Sesquii-oxide of iron
Oxide of manganese
Alumina Sulphur
Phosphoric
Phosphoric acid
$\overline{100 \cdot 30}$
It is thus shown that the cinder from this process does not contain the fluorine, and that the fluorine-which has never yet been
isolated-must have absorbed silicon and phosphorus and carried them away as vapour, as they are not found in the slag from inferion pig iron in but small proportion to slags from superior cast iron,
which had been previously refined before it was puddled. The
for smelting with pig iron of the best quality.
New York, December 17th,
HE BRISTOL STEAM TRAMWAYS.
Sir,--In your last edition an anonymous correspondent asks give me his name and address, I shall be glad to give him an
HENRI. HUGHES.
Loughborough, January 5th.

The London Assoclation of Foremen Engineers and Draughtsmen. - The twenty-eighth annual meeting was held
at the Cannon-street Hotel, on the evening of Saturday, the 1st inst., Mr. Joseph Newton, C.E., presiding. Messrs.
Bernard Beard, and Joseph Alexander-of the firm of Messis. Appleby Bros.-and Mr. Walter Heath-of Messrs. Hall, Beddal John Batey, of Mr Fsson's works wasnomin ted in the The auditors-Messrs. Ives and Reed-next produced the balance sheet for the past half year, together with their report thereupon.
Both statements were deemed highly satisfactory, and were accepted Both statements were deemed highly satisfactory, and were accepted
without discussion, and with compliments to the secretary-Mr. Wamely, Aubrey, C.E. The three separate and distinary, superannuation, and widows' and orphans',
nat tood respectively as follows : $£ 46019 \mathrm{~s}$. $4 \mathrm{~d} . ; £ 214918 \mathrm{~s}$. 5d.; and
$£ 9314 \mathrm{~s}$. 2 d .; thus
$£ 270411 \mathrm{~s}$. 11 d ., investel or all purposes. The chairman then proceeded to deliver his opening theme of Mr. Newton had reference to those members who of the honorary, and two of the ordinary class, viz. :-Messrs. Alexof the Monorary, and two of ailivray and James Robertson, and Messrs. John
ariggs and Leonard Carden. Passing from this melancholy subject, the speaker reviewed at length the history of the society, sense, and predicted for it a yet higher stage of development and of usefulness in time to come. The scientific discoveries which distinguished the year 1880-and especially those in respect of electri-
city-were glanced at. Colliery disasters, gas purification, and other subjects of interest were touched upon, and finally Mr. New-
ton announced that, as he had now completed twenty-two years of office, and been twenty-one times annually and unanimously reassociation. Accordingly after thanking all the members-present and absent-for past courtesies, he then vacated the chair and left the meeting. Subsequently Mr. Robert B. Vinicombe was
president and Mr. William Yirtue vice-president for 1881.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTICE.

*With this weel's number is issued as a Supplement, A Conversion
Table for French and English Measures of Length. Every cop

TO OORRESPONDENTS.

* In order to aroid trouble and confusion, we find it neceessary to inform correspondents that letters of inquiry addressed to the public, and intended for insertion in the column, must, in
cases, be acompanied by a large envelope legibly directed by the writer to himself, and bearing a ad. postage stamp, in wraer that
ansvers received by us may be forvarded to their destination. No
notice will be taken of communications which do not comply with notice will be taken o.
these instructions.
We cannot undertake to return drawings or manuscripts; we All letters intended for insertion tep copies All letters intended for insertion in The Enginerr, or
containing questions, must be accompanied by the name and containing questions, must be accompanied by the name and
address of the writer, not necessarily for publication, but as a
proof of good faith. No notice whatever will be taken of proof of good faith. No

BARTON'S FEED-WATER HEATER.

 Sir, -Can any of your readers inform me who are the makers, ofBarton's self-acting feed-water heater? London, January bth.

RESTORING BURNED STEEL.
(To the Editor of The Engineer.)
 NEER by a Glasgow firm
Hereford, January 4 th.
REGENERATORS.

REGENERATORS.
(To the Editor of The Engi

 Siemens chamber?
Helens, December 3ist.

 A complete set of ${ }^{\text {Th }}$ Th
price 40 guinees.

 ADVERTISEMENTS.

MEETING NEXT WEEK

The Issiruviros of Cryit Exarseres.-Tuesday, Jan. 11 th, at 8 p.m.
Inuugrual address of Mr. Abernethy, President, and monthly ballot for
members.

THE ENGINEER

JANUARY 7, 1881.

1881.

The depression against which almost all industries have been struggling for several years has been steadily decreasing since the commencement of the past year. When writing our customary review, retrospective and prospec-
tive, there seemed some promise of coming prosperity. A great advance had been made in the values of iron and steel, and though that advance in the values of the pro ducts of our most important industries had been too rapid and too great to indicate the stable improvement in trade, which had been so long looked for in vain, it indicated a return of the confidence of capitalists in the value of public works for investment. The early improvement in demand
came from America, and though it was seen to be but of came from America, and though it was seen to be but of
limited duration from that country, it was nevertheless limited duration from that country, it was nevertheless urged that the improvement would become general as it
has so often commenced in the West. The demand has has so often commenced in the West. The demand has spread as predicted, and work of all kinds is becoming
daily more plentiful the world over. Accumulated capital daily more plentiful the world over. Accumulated capital is finding application, and, until the re-accumulation
of an excess, work will probably not be lacking. Not that of an excess, work will probably not be lacking. Not that the accumulation reduces the work to be done, but much of it is generally expended in times of great prosperity in increasing the means of supply until this exceedsthe demand. Capital then has little to do until demands equal that increased power of production, and so activity and inactivity follow each other in not very dissimilar periods. That the depression is not so much the result of greatly decreased production, but of cessation of material increase, may be stagnant years the production of iron and steel has been but little less than in the busy years 1870-3, the average production in these four years being 6.474 million tons, while in the years $1874-9$ it was 6.335 millions. The exports, however, dropped considerably from 1873, but
nearly re-reached the 1873 total in 1879. Prices are now considerably higher than in 1878 for iron and steel, but the effect of the enormous expenditure of capital in developing our coal stores is still seen in the very low the exports are as great as ever. There is, however, now some evidence that the existing means of production will gradually become much more fully employed, and, amongst other reasons for looking forward to prosperous times, is the appearance and support of large numbers engineering projects at home and abroad.
The year 1880 has carried with it the records of the completion or progress of several important engineering works. It also carries the records of he failure of a piece
of engineering construction which has detracted much from the almost universal praise which English bridgework has acquired for its strength and quality, if not for its archifailure of the Tay Bridge, on the 28th December, 1879 occupied several months of the past year, and brought to light some almost incredible instances of want of ability or judgment, and supervision ; and evidence of workmans The bridge was blown down in a heavy gale, against the stress of which its weak-legged piers were incompetent to do battle. The investigation into the failure showed that the assumed maximum pressure of wind employed in calculating the stability of the structure was much too low for exposed situations, such as that of the Tay Bridge; and that the customary allowances for wind pressure had in
very few cases been sufficient to ensure the stability of such structures had they not possessed a considerable margin of strenoth allowed by reason of other considerations. It further showed that our knowledge of the dynamic value of air moving at high velocities is insufficient; and that the influence of the form of surfaces in modifying the effective action of wind on structures needs to be ascertained. A recommendation that these points should be cleared up by a committee to be appointed to be assumed and included in the Board of Trade rules as to structures, was appended to the report of Messrs. W. H. Barlow and Colonel Yolland, but though this will probably not be done by any such authority, and there a question which must always be subject to variation, according to the circumstances of each application, it will, without doubt, be taken up by some private investigators, It is a most important question, and one which might fitly occupy one of our technical societies. Designs for a new bridge have some time since been sent in by Mr. Barlow, Scotch appointed engineer for icsing to a bridge the 20ft. in height less than the old one. They are now asking for the low level which the railway company would have adopted at first, but were prevented by the very authoadopted at first, but were prevented
rities who now see the necessity for it.
The completed works of the civil engineer include the Royal Albert Dock, formerly known as the Victoria Docks Extension, and the Holyhead harbour and docks of the these were opened with great ceremony-the Holyhead on the 17 th of June, and fully described in our impressions of the 25th June and 30th of July last; and the Albert Dock opened on the 24th June, and fully described in our is the lar the 250 June and 2 and last. is the largest dock in the world, and is a remarkable scale. Extensive dock improvement works were opened october at Sunderland, the works consisting chiefly the Hudson Dock with the sea, the lock being 480 ft . in length, and 95 ft . wide. Very extensive dock at the Hartlepools, over half a million sterling having been
expended upon them. A dock area of $176 \frac{1}{2}$ acres is now possessed by these places, and this accommodation, when he two towns, places Hartlepool amongst the most accesthe two towns, places Hartlepool amongst the most acces sible and commodious of eastern ports ; and in heavy
storms Hartlepool will probably be now more readily storms Hartlepool will probably be now more readily
accessible than any port between Grangemouth and the accessible than any port between Grangemouth and the
Humber. The works were described in our impression of the 2nd of July last. The handsome Skeldergate Bridge at York, erected from designs of Mr. Geo. Gordon Page, and illustrated in our impression of the 11th May, 1877, has just been completed. Abroad the most importa. Gothard
which has for some time been in progress is the St. Gol tunnel, the advance heading of which was completed tumnel, the advance heading of which was parts on the 30th of April last. The tunnel was illustrated and described in our impression of the 5th of March last The progress of this work was very rapid, and much is claimed for the top heading or Belgian system of tunnel ling adopted by the late able engineer and contractor M Louis Favre. The rapidity was also due to the adoption of the best rock drills and improvements as they became known, and to the very large employment of compressed air for working drills, locomotives, and ventilation. Shortly previous to the meeting of the headings, however the temperature became so high as to be almost unbearable. Men were rapidly disabled, and horses killed of very quickly. Very great trouble was experienced in two cases from great influxes of water and the existence and passage through a bed of semi-plastic material consisting of decomposed or disintegrated feldspar with alumina and gypsum, which on exposure to the atmosphere swelled with almost irresistible force and threatened at one time to crush every lining that could be built in. The pressure due to the enormous masses of superincumbent rock moreover caused the extrusion of this soft material as soon as freedom or motion was given to it, and with such force that heavy granite lining of 5ft. in thickness was in some parts crushed, and had to be renewed and supported by side walls also of granite 6 ft .7 in . in thickness. These difficulties have, however been overcome, and the tunnel will, it is expected, be com pleted in April next. The differences between the contractor and the St. Gothard Railway Company have yet be settled, but the justice of the Federal Council will un doubtedly make the full allowance for the lengthy delay: caused by the difficulties thrown in the contractor's way and the delay caused thereby. It may be here mentioned that a scheme is proposed for connecting Andermatt with the St. Gothard main line by means of a sloping tunne 700 metres in length. Andermatt is directly above the great tunnel, and almost exactly midway between Gösche nen and Airolo; and it is thought that by the adoption of this expedient the company would not only increase their receipts, but secure the effectual ventilation of the tunnel while facilities for direct communication with Andermat would be extremely useful in case of an accident in the tumnel. The Paris, Lyons, and Mediterranean Railway Company began last year the construction of a new lens not far from Mo Replat Section of the Mont Ceg, which owing to the nature of the stratum through which i passes, which is the same as the soft stratum encountered St. Gothard, is continually giving way, and for yoar a past has been kept open only by great watchuness
immense cost. The new Replat tunnel is being bored by the compressed air machinery and perforators invented by Professor Colladon. The head of is about 1000 metre from the portal of the great Frejus tumnel, into which it will rum 600 metres inside the mountain. Its total length will be 1583 metres, of which upwards of 900 are alread executed. Another tunnel through the Arlberg of tle Rhaetian Alps is now in progress, the object being to connect the Swiss railway system with that of Austria by line running along the right bank of the Inn between
Innsbruck, Landeck, and Bludenz. By this means th two countries will be rendered independent of the Germ: railways over which the traffic is now directed. The tunnel will be about six and a-half miles in length. It will be made for a double line, and it is intended to sink shaft 1540 ft . in depth to accelerate the work and assist ventilation.
Some important dock and harbour works have been for some time in progress at Milford. Considerable progress are cen made during the past year with the dook, CE and will have an area of $62 \frac{1}{2}$ acres, including a graving dock 710 ft . in length and 96 ft . in width. Some of the deepest tidal work ever carried out has been necessary in this work, but of its progress and chief features we give an account in another page.

The most important and longest new line which has fo號 constructed in this country is the Hull and Barnsley Railway, of which Mr. W. Shelford is the engineer The first sod is about to be turned with great ceremony and work will be commenced at once. The line is designed chiefly to give a much wanted means of direct communication between the Barnsley coal-field and the sea. A we gave a full account of it in our impre

A railway which will attract much attention is about to be commenced in Malta, the first railway in an island the population of which is more dense than that in any othe portion of the world. A company has lately been ned, and a concession granted for the construction of a line about $6 \frac{3}{4}$ miles in lengh, from V alella, the ${ }^{2}$ and a place of erime and a place of considerable its portance, Messrs. G. WellsOwen, and Elwes are the engineers, and the contractor Mr. Geneste is in Malta making arrangements for the commencement of the work. The Bury and Tottington District Railway, constructed under the same engineers, 1 nearly completed

The most costly and attractive work which it is pro indomitable energy and perseverance of M. Ferdinand
de Lesseps seems to have overcome all the American objec tions to the scheme, and it is said that all the shares have
been taken up, the applications for shares being much been taken up, the applications for shares being much
more than the whole number of 590,000 , amounting to more than the whole number of 990,000 , amounting to
eleven and a-half millions sterling. The benefits to be derived from the completion of the canal are generally conceded, but as it will probably take mueh more than the
estimated twelve years to complete it, there is plenty of estimated twelve years to complete it, there is plenty of
time to count upon the advantages. As between England and the antipodes these will be nearly nil, for the distance between London and Sydney through Panama will be
nearly the same as through Suez. Our West Indian nearly the same as through Suez. Our West Indian
colonies will no doubt profit by the undertaking, but the chief gainers will be the Americans when it is completed.
At home there is much work to be done by the civil engiAt home there is much work to be done by the civil engineer, but for some of the most important, namely, works for will have to be overcome. For the efficient grappling with
the Thames floods, for instance, the whole river from source to sea must be under one authority, otherwise the contending interests, or supposed interests, of each district
will prevent the execution of works in every other district There are many small towns yet without any, either quali tatively or quantitatively efficient water supply, and the
supply of such places leaves much work to be done by the combined assistance of the civil and mechanical engineer. To the London water supply question we have
several times referred, and it is satisfactory to see that the several times referred, and it is satisfactory to see that the
water doctors have so long cried wolf that Londoners begin to see that the bad water neither summer nor winter comes
from the water mains, but from the house cisterns, and that what is required to put the water supply question on a satisfactory basis is a system of regulation similar to that
which has answered so successfully with the gas companies The success with which the electric light has now been adapted to lighting public buildings and thoroughfares, and
the probability of its being made applicable for domestic the probability of its being made applicable for domestic the utilisation of the power now running to waste from
many rivers in the United Kingdom. Electricity might generated near rivers and waterfalls, and transmitted direct to the neighbouring town, or air might be com-
pressed there at a very low cost and transmitted to towns to work air engines for driving dynamo-electric machines.
In not few cases the rise and fall of the tide might be economically utilised for lighting towns by electricity, as by means of suitable reservoirs and constantly acting
turbines, power could be obtained much more cheaply han by means of steam engines. There are few
places on our coast where the tide rises less than loft., and from one-half to three -fourths of
this might be utilised in working turbines continuously. Tramway enterprise needs very little encouragement but there is much room for light local railways, such as
that which the Great Eastern Railway is about to try between Wisbeach and Outwell, about six miles.
The Southampton and Isle of Wight Railway is another
project of considerable importance. It comprises a tumnel under the Solent near Cowes and Beaulieu on the mainland, where the Solent is only a mile and a-half wide. The
stratum through which the tunnel would pass is composed stratum through which the tumnel would pass is composed
of a sound clay, which would greatly facilitate its construction. There exists a strong feeling of insecurity in
crossing the Solent by steamers, the crossing the Solent by steamers, the danger of collision, par-
ticularly during fogs, increasing the fear of accident from the constant traffic of steamers and sailing vessels passing
at right angles to the track of the Isle of Wight steamers. at right angles to the track of the 1sle of Wight steamers.
Great delay, sometimes of days, arises, owing to the impossibility of getting safely across in the fogs, and there is no
doubt that a railway connecting the mainland and island would secure the traffic rather than by the Portsmouth, Southampton, and Ryde steamers. The South-Western
and Brighton and South Coast Railway Companies have and Brighton and South Coast Railway Companies have
jointly spent nearly half a million in the Ryde district jointly spent nearly half a million in the Ryde district
in improving the pier and making a short railway across the esplanade, without, up to the present time,
causing any very sensible addition to the traftic of the Isle of Wight Railway. The result would probably have been very different if this capital had been expended in con-
structing the proposed Solent Tumnel Railway. It is estistructing the proposed Solent Tumnel Railway. It is esti-
mated that the saving of time between London and
Ventnor in fine weather would be entnor in fine weather would be one and a-half hours.
Its completion has been delayed by the depressil has stopped so many projects. The cost as estimated by Mr has stopped so many projects. The cost as estimated by Mr.
Hamilton Fulton, C.E., is $\ddagger 500,000$. The proposed Man ject of discussion in the district. The proming the subject of discussion in the district. The project comprises Irwell and Mersey between Manchester, Salford, and Runcorn, so as to enable steamers to reach Salford and to dis-
charge their cargoes direct from the ship, thus saving the consequent delay and expense incidental to the transhipmavigation, and the The Irwell would then become a tidal the low-lying districts-of of Manchester, Salford, and elsewhere would be entirely obviated. The bed of the river warehouses, and factories would spring up on its banks, The estimate of the cost of carrying out this proposal, as
made by Mr. Hamilton Fulton would not outlay of $£ 3,500,000$. Itisstated that would not exceed an to establish an association, which would be armed with the necessary pariliamentary powers, and an adequate capital
for the construction of the necessary works. The Corporation of Salford, it is believed, thoroughly approves the the limits of its statutory powers. As will be seen by re-
ference to the letter ference to the letter of our Manchester correspondent, this work would prevent. There are always many
difficulties to be evercome in importont difficulties to be evercome in important undertakings such condition of trade such as has lately prevailed; but it is thought, and there is every reason to believe, that before Corporation and other influential interests, the matter will
be brought to a successful issue be brought to a successful jessue

The metropolitan water companies may be supposed to be looking forward with some anxiety to the events which Irish agitation will probably serve to take off a little of the keen edge of the Damoclean sword which has been so long hanging over their heads ; but the companies know
full well that they have no particular friend in Sir W. Harcourt. Political events may befriend them, but some kind of legislation is imminent with respect to the London water supply

A ccording to the official notification of the
Bill, a Water Authority is to be created, with Government bill, a Water Authority is to be created, with
power to go into the whole question, and deal with it as may appear best, though we may expect that Parliament rity. If any scheme of purchase is carried out, it has to be emembered that the cost will fall on the metropolis exclusively. It is a local question of the largest
magnitude, and its settlement is committed to the wisdom of the Legislature. If it should happen that nothing more than a Regulation Bill is passed, the question purchase will be removed to a date so remote as to put
almost out of men's minds. This is just a possible issue though appearances look rather in the direction of pu chase or competition. In a short time something more
will be known on this point, and it is perfectly certain that the Government are pledged to propose some kind of scheme. In the meantime the companies are proceeding
with the constant supply, and are also improving in their with the constant supply, and are also improving in their
financial position. London is even threatened with a new financial position. London is even threatened with a new
company in connection with the South Metropolitan Spring company in connection with the South Metropolitan Spring
Water scheme, which is to reappear this session. Although Water scheme, which is to reappear this session. Although having no relation to the drimking supply, perhaps w supply of sea-water to London from the coast of Sussex On the part of the provinces no startling scheme of wate supply presents itself for the attention of Parliament this year. The famous Vyrnwy project was carried in the
session of 1880 , and the Water Bills now forthcoming are mall affairs, excepting as concerns the metropolis.
Disastrous floods from the
Disastrous floods from the overflowing rivers may be said to form a sort of comnecting link between the water
and the sewage questions. The proper management of a river requires that it shall neither receive any damage nor
inflict any. According to the Queen's Speech, the Governinflict any. According to the Queen's Speech, the Govern-
ment will immediately proceed to take up the submect of river management in a practical and comprehensiv spirit. So far as concerns the present outlook of the
sewage question, it is pretty much what it was. The sewage question, it is pretty much what it was, The
drainage of the towns of the Lower Thames Valley, which group Kingston is a conspicuous member, is still an unsettled subject, but the Local Government Board have pretty plainly intimated their readiness to approve of Sir Joseph Bazalgette's plan for carrying the sewage round
the southern outskirts of the metropolis into the West Kent system. If this method be adopted, it will be to the grief and trouble of the Thames Conservators, who have an idea that sewage creates shoals and thereby interferes with
the navigation. Earl Fortescue has declared the intercepting sewer and outfall system of the metropolis to be mistake, the right principle being that of "the rainfall to the river, the sewage to the soil." There is, however, very
little prospect of that principle being made generall available, though it may be employed advantageously in certain cases. Respecting the pollution of rivers, the law which was to prevent that evil appears to produce very
little effect at present. Sir Robert Christison declares it to be rendered in a great degree in erristison by the saving clauses which are designed to protect the manufacturers. Dr. Stevenson Macadam asserts that the law is good
enough "provided it were put in force." Seemingly i enough "provided it were put in force." Seemingly it
remains more or less in abeyance, owing to the lack of power on the part of inspectors to originate proceedings, so
as to take the burden off from private individuals. With regard to processes for the treatment of sewage little i The New
The New Year opens with pleasing prospects for
the gas consumer, and with very fair encouracement for the companies, although the interests of the latter may seem to be threatened by the electric light. In London, the progress of amalgamation has gone so far, that only Anour companies exist, where formerly there were thirteen. Another absorption cannot be far off, by which the London Company will be divided between the Chartered
and the South Metropolitan. It is true that at present there are no positive signs of such a change being at hand but there has been a recent attempt to bring it to pass, and we may presume that so reasonable a reform can only suffer a short postponement. Nothing is said as to an absorption that is even more to be desired than the partition of the London, seeing that the Commercial district renders the Chartered mains unproductive during their course through a crowded and extensive district. This is, perhaps, whereas the exclusive position occupied by the London Company deprives the consumers in that district of the credit of the new system of gas legislation. Still, to the
crendon Company it is to be said that they are offering cheap gas in common with the other companies The price of gas in London from the commencement of the present year is 2 s . 10 d . per 1000 ft . in the South Metro-
politan district, including that which was recently the Phomix and Surrey Consumers', 3s. in the Commercial diswhich and 3s. 2 d . in the district of the Chartered Company, Under theslids over nearly two-thirds of the metropolis. now pay dividends at the outh and of course they will exercise their privilege. Still more will be allowed to co as high Commercial Company, which mum dividend of the Chigh as $12 \frac{1}{t}$ per cent. The maxicent, while the London, being under the old system, will be limited as before to 10 per cent. It is to be observed surveillance as the other companies in respect to illuminating power and quality, though there is no positive
reason to suppose that its
guarantee, however, is worth something, and this does not
exist in the case of the exist in the case of the London. One feature in the gas
question during the coming year not to be overlooked will question dill of the South Metropolitan Company for the be the bill of the South Metropolitan Company for the
construction of enormous gasworks in the Greenwich marshes. In the provinces there is a continuance of the process by which the local authorities acquire the property of gas companies, and thereby constitute supply. But there can be no doubt that the elec-
tric light is rendering the tric light is rendering the municipal bodies rather less anxious than formerly to occupy the place of the gas com-
panies. As a convenient agent for the production of heat, pamies. As a convemient agent for the production of heat,
we find gas becoming increasingly popular, though it is obvious that gas which has been prepared for illuminating The use of gas to The use of gas to supersede coal with a view to the rednc
tion of the fog nuisance, is one of the ideas now promulgated. In some shape or other we may expect gas will still be wanted, let the electric light prosper as it may Even the electric light itself is often dependent on the motive power furnished by a gas engine, a class of machine for which there is now a very large demand. On the whole we expect gas to become better, cheaper, and more
skilfully applied. Palpably in the year on which we skilfully applied. Palpably in the year on which we have
just entered, gas will pay such dividends as it never paid efore
It is a remarkable fact that men go on for years, if not for generations, suffering daily from particular wants and
never making an effort worth the name to satisfy their never making an effort worth the name to satisfy their
want. It has been so in all ages, and will probably be so to the end of time. The proposition is true of social relations; it is true of the concerns of every-day life having nothing to do with technical matters; and what is much nore to the point for our present purpose, it is particularly
true when applied to the doings of mechanical engineers true when applied to the doings of mechanical engineers nical engineers for success and prosperity. The fact that wants remain unsupplied, wishes ungratified, hopes unfulfilled, constitutes the element of success in the inventor's
career. When, however, we come to consider how it is that wants still exist, although the world was never before so able and so willing to pay for the gratification of its desires, while never before were so many individuals apparently able and certainly willing to supply the demand, we shall find that various causes exist all operating directly or indirectly to the same end. With none of these save two new in concern ourselves. The first is that aldog know what they are; and the second is that mankind very readily accepts what it holds to be inevitable, and makes no effort to avoid it. Thus for generations and it does suat steel could only be made by cementation, then not appear that any one ever attempted to ased to be known in times long past ons puddled steel had very little in common with the stuff of which. we now earlier efforts with the converter, sought to make, not steel but wrought iron. In the same way vinegar makers now convert gyle" into a dilute acid by a long-continued process of oxidation, brought about by rumning the liquid in thin streams through huge fagots of twigs, so as to expose a large surface to the air, while for all that we know, in one-fourthy one else, the same result might be auta ved containing the fluid, as Bessemer blows air through the converter. It is indisputable that an enormous inventive power is wasted in every civilised country year after year n remuno really do not know what is yen them at all, by mere chance, if such can be supposed to exist. We can do no more than call attention to the existence of the evil-we cannot even indicate a means of remedying it, they possess the faculty of invention, and earnestly desire to exercise it, should take great pains to learn all that can be known concerning mechanical science in its various applications. They may then avoid, perhaps, much wold mine.
A glance at the work of the past year suffices to show that mechanical engineering has very closely adhered to old grooves. We seek almost in vain for instances where and nothing is more strange than the pertinacity with which men continue to try over and over again to make certain things "do" which it has been clearly proved cannot be made To answer. We could illustrate this by dozens of examples. rate our proposition, and to indicate the direction which mechanical science is taking or is likely to take in certain respects the present year. Day by day accounts reach this country of the breakage of the crank or propeller shafts in one time carnships. No class of ship appears to escape. At cated, is disabled in this way. At another it is a Atlantic steamer, worth perhaps with her cargo $£ 150,000$ and carrying many hundreds of men, women, and children, which is put in serious jeopardy. Engineers seem to have accepted this most unsatisfactory condition of affairs as inevitable ; but is it inevitable? We venture to say that it is not. So long as engineers and shipowners think that the mere putting in of stronger and stronger shafts, in the sense that they are thicker and thicker, will meet the required object or supply the want-a shaft which will not The reasons why shafts break must be sought for intelli gently ; and when they are found they can be combated We cannot attempt to do more than indicate here what these causes are. Crank shafts generally break because the bearings are allowed to get hot. Why this overheating should operate to the stated end, it is not quite easy to
say. Enough that it is generally admitted that bearings and split or cracked crank shafts go together This being known, it is obvious that precautions should taken to keep the cranks cool. Is it quite certain that all
the talent of the country is powerless to produce a marine engine shaft which will run from this country to the
United States without the use of cold water, and which United States without the use of cold water, and which
will not heat if left to itself for say half an liour? We hope not. If railway engineers had not been more successful with their bearings and journals than marine engineers are with theirs, then would railway travelling at sixty
miles an hour or runs of an hour and a-half at a time be miles an hour or runs of an hour and a-half at a time be
impossible. Again, is it quite clear that we make ou crank shafts the right way? We have no doubt at all that such shafts should be built-up when of any but the smallest size. But not more than a couple of years have passed
since the practice of using built-up shafts became at all popular, and it was forced upon marine engineers by the
impossibility of getting single forgings large enough for such ships as the Orient. The idea once set in motion and fairly accepted, the rest follows, and built-up shafts are likely completely to displace the ordinary shaft. of the best arrangements of the kind which
have seen is that of Mr. Turton, of Liverpool, which the crank webs are made in halves secured together by bolts. The breaking of any portion
of the shaft-say a crank pin-means a few hours while it is being replaced, instead of a total and incurable breakdown. Coming now to propeller shafts,
there can be no doubt that they are broken from two causes-first, the bending and springing of the ship's hull, by which they are distorted ; and, secondly, by the racing
of the engines of the engines. There are some excellent governors now
in the market, by which racing is prevented, and we in the market, by which racing is prevented, and we
commend them to the consideration of shipowners. The desirability of adopting a plan all but universally adopted
in the French navy, and introducing in two or three in the French navy, and introducing in two or three
places universal joints, to give flexibility to the shaft and save it from undue strains. We believe we are correct in
saying that the fracture of a propeller shaft, fitted with flexible unions, is a thing unknown in French ships, and we need not be too proud to learn from our neighbours. If this seems too complex and expensive, then as an alterna-
tive something akin to the breaking spindle of rolling nills might be adopted. Let us suppose that the proper liameter for a propeller shaft is 10 in . Then let a short
length of it be of this diameter, and all the rest $10 \frac{1}{2}$ in. If length of it be of this diameter, and all the rest $10 \frac{1}{2}$ in. If
breakage takes place, then the portion 10in. diameter is breakage takes place, then the portion 10in. diameter is
sure to fail, being the weakest portion of the shaft, and this length - say sft. long - could be removed in a very short time by taking out the bolts in the couplings and
replaced with a new length, which could be carried as spare gear" without trouble.
Another excellent instance of the persistence of types is supplied by the attempt made to use steam on tramways.
Years ago we pointed out that extremely light engines could not be made to do this work, and experience has proved that we were right. We also indicated the proplace to apply tractive effort, for very obvious reasons. This urin the there is every probability, will be put in practice ion to the general rule on one side, we still find engineers building engines which differ in no essential particular from those which have gone before them and failed. There is which will haul cars and not prove offensive to the public. That much has been done by half-a-dozen inventors to the satisfaction of all parties. The puzzle is to build a tram not wear itself out in a very few months. Now it is wellknown that the cost of repairs is heavy, enormously
heavy, because the working parts become covered with dirt; because the engines blunder over wretched roads and yet are fitted with miserable springs; and because no Collinge, the inventor of the "patent axle," taught the world years and years ago how to make a bearing which would run over the worst roads, winter and summer, for
four or five years without any more attention than was involved in pouring a teaspoonful of oil into a hole once a week. Is there a crank pin and big end now in use on a to say, with a long, absolutely cylindrical spindle of the hardest steel outside, with a soft, tough iron core, working in a steel bush, which it fits air-tight when the surfaces are smeared with oil. There is nothing of the kind about the the mud and dust going. We need not pursue this topic
the mig end the mud and dust going. We need not pursue this topic
further ; to those of our readers who can take a hint we have said enough.
It is a part of our duty to endeavour to indicate at the begiming of each year the direction which invention
should take in the immediate future. Broadly speaking, should take in the immediate future. Broadly speaking,
at the present moment in nothing is invention more at the present moment in nothing is in
required than in those branches of engineering science in
which we compete on common ground with other nations. So far we may be said to have cotton and woollen spinning and weaving in our own hands. There is no reason to
believe that any other nation possesses better machinery believe that any other nation possesses better machinery
than we do for these purposes, The progress of recent invention in the manufacture of cotton spinning machinery has been so recently and fully set forth in our
columns,* that it will suffice only to mention it here. The next great national industry is the iron trade, and it is worth while to consider how we stand here. Our great competitor is the United States. In that country iron ore and steel of all kinds has been greatly developed and fostered by protection. We regret to say that some of our own ironmasters and others prognosticate that in a comparatively
short time the United States must adopt free trade ; that when this is done there will be great British iron and steel, and that if we can only rub along a little
longer we shall yet do very well without making undue longer we shal yet do very well without making undue
exertions. We have heard this argument used year after year for many years. It is fortunate that no matter what turn men's thoughts take in this direction, their actions

do not run wholly in the same groove. There is not the slightest probability now that there will be any mitigation
of the tariffs in our favour until the next presidential of the tariffs in our favour until the next presidenial
election, four years off. Those who hold different opinions election, four years off. Those who hold difterent opinions assert that the farmers will rise against protection ; but
the truth is that the American farmers suffer very little if at all from high import duties. The American farmer has practically no rent to pay, and he can therefore very well afford to contrinficto he prosperify of arge thewns by
submitting to the infliction of the tariff. At this moment submitting to the infiction of the tariff. At this moment
the United States are the most prosperous nation on the face of the earth; they are practically self-sufficing, and it is very difficult to see what they could gain yet
awhile more than they have by adopting free trade principles. There is in truth no analogy at all between sch a country as America and such a country as Great
Britain. The facts being as they are, ironmasters in this country ought to see that no effort should be spared to put themselves on a footing of equality with their competitors. It is quite certain that at present we are not holding our own
in this respect. The United States ironmasters are beating us by 100 per cent. in the output from their plant. With one pair of converters they can do as much and more than we can do with two pairs; and while our blast furnaces turn out 480 tons of pig per week, theirs, much smaller, give as
much as 1100 tons a week. In the rail mills, and bar and much as 1100 tons a week. In the rail mills, and bar and we are asked, To what is this superiority due? we reply that it is to be traced, to some extent, to better organisation,
and in otheis to better plant. In the Bessemer works, for example, the drill of the men employed is perfect, and a converter is never stopped for days while
being lined up and re-bottomed. The converter alone represents but a small part of the plant; but when a converter is standing, so to a certain
extent do the blowing engines, the hydraulic appliances, ngot moulds, and very probably the hammer, the cogging
nill, and the rail train. What would be thought of a mill, and the rail train. What would be thought of a foundry which was closed while a 5 -ton ladle was being
re-lined? In the United States, for a long time back, the moment a converter is burned out it is taken away, and a new one put in its place. The operation requires, we
understand, about half-an-hour at the most. In how many English steel works is the same plan pursued? It has, we may say, been forced on Messrs. Bolckow, Vaughan, and
Co. by the necessities of the basic process, and we hope to see it generally adopted before many months are out. There is still room for invention in this direction. Bessemer plant was regarded as perfect until the other day
among ourselves. Then Mr. Holley showed the good people of the States that, excellent as it was, it could be made
better. Is it to be supposed that Mr. Holley has left own Bessem steel posed that Mr. Holley has let our not. Mr. Windsor Richards, in his recent address to the Cleveland Institution of Engineers,* spoke in the Edgar Thomson Steel Company, suggesting that by hard driving, the furnaces were soon burned out and wanted re-lining. Even if we admit this to be quite true, it seems to be perfectly clear that the cost of re-lining must be charged as so much per ton of iron made, and that unless it can be proved that the Edgar-Thomson furnaces cost more for repairs and renewals per ton of pig than do furnaces less hard pressed, the advantage is altogether with them. To make this plain, let us say that one of our great which is not far from the truth. It turns out, say 450 tons of pig per week, or 23,400 tons a year. The interest on使 5 per cent. is $£ 1000$, or 20,000 shillings; co 10d. for interest of pig iron must be charged with, say nace had been doubled, or 900 tons a week, then 5 d . a ton would have been saved, and this sum, and less, represents in the present day a profit which is by no means to be this would be tar clear profit, small as it is, many an ironmaster be said that, after all, the rate at which a furnace is driven has very little to do with mechanical engineering. But this is not true ; double production means double blowing, double feeding, double hoisting of materials, and increase in the power of various appliances, all which demand renewed exermay refer po some mechanical engineer. And here we cently put down at Staveley, where they were constructed Charle designs and under the superintendence of Mr. early impression, and it will be enough now to say that they combine in an unusual degree great power with consider able economy of fuel and very small first cost. A great deal of the blast furnace plant of Great Britain is antiquated, and the sooner it is replaced with more moderi plant the better. We may cite as an example hot blast stoves. It is a suggestive fact that much of the success due to the efficiency of Mr. Cowper' English ironmasters have been very slow to accept an In ron which American ironmasters jumped at.
om for ing mill machinery there is still a great deal of power required to produce any particular class of nail the or sheet to its lowest limits, not so much because costs money-for its cost in most ironworks is exceedingly small-as because great power means enormously heavy foundations gearing, which again requires equally costly rolling mill appears ridiculously small as compared with the great mass of mechanism beside it, and intended to ing down. To get rid of much of theorenstantly break the one hand the three-high mill, which is not very popuwears faster than ; for one rand for another that the roll have to be lifted very high. The more popular expedient is the use of a pair of quick-speed engines fitted with link motion feversing gear, and without a fly-wheel ; but even
then cogged gear is required. It is by no means so generally so much to shape the iron as to overcome the friction so much to shape the iron as to overcome the friction
of the rolls. In a sheet mill, for example, the roll are driven asunder when the double is nearly finished with a force of about 400 tons. The roll necks
will be 14in. to 18 in. in diameter, but let us take the smaller dimensions. The circumference of the neck is 45 in . The roll itself will be 20 in . diameter, its circumference will be 63 in ., the doubles will be about 8 ft . long The rolls will make thirty to thirty-one revolutions pe me rolls will make thirty to thirty-one revolutions pe
minute, so that their necks will have an angular velocity of $31 \times 45=1345 \mathrm{in}$., or, say in round numbers, 116 ft . per minute. Each roll neck will carry 200 tons, and ther are four necks. Hot neck grease is not a very efficient
lubricant, and it would not be safe we think to take the coefficient of friction at less than $\frac{1}{30}$ of the insistant load; but ${ }^{200}=6 \cdot 6$, and we have therefore for each roll neck
resistance of 66 tons, or $14,784 \mathrm{ll}$., to be overcome at the rate of 116 ft . per minute, which is equivalent to 52 -horse power nearly, or for the four necks say, in round numbers passing power, Fortunately the sheets are not alway while they which the fly-wheel ${ }^{\circ}$ picks up momentum. To drive a good double sheet mill direct requires a non-condensing engine with a 35 in . cylinder, 5ft. stroke, and a 70 ton flywheel, the pressure being 50 lb . Doubles are very seldo going through both mills at the same time, but "stalls" are not unknown. Our readers can calculate for themselves what the power of such an engine is. A rail mill will absorb from 250 to 300 -horsepower, of this 70 or 80 -horse power wil be required to drive the machinery light; of the remainder by far the larger proportion is expended in overcoming bearhow a large. Several years ago we showed in this jouna carry the lower roll necks, in a wa exceedingly simple, and incapable of interfering with the ordinary housing or screw tackle. Whether this method be or be not adopted, it is at least clear that great advantages may be expected from the adoption of any system of che that leaving rolling machinery we would would probably accrue from the use of what we may term a reciprocating mill. When rolling short plates, for example, as is sometimes done, not more than one and alutions of the rollers is required each way much time is wasted, during which the iron is cooling If instead of using rolls, say, 20 in . or 22 in . in diameter for such a purpose, rolls of three or four times the diameter ennot more than two-thirds of a crank made each way, and the rolls could be driven by this size would be rod. In practice, the use of rolls a ments might be attached to two suitable framings, each representing a portion of a roll some 8 ft . or 10 ft . in diameter, if necessary, and a swinging or pendulous motion between them could never be delivered until it had put reduced to the proper thickness. The iron could be worked very hot, and the yield of a given mill enormously ted. The circrumerence of a roll loft. in diameter more than 1oft 32 ft ., but the roll centres need be little be of unwieldy dimensions, while a reciprocation of one a revolution would produce plates or bars ove 10ift. long. Not in the rolling mills alone, but in many other matters with which engineers have specially to do, is wanted in our ironworks. The German it is beginning to iron or steel producer can profit unless he has the best piant that modern way of profit unless he has the best piant that modern science can produce. There is still a wide field open to inventors without substantial advances having been made.
Many subjects press on us and clamour for a word of notice, but space is limited; and even if it were not so we have no desire to weary our readers, butrather to give them gress ought to take, and is taking. We cannot pass in utter gilence the enormous advances which are being made in ocean steam navigation. We must content ourselves, how ever, with giving a very few particulars of certain huge 1882 is upon us. There is the City of Rome being built 1882 is upon us. There is the City of Rome, being built
for the Inman Company by the Barrow Shipbuilding for the Inman Company by the Barrow Shipbuilding Company. She has been very fuly described in our pages already, but it will not be out of place to say here that she
will be 586 ft from figure-head to taffrail, 52 ft beam, and 38 ft . 9 in . deep, with a gross register tonnage of 8300 , ages acting on a single crank shaft. Each will consist of a high-pressure cylinder 43in. diameter over a low-pressure cylm
the stroke being 6 ft . The crank shaft is of steel, built up hollow, and 25 in . in diameter, and weighing 68 tons Steam will be supplied by eight double-ended boilers, with fortyeight furnaces. The working pressure will be 90 lb ., the indicated power 8500 , the speed 17 knots. The propeller
will be $24 f t$. in diameter and $30 f t$. pitch. The Servia will be 24 flc . in diameter and 30 f . pitch. The Servia, being built for the Cunard Company, is a rival vessel
She will be 500ft. long, 50 ft . beam, and 37 ft . deep, and 7500 tons register. She will be propelled by a threecylinder compound engine, the high-pressure being 72in. and each of the low-pressure cylinders 100 in . in diameter,
the stroke being 6 ft .6 in . Concerning her boilers little the stroke being 6 ft .6 in . Concerning her boilers information is as yet available. They will have thirty-
eight furnaces. The engines are to indicate 7500 -horse power, and the speed of the ship is to be over 16 knot The Guion line, not to be outdone by the other Atlantic ompanies, ts building the Alaska, cooft. long, 50ft. beam, ao, wilf have three cylinders 68in. and 100in, diameters
with a stroke of 5 ft . She will have fifty-four furnaces in nine boilers, working at 100 lb . The indicated power is to
be 9000 , and the speed of the ship $17 \frac{1}{4}$ knots. Many be 9000 , and the speed of the ship $17 \frac{1}{4}$ knots. Many
other great steamships have been recently finished, or are other great steamships have been recently finished, or are
on the point of completion, but nothing so large as those we have named.
It cannot be said that in Great Britain any great change in locomotive construction is impending. The tendency is
to make engines heavier and more substantial, but we see no evidence of a desire to introduce any radical change in design. On the Continent certain changes are, however,
being made from time to time, which can scarcely be said being made from time to time, which can scarcely be said
to apply to matters of detail. We cannot better illustrate what we mean than by referring our readers to The EngiNERR for September 3rd, where they will find a locomotive embodying several new features. Locomotive engineers
in the United States have hitherto been intensely conservative. Whatever differences existed between the pas-
senger engines of different American makers in other senger engines of different American makers in other
respects, in all were to be found outside cylinders with the respects, in all were to be found outside cylinders with the
slide valves on top of them, four coupled driving-wheels of moderate size, and a bogie. As American engineers have
improved their roads, and the desire for higher speeds improved their roads, and the desire for higher speeds American locomotive is not quite what is wanted. Already resort is being had to single driving-wheels, and even the
bogie may yet be abolished. It is beginning to be found out at last that goods stock fitted with bogies is harder to pull than four wheel trucks and wagons of the English pattern. A Mr. Fontaine has patented, and has had made and tried, an engine in which the cylinders are on top of
the boiler, and the driving-wheels in the same place. They the boiler, and the driving-wheels in the same place. They
bear not on the rails but on large pulleys on the insides of bear not on the rails but on large puileys on the insides of
the true driving-wheels, which are in their normal position.
These last make consequently about $1 \frac{1}{4}$ revolutions for every These last make consequently about $1 \frac{1}{4}$ revolutions for eve
one of the crank shafts. This queer device is said to have made sixty miles an hour with a heavy train, and to have given great satisfaction. The same result would have been
obtained, we fancy, by using driving-wheels, say, 7 ft . 6 in. obtained, we fancy, by using driving-wheels, say, 7ft. 6in.
in diameter in the ordinary way. Perhaps, however, American locomotive builders have neither the plant nor
the skill to make driving-wheels much more than 6 ft . in diameter. Mr. Fontaine's engine resembles an expedient to attain with imperfect means a given end. It is very
much like what is called "a makeshift" in this country. much like what is called "a makeshift" in this country.
We have kept our readers so fully apprised of all that is being done in the construction of ordnance and munitions of war, that fortunately we need say little or nothing on
the subject here. Compound armour plates have given the subject here. Compound armour plates have given
victory to the ship for the time being against the gun. It remains to be seen what the new breech-loaders can do against these plates. There is at least good reason to
believe that we are very far from having reached finality in the power of our guns. In a few days a competition which is expected to last a fortnight will begin with
machine guns, such as the Gatling and Nordenfelt. It would seem that we have no more reached finality with these things than with big guns. Messrs. Yarrow and Company,
again, are apparently determined that torpedo boats shall again, are apparently determined that torpedo boats shall
not sink into a second place in the race for perfection, and they have just completed two-each looft. long-sea-going
boats to a great extent, and with a speed of 191 knots in boats to a great extent, and with a speed of $19 \frac{1}{2}$ knots in
fighting trim on the measured mile. The Inflexible is so far as can be seen a great success, and the Italian Duilio
has made a trial trip in stormy weather, concerning which has made a trial trip in stormy weather, concerning which
trip very contradictory reports have reached this country The Italian Government do not propose to build more ships of such great size at present, but to lay down some comparatively small men-of-
stands it is said in great need.
The progress in submarine telegraphy during the past year has been important. The Telegraph Construction and
Maintenance Company has laid over four thousand miles of cable during the year, 1908 miles of which were laid in the Atlantic, 1132 miles forming the last section of the Muplicate Australian cable; 529 miles the Hong Kong Manilla cable; 518 miles of cable from Newbiggin to
Arendal and Marstrand, \&c. The Silvertown Company has manufactured between two and three thousand miles of cable, 575 miles of which were for the French Govern-
ment, part of the cable was used to lay a fourth line from ment, part of the cable was used to lay a fourth line from
Algiers to Marseilles; the other cable was made for the Canadian Government and for the Mexican Telegraph Company. The only cable work of importance spoken of in
the immediate future is the construction of two new Atlantic cables for American speculators. At the present time the capital sunk in Atlantic cables is about eleven millions
sterling, and the length of cable is about sterling, and the length of cable is about twenty thousand miles. There is not enough work to keep the existing
cables employed, and the returns from any speculation in cables employed, and the returns from any speculation in
this direction must therefore be exceedingly problematical.
俍 The postal telegraph department has during the past
ear erected a trunk line from London to Glasgow, 325 year erected a trunk line from London to Glasgow, 325 that a greater speed over longer distances is obtained. The Aberdeen circuit, including Leeds, Newcastle, Edinburgh, at Leeds the other at Edinburgh, is worked at the constant rate of 200 words per minute. The average rate on the automatic system has been raised from 100 to nearly
250 words per minute during the year. The telegrams during the year show an increase of over four milliogns, the
receipts an receipts an increase of nearly $£ 200,000$. At the end of favour of the Government, and immediately active steps were taken by the department to supply the public with the best instruments at a lower rate than was required by the Telephone Company
The most important electrical feature of the year is the hesitation in 1879 ; the year 1880 proved exceptionally busy, and in the course of a few days mostof the larger metropolitan,
railway stations will be illumined by Already the Brush light can be seen at Broad-street and Paddington; it is being erected at Charing-seross. The Brockie lamp is to be psed at Cannonnstreet, and the

Crompton lamp_at King's-cross. Mr. Crompton's lamp is in extensive use at Glasgow, and has been adopted in
twenty or thirty different places during the year-successtwenty or thirty different places during the year-success-
fully lighting railway stations, quays, collieries, water works, factories, \&c. Hitherto this lamp has been used generally with the Gramme machine, and to a considerable extent under the auspices of the British Electric Light Company, the licensees of the Gramme machine in Great
Britain. The British Electric Light Company has had an active year, and this company has in hand the lighting of some of the Liverpool streets, the Cannon-
street Station, \&c. Messrs. Siemens have applied their system to the lighting of the Parade in Blackpool, the Holyhead Harbour, and the Royal Albert Docks, with constiat success. One of the signs of the times is the
application of various towns to Parliament to obtain powers application of various towns to Parliament to obtain power a general lowering of prices has been thought necessary by the gas companies. At the close of last year we were pro-
mised a public demonstration of the Edison light, but the mised a public demonstration of the Edison light, but the
promise has not yet been fulfilled. The latest news from that quarter announces the formation of a company with a capital of $1,000,000$ dols. to light New York. The moving spirits
in the company are Marvin Green, Tracy R. Edson, James H. Baker, and T. A. Edison

Mr. Swan, of Newcastle-on-Tyne, who commenced his experiments on this particular form of lamp nearly
twenty years ago, has during the year publicly explained twenty years ago, has during the year publicly explained
and shown the result of his labour.
His work has brought the electric light within the domain of domestic wants, and those who are willing to pay for the necessary alterahas been possible. The progress of the electric light will, to a certain extent, be independent of cost, supposing the cost to be at all comparable with that of gas. It must be
remembered that Mr. Swan has more than once stated that the light obtained by his lamps, with the electric machine driven by a gas engine, is greater than the light from the same quantity of gas burned in the ordinary manner Digressing for a moment, attention must be directed to the
admirable way in which the constructors of steam engines admirable way in which the constructors of steam engines
have supplied the requirements of electric light engineers Previous to the advent of electric lighting, probably few ex-
cept marine and pumping engines were required to run so cept marine and pumping engines were required to run so
long without a stoppage. The consensus of opinion that no difficulty has been put forward by builders of engine must be gratifying to those who regard the electric light
as the light of the future. The time will come when advances having been made in thermo-electricity, the engine will be relegated to other work, and the attention
of men should be turned to this almost unexplored field of Thestigation, and to the storage of the electric current. The difficulties in the way of should prove a greater incen-
tive to the task, which, whatever the result may be, is one that will amply repay experiment.

The most interesting feature in the purely scientific work of the year is the development by Professor Bell and Mr: Tainter of the photophone from the telephone. Two years
ago we indicated the direction in which discovery in this ago we indicated the direction in which discovery in this
matter would take place, and although it is far easier to describe an achievement accomplished than to forecast the future, it may be interesting to note the working of men's minds. Sound is caused by the motion of ponderable
bodies. Light is caused by the motion of the so-called imponderable ether; but astronomical and other research indicates that the ether is not altogether imponderable. We may therefore look upon it as being
at one extreme end of the scale of density, whilst such a substance as platinum is at the other. Then luminous vibrations are transverse, while those of sound
are longitudinal. How far has scientific research yet carried us? Sound waves are reproduced at a distance by means of telephones connected with the point of departure by a ponderable material such as copper wire; further, sound waves
are reproduced at a distance by another apparatus, in which the ponderable is replaced by the ethereal light waves. Who will be the man to devise an apparatus by means of which the light waves can be reproduced? The variations in the pitch of light waves are quite as many as the variations in
the sound waves. Can these varying light waves be riple duced? We do not for a moment doubt that they can, and it seems to us to be the next step in the ladder upon a selenium cell, controlling the apparatus for the act duction of the sound. Let the imagination run riot for an instant with the supposition that the reflection of light
from a face to a piece of apparatus in on that apparatus as to enable it to transmit can so act burgh the power to affect another apparatus which shall thereupon reverse the order, and give a picture of the
face upon which the light waves impinged in London will be seen that we ask from light what we hondon. It from sound. Our digression has proceeded too far. been taken - in fact, nearly three hundred, for inventions connected with applied electricity. Of these Heinricks, and Perry respectively dealing with electric Gramm. Each of these inventors seems to have taken the Mr. J. E. H. Gordon has also devised a mach to improve as an altogether new type of lamp. Mr. Maxim has again patented what he considers an improvement in incanmation of the value of the be said that the correct estior 1881. In January, 1882, we shall probably be able to say whether all or any of these patents is worth the

the maidstone explosion

The explosion of a traction engine at Maidstone raises this class. Messrs. Aveling and Porter designed eng engines of
which exploded for which exploded for a working pressure of 100 lb . The stays

not less than 815 lb . per square inch was required to burst an
experimental box, which gave way ultimately by a bolt pulling experimental box, which gave way ultimately by a bolt pulling
through the plate, and the plates did not begin to bulge or swell through the plate, and the plates did not begin to bulge or swell
between the stays until a strain of 450 lb . on the square inch
had been reached between the stays until a strain of 450 lb . on the square inch
had been reached. We shall not be far wrong then if we take
the strength of the fire-box of the exploded biler the strength of the fire-box of the exploded boiler while sound and new as 450 lb , on the square inch. Under these condi-
tions Messrs. safety of $4 \frac{1}{2}$ to one. They say, "this fire-box will begin to give way at 450 lb ., therefore we shall work at 100 lb . only, but for a convenience to the driver we allow an extra 10 lb . to be carried
now and then, which may be done, of course, without the ghost now and then, which may be done, of course, without the ghost
of a risk." It is to be assumed that no one knows as well as the makers what the engine will stand. The cost of an 8 -
horse power engine is so much-let us say $£ 350$-though we do not know precisely what the Rochester firm charge The cost of a 10 -horse power engine would be, say, 250 more What does the purchaser do? He pays $£ 350$ for his engine, and at
once the safety valves to 125 lb ., or say to 25 per cent. more than the working pressure the maker intended the engine to carry It is well known that the full power of a traction engine is seldom required, save for comparatively short intervals, during which
the boiler will easily keep steam. The result of the little manceuvre to which we call attention, is that Messrs. Ellis and Co. and other firms, buy an 8 -horse power engine and at once con-
vert it into a 10 -horse power, and so put $£ 50$ into their pocket ert it into a 10 -horse power, and so put £50 into their pockets.
Nothing more unfair to the builder can be conceived. Indeed, the practice holds out a direct premium for bad work, because unless the purchaser is sure that the boiler will not carry the extra pressure, he is certain to put it on, and the highel
the reputation of the firm from which he buys, the greater is the chance that he will overload his safety-valves. The remedy is eague and covenant that they will not sell a traction encine without a lock-up safety valve, and one half the battle is gained. The other half may perhaps be won by a bye-law to be framed by the town council or local authority of any town, that no traction engine district over which the jurisdiction of the council extends ; and furthermore, that whenever called upon by the police or other authorised persons, the driver must prove that the said locked-
up valve can be eased on its seat and will hlow off steam. Act of Parliament is wanted for all this. The Maidstone local authorities can prevent manure from being drawn through the own in the day time ; they ought to be just as well able to dangerous nuisance, and prevent its passage throug valve as a accordingly. A little firmness on their part would probably readily suffice to overcome all the opposition traction engine proprietors would be likely to offer

forthcoming railway dividends.

ALTHOUGH we now know approximately the results of the
working of our railways for the last half of 1880 so traffic receipts are concerned, yet it is impossible to state with
precision what the effect will be on the railway dividends for that period. A general and in some instances a large addition to the income of the corresponding preceding half year has been made, but the other factor-the cost of working-is not as yet
exactly known. The increases in the traffic receipts are known toa exactly known. The increases in the traffic receipts are known to a ver'y great extent. On small ines like the Metropoiitan we have £340,000 of the Northis generally marked but in different grades. It is worth notice too, that the decrease in the first part of the half year that was apparent in several of the lines that depend largely on the agricultural districts, has in the latter part of the half year been changed into an increase, which in the case of the Great Northern Railway is to the amount of $£ 20,000$. And on all the great lines the additions to the revenue are substantial. There is ground for the belief that the cost of working has been comparatively small. Coal has been cheap, and over the whole of the year so have been iron, steel, and other materials. It is true that there has been in host cases a growth of the capital, and this now must continue. But
with a cheap working of the traffic, and with an increase in the With a cheap working of the traffic, and with an increase in the
receipts, it may be fairly concluded that the dividend of the prececipts, it may be fairly concluded that the dividend of the pre-
ceding corresponding half year may be expected to be maintained; and where there is such an enlargement of the traffic as is seen the cases of the Midland and the London and North-Western stantial increase in the dividend may horth-Eastern lines, a be wild speculation to name any figure, but it may be concluded with some reason that whilst some of the companies will be only able to maintain the past rate of dividend, on those that have been most favoured an increase varying from $\frac{1}{2}$ to 2 per cent., airly looked for; and there are grounds for the opinion that his improvement is not a temporary one, for our great carrying and fuller receipts. ind fuller receipts.
the utilisation of waste fvory.
A currous and valuable contrivance has been explained to our Shetield correspondent for the utilisation of waste ivory-a subhacturers, in consequence of the rapidly-increasing value of Kilner Brothers, Albion Works, Holley-street, Sheffield-have patented their plan, and applied it in the first instance to table cutlery. Their object is obtained by using odd ends of ivory, or ivory thatisnotsufficiently long for the ordinarylength of handles, by, cementing the pieces together, and by "tapping" the "tang." andle is then piece or fluted b hich oncealed. The tang passes through from end to end, and eing rivettea, the handie is prevented from leaving the blade, either by being placed in hot water, or by any other means which will appreciate this boon, as in the ordinary method of hafting table cutlery the handles come off with irritating frequency. By their patent, which is also applied to knives really good article at about one-half the cost of ordinary knives. The ivory waste used in this way costs 2s. 6 d. per 1b., cut out of the solid piece it would be 20s. Among other speciivory handle of which, if the ivory was of cane piece knite, the worth 3s. 6d. The firm can supply the complete knife and fork for 4 s . 3 d ., with the handle treated according to their patent.

> Commissioners of Patents. - We are given to understand that his Exeolleney the Governor of the Straits Sottlements has ap.
pointed Major F. A. MNair, R.A., C.M.G., Molonial Entiner, and
Mr. Thomas Cargili, M.I.I.C.E., Muncipal' Engineer, Singapore, to

LITERATURE.

Engine Driving Life: or Stirring Adventures in the Lives of Locomotive Engine Drivers. By Mic
This is by far the best book Mr. Reynolds has written, and a notable improvement is to be seen in his style. The work, too, is not narrow in its subject; and although technical enough, it nevertheless contains a great deal of reading which can hardly fail to prove amusing to a large why it should not become a railway book, using the words, in the same sense that we employ them when referring to those volumes with which Mr. Smith keeps a vast public carefully supplied.
The general scheme of the book is very simple. Mr. Reynolds begins with the engine-boy, and goes on to speak by degrees of the fireman, and then of the goods and express drivers, illustrating what he has to say of each with an abundance of anecdotes, some amusing, some laughable, some very pathetic, and all readable. tives, and he very easily shows that the foot-plate is a remarkable school. Some of our readers may have had the good fortune to peruse Mark Twain's "Mississippi Pilot." If they have read that book in the proper spirit, they wil know that it contains one of the strangest psychological
studies ever published. They will there see how the performance of a certain duty trained the intellect day by day and hour by hour, until a river, the general features of which the apprentice could hardly take in in the broad darkest night. Mr. Reynolds's book in some respects resembles Mark Twain's, in that it shows how certain qualities are developed on the foot-plate, and it also shows that some men are born to be drivers and others are not, in which accidents very useful information -information which hever before been published, although it is familiar enough to many railway men. Thus, for example, he shows how accidents occur because drivers when they go to the shed in the morning will not take pains to read the notice board examping instructions for the day right through. As an men, we may quote the following anecdote :-

A very singular notice was once put upon a board respecting a pair of crossing-gates, which were attended to in the day by a man
and in the night mostly by his wife. The old man was accidentally run over and killed, and the railway authorities in consideration of his past duties and unfortunate end were disposed to allow the widow to mind them in the day, and to have them closed at night
and opened by the driver. It was a single line, and only three trains passed through them between 8 p.m. and 6 a.m. The notic was there for all to read, but about a dozen gates were demolished before all the drivers whom it concerned really knew of it."
The following passage is worth reproducing :all railway men, are the safest. Their speed is not very high, and therefore if there is anything on the line that !they can see they have ample time to stop before it ; but in the dark they fare much better than anybody else on the main line, because they are timed
to keep time, and if they don't, which is often the case, they cannot to keep time, and if they don't, which is often the case, they cannot
trip anybody else up. But the high-fliers-expresses-come into the tails of their trains sometimes with a crash, which may be the length of from forty to sixty wagons distant from the goods driver, who can afford to jump off his engine and ask the ""flier" what he thinks of doing. 'If thou thinks to get first,' said one Goods driver to an express engineman who was engine deep among
the debris of a dozen wagons, ‘thou'st better back out and then go round Colwick,' wiich was a route fifty miles away."
If the book possesses interest for the general reader, much more does it do so for the locomotive engine-drive Every story told by Mr. Reynolds is an apologue. Each is accompanied by its appropriate moral, and yet our mend the last chapter to the general public, "How to 'Treat' the Engine-drivers." In the Ashborne-road, Derby, there is a "home" for the fatherless children of railway servants killed on duty. Mr. Reynolds writes, "Insteal of there being room for only a few, kindly help to make room for many, that is
motive Engine-drivers."

HURD'S WIRE ROPE GEAR.

We illustrate this week ingenious and interesting applications of wire rope gear to the working of collieries, which depends for its success on the rope pulley invented and patented by Mr. F.
Hurd, which is illustrated by Fig. 1. Its construction will be readily understood from the section. Tts construction will be periphery of the drum or pulley is arranged a series of clips ${ }^{\text {periphery onsist each of two jaws, the tails of which rest on a fixed }}$ support. When a rope enters these jaws, it bears on the bottom near the axis, and forcing the tails against the support, the jaws tione compelled to close and pinch the rope with a force propor arrangement resembles the on the tails. In some respects the Leeds. It is used both for chains and ropes, and even for single wires. A 5 ft . diameter clip pulley for a $\frac{3}{4}$ in. wire rope, and with a boss to take a 4 in . shaft, weighs 7 cwt., while a 7 in . clip pulley, to fit
a $1 \frac{1}{2}$ in. shaft and take a $\frac{a}{4}$ in. rope, weighs 9 lb . The small pulleys are used for transmitting power round corners, down shafts, and 18in. pulley will work well with an ordinary telegrand that an transmit as much power as a 4in. belt. In Fig. 2 is illustrated a 6 ft . pulley
for hauling and pumping in one of the main sind wire rope Lochgelly Iron and Coal Company, Lochgelly, Fifeshire. It will be seen that the bight of the rope carries a pump working on the dip. The somewhat similar pump is shown to a larger
seale in Fig. 3. The pump is mounted on a bogie, and its own tendency to run down the incline keeps the rope at the prope tension. Fig. 4 shows a 7 ft . clip pulley, with a brake wheel cast as at work at the Penruifufer Colliery Glamorgnshis rope, another pit a the Penruifurer Colliery, Glamorganshire ; at the clip pulley being 4 ft . in diameter, and the steel rope $\frac{7}{8} \mathrm{in}$. thick. Concerning the gear at Lochselly, we are informed that the rop is two and a-quarter miles long, and is hauling up to the full

penses, allowing $11 \frac{1}{\frac{1}{2}}$ per cent. for wear and tear per annum, is
one-seventh of that of the horses and ponies which previously one-seventh of that of the
performed the same duties.

LIGHTING BROADWAY, NEW YORK, WITH THE BRUSH ELECTRIC LIGHT.
A FEw months ago it was announced that the Brush Electric Light Company, of New York, had been organised for the purpose parks, and large buildings. That company has not been idle during the intervening time, but has located the first station and put down the first plant at 133 and 135, West Twentyffifth-street. First, there is a Corliss engine in operation, built by Watts, Campbell, and Co. The foundation has been arranged for the reception of a pair of 18in. by 42in. engines, to be conmecte to the same shatt, unning is rated at 100 -horse power, but can be worked up to 125 horse power. The fly-wheel is 16 ft . in diameter, has a 32 in . face, runs at a speed of eighty revolutions per minute, and weighs $25,000 \mathrm{lb}$.
The main belt is 71 ft . long and 30 in . wide. This belt makes a The main belt is 7 frt. long and 30in. wide. This belt makes a urnishing steam to drive the engines are of the horizontal tubular style, the shells being 16 ft. . long and 51 lft . in diameter. The upper Each boiler has ninety-two tubes 3 in. in diameter, and they are according to the Jarvis system, with special improvements by
Charles A. Berton, the furnaces being arranged for burning coal lust, composed of about one part of bituminous coal to ten parts the supervision of Mr. W. W. McGrath, the engineer of the company. His object is to obtain power at the lowest possible cost, and the result will be watched with interest.
There will be two circuits connected with this station, which are to be supplied by five Brush dynamo-electric machines. One of
these circuits is to be used exclusively for lighting parks and streets while the other is for miscellaneous lighting, such as hotels stores,
whese and other buildings, it being found best not to confound the public with the private lighting.
A No. 7 Brush dynamo-electric machine is represented in one of the accompanying engravings. This machine is 68 in. long, 30 in .
wide, 30in. high, and weighs 2500 lb . The pulley is 141 i . diameter, having a 9 in. face, intended for a belt 8 in. wide, which will drive the machine from 750 to 800 revolutions per minute. It is calculated to supply ten to eighteen lights, and requires 14-horse power to drive it. A larger machine-a No. 8-is now being built,
which is 8 ft . long, and of the same style as No. 7 . When finished, it is intended to run forty lights, requiring an expenditure of from 30 to 35 -horse power. The power here mentioned is calculated to run these machines to their full capacity, causing each lamp to furnish a light equal to that of 2000 candles. The territory con-
trolled by the company extends from Fourteenth-street, Uniontrolled by the company extends from Fourtenth-street, Union-
square, to Thirty-fourth-street, and from Third Avenue to Eighth Avenue. The first practical electric lighting of streets in this
city is upon Broadway, extending from Fourteenth-street to

Thirty-fourth-street. Within these limits there are twenty two lamps, one upon each block. The lamps are mounted
upon iron posts of a neat and ornamental design, and 25 ft high upon iron posts of a neat and ornamental design, and
each lamp giving, as stated, a light of 2000 candle power.
The construction of the lamps will be better understood by referring to the engraving, in which Fig. 1 represents a No. 3, or
double lamp. This lamp is fitted with two carbon rods, arranged that when one set of the carbons is consumed, thes, arranged so switched into the circuit, burning until they are consumed. This is done without any interruption whater to the consumed. This will burn from fourteen to sixteen hours without attention. bundie of carbons is represented by Fig. 2 ready for transportation Fhile fig. 3 shows a No. 2, or single lamp, similar in construction to Fig. 1, but having only one set of carbons. This lamp burns very simple in their hours without attention. The lamps are all management and regularity of operation. The double magnet circuit conveys the currents in opposite directions, by means of which any number of lamps may be operated in a single circuit without any irregularity of action. The short circulating safety resistance in by which any lamp offering an abnormally great or other cause will without the inal consumption of its carbons current automatically short circuit the said lamp and thus preserve the general circuit. A multiple set of carbons, burning successively without the intervention of any switching or other special mechanism, secures the maintenance of the light for any desirable length of time without requiring attention or adjustment by the attendant other than placing the carbons. These lamps conment of the upper carbon actuated by gravity is controlled by a simple annular clamp which surrounds the rod carrying the carbon. When the lamp is in operation one side of this clamp is lifted by magnetic action, which causes it to grasp and raise the rod, and this separates the carbons. As the carbons burn away, the magnetic action diminishes, and the clamp and rod move down-
ward, maintaining only a proper separation of the carbons. when the tilted annular clamp finally touches the supporting floo from which it started, any further downward movement will a once release the rod, and allow it to slide through the clamp until the latter is again brought into action by the increased magnetism due to the shortened arc between the carbons. In continued
operation the normal position of the clamp is in contact with its lower support ; the office of the controlling magnet being to regulate the sliding of the rod through it. If, however, the rod slides too far, it will instantly and automatically be raised again as at first, and the carbon points thus maintained in proper relation to each other.
A focussing lamp, intended for projections in magic lanterns or
other similar apparatus, is shown in Fig 4 of the engraving Fig. 5 represents a lamp intended for application to the reflector of locomotive head lights, or for steamers. An ornanental lamp is shown in Fig. 7, adapted to use in hotels, stores, and other places where a showy lamp is needed. This lamp can be made either single or double, as desired. A regulating switch or dial
attachment is slown in Fig. 6. It is intended for use in connec-
tion with the largest machines, and is so arranged thatany number
of lights-from one up to the full number-may be burned of lights- from one up to the full n
without varying the speed of the machine
This first introuection of the Brush. electric light into the
metronolis for street lighting is only repeating here what has been metropolis for street lighting is only repeating here what has been
done in other cities on this continent. The longest circuit that we have known for electric lighting is in Montreal, O., where one of
the Brush machines works a circuit of $14,000 \mathrm{ft}$. or nearly two and three-quarter miles in lensth. The e plant is on the wharves, and the lights illuminate the harbour, so that vessels can change their
positions alaso load and unload their cargoes as well ta nighta tas in
the day-time the day-time. The invention is an entire sucesss in this instance.
In the Grand Pacific Hotel, Chicago, 570 gas jets have been In the Grand Pacific Hotel, Chicago, 570 gas jets have been
replaced by seventeen electric lights, which, according to the statement of the propprietors, ectricets a saving of 300 dolst., per month.
This is only one instance as an example of what is being done in This is only one instance as an example of what is being
the principal cities of the country.-American Machinist.

THE OHIO RIVER BRIDGE AT BEAVER, PA. On page 7 we give the illustrations of the details of the bridge described in our last impression
tions of the elevation and plan.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

From our own Correspondent.)
The South Staffordshire finished iron trade has been disorganised dhe ironworkers to accent a drop of 3 d . per ton injoction the many of puddlers, and $2 \frac{1}{2}$ per cent. in the remumeration of millmen, which
follows, as a matter of course, under the terms of the subsisting sliding scale, upon the reduction in the three months ending with in the average net selling price of the twelve bar of firms whoser rates the drop does not mean much more than a reduction of 1s. per week per puddler. Yet 7s. 3d. is certainly a very low rate, and as
the alteration follows close upon the unsuccess of the men in their attempt to alter, in their favour, the basis of ascertaining the net price, much soreness was felt, In trith, the men at a large
number of works struck, and did not all resume before the night turn yesterday - Wednessay. They have gone on with the deter-
mination of holding mass meetings after the close of this decide, some of them, if they will remain members of the Wee t Boarr,, and others if notice shall not be served upon the Nayor of Birmingham, who is the arbitrator, requiring a reconsideration
of his ruling touching the methods upon which the net average selling prices are obtained. This action by the men has interfered
with the prompt delivery this week of iron at the manufactorie of some of thene leading consumers, but it has not tended to weaken
inakers' Change yesterday, and upon 'Change in Birmingham to-day, were quite as strong as those of last week. Neverthhess buyers sought
to "bear" the market. Only rarely, however, were thes

 less thanus. per ton advance upon thoseprices, and then only when the
specifications were favourable, and the terms of specilien In were avourable, and the terms of payment attrac-
tive. In other cases the same firms required more moy per ton than the consumers cited were prepared to give. A better
trade was done than a week avo with consurs quality of sheets than that just spoken of. Makers whose brand has acquired considerable reputation in the market did not find it
 Yavanising sheets at, for singles, ti 10 s.; doubles, $£ 8$ 13s.; and
lattens, \&i0. These priees were taken for delivery up to the elose
of February. Much harger orders might have been taken from the same buyers, with deliveries extending to the end of June, but suoh
lengthened deliverie were much sought after, but they were hard to secure wersiness was done in ship, and tank, wand gyirder platere, but trans
actions were for only limited quantities. Still buyers encourased the expectation that a somewhat heavy demand may be looked for further on in the year. The inguriies now reaching them from
engineering firms, they explain, justify this enectan Hoops were not easy of sale, and strips are in less activ
than they have been for three months past. For export hoops
were freely offered, both to-day and yesterday, at $£$ los. at the were freely offered, both to-day and yesterday. at $\& 6$ 10s. at the the
works. The prices did not lead to business, because less money i of this oharacter is few firms both in this and other districts. Iron equal to $£ 65$ s. at the works, but honhool, ons thoorss secure better
figures. There continues to be but a trifting demand for hoops upon United States account.
Puddled iron was ingin
saleable. An expanding business but rarely. Good scrap iron was in sheet shearings from the tin-plate mills in South Wales. It has been possible, up to a month ago, to get the article at $f 2.2$. 15 s . per
ton delivered on to sellers' sidings. In the past) fortnight or or thre weeks sellers have required a rise of 2 . 6 . per ter ton. The rise ha
 attractive because they reach this district bundled, and are there
 trireatened with destruction. Without any previous notice the
railway companies are oftioilily intimating that by an agreement
between all the companies in the kingtom, the rates for carrying
 mingham shearings strom South Wales, ironmasters were in Bin Bir
mingat
argued that even if therlampton generally complaining. argued that even if there were good reason for advancing the erate
for loose scrap because of ite for loose scrap because of its want of compactness in the trucks,
the argunent did not apply to shearings, which, because of the
way in whinh they are bound way in which they are bound up, are oonveyed upon the average in
truck-loads of 7 tons. The trattic must therefore able to the compranies than even the carriage of barss, since, in in thit
anerage of tranaections, bars are moved in only 3 ton
Representations Representations will shortly be made tod the only 3 ton loads.
but the compact which they have all entered into will companies,

 but vendors wert eess desirous to to book ware wies.
Coal is in better duotable change, and domestic samples were in better reequest both yesterday and
to doday. todday.
The col extinsion of their markets by reason of a projected railway which
will rum from the north
and No will ruu from the north side of Birninghan to Walsall, the Chase
and North Statfordshir, some eightt miles north of Rugeley. The
cost is estimated at $£ 1,333,000$. cost the estimated at $£ 1,333,000$. metal-working trades have hegul instances. It is understood that an ironmaking firm in North Staffordshire
have just reecived an order for 2000 tons of puddled bass for despatch to America,
Considerable alter
wares and metals during the past year. The value of sporting
guns is without alteration, though the keen competition in the
gun-lock trade has brought trices of those articles down something like 20 per cent. during the year. Anchors, chains, \&c., are
all 25 per cent. cheaper than a twelvemonth ago. Gas tubes all 25 per cent. cheaper than a twelvemonth ago. Gas tubes
are 121 per cent. higher in discounts. Wrought and fine nails are
20 per cent., spikes 25 per cent., and vices are 15 ner cent cheon 20 per cent., spikes 25 per cent., and vices are 15 per cent. cheaper.
Washers have increased in discount 20 per cent.; but wire is fully 30 per cent. lower. Axles have not seen much change. There
have been great variations in the nut and bolt trade and preser have been great variations in the nut and boit trace, and preses
prices are about 2 per cent. less than at the beginning of the year.
Power-heary-bolts are rather easier. Brass foundry is dearer Power-heavy-bolts are rather easier. Brass foundry is dearer
by about 2 per cent. on the gross. Areduction of something like
15 per cent. has taken place on galvanised buckets. and the that of hoes and other edge tools is 10 per cent. less than at the commencement of the year. Filise haver cenent inessereased in discoumt;
tinned hollow-ware is 5 per cent. dearer as compared with this time lastyear, but on the other hand, black hollow-ware castings are higher in discounts. In the early part of the year the lock manufactarers
were tolerably busy, and discounts were reduced, hut since then prices have become cheaper. Planes ere not worth so much money.
Rabbit and rat traps remain about the same advanced about 5 per cent. in the early part of last year, and this
has been adyanced thy the miority of timer has been advanced by the majority of firms. Scythes and sickles
went up in the busy season, but are now down again. Two meetings of the dissatisfied nailers have, during the week, been held in the Old Hill locality, and it was, agreed to continue
the levies to support men who are not receiving from employers the the levies to support men who are not receiving from emp
3s. per thousand rate.
At a meeting of the South Staffordshire Nines Drainage ComAt a meeting of the South Staffordshire Mines Drainage Com-
missioners, held yesterday in Wolverhampton, a resolution was passed requiring every occupier of a mine within, the drainage area
to make a return of the number of acres of mine occupied by him and of the number of tons of mineral raised by him during the past half-year. Upon the return, when obtained, will be levied a
surface drainage rate to carry on the surface works. At a meting of the colliers employed by the Sandwell Pank ing upon the sany, Limited, it has been resorved to continue workwithin the provisions of the Employers, Liability Act. The men
thus decided to adopt the same course as has been taken by the thus decided to adopt the same course as has been taken by the
miners in the ocoupation of the Earl of Dudley. On Tuesday a large meeting of the colliers of Coseley and the surrounding district was held, at which it was determined to start a permanent relief und on the basis of the Cannock Chase scheme.
At the annual meeting of the Pijlsto
pany, held during the week it was stated Light and Coke Comlistrict had improved, and that five million cubic feet more gas had been consumed during the twelvemonth than during the previous year. A profit of $£ 3600$ had been made on the year's working,
which permitted of an 8 per cent. dividend. Special attention the directors said, had been wiven to the distributing plant; that
plant was now almost perfect and had resulted in diminution in the unaccounted-for gas
The Water Committee of the Birmingham Corporation are
ahout to obtain tenders for the construction at Shustoke, with a capacity of 400 mitruction of a a s
During the week the
During the week the Wolverlampton Tramways Company have been making trial trips upon one of their lines with a stean
ocomotive from the Loughborough works of Messrs. Hughes engine is neither so long nor so ligh as the passenger car. All the works, with the exception of the necessary levers, gauges, \&c., are
covered in. There is no fire to be seen from the outside, and but little steam is emitted. The engine is so constructed that, instead
of a turntable being required to reverse it fro the triver has simply to change ends. An alteration of the position of the car must, however, be effected by shunting. There is conspicuous absence of jolting in the passage over points, when the
car is drawn by steam, and the experiments were generally consiered satisfactory
Sollo, Birmingham, Tangye Brothers, the engineers, of Cornwall Works, the magnificent donation of $£ 10,000$, which they lately promise towards the Birmingham Art Gallery. The mayor communicated this fact to the Town Council on Tuesday, and the warmest thank
The agregate of iron turned out the mill
the blast furraceaces in in South Staffordsthire during 1880 has been at increase upon the production of 1879 . Although the American after the first two months of 1880 , yet other custor fell of stepped in and have bought much more than they did in 1879
But at the same time that activity mor area than before, the twelvemonth's business cannot be spoken of as satisfactory. Productive machinery has been only irregularly employed, and prices have fallen considerably-though not to
lower poont than before the United States commenced buying opened at f9 12s dey's common bars were priced when the ye These quotations were an advance upon tlose of the previous Christmas of 20 s . per ton. Sheets of the same makers were quoted
at $£ 10$ to $£ 11$, and boiler plates $£ 10$ 10s. to $£ 11$. No great anount of business was, however, done at these increased prices; and ruming only about one half to twoothirds time. Medium quality bars sold at $£ 810$ s. to $£ 8$, and the common sorts were, during par of the quarter, obtainable at $£ 7$ 10s, but the price was not general.
No branch was better oceupied than galvanising sheets, and this
activis activity has been more or less apparent during the whole year.
Indeed, sheets of this description never occupied a more prominent relative position in the South staffordshire trade than they do
now. Slieets singles) during the the year were mostly priced at \& 111 to three months that opened the
were being rolled in large January and February. A considerable decline in trade took place in the fourth and fifth. A conthsiderable decime in trade took place
marke the year; ;and before June set in marke iron saw a drop of $£ 1$ per ton, which brought bars down to reduction of $£ 2$ per ton took place upon tinned sheets. Commo
bars, before the reduction sheets singles at from $£ 8$, to eq. elling at less than $£ 7$ per ton, and
June, ind short time became worse during Common bars, when July had operations at most of the works, In the
In the July quarter trade rallied a little, but not to a sufficient however, in the dulness of business in marked iron, and before
July ex, $f_{7} 10 \mathrm{~s}$. for bars. More than the the brought their quotations down to
 Sest sheets became $£ 9$ 10s., and plates $£ 9$ to $£ 910 \mathrm{~s}$. The list o howed a drop on some sections of bars, upon their prices of May
of 20 s , and 30 s. of 208. and 30 s. per ton.
The closing two
Where they previously stood. The inactivity in best bars, which
as be the mety has been dunticeable nearly ail the year, has continued, and so, too rranch that exhibits a prosperous demanand. Mlectium are the only
bars are selling fairly, the latter at $£ 6$ to $£ 5$ ITe

 prices have steadily fallen.
Pig iron of Shro shin
the year ot \&t thopshire and Staffordshire best make commenced
for cold blast sorts. ©ind per ton for hot blast, and $£ 5$ to \& 510 s .

makers did the best business of any time during the whole twelve
months. The furnaces blowing numbered 63 -an increase of 28 upon the previous November. Hematites have figured conspicuously on our Exchanges during 1880 , but the prices have been
mostly too high to encourage a good business. During Lady-day quarter they were enouted by makers' a aents at the prohibitive figure of from $£ 6$ 10s. to $£ 7$, consequent upon the demand at the
furnaces which sprang up at the American revival.

NOTES FROM LANCASHIRE.

Manchester:-During the week business has been too much injudgment as to the real condition of trade, but the an accurate opened under encouraaging circomstances. There is a general
belief in the substantial improvement was a strons market at Manchester on thuesday trade, and there higher prices were asked, and sellers as a rule were very cautious
about committing the sumers in this disthiemselves to long forward engagements. Conrequirements the inquiry is chielfy confined to forward delivery but as buyers are not willing to pay, and as sellers are disposed to hold for a premium upon present rates for extended periods, any
large amount of actual business is for the moment being held in check
Lhancashire makers of pig iron decline to go beyond the end of the next three months, but for this period they are still selling at district being 46s. 6d. for No. 4 forge, and 47 s . 6 d . for No. 3 foumdry, less $2 \frac{1}{2}$ per cent. Some of the Lincolnshire makers have
this week advanced their prices, chester forge qualities are being quoted for delivery equal to Mannumbers 48 s . to 48 s . 6d. per ton, but there are still sellers is nominally quoted at about 49 s . 10d to to 0 . Middlesbrough iron but North-country brands do not find many buyers here at these
 successful year in this particular branch, which, to some extent, is
due to the expectation of a considerable American demand for raw and manufactured steel products, and I hear that an enlargement of the production is in contemplation.
tional where makers are now quoting under 46 per ton for bars delivered into the Manchester district, but there are still sellers Who will take 2 s . 6 d . per ton under that figure.
pended owing to most of the collieries having been closed been susthe greater portion of the week, and at many of them work has not yet been resumed. For round coals there has been only a moderate
inquiry, but there has been a good deal of pressure for engine fuel, puotations at the pither prices are being obtained. The average to 9s.; seconds, 7s. to 7s. 6d.; common house coal, 6s. to to 6s. 6d.;
steam and forge coal, 5s. 3d. to $5 \mathrm{~s} .6 \mathrm{~d} . ;$ burgy, 4s. 3d. to 4s. 9d.; and good slack, 3s. 3d. to 3s. 9d. per ton.
The Employers' Liability Act, which
The Employers' Liability Act, which has come into force this
month, has caused a very unsettled feeliny throughout the month, has caused a very unsettled feeling throughout the coal
trade of the district. At many of the collieries the men have consented to contract themselves out of the Act, on the condition of the masters increasing their subscriptions to the relief funds, but
there are large numbers of the min there are large numbers of the miners who deciline to enter into any until some definite understanding is come to Tn the monped the uneertainty which attaches ot o their liability under the Act entering into forwestery proprietors to be very cautious about thing like a definite conclusion as to the conditions under whicl they will have to conduct their business. The trade is also further threatens to still further interfere with advance of wages The recurrence of serious floods in the Salford district caused by
the overflow of the river Irwell, as a consequence of the recent heavy rains, has brought this matter again under publio notice, referred a week or two back, has come in for some of which 1 having contributed towards the serious character of the flood.
This criticism has been fully met by engineer, by whom the bridmet by Mr. Arthur Jacob, tho borough nothing short of abstracting one-third of all the flood water will the floods of property owners secure, and obviate such disasters as the Salford Town Council on Wednesday, when one of the members
proposed a resolution to the effect that the Governent bould be proposed a resolution to the effect that the Government should be
requested to appoint special commissioners for the sidering the advisableness of widening and deepening the bed of the river between Salford and Runcorn, so as not only to admit
vessels stream prevent the receurrenece of such makingstrous floods. The pro-
posal was, however, postponed until the next meeting of the Council.
Barrox.
the hematite pig iron trade than has been experiencel for som time, and already the indication of this increased prosperity in the iron trade is beginning to manifest ittereff. With the the spring
there is not the slightest doubt we shall see a very good business lone, and the opinion gains ground in well-informed circles, and by people not given to taking too sanguine a view of things, that
not only is trade hrisk and steady time, and at the same time will prove to be a
firm and sound revival. Producers are well employed, and their output is larger ; home deliveries on a good scale are being mad The inquiries from America and the Continent we well maintained contracts in the lands of makers, and there are visible signs that the demand from abroad will shortly be very large. The home
demand is also good, and a healthy outlook characterises the market. Prices are unchanged, makers being very firm. The stee at Barrow the production of Siemens steel is likely to keen the busy. Good inquitries for steel are being made. Shipbuilders are very busy, and are likely to continue so for some time. Engineers and
oulhers engaged in the different industries are also well supplied with work. Shipping fairly employed. Iron ore is in good request
it from 12s. 6d. to 16s. 6d. per ton.

THE SHEFFIELD DISTRICT.

Rail orders of any magnitude have been rather
 South Wanes Goverument, only 7000 tons were

 frim. Messrs. Wilson, Cammell, and Co., Dron
field
Steel

 ${ }^{\text {at }}$ At the the Parkgerated In Ironvorks, the mills, forges,
 There is a good demand for blast and merehant
iron, though prices are weaker than they were

 Stoverrates have of late years rapilly increased one of the oldest of our ind istrieses and has b been
conducted with great energy. In Rotherham the

 erce the Queen Anne style of grate. A number of engraved burnishen stoel stoves of the seven-
teenth century pattern have reently been finished
 thie companys most reeent customers have been
his Roval Iirliness Prince Leopold and Count Gleiechen. The evarious firnse engased in this
trade find that, in consequence of the spread of arte education, customers are more exatitiy than
in former years, sand anything like aetivity in the in former years, and anything like eactivity in the
trade can only, be maintained by entervise and taste in the production of new paiternss
The
Triilway wason trade chiefty for socotech companies, notablity the No North Britisis. A noticeable feature in the railway
materina quiries which would appear to indicate that railway speculation is once more making some progress abroad.
The reduction of 3 d . per ton on puddlers' wages
in Staffordshire also affects the Yorkshire trict. The net average price of har iron sold by the twelve seleeted firms in September, October, the twelve seleeted firms in September, October,
and November was $£ 615 \mathrm{~s} .6$. 65 d . per ton; during
the previous quarter the price was $£ 6619 \mathrm{~s} .8 \mathrm{~d}$. the previous quarter the price was $£ 619 \mathrm{~s} .8 \mathrm{~d}$.
The wages now paid to puddlers will be 7 s .3 d . per ton, a reduction of 3 d . per ton on the previous
quarter. Millmen's wages will be reduced $2 \frac{1}{3}$ per cent. Alarming telegrams are flying over the country about a projected strike of over 20,000 miners in
South Yorkshire. I have been over most South Yorkshire district during the last fortnight and have talked freely both with coalowners and colliers. The former declare they will not concede the 10 per cent. advance asked for by the
men, while many of the latter state that men, while many of the latter state that they
signed the demand because the union resolved upon it-adding, "We know it's only a
farce." If the union make up their ever, that the men must come out, the men and masters may alike find that it is more than a farce.
Cutlery and general hardware trades in my last report. A good business generally doing, and excellent prospects for the new year.
Students of the Sheffield School of Art have been very successful in the recent competitions in a prize of $£ 20$ to Mr. Robert Needham for a design for a kettle and stand; the proprietors of the Art
Journal have given a prize of \&5 to Mr. Alfred
Pearce for a design for a salt-cellar; and the Pearce for a design for a salt-cellar; and the
Reyal Academy have awarded an extra medal for painting a head from the life to Mr. Cecil Sykes, to London. Messrs. Brown, Bayley, and Dixon, Limited,
the Sheffield Steel and Ironworks, convened a meeting of their creditors on Wednesday. statement of accounts submitted by Mr. Pea amount to $£ 263,949$, and the assets to $£ 120,246$,
equal to 9 s . in the pound if the works were equal to 9 s. in the pound if the works were
broken up. The directors recommended voluntary liquidation, and this course was approved of by the creditors, who appointed Mr. J. H
Barber, the secretary of the company, and Mr
Peat, accountant, London, joint liquidators Peat, accountant, London, joint liquidators. A committee was also appointed to confer
with the liquidators and directors as to the the company
of compromise between the company and the creditors.
meeting of shareholders is called for the 7th meeting of shareholders is called for the 7th.
Dr. Webster, the American consul, complete his return of Sheffield exports to the States fo year is $£ 1,075,242$, as compared with $£ 671,739$ for
1879 , which shows the reality of the revival of Sheffield trade with America.

NOTES FROM SCOTLAND.

Comparatively little work has been done this week in connection with the iron trade, owing to
the new year holidays, which are observed in Scotland instead of Christmas as in England. The the works for several days, so that there is less to note in this correspondence than usual. Since to the stock in Messrs. Connal and Co.'s stores which now amounts to 498,758 tons. There are 124
furnaces in blast, as compared with 100 at the same date last year, and the weekly output is
estimated at about 25,000 tons. Advices from America have not been quite Advices from late; but owing to the excitement and strength factory nature of the annual statistics, the prices actory nature of the annual statistics, the prices
of makers' iron are generally better, and in some
cases substantial advances have been made. wases substantial advances have been made.
The warrant market was. closed on Friday
afternoon and on Monday afternoon and on Monday. It opened very
strongly amid no little exaitement on Tuesday,
when a large business was done from 54s, one
month, and 53 s . $10 \frac{1}{2} \mathrm{~d}$. cash to $53 \mathrm{~s} .3 \frac{1}{2} \mathrm{~d}$. cash, and
53 s . 5 d . one month. On Wednesday business 53 s . 5 d . one month. On Wednesday business was
done from 53 s .3 d . to 53 s . 1d. one month and
53 s . 1 d d. to 52 s .10 d , cash, and at 53 s , cash and 53s. 2d. one month. The market was firm to-day
-Thursday-from 53s. to 53 s . d . fourteen days -Thursday-from
It may be of some consequence to note that
during the past year the United States us 234,343 tons of pigs as against 139,497 in 1879, and 15,961 in 1878 ; Germany, 65,459 against
73,11 in 1879 , and 63,135 in 1878 ; British America, 49,246 against 21,956 in the preceling
year ; Holland, 38,756 against 48,365 ; I Italy and Austria, 32,305 against 24,515 ; France, 25,468
against 23,936 ; Russia, 23,029 against 22,642 ;
Bel Belgium, 10,474 against 10,888 ; Denmark, Sweden, and Norway, 8078 against 8869 ; Spain,
Portugal, Gibraltar, and Malta, 8496 against 8784; Greece, Turkey, and Egypt, 911 against
1011; South America, 3620 against 3030 ; West Indies, 200 against 121 ; East India, China, Japan,
Australia, \&c., 19,802 against 15,782; and Africa, Australia, \&c., 19,80
178 against 85 tons
It is so far satisfactory to note that in the
It closing months of the year, when the demand for in the season, there sprung up an improved general inquiry from other parts of the world. year by mixed numbers of the course of the past 12 th January, when the figure was 73 s . 3d., and
the lowest on 2 nd . June, when it was 44 s , 5d., the lowest on 2nd June, when it wa
that is, taking the weekly averages. The production of malleable iron during the year was the largest on record, being 292,000
tons, as compared with 222,000 in the preceding year. Our best customers were the East Indies,
and next best the United States. A very large and next best the United States. A very large
proportion of the malleable iron made was used ur at home, chiefly in connection with the shipbuildat home,
ing trade.
Last we
from the Cly shipments of iron manufactures chinery, of embraced $£ 9600$ worth of maBombay, and £1845 for Calcutta; $£ 4620$ sewing Santandar, £1070 to Marseilles, £565 to Ched to and $£ 510$ to Antwerp ; $£ 5500$ manufactured irons, of which $£ 1300$ were castings for Santandar, $£ 1310$ castings for Port Natal, £1109 steel goods
for New York, $£ 815$ for Calcutta, and $£ 650$ for Bombay.
greater portion of which was backward during the show some improvement, has of late begun to anticipated. In a letter to the Scotch miners' on Monday, Mr. Macdonald, M.P. says he is free to confess that the same strength has not yet
been shown among the Scotch coal districts as among the English and the Welsh. He attributes this to over-competition ; but he considers that if better their position in the course of the present year.
The amounted to 218 vessels, with an aggregate of 180,576 tons in 1879 . The year's work is the largest since 1874, and is
exceeded oly by that year and by 1873 in the history of the trade. There has never been so much tus yage on hand at the beginning of any tons in course of construction.

THE NORTH OF ENGLAND. A considerable change has come over the Middlesbrough pig iron market during the last yearly stocktaking at Glasgow was a decrease of 6000 tons, seems to have produced no small amount of speculation for a rise. By impulsive
competition an upward movement was competition an upward movement was actually
brought about, and Glasgow iron went up to brought about, and Glasgow iron went up
53 s .9 d . In sympathy with this the Middles brough market also gradually rose during the
week until on Tuesday morning, 42 s . 6 d . wa paid for delivery over the first quarter, and 42 s .
for prompt. Some sellers even demanded 42 s .9 d or prompt. Some sellers even demanded 42s. 9 d .
This was a total rise of 3 s . to 3 s . 6 d . per ton
during the week. News having arrived frel Glasgow that there were signs of a reaction there, prices became easier towards the close of
the market. Connal's warrants are still in good demand, and fresh paper is being issued every quantity in the store. These additions have amounted during the week to 3737 tons, an
unusually large quantity. The total stands at present at 127,890 tons in the Middlesbrough, an
498,353 tons in the Glascow stor and Ironmasters' statistics for December have just been issued - Wednesday noon-with the
following result, viz:--Increase for December In makers's stocks, $2976 ;$ in makers' stores, 5981
in public stores, 10,$042 ;$ total increse in public stores, 10,042 ; total increase of stocks,
18,999. Two more furnaces have been blown in during the month, but three have been put on
hematite instead of Cleveland iron. This will reduce the make of Cleveland pig by about 2000 tons, and increase the make of hematite by about
7000 tons monthly. The general result upon as disappointing to sellers, who expected an increase of notmore than 10,000 tons for the month It at once had a depressing effect upon the market,
and the price has fallen to 41s. 6d. sellers, and no and the price has fallen to 41s. 6d. sellers, and no
offers from buyers. Manufactured iron continues firm, on account of the rise in pig and the addi-
tional difficulty of buying forward. Plates may be considered to be really $£ 7$ per ton at works, though nominally 5s. less. Bars and angles are quoted at $£ 6$ per ton. The price of coal is rather weather, and therefore lessened demand for household purposes, and partly because of the lessened consumption at the manufactured ironworks on account of Christmas holidays. A strike has taken place at Messrs. Richardson platers' helpers demand $7 \frac{1}{2}$ per cent., and the carpenters 4 s . per week advance. The men con-
sider they are underpaid compared with other yards. The firm have offered to grant th
advance from February 1st, but this offer has no
yet been accepted,

Messrs. Bolckow, Vaughan, and Co. have just of 29,350 tons were required for New South Wales. The order has been divided between the above-named firm, C. Cammell and co., sheffield,
and two other firms. The prices is said to be £6 5s. per ton f.o.b.
The following is
The following is an epitome of the iron ship-
building statistics for 1880, compared with the
same for 1879 :-

It would appear from the above that on the Tyne since 1879.
The Port Commissioners at Sunderland have agreed to advertise for tenders for the execution of
work connected with the improvement of the River Wear at the North Ferry landing. They a rate of decided to invite loans for $£ 100,000$, enable them to proceed with the work. The
expenditure of sums such as this in useful enter expenditure of sums such as this in useful enter-
prises is likely to help forward the much-coveted prises is likely to help forward the much-coveted
revival of trade in a genuine and wholesome

The General Purposes Committee of the MidMesbrough a notice recently given by the North-Eastern
Railway Company to take off, from the 1st inst., a certain rebate of $7 \frac{1}{3}$ per cent. allowed on dues
for mineral traffic. This rebate is the residue of a larger one which was allowed during the recent depressed times, in consideration of the unremu-
nerative condition of the iron trade, and of the nerative condition of the iron trade, and of the The company contend that trade has now revived, and the full rates ought to be paid. The iron-
masters, on the contrary, point to the extremely low prices they are still compelled to take; to the fact that they have given away all advantage so
far to workmen, and in other ways; and say that they really cannot afford to be come upon so soon. They also point to the high dividends recently paia, and likely to be paid, by the railway company, and that they, as public trustees,
should not stifle the trade of the district in order to augment, for the benefit of already prosperous
shareholders, their already unusually high dividends. A similar course has been taken by the Middlesbrough Chamber of Commerce. It
remains to be seen what success will attend these efforts.
The
The keenness with which the shares of the new appears not to have escaped the notice of the numbers of professional "getters up" of limited but a sorry time of it. Since 1876 prospectuses have, I suspect, almost invariably been con-
signed to the waste-paper basket, no matter whose names were upon the directorate, and no Indeed, the British public having suffered terribly was uncommonly shy. The list of new companies in our leading newspapers, previously so long and
often so amusing, dwindled gradually down until only an odd one now and then was mentioned. not be supposed to be dead. They have only been sleeping. What happened as regards the
Hull and Barnsley Railway will not escape the observation of such adventurers, and the British history should be about to repeat itself in in
this respect. Most likely the new which are beginning rapidly to be evolved will be sound in the main for a time. But we shall also see before very long a plentiful supply of the
old familiar air-castle sort. Investors beware. The greatest possible danger lies in the common habit of following others blindly into adventures
without the trouble of a full, complete, and personal sufficient investigation. Those who will likely to get a heavy loss to proot. They are very the unfortunates who found the money which was so freely wasted in multitudinous directions
between 1871 and 1874 , deserve no quarter, if they should be caught in the same way between 1881 and 1884.

WALES \& ADJOINING COUNTIES.
THE great feature of the week has been the Fund, and I am glad at length to to the Miner awakening to the need of doing something have thought for a long time that the colliers would not do anything until the public sympathy subscribed to that its funds will outlast the longest lived. Abercarn was similarly richly aided; but Risca could not get sufficient; Dinas will be run out in the course of twelve months, to have come to an end-amounts only to $£ 16$ per recipient. It is evident from this that themselves, and action has begun at last. The and ens been busily discussing it this week, and object to the 3 d . per week. They had underalready subscribe to local funds and benefit meet ings, this 1 s , a month will be too great a tax. one. I have all ant, anoted for the 11 . week. The charge of 3d., is based on only a pro-
portion subscribing. My theory is, legislative enactment; 1d. a week to be stopped from wages from all employed at a colliery ; owners to contribute 5 per cent. and landlords 2 $2 \frac{1}{2}$ per cent. on
totals of colliers' contributions, and I am glad to find that many leading gentlemen connected with this large industry support this view.
There must be one great institution. Why not try the voluntary 1d.? the public would aid such
a fund in event of any great calamity. This 3d.
have the same inefficient local funds and benefit
societies along with it, and neither powerful enough to meet a great disaster.
Mr. W. T. Lewis and Mr. Galloway descended Penygraig coal-pit this week, and minutely exa-
mined the workings. At the sale of Penygraig pit, known by the same name, but not connected with the scene of explosion, Mr. Lewis was the pur-
chaser for $£ 16,500$. There was a spirited bidding, the colliery being a valuable one, with coke ovens and a quantity of plant.
With regard to the I
With regard to the Liability Act, whieh came
into operation this week, the men, are divided in into operation this week, the men are divided in
opinion as to "contracting themselves out of it" as some of the employers suggest. By the clause added to the Act in committee the colliers or ironworkers, or any class of workmen can do this.
Employers in some parts of Wales have offered 50 per cent. towards forming an accidental fund;
and the Llynvi Company as much as 25 per cent. if their workmen will contribute 21 ${ }^{\frac{1}{d} d}$, per week, and " contract." In another week or two some progress will be
made towards a settlement. At Llynvi the men have taken time to decide. Meetings have been hear good news from Cwmavon. It is reported
that the works, employin two thousand hands, are to be formed into a strong company with very likely the tin works again added. Mr. Shaw's his retirement for a time.
The iron and steel trades are still buoyant prices about the same, with an upward tendency. Good orders for the United States are on hand,
and on the whole, what with home and foreign demand, the signs are healthy for a rood conAn engineman at Cwmavon, has been com-
mitted for manslaughter, charged with having
caused the death of an overman by reckless winding. amounted to 125,000 tons, of which Cardiff sent 89,000 . Newport showed a falling off, Swansea was fairly sustained, but business at all the ports
is scarcely up to December work. In iron is scarcely up to December work. In iron ship-
ments there has been but little done, some few cargoes to America, principally South, and a large consignment of iron pipes to Caligari from Newport, Mon. One cargo for New York was com-
posed of 300 tons pig, a large quantity of blooms 100 tons tin-plates
The tin-plate trade continues dull. Notice of reduction of wages has been posted at the
Vernon Iron and Tin-plate Works of D. Morris and Co., to come into operation February 1st. active character, and in the house-col of an new sinkings are the order of the day. This is the case at Holly Bush, Argoed, and Blackwood An early re-start is likely at the Parkend collieries, Forest of Dean. This will employ 700 men . diff, but there are hopes of a revival. The Carport Abercarne Colliery announced an interim dividend of 5 per cent. A
dispute at the Great Western Colliery has been dispute at the Great Western Colliery has been brought to a satisfactory conclusion, but there are
still points of disagreement pending which have

THE PATENT JOURNAL.

** It has come to our notice that some applicants of the
Patent-afice Seles Department, for Potent Spesitications,
 of giving the proper number of the Specitication. The
histcke hes been male by looking ot The ENGINEER
ndece cund giving the mumbers there found, velich only

Applications for Letters Patent.
When patents have been "communicated" the
name of the agent is printed in italics. 2Sth December, 1880.
Valves, , M. Meacook and A. W. . Ward, Chester
ORDNANCE, Sir W. G. Armistrong, Newcastle. OrdNance, Sir W. G. Armintrong, Newcas
PURFITYNG STram, J. . Belleville, Paris.
Bicycles, de., I. T. Townsend, Coventry.
 STAYs or Corsets, W. R. Lalke, London. Skylegrs, A. Forbes, Govan.
Shlps, dce, F. H. Danchell and R. Blum, Paris. Rotary Pumps, G. Waller, Surrey.
Revolving Furace, b. J. B. Müls, London.
HEAVY OrDNANCE, B. J. B. Mills, London.

 RaNsERS, A. E. M.Donald, New York.
EssTrovic. Mice, H. A. Bonererlle London.
OPENING, de., DAMPERs, R. Waller, Leeds.
 ilazivg, C. F. Elliott, Liverpooll
WINDow, Lishen, J. Terry, R. Judson, and G OiL, dc., Cakes, C. Eskrett id W. H. Searle, Hull.
OrNamentiva Plastic Materials, W. P. Thomp.
 AMMoNiA, H. A. Dyjrené, London.
Morive Power, J. Graddon, Kent.
PUMPs, A. M. Cleik, London.
5480. Pumps, A. M. Clarkr, London.
541. Sors Bed, R. E. Parr, Greenwich.

31st December, 1880.
5500. PREvENTINGG
East Hartlepool.
. Preventivas Shifting of Cargoes, J. Goudie
 3. Unibrilat Streitchrrs, J. Smith, Birmingham.

 5516. Prondersg Desiess on Woon, A. Guat
5517. TREATING Pork, A. M. Clumk, London.

 Consurvicasing Appantus, H. Morris, Manchester
FLoors or Surfacks, R. W. Rylance, Blackburn.

 3rd January, 1881. 13. Lithooraphic MAchives, G. Newsum, Leeds.
14. Portable Fursaces, J. Tenwick, spitlegate.

20. Dental Exaing, P. Shaw, Manchestar

Inventions Protected for Six Months on deposit of Complete Specifications.

Grants and Dates of Provisional Protec-

 L20. Gexeratixg Heat, J. M. Forbes, jun., Cornhill,
London.-A communication from B. N. Huestis

 5120. Holidive, de., Wiviow Burxd Convs, C. E. Gib-

5146.' Sulphuric Acid, w, Wode Decem-

 Patents on which the Stamp Duty of 4914. Toous, dc., J. Hall, Chancery-lane, London.-

 ${ }^{6}$ Krinite Coxpoosds, Patents on which the Stamp Duty of 58. Rotrary Exalves and Pen paid. G. T. Bousfield,
Sutton.- 5 th Jenvurry, 1874.

Notices of Intention to Proceed with Applications. 4it7. Gas Burvires, J. Haworth, Blackburn. - 27 th August, 1880. Sropprrs, J. Rettie, Hatton-garden,

 31st Aunnest, 1880. \&c., M. Bauer, Paris.- A commu
 3699. TTEEL WIRE CARDE, G, and E. Ashworth, Man-
 3iti. Pdoking Brav, dec, A. M. Clark, Chancery-lane
London. - A communication from W. L. Williams.-

 cery-lane, London.-A communication from P. Gra-
hami.-23rd Nocenber, 1850 . 4980. Huskive Rice, dc. J. J. H. C. Martin, Church-hill,
Walthamstow, - -oth Nocenuber, 1880 .

Lust dey for filing opposition, 25th January, 1881.

 fields, London.-A communication from P. Giilard,
I. Hailit, R. Radot, and A. Lencauchezz. - aoth
Aurust, 1888 . 3520. Reylving Spent Stean, de., H. A. Bonneville,
Piccadill, London, -A communication from J.
 3530. Heanctivg Apparatus, F. Hart, Queen Victoria-
 333. PRorerinivg Carriages, E. Edwards, Southamp-
ton-buildings, London- 318 .
 1and-road, London.-1st September, 1sso.
3575. TTrps, T. Singleton, Over Darwen.- Srd Septem. 3599.) Boxks, de., L. Wahltuch, City-road, London.-

 3861. PApre, N. G. Richardson, Tyaquin-Monivea, and
W
Wmith, Dublin.- 23 rrd September, 18so

 4853. DDANIN Piprs, J. Loverrove, Urswick-road, Lower
Clapton, London. $-23 r d$ Novembers 18s0. 4901. DyEING, J. Rogers, Stroud, 25 th November, 1880 .
50i.
Will Dill

 Diekinson Hard Rubber A Commmunication from the
18so
Patents Sealed.
Patent whicl passed the Girat Scal on
the 31st December, 18so.)

 2750. BAcks of Accoust Books, dce., W. Hawtin, jun.,
Paternoster-row, London, and A D. Collier, Camber-
Woll Suster

1993. Ansealina Pots, 1. Jones, Swonsea. - ith 1880 July,
 don. -9th July, 18s0,
 14th Jouy, 1880.
 2976. Hollow Articuss, F. Walton, Heatham House,
 Salop.-22nd July, 1180.
3226. Cimprica Seat Skivs, L. A. Groth, Fisbury Pave-
 560 . Moistening the Interior of Rifle Barreis, R.
H. Finde Govanhill N. B.
 Bloomsbury, and J. T. Hopkinson, Hunter-street,
Brunswick-square, Lond on. 1 ITh Sh Sentember 18s0 Brunswick-square, London. 1 -1 th September, 1850 .
4025. SEwING Michivs, G. Browning, Glasgow. -4 th
 Clife , shemfielac-1nins, G. Browning and S. Mort, (Hasgown - 2 Eth october. 1880 .
(List of Letters Patent which passed the Great Secl on the 2742. Casks and Barres.s, G. D. Terry, Marylebone, London.-5th Juyy, 18s0. London.-5th July, 1880.
2T55. STRAM, dec., WINDING Machivery, H. S. Mackenzie, Penwenach, Falmouth. bth July, 1880 .
2764. ELEcrrnic Lamprs, G. G. André, Dorking, Surrey.
 Leadenhall-street, London.- 6 btt July, 1880

 Boulevard Magenta, Paris.- Tht July, 1 siso.
2790. DIsINTECTING MoHAR, de., J. Scharr, Bradford. 2799. J JumpIIc Tires of Locomotives, dc., W. Brierley,
 Jully 1.80 . fror Briks Masts, A. A. Rickaby, Bloomfield Engine Works, Sumderland. -sthl July, 1880.

 essi. Treatnent of Vegetable Oils, T. H. Gray,
 2847. Loconotive, dce., steam Boilers, S. Perkins,

 Lancester.- 1 toth July, 1880
2856. Cutrivg Tous,
c. Whitehouse, Cannock, Staf-

 13th July, 1880. . 28 . 2916. GovERENING A PrPardivis, J. Coutts and H. Adam-
 Twickenham. - 19 thl July, 1880 .
2983. CHIMNEY Pors, , L. A. Groth, Finsbury-pavement, 300s. KNitrivig Maciniss, W. R. Lake, Southamptonbuildings, London.- $-218 t$ July, 1880.
3024. TyPEs, dec., J.Greene, Reform Club, Pall Mall, 3027. Spinsing Mixed Fibres, A. M. Clark, Chancery-

 Viaduct, London. -5 th. Auqust, 1880.
3201. AquA Asmonis, F. W. Cheesbrough, Water-street, Liverpool. 5 th August, 1880.
3212. STEAM GENERATORS, A. M. London.-5th Auqust, 1880. toi-buildings, London- 7 th H. H. Lake, Southamp Cin. Coxtrouling Cash Recerps, LL von Hoven,
Castle-street, Holborn, London. - 20th 451. Traps for Brins, dCo., R. J. Sankey, Margate.
20 th 3686. Cooonsts ATrospribric Arr, J. Sturgeon, Newlay,

 4039. TELLEPRHONEs, J. G. Lorrain, Edinburgh.- 5 th Octo4204. Embroidery Apparatus, w. R. Lake, Southamp-ton-buildings, London-1 15 th october, 1880.
4289. Rollers,
R. Carlyle, Manchester. - 21 ist October,

 Southampton-buildings, London--27th october, 18so.
4435. STove, C. M. Westmacott, Bridge-street, West-
 456b. Forcing Michinery, W. R Lake, Southampton-
buildings, London,

List of Specifications published during the
week ending Janu ry 1st. 1881 .

$* *$ Specifications will be forwarded by post from
thie Patent-office on receipt of the amount of price and postage. Sums exceeding 1s, must be remitted by
Post-ofice order, made payable at the Post-oftce Post-ofice order, made payable at the Post-office, 5 ,
High Holborn, to Mr. H. Reader Lack, her Majestys
Pate Patent-office, Southampton-buildings, Chancery-lane,
London.

ABSTRAOTS OF SPECIFIOATIONS.

epared by oursel ves expressly for The Engineer at the
office of Her Majesty's Commissioners of Patents,
1661. Distillation of Coal, \&c., J. G. Beckton.The drawing shows a vertical section of a line of is a gas generator communicating with the retorts B B by the passages C C, provided with regulating
slides D D and serving to conduct the gas or gases
from the generators to the spaces above the substances

to be distilled. The matters for distillation are supby removable covers H. The openings in the retorts, discharged, are closed by conical valves or bells L L L opening downwards, and each connected by a rod
passing upwards through the retort to a cylinder M passing upwards through the retort to a cylinder M
fitted with a piston or to a travelling crane running 1907. Rallway Signal Apparatus, G. W. R. Sykes.Dated loth May, 1880.6 d .
This relates to improvements a previous invention. Taking three successive stations, the
signal apparatus is so arranged that B releases A and enables an alteration in the signal to be made, but B
cannot release A's apparatus till he has signalled the cannot release A's apparatus till he has signalled the
train to C , that is, till the train is past his station.
Over the train to C, that is, till the train is past his station.
Over the lever is a case, shown in front elevation in
Fig. 1 , containing the upper lock. Fig. 2 shows case
and lever. Words to show condition of line are
pained on two metal strips, and can be shown. The

upper strip is actuated by magnets, the armatures o nected through the blade A. This blade is jointed to the rod I which is attached to a crossbar lifting a
sliding piece which forms the lock, out of and into sliding piece which forms the lock, out of and into shown. L is attached to the lever M by a stud N, and
the action of the combined mechanism can be seen the action of the combined mechanism can be seen
from the figure. The lower slip is carried by another blade held by a click resting on a pin on a bladc. The click is pushed off the pin by a plunger and
angle piece. The blade U is actuated by the motion of
the 2120. Apparatus for Cleaning Carpets, dec., W. W.
Milluard and B. Richards.-Dated 25th May, 1880 . The carpet or other fabric is conducted through th
opening A on to an elastic frame C, and as it passe

[2120

over the bands D it is subjected to the action of the
beater employed, and thence it passes down on to the grating G.
 This consists in the use of sulphurous acid gas for nate of sodata or potash, and for the reduction of tri-
nedic (or tri-potassic) phosphate into hydro-disodic (or sodic (or tri-potassic) phosphate into hydro-disodic (or
hydro-dipotassic) phosphate and sodic sulphite. 1996. Grinding and Purifying Grain, \&c., W.
Claik:-Dated 14th May, 1880.-(A communication.) (Complete.). $6 d$. ${ }^{6 d}$. the former being the bed and fixed in place, the latter
being the runner. Forming part of or attached to the being the runner. Forming part of or attached to the
bed stone A is a receptacle, preferably a conical cham-

ber B which reserves the reduced product in case the taking place through a valve, which is closed when the feed is in the opposite direction. Air currents also
pass through the said chamber B during the reducing pass through the said chamber B during the reducing 2143. Flange Facing and Oval Hole Cutting
Machines, D. Embleton and P. A. Porter.-Dated $20 t h$ May, $1880.6 d$.
On the framework A the saddle C is fitted so as to On the framework A the saddle C is fitted so as to
slide freely; on this is mounted the spinde D in
bearings. CLCM
necessary to impart not only a rotary motion to the spindee, but also a lateral reciprocating motion, which
is effected by means of the adjustable cam J rotating
with the spindle 2151. Cous
2151. Counters, Indexes, and Registerivg Appa-
Ratus For Recording the Revolutions or Shats Ratus for Recording the Revolutions of Shaft
dcc. W. Chedburn.-Dated 26 th May, 1880. 6d. A series of dises A are marked with numerals repre-
senting units, tens, de. These discs are mounted senting units, tens, dcc. These discs are mounted
loosely on the shaft B , and are caused to work by loosely on the shaft B, and are caused to work by
pawls and ratchet wheels. The spring lever arrange.
ment for working the apparatus consists of the lever

J, which is loosely mounted on the shaft K, and i provided with teeth or projections M which gear into
corresponding teeth or projections on the sliding
washer or sleeve N which hos to washer or sleeve N which has to travel on shaft K to
the extent of the slot T, and is fixed to and moves the 2171 Brar
 the lever handle by which the movement is taiven to the table for cutting the bricks and forvominging it back bafter wards. The workmanc can work the handle e to cut the
bricks without moving from the front of the table

where he has to be to separate the clay, with the single
wire at H, also to slide the block on to the table, and then after the bricks are cut and the thale has been then after the bricks are cut and the table has been
brought back to slide the bricks off the receiving sur-
face on to the barrow, 2175
2175. Atr Pumps, J. Miller.-Dated $28 t h$ May, 1880. The drawing shows a sectional elevation of the
pumping cylinder. A is the cylinder, B the wind piston, F the piston rod ; B^{1} and B^{2} are the inlet valves, and D^{1} and D^{2} the outlet or exhautst valves.
When the piston E travels upwards the air in the When the piston E travels upwards the air in the
cylinder above the piston is driven out through the
valve D^{2} into the outlet passage D , and the air in the valve D^{2} into the outlet passage D, and the air in the
chamber C , which is connected by pipes or otherwise to that part of the building or ship which requires
ventilation, is drawn into the cylinder through valve

B 1 on the down stroke ; this air is expelled through
the valve D^{1}, and the upper part of the cylinder is

again filled through the valve B^{2}, which also commu-
nicates with the air chamber. 2177. Mactiver hamber 2177. Machinery for Sawing Wood, J. and G. This consists in having the table or top F loose and
capable of sliding in suitable bearings, so that when capable of sliding in suitable bearings, so that when
the size or diameter of the saw or saws A is changed 2177

the feed rollers D and fence E , which are connected the feed rollers D and fence E , which are connected
to the sliding table F , falways maintain the same rela-
tive position to the the sliding table F , always maintain the same rela-
tive position to the saw or saws. The table or top is
caused to move backward and forward by means of a caused to move backward and forward by means of a
screw, rack, and pinion, or other mechanical equiva-
lent. 2180. Ascertaining the Effective Pressure of
Screw Propellers, G. W. Cabjolsky.-Dated 2sth Screw Propellers, G. W. Cabjolsky.-Dated 28th
May, $1880.6 d$.
Fig, 1 represents a side view of the indicating appaFig, 1 represents a side view of the indicating appacylinder. A is a plummer block containing an annular
bearing and fitted with longitudinal flanges B and
rests on the bed-plate rests on the bed-plate C , on which whil flanges B and
move a shoee to
mhort distance in a fore and aft direction as move a short distance in a fore and aft direction as
soon as the wedges D, that can be tightened by the screws E, are removed. Wrought iron bars F keep the plummer block from rising on its bed-plate. The fore
and 2180

limited by the projections G on the bed-plate, against
which the flanges B press when the apparatus is not in use, and thus transmit the pressure immediately to B press against the pistons of the hydraulic cylinders H which are secured by four screw bolts to abutments
formed on the bed-plate. One of the two cylinders
is fitted with an indicator. 2187. Looms, T. Quarmby.-Dated 29th May, 1880.-
(Not proceeded vith.) 2 d. This relates, Finst, to apparatus used in conjunction with the pattern links of change shuttle box looms
Secondly, to improved apparatus for holding down and
steader steadying the box lever when depressed by the tappet
stan and 2188. Privting Lace Fabrics, R. F. Carey.This relates to improvements on patent No. 502 A.D. 1880 , in which curtains are made with bands of plain cloths to receive printed patterns in colours; and sponding printing blocks A are employed, and are fitted
adjustably to sliding platens, in which are mounted

[2188

shafts C, each carrying two pairs of cams, one serving
to withdraw the platens from the fabric, and the to withdraw the platens from the fabric, and the
other to move them into action. The blocks are inked
or coloured from the pads D or coloured from the pads D , supplied by rollers E , and
moving in grides, being actuated moving in guides, being actuated by a cam on shaft F .
A sliding clutch is provided to throw the driving pulley to the shaft G.
2191. Fastening for. Metal Boxes, Cases, \&c., A. Montoriol and P. P. Tarride.-Dated 29th May, The boxes are made so as to be opened by pulling outwards by means of a finger passed through a a loop
or ring of iron wire, a plate which at the time of
manufa or ring of iron wire, a plate which at the time of
manufacturing the box has been cut out, then re-
placed and soldered either by immersion in a bath of tin or by means of the soldering iron.
2196. Looms, J. H. Johnson.- Dated 29th May, 1880.-
(A communication)This consists in arranging a series of tappets or in an irregular manner three, four, or five traadles 2197 . Nview to simplifying the mechanism. 2197. Mowina and Reaping Machines, A. C. Bam.
lett.- Dated 29th May, 1880.-(Not proceded voith.)
2d. In order to enable the driver of a mowing machine
more readily to elevate the points of the cutters, the
bracket that carries the regulating lever is pivotted,
and which lever has formed on it a projection, pres-
sur sure on which, by the driver's foot, elevates the points of the cutters.
2194. Two-wheel Carriages, \&c., H. Duddy.This consists partly in mounting each wheel on a
short separate axle carried in bearings by two springs,

one spring being placed on the inside of the wheel,
and the other outside. On the back and front ends and the other outside.
the springs are mounted and secured the cross-trees,
which carry the shafts and body of the carriage or 2199.
2199. "Hardening" Felted or othar Fabrics,
B. and T. Bhodes, and H. W. .and J. H. White-
head. - Dated 29th May, 18so. 6. The hardening rollers are made of a composition having a rough or grittyy surface, such as stone, or
mixtures of various kinds of stone or cement, asphalte, having a rough or gritty surface, such as stone, or
mixtures of various kindsof stone orcement, asphate,
concrete, or emery; or if made of metal, their peri$\begin{array}{r}2199 \\ \hline\end{array}$

pheries are formed with \mathbf{V} screw threads or grooves
pheries are formed with \mathbf{V} screw threads or grooves,
intersected by longitudinal grooves, so as to give the
required roughness of surface. The drawing show required roughness of surface. The drawing show
the manner of mounting and driving these rollers F .
2200. Horseshoes, O. Lampe.-Dated 29th May, 1880

The main shoe consists of a flat iron shoe-piece A of
common construction, which may be fastened to the hoof by nails or otherwise, and which may be furnished
with clips or tongues B in front and at the sides of the shoe. In the bottom plane of this shoe are constructed
three parallel dovetail-shaped grooves C, of which one

2200
 脙

is placed at the front end, and of the other two one a
is placed at the front end, and of the other two, one at each nimder end of the shoe. These grooves are pre-
pared for the reeption of toe-pieces and caulks, which
are furnished with corresponding dovetail projections and are slipped into the grooves sideways, and ar ept in
2201. Boats and Apparatus for the Cultivation,
Preservation, and Conveyance of Oysters,
W. R. Lake.-Dated 29th May, 1880. O (A communi

This consists. of a floating vivarium with metallic This consists of a floating vivarium with metallic
cases made of iron, in sections, so as to be capable of
being taken to pieces, and serving to collect spat or spawn, rear oysters, and other shell fish, and trans-

$[2201$

tecting them from crabs and the like. The interior o
the vivarium is formed with partitions A and brealk water partitions B, angle iron uprights connected with the partitions by cross pieces, Openings are formed with the inner compartments, and fitted with sluices V. Around the vivarium are compartments. Metallic cases are placed in the different compartments of the
vivarium, suuch ceases being detachable, and they are
covered with ivarium, such cases being detachable, and they are
covered with wire gauze.
2203. Water-closets, W. R. Lake.-Dated 29th May,
1880.-(A communication.) $6 d$. This apparatus consists of a pan or basin A arranged
under a cast iron plate B forming the seat, which instead of descending verticallying works upon, whinges,
and has at its front end two pins or projections which

rest upon rods jointed to pivotted levers, which levers being in one piece, with upwardly extending arms,
operate the traps by means of toothed blocks or sector gearing with pinions fixed upon the axes of the valve
2209 . S
Wool, de., T. Whitley. - Dated 31st May, 1880. This consists partly in havin
each spindle, rotary motion being given thorm on
means of wheels, by which means the driving bands
at present employed are dispensed with
2206. Closing the Mouths of Bags, L. Planehe.-
Dated $318 t$ May, 1880. $6 d$. A strip of paper is secured to the top of the bag, and
on one side is the piece B slotted in the middle and 2206

C

attached by its ends only. The strip A is passed under B , and its end folded
the slot in B. 2208. Alarm Apparatus, J. McNeice.-Dated 31st A is a spherical chamber; B is a stop cock with a
screw nozzle C, on which a condensing pump screw nozzle C, on which a condensing pump of
ordinary construction may be screwed to allow of fill-
ing the ing the chamber A with compressed air; D is a
snap catch for keeping the stop cock B closed;

an ordinary clock spring and alarum gearing or
mechanism operates the hammer of the bell. To a ring on a coil spring a cord is attached, which has been the building, and with cords or guys, as may be
required. The snap catch is also connected to the ing by means of a slack cord. A regulator and snai as the air in the chamber d 2210. Screw Gill Boxes, T. Whitley.-Dated 31 st
May, 1880. $6 d$. This consists in employing three or four sets of
fallers and six or eight top screws, formed in two or more barrels, the threads of each being of different pitch to the other, by which means
a draught is obtained between each set of fallers.
The first two top screws A and B are formed The first two top serews A and B are formed
in one barrel, and the succeeding two screws C and D
are formed in another barrel. Each screw has a set of are formede sach set having a different number of pins
falles,
fixed in them. E, F, G, and H are the bottom screws,

motion being communicated to the screws and fallers by gear wheels. The speed of each pair of serews can
be regulated independently of the other pair, and by
change wheels the speeds change wheels the speeds of both pairs of screws can
be regulated when required, according to the wool or e regulated when required, according to the wool or
other fibre under operation. Between the feed rollers R and delivery rollers S the wool is subjectad to five
2212. Rouling Stock for Railways and Tramways,
F. C. Glaser.-Dated 31st May, 1880.- (A communication.) (Not proceeded vith.)' $4 d$.
The brasses of the end axle boxes are on one side of the vehicle, capable of turning on a vertical axis, while
those on the other side are capable both of turning a vertical axis, and of shifting to a certain extent in the
direction of the length of the carriage. To enable this to be done, the brasses of such axle boxes enable this to be done, the brasses of such axde boxes do not rest
direetly on the cast iron boxes, but on wrought iron
transverse slides, passing throtgh the two sides transersse slides, passing throtgh the two sides
thereof, which slides are connected together by guide rods and double-ended levers, in such together by ger guide
brasses of the the two end axles can only shift simulbrasses of the two end arxes can only shift simul-
taneously, and in a symmetrical manner relative to the taneously, and in a symmetrical mann,
central transverse axis of the vehicle.
2213. Combinable Garments, G. W. Von Nawrocki This refers 31st a combined fur collar or collaret and bag muff, and consists mainly in a mode of separat-
ing the collar from the muff, so that either may be used separately as desired.
2214. Distillation of Anthracene, C. M. Warren
2214. Distillation of Anthracene, C. M. Warren.-
Dated 31st May, 1880. 4d. This consists in the process of obtaining anthracene
by the distillation of a mixture of coal tar or coal tar pitch and petroleum residuum or other equivalent
2215. Folding Joints for SEats and Tables, N. Nescourtils.-Dated 31st May, 18s0.-(Not proceded A piece of wood having its ends of the shape of an
inverted triangle serves at the same time to stop the half of the lower feet or supports and of the uppe ones. Right angle plates are fixed upon its ends and
serve to secure the supports. serve to secure the supports.
2216. Black Privters' Ink, C. Kesseler.-Dated $31 s t$
May, 18s0. This consists in preparing from pitch or asphalte fatty-acid, violet aniline, resinous, oily fat and heavy
oil of tar (oo-called oil of anthracene), which will be coloured black by boiling and adding at least 10 per
cent. of chloride of copper, a printing ink also appli-
cable as etching varnish. 2218. Locomorive EsGrnes, J. H. Johnson.-Dated
31st May, 1880.-(A communication.)-(Not mroceeded with. $2 d$.
This relates to that class of locomotive engines in which one pair only of driving wheels is used, and increase the weight upon the said driving wheels, so
that they may have the proper adhesion for starting that they may have the proper adhesion for starting
the engine and train, and after they are in motion, to the engine and train, and after they are in motion, to
transfer part of the weight to the trailing wheels,
which take the place of the usual second pair of driving wheels.
219. Pillow and Bed Divider, J. F. C. Farquhar.This consists in the combination with the head of a
bedstead of a readily detachable or movable arm which
projects out from it, so as to extend over the pillow or
bolster and form a vertical partition to divide it into two compartments.

1850 Gd
The treade balance weight is abolished and in its
lace a nut A is put on the ensprino C is , and troducween it

bottoms, it is made of large diameter and within it is a rod E projecting up from valve F, the rod and valve rod strikes the bottom of the bottle it ts pressed down thus opening the valve. A vertical pump i.
plunger being attached to the rack by a pin.
2222. Kilns for Burning Bricks, de., J. P. Cramp A is the body of the kiil, \bar{B} and C being its front and back, provided with openings or doorways
Beneath the floor are arranged two freplaces, trans verse openings G being made through the door in the
body of the kill. In the arched roof H openings ar

Iso made at I, communicating through the passage
 transverse ffue or chamber N , whench is in simila
communication with all the other kilms in the set.
 The drawing shows, a phan of an arrangement Whereby, when the guide wheel C - is turned by means
of the handles F on frame E , the one of the wheels L, on the inner side of the curve, in which it is desired
to turn, is automatically disengaged from the crank

shaft K , so as to facilitate turning round. For this with forks which move clutcheses into or out of gear
with similar clutches on the hubs of the wheels S. 2225. Pagking for Stram Joints, \&ce, J. Kirkman. This consists in in building asbestos millboard or othe forms of asbestos into a tubbe ando cutting gita into slices
or annular discs of the right thickness. 2227. Purifyting Sewace, P. Spence. The sewage or eflluent water, as it comes from the
 sulphate, or other salt of alumina, or alumina and
iron. iron.
2228

cell. A small condenser underneath the battery hasits
terminals connected to wires by means of which a
spark can be obtained when required. BB is the zinc
D the carbon. 2230. Looss, J. H. Brierley.-Dated 1st June, 1880 At 1 is a bevel wheel on crank shaft of loom; 2 is an apright shaft having worm 3 gearing with wheel 4.4
The latter operates lever 5 as the wheel 4 revolves its xis, on which lever 5 causes the latter to revolve, and he friction pulley 8 is past the lever 6 , the latter falls, and by means of a weight and pawi or catch gives
motion to catch wheels and gear wheels operating the

shaft 13 , on which are the discs 14. The friction
pulleys 15 act upon the cranked lever $16 ;$ the latter,

 2231. GuLs Boxxs, G. and W. H. Ingham.-Dated 1st
 appets being so shaped that the faller is received as

(a)
c
(2)
soon as it leaves the upper worm or serew upon
the beak of the tappet, and is by the half revolution
, by it of the latter, quietly lowered to its position without

A mannication.) ord strip of hardened steel is used as the belt, And the surface of the pulley is turned cylindrical, the arface of one or both being coated with a vamish
onsisting of shellac dissolved in turpentine. The [22:2]

ends of the band are joined by means of fasteners, of
which one form is shown in the drawing. It consists of a metallic plate C somemewhat bent in thine centre, and leave an intermediate space, into which the ends of
the band are introduced and bent over. D are wedges Which are forced into the space so as to secure the ends crews E
2233. Lisean Measures, L. Appleton.-Dated 1 1st This reltase. .o the system or mode of dividing or
marking rules, tapes, \&cs, whether straight or curved. 2234. Conbing Machines E. de Pass.-Dated 1 1st The first Fig. shows a longitudinal section of the feed-nipper or head-nipper. This manner of con-
structing the head-nipper is characterised by a rib structing the head-nipper is characterised by a rib
extending above the closing plane of the nipper by

[2234]

sutable intermediate points receive the pressure acting upon the bars e. . The second rig. is a side view
show the moverent of the comb-hod
ment of the excentrie frame haracterised by the application of an under pressure which may be applied in any suitable manner, acting
to instantly raise the frame N .

 peoumatic pressure or vacuum which actuates the
continuous brakes of a arailway train to apply those
hrakes brakes, and simultaneously cause the display of a
semmphore or other visible signal to the guard or
driver by the simple a cord, or pushing or pulling a hand passenger pulling carriage or compartment to admit the air to or alloww
it to escape from the pneumatic tubes of the brake.
 A cylinder is inled with water or other fluid, in
which is submerged a morable vessel, preferably of a
globliar form, and globular form, and made of metal., preeferably of a a a
ports two double
suple racks, affixed to a top and bottom
 are fixed in the cross-bars so as to be brought opposite
to each other point to to each other, point to point. The evessel is weighted
if neded to regulate the approximation of the
candles. candies.
2237 .
 This relhtes to the construction and arrangement of a travelling box which can be converted into a table
for use in bedrooms and other places where such con-
venien venience is not provided.
 The drawing s.aows a plan, of a four-wheeled bogie.
are the running axles working in bearings in the A are the running axdes working in bearings in the
horm plates which extend down from the turning plate, from whinh brackets Y extend through slots in

[22401

prevent the frame X turning too far in iether direc-
tion. On shatt B are cranks Z comnected by round
pins pins. The arving wheel C , which gears with wheels
on the rumning axles A is fitted + to rembe bet cheeks bracketted down from the middle of the turning frame X, so. that as the bogic is angled one
way or the other the wheel C is angled rectangular slot in in wheel C are slide blocks, which can
ren move radially towards or away from the centre of C .
These bloks form bearings for bbils, through the
centres of which pass the erank pins 2241. MANUF Mctuer of stebe Cist
${ }_{T}$ Dated 1 st June, 1880.-(4 communnication.). ${ }^{4}$ d. This consists in the manutacture of articles in stee by the combined employment of two operations, vizi,
the easting of the articles in a rough form, and the stamping of the same in matrices, an operation which ance of all the air holes which may have formed during the casting
2242. Explosives, \&c., R. Punshon.-Dated 1st June,
1sso. 2d. This explosive consists of asbestos or other suitable
porous substance, nitric acid of the specific gravity of $1 \cdot 5$, and pieric acid. 2243. Measuring Rules, J. T. Humphirey.-Dated This relates to the construction of measuring rules measuring manne, protractor, bevel mitre, set square and 2244. Manveacture of an Extract of Fish , de,
W. Clark:-Dated 1st June, 1 Sso.-(A communice This consiists in the manufacture of an extract of
fish, crustacea, and shell fish by boiling the flesh fish, crustacea, and shell fish by boiling the flesh
thereof in water, haus expressing therefrom the juices then adding the later to the liquor used for boiling
and finally boiling down or concentrating the ligng and finally
and $j u i c e s . ~$
2245. Mash Machives, J. H. Johnson.-Dated $2 n d$ B is a central vertical shaft which supports the
mechanism for stirring or agitating the mash, and the lower end of which rests in a step bearing at th bottom of the tub. Rotary motion may be imparte
to the said shaft by means of bevel gearing C or in any

ported at their inner ends in the shaft B , and sup.
ported at or near their outer ends by means of arms E depending from \AA cross-bar F securely attached t a series of stirrers or agitators secured to the shafts D 2246. Punps, A. Graf--Dated 2nd June, 1880.-(Not A simple air pump for diving or other purposes is
constructed with a vertical oscillating cylinder, by means of which one man is able to pump air enough
for two divers. 2247. Manur

The batts and sheets to on a steam heated box B, and the top p phate C Crests on
them and on the box, and is made to oscillate by levers and excentrics, for a certain time until the
material between them is felted. D is the material between them is felted. D is the driving
shaft of the sel-acting
wheels raise the table ; a clution ; and wheels ownd lower

E247

the table, Z the clutch and worm to traverse the catch to hold the bar S and lever out of fears, A catch
holds sthe bar T and levers out of gear. A catch holds
the bar W the tar and levers out of gear. E are shart serews,
nuts and balls to raise the top plate $\mathrm{C} ; \mathrm{H}$ are chang nuts and balls to raise the top plate C ; H are change
effeect. to give the required time for the hardening
 The process is divided into four principal parts: graphic painting; Thirrdy, glueing or fixing the
painted cloth on a sustaning painted cloth on a sustaining or supporting cloth;
Fourthly, finishing or touching up of the painting. 2250. Steam Strering Engines, c. W. King and A
 engine A is attached to a frame B, which is con
structed in the form of a dished disc. The C of the engine passes through a stuffing box in the centre of the frame B. Fixed on to the shaft C ther ing the strap thereof there is a toothed spur-wheel E,
ing
havin having say, seventy.six teeth, Outside the spur
wheel E is a dished disc or wheel F , with interm
 The dished dise or wheel F has, say, eighty teeth, and
is attachlod to and forms part of the barrel G, whicl steering rope or chain leading to the till

2250

or helm. The barrel G, with its disc or wheel F, is mounted loosely on the engine shaft C, between the
dished frame
and the standard dished frame B is provided with a guide into whic
takes
 rotation of the excentric D by the engine shaft,
causes the toothed disco or wheel F , in comnection witl causes the toothed discor rote at, in comnection wit twenty of the engine A .
2251. Propbluina Vessels, A. Fildes.-Dated 2nd The two single cylinders A and B are arranged side shaft C and D by cranks F and G set at right angles t each, other. An additional crank H and I on each
shaft, the one on shaft C being at right angles to the

corresponding steam crank, and the one on shaft 1 crankk. Between the two shafts is mounted a beam I
chean turning on a central fuccrum, and each end connectel by a link M with one of the auxiliary cranks H and I
Thus when one cylinder is at the fuli stroke the other
is is always at half stroke.
 This is an improvement of M. Andrés incandescent lamp. A is a plate upon which is the lamp cover,
A^{2} is also secured on to A. C and C^{1} are arms,

${ }^{1}$ making contact with negative electrode C^{2} througl spring $^{L^{3}}$ and coil X, to terminal. D1 shows carbon cord over a pulley and regulated by a b brake. 2253. Manufacture of Inlaid Articles, G. Hirst This consists in the employment and application of tahlets of jet, combined with a suitably poloured 2254. Mechanisa for stopina and Restarting
 This consists in mechanism by which the winding
up and unwinding of a sprimg are effected, so that the up and unwinding of a spring are effected, so that the
power stored up during the stopping of the vehicle or machine is restored to the axle or shaft upon restarting.
The result is chiefly attained by means of toothed for putting the parts into and out of gear.
2255. Apparatus for Manuracturivg Illudinativa GAs, W. T. Sugg. - Dated $2 n d$ June, 1880 . bd.
The poor coal gas after purification or before any
 the vapour and gas are combined, and subject them to
ahigh temperature which will conver the mixture
int Into a permanent highly illuminating Eas. This
apparatu consists manly of two colod vessels A B
set one above the other and tonnected set one above the other, and connected together by
central pipe C . This p (pe is carried to near the bottom of the lower vessel, , and rises to about the middile of
the vessel A, and is covered with a rose headd. The vessel A is partly surrounded by a wrought iron skin
forming awater jacketket to the vessel A. The vessel B, and also the lower portion of the vessel A, are surrounded by
a fire brick flue D, which is divided by dampers above
 greaty difforing temporatures, Thb fue Dis is on-
neeted at tho bottom with a heat generator, which

[2255

may be a Bunsen burner, and the top of the flue is connected with a chimnney by a passage for conduct-
ing off the gases of combustion. G is the gas supply pipe.
2256. Combination of Materials For Producing
Non-Fading Signs, dC., J. . Budd.-Dated 2nd June, 1880 - (Not proceded o vith.) $2 d$.
A shell or "dish" of glass is first produced which is scored during the moulding. The devices are then upon the inner surface of the shell or dish. Boiling engraver's wax, hardened by spirits of wine, is next
poured on to the skin. Fine powdered flint or sand is then put on to the wax at a red heat, and forms a rough surface to receive a layer of plaster of Paris or
2257. Preventing Alterations in Cheques, \&e., S.
Simmons. - Dated 2nd June, 1880.- (Not proceeded.
with.) $2 d$. in embossing, and it may be als This consists in embossing, and it may be also
slightly perforating with numerous points or short lines that portion of a cheque upon which the shum
for which the cheque is drawn has been written. 2258. Ironing Woven Fabrics, A. B. Furlong.The ironing tale D is heated either by steam or by
a gas stove beneath, and its top surface is curved, so as

to allow the smoothing iron to pass over the fabric B suspended from above the table, and made adjust being brought to bear on the fabric by means of an adjustable spring I
259. Manufacture of Alkalies, C. Wigg.-Dated

The drawing shows a sectional elevation of th placed much lower, as regards the revolving furnace
B, than has been heretofore the practice; C are fuel
eed openings ; D air chamber or jacket surrounding

the firegrate and fuel chamber ; E openings for th
supply of air to the chamber D; F openings from th chamber D to the combustion space J, G doors for
regulating the inflow of air to the fireplace. Part of
the air passing through the chamber D and opening F mixes with the burning and unburnt gases from the fuel chamber A to the interior of the revolving
furnace B. 2260. Manufacture of Gas, W. W. Monk.-Dated
Srd June, 1sso. bd. The hydraulic main is formed so as to throw all the
heavy tar to the point to be drawn off, and the main heavy tar to the point to be drawn off, and the main
from the retort bench is so supported by crutches that
its front overhangs the bench its front overhangs the bench sufficiently to admit of
the ascension pipe passing through and extending a the ascension pipe passing through and extending a
considerable distance above it. Fixed to the top of
the hydraulic the hydraulic main is a pipe that surrounds the ascen
sion pipe, and of such diameter as to form a space fo sion pipe, and of such diameter as to form a space for
the passage of gas. The top of the ascension pipe is open, but the surrounding pipe is closed at top by
a bonnet, while its lower end descends into the sealed by the liquid enough to permit of it being
each retort there rises an ascension pipe passing
through the main and enveloped by a surrounding pipe. Attached to the wall in front of the retort
benches is a syphon-box capable of containing liquid and of being adjusted to any height by screw and
bevel gear. Extending rom the hydraulic main to the syphon-box is a pipe with two descending legs, one entering the hydraulic main, and the other entering
the syphon-box, thus forming a syphon. Each hydraulic main has a pipe to convey away the gas, tar
and liquor to a conducting main. In the drawings and liquor to a conducting main. In the drawings,
Fig. 1 shows a front elevation of a bench of retorts

with ascensions, hydraulic main, and the dip seal regulator; and Fig. shows the details of the ascen
sion, hydraulic, and dip pipe arrangement. A is the
retort bench, B the ascension pipes, C the hydrauli retort bench, B the ascension pipes, C the hydraulic
main, D the surrounding pipes, and E the syphon pipe main, D the surrounding pipes, and E the syyhon pipe
leading from the hydraulic main to the seal regulating
tank F supported and adjusted by teading From supported and adjusted by a screwed shaft,
titted with bevel gearing. Q is the pipe to conve fitted with bevel gearing.
away the gas, tar and liquor.
2262. Sheep Fencing, de., J. Sainty.-Dated 3rd This consists in the main of a combination of woo iron,
2263. Manufacture of Wooden Gutters, Troughs,
de., G. Baumber and A. Logan.-Dated 3rd June, 1880.-(Not proceded vith.) 2 dd . apparatus for cutting or forming hollow or concav of timber by cutting or sawing out a solid core of a semi-cylindrical form, so that no part of the timbe
excepting the sawdust and the very small chips excepting the sawdust
shavings will be wasted.
2264. Weighing, Measuring, Recording, and
Delivering Quantities of Liquid, M. Graham. The apparatus is made with a hollow cast iron base 9 , above which there is a rocking-box 10 made with
two compartments 11,12 , separated by a transvers partition 13 at the middlee of the box. In tre memiddle
of the partition there is formed a track or passage 16,

up through which the supply pipe 17 passes. At the 11,12 there are valves 19,20 opening inwards, and when one compartment -11 for example-is filled suffi-
ciently to overbalance, that end of the box 10 in descending brings its valve 19 into contact with a
stationary projection on the receiving cistern or tallowary projection on the receiving cistern or
below, and causes the valve to open so as to discharge th
the cistern below.
2265. Increasing the Illuminating Power of Gas
Flames, M. Williums. - Dated 3rd June, 1880. $6 d$. A piece of metal wire B, preferably platinum, is fitted to the burner A over the openings through
which the gas escapes, and parallel with the flame at
2265

such a heigh that it is at the centre of the lower part of the gas flame, and out of and below the luminous
zone of it. The flame is thereby separated into two
parts, which curve round the wire and re-unite parts, which curve round the wire and re-unite
above it.
2266. Knives AND Forks, W. E. Darwin.-Dated
3rd June, 1880 . $6 d$.

This consists chiefly in forming the metallic handle,
or a portion of the metallic handle, in combination with the bolster, in two parts or halves, which are afterwards joined together in the usual way, and
secured to the blade by soldering or similar means. 2268. Figured Woven Goods, J. Kippax.-Dated 3rd
June, 1880 . 6d. In the weaving of counterpanes, quilts, \&c., and
particularly to such as are woven with two or more colours in addition to the white or coloured ground, the coloured warps in some parts of the design float
together over the same spaces, and by mixing do not

2268
 $\frac{1}{D} \frac{A}{A}$

produce the effect desired. To obviate this, at intervals
in the weaving, picks are put in, which tie down the warps not desired to appear on the surface. In the rawing A is a blue yarn and B a red yarn, while C
represent the ordinary ground picks, and D the tying down pieks.
2270. Self-closing Stoppers or Syphons for
Bottles Containing Aerated Lieutds, F. Wirth.

Dated 3rd June, 1880 .-(A communication.)-(Not This consists partly in making and arranging the parts in such a manner that the liquid comes in con-
tact only with hard india-rubber, or material which is notaffected by the frequent contacto Iquid, nor influences the latter by its contact,
2269. Machinery for Cutting Timber, W. W. Lake
Thated std June, 1880 . (A communication This comprises a series of cutters B arranged and adapted to cut through a log lengthwise thereof and
parallel with the grain, each cutter operating on the principle of a carpenter's plough, and cutting a shaving
the entire length of the log, the series of cutters being

E269

arranged in a descending scale, so that each cutter
after the first will enter the log more deeply than the cutter preceding it. Each cutter is made of a plate of steel and provided on its sides wisth diagonal groove or channels C, and on its lower edge wit
faces D D and projections or heels E E.
2271. Artificial ILLed Srd June, 1880. 8d. , J. J. W. Watson.-

The aim of the inventor is to increase the lightgiving powers of compound combustibles, by rendering
the dark part of the flame incandescent. To effect this he makes special arrangements of his burners, and introduces within the limits of the flame the elec trodes of an electric generator. He desires the
dissociation of the products of combustion, and uses
2271.

a high temperature obtained by high electrical resist ance. Metals such as platinum around graphite,
asbestos, lime, sce, in various forms are used. Where asbestos, hime, ce., in various forms are used. Nhere
the electric arc proper is to be used with a gas flame,
a lamp as shown in the Fig. is used. A A shows the a lamp as shown in the Fig. is used. AA shows the
cas jets; the carbons hinged at 0 are guided by L I gas jets ; the carbons hinged at O are guided by LI
on the one side, and the steatite or porcelain dise Con
the other. The motion of the carbons is obtained as the other. The motion of the carbons is obtained as
hown. 2272. Improvements in Obtaining, Increasing, Slater:-Datel 3rd June, 1880. 6d.
The machine devised has a modified Gramme ring, The machine devised has a modified Gramme ring,
more completely encircled than in some other mare come. A A are the fixed electro-magnets, having
matrin like poles opposed and separated by a strip B of
the their like poles opposed and separated by a strip B of
non-magnetic material. Each magnet surrounds one-non-magnetic material. Each magnet surrounds one-
half the circumference of the revolving armature C , and the poles are each brought to a line where opposed
to the revolving armature. The form of the core of to the revolving armature. The form of the core of
these magnets is clearly shown in the drawings, the

[227]

wire being wound thereon in the direction of the axis of the revolving armature. These fixed magnets are
supported by pillars D , or by any other suitable means. The revolving armature C is is in like manner composed opposed and separated by a strip of non-magnetic
material. The wire is wound on in the direction of material. The wire is wound on in the direction of
the axis, as in the fixed magnets. On the ends of the the axis, as in the fixed magnets. On the ends of the
ring are fixed two plates E , and these carry the shaft
F for imparting rotary motion to the armature. The F for imparting rotary motion to the armature. The
shaft F is supported in bearings and carries a driving pulley. The author claims the form and construction
pathe and of armature, and
fixed magnets.
2277. Ring Spinning, Doubing, And Twisting
Frames, T. Guest and T. Brookes.-Dated 4th Junne,

FRAMES, T. Guest and T. Brookes.-Dated 4th June,
1880. 4d
A washer of india-rubber is fixed on the spindle

E277

above the tube by a grooved collar, the washer being
rather larger in diameter than the inside of the bobbin.

When the bobbin is taken off the spindle, a portion of
the yarn is allowed to unwind itself and coil round he spindle. The empty bobbin is then dropped on to and the bobbin, and holds it secure. In the drawing, A is the thread-board, C the bolster, D the spindle rail, E the footstep, and G the ring rail, all of ordinary con-
truction, while B is the spindle, F the washer, H the struction, while B is the spindle, F the washer, H
bobbin, and I a bush which rests on the washer. 2275. Securing Stereotype Plates, E. D. Rogers.-
Dated 4th June, 1880. 4d. The plate A is formed with vertical flanges B along its edges and the sides of the bed Chaving correspond-
ing recesses D into which the flanges fit. Thus by 2275

placing the plate by a vertical downward movement on the bed they will be locked up by the ordinary
column rules or other furniture of sufficient height. 2276. Beds for Invalids, J. A. Daniel and R.
Whiteley. - Dated 4th June, 1880.-(Not proceded with. $2 d$.
This relates to This relates to beds so constructed that the patient need not be removed from bed for sanitary purposes,
nor disturbed by the insertion of sanitary vessels into
the the bed.
2278. Burning of Calcining Lime, \&e., J. W. and
G. T. Raynes and P. Evans.-Lated 4th June, 1880 .

The kiln A may be of the section shown, or it may the wall or partition B having a tapered or rounded apex. This wall may be supported and strengthened
by iron beams covered with brick, cement, or other

suitable non-conducting substance to protect the same from the central passage on the top. The wall or par-
tition B is carried by an arch C, and divides the tition B is carried by an arch C , and divides the central portion of the kiln A into two passages, and
diverts the material that is fed into the kiln through 2279. Lamps, T. Kennedy.--Dated 4th June, 1880. $6 d$
At the top of the reservoir C is a projection or flange
A, at two opposite points of which are notches or deA , at two opposite points of which are notches or de-
pressions. The burner D is of ordinary construction, but in place of the screw at the bottom there is a socket with one or two projections which pass into

it is partly turned so as to interlock with the flange. A washer of any suitable flexible material is intro-
duced between the burner and the reservoir. The bottom of the reservoir may be connected to the foot
2282. Repatring Broken or Cracked Shafts,
Beams, de., W. W. Thompsom.-Dated 5th June, 1880.- (A communication.) $6 d$.
This consists in the employment of an armature of
oft metal wire drawn out and annealed so that it can

$\left\{\begin{array}{lll}c & 0 & 0 \\ 0 \\ 0\end{array}\right)$

follow on being applied the modifications of form that imprisoning the fractured part.
2283. Looms, \&c., R. Greenvood and W. H. Hayhust.

- Dated 5 th June, 1880 . - (Not moceeded voith.) $2 d$. This relates partly to a means of stopping the loon length of cloth or piece.

2289. Machinery for Drying, Disentegratinc ANMAL AND VEGETABLE Refuse, M. Higgins.-
Dated 5th June, 1880 . (Not proceeded with.) $2 d$. on suitable supports and having a solid continuou revolving shaft working in suitable bearings passin at either end for gearing purposes. Fitted to suc shaft are one, two, or more agitators, each of which series of armss of beaters fitted longitudinally in a
frame, and having suitable interstices and spaces left

2286．Rotary Engines，H．Thibault and T．Haukins． A case R is mounted or secured on a bed H ，this
case is provided with channels or ports F for the case is prof steam，and with recesses．Within the
passage of sevolves a drum L connected with and secured to
case case revolves a drum L connected with and secured to
a shaft 0 ．This drum is provided with end flanges
bevelled outwardly，and eight sliding pistons M which

slide in receptacles provided in the drum L ，and which pistons rest on springs N ，which are for the purpose of
holding the piston M in position to take steam，and at the same time to diminish the shock when the pistons
M by the revolution of the drum Lare forced down by contact with the case R into the receptacles of said
2288．Joint For Water－pi，
Dated 5th June，1880．6d．
One end of the pipe has a socket B，at the extreme shoulders F are made inside the socket．Near the end
［2288

of the spigot shoulders D are formed，and the fillingin
material is contained between the shoulder round he spigot and the shoulder inside the socket，while the extreme inner end of the socket．
2304．Copying Plans，Drawinge，\＆ce．，by Photo－
GRaphy，W．P．Thompson．－Dated sth June，1880．－ This consists，First，in a gum ferric solution，giving directly proofs in indigo black shade upon a a white imilar acid，and an insolubilising material，such as gum or gelatine；Secondly，the application of a developing solution，consisting of red or yellow of silver，zinc，and the like，to a surface impregnated with salts of iron and other chemicals for the purpose five direct from an original with photographically dark or opaque lined or marked negative．
2308．Washing Machine，A．J．Forbes．－Dated sth A vessel A of \dot{U}－shaped section contains a water－ move in a groove in each end of the tub．The drum the drum is a smaller wooden roller D driven by a
［2008

crank and revolving in contact with the drum，which， when the tub A is filled with water，is buoyed up
against the roller D ，and is thus driven by it．The against the roller D ，and is thus driven by it．The
clothes are placed within a washing cloth of open
woven fabric which is wound round the drum． 2332．Feeding Horses，\＆c．，W．Grifiths．－Dated 9th This consists of a three，four，or more－sided struc－ and rack complete，and being so divided or sereened off from the other sides or sections as to prevent the ［2332

animal that may be feeding thereat from seeing or
being interfered with by being interfered with by another animal whi
feeding at another section of the structure． 2376．Springs for Ratlway Carriages，dce，J．H．
Johnson．－Dated 11 th June，18s0．－（A communica－ tion．） $6 d$ ．
spring，and top plate and B the bottom plate of the two plates are interposed the
two spirals D D，which are arranged at reverse bu
otherwise similar angles in respect to a vertical line 2376

such a manner as to admit of the upper plate yielding
under pressure to the extent desired． 2385．Reaping and Harvesting Machines，Ca D ．
Abel．- Dated 12 th June， 1880 ．－（A communication．） The machine is supported on one side by the driving
wheel A ，and on the other by smaller wheels B．On the axle of A is a toothed wheel gearing with a
pinion E，having a clutch．On the shaft of this pinion E，having ace gearing with two pinions G
pinion is a bevel wheel gat an inclined shatt，which，by
and $G 1$ ，the former on bevel gear，pulleys，and strap works the beating drum．
By pinions E is worked from the same shaft the upper By pinions E is worked from the same shaft the upper
shaft of the travelling band H ，and by gearing I is
worked the hulling cylinder K ．The pinion G^{1} is on a horizontal shaft，having a crank to work the reaping
blades S ，which are fixed on a bar terminating in a piece having uprights between which the crank is

（2385

engaged．The bar is guided by ears fixed on a bar
from which guide fingers project．The reaping frame from which guide fingers project．The reaping frame
is suspended by chains，one at each end，led over pulleys R on a spindle，by turning which by a handle，
and engaging it with notches T ，the height of the reaping apparatus can be adjusted．The beating drum V has beater blades which strike off the heads of corn， which are then carried by the travelling bands H
along the inclined bottom of the casing，and delivered
to the casing of the hulling cylinder K ． ato the casing of the hulling cylinder K ．
the
2536．Rack Pulleys for the Cords of Window
BiINDS，dce．，E．and C．Shovell and J．Empson． Dated 22nd June，1880． $6 d$ ． This relates to the combination with the bodies of
rack pulleys having rack teeth on their backs，of
slide or pulley carrier slide or puiley carrier consisting of a catch plate H
having at its back a spring I ，the top of the said plate
H being furnished having at its back a spring I，the top of the said plate

2536

with the rack teeth，and at its sides or vertical edge
with bearin parts L L for causing the slide carrier to accurately fit and work smoothly in the
body of the rack pulley the body of the rack pulley，the axis carrying the pulley D，
and thumb plate F being connected to the catch plate
H and thumb plate F being connected to the catch ppate
H，and the catch of the said plate being engaged with
and disengaged from the rack teeth． and disengaged from the rack teeth．
2731．Mining Engines，J．Richardson．－Dated 3rd
July，1880．6d．
The invention consists in making the foundation of
wrought iron plates of such form and depth that they not only serve as base plate for the engine，but also as
packing cases for its transport when desired，and so

that they take the place of the usual masonry or othe
foundation，and render the ence tained and workable even when combined with wind－
ing gear or driving pulleys in addition to the usual ing gear or driving pulleys in addition to the usual
parts of such engines．The drawing shows an end
view of an ensine with h drum．
 This consists in combination with a teapote，properly
so－called，of a cup，bowl，or receptacle whatever，into which the tea or substance to be infused is put，The
sides and bottom of this receptacle are perforated． 2807．Recovery of Lead and other Metallic
Substances from Furnace fumies，E．A ．Coovper
 flues，so as to prevent any scouring action taking
place，and so as to greatly reduce the time required for
the solid mattor to fall．A number of shelves F are
placed inside the flue at small distances one above the

ther，so that the suspended matter in each layer of fumes has a very small height to fall．The fumes pass through a number of flues，each subdivided by shelves，
thus causing a very slow movement of the current． 3012．RoLunva Mills for Wires，F．C．Glaser．－ This consists，First，in the combination of two com－ lete trains of rolls，which feed the wires automatically nto each other，there being several groups of rolls
o each set，all of which run horizontally；Secondly，in

the peculiar mode of driving both trains of rolls by the peculiar mode of driving both trains of rolls by
means of one driving shaft lying between then，and
by means of toothed gearing so proportioned as to mpart the necessary increasing speed to e ech succes－
sive pair of rolls．The drawing is a cross section． 3140．Gas Engines，H．H．Lake．－Dated 30th July 1s80．－（A commennication．） $6 d$ ． the explosion of the gaseous mixture，whereby atmo－
sheric pressure can be utilised． spheric pressure can be utilised．The bottom of
cylinder A has an extension to receive a shaft C serving as a trunnion，on which the cylinder oscillates．The rod of piston D is connected to and operates the crank
shaft M ，and at the top of the cylinder this rod is

guided by the guide F which prevents straining of the
rod．On the front of the cylinder is a slide valve to admit the explosive mixture，and it is worked by a placed a governor serving to regulate the introduction of the explosive mixture by opening or closing the gas supply valves．At the back of the cylinder is an
exhaust chamber N which will be brought into action at the proper time by the oscillation of the cylinder． 3984．Manuracture of Horseshoe Nails，\＆ce．，W．
R．Lake．－Dated 1st October，1880．－（A communica－ R．Lake．－Dated 1st October，1880．－（A communica
tion．）－（Complete．）6d． Fig． 1 represents a cross section of a plate which has which has at its several parts the proper thickness to permit horseshoe nails to be cut or punched therefrom
with their heads at the edges of the plate and thei points in the thinner，middle，or central part．Fig． 2
represents a plan of a horseshoe nail plate of homo－ represents a plan of a horseshoe nail plate of homo
geneous iron prepared by spotting as described in speci－

FIG

$8-8-\sqrt{\frac{1}{\sigma \theta} \text { 分 }}$

fication of patent dated 28th June，1877，No．2497，but
having the spots which are placed in two rows alter having the spots which are placed in two rows alter
nately far enough apart to enable this invention to be carried into practice．In Fig． 3 D represents the upon the plate and the punches are in use．This
finger or bolt D is placed opposite the end of the second nail punch，and its points reach the bed die somewhat In advance of it，so that the said points may pass one
uppon each side of the strip of metal left by the first upon each sid of the strip of metal left by the firs
punch，from which strip the overlapping nails are cu
by the second
curved inner faces act upon the metal to move it side－ oise，if sprung，and bring its centre opposite the point
of the punch，so that the point of the nail will be cut from the centre of the strip and spot prepared for the
purpose． purpose．Fig． 4 is a front view of the bed it．
dies，guides，and adjusting connections upon it． 4115．Horseshoss，W．R．Lake．－Dated 9th．October， A is a horseshoe，in the upper side of which is
a dovetailed recess B ，into which fits a removable piece C ．This piece，and also the other side or arm of
the shoe，have nail holes．D are lugs at the heel of the the shoe，have nail holes．D are lugs at the heel of the
shoe which fit loosely the space between the walls of

\xrightarrow{A}

the hoof when the shoe is first secured to the foot．A portion of the shoe is cut away from the toe on the
inner edge at E so as to make it weakest at this part， and when force is applied between the lugs D to spread
this portion，the shoe will bend at E and not at any this portion，the shoe will bend at E and not at any
intermediate point，thus preventing the binding of intermediate point，thus preventing the binding of
the removable piece C．The piece C is first nailed to
the ehof and the shoe then passed over it and secured the hoof，and the
by the other arm，

CONTENTS．

The Engineer，January 7th， 1881.
himened castings．（Illustrated．）．．．．．．．． 1 Boliler Explosions at Hughenden and Ruabon．
（Illustrated． Tables for the Conversion of Metric into English Measures ．．．．．．．．．．．． eterborough Sewerage Works． Southam Sewage Works
HE BASIC DEpHospros
$\underset{\substack{\text { He } \\ \text { Rese } \\ \text { Basic } \\ \text { Dephosphorising } \\ \ddot{P} \\ \text { rocess．} \\ \text { ．} \\ \text { By } \\ \mathrm{J}}}{ }$ Ratlway Matters．
Notes and Memoranda
 Yorkshire RAILWAY．（Illustrated．）．．（illus－
CONVEYANCE OF SEA－WATER TO LoNDON．
 Railway Bridge over the Ohio，Penn MILFORD Docks
Letters to the Editor－
The De Bay Propeller
Competitive Plan
 Certified Enginemen
The Theory of Cold air Machines
Cheap Patents
Bye－products of the iron Manueacture
Wire Rope Gear in Lre Rope Gear in the Penruifuper and
Llwrynypie Collimeries．（llustrated．）．．．．．
ANADNGAL ARTITLELES， 1881.

Electricity in $1880-1 \quad .$.
The Maidstone Explosion
Forthooming Railwas Dividends
The Utilisation of Waste Ivory
Engine－driving Life．By Michael Reynolds
HURD＇S WIRE Rope Gbar．
（llustrated．）
\ldots ELECTRIC（Dlustrated） The Iron，Coal，and General Trades o BIRMINGHAM，WOLERHAMPTON，AND othe Notes from Sheffield．．
Notes from Lancashire
首秋 from the North of England
Notes from Walles and adjoining Counties Abstracts of Patent Specifications．（illus－ trated．）．：
ARAGRAPAS－
The Steel Trade
Social Gathering of Scotch Engineers

Torpedo Bats $\quad . . \quad . \quad$.
With a Two－page Supplementary Table for the
Conversion of Metric into English Measures．

South Kensington Museum．－Christmas WeEk．－Visitors during the week ending Jan．1st， 1881：－On Monday，Tuesday，and Saturday，free， cantile marine building materiol 27,835 ；mer－ collections， 13,797 ．On Wednesday，Thursday， and Friday，free，from 10 a．m．till 10 p．m．， Museum， 5549 ；mercantile marine，building materials，and other collections， 5076 ．Total， years， 39,597 ．Total from the opening of the 19，610，141
＂EPPS＇S COcoa．－Grateful and Comforting． which a thorough knowledge of the natural laws which govern the operations of digestion and
nutrition，and by a careful application of the fine properties of well－selected Cocoa，Mr．Epps has provided our breakfast tables with a deli－ cately flavoured beverage which may save us many heavy doctors bills． nay be gradually built up until strong enough to resist every tendency to disease．Hundreds of subtle maladies are floating around us ready to attack wherever there is a weak point．We may well fortified with pure blood and a properes nourished frame．＂－Civil Service Gazette．－Sold Homoopathic Chemists，London＂－Also maker of Epps＇s Chocolate Essence for afternoon use．

