THE BUREAU VERITAS AND MILD STEEL FOR SHIPBUILDING.
As early as 1874, the Bureau Veritas, a continental society similar to "Lloyd's," undertook a series of elaborate experiments on American wrought iron and steel, publishing tables of the results they obtained. The lirectors have continued these tests from time to time, and have issued reports embodying the experience acquired. In the report for last year they observe that as the material composing a ship is subjected alternately to ten of rigidity ression, and must also possess the qually of rigity to nable it to resist transverse strain, full advantage cannot be taken of any superior tensional strength it may possess, imless accompanied by a corresponding increase of ability to resist the other stresses. With regard to tensional resistance, experiments made on Motala mild steel showed an ultimate resistance of $31 \frac{3}{4}$ to $32 \frac{1}{2}$ tons per square inch, an elastic limit from $18 \frac{1}{2}$ to $20 \frac{1}{2}$ tons, and an elongation at fracture of 27 to 33 per cent. These results were compared with those afforded by French iron plates of good rands, which gave an average breaking strain of $25 \frac{1}{2}$ tons per square inch, an elastic limit of 15 tons, and an average
elongation of 12 per cent. Presuming that with both elongation of 12 per cent. Presuming that with both and taking the average resistance of ordinary iron plates at 20 tons, with an elastic limit of 9 tons per square inch, there would appear ground for a reduction of 50 per cent. on the scantlings of material exposed only to tensile stress, in steel vessels as compared with iron, while retaining the same working factor, were it not for the greater deprecia-
tion of the new material due to corrosion and the working ip in the yard: The latter consideration is referred to below ; and with regard to the former it is urged that, as vessels are presumed to carry, at the end of twenty years, the same amount of cargo as when new ; and as, with a uniform rate of corrosion, a given amount of loss bears a
higher proportion to a thin than to a thick plate, a certain excess of initial comparativ strength must be allowed.
As regards resistance to transverse stress, experiments totest the comparative rigidity y deflecting strips of plate, esting on supports, by means The thickness of the plate was 12 millimetres $(0.472 \mathrm{in}$.) and the results showed that if the limit of deflection is not to be exceeded, an iron plate replaced by a steel one of It appears, therefore, that mild steel possesses very little mild steel possesses very little superiority over ron in point
of rigidity, a reduction of of rigidity, a reduction of 8 per cent. being all the tending its substitution for tending its substitution for
iron. In order to preserve the required rigidity, in allowing required rigidity, in allowing the frames and reverse frames, the directors recommend that change should bemade in the sections of the angles, and a sectior or thgement adopted, better arrangement adopted, duced momentof the girder resulting from a reduction of thickness Insubstitutingsteel thickness. Insubstitutingsteel
for iron beams, they are prefor iron beams, they are pre-
pared to admit a reduction in long as the depth remains the same. On account of the limited experience as to the corrosion of steel, they are not prepared at present to make any material reduction on the floors, but would otherwise built of steel
The directors do not regard as settled the amount of depreciation caused to steel plates by punching the rivet holes, because of the few samples tested in all the experiments in this direction that have been published, and also because the uifferent samples from the same charge of tons ber if for binching should steel. If, for instance, a plate injured by punching shoul an happen to have the lowest tensile strength, and an would woul is subjected by being heated for bending plates and steel is subjected by being heated, for bending plates and angles the the bera heating is orersaly is destroyed necessary, and Thing to the prop folld of mild steel, and as having been the purposes. The application to shoring to wher ith ithe cold block or wich fores while at a low heat rolls, from the hame in fom whe pequin should subsewhichly quently $\quad$ a bity of the pars lose the recommend that all plans blates and angles which and plates be as possible; and require bend whout heating be that parts which can they further recommend that made or wronat tion than those of iron, be used with steel plates. They
do not, for the present, propose any change in the proporif if not throughout, at least in all particular parts for a the fullest the fullest extent, and to obtain the greatest red
Steel for angle bars is required to be of a milder quality than that for plates, as flanged bars are found to yield than that for plates, a
The directors of the Bureau Veritas intend, for the future, that their definition, "uniform quality" shall signify that all plates, angles, and bulb bars have been subjected to the following temper test, which entails no appreciable addition to the cost of production:-A shearing is heated to a dull red, quenched in water at 28 deg . Cent. $-82 \cdot 4 \mathrm{deg}$. ah.-and bent double until the width of the opening near the bend equals three times the thickness. They have fully and carefully examined the question of ductility, both with the view of insuring safety to vessels built under their survey, and also with regard to the international character of the register, and have definitely adopted a maximum of 32 tons per square inch. From the acknowledged inferiority of very soft steel, and considering the excellent character of iron sometimes employed in vessel. tions accorded, a minimum limit of 27 tons per square inch tions accorded, a minimum limit of 27 tons per square inch has been adopted. Although the results of experiments and their own experience of mind steel warrant a consider directors retion from the scantings of iron vessels, the directors are not prepared at present, in consequence of the establius in tabulated form, the seantlings that they establish, in tabulated form, the scantings that they would accept when steel is substituted for iron, but require moments exacted by the rules, the reduction reaching in

Fig. 1, page 50 shows an elevation, and Fig. 2 a an orrangement, while Fig. 3 is a diafigures show enlarged details of the elongation indicator, which has since been added. The machine consists essentially of an hydraulic press the ram of which tends to pull the sample apart, while at the same time the strain is pur the satp apart, whe, at the same is communicated, through a bent lever and piston, to a column of mercury. The plunger of the force pump A, on the left side of the general the screw. At first it was only movided with hand-wheel and bevel gear multiplying provided with hand-wheel and bevel gear multiplying added, which increases the power five and a-half times making one hundred and ten times altogether, while the arew is also of with The consequence is that he increno arity, and a lad at the handle con exert a power of 25 tons on the sample. The water is led, by the small copper pipe, the hydraulic cylinder B, where it presses on the front $f$ the . the ram, cor rrow, coum theweignts being provis The am is made bllow to reive the serewed which carries a jow one end a mut the other for the purpose of adjust ne end and a nut at the other for purpose of adjustforms par of shor provided the other nd with ol ne wis erer als a the piston $D$ of shat ow the piston Dio a directly on water contained in the cylinder; and the pres sure is mercurial carce $E$, ach division of which presents a mercurial gauge E, each divion a total pre kilo-grammes-nearly 1 cwt. The dex and stop that can be set to each division, or midway between two divisions if equired.
The sample is retained between the jaws in the manner most suitable to its shape Bolts are held directly by their heads and nuts, the main por tion being turned down for a ertain length to less than the diameter of the screwed portion. Plate samples are prepared in the usual way nd held by pins passing through them and the jaws, washers being used to fill up the spaces between the sample and the jaws. The apparatus for measuring the elongations shown at ane gre elevation, and separately in the annexed cut. It consists of a sector cast in brass, pro-
vided with a handle C C for convenience of placing for convenience of
and sliding freely groove of the stud $H \quad H$ with the aid of anti-friction rollers JJ, on the arm screwed K K prent K K preventing it from turn ing. Each dision of the is half a millimetre; but the index is provided with index is provided with a vernier, so that elongation one-twentieth of a millimetre, or 0.00195 in .
some cases 30 per cent., while in others not attaining half that figure. Forced iron will be accepted, in vessels otherwise built of steel, for the keel, stem and stern post, for the rudder head and frame, and for the pillars. Rolled bulkheads, the floors, bulbs and frame angles, for the boss plates on the stern post, the bent plates round the quarter, and for the plates joining the heels of stem and stern post, in vessels fitted with flat plate keels. The directors have such confidence in the uniformity of manufacture attained following metal as to feel justified in adoptessels, if the parts are made of steel :-18 to 25 per cent. on the outside plating, stringers, ties, keelsons, and watertight bulkheads ; and 10 to 15 per cent. on the thickness of the floors, bubs and angles; and these reductions may be a moment equal to that required in iron vessels. The diameter and spacing of the rivets, and the width of laps and butt strips, follow the rules for iron vessels, but are determined by the reduced thickness of plating. All steel plates and angles are to be legibly stamped with a special uniformdicating the makers guarantee that that it will remain on the plate or bar when rivetted up in the vessel. In carrying out the experiments, a testing machine was formerly employed, in which a weight, multiplied by a beam, acts directly on the sample; but the cylindrical bearings caused an amount of friction which introduced a the fact ther the is in a horizontal position. Accordingly, after much consideration the divectors determined to adopt the machine devised by M. H. Thomasset, of Paris, in which all the bearings are knife edges. This machine was erected in the basement of the chief office, Brussels, in April last, and has since been improved in several details by the engineers of the Bureau Veritas.
are clamped to the sample, exactly at the given points between which the length is measured, generally 200 milli metres, or nearly 8 im . One of the fingers is held between two studs on the sector, a conical cap L L preventing any play; and the other is attached by a copper riband, adjust able by the screw and nut $M$, to the boss of the index. A lead counterweight $N \mathrm{~N}$, and a spiral spring $R$ attached by metallic riband, are provided to bring back the index on the pressure being taken off, for observing the elastic elongations. When pressure is put upon the face of the piston, and the sample is being drawn out, the inde moves in the direction of the curved arrow. India-rubbe cushions are added between the ends of the sample and the jaws, to prevent jar to the machine, and the breakage takes place

The directors of the Bureau Veritas have determined to make a thorough and independent study of the capabilities of the new metal for shipbuilding, and the extent to which it can be depended upon, so as to be able to fix definitely the reductions they will be able to allow on the scantling of vessels. They have recently carried out a series of test. on some plates and angles of mild steel turned out by the
Société John Cockerill, of Seraing, by the Bessemer process.
The materials of which samples were tested are for a vesse which is being built entirely of steel by the Cockeril Company, at their Antwerp shipyard, to form one of a fleet of steamers for bringing iron ore from their mines at Somorrostro, in Spain, and which is subrited to the Bureau Veritas for classing. The steel is made from 50 per cent. of charcoal pig, and 50 per cent. of very pure hematite pig from Cumberland. This is melted in the cupola, but not overheated, and then blown in the converter at a rela tively low temperature. An addition is made of from 1 to $1 \frac{1}{2}$ per cent. of ferro-manganese, containing from 55 to 60 pe and all the steel that does not fall between the following
limits is applied to some other purpose than shipbuilding:

| Carbon | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 0.08 to 0.15 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Silicon... | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | trace t 0.02 |
| Sulphur | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 0.03 to 0.05 |
| Phosphorus | $\ldots$ | $\ldots$ | $\ldots$ | 0.03 to 0.05 |  |
| Manganese... | $\ldots$ | $\ldots$ | $\ldots$ | 0.30 to 0.60 |  |

Two strips are sheared from each plate, one in the direction of the rolling, and the other across the grain ; and the test pieces are worked to the required shape, and draw-filed on for the reason that a small notch in the edge would determine fracture in the same way that a nicked bar is easily broken.
Seventeen pieces were tested altogether, so as to afford a good average ; they included strips in the direction of pressure was added in single kilogrammes per square millimetre- $12 \frac{1}{2} \mathrm{cwt}$. per square inch-at a time, until the limit of elasticity was reached, the pressure being taken off at each increment, and two or three minutes allowed for the molecules to return, as far as they would, to their original position. After the limit of elasticity was reached millimetre at a time until fracture ensued. We wer square sent during the testing of two samples, which took pre a whole day, and also observed from time to time the testing of the remainder. The first sample, No, 359 in the general table given below, was taken, in the divection of the rolling, from a plate 12 mm . thick ; and the width of the sample was 25.2 mm ., giving a sectional area of 302.4 square millimetres-nearly one-half square inch With a total pressure of 6046 kilos.- 5.95 tons-or 20 kilo per square millimetre- 12.7 tons per square inch-of sec
tional area, the elastic elongation was 0.45 mm . and the same amount of elastic elongation continued until a strain of 17.8 tons per square inch was rentinued unti a strain of 17.8 tons per square inch was reached, when stretched 0.6 mm ., but only returned 0.3 mm . At 19 tons per square inch there was only the same elastic elongation, 0.9 mm At 19.7 tons, while the elastic elo a not a millimetre, the total elongation was $5 \frac{1}{4} \mathrm{~mm}$. (nearly $\frac{1}{4} \mathrm{in}$.) Though the elastic elongation never exceeded 0.55 mm ., which was noticed almost up to fracture, the permanent elongation went up to 9.9 mm . ( $0 \cdot 39 \mathrm{in}$.) at $23 \frac{1}{2}$ ons; 17.7 mm . ( 069 in .) at 26 tons, and 3115 mm . (nearly $\frac{1}{4} \mathrm{in}$. iving an elang, at a strain of 27.8 tons per square inch, giving an elongation of $49 \frac{1}{2} \mathrm{~mm}$., or 1.9 in ., which on the
length of 8 in. gives $24 \frac{1}{2}$ per cent. The final sectional area became 133 square millimetres, showing 54 per cent. of contraction.
The next sample, No. 368 , in the general table was taken across the grain, and did not show such different results from the former as might have been expected. The sectional area was $25.5 \times 12.2=311$ square millimetres, and the length experimented upon was as before 8 ir . The breaking strain was 44 kilogrammes per square millimetre, or 27.9 tons per square inch, and the total elongation 41 mm . ( 1.6 in. .), or $20 \frac{1}{2}$ per cent., rather less, as might be supposed, than the former, though the breaking strain is practically the same. The final section is $9 \cdot 1 \times 17 \cdot 8=162$ square millimetres, giving 48 per cent. of contraction, rather less than the previous sample. The breaking strain compared with the final area is 84 kilogrammes per square millimetre, or 53 tons per square inch. The subjoined table, showing the successive elongations, both elastic and permanent, at the several increments of strain, cannot fail to be found instructive :-

## Strain in tons per square incl

Elongation in millimetres
Elastic.

| Permanent. | Total. |
| :---: | :---: |
| - | 0.2 |
| - | $0 \cdot 25$ |
| - | $0 \cdot 3$ |
| - | $0 \cdot 35$ |
| 0.8 | 0.9 |
| 3.85 | $3 \cdot 95$ |
| ${ }_{5}^{4} 7.75$ | ${ }_{5}^{4} \cdot 95$ |
| $5 \cdot 6$ | 5.4 |
| $6 \cdot 05$ | $6 \cdot 30$ |
| 7.05 | $7 \cdot 35$ |
| $8 \cdot 1$ | $8 \cdot 45$ |
| $9 \cdot 3$ | $9 \cdot 75$ |
| 10.85 | $11 \cdot 30$ |
| 12.75 | 13.2 |
| $14 \cdot 8$ | 15.25 |
| $18 \cdot 2$ | $18 \cdot 6$ |
| $23 \cdot 3$ | 23.7 |
| - | 41.0 |

The principal results obtained by the whole series of tests are tabulated below. The metrical dimensions and elongations are retained, but the breaking strain and the limit of elasticity are given in tons per square inch instead of kilogrammes per square millimetre. Above the strains in the last column but one, and the total strains in that $p$
ceding it, the samples became permanently elongated.

| No. | Description. | Dimensions of test-piece. |  |  | Elongation. |  |  | Breaking Strain. |  | Limit of elasticity. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Test. |  | Breadth. | Thickness | Sectional area. | $\begin{gathered} \text { Origi- } \\ \text { nal } \\ \text { lengths. } \end{gathered}$ | $\begin{gathered} \text { Length } \\ \text { on } \\ \text { fracture. } \end{gathered}$ | $\begin{gathered} \text { On } 200 \\ \mathrm{Mm} . \end{gathered}$ | Total. | Per sq. inch. | Total strain. | Strain per sq. inch. | Elasticity. |
|  |  | Mm. | Mm. | Sq. mm. | Mm. | Mm. | per cent | Kilos. | Tons. | Kilos. | Tons. | Mm. |
| 353 | Longitudinal. | $25^{\cdot 1}$ | $9 \cdot 0$ | $225 \cdot 9$ | 200 | $248 \cdot 0$ | $24 \cdot 0$ | 9694 | $27 \cdot 3$ | - |  |  |
| 354 | Transverse. | 18.4 | $12 \cdot 0$ | $220 \cdot 8$ | 200 | $248 \cdot 3$ | $24 \cdot 1$ | 9714 | $27 \cdot 8$ | 5960 | $17 \cdot 1$ | 0.45 |
| 355 | Transverse. | $24 \cdot 9$ | $9 \cdot 2$ | $229 \cdot 08$ | 200 | $248 \cdot 0$ | $24 \cdot 0$ | 10079 | $27 \cdot 8$ | 6873 | 19.0 | $0 \cdot 45$ |
| 356 | Transverse. | $25 \cdot 9$ | $11 \cdot 8$ | $299 \cdot 72$ | 200 | $237 \cdot 25$ | $18 \cdot 6$ | 14383 | $30 \cdot 5$ | 8992 | 19.0 | 0.45 |
| 357 | Angle. | $25 \cdot 6$ | $11 \cdot 4$ | 291.84 | 200 | $242 \cdot 7$ | $21 \cdot 3$ | 13417 | $29 \cdot 2$ | S469 | 18.4 | $0 \cdot 45$ |
| 358 | Transverse. | $25 \cdot 1$ | $9 \cdot 1$ | 228.41 | 200 | $241 \cdot 6$ | $20 \cdot 8$ | 10048 | $27 \cdot 8$ | 7223 | $17 \cdot 1$ | $0 \cdot 50$ |
| 359 | Longitudinal. | $25 \cdot 2$ | 12.0 | $302 \cdot 4$ | 200 | $249 \cdot 5$ | $24 \cdot 7$ | 13250 | $27 \cdot 7$ | 7860 | 16.5 | 0.45 |
| 360 | Longitudinal. | $34 \cdot 3$ | $8 \cdot 9$ | $305 \cdot 27$ | 200 | $245 \cdot 0$ | $22 \cdot 5$ | 14959 | 31.0 | 9463 | $19 \cdot 6$ | 0.50 |
| 361 | Transverse. | $34 \cdot 5$ | $9 \cdot 1$ | $313 \cdot 95$ | 200 | $250 \cdot 5$ | $25 \cdot 2$ | 15388 | 31.0 | 7530 | 18.4 | 0.45 |
| 362 | Angle. | 18.8 | $11 \cdot 3$ | $212 \cdot 44$ | 200 | $244 \cdot 5$ | $22 \cdot 2$ | 9771 | $29 \cdot 2$ | 6160 | $18 \cdot 4$ | 0.50 |
| 363 | Transverse. | 25.0 | $9 \cdot 4$ | $235 \cdot 0$ | 200 | $243 \cdot 5$ | $21 \cdot 7$ | 11045 | $29 \cdot 8$ | 6110 | 16.5 | 0.50 |
| 364 | Longitudinal. | $25 \cdot 4$ | 11.9 | $302 \cdot 26$ | 200 | $238 \cdot 2$ | $19 \cdot 1$ | 13903 | $29 \cdot 2$ | 6044 | 18.4 | 0.45 |
| 365 | Angle. | 18.8 | $11 \cdot 5$ | 216.2 | 200 | $244 \cdot 8$ | $22 \cdot 4$ | 10379 | $30 \cdot 5$ | 6487 | 19.0 | 0.50 |
| 366 | Longitudinal. | $34 \cdot 4$ | $9 \cdot 5$ | 326.8 | 200 | $233 \cdot 1$ | 16.5 | 15028 | 29.2 | 6891 | 17.1 | $0 \cdot 45$ |
| 367 | Transverse. | $34 \cdot 4$ | $9 \cdot 5$ | $326 \cdot 8$ | 200 | $249 \cdot 3$ | 24.6 | 14380 | $27 \cdot 8$ | 8495 | 16.5 | $0 \cdot 52$ |
| 368 | Transverse. | $25 \cdot 5$ | $12 \cdot 2$ | $311 \cdot 1$ | 200 | $241 \cdot 0$ | $20 \cdot 5$ | 13685 | $27 \cdot 9$ | Si09 | $17 \cdot 8$ | $0.35$ |
| 369 | Lengitudinal. | 18.6 | $12 \cdot 1$ | $225 \cdot 06$ | 200 | $247 \cdot 1$ | 23.5 | 9903 | $27 \cdot 8$ | 6078 | $17 \cdot 1$ | 0.45 |

It will be noticed that the elasticity of all the seventeen samples tested is very uniform, only one of them differing appreciably from the rest in this respect. The breaking strain varies about 4 tons per square inch, and the limit of of the transverse samples show not per square inch. Nome strain, but also a higher limit of elasticity than breaking the longitudinal. No 356-transverse - shaw some of and strong metal with average elastic limit, but a low elongation; it is therefore not so much to be relied on as No. 353-longitudinal-with a lower breaking strain but a higher elongation. The former would be destroyed by an higher elongation. The former would be destroyed by an strong, would yield and partially return to its original form, but not break. As a practical result of these tests, the sectional area of scantlings rather on the elastic limit than on the ultimate stress.

## THE MACHINE GUN COMPETITION

The competitive trial of machine guns began at Shoe being brought forward. (1) Two-barreled Gardnep pieces being brought forward. (1) Two-barreled Gardner, (2)
five-barreled Gardner gun, (3) Pratt and Whitney's im proved four-barreled Gardner, (4) long ten-barreled Gatling, (5) short ten-barreled Gatling, (6) six-barreled Gating, (7) five-barreled Nordenfelt gun. The trial is a weekly summary of the trials made, together with have been long more or less famili reader Gatling. The Nordenfelt is of comp familiar with the duction in this country, having chiefly attracted attention from its performances with steel bullets. A short descrip tion of it, with a cut, has already appeared in The description of it, with a cut, has already appeared in The Engi-
neer. Both the Nordenfelt and Gatling are to be found our service equipments, the Nordenfelt having been specially supplied to the Royal Navy. The Gardner is in the course of its first trial

The general principles embodied in the construction of these machine guns are as follows:-The Gatling has its barrels arranged round the circumference of a cylinder opposite to which revolve the ring of chambers, bringing each in succession to the point where it joins the barre and where it is fired. The action is extraordinarily rapid, even compared with other machine guns. Being strictly successive the piece has no recoil, and under favourable circumstances offers advantages in aiming, because a continuous stream of, bullets almost admits of being brought on to an object by feeling the way up to it, in the way a fireman does with the hose of an engine. The arm has proved its powers abundantly, having in this respect the advantage of its rivals. The chief fault we should find with it in principle is the fact that all the barrels are fed by a single stream of cartridges, which limits the rate of loading, a disadvantage that must increase with the number of barrels. Machine guns generally depend on gravity for the feed motion of the cartridges which descend into the chambe at the breech end of each barrel. In the case of the Gatling the cartridges descend in a single stream, either by gravity alone, or supplemented by hand pressure, which cause slight checks in feeding. The result is that the firing of the gun, though successive and in theory continuous, in cases of extreme rapidity, is not a perfectly even stream, but consists of successive bursts of firing, succession. Major Noble, in his report on the Paris Exhi bition in 1876, observed that the five-barreled Gatling had then discharged at the rate of 1000 rounds per minute. This probably refers to a much shorter period than an which minute, as it is much more rapid than the firing up we here have to report. The Gatling is now taken up by Sir William Armstrong and Co., and may be obtained from them. Mr. Accles has fathered the gun at Shoeburyness during the present trials. Fig. 1 herewith represents the five-barreled Gatling, mounted on tripod stand. It will be seen that the action of firing is rotary, the crank moving either on an axis in prolongation of the axis of the centre spindle round which the barrels ar
placed, or else to one side.

The Nordenfelt (Fig. 7) has its barrels arranged hori zontally in a row. This enables the feed to be supplied tc the whole of the barrels simultaneously. Movement is effected by means of a lever projecting to the right side of the breech end of the arm, which is forced backwards and forwards, the whole of the breeches being opened and the extraction, loading, and firing being carried out simultaneously. In these respects, then, this arm is the precise opposite to the Gatling. The inventor urges that the advantage of the to-and-fro motion is more completely under command than the rotary; that it moreover sup ports the cartridges better while undergoing discharge, for it gains time for each round, inasmuch as the simultaneous discharge gives to each round the entire time occupied by all instead of a fraction of it. He states that in successive action mitrailleuse cartridges with powder still burning in them are liable to be ejected in numbers round the legs of the operator, when the powder from damp or other cause acts imperfectly in any way. He also advocates volley firing, as being the only method suitable for sea service, because the rolling of the ship enables line to be taken for an instant volley discharge, but not for a successive stream of single rounds. As compared with the Gatling, it may be seen that for sea service each system has its advantage, one in a rough and another in a smooth sea. The chief objection that we were able to observe in the Nordenfelt gun was the fact that, in our

judgment, the to-and-fro motion is more distressing to an perator than the continuous circular movement of a crank which requires no check, and which has the advantage of considerable momentum to carry it through. The Nordenfelt gun was a light one, but we question if much stress is on laid on weight, as, unless some definite conditions are haid down, variation may be due to difference in the manufacturers own standards of the strength deemed desirable or service. Any special feature in either gum entailing The Gardner system is represented, as we have said, in two forms-the five-barreled (Fig. 2) and the two barreled, besides the Pratt-Whitney piece. The latter though spoken of as the improved Gardner, is in reality not of more recent construction than the others, being, in
fact, a modification of on early form of Gardner machine fact, a modification of on early form of Gardner machine gun. It represents, in fact, Pratt and Whitney's ideas of Gardner's own improvements, which are embodied in the two pieces bearing his name only. The barrels in the Gardner arm are like those of the Nordenfelt-in horizon tal line, the breeches are opened, closed, and fired by horizontal bolt action, moved by cams fixed on a crank, worked on the right of the breech of the gun. As this action is much less well known than that of either of it rivals, we give figures showing its general character. It will be seen that in its nature it is suited to simultaneous discharges, but by means of varying dimensions of parts the firing can equally well be made suc cessive. Indeed, by an ingenious plan of interchange of parts it can be made in a few minutes either simulta neous or successive in its action. Figs. 3 and 4 give views looking opposite ways of the vertical longitudinal section of the breech action of a single barrel in two positions, Fig. 3 barrel to the right, Fig. 4 barrel to the left. The disc A B-Fig. 3-is worked by the hand crank, the fixed piece A moving the lock C D with breech bolt E and it extractor. It will be seen that at two parts of the complete circle the piece A will leave the piece C stationary that is, while any portion of the piece A is horizontally either in front or rear of the axis of the crank. Atthose points it will be practically the same thing as if the disc was entire This will make the reciprocating motion intermittent, paus ing at the firing and the extraction positions. The cam FG on the crank imparts reciprocating motion to the clutch I of the controller bar, and it may be seen that it move it only at those times when the lock is stationary. Thus in Fig. 3, if the crank were to rotate causing A to move upwhile at the move backwards. Between A and B is a piece cut out of the disc, which allows the arm K (see Fig. 4) to move upwards under the pressure of the spring $L$ against

THE GARDNER AND PRATT-WHITNEY MACHINE GUNS.

$=\Delta x=0$


[^0]three targets of 20 rounds each at $300,500,900,1500$, and 2000 yards to be made, a different barrel being used each time. The
higher ranges to be subjected to modification. (b) Fire 40 rounds from each gun, for figure of merit. at a target at 500 yards range.
three targets to be made. To be fired by men of the School of Gunnery.
Gunnery.
(3) Accuracy with Rapidity.-At stationary targets: (a) With-
out traversing: Fire one round from each barrel of each gum as out traversing: Fire one round from each barrel of each gun as
fast as possible, at 500 yards range, at target. Note time and
accuracy. Three targets to be made. (b) Without traversing: accuracy. Three targets to be made. (b) Without traversing:
Fire 80 rounds from each gun, as fast as possible, at 500 yards
range. Note time and accuracy. (c) With automatic scattering range. Note time and accuracy. (c) With automatic scattering
motion : Fire for half a minute with automatic gear on, at 500 yards range, at rows of 9 ft . targets. Repeat with hand scattering

gear. The number of throughs and lodges only to be counted. (d) | gear. The number of throughs and lodges only to be counted. (d) |
| :--- |
| Three fixed 6 ft by 6 ft . targets to be placed at 300,500 , and 700 | yards, in different directions, as wide apart as the ground will

allow. 40 rounds to be fired at each target. The time and number allow. 40 rounds to be fired at each target. The time and number
of hits to be noted. At moving target: $(e)$ A movable target,
6ft, by 12 ft , at 800 yards range, to be caused to move diagonally 6 ft . by 12 ft , at 800 yards range, to be caused to move diagonally
across the line of fire to a point 400 yards from the gun at a trot. across the line of fire to a point 400 yards from the gun at a trot,
Number of hits to be noted. The lateral distance travelled to be Number of hits to be noted. The lateral distance travelled to
about 400 yards. To be fired by men of the School of Gumnery.
(4) Velocity Trals.-Muzzle velocity of 10 rounds from each guin about 400 yards. To be fired by men of the School of Gunnery.
(4) Velocity Trials.-Muzzle velocity of 10 rounds from each gun $t$
be taken. be (5) Exposure Trials.- (a) Guns to be wiped clean, and left
(5)
uncovered for a week in the open. Before firing, half-a-minute uncovered for a week in the open. Before firing, half-a-minut
allowed for cleaning, with such material as would be found with the carriage. Continuous firing for half-a-minute to be thend carried
out. (b) Each gun to be fired for half-a-minute under an oscillating overhead sieve filled with dry silver sand.
(6) Rough Usage.-A rough usage trial of each gun in marehing
order will also be carried out. The details of this will be arranged by the committee hereafter. Further trials as to suitability for by the committee hereafter. Further trials as to suitability for above trials may be repeated as often as the Committee consider
desirable.


THE NORDENFELT GUN.

On Thursday, January 13th, the following results were (1) Rapidity (a) firing for half a minute.
(1) The two-barreled Gardner, worked by inventor and (2) Gatling 195 rounds.
(2) Gating long ten-barreled firing action at re
worked by Mr. Accles and two assistants, 330 rounds.
(3) Gardner five-barreled, by inventor and two assistnts, worked in volleys, 286 rounds.
(4) Nordenfelt five-barreled, by inventor and two (5) Gatling short ten
(5) Gatling short ten-barreled-side action used-several
hitches in extraction, 326 rounds. (6) Pratt and Whitney rounds.

Adams and two gunners, four-barreled, by Captain Gould
330 rounds. Adams and two gunners, 330 rounds.
(7) Gatling six-barreled-with side action-by Mr.
Accles and two assistants, 269 rounds. Test b. 1000 rounds as quickly as
(1) Gardner two-barreled, two minutes fifty-seven seconds. (2) Gatling long ten-barreled, one minute fifty-nine seconds. (3) Gardner five-barreled, one minute thirtyfive seconds. (4) Nordenfelt five-barreled, two minutes
forty-three seconds-including a jam caused by a cartridge forty-three seconds-including a jam caused by a cartridge
rim yielding and a cleaning rod having to be used to remove rim yielding and a cleaning rod having to be used to remove seconds. (6) Pratt and Whitney four-barreled, jammed and ordered to cease firing. (7) Gatling six-barreledincluding four jams-three minutes. The 30 second
firing with the five-barreled Gardner was repeated in firing with the five-barreled
volleys, 330 rounds being fired.
Section C.-Number of rounds fired in 3, 5, and 7 seconds three numbers working the gun): Three seconds, three
trials, Gardner two-barreled, 22,34 , and .33 rounds, or 89 in nine seconds; five seconds, 50,51 , and 48 rounds, total 193. Ten-barreled Gatling (long): Three seconds, 30, 39, 50, total 119 ; the five seconds series, 32 (jammed), 88,90 , total 210 ; seven seconds series, $118,111,120$, total 329 .
Gardner five-barreled: Three seconds, $45,60,60$, total 165 ; five seconds, 75 , 50 , 90 , total 245 ; seven seconds, 110 seconds, 50,60 , 50 , total 160 ; five seconds, 75 , 75 , 70 , total 220 ; seven seconds, 100,95 , 100 , total 295 . Ten-barreled short Gatling: Three seconds, 54, 41, 54 rounds, total 149 ;
five seconds, 75,87 , and 83 , total 245 ; seven seconds, 108 , five seconds, 75,87 , and 83 , total 245 ; seven seconds, 108 , 42 (ending by jamming), total 258 . The Pratt and Whitney, fired by Capt. Gould Adams: Three seconds $54,60,48$, total 162 ; five seconds, 101, 88,90 , total 279 ;
seven seconds, 100 , 117 , 114, total 331 seven seconds, $100,117,114$, total 331 . Gatling six-
barreled: Three seconds, $30,44,49$, total 123 ; five seconds, $74,52,59$, total 185 ; seven seconds, 90,82 , 80 , total 252 . Section E. The number of rounds fired by one man in one minute, unassisted: Gardner five-barreled, fired by
Gardner, 339 rounds ; long ten-barreled Gatling, 359
rounds ; Gatling short ten-barreled, 193, including three jams ; Gatling six-barreled, 267 , stopped by jam twenty-fiv hopper upset at about the half minute ; Pratt and Whitney, 356 rounds.

The following second attempts were allowed to be made - Mr. Gardner and two assistants fired in thirty second 236 rounds from two-barreled rifle. Mr. Accles alone within a minute, fired from short ten-barreled Gatling
387 rounds, including jam for four seconds, and Mr. Nordenfelt with five-barreled gun got off within fifty Nordenfelt with five-ba
seven seconds 348 shots.

## LEGAL INTELLIGENCE.

JUDICLAL COMMITTEE OF THE PRIVY COUNCIL.
(Present: Sir Barnes Peacock, Sir Montague Smith, and Sir January 18th.
Re martin's patent.
This was a petition for the prolongation of Martin's well-known patent for fire-doors. The facts appearing by the petition wer No. 158, were granted in this country to one of the petitioners, William Arena Martin, for his "Improvements in apparatus for consuming,smoke, promoting combustion, and feeding furnaces
with fuel." The same patentee obtained the following foreign with fuel. The same patentee obtained the following foreign January, 1875; Norway, 17th July, 1876. In the United States, Letters Patent, dated the 5th May, 1874, were granted to the same petitioner, and John Ashcroft, of New York, to whom
the former had agreed to grant an exclusive licence for

Their LorDSHIPS said the merit and utility of the invention had been done that could be done on the part of the patentee to intro duce the improvement, and that there had not been sufficient remuneration having regard to the expense to which he had been
put. They would therefore advise her Majesty to prolong the patent for a further term of five years.

## January 18 and 19. <br> <br> Re Napier's patent

 <br> <br> Re Napier's patent}This was a petition by Mr. R. D. Napier, formerly of Churchrow, Limehouse, and now of Glasgow, for prolongation of Letters
Patent granted to him on 2nd February, 1867, No. 299, for "improvements in brakes and apparatus for giving motion to
machinery." The invention was stated to consist in the use of "differential brakes" for various purposes, including the working ing a drum, and secured by the ends to a differential lever
either straight or bent. The petitioner was formerly in the colonies as a Government servant, but gave up his ap He and his brother, Mr. J. D. Napier, started in business a He and his brother, Mr. J. D. Napier, started in business as tion. It was not until the eleventh year of the patent that the tide turned, and latterly the invention had been very successful. A notable instance of the use of the invention was referred to. Out gale, only one rode out, and the safety of the ship was put down by her master to the use of a Napier windlass, which enabled the cables to be held under complete control. Mr. J. D. Napier died of the patent showed a considerable loss.
It was stated on behalf of the petitioner's case that the
Employers' Liability Act would in effect render the use of his brakes a matter of neecssity to employers to lessen their risks.

Mr. Aston, Q.C., and Mr. Macrory appeared for the petitioner the Attorney-General and Mr. A. L. Smith for the Crown.
Their Lordships were of opinion that the merit of the Their LoRDSHHIPS were of opinion that the merit of the invention, especially in its application to windlasses, had been estathey would advise her Majesty to prolong the patent in part-that
is to say, only so far as the application of the differential brake or clutch to windlasses and cranes was concerned, for a further term
of seven years.
Solicitor for

## IN THE HIGH COURT OF JUSTICE

(Chancery Division.- Before the Master of the Rolls.)

## Re dixon's patent.

This was an application by way of petition, on behalf of Mr,
Carl Rumpft, of Barmen, Germany, to have a specification corrected in certain respects after filing. Letters Patent, dated the 6th December, 1879, No. 5003, were granted to J. A. Dixon for certain improvements in the manufacture of colouring matters

- a communication from C. Rumpff and F. Graessler. This patent a communication from C. Rumpff and F. Graessler. This patent appeared that in engrossing the specification from the draft, the
word "sulphonic" had been substituted for "sulphuric," and the word "alkalising" for "alkylising." It was alleged, and the
allegation was supported by evidence, that the errors were material. allegation was supported by evidence, that the errors were material.
Mr. Lawson appeared for the petitioner. The consent of the aw officer had been duly obtained.
specification as prayed, upon the undertaking of the petitioner not to sue any person in respect of infringements committed previously to the date of the order. He directed notice of the order to be given to the Commissioners of Patents.
Solicitors for the petitioner : Messrs.

Naval Engineer Appointments.-The following appointments have been made at the Admiralty:--J. Nelson, chief engineer, to the Seahorse ; John Brown, engin
Leighton, engineer, to the Seahorse
The Export Rail Trade. - An official return, supplementary to year a large increase in the value of both the iron and steel rails exported. Of iron rails, the value of the exports for 1880 was $£ 908,891$ - an increase from £293,658 for the previous year. This increase is chiefly due to the growth of the shipments to North arts especial the Unied states. Of steel rails, the exports were to the value of $£ 3,306,367$ for the past year-an increase
from $£ 1,950,805$ for the preceding year. Except to Russia and Germany, there is an almost universal increase, but it is the most marked in the cases of the United States, British India, Australia, and British North America. From the statement of the quantities sent in each of the two years, it appears that the average value of the rails of both classes had slightly increased.
Property in Inventions. - In the Senate yesterday Mr, sharp thrust at President Hayes's civil service reform order. The bill provides for the payment of 5000 dols. to Mrs. Wright, the widow of an offiser who invented a linchpin used in the artillery.
It was opposed by Mr. Logan and others on the ground that the It was opposed by Mr. Logan and others on the ground that the Government is under no obligation to pay for inventions of persons in its employ. Mr. Conkling held that if the invention was made
out of working hours the inventor should be entitled to the benefit of his invention, though he might be a Government officer. In
the course of his remarks he said: "I deny the right of the the course of his remarks he said: "I deny the right of the
Government to follow an employéc to his home or in his pursuits out Government to follow an employéc to his home or in his pursuits out
of the hours of his employment and oversee his invention, or say of the hours of his employment and oversee his invention, or say
what he should or should not do. The Government has no right to say what a man shall do with his own time, whether he shall or shall not attend religious or political meetings, or exercise his rights as a citizen. I have heard of an executive order which attempts to regulate the private actions of Government employécs.
Such a supervision is in the nature of the boldest tyranny, Such a supervision is in the nature of the boldest tyranny,
whether exercised over political or social actions, or over the whether exercised over political or social actions, or over the
results of reflection and invention."-New York Evening Post, results of refle
December 23 rd.
The Belgian Steam Cable Towing Systen. - This system of towing has been tested on a limited scale on a section of the Erie Canal. The trial has given rise to some protests from some owners
of boats and other friends of the old towing system. These of boats and other friends of the old towing system. These
persons charged, in a formal appeal to the State Legislature, that persons charged, in a formal appeal to the State Legislature, that the business of the canal, \&c. The facts and figures respecting the traffic of the canal thus far during the year do not seem to warrant this arraignment, as the following summary from the official returns received at the Produce Exchange will show, inasmuch as
they demonstrate that from the time of the opening of traffic on they demonstrate that from the time of the opening of traffic on
the canal to August 14th of the present year, the total traffic on the canal has been fully 30 per cent. greater than for the same the canal has been fully 30 per cent.
period of the preceding year, namely :

Total tons
TTotal miles
Total tolls

1880,
$3,258,996$
$5,325,64$
504,250
Much of this increase is not unreasonably attributed to the speed and economy of the cable service. Several hundred boats
have, the American Manufucturer and Builder says, abandoned the old towage system for the new, and it is clained that the increased speed of the steam towing system has increased the capacity of the
canal fully 15 per cent., while the boat-owners, by being able to make more trips, have enjoyed increased profits.

## RAILWAY MATTERS.

IT is said that the Japanese make first-class engine-drivers, and
for the future it is intended to dispense with a further proportion of the foreign staff employed for this purpose
AT a recent public meeting at Nanaimo, British Columbia, it waa
urged that the Government should take the construction of the island rail way into their own hands, so that a valuable coal and
mineral belt shall not pass into the hands of a private company
The Oldaury Local Board have sanctioned the carrying out of the two tramway schemes proposed for that district-the eirming Application will at once be made to
for permission to lay down the lines.
Recentuy a train which was running from Giessen to Deutz and Cologne was overwhelmed by a landslip. The accident took place
between Betzoorf and Wissen in a steep cutting. Two post officials and four railway servants were more or less severely hart.
The fall of earth caused the train to leave the metals, and the postThe fall of earth caus
The South Metropolitan Tramways Company has recently
pened nearly two miles of the new lines sanctioned last Session. This section commences at the western end of Nine Elms, and runs the whole length of Battersea-park-road. A further section of
the line will give a through transit from the Vauxhall end of Nine Elms to Clapham Junction, where 1400 passenger trains arrive and lepart daily.
Sir Johy Hawkshaw, Mr. Barlow, Mr. Gregory, and other engineers, have inspected the site of the proposed new Tay Bridge
and a consultation has been held with the directors of the North ritish Railway Company as to the scheme generally
or several days last week, testing the currents in the in Dundee for several days last week, testing the currents in
conducting other investigations of a like character.
ThE Governor of Bombay on December 30th drove the last spike open. In his speech at the luncheon afterwards, given by the
Maharajah of Jodhpur, Sir James. Fergusson referred to the imortance of the line as a connecting link between Bombay and Northern India ; but, he said emphatically, its construction on the expensive in working, and he did not think that the
likely to enduro long for the main line communication.
The Massachusetts Railroad Company, having investigated the
xplosion of a locomotive boiler on the Fall River Railroad on explosion of a locomotive boiler on the Fall River Railroad on
November 3rd, have made $a$ report in which they find that there was a crack extending the whole length of the fire-box-about 4 fift. attaching no blame to anyone and saying that it is a common practice to run locomotives with cracked sheets in the fire-box, they nechanic should not have sent out the engine with the cracked

AFTER a long debate in committee of the Dominion House of
commons on the terms granted by the Government to the Pacific Railways Syndicate, the Ministerial resolutions were agreed to the the 13th inst. the leaders of the opposition. When the Ministerial resolutions ratifying the terms of the agreement with the Pacific Railway
Syndicate come before the House of Commons from the committee debate of two weeks is
series of amendments.
The experiment of lighting the Hoosac tunnel by electricity is was operated by an engine of 20 -horse power, and each of the the
burners was of 2000 candle-power. In the parts of the tunnel free fom smoke the light throw was strong enough to do track work Between the central shaft and the east portal, where the smoke was so dense that an ordinary locomotive light would not be visible 10 ft. away, the electric light could be seen for over 100 tt. . In some
parts of the tunnel one could read by the electric light 250 ft . from the car.
Mr. John Partingron, of the Audit Department of the London
nd North-Western Railway, has published a circular giving the and North-Western Railway, has published a circular giving the
letails of a scheme--which has, it is said, been tried for effecting conomy in the issue of tickets. The system seems to consist in as returns are now, so that existing ticket issuing and holding boxes and apparatus, may still be used. Mr. Partington's economy
is apparently on the "cheap and nasty" system at least it will is apparently on the "cheap and nasty" system, at least it will
be anything but agreeable to have always to use tickets of just the re anything out agreeable to have al ways to use tickets of just the
right size for losing, merely for the sake of saving a little paper. MuoH trouble with strikes is experienced in different parts of employed on a new railway which is being constructed into the hill from Adelaide suddenly threw themselves out of good remunerative employment because they wanted eight hours to be regarded as a
lay's labour instead of 'nine hours. The contractors-Messrs Walker and Swan-were, however, firm ; and the men forfeited two
 on rapidy by the Government to meet the requirements of farmer of the strike. The Government immediately instructed that the men should be paid off, and the works stopped-a somewhat
drastic expedient, which will, says the Adelaide correspondent of he Coloness and India, cause inconvenience to the farmers, but one ontentment
The ceremony of turning the first sod of the Hull and Barnsley Railway and Dook was performed on Saturday by Lieutenant-
Colonel Smith, the chairman of the company, the occasion being one of unusual rejoicing and holiday making. Although snow
covered the ground to a depth of several inches, many thousands persons assembled to witness the ceremony. At its conclusion a an ode written by the Rev. H. W. We. Kemp, the master of the
Maison Dieu, or Oharterhouse, at Hull, to commemorate the
cven event. The railway and its obecet were described in our impression and Lincolnshire Railway at Stairfoot, near Barnsley will be 5 miles, and including junction lines with other railways, the total
length will be $66 \frac{1}{2}$ miles. The Hull Corporation have sold to the company, on favourable terms, about 126 acres of land and fore-
shore for the construction of the new dock. The dock, which it is tended to name the Alex tha ra Dock, whil a water space o 40 acres, or neary double the area of the Albert Dock, the largest
of the present docks at Hull. It will be 2300ft. in length and
1000 It 100oft. in width, and will have a minimum depth of 30 ft . at the
ordinary high-water spring tides. It will be entered by a lock
 acres in extent, and will be provided with the most modern
appliances, worked by hydraulic machinery, for the rapid and
economical shipment of coal, and the loading and discharging of cargoes. It is also proposed to construct two graving docks, one of which will be capable of accommodating any of the large vessels plining to Hull, which at present have to go to Grimsby or other
Mare fors or survey The engineers are For the railway,
Mr. William Shelford, M. Inst. C.E., F.G.S., London : Mr. Georye
Sonn, Hull; for the dock, Mr. Jomes Abernethy, M. Inst, C.E.E.,
Ondon; Messrs. Oldham and Bohn, M. IIst. O.E. Hull, acting
ngineers. The contractors are Messrs. Lucas and Aird, who
undertaken to complete the works within a period of four years.

NOTES AND MEMORANDA.
M. A. Funaro has shown that the highest proportion of clay o clay soils does not exceed 33 per cent.
The depth of Loch Lomond is very great, and it is consequently
To ascertain if water is hard or soft procure a small quantity of
soap dissolved in alcohol, and let a few drops of it fall into a glass
oap dissolved in alconol, and let a few drocos of it fall into a hlass
of the water to be tried If the water becomes milky it is hard,
but if little or no milkiness results, the water may be said to be but i.
soft.
Dr. PoL, a Russian, recommends the following mixture as a bath for rubber goods which have lost their elasticity :- Water of ammonia, one part; water, two parts; in this the articles should
be immersed for a length of time, varying from a few minutes to ne-half or one hour, until they resume their former elasticity,
Iv thes, and sorness.
Iv the year 1880 there was published in this country 4293 books of all sorts. Of these, theology, sermons, \&c., head the list as to
numbers-as they generally do-but not by so formidable an excess as in previous years. Juvenile works are enext numerous, and those
ander the head of arts, sciences, and illustrated works were nearly 3 per cent. larger in number in 1880 than in 1879 .
THE cultivation of pampas grass, now so much used for decorative purposes, has become a profitable industry in Southern California. Three-quarters of an acre planted, says the Scientitic A American, in
pampas grass yielded, at $2 \frac{1}{2}$ cents per head, 500 dols. Another rower sold all he could raise at $7 \frac{1}{2}$ cents per head. Last year
0,000 heads or plumes of this grass were sold from that region.
Mr. F. L. SLocum has examined the ink for writing on glass, to which we recently referred, and, according to the A..Jour $n$. Ph cherm,
reports that it is made by mixing barium sulphate, three parts; mmonium fluoride, ony part; and sulphuric acid d s, to decompose the ammonium fluoride and make the mixture of a semi-fluid consistence. It slould be prepa
gutta-percha or leaden bottle.
A remarkable batch of serious accidents was reported from ng down of the main building of the Stranferd perished by the burnNew Hampshire. Nine persons were killed, and tliree fatally njured by an explosion at a rolling mill at Allentown, Pennsylexplosion at the smelting works in that town, and four more perished by an explosion in a brewery in New York.
Tana specific gravity of ozocerite is 0.94 to o 0.97 . According to D.go. The melting points are variously given by bifferent writers
as follows. -Te Moldavian as follows:-The Moldavian, 84 deg., Malaguti ; Urpeth mineral,
60 deg., Johnson ; Galacian, 60 deg., Höfstadter ; Utah, $61(5)$ deg., Newberry ; Moldavian, 62 deg., Shehrötter; from Slanik, 62 deg.,
Glocker; Galacian, 63 deg., Wagner. The boiling point is als, differently given by the authorities:-Urpeth mineral, 121 deg., Johnson, ; Moldavian, 210 deg., Schrötter; ; Moldavian,
Malaguti; Utah, between 300 and 380 deg., Newberry.
A NEW compound of oxygen and nitrogen has been described by
Messrs. Hautefeuille and Chapuis to the French Academy of Messrs. Hautefeuille and Chapuis to the French Academy of
Sciences. It contains more oxycen than azotic acid, and has been Sciences.
named by the French chemists per-azotic acid. It is well known that on passing an electric current through oxygen a portion of the
oxycen is transformed into nitrogen, the spectrum indicates the presence of a body characterised by black bands. The bands disappear when the gaseous
compound is mixed with water, and the latter is acidified. The compound is mixed with water, and the eatter is acidiced. The the existence of the body, Its presence was indicated to him however, merely by phenomena of coloration which appeared and
disappeared during the passage of an electric current through a nixture of hypo-azotic acid. His obse tions were communicated to Messrs. Hautefeuille and Chapuis, who, by
obtaining the spectrum, have placed the existence of the new acid
ober beyaning the doubt.
bent
Is the manufacture of mineral wax products the crude mineral -ozocerite-1s melted with water in order to remove any sand on
ther earthy impurities with which it is likely to be mixed. It is then run into cakes weighing about 2 lb. each. By another process
the crude hydrocarbon is first melted and then drawn off; the residue boiled with water, to the surface of which any remaining ny suspended impurities to settle out. The melted wax which was drawn off is poured into moulds, which hold from 1001 lb . to 120 lb . These cakes are then shipped to the various factories in
England, Moldavia, and Viemna, where it is purified and converted England, Moldavia, and Viemna, where it is purified and converted
into illuminating oils and paraffin. A portion of it is directly treated on the island of Swatoi Astrow, in the Caspian Sea, near the Peninsula of Apscheron. There it is distilled in flat-bottomed ron retorts provided with leaden worms, each of these retorts
holding from 1500 lb , to 2000 lb . Sixty-eight per cent. of distilate sobtained, sixty parts of which are paraffin and eighty parts oil Accorling to Grabowsky, the products of such a working may be
as follows :-Benzine, 2 to 8 per cent.; naptha, 15 to 20 per cent.; paraffin, 36 to 50 per cent. , heavy lubricating oils, 15 to 20 per
to
IT may be of interest to record some of the temperatures recorded during the latter part of last week and the commencement of the present. The frost commenced very suddenly. On Wednesday a
pevere snow storm took place, and then the thermometer began to fall rapidly. On Thursday it fell to 17 Fah,, but on Friday night owest ever re Park to 12 . In Freet-street it fell to 10 deg, the and Wimbledon on the night of Friday the thermometer fell to 9 and 11 deg., whilst at the Crystal Palace the minimum thermoneter registered 13 deg. On Sunday night the minimum thermon the parks and gardens were killed. The trees and shrubs shows the lowest temperature registered at the Receiving House in Hyde Park each year since 1870 by Mr. Sutton, the Superintendent.
1870,17 deg.; 1871, 19 deg.; 1872,28 deg.; 1873, 23 deg.; 1874, 20 deg.; 1875,26 deg; 1876,21 deg.; 1877,25 deg.; 1878 , 23 deg.;
1879,16 deg.; 1880,19 deg.; 1881,' 12 deg. The present frost welve years, the days being quite as cold as the nights during some THE following notes on a curious fluid exhibited at a recent meeting of the Société ${ }^{\text {d'Encouragement, Paris, by a Russian gen- }}$
tleman, are from the Chemist and Druqgist. The substance is a very light from and very volatiste hyd hrocarbont, boiling between 30
is perature. It burns at a very low temperature, but yields a
singularly brilliant white light.
The product is perfectly harmless. A quantity of it was spread all ouct is perfectly
the table
and est fire to, but a very gentle puff of breath sufficed to and set fire to, but a very gentle puft of breath sufficed to
extinguish it. The experimenter dipped his handerechief into
the fluid, lighted it, and was at onpe provided with a useful torch. He blew out the flame, and no trace of fire had
passed passed on to the tissue. Light gloves and delicate silk ribbons Lamps for this oil are so constructed that the light is extinguished
by the act of falling. Lighted lamps were thrown among dry hay yithe act of falling. Lighted lamps were thrown among dry hay
without danger. An explosive mixture with air and the vapour of this hydrocarbon can only be made with difficulty, and this sives
rise to nother rise to nothing more than a slight puff. The liquud has a dime
and not umpleasathodour; it can be sold for a franco kilograme,
which is sufficient for a large lamp for twenty hours. The pro which
duction of the substance, according to its present keeper, is un-
limited.

IHE Mumiciplellanea. acing of telephone wires on the hablic buildings of the city, on the The Walsall Town Council have decided to oppose the Birming.
am, Walsall, Cannock Chase and North Stapordshire ham, Walsall, Cannock Chase, and North Staffordshire Railway
scheme, on the ground that it would adversely affect thoroughscheme, on their district
fares in the
Notioss have been posted at Festiniog and other slate quarries Hely commenced for sorfect that full time would be imme
diately . They have been working only four days weekly
THE Piat oscillating furnace for melting stel, iron for malleable castings, brass and other metals, as illustrated and described in our
impression of the 9th of April last, is now we learn being made by
the Plumbago Crucible Company, Battersea.
Arbangements have just been completed for the experimental Anhting of ecrtain important parts of the General Post-office, St.
Martin's-le-Grand. The first series of the experiments will be cond Martin s-le-Grand. The first series of the experiments will be con-
ducted by the British Electric Light Company, in the telegraph instrument galleries.
ONE of the results of the meeting of the Iron and Steel Associa
tion in Disseldorf has been the formation of a similar society in Germany, under the name of Das Verein Deutscher EisenhiuttenDüsseldorf, giving all particulars of the society. A Lecture on water supply and filtration will be delivered ll to-morrow afternoon at 3. 30, by Professor W. W. He Corfild. Lete- Lec
tures on drainage, by Mr. Rogers Field, M.I.C.E., and on waterclosets, sinks, and baths, by Pr
ng Saturdays at the above time.
M. C. CLAMond, of Paris, has patented a new method of producing
intense white light. Air, to mix with the gas-supply is passed th intense white light. Air, to mix with the gas-supply, is passed
though a refractor chamber which is heated by smail jets of gas,
themselves supplied with hot air. The aas-supply meets the hot air just as it has reached the end of the refractory chamber, when
both form a jet of intense heat directed upon a cylinder of lime. The first bale of Egyptian jute has arrived in Dundee, and was have personally assisted in contributing to the cost of the experiMr. William Grant. The bale now in Dundee was grown by Mr. finer sample, grown on the Domain lands under the care of coolies No
No body of workmen in the North of England sooner reaped the
benefit of the improved state of trade at the close of 1879 than did
the the ironstone miners of Cleveland. It is thought by some in the
North the 1880 output of ironstone has not reached the maximum quantity attained in the year 1876 , when more than $6 \frac{1}{2}$ millions of
tons were won but bit may be suggested that as the iron production tons were won ; but it may be suggested that as the eiron production
in Cleveland was several hundred thousand tons less in 1880, the quantity will be more than above drilling machines Rockdrilling maichines are now coming more into general use. Each set
of men, with machine, is capable of winning something like 50 tons per day, as against five tons per day won by a miner working by
hand. There are now employed in the Cleveland mines between
8000 8000 and 9000 men
The Building Acts are actually put in operation now and then to
prevent people using mud instead of mortar for houses. At the prevent people usisg mud instead of mortar for houses. At the
Edmonton Sessions, Andrew Nichols, builder, of Shacklewell-lane, Was charged upon two summonses with using material as morta
in the construction of two houses in Daleview-road, Eastbournia Stamford-hill, not of a character to solidly bind the bricks together.
The Bench ordered the defendant to pay $£ 5$, and a continuing penalty of 2 s . 6 d . per day for 40 days in respect of each house
f $£ 20$ altogether) and tzo altogether) and costs, intimating that they were determined
to assist local authorities in enforcing their bye-laws. People wlo want to build or buy cheap and nasty dissolving-from-view houses
had better remember that even the $£ 5$ would have paid for had better remember that even the
deal of quality in the mortar used.
The mean illuminating power of the gas supplied by the three
gas companies, under the supervision of the Metropolitan Board of Works, excepting the Cannel gas supplied to Westminster, was the highest being in the Old Ford district of the Commercial Gas Company, and the lowest in the Dalston and Kingsland-rood
district of the Gas Light and Coke Company quantity of sulphur was in the gas of the last-named company supplied to Chelsea, each 100 cubic feet of the gas containing 17.5
grains. The same company's gas contained the largest mean quantity of ammonia, namely, 0.7 grain per 100 cubic feet at Bow chemist, also show the absent and the pressure in exces.
Some complaints were made as to the delay in clearing London
treets of snow, but none could reasonably be made in the City Mr. Swale, the superintendent of scavengers, anticipating the in the streetsed at his office all Tuesday night, and had 100 me One hundred additional men were immediately sent out, and by eight oclock, when the storm ceased, after lasting with great
severity for over three hours, there were on duty, in excess of the ordinary seavenging staff, no fewer than 450 men and boys, and
during the day 250 more were sent out. The hydrants were used he streets were strewn wit was done that possible, tiat was sudden and heevy a snowfy, lall, to co cear the great
street area of the City without the lapse of a certain period of time Which in this case, the City Press says, was unusually limited. THE statistics of Scotch exports of pig iron to foreign countries
are encouraging, the exports amounting to 440,200 tons against
340,385 tons, or a net increase of 99,815 tons. An analysis of this section, given in Messrs. John E. S. Swan Brothers' trade report,
brings out the fact that although America took unprecedentedly large parcels during her excitement, the continent of Europe, the
British colonies, and many outlying places, have ordered much more freely than usual, and as long as our quotations for iron and
transits remain reesond there is every ground to anticipate no only a continuance of this but a valuable improvement in thes by ill-ar dvised taions, despite the many unnatural barriers raise
bin subversion of true economic principle About 10,000 tons of hematite or spiegeleisen sent here for train
shipment, are not included in the foregoing statistics. The quan tities dispatched coastwise have not varied to any extent and are
200,848 tons against 200,133 tons, or 715 tons more than in 1879 There are in the United States 279 firms engaged in the silk manufacture, there being factories in fourteen different States,
though the bulk of the business in in New York, New Jersey,
Pennsylvania, Connecticut, and Massachusetts; capital to the amount of $18,000,000$ dols. is invested; 18,000 operatives are
employed, $6,00,000$ dols. in wages are annually distributed,
and $27,000,000$ dols. worth of goods produced. "Nearly every variety of silk manufacture is represented in this country, and the quality of the work-the American Manufacturer says-is in some
respects superior to respects superior to that of any other country in the world.
American silk ribbons are largely imitated abroad, and much
'French' silk is sold in this country fully ignorant that Paterson, N.J., is the thearest point to France
that the goods ever sw. The remarkable development of thi industry is due to the improvements in machinery which the wicked
tariff made possible. Who wishes this vast industry to be destroved tariff made possible. Who wishes this vast industry to be destroyed
simply to gratify foreign manufacturers and certain importers?

HORIZONTAL ENGINES WITH AUTOMATIC EXPANSION GEAR. messrs. buffaud freres, paris, engineers.


Considering the predominating application of the ordinary hat slide valve, it is a matter of little surprise that practical men have shown a decided preference for this well-known type.
Hence, numerous attempts have been made to modify it, so that it might embody all the working conditions of automatic variable expansion gear. This practical activity has brought to light a variety of constructions, which unite, as it were, the so-called Corliss gears with the flat slide gears. It must be admitted the outcome of many of the attempts is in no way inferior to the original Corliss valve gears. This remark certainly applies to the horizontal condensing engines illustrated above, in which the principle of the four-fold steam-distributing gear and the form of the engine frame are borrowed from the Corliss with a disengagement mechanism similar to the Bide slide type valve gear.
The engine frame, cast hollow, receives the crank shaft bearing at one end, whilst its other extremity of peculiar form is bolted to the cylinder. The latter is completely surrounded-excepting the end-covers-with a double jacket of steam and hot air ; it is moreover protected from all external cooling by a non-conducting layer covered again by a wooden lagging. The cylinder is greased py two lubricators placed on the steam-pipe. Contrary to the
practice of several engine-makers, who allow the steam to circu-
late in the jacket before it enters the cylinder proper, in the xample before us, live steam is taken direct from the boiler for blown back into the boiler by an steam which accumulates is The cylinder rests on a broad solid base, which forms one of the two points of support of the engine frame. Ample space is left between these two supports for placing the air and feed pumps, which are worked by a swing lever articulated from the piston rod cross-head. The fulcrum of this lever is about 4 ft . elow the floor line in an engine of 25 horse-power.
The air pump offers little that is new. The valves are of india-rubber, and its piston-rod is connected with that of the feed-pump by a strong iron strap, whence an alternate notion is obtained by the interventions of an oscillating bearing controlled by the forementioned swing lever. The sliding surface hice piston cross-head is made adjustable by means of wedges, and its shaft are of wrought iron, whereas cast steel is employed or the crank-pin, as well as for the steam distributing organs, The brasses of the crank pedestal are in three pieces, and are fitted with tightening-up wedges. The connecting rod is made with an open strap-end and closed butt-end; still the advantages of the closed end are sought to be obtained at the strap-end, by a special arrangement of cotters, which always ensures
the brasses being equally distant from their centres. The distribution of the steam is obtained by four flat gridiron valves, placed transversely across the cylinder, with the two adrunning parallel to the engine centre line is caused to rotate by mitre gear off the crank shaft, and it transmits its rotary movement on to two vertical spindles by worm and wheel gear ; the spindles are fitted with cams at their ends, the uppermost of which drive the inlet valves, whilst the bottom pair work the exhaust valves. As in the Bide and Farcot gear, so in the present arrangement, a trip gear is introduced which works precisely the same way. The Buss governor is fixed at the side of the cylinder, and works by suitable link combination the disengagement gear. The rapid shut-off of the inlet valves is effected by a spiral
spring, which simultaneously acts as a cushion. The exspring, which simultaneously acts as a cush protects it from dust and dirt, and also forms an oil receptacle. Messrs. Buffaud Frères, however, also adapt the
Messrs. Buffaud rères, however, also adapt the in ine retained, so that we need only refer to the valve gear mechanism. In the Rider valve gear, which is an improvement on the well-known Meyer arrangement, the two slides are worked by two separate excentrics. The distributing slide has its back hollowed out in a cylindrical form, having its centre in the axis of the expansion

BELL'S PHOTOPHONE.


Fig. 3


FIC.4. DIACRAM SHOWINC THE ACTION OF THE
FIC.7. SLOTTED TRANSMITTER

> SELENIUM RECEIVER


FIC. 9 POLARIZED LICHT TRANSMITTER


FIC. 5
valve ; the expansion valve, also equally cylindrical, applies itself motion, the governor can transmit a rotary motion to the same The steam passages of the main valve have an inclined position, converging towards one side, and the expansion valve corresponding thereto, the rotation of the latter will determine a larger or smaller steam passage area at the admission periods, according to the extent of the rotations of the expansion valve.

## BELL'S PHOTOPHONE.

During a recent visit to Paris, Professor Graham Bell favoured La Nature with an extended account of the investigations and discoveries which led to and resulted from his late remarkable invention, the photophone. He also supplied our scientific contem-
porary with certain details not previously made public, together with drawings of his apparatus and experiments, the engravings of which we here reproduce, with a translation of the account given by La Nature.
Our readers are already aware that the object of the photophone is the transmission of sounds both musical and vocal to a distance by the agency of a beam of light of varying intensity ; and that the
first successful attempts made Professor Bell and his co-labourer, Mr. Sumner Tainter, were based upon the known property of the Mr. sumner Tainter, were based upon the known property of the
element selenium, the electric resistance of which varies with the degree of illumination to which it is exposed. Hence, given a
transmitting instrument, such as a fiexible mirror, by which the transmitting instrument, such as a fiexible mirror, by which the
vibrations of a sound could throw into vibration a beam of light, a receiver, consisting of sensitive selenium, forming part of an to translate the varying intensities of light into corresponding varying intensities of electric current, and finally into vibrations of the telephone disc audible once more as sound. This fundamental conception dates from 1878, when in lecturing before the Royal Institution, Professor Bell announced the possibility of phone circuit. The photophone, however, outgrew the particular electrical combination that suggested it; for not the least of the remarkable points in this research is the discovery that audible vibrations are set up in thin dises of almost every kind of material
by merely throwing upon them an intermittent light. With the
photophone as with the telephone, there are instruments of dif ferent degrees of perfection. The original telephone of Philip Reis could only transmit musical tones, because it worked by rapid telephone of Graham Bell was able to transmit speech, since by its essential construction it was able to send undulating currents to the Wistant receiving station.
We may in like manner classify the forms of photophone under photophones.
Up to the present time, Professor Bell informs us, the simple musical photophone; the reproduction of the tones of the voice by musical photophone; the reproduction of the tones of the voice by
its means has not yet been demonstrated in practice-at least to its satisfaction. For while it produced unmistakable musical tones by the direct action of an intermittent light, in the experiments made hitherto with articulate speech the instruments have by necessity been so near to one another that the voice of the it is extremely difficult to say whether the sounds that are heard proceed from the diaphragm, or whether they merely come through the air to the ear ; and if they come from the diaphragm, whether they are really the result of the varying light, and not mere sound the air. Professor By the disc from the speaker's voice crossing appeal to experiment on a larger scale with the receiving and trans mitting instruments at greater distances apart, and with glass windows in between to shut off all sounds.
In Fig. 1 we illustrate the simple musical photophone of Bell and Tainter. It might perhaps be described without mittent beams of light, as the siren of sounds from interproduces them from intermittent puffs of air. A beam of ight from the sun or from a powerful artificial source, such as an electric lamp, falls upon a mirror M, and is reflected through a large lens L, which concentrates the rays to a focus. Just at the -arranged in a circle. This dise can be rotated so that the light is interrupted from one to five or six hundred times per second. The intermittent beam thus produced is received by a lens $T$, or a pair of lenses upon a common support, whose function is to render the beam once more parallel, or to concentrate it upon the disc of
ebonite placed immediately behind, but not quite touching them.


FIG 6
rom the disc a tube conveys the sounds to the ear. We may remind our readers here that this apparent direct conversion of ight into sound takes place, as Professor Bell found, in dises of all kinds of substances - hard rubber, zinc, antimony, selenium, ivory, parchment, wood - and that he has ately found that discs of carbon and of thin glass, which he formerly thought exceptions to this property, do also
behave in the same way. We may, perhaps, remark without mpropriety that it is extremely improbable that the apparent conersion of light into sound any means a direct process. It is well known that luminiferous rays, when absorbed at the surface of a medium, warm that surface slightly, and must therefore proshown that this warming effect and an intermediate cooling by conduction can go on with such excessive rapidity that beams of light falling on the surface at intervals less than the hundredth of a second apart produce a discontinuous molecular action of alternate expansion and contraction, then the mysterious property of matte
revealed by these experiments is accounted for.
However this may be, the musical photophone, as represented in Fig. 1, produces very distinct sounds, of whose existence and dependence for their production on the light the listener may littly himself by cutting off the light at any moment with the of the holes in disc R, and which can be worked by a Morse key like a telegraph instrument, thus producing at will alternate sounds and silences. With this musical telephone sounds have been carried by an interrupted beam of light for a distance exceeding a night not be aptained . might not be attained.
The articulating photophone is that to which hitherto public attention has been most largely directed, and in which a selenium
receiver plays a part. Fig. 2 gives in diagram form the essential parts of this arrangement. A mirror $M$ reflects a beam of light as before through a lens, and-if desired for the purpose of experimentally cutting off the heat rays-through a cell A conaining alum water, and casts it upon the that little dise of thin glass, silvered on the front, of about the size of the dise of an ordinary telephone, and mounted in a frame, with a flexible indiarubber tube about 16 in . long leading to a mouthpiece. A second ens R interposed in the beam of light after reflection at the little
of the transmitting apparatus given in Fig. 5 enables the relative
sizes and positions of the various parts- minus the alum cell,
which is omitted-to be seen. The screw adjustments of the supWhich is onitedirect the beam of light in the desired direction.
port serve to dire me mell to explain once for all how the vibrations of the
It may be voice can affect the intensity of the reflected beam far away.
The lenses are so adjusted that when the disc B, is flat-that is, when not virrating - the beam proy cted from the atparatu
to the distant station shall be nearly foussed on the receiving impossible that the focussing can be more than approximate. Now,
matters being thus arranged, when the speaker's voice is thrown against the disc B i in is set into vibration, becomes alternately
bulged out and in, and made slightly convex or concave, the degree
of its alteration in form varying with every vibration of the voice of its alteration in form varying with every vibration of the voice.
Suppose at any instant say by a, sudden displacenent such as
takes place when the letter ""T.". is sounded -the disc becomes cakes pace when the letter in is sounded-the disc becomes
considerably oonvex, the beam of light will no longer be concen-
trated upon the receiving instrument, but will cover a much wider area. Of the whole beam, therefore, only a relatively small
portion will fall upon the reciving instrument; and is
therefore possible to conceive that, if perfectly adjusted, the Illumination should be proportional to the displacement of
the disc, and vary, therefore, with every vibration with the utmost fidelity. The receiver of the articulating photophone is shown on
the right-hand side of the diagran, .i.g. ., ketched by Professo
Bell. A mirror of parabolic curve, C C, serves to concentrate the beam, and to reflect it down upon the selonium cell S , which is
included in the the circuit of a battery P, along with a pair of tele-
phones, T and T. Here again a general view, like that tiven in
Fig. 6 , facilitates the comprehension of the principal parts of the

 and instantly transmits a larger amount of electricity, and the
observer with the telephonese hears the ray, or the succession of
them hehears, indeed, their every fuctuation in ascies of sounds
which, singe each vibration eorresponds to a vibration of the voice which, since each
of the istant spaker, reproduce the speaker's tones.
The great difitioulty to be overcome in the use of the selenium as
The a working substance arose from its very high resistance. To reduce
this to the manalsest possible quantity, and at the sane time to use
a sufficiently large surface whereon to receive the beam of light, was a sufficiently large surface whereon to receive the beam of light, was
the problem to be solved before any practical result could be arrived
at. After many preliminary trials with grating and perforated
discs of various Kinds. Professor Bell and Mr. Tainter finally settled dises of farious kinds. Professor Bell and Mr. Tainter finally settled
uppon the ingenious device to be described. A number of round
brass dises, about 2in. in diameter, and a number of mica dises of a brass discs, about 2in. in diameter, and a number or mica discs of a
diameter slightly less, were piled upon one another soa to form a
cylinder about 2tin. in length. They were clamped together from
 being united in another series. This done, the edges be
tween the brass disse were next filled with selenium, which
was rubbed in at a temperature sufficiently high to reach the melting point of selenium. After the sense selenium was
carefuly annealed to bring it into the sensitive crystalline
state. Then the cell is placed in a lathe and the superfluous
 Fig. 3 shows, in section, the construction of such a shell. Prof.
Beel has also used cells in whihe the selenium filled only the alter-
nate spaces between dises, the intermediate spaces being ocaupied
by mica dises of equal diameter with the briss by mica dises of equal diameter with the brass dises. But this
arrangement was in no way preferable, for in practice it was found
that moisture was apt to penetrate at the surface of the bare mica, that moisture was apt to penetrate at the surface of the bare mica,
spoiling the effect.
Fig. 4 is a diagram which simply
illustrates the action of the selenium receiver, and shows, flrst, the way of connecting the
alternate diss ; and, secondy, that the current from the battery
al P cannot go round the telephono e circuit without passing somewhere
through selenium from one brass disc to the next. The special advantages of the "cell" devised by Professor Bell are, that in
the first place the thickness of the eselenum that the current must
traverse is nowhere very traverse is nowhere very great ; that in the second, this photo-
electrical action of light on selenium being almost entirely a
surface action, the arrangement by which all the selenium ysed is surface action, the arrangement by which all the selenium used is
a thin surface film could hardly be improved upon; and that,
thindly, the symmetty of the eylindrical cells specially adapts
it for use in the barabolic mirror. These details will be of it for use in the barabolic mirror. These details will be of
great interest, especially to those who desire to repeat for them-
selves the experimental transmission of sound by light. The greatest distance to which articulate speech has yet boen trans.
mitted by the selenium-cell photophone is 213 meters, or 233 yards.
When sunlight is When sunlight is not available erecourse must be had to an an artificial Professor Bell, in Pavirs, the weather has been adverse, and the the
electric light has beenc alled into requisition in the atcliers of $M$.
Bregnet. The distance in these equer Brenget. The distance in these experiments between the trans-
mitting diaphramm B, and the parabolic reflecter C O of the
receiver was fifteen meters, the entire length of the room in which reeeiver was fifteen meters, the entire length of the room in which
the experiments were made. Since at this distance the spoken
words were themselves perfectly audible across the air, the telephones words were themselves perfectiy audible across the air, the telephones
conneceted with the selenium cell were placed in another apartment,
wherevoices wereheard without difficulty and withoutd doubt as to the
mean of transer means of transmission. The transmitter shown in Fig. 7 consists of a
fixed plate $P$, provided with numerous slots and of a like movable plate attached to the diaphragm 11 , mounted in a frame provided
with a mouthpiece $E$. The vibration of the movable plate varies
the intensity of the light passing through it the intensity of the light passing through it. In Fig. 8 the trans-
mitter is shown as used in combination with a collecting lens $L$, in place of the parabolic reflector. In Fig. 9 a transmitter is shown
which is based upon the effect of electricity on polarised light. A lens $L$ throws the beam of a light $F$, upon a Nicol polarising prism
$R$, and the polarised beamm traverse an analyser $R$, $A$ helix $B$ is
placed between the to placed between the two prisms and in the circuit of an ordinary
mireophone M. By spealing, the intensity of the current traversing
the helix is varied, and this causes the plane of rays to be turned more or less, and consequently more or less rays
are extinguished by the analyser R. Of the earlier and less per fect forms of the photophone little need be said. One edevice,
which in Professor Bell's hands worked very successfully over a
distance distance of eighty-six yards, consisted in letting the beam of light
pass through a double grating of parallel slits lying close to one
another, one of which was fixed, the other movable and attached to a vibrating diaphragm. When these were placed exactly one in
front of the other the light could traverse the apparatus, but as the movable grating slid more or less in front of the fixed one, more or
less of the light was cut off leaking to the diaphragm, there
fore, caused vibrations which shut or opened as it were thee ceaused ol vibrations and which shut or opened, as is it were, a door fo
of thin glass intensity. The mirror transmitter
of the of thin class silvered was, however, found superior to all otherss ;and
it ishard
use of a to see how it ound beimproved upon, unless, possibly by the use of a thin disc of silver, itself accurately surfaced and polishled
Whatever be the the future before the photophone, it assuredy
deserves to rank in estimation beside the now familiar names of the telephone and the phomograph.

THE INSTITUTION OF CIVIL ENGINEERS. AT the ordinary meeting on Tuesday, the 11th of January, Mr.
Abernethy, F.R.S.E., delivered an inaugural address as President.
He referred, in the first place to the He referred, in the first place, to the progress made within recent
years in the character and extent of our mercantile marine and the
consequent increased development of inter-communication betwee
$\left\lvert\, \begin{aligned} & \text { this country and all parts of the globe. The great impetus given to } \\ & \text { commercial enterprise by the construction of railways tended inevit }\end{aligned}\right.$ ably to the extension of ocean navigation; but there were other causes
to whichthatresult might beattributed, such asthe practical introduction of the screw-propeller in place of paddle-whels in 1836, the
successful crossing of the Atlantic by steam vessels in 1838, and the successstu crossing of the Atantic by steam vessels in 1838, and the
openingof the Suez Canal in 1869. The Suez Canal had not led to any ncrease in the size of vessels, because their dimensions were
necessarily limited by its width and depth; but there had been an extraordinary development in the number of steam as com-
pared with sailing vessels, as was evinced by the Board of Trade
feturns ; and in all probability the number returns ; and in all probability the number of sailing vessels wouli
continue proportionally to diminish, owing to improvements in continue proportionally to diminish, owing to improvements in
the marine engine, and to economy in the consumption of fuel.
Consequent upon the increase in the numbe Consequent upon the increase in the number and size of steam-
vessels it had become necessary to enlarge and materially to im-
prove the accommodation aftorded by the various harbours prove the accommodation afforded by the various harbours
throughout the kingdom. Selecting a felv prominent examples
he Pither the President contrasted their condition in $1848-50$, when he
visited them under instructions from the Admiralty, with their only vessels drawing 17 ft . could navigate the Clyde at the former period, whereas now vessels drawing 22 tht. left Glasgow three hours
before high water and reached the sea in one tide. In the interval $23,000,000$ cubic yards had been dredged from the bed of the river mprovemente , was the enlargement and regulation of of its chal rivel
The quays at Glasgow had been increased from 13 mile to 3 miles and a tidalal dock had been constructed at Stobocross having 32 a a arese
water-space, with a depth at low water of 20 ft. At Greenock the tidal dock acommomotaion had been increased from 20 to 100 acres.
At Barrow-in-Furness magnificent docks had been created, At Barrow-in-Furness magnificent docks had been created,
having a water area of 121 acres, entered by a lock 70 oft.
by 100ft., with a depth of water over the sill of 31 ft . 6 in. at high-wwater springs, or 24ft. at neaps, and capable of admitting range of docks occupied a length of 3 miles at the former period
nd of 6 miles at
 498 ft . by 100 ft ., with 30 ft . 10 in . of water over the sill at high-
water springs, or 23ft. 10in. at neaps. At Birkenhead the increase of water area, had been from 111 t to 159 acres. The largest lock
was 398 ft by 85 ft ., with a depth of 30 ft . 10 in . over the sills a high-water springs, or 23ft. 10in, at neaps. The navigation through the entrance sea channels of the river Mersey had not been
improved to a corresponding extent. Much remained to be done for increasing the depth of water over the bar, which at present Of the ports in the Bristol Channel, Swansea, in 1848, con-
isted of a mere tidal harbour in the old bed of the river Tawe sisted of a mere tidal harbour in the old bed of the river Tawe.
Now it had docks and basins of 331 acres water-space, with a maximum depth over the sills of 26 ft . at springs, or 18 ft .
Gin. 6in. at neaps, with an equal depth in the entrance echannel.
Cardiff, in 1888, had a dook of 19 acres water-area. Now the
docks docks consisted of 74 acres water-space, the largest entrance
lock being 350 ft . by 80 ft ., with a depth over the sills of 35 ft at springs, or of 2 fft. at neaps. The Penarth dock, near cardiff,
contained a water area of 18 acres, with a lock 270 ft. by 6 foft., and depth over the sill of 35tt. at springs, or 255 ft at neaps. The
various entrance connels leading to the docks had been improved and deepened by dredging to a depth corresponding to that over increased from 4 to 40 acres, the largest entrance lock being 350ft.
by 65 ft , with a depth over the sill of 35 ft at springs, and of 25 ft by 65 ft ., with a depth over the sill of 35 ft .at springs, and of 25 ft . with an entrance lock 200 ft . by 63 ft ., and a depth over the sill o
32 ft . sions at that period, having been specially adapted for admitting the "Great Western" steamer. This port, including the Avon-
nouth and Portishead docks, now comprised 104 acres of water space, with locks 454 ft . by 7oft., and 444ft. by 66ft., respectively
and 39 ft of water over their sills. The tortuous navigation t.
Pristo tha been Bristol had been avoided by the deep-water entrances leadin
direct from the anchorage of King Road to the Avonmouth and Portishead docks.
The great packet station of Southampton in 1848 had a tidal
harbour of 16 acres water space, with a depth of 18 ft . at low water spring tides. Since then a dock had been added of 10 acres area,
with an entrance 6 oft. in width and a depth of $28 f t$ In 1848 the port of London had $197 \frac{1}{2}$ acres of docks, the largest over its sill at springs, or of 20.7 ft . at neaps. At present the dock
had an area of 491 acres, the maximum sized lock being 550 ft . by Soft., with a depth of water over the sill of 30ft. at springs
or of 25 ft . at neaps. Many of the shoals had been remove from the bed of the river Thames, and improvements to
imited extent were being carried out by the Conservancy Board but it was extraordinary that while minor navigable rivers had bee deepened so as to admit of the passage of large vessels at 1 low
water, there was only an available depth of about. 15 ftt . at that period of the tide between Gravesend and Woolwion, and for stricted to 12 ft . by the Thames Tunnel.
On the east coast, at Hull, in 1850

185, the dook accommodation depth over the sill of 26 ft . 2in. at serings, or of 2 oft. 2 in. at
neaps. Now the docks
occupid an area of 81 , acres, the neaps. Now the docks occupied an area of $8 \frac{1}{1}$ acres, the larges
look being 320ft. by soft., with 28 stt. 3 in. over its sill at spring
tides, or 22 ift. 3 in. at neaps. Considerable improvements. were contemplated for dredging the chaninel leading from a nent dow dok
entrance to the dep low-water anchorage of Hull Road. Favoured entrance to the deep low-water anchorage of Hull Road. Favoured
by its geographical position, and situated on one of the finest navigable rivers in the kingdom, Hull was now the third por
in relation to the value of its exports and imports. The entrance to the eastern and western systems of docks at Hartlepool in 1848 by a breakwatected from easterly seas. Now they were sheltered
bin length ; the total area of the docks was 79 acres, the widest entrance being 60ft., with a depth over
the sill of 26 ft at springs, or of 23 ft , at neaps. At Aunderland
the
 29ft. Gin. at springs, or of 26 ftt . at neaps, the entranee channe
having been dredged to the same depth. Like the Olyde, th Tyne was a remarkable instance of the successful treatment of the navigation. The depth of water over the bar was 21ft. at prings, or 6 ft . at neaps, with varying depths up to Newcastl ,
bridge, immediately below which the depth was from 12 ft . to 17 ft . at springs, or 12 ft . to 7 ft . at neaps. All these shoals had been
removed, the indents which formerly existed on the shores had been filled up, hand a nearly continuous sine hated been formed o lolong eaeoh
bank, while upwards of $62,000,000$ tons had been dredged from the channel. The present depth, over the bar was 35 ft . at springs,
30ft. at neaps, and up to old Newcastle bridge there was a dept of 20ft. at low-water. The imme other navigable rivers in Great Britain, was due to the enlarge-
ment of its channel, which was treated as $\&$ tidal reservoir, and thus was s reated a current suafficiently powerful to sweep roway, and the
bar that originally existed when ins tidal capacity was less force of the outgoing current was proportionally weak. At Leith,
sinec 1850, the docks had been enlarged from 10\% to 53 acres, th
s.
 channels and protective works outside had been proportionatel
improved. Dundee, in 1847, had but 113 acres of dock complete
or in course of construction. It now possessed 393 acres, the largest

verted into a dook of 37 acres, having a lock of 250 ft . by 60 ft ,
with a depth over the sill of 22 ft at high -water springs. Dee had since been diverted into a new channel, to provide for future extension, and to give a more direct and increased force to the outgoing tidal current, by which the bar had been virtually
removed. About 1848 there was little or no provision on the east coast of Scotland for fishing boats, and a great loss of life and pro perratly improved, and the two principal stations, peterhead and
Frase
Fraser raserburgh, formerly dry at low water, had been considerably waters, and deepened to admit boats at all periods of the tide During 1879 these harbours afforded shelter to 1400 boats. The might be gathered from the fact that, in 1879, there were engaged in this trade 4110 boats, employing upwards of 24,000 men.
The harbours of Ireland had of late years been much improved There were now $31 \frac{1}{2}$ acres of docks and tidal basins, exclusive cimber ponds. The available depth of water throughout
channel was 22 ftt. Gin. at springs, and 21 ft . Gin. at neaps.
Dublin, by the construction of deepwat Dublin, by the construction of deep-water quays and dredging it steamers to sail at fixed hours, irrespective of the tide, and to
tccommodate the largest class of vessels. The depth over the accommodate the largest class of vessels. The depth over the
bar, which in 1849 was only 12 ft . at low-water, was now 16 ft . giving a depth of 28 ft . at high-water springs, or of 25 ftt . at
neapg. The total length of quayage was 32,00 lineal feet
While improvements had rapidy progressed in the While improvements had rapidly progressed in the commercial
harbours of this country, those in connection with continenta intercommunication, and for the protection of coasting vessels
from the effects of storms, had remained generally unchanged. At Dover there was still only a single pier, affording no adequate
shelter during on-shore gales ; the entrance to the harbour and the anchorage were entirely unprotected, and what had been termed the horrors of the Channel passage remained unmitigated.
Folkestone was likewise altogether inadequate in extent and deptl of water. The entrance to Calais harbo was, If anything, in Worse condition than in past years, and the problem of forming
deep-water harbour at Boulogne on an extensive rence foreshore, by enclosing a large space with breakwaters, remained to be solved. On the coast of Flanders, there was reason to harbour at Ostend by one capable of affording shelter at all period
haple of the tide. Although efficient harbours were wanted for the shor particularly with Germany, was carried out by the deep-water harbour at Queenborough, and the natural port of Flushing, on the opposite coast; and this service would, in all probability, be
soon supplemented by a harbour in the Medyay senss supplemented by a harbour in the Medway, opposite shee
nesresponding port on the Belgian coast. The Ne Ship Canal, from the North Sea to Amsterdam, was available for he largest class of sea-going steamers; and the works carried out
at Antwerp had more than realised the project of the first Nope leon. Much, however, remained to be done for improving the navigation between Antwerp and the sea before the dock accomand the Texel was subject to the drawback of being impeded by ice during winter. At Rotterdam, tidal docks, having an area
97 acres, had been constructed on the south side of the river, an were furnished with modern appliances for carrying on an extenquays, and in connection with the main lines to all parts of the Continent.
At the chief commercial harbours of France considerable im
provements had been effected. At Saint Nazaire, a dock of 25 ,
cres area, with an entrance of 82 th in width, acres area, with an entrance of $82 \mathrm{ft}$. . in width, and a depth of
24ft. over the sill, had been constructed, and an additional dock of $55 \frac{1}{2}$ acres area was nearly finished, opening out from the present one by a lock 426itt. by seft., with a depth of 24 ftt over the sills.
The port of Marseilles, in 1848, consisted simply of the tilal
basin termed the Vieux Port. Now great breakwater, there were four basins in addition, of an area of 376 2 acres, with 22,960 lineal feet of quays, and a depth vary-
ing from 23 fft . to 33 ftt There were also graving docks and all modern appliances for loading and discharging cargoes in connec-
tion with the railways, and Marseilles had become one of the principal harbours in Europe.
consisted of entrance harbours of 4 acres area, with 2,132 linea feet of quays, and of three basins entered by gates having a waterwere eight basins, having an area of $21 \frac{1}{2}$ acres, with a depth of The ports of Barcelona, Trieste, Odessa, and St. Petersburg were then severally dealt with; and the great impro Nissisimi ivers, by works tending to concentrate and direct the force of their grea volumes of fresh water for the removal of obstructions in the form of bars and sandbanks, were mentioned. The breakwaters in pro
gress at Table Bay and at Colombo were next noticed ; then the harbour works at Kurrachee, Bombay, and Madras; and the tidal accommodation was in general not required, in consequence of the sheltered deep-water facilities afforded by the rivers. The harbour hipment of grain by tloating elevators was of an extensive cha racter. The facilities for shipping at Boston, Philadelphia, and Baltim
increased facilities it afforded for intercourse with the anal, and the would in all probability be exceeded by the construction of a ship canal to connect the Pacific and Atlantic Oceans. For many years the question had been reduced to two proiects, termed the Nica raguan and the Panama schemes. The first of these had long been favourably entertained by eminent engineers in the United States ; but although presenting no extraordinary engineering difticulties, yet the salient objections were its length of 120 miles, the numbe
of locks required, and more particularly the defective condition oo of locks required, and more particularly the defective condtion Brito on the Pacific. The project determined upon by Count do Lesseps was the Panama route, near the existing line of railway would not be applicable in forming the Panama Canal. The Suez
Canal was carried across a nearly level desert, with a very imited rainfall, free from rivers on its route, and it connected there existed an extensive rainfall discharging into the Chagres river and its tributaries. At the ocean level the canal must be considerably below the river, and therefore provision was necnosh difficulty was that the range of tide in the Atlantic was only from 7tin. to 19 in., whereas at the roadstead of Panama the range wa
from sft. to 21 fft. ; consequently without locks there would be a ormidable tidal current in the latter d, and were proposed to bo met by the construction of reservoirs of sufficient capacity to
collect the greatest floods, and channels on each side of the canal indenvendent chambers. In conclusion, the president alluded to the floods which of late years had inundated the low-lying lands of
the midland and Fen districts of this country. Confining hi remarks to the chronic cases of the rivers Ouse, Witham, Nene tions. The remedial measures required were the improvement
the outlets, the enlargement of the river beds the formation subsidiary flood channels, the removal of obstructions, and the
construction of reservoirs to impound the flood waters, which might be used for irrigation purposes during seasons of drought.
It was announced that the Council had recently transferred
S. Allott, F. K. Berstal, J. M. Dobson, F. Garrett, A. J. Hamilton-
Smythe, B.A., T. Hewson, and E. E. Sawyer, M1.A., to the cilas of memeers and had admitted R. Anderson, F. Bluett, J. J. . Bourne,
F. W. Brickell, H. F. Crawford, J. E. Crickmay, H. A. Cutler,
T.


 elected a memement, G. N. Nbernethy stud. Inst. .O.E., D. F. God-
dard, J. H. Hanson, G. E. Janrris.
 In Associate.

## LETTERS TO THE EDITOR.

We do not hold ourselves responsible for the opinions of our

## swan's mlectric lamps.

SIR,-The following particulars of a successful application of Swan, , electric lomps. to to the lighting of of a countrul application of
probably be interesting to many of your readers. sesses novelty not ouly in the application of this mode of lighting to domestic use, but also in the derivation of the producing power
from a natural source-a neighbouring brook being turned to from a natural source-a neighbouring brook being turned to
account for that purpose. The brook in fact lights the house, and there is no consumption of any material in the process.
The generator used is one of Siemens's dynamo-electric machines
and the motor is $a$ turbine which gives off 6 -horse power. The dis tance of the turbine and generator from the house is 1500 yards. The conducting wire is of copper, and its section is that of No . 1 section is used, so that the current has to pass through 3000 yar of this wire to complete the circuit. The number of lamps in the
house is forty-five, but as I can switch off the current from roo to room, In never require to have more than thirty-seven in light at
once. For this number of lamps 6 -horse power proves to be amply sufficient, notwithstanding the great length of the conducting wire,
The library, which is a room of 33 ft . by 2oft., with recess on one side, is well lighted by eight lamps. Four of these are clustered in one globe of ground grass suspended from the
ceiling in the recess, and the remainder are placed singly and in ceiling in the recess, arts of the room, upon vases which were
globes in various parts previously used as stands for duplex kerosine lamps. These vases carrying the return current from the incandescent carbon to metallic base in connection with the main return wire. The entering current is brought by a branch wire to a small insulated
meroury cup in the centre of the base and is carried forward to meroury cup in the centre of the base, and is carried forward to
the lamp by a piece of insulated wire which passes throgh a hole in the bottom of the vase, and thence, through the interior, dips into the mercury cup when the vase is set down. Thus the removing the vase from its seat or setting it down again
The dining-room is also lighted by eight lamps, six of which are grouped together in one glass shade suspended over the centre of
the table, and the other two are used singly as bracket lamps, at each side of the room.
A picture-gallery, which is also used as a drawing-room, is
lighted by twelve overhead lamps; but when the eight lamp in the dining-room are no longer wanted the current supplying them is shunted to the gallery for lighting eight additional lamps,
making twenty in all. The gallery is agreably lighted even with the twelve lamps, and with the full illumination the pictures are seen as distinctly as in daylight
In the passages and stairs the lamps are for the most part used ance, not so bright as to pain the eye in passing, and very efficient for lighting the way
turned up, and this I boout equal to a duplex kerosine lamp well so that my 6 -horse power in supporting thirty-seven lamps give me an illuminating effect equal to 925 candles. The same power applied to the production of light ty the electric arc," instead of
by incandescence, would give vastly more light, but the arc light being only divisibbe to a small extent, could not be made nearly so light produced by incandescence is free from all the disagreeable attributes of the arc light. It is perfectly steady and noiseless. It is free from harsh glare and dark shadows. It casts no ghastly hue on the countenance, and shows everything in true colours.
Being unattended with combustion atmosphere, it differs from all other lights in having no vitiating efrect on the air of a roon
this light for domestic use
I have not yet had sufficient experience of Mr. Swan's lamps to
judge of their durability, but with the exception of a few that failed by overheating in my first trials, I have lost none since been in constant use during that time, and the test of their dura tion remains incomplete. But whatever their durability may be at present, it is almost certain to be increased by progressive
improvement in manufacture, and when they are systematicall made in large numbers the cost of renewing them will probably be
The lemps are connected with the main leading wire by branch wires, in what is called " multiple arc," so that if one fails the some advantages, but would require a much greater electro-motiv force to drivl
some difficult
of is important to the preservation of the lamps that the amoun of motive power applied should always be proportioned to the
number of lamps in light at one time. In my case I escape the necessity of varying the motive power by using a resistance coil to
represent the resistance of each section of lamps which it desirable to have the opic limps varied without affecting the work of the generator, because the resistance to the current is the same, whether it passes through
the coils or the lamps. This method is wasteful of power, but 1 car aford to waste that which costs me nothing, and is alway sumficient in quantity. If steam or gas engines were employed the
case would be different, and there might be difficulty in effecting such momentary adjustments of power as would save the lamps from disturbance
In the daytime the turbine and generator are occasionally used acting as a motor to drive a sawing machine. This it does with good effect, but I am not prepared to say how much of the original power is realised, or what should be the proportions between the generator and the motor to give the best effeet.
Cragside, Rothbury, January 17th.

the manner in which the whole patent law is to be re-modelled. tage unless we can at once succeed in all the needed reforms in the roof, because he hoped some man who left a broken slate in his new one. We would deprecate the loss of valuable time in the futile
endeavour to reconcile divergent views of the question and sugrest that such be set temporarily aside as obstacles to an immediately vour to obtain reform uno the great points where no difference of opinion exists, and give their support to any simple and reasonable
proposition such as that of Mr. Standfield which should promise proposition such as that of Mr. Standfield, which should promise
immediate relief from the present iniquitous tax. There are doubt less many alterations required in our present system, but we think
their immedi discussion would inevitably cause, is questionable to a denree practice convinces us that the period between the provisional and final specifications is of infinite value to the patentee for the per
fection of his invention, and is, if anything, too short. Protection fection of his invention, and is, if anything, too short. Protection
being ensured from the date of filing the petition and provisional specincation-according to a recent decision of Lord Cairns-much
of the might be removed by full publicity of the provisional specifications. This again, were it made the rule to refuse patents which the opponent showed to be wanting in novelty, would remove any necessity cor official examination. If all publicity were given to the latestappl exhaustive search before application. It is the duty of a conscientious patent agent to acquaint his client with the necessity for a preliminary search, and many patent agents will corroborate us in the statement that a considerable percentage of proposed appli-
cations are withdrawn by their advice upon the result of such cations are withdrawn by their advice upon the result of such
search. We fail to see where any advantage would acorue to the inventor by ofticial examination and possible refusal. We occa sionally find in our practice that meritorious inventions are refused
by the United States latter-on exceedingly arbitrary grounds. Even they who like proceed should remain wamiation, suggest that final option to would appear, then, to us to be without further practical value than The foregoing is an instance of the diversity of opinion whic
 the working of the present defective patent law, might be supposel argument, and by unanimous effort effect such reform sis is demiably wanting. We think patentees would benefit quite as much by united action among the patent agents to raise the
standard of their profession by the establishment of some standari of competence as by a
City Patent Office,

Fenchurch-street, Fell and Wilding. January 12th.

SIR, -On page 5 of your first number for this year you inquire,
"What will I and others say about the oppressed inventors, whe we read that the applications for patents for inventions during
1880 were more numerous than in any previous year 1850 were more numerous than in any previous year, having
reached 517 . In 1879 the number was 5338 , while in 1878 they a steady increase of business since the passing of the Patent Law Amendment Act in 1852 , when a very sudden and extensiv upward tendency manifested itself. In 1850 the number of patent granted reaches 523 only; in 1860 the applications were 3196 , and
in 1870 they had increased to 3405 ." in 1870 they had increased to 3405 .
Patent Law Amendment Act of 1852 learn that the effect of the the applications for patents to increase so that in 1860 they
reached the number of 3196 , of which number I were sealed. But the case is very much stronger than you put it as this enormous increase took place immediately on the passing of
the Act. In 1853 the applications. were 3045, of which 2187 were sealed or granted. Comparing this with the 253 granted in 1850
we find the Act caused an increase of 400 per cent in the first Our prosperity was then very greatly augmented by the removal of only a portion of the oppressive and special taxes on invention,
because science was allowed somewhat more freely to develop out resources. That Act cuwsed much much latent invention to be brought
out, and a considerable increns out, and a considerable increase of national wealth rapidly
followed. As the Act of 1852 proved so great a benefit to the country by removing a portion of the unwise taxes on the seeds an
germs of our trade, whly not pursue a similar course now, an remove a further portion of these still crushing taxes, still leaving th stamp duties more than sufficiently high to defray the expenses of At
our levislators moment, through not investigating this subject chief competitors. I am convinced that our engineer and other duties, be enabled to bring out many latent inventions, and tha great prosperity would rapidly follow, and that several thousands o
the lives would be saved which are now annually lost for want o efficient and cheap life-saving appliances. In another paragraph in to decrease in the growth of demand, but to greatly increased means of production;" evidently this fact is the result of patented
improvements which have made coal raising cheaper and safer, yet not by any means so cheap and safe as it might be if our inventor improvements. We see that our present stamp duties on makin are one of the greatest obstacles to our national progress, it is there possible.

Westminster, January 18th
[Will Mr. Standfield kindly name the patented inventions no winning coal? Some of the patents have no doubt expired, but this does not matter if the inventions are still used. To make the statement complete and telling, the approximate pecuniary
advantage derived from each invention ought to be given.- ED . E.]
light traction engines.
Srr,-The letter signed "Draughtsman" in your issue of the
14th inst. is one full of good sense, and treats fully and very abl 14 th inst. is one full of good sense, and treats fully and very abl
a subject which, at the present time, is occupying the attention o agricultural engineers in this and other countries. How to make
lighter traction engine?
-that is the question. The answe a lighter traction engine? -that is the question. The answer
amboried in the letter of your correspondent is full of romise Some may be found to question his statements, but none, I ven
ture to think, will be able to set them aside and unmistakeable facts, as many who are to-day using these engines can testify. Much prejucice, however, exists amongst engineers against traction engines with road gear fitted with pitch
chains in the way "Draughtsman" deseribes ; but why is this? It does seem very stupid for makers to force upon their customer
heavy heavy and clumsy engines-heavy on the roads, which they cut up
and damage, to the annoyance of owners and the highway authorities, heavy on our bridges and culverts, which in any case have
given way, causing loss of life and limb; and they are expensive in first cost, repairs, and in fuel.
We must have lighter and smaller engines, but to obtain great hauling power without excessive $\begin{aligned} & \text { weight, larger and narrower } \\ & \text { main driving-wheels are wanted. } \\ & \text { Boilers can be made smaller by }\end{aligned}$ using smaller tubes and more of them, and lighter by making
them of steel plates. We can do with 120 lb. pressure, but to use this safely it would be wise to have plates that will bear a lo little greater tensile-breaking strain than 20 tons per square inch. Th
arrangemento of chains for driving however, considerably lessen
the strains on the boiler as compared with

I hope, Sir, to see this subject well ventilated, for it is of great
importance, and those firms who can produce the lightest, best and cheapest traction engines will not only secure a good share of he trade of this country, but will stand a chance of supplying the
wants of our colonies, and possibly some would find their way to the United States, as they seem to be very backward in this department.
No doubt
chain engines made many years ane particulars ond his experience of recently, but not embodying all the improvements which his
present experience, as I gather from his letter, would suggest ; that many others, as well as the writer, would be glad to see in your valuable columns, and with your permission, an outline drawing
by "Draughtsman of a traction engine arranged on the im. January 18th.

## appointment of city engineer in cork,

$\mathrm{Sir},-\operatorname{In}$ your notice of this matter in last week's issue-influ-
enced, no doubt, by the concluding sentence of the eport-you couple my name as equal with Messrs. Lynam and
Ilynan. In an official copy of this report, with which Ihave been furnished by the Town Council, my name stands first, Messrs,
Lynam, and Moynan-equal-following. I shall feel obliged by It may be interesting to add, on the authority of a letter of the 22nd ult., accompanying the above copy of the report, that the
Local Government Board has sanctioned Mr. MoMulanns appointRensslare Harbour, Wexford, January 17th.
Ros.

## merican and fairlie engines,

SIr, -As I am aware that you desire all statements in your
columns to be as accurate as possible, I venture to correct a trifling columns to be as accurate as possible, I venture to correct a trifiling
mistake in your article of October 1st, on American and Fairlie ngines, as working on the Dunedin and Oamaru Railway, New
Zealand. You state in effect that these engines alternately take the express train from Dunedin to Oamaru-seventy-eight miles-
and back the same day; total distance 156 miles. This is not the ase. The Dunedin engines only run as far north as Palmerston,
distance of 40 miles 43 chains, returning the same day and distance of 40 miles 43 chains, returning the same day and
making a total distance of 81 miles 6 chains instead of 156 miles.
A Christchurch engine, always an American, takes on the train Christchurch engine, always an American, takes on the train
from Palmerston to Oamaru 37 miles 40 chains-and back same
lay; a third engine, also always an American, completing the re lay; a third engine, also always an American, completing the remaining long run of 152 miles thence to Christchurch.
The Dunedin Palmerston service is performed not only the engines-Class " O "-but the Fairlies unquestionably do the best
 120 Ib In all respeets they are giving excellent results. In referring to the "Consolidation" class of ooods engines, of
which there are six at work on the Dunedin section of the South
Island Trunk line, you allude to the cylinders as the coupled wheels as 4 ft . diameter. They are so, I know, in some engines working in the States, but the New Zealand "Con-
olidation "egnines have 3 ft . wheels, and cylinders 15 in . $\times 1$ 18in, The English "Mogul" engines working on the Canterbury Plains,
Vew Zealand, have 3ft. Gin. coupled wheels, and cellinders 4in. $\times 20 \mathrm{in}$.
Wellington,

Zealand, Dec. 4th, 1880

nd cylinders
C. R . M .
.

Leeds Civil and Mechanical Enginerrs' Society.-The first ordinary fortnightly meeting of this Society was held on Friday,
14th inst., at the Yorkshire College of Science, Leeds, Mr. F. Gleadon, sutu. Inst. C.E., President, in the chair, when a paper
on "Boiler Explosions", was read by Mr. T. Marsden Demetriadi.
A discussion ensued, and the meeting terminated with thanks to the author of the paper.
Snow Clearing in Milan.-The secretary of the Institution of Civil Engineers sends us the copy of a paper by Signor E. Big.
nami Sormani, of Milian, recently publisheded by the institution,
apon snow clearing in that city. The author says that the labour and cost of sinow clearing in a city are greatly affected by variations that the range of density in fresh-fallen snow is found to be as great as 11 times, a cubic yard from one snowstorm weighing as
much as 814 lb ., and from another only 71 lb ; the records are urnished of a number of observations. Other circumstances affecting the labour and cost in different parts of a eity are the
northerly or southerly aspect of the streets, the amount of traffic through them, and the distance to which the swept snow has to be
carted away. In Milan the snow carts carte away. In anals and numerous waw cartourses by which the ce thit is
natigsected and latterly also into the new sewers in the central
intersecte ; portions of the city, which are promptly flushed whenever it snows square yards total area of squares, streets, and lanes within the square yards total area of squares, streets, and fanes aithin the
city walls averaged $£ 200$ per inch depth of snow fallen, and for the
302,800 square yards outside the walls, the average cost was $£ 62$ per inch depth, equivalent in each case to about $1 \cdot 05 \mathrm{~d}$. per
cubie yard. Ordinarily the clearing of the more-frequented
streets is completed within eight or ten hours after it has stopped snowing ; and of the rest within twenty-four hours, not reckoning night. The organisation of the admirable arrangementents by which
this work is accomplished with such remarkable despatch and efficiency is ascribed by the author to his predecessor in its direction,
Signor Anibale Gafforini. The city is parcelled out into small listricts, numbering 112 for last winter, of varying extent, accordpay per inch doportth of of snow fallonk is settled. for the wherale araea of of
each separate district, acoording to its extent and the particular conditions. affecting the several streets and squares comprnsed
within it. Each district is allotted to a contractor, who usually whociates with himself six to ten partners besides the labourers
He has to find carts, horses, and carters ; the necessary implements-spades, shovels, brooms, scrapers, mattocks,
barrows, \&c.-are furnished by the city under suitable stipulations for insuring proper care in their use. A copy is given of the com-
plete form of contract now employed, comprising upwards of thirty clauses; the contracts are made annually, and the
same persons almost always apply for them again year after year. The contractors come prixicipally from the trades that
are interrupted by winter-paviours, bricklayers, and masons, and gravel quarrymen. For the direction and supervision of the work
the whole city is divided into four sections, over each of which is appointed an engineer with an assistant, who are aided in the
general arrangements by the police surveillance. Payment is made only for work effectually done. In each snow storm the depth of
snow fallen, which is the basis of pay, is ascertained by means of a number of stone posts fixed in suitable open spaces clear of shelter
from buildings, and each capped with a flat, horizontal slab of
tone. As soon as it stops snowing stone. As soon as it stops snowing, or two or three times during a
storm of several hours, the depth of snow caught on the slabs is
mencer measured by the engineer in the presence of two of the contractors
in his section. The number of men ordinarily engaged in snowclearing on $a$ winter's day is not less than 2000 , and has sometimes
risen to 3000 . The stock of implements found by the city, representing a capital of about £1600, is housed in two tores in opposite
quarters of the city. In the winter of $1874-75$ the total fall of snow amounted to 40 inin, and the whole expenditure for clearing
it within the city wals exceded $\& 440$; while in $1877-78$ the fall
wis was only 5 inin, involving an expenditure of less than $£ 1040$ for a
lightly larer area. Tables are given for the last ten winters,
lho wing the depth of snow that fell in each, the extent of area
STEEL TESTING MACHINE FOR THE BUREAU VERITAS.


FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.


PUBLISHER'S NOTIOE.

* Nert weck a Double Number of THE Enginekr will be published Containing the Index to the Fiftieth Volume. The Index vill
include a Complete Classified List of Applications for and Grants of Patents ${ }^{\text {d }}$
Number, 1 .


## TO CORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the arrier to himself, and bearing a 2 d. postage stamp, in order that
ansvers received by us may be forvarded to their destination. No
Notice will be taken of communications which do not comply with notice will be taken
these instructions.
these instructions.

* We cannot undertake to return dravings or manuscripts; we must therefore request correspondents to keep copie
** All letters intended for insertion in The Enginver, containing questions, must be accompanied by the name and
adreess of the worter, not necessarily for publication, but a a
proof of good faith. No notice whatever will be taken of proof of good faith. No
F. J. L.-Percy's "Metallurgy-Iron" weill suit your ph
A. W. (Eckenfoorde). - We have eritlen to you by post.
ganister bricks.
(To the Editor of The Fngineer.)
SiR,-Can any reader tell me what chemicals are used in the manu-
facture of best Ganister bricks, as made in Sheffield? January 19th.


## packing machinery.

SRR - Can any of your readers give me the names of manufacturers
packing machines for putting up small packets, such as are used in
 would oblige by letting me he
working order and litto ewor
Gateceheade, January 1 1th.
alloys of antimony and zinc.


## SUBSCRIPTIONS.   <br> 

If creedit occur, an extra charge of tivo shillings and sixpence per an
be made. THE ExaINERR is registered for tranasmision alroad.








ADVERTISEMENTS

 charged one shilling. The line overaqes seven voords... Hhen an anver-
tisement measures an inch or more the charge is ten shillings per inch. Alu
 regularity, but regularity camoot be guaraenteed in any such
except reedly advertisements are taken subject to this condition.



## MEETINGS NEXT WEEK.




## THE ENGINEER

JANUARY 21, 1881.

## kItchen boiler explosions.

We have had one week of severe frost, and already three fatal kitchen ooiler explosions have taken place. At At 10 o'clock on Saturday morning a boiler exploded in lighted in the usual way in the morning, and a couple of hours afterwards what is described as a tremendous killed on the spot. The kitchen was wrecked. On Sunday afternoon a similar catastrophe occurred in the house of
Major Gillies, Spencer-street, Carlisle. A private soldier,
a servant of Major Gillies, who was in the kitchen at the time, was killed instantaneously; his head being dashed against the wall and shattered. We are not rash enough to say that these are the only accidents of the kind that may be looked for before the winter is over. Such
explosions are very lamentable in their effects. If anyexplosions are very lamentable in their effects. If any-
thing of the kind takes place in a factory or other establishment where steam-power is used, it is regarded as, in a sense, an inseparable concomitant of the lives led by the
operatives ; something for the possibility of the occurrence operatives; something for the possibility of the occurrence
of which they, in a certain sense and to a certain extent, bargain whey, in a certain sense and to a certain extent, bargain. But an explosion in a private house is a very
different thing, and the shock caused to the nerves of possibly delicate women by the tremendous crashing report, the filling of the house with dust, and smoke, and steam, and possibly fire ; the ghastly sight which meets the
eye of the mistress when at last she makes her way to the kitchen, and sees an unfortunate human being, but a minute before full of health, and now a mangled corpse, blackened,
shattered, and blood-stained, cannot fail to be dangerous and shattered, and blood-stained, cannot fail to be dangerous and
fraught with evil consequences. So that the damage is fraught with evil consequences. So that the damage is
not to be reckoned up in a few words, "Kitchen range wrecked, furniture destroyed, cook killed ; estimated cost of repairs $£ 405 \mathrm{~s}$. 10 d ." All explosions are to be
denounced, avoided, deprecated, prevented ; but no explosions are more to be avoided, or looked on with greater horror, even in anticipation, than the bursting of the little vessel at the back of the kitchen fire, holding, perhaps, at
the most a cubic foot of water. We have written words of warning before now concerning the management of kitchen boilers. Mr. Fletcher, Mr. Longridge, Mr. Marten, almost, in one word, every boiler inspector in the king-
dom has spoken, and written, and spaggested, and urged caution, and the fitting of safety valves on house boilers, and so far as can be seen without doing much good. Once more
we deal with the subject, not so much in the hope that we deal with the subject, not so much in the hope that
anything will be gained, or that there will be one explosion the less, as with the intention of freeing ourselves from all responsibility and placing it on the proper
shoulders, namely, those of the ignorant, reckless builders, shoulders, namely, those of the ignorant, reckless builders,
whom it is infinitely to be regretted the law does not seem to be able to touch.
Within the last five or six years it has become the fashion with builders to fit up all the houses they build with a bath-room and hot water service, and this service is very often carried into several rooms. Houses letting rooms and a kitchen, are so fitted now. The walls of these houses are often built without any lime, the bricks being laid in burnt ballast ground in a mortar mill with water to a smooth paste. The joints are afterwards raked and
pointed outside with lime mortar, and inside the plaster is pointed outside with lime mortar, and inside the plaster is
supposed to hold the bricks together. Economy is pushed supposed to hold the bricks together. Economy is pushed
so far that no wall plates are used, the joists resting on the bricks. These houses are, however, very showily finished. Stained glass, wooden mantel-pieces, and some green paint and a little gilding, give them the Queen Anne tone
so much to be desired, and they let and sell well. Letany so much to be desired, and they let and sell well. Letany engineer walk into one of these houses while in course of constraction and examine the hot water boiler and pipes, and if he be not accustomed to such work he will learn something; if nothing else, then how much may be done with red lead and putty, when the supply is unlimited and the workman competent. When we say that the fittings are the walls of the showy of purpose and in carrying out to have said all that need be said. No precaution whatever is taken against explosion, and explosions do not occur by the score simply because as a rule such houses are left pipe from the main being frozen hard. The boiler is burned out in all probability, but there is no explosion. Another automatic safety valve exists in the shape of weak pipes or bad joints, which give way the moment the however, that in every house, whether a suburban villa or a mansion in Belgravia, fitted with hot water apparatus, unless there is an efficient safety valve on the boiler, the
servants go with their lives in their hands during sharp servants go with their lives in their hands during shar frosts.
It may be as well to explain what takes place. As On an hold from 10 to 200 or 300 gallons, according to the size of the house; 25 gallons is a very usual size in "Jerry" villas. From this run two lengths of wrought iron gas pipe lin. bore, sometimes less, which enter a smail cast
ion boiler fixed at the back or side of the kitchen fire. This boiler is usually, but not invariably, provided with a tap by which water may be drawn off for use in the e, by which whatever is drawn off below is replaced above from the principal house
tank. The pipes are so arranged that the boiler at the tank. The pipes are so arranged that the boiler at the back of the grate may be regarded as an enlargement of the rising branch of the service. When the fire is lighted, the boiler and pipes being full, circulation takes place; the ipes to the tank above and descending in the other: The tank is always full of heated water, from which a supply may be drawn. While the circulation goes on no accident can take place, because the pipes are open at the top into the tank above, and even if steam was formed in
the boiler it would blow the water out of the pipes and escape. Now the tank above, and the pipes leading mmediately into it, are often put in a very cold place. We have met with them set just under the slates, in the roof, or in a bath-room, which is really a kind of
excerscence on the house and never heated. The kitchen excrescence on the house and never heated. The kitchen
fire is allowed to burn out early in the evening, the water fire is allowed to burn out early in the evening, he watur plugs of ice form in the hot water pipes, generally high up near the open ends, the boiler remaining full. As soon
as the first plug has been formed, all circulation is stopped, as the first plug has been formed, all circulation is stopped, and the plugs rapidly increase in length. They are espe-
cially likely to form at bends. Next day the fire is lighted and the water is heated ; very probably no steam is
made, but the pressure of the heated water rapidly augments, and at last bursts the boiler. Then a portion of the heated liquid flashes into steam, expands like gun-
powder gas, and spreads death and destruction all round powder gas, and spreads death and destruction all round The way to avoid all this risk, in the simplest way, is to
take care that all the hot water pipes are kept inside the take care that all the hot water pipes are kept inside the house in such a situation that they will not freeze. But to do this properly is more than can be expected from the modern builder. We have heard of a case in which the pipes were carefully kept indoors until a certain point wa reached, by taking the pipes out through one wall and in through another. A length of about 2 ft . would be out side. If this plan was not adopted a length of about 14 ft . additional of pipes would have to be put in. We need not say what course was pursued ; and the very first year the house was occupied the water froze in the out-of-door length of pipes, which were fortunately split thereby. The split was detected, and the water drawn off, and no harm was done; and before the boiler was again filled the pipes were re-arranged. Another measure of precaution is to fit under the small tank or cistern a gas jet, which can be kept burning on cold nights, and so prevent the freez ing of the water in the tank, and the blocking up of one or both of the circulating pipes at the point where they enter the tank. Another plan is to keep the kitchen fire constantly alight, night and day, during the frost. Another is to empty the whole apparatus, a suggestion which will not commend itself to everyone, because it deprives a household of hot water just when it is most wanted. The only remaining plan to secure immunity from explosion, is to fit the boller with a safety valve. It must be clearly understood that the valve must be put on
the boiler, and not, as is sometimes done, on one of the pipes, where it co be no possible use.
Various kinds of safety valve have been suggested and applied, some of them good, some bad, some indifferent. It is by no means as easy as may appear at first sight to fit a kitchen boiler with a proper valve. There is no very suit able place for one available. It must not leak, even a drop of water ; it is sure to get covered with soot; and canno very easily be got at to be tested ; it may remain untouched for years, and of course be found useless at the last moment To get over this difficulty it has been proposed to fit kitchen boilers with fusible plugs which shall melt out the moment the pressure becomes too great; but such plugs have基en been tried as safety valves for steam boilers, and they ane always failed. It is practically impossible to make pot plugs so much alike, even if cast out of the same rep their fusing points will not vary 10 or 12 degrees, or if thing a difference of 7 lb . or 8 lb . in the pressure, more great , and such a rise in pressure if permitted would in too much used. We ment which will not cost more than a few shillings, will never give trouble in any way, and is certain in its action. Into some suitable part of the boiler let a nipple be screwed, and on to this nipple is in turn to be screwed a brazed in about 3in. of thin copper tubing 1in. end, and sto a tapped brass ring to take the nipple at one end. If the pressure rises too high the tube will burst and relieve it with no more harmful consequences than the escape of a little water and the putting out of the fire We need hardly say that it is quite possible to make such tubes by the hundred, the bursting strength of which will be the same for all within a pound or two. Similar device. will suggest themselves to our readers. Another, for example, consists in the use of a short length of thin brass tubing on the top of which rests a disc directly supporting a weight. The disc is soldered to the top of the brass tube, The the solder is turned awayso as to be a mere fllast The disc is kept down by the weight. As soon as the pressure gets too high the weight is overcome, the feeble The solder is sodder is as nothing, and the wateresctigh Again, a thin disc of metal may be employed, which wil burst when the pressure becomes too high. There is a good opening for any inventor who will work out some of builder and the a form which will commend itself to the be $e r$ and the householder. 10 please the first it and give cheap, to please the last it must be very simple no trouble, and this end canat, like a percussion cap, it will end its existence in the performance of its duty.

## the explosion of heated water

When writing about the Maidstone boiler explosion we stated that we should consider at a future time the causes of the violence of that explosion, and we now proceed to redeem that promise. Nothing has perhaps supplied more food for speculation than the terrible energy with which a boiler is rent into pieces, buildings thrown down, and men beaten out of the semblance of humanity by the shower of missiles driven in all directions. That a boiler should be rent or broken when the pressure within exceeded some known amount is just what would be anticipated; but that violence is a thing which could not be predicated, and which still put forward to explain the facts; some of them near put forward to explain the facts; some of them neas or satisf, some far removed from it; none quite conclusular physiss extends, it becomes daily more clear that there is no necessity for theorising about boiler explosions, and that given cor theorising about boiler explosions, and place, the violence of which will depend solely on certain very simple conde of which cand few words. If our readers will follow carefully what we are about to say, we venture to think that they will have no further difficulty in understanding why a boiler explo-
sion should resemble a gunpowder or dynamite explosion more or less closely.
We showed in our last impression in an article on "Hot Ice" that pressure plays a most important part in main-
taining matter in given states. The same truth is put for-
ward in all text-books of natural philosophy; but the formation of hot ice supplies the most elegant and the most forcible illustration of a great truth that bring forward, and therefore we cite it here. So powerful is the action of heat in causing the separation of the molecules of water, that when pressure is removed almost
altogether, ice instead of passing through the transition stage of water, becomes steam of, it is true, very low tension at onoe. We desire the fact should be carefully kept in
mind, that whatever the pressure to which water is mind, that whatever the pressure to which water i
subjected, a tendency exists in the water to become steam. It is impossible to reduce the pressure considerably whe water is hot without causing the conversion of a large por tion of the water into steam. It would take up more space than we think it necessary to give to this subject to con-
tinue to deal in general terms with it. Therefore we shall tinue to deal in general terms with it. Therefore we shal 328 deg. Fah. In order that water may have this temperature it must be subjected to a pressure of 100 lb . o he square inch. In an ordinary boiler this pressure
is supplied by steam formed from part of the water, out it might just as well be obtained by enclosing the water in a vessel which it completely filled, so that no steam whatever was produced, and for convenience we
hall assume that this is the case with 1 lb . of water, whose behaviour we are about to consider. The temperature o water under a pressure of $14 \cdot 7 \mathrm{lb}$. on the square inch is
212 deg . Now if the pressure on 1 lb . of water under a pressure of 100 lb . were reduced to 14.7 lb ., its tempera ture would at once fall to 212 deg., and 328 deg. - 212 leg. $=116$ deg. would become available to convert a por-
ion of the water into steam of 212 deg. temperature, and 14.7 lb . pressure. One pound of steamat 212 deg. contains 966 ble for the purpose would therefore suffice to conver ather more than one-eighth of a pound of water into hat pressures and temperatures alway consequently the moment pressure is reduced temnolecules of the water fly apart and assume the condition of steam. This much having been premised, we now come ure be reduced then the molecules of water are driven further apart, and steam is produced. At what rate can this conversion of heated water into steam take place loubt it admits of being answered if only the vibrating range of a molecule of steam, its weight, and its velocity on the reduction of pressuown, the production of stean but not quite. Although the action may be so rapid as et it is certain ery attempt to mark the time occupied before there can be any flashing into steam. The latter process is a consequence of the establishment of the given recede the other. But the reduction of pressure can i the nature of things, seldom be instantaneous. The production of steam from heated water can take place as fas conditions to which we shall refer presently-and the rate of reduction of pressure is, in practice, the factor which etermines the phe whe the find be consafety valve is eased off, steam blows away, and the pressure falls, and more and more water is boiled off by the atmosphere; but the rate of boiling away depend altogether on the rate at which steam is permitted to escape and the pressure to fall.
It may, however, under certain conditions, be possible on reduce pressure at a greater volocity than water wil
nitially flash into steam. We shall then have a very peculiar and exceptional condition set up. If we suppose thatall preseated water, then the molecules of water would be relle from each other at a certain velocity; and there can beno doubt but that this velocity would be definite. What it would ressure will flow the pressure will flow int a vacuum. At the molecules would move veryslowly, just as the speed of a cannon ball increases, from nothing to 2000ft. or so per second. If now the process of conversion of water into
steam be once fairly started, it seems to be clear that a certain momentum may be acquired, so to speak, by the pressure than would otherwise have been set up. Let us enclosed for example, that one pound of heated water is
supel which it nearly fills, and that a pipe and stop-cock will establish communication between the firs steam permitted to move into the empty vessel, only a mall reduction of pressure can take place, because the go on step by step with the withdrawal of steam, and the pressure and the temperatures will always coincide. If so as to reduce the pressure in the first vessel to practically delay imperceptible to the that afteran interval of apparen flash into steam. If now the cock were suddenly closed, then the flashing ought to stop ; but it would, there is every reason to think, do nothing of the kind ; on the contrary it would continue; pressure would rise above that due to the conditions, the water would continue to fall in tem perature, and an explosion would result, the vessel which
originally contained the heated water being shattered originally contained the heated water being shattered.
Assuming this to be true, we have at once the clue to the explanation of certain facts now looked upon as mysterious. For example, it is well known that nothing is more
common than for a boiler explosion to take place when the engine has just been started. The Maidstone catastrophe is a case in point. We have under the conditions a sudden reduction of pressure, which is followed at once by the
commencement of flashing, and the momentum of the commencement of flashing, and the momentum of the
and bursts the boiler. Again, when one boiler in a bed bursts others often go at the same time. The result is due o the breakage away of connections, the sudden reduction of pressure, and the setting up of flashing which is not
stoped by the re-establishment of pressure on the surface topped by the
of the water.
That water can be made to explode is quite certain. It
very difficult by experiment very difficult by experiment suddenly to reduce the pressure in a boiler so that the water may be much hotter than the temperature due to the pressure. But it is evident
that if we can by any means, while leaving the pressure that if we can by any means, while leaving the pressure
unaltered, superheat the water or raise its temperature unaltered, superheat the water or raise its temperature
above that proper to the pressure, we shall have established the conditions we require. In other words, whethe we reduce the pressure or raise the temperature the effect
is the same. There are two or three ways of doing what we want. Water, for example, may be heated cautiously In a perfectly clean glass test tube above the boiling point
If it be then agitated a portion of it will be converted int steam with explosive violence. Water suspended in oil for some reason not clearly understood may be heated t a very high temperature-as much, according to the late
Dr. Frost, as 500 deg. without ebullition. At last a critical point is reached, and thout ebullition. At last a critical great violence. We have before us a letter from a corre spondent who states that about two years ago he filled a glass flask to a depth of 4 in . with water, and covered the surface with an inch of oil. The flask was then heated , Not socing bbilition the soon as he ain the temperrurpe The moment the instrument touched the bottom of the flask the water exploded, shattering the flask into atoms. Again, the truth may be demonstrated in another way, which, although indirect, is not less conwater into steam be once set going under certain conditions, it will not be arrested by a considerable rise in pressure. It is essential to this end that the formaplace with great rapidity. To this end heat must be the heat is already in the water, latent, we have all we want; but in the experiment we are now about to describe it shall not be in the water beforehand. Let a quantity of wet steam, that is, steam not only saturated but abound
ing in suspended water, be contained in a flask in which mall quantity of water is kept boiling. Then let a current of highly superheated steam be turned into the flask, and the latter will almost always be shattered, obviously by the sudden augmentation of pressure due to the transfer of heat from the superheated steam to the water of saturation No doubt many other circumstances and phenomena will suggest themselves to our readers all tending to the same end, and showing that if the rapid production of steam is once set on foot it cannot be instantly arrested by the concomi tant rise in pressure, or fall in temperature. We are not aware that any serious argument can be adduced against this view of the matter, but our readers will do well to bear in with that in considering this question they have to dea about the same relation to a second that a second bears to a month; and that it is quite possible to have at one place in a boiler the atmospheric pressure and at another a few feet off as much as 100 lb . on the square inch. Of course the disparity is but momentary. Those who doubt the pos ibility of its existence will do exist at one place a pressure of 18 tons on the inch may of it at the same instant.
The cause of the violence of a boiler explosion is the liberation from the heated water in a very minute space time of a very alled steam, and the action of water in this respect is strictly liberate large volumes of nitrogen and other gases. In ery many cases nothing more is required than a pressure ess than that which caused the explosion to produce the equired effect. In other cases, however, what ought to
be merely the opening of a rent and the escape of steam without very serious consequences, becomes a violent explosion, because the local sudden removal of pressure as initiated the flashing of water into steam, and this lashing has gone on until a pressure was reached which of the matter there is nothing opposed to known truths, or anything mysterious, recondite, or inconsistent with the or anything mysterious, recondite, or inc
latest developments of molecular science.

## SNOW AND FLoods in london

The streets of the metropolis are blocked up with snow ; the question in every one's mouth is, "How are we to get rid o they have made no preparation for such a snowstorm as that o Tuesday. But the authorities are but men, and not one o smallest preparations himself. It is admitted on all sides that no such storm has occurred in England for at least thirt and it would hardly be prudent to construct hundreds of snow arts, and to purchase as many horses in anticipation of an event which may not happen again for a generation. Where snowstorms occur annually precautions can be and wisely taken against these consequences. As an example, we would refer our
readers to an account of the way in which snow is dealt with at readers to an account of the way in which snow is dealt with at
Milan, which will be found in another page. In London the Milan, which will be found in another page. In London the
great puzzle is to know what to do with many thousands of tons great puzzle is to know what to do with many thousands of tons an be carted iver to permit this expedient to th London, is too far from the into the sewers, thawing it as it goes, has been tried and with moderate success when small quantities are dealt with; but the appliances do not exist for doing this now, and any attempt in this direction would, even if successful, cost much money. If the snow was simply carted into the great main sewers, it would to a
large extent be thawed and washed away, for sewers are alwayscomparatively warm ; but there is the risk that the snow would cool down the sewers and make a block, the consequences of which
would be very serious. Some forty years ago, under circum-
stances not unlike the present, the snow from West End streets
was carted into the squares, was carted into the squares, where it formed huge masses, which dmire this practice. A great denl who live in squares do no taken to waste ground great deal of snow might, however, be rash to say what the weather may be in the immediate future, rash to sey what the weather may be in the immediate foture,
but there is some reason to think the frost will last; if it does the snow must be carted somewhere out of the streets. Although de city authorities at all events must be held to have done thei Metropolitan Board of Works in its dealings with the high tide which have flooded the district round Upper Ground-street Blackfriars. It is perfectly well known, and has been known for vould not exceed a very few thousand pounds, are absolutely hecessary to keep the river from flooding a poor neighbourhood yet the walls are not built, nor is anything done to carry out th their all by the floods of this winter, have no right of action for their all by the floods of this winter, have no right
compensation against those who are really to blame.
the metropolitan railway.
Amovast the earliest of the railway reports which are issued for
 is the past of the compury is concerned, yet in the rof mique company there is still much that is worthy of consideration It appears that in the whole of last year the Metropolitan Rail way has carried $63,759,573$ passengers-or over five million monthly on the average, the increase in the number last year being one of the largest known in any recent year. It is to be engers, or rather of the proportions of each of the three classes It is worthy of notice that out of the gross income of the company for the half-year- $£ 280,133-$ there is the large proportion tations, \&e., supplies the bulk of the remainder. Out of the ross revenue, over $£ 83,000$ may be said to be the real workin xpenses ; in addition to which there is the moderate sum of $£ 18$ or rates, taxes, and Government duty. In the past half-yea when compared with its correspondent predecessor, there was very large increase in the mileage run by passenger trains--from 594,546 to 721,865 miles-which is probably traceable in very considerable degree to the opening of the extension to Harrow in August last. It may be here fittingly said that whilst the mileage han 22 miles 17 chains so that it will be seen that it will be som ime before the completion of the system. One of the marvels of he Metropolitan is the fact that it carries so immense a numbe of passengers with so small a rolling stock. It has in the pas only 266 locomotives and carriages of different classes. In the to expend $£ 108,400$ on capital account- $£ 6000$ on lines open fo traffic, $£ 80,000$ on lines in course of construction, and the rest in new carriage shops, working stock, \&c. It is evident, then, from
hese facts that the Metropolitan is preparing still further t ccupy its own special field, and to execute some of the work that are needed to give completion to it as a system. There is still before it the completion of the last link in the Inner Circle ystem, which would enable it not only to tap large streams of ystem. The volume of traffic is now large, but it is capable of very great extension, and as some new links are added to the expected that the great passenger traffic of the Metropolitan Railvay will further grow.

## Quintuple telegraphy.

The improvements effected in extending the carrying eapacity telegraph wire have during recent years been numerous, Duplex and quadruplex messages are very common, the latter,
indeed, being customary even in long cable circuits. A modification of Elisha Gray's telephone has recently been tried between New York and Boston in order still further to increase this carrying capacity ; and it is said that for some six weeks five messages have been sucesssfuly sent and raceived each end, the
On December 2 st , 1880 , with five operators at each ate of sending and receiving was forty messages per hour, but of the average length of such messages we have no infor mation. If the current from a battery is allowed to
enter the line wire in accordance with the vibrations of tuning fork, a similarly pitched tuning fork can be
caused to vibrate at the other end of the circuit. The mprovement indicated is in using five tuning forks of
different pitch at the one end to influence the admission of current there, while the apparatus at the other end partly consists of five similar tuning forks. When one or more of the sending orks are in action the sound is reproduced at the receiving end that five musical tones are received, if need be, sounding boxes on which the forks are placed, so that it is not difficult for the operator to distinguish the sound of his special fork. For a long time public opinion was in favour of recording America and England, has shown that no loss accrues from their use, and a great increase of speed is obtained

## LITERATURE

Steam and the Steam Engine: Land, Marine, and Locomotir
THis is one volume of "Collins' Advanced Science Series," which has apparently reached several editions, and is now thoutho he author has soi pare of thisty par of grom examination papers, and also about thirty pages of ques-
tions for students to work and answer. Being generally of a practical character, comprehensive, and well selected, hese exfises and lide the learner, but they worked mnswers, form a good guide to the learer, but they are of the of seeing that his book contains the instruction which must be given to enable the learner to answer the questions That it is not an easy task to write a useful elementary treatise on the steam engine in its different forms is amply proved by the many failures that have followed the
attempt. To write a book with a well-selected series f questions in view as texts is, perhaps, therefore, the best mode of procedure that could be adopted. This, however,
compilation of a mere ready reckoner or examination cram book. This it may be admitted Mr. Evers has succeeded in doing. The matter is very well arranged, commencing with chapters dealing with steam and its properties, and with heat generally. The following chapters are descrip tive of various kinds of engines and their parts, and boilers, the descriptions including remarks on the action
of steam in engines and the performance of work. The of steam in engines and the performance of work. The
number of pages of questions occupying the end of the book form, at the same time, the instructions for performing the calculations relating to the parts elsewhere described, and it is intended that the student should study these as he proceeds with the early chapters. Altogether Mr. Evers's book is one of the best yet written as a compre-
hensive elementary or rudimentary introduction to thesteam hensive elementary or rudimentary introduction to thesteam
engine. There are, however, several points in which it engine. There are, however, several points in which it
may be and needs to be improved. The diagrams illustrative of different types of engines and their parts are unsatisfactory. They are not purely diagrams, but are something more, practical details being partly given with-
out being really illustrative of that to which they relate. out being really illustrative of that to which they relate,
They are thus puzzling, and in some cases misleading, to the young student. Thus a diagram showing a cylinder and steam chest in section and a connecting rod and crank,
is in most parts complete, or what would in theatrical is in most parts complete, or what would in theatrical
mechanics be called "practicable." But as a diagram it contains too much, while on the other hand it contains too
little as an illustration. The student, for instance, who notices that the top cylinder cover and the top end of the cylinder are properly flanged for connecting by means
he will readily think of, will be puzzled to see that the cylinder bottom is cast on the cylinder on one side and flanged on the other, that the stuffing-box is simply stuck into the cylinder cover and the piston rod apparently
fastened in the same way into the piston. The steam fastened in the same way into the piston. The steam chest cover is held in its place in some miraculous way,
and the slide valve rod, which seems to need no stuffingbox, moves the valve on one stroke by magnetic attraction or some equally immaterial connection. If we imagine the section generally to represent a toy
model in which solder is freely used it would be possible to account for what is indicated ; but Mr. Evers does not say that this is the class of engine from which his diagrams are prepared, and it is elsewhere evimade as referring to several diagrams. It is in the hands of a practical draughtsman just as easy to make these diagrams accurate and in no way misleading, as to make these half-correct things, and it is a pity to spoil
a book with bad diagrams. In several instances the author's descriptive phraseology is not so clear as it might be, as, for instance, in speaking of cushioning, he the piston acts against it as a cushion," and there is nothing very specific or satisfactory in the statement in reference to
the use of the pyrometer that Mr. Houldsmith established the fact that "a regular and continuous supply of air to the furnace increases its heating powers $33 \frac{1}{2}$ per cent." With respect to arrangement of the matter, it might be that which relates to and describes thermometers, before dwelling on the properties of steam and the action given in Centigrade units, but as Fahrenheit is also used the table of coefficients of expansion of solids should be accompanied with some indication as to which unit is
employed. Though the initiated can see that the coefficients are too large to be Fahrenheit, the student would have to refer to a text-book to know this.

## THE COMPRESSION OF AIR.

Among the letters we have recently published on the Theory of Cold Air Machines, there are some which, whether correct or not in themselves, appear likely to create a confusion as to the effect which the compression of
a gas has on its temperature. It has been laid down strongly that speed has nothing to do with the question. strongly that speed has nothing to do with the question.
Of course it is true that if we fix beforehand, by some Of course it is true cot if we under which compression takes place-say that the temperature shall be constant throughout-then those conditions cannot be varied by the speed of compression, or by anything else. But the practical problem generally is given the speed oi compression, wash will be its effect in varying the conditions of the gas, such
as temperature? We are thus introduced to the two kinds as temperature? We are thus introduced thatatic-and the of compression-the isothermal and the
question arises, is isothermal compression possible ? Speakquestion arises, is isothermal compressioat it is possible only
ing theoretically, the answer must be that
when the speed in infinitely small ; for any compression of a finite amount in a finite time will increase the intensity a finite amount in a finite time will increase the ofselves-in other words, will increase the temperature. But something approaching as closely as we please to isothermal with a cooling medium, or even without this, provided that its walls be rapid conductors of heat, and the speed suffiits walls be rapid conductors of heat, ande of compression ciently slow. For we mall intervals, and suppose the compression to take place by sudden starts at the beginning of each interval. Every such start will produce a certain sman increase in the temperature ; but we may suppose
terval just long enough to remove that increase in temperature by conduction through the cylinder. The next start will, therefore, be made at the same temperature as the first, that is, at the constant temperature of effect of thermal line, and so on throughout. The effect of
this process is shown on the diagram, where PI is the isothermal and PA the adiabatic OL and pressure PL. Here L L $l \boldsymbol{l n}, m n, n o$, \&c., represent the equal small stages into which the compression is diverone a portion of the adiabatic curve PA. From $a$ the pressure falls, with the falling temperature, to $q$ on the iso second start is represented by the line $q b$; the pressure then falls start is represented by the line $q b$; the pressure then falls
again to $r$, from which it rises again along the line $r c$, and
so on. Each of the triangles Paq, qbr, rcs, \&c., represents, of course, a certain amount of work done on the gas,
which is lost by the subsequent removal of the heat in conduction ; but it is obvious that if we make the successive starts sufficiently small, and the intervals between them long enough to ensure the return to the original temperature, we may make the sum of these triangles as
small as we please, and that the true outline $\mathrm{P} a q b r c s$ small as we please, and that the true outine P aqbrcs
will then be as near as we please to the isothermal curve P I. This may easily be carried so far-in other words,

the speed may be made so slow-that an ordinary thermometer attached to the cylinder shall show no appreciable rise. It was in this way that the question was stated in
a former article of ours on "Compressed Air Locomo-ives"-an article which was not designed to give a strictly accurate theoretical view, but to put the limiting
conditions of air compression in a plain form for practical conditions of air compression in a plain form for practica
purposes. purposes
The same diagram shows very clearly the chief point insisted upon in that article, viz, the great waste of power
occasioned by a very rapid compression of air ; for in that case the heat will have little or no time to escape by conduction, and the line of compression will therefore
approach somewhere very close to the adiabatic line P A. approach somewhere very close to the adiabatic line P A
If it be afterwards allowed to cool to the original temperature (as is generally unavoidable) the descent of the pressure will be along the vertical line A I, and the whole area P A I will then represent work expended uselessly, as
against the sum of the small triangles, $P a q, q b r$, \&c., referred to previously
There is one other question which may fairly be asked as to compression of air, and which may equally be solved by reference to the diagram above. Of course the whole of the work done upon the air in compression is not condistance heat. Part of it goes to and so impart to them that store of air is expanded; in other words, it is changed from actual energy in the piston to potential energy, or energy of position, in the air. Now it might be supposed that
the ratio between the amount of the total work done that is converted into heat, and the amount that is converted into potential energy, varies according does not seem anything compression takses in such a supposition ; but there can be no doubt that, as a matter of fact, it is not true. For recurring to the diagram, we see that whatever be the conditions of the case, each start of compression will take the form of an are or and energy curve. And the distribution of the expended energy same for any such arc, whether it be part of one con tinuous curve, such as PA, or of a serrated line, such as Paq . . and consequent fall in pressure, cannot make an difference in it. The same thing is shown perhaps more simply by the undoubted fact that a gas, at a given volume and temperature, is always found to possess the same ence in the distribution of energy, then a quantity of ga which had been compressed rapidly would contain eithe more or less potential energy than the same quantity
which had been compressed slowly; and this would show itself by areate or less pressure. But nothing of the kind has ever been observed. We are therefore justified in concluding that no variation in the distribution of energy takes place, and therefore the ratio of the potential energy stored up to the ratal of the area P I M L to th measured simply by the ratio of the area 1 A M, and is bounded by the outline, whatever it be, which represents graphically the mode in which the gas has been compressed.

DEATH OF MR. WILLIAM McNAUGHT.
This gentleman died at his residence in Manchester on the sth inst., after a long and patiently-borne illness, in his 68th year. His body was removed to Glasgow, where a large party met in the Queen's Hotel, on the 13th inat, to acocompany hit remins to the family burying place at Sighthilil Cemetery amongst the party was Sir Peter Coats, of Paiiley, who had encouraged Mr. McNaught throughout his whole career to perseverance and progress. The funeral ceremonies were conducted by the Rev. John Orr, of the Tron Parish Church, Gl
formerly of Liverpool, and an old friend of the deceased Mr. William McNaught was born in Paisley on the 27 th May, 1813. His parents removed into Glasgow in 1820, where he received a good education. Being desirous of following
out the calling of an engineer, which was also the out the calling of an engineer, which was also the
profession of his father, he was duly apprenticed to
the late Mr. Robert Napier, of the Vulcan Works, Wash-ington-street, Glasgow, ere he had quite completed his
fourteenth year, working diligently at his trade by day, and fourteenth year, working diligently at his trade by day, and the evenings. He had acquired such a knowledge of his business, that at the age of nineteen, on the termien
apprenticeship, he was offered the charge of the Fort-Gler
Mills on the Hooghly, which offer he at once accepted and Mills on the Hooghly, which offer he at once accepted and
immediately set out on his way to India. His health, however,
becoming affected by the climate, he was obliged to return to his Mr. John McNaught, had invented the revolving cylinder as an Mr. John MoNaught, had invented the revoving cylinder as an
attachment to the steam engine indicator, for which he had received the silver medal of the Society of Arts for Scot-
land in the year 1830, and had been to manfuntere land in the year 18ne, and had
these indicators in connection with his business of a consulting engineer. The McNaught indicator was a very great improvement over what had been hitherto used for the same purpose. It will be remembered that the first instrument known as Watt's
indicator did not describe a diagram of the action of the steam indicator did not describe a diagram of the action of the steam in the cylinder ; it had, however, the miniature cylinder connected
to the main cylinder, and the small piston with spiral spring to the main cylinder, and the small piston with spiral spring
attatched. An index finger was fixed to the top of the piston attatched. An index finger was fixed to the top of the piston
rod of the indicator which pointed to a scale marked off on a frame contiguous to the instrument, the variations taking place by substituting a lead pencil for the index finger and causing the frame with a card fixed to it, to move simultaneously with the main piston, the return stroke being effected by means of a back balanced weight attached to the other end of the frame. By this means an exact picture was drawn on the card of the
performance of the steam in the cylinder, but Mr. John McNaught's invention of the revolving cylinder and other improvements simplified and extended the use of the indicator
so as to make it as useful to the engineering profession as the so as to make it as useful to the engineering profession as the
stethescope is to the medical profession. Mr. William McNaught stethescope is to the medical profession. Mr. in Robertson-street,
joined his father in 1838 in this business in joined his father in carried on to this day

Glasgow at this time was extensively engaged in the cotton manufacture, the general type of engive employed being the
beam single cylinder condensing class, working with a boiler pressure seldom exceeding 7 lb , per square inch. Additions consantly being made to the number of spindles and looms, demanded more power, and in their efforts to attain that, serious breakdowns were the inevitable result.
Mr. Wm. McNaught being consulted by the manufacturers on the subject, gave the matter his closest attention, which resulted in his application of an auxiliary cylinder situated midway between the crank shaft and the main centre. This arrangement he patented in December, 1845, and its first application to an this present day. This change at the same time converted the ngine into one of the compound principle, and was a safer engine into one of the compound principle, and was a safer exerting a very severe pressure at the main centre bearings, which Mr. MeNaught's arrangement rendered almost nominal. The saving of fuel resulting from this method of compounding, and the other advantages it possessed, brought it speedily into favour, Manchester his Lancashire orders being so numerous and the eld being much Lancashire orders licition of his improvements. There he continued to reside up till his death
He was also one of theoriginal promoters of the Boiler Insurance nd Steam Power Company, Limited, and was on the board of directors since 1859 , the year or its forman time of his decease. The insurance of steam engines, which was carried out for some time by this company, and which it has recently again put in proved himself the worthy son of a worthy sire, and both father and son have left their names honourably inscribed on the roll better than they found it
He leaves a widow and grown-up family to mourn his loss.

The Poetry of the Locomotive.-A correspondent sends us apropos of our notice of Mr. Reynolds Ange-dring a tombstone in Bromsgrove churchyard, to the memory of Thomas Scaife, a driver who was killed by the explosion of his engine :-

My engine now is cold and still No water does my boiler fill;
Iy coke affords it's flame no My coke affords its la me of oer.
My wheels deny their noted speed No more my guiding hands they n It's shrill and thrilling sounds are gone My flanges all refuse to guide. My clacks also, though once so strong, Refuse to aid the busy throng ; My steam is all condensed in death, Life's railways o'er, each station's past,"
In death I'm stopped and rest at last."
This inscription is also to be found at Whickham, near Gateshead, where it commemorates a driver who met his death during the
execution of his duty. It is stated in both cases that the lines were composed by "an unknown friend." Some very good verses by the late Professor Rankine, Deene Engine-ariver to his Engine,
appeared in Blackwood, for December, 1862, and were re-
printed in the Builder of the 27th of that month. They have a stirring refrain of this sort :-
"Dash along, crash along,
Sixty miles an hour."
But after all, perhaps the best thing of the sort was Punch's inscription on an old locomotive :-

Collisions sore, long time I bore,
Signals was in vain Signals was in vain, my biler busted,
Grown old and rusted, my
And smashed th' excursion train."
Steam Boiler Explosions in Germany.- Notwithstanding additional precautions which have been taken in recent years, the 1877 there were twenty explosions, killing twenty-one persons and injuring thirty-seven others, fourteen of the latter being seriously mutilated. In 1878 there were eighteen explosions, causing ten deaths and injuring twenty-two persons, five very seriously. In
1879 , the last year for which the statistics have yet been made up, 1879, the last year for which the statistics have yet been made up,
there were eighteen explosions, in which thirty-six persons lost their lives
mutilated. Fatal Boiler Explosions.-At Wheal Eliza Mine, St. Austell,
Cornwall, on Saturday, a boiler attached to the pumping engine exploded, and John Peters, the engineman, received such injuries that he died on Sunday. On Saturday a boy aged two years was
killed at Southport by a boiler explosion, and on Sunday, at the killed at Southport by a boiler explosion, and on Sunday, at the same place, a cook received such rearrul injuries from a si evening there was a most disastrous explosion of a Lancashire boiler in a
woollen factory between Heckmondwicke and Batley, the property woilen factory between Heckmondwicke and Batley, the property collected in a tentering house adjoining the boiler house for the comfort of the warmth there, and while they were there the explo-
sion took place, completely destroying the boiler house and
tentering house, killing eleven people and most severely wounding
sixteen others, many being girls and women.

BOYLE'S VENTILATING GAS FIXTURES. The idea of using pipes to draw off the products of combustion nd heat from gas is not new, but when single pipes are used for the purpose they act to some extent as heaters; more especially when applied to billiard rooms, owing to the amount of piping used.
Messrs. Boyle and Son, of Glasgow and London, overcome this Messrs. Boyle and Son, of Glasgow and London, overcome this
difficulty by using double pipes one within the other, with a nondifficulty by using double pipes one within the other, with a non-
conducting material packed in the space between the pipes; this

arrangement not only effectually prevents radiation, but also pipe is so much hotter than the air passing up. There is, however provision made to receive and dispose of any condensation which may ensue. Fig. 1 shows a section of a hall
pendant. A A the gas, supply pipe; B1 lin. ventilating pipe

for drawing off the heat and products of combustion; outer pipe; E gutter on bottom of cone above globe to receive $1 \frac{1}{2}$ in condensed vapour which may be formed in the pipes. There is no

possibility of this gutter ever becoming full and causing an over-
flow, as the strong and continuous rush of air up the ventilating flow, as the strong and continuous rush of air up the ventilating pipe created by the air pump ventilator on the top will cause it
to evaporate and carry it off. Fig. 2 shows the external appear-

ance of the pendant. Fig. 3 shows the application of the principle in an ornamental form to gaseliers. In this F is an inlet at the bottom of the globe to support combustion; $G$ foul air chamber above ventilating centre flower; H ventilating pipe
room. This pipe is led between the joists to the wall and continued up to the roof, where it is connected with an air pump ventilator which creates a powerful upward current and effectually arrangement over the lights of a billiard table. This the inventors consider of much importance, as it is in billiard rooms where this means of carrying off the burnt air is most required, and would be found most useful. The ventilating pipe B is bent towards and into the mouth of the extracting shaft, so that it acts like a hot blast, and materially assists the ventilation, double casing with non-conducting packing to prevent any chance of fire occurring through the ventilating pipe
getting over-heated. Fig. 5 illustrates a bracket light, showing getting over-heated. Fig. 5 illustrates a bracket light, showing ventilating pipe led up inside wall to main ventilating shaft. It is, perhaps, impossible to get rid of the foul air and products of combustion of gas in an easy and very cheap way, but it is
very necessary they should be removed, and Messrs. Boyle accomplish it in an ingenious manner.

THORP AND TASKER'S PATENT EQUILIBRIUM GAS GOVERNOR.
THE object of this invention is to ensure the most economical use of gas, both as regards light and quantity consumed, and to prevent any flaring however the pressure in the mains may vary. valves, A and B, on a spindle C, and that the gas on passing the

lower valve, A, is moving in an upward direction, while that passing the upper valve, B , in a downward direction. It will also be seen that the gas passages in the footstep are oblique, the gas impinges on the disc, causing it to rotate, thereby keeping the dise, D , on which the regulation depends, in equilibrium, and
delicately sensitive to any increase or decrease of pressure, and so delicately sensitive to any increase or decrease of pressure, and so
opening or closing the valves as required. The sole maker and opening or closing the valves as required. The sole maker
licensee is Mr. Thos. G. Marsh, Bank Meter Works, Oldham.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our own Correspondent,)
To-DAY-Thursday-in Birmingham, and yesterday in Wolverhampton, ironmasters were busy comparing notes upon the business
outcome of the quarterly meetings last week. It cannot be reported that the result was especially gratifying. The negotiations opened had not in the majority of instances a buying ring. Merchants and consumers were all desirous to secure a position of advantage in the event of the market strengthening further on in
the year, but few only were ready to give out specifications, either the year, but few only were ready to give out specinications, eithes
at once or with guaranteed regularity as the quarter advances. Makers were therefore reluctant to quote, and the negotiations since the meetings have proved to be scarcely more substantial Indeed, it was the pronounced conviction of leading firms, as well
in the raw as in the rolled iron trade, that the first week of few quarters has, in their experience, resulted in less satisfactory orders than the week which ends with the close of 'Change to-day. ham alike, advances towards buyers were made by the maiority of sellers with less shyness than had been noticeable in the last few weeks. In most cases in which a specification could be distributed or permission to deliver given, purchases could have been made a
trifle more in buyers' favour than would have been possible last week. At the same time there were instances in which for small lots of certain classes of pigs needed for mixtures, more money
would have been given for iron that could be delivered immediately. This latter state of things was due to the severe winterly weather having impeded, and in some localities wholly closed navigation upon the canals, while the drifted snow of Tuesday and yesterday has made it difficult also to continue the use of some of
the railway sidings. The activity at the forges and at the pits has from these causes been lessened this week. Finished ironworks have been partly stopped for want of coal, and pits
unable to send away the much-needed mineral have been put to unable to send away the much-needed mineral have been put to short work.
Accumulating stocks of pigs were indicated by the abandonment
here and there to-day, when buying for consumption seemed likely, here and there to-day, when buying for consumption seemed likely,
of the slight increase which some local smelters were asking last week. It transpired that in only rare instances would the output, in any case, be going into consumption, even if the canals were
open; while the frost has made smelters' position somewhat worse. Few proprietors of mills and forges, or the owners of foundries, would yesterday look at such quotations as 42s. 6d. for pigs of should have had no difficulty in buying at 40s., were seeking to satisfy their requirements at a figure within that price, which left
very little margin in makers' favour, compared with the business very little margin in makers' favour, compared with the business
doing when "cinder" iron was not difficult to buy at 37 s . 6d. per
ton. But nothing under 40 s , would be taken when delivery was
All-mine iron was quoted up to $£ 37 \mathrm{~s}$ s. 6 d . for hot blast, but only one or two firms asked more than $£ 35 \mathrm{~s}$. That figure was not,
however, quoted with the confidence shown last week, and there however, quoted with the confidence shown last week, and there
were firms who would have readily accepted $£ 32 \mathrm{~s} .6 \mathrm{~d}$,, and a few others $£ 3$ for present delivery. Cold-blast iron was in less supply
than for several weeks past. A quality produced in the East than for several weeks past. A quality produced in the East
Worcestershire district specially intended to take a deep chill, that had accumulated in stock through the lessened deemand of the chilled roll makers, has just been in demand on Government account
for the casting of chilled projectiles. The stock has been cleared for the casting of chilled projectiles. The stock has been cleared
off, and the current output is for a time pledged. Blaenavon cold-
blast iron was strong at a rise of 10 , confidently asked for that description, which is still in request for use in German arsenal work as well as for high-class machine turning bars at home. Hematite iron was not to be had under the terms
implied in the open market quotation of $£ 315 \mathrm{~s}$, for Barrow grey
forge minimum quality. This was a rise of 2 s .6 d . Agents received
instructions on Saturday last to stop all at any lower rates. These nerotiotions opened on negotiations £3 12s. 6d. at the quarterly meeting last Thursday, which it had been expected would be closed to-day, fell through. The smelters are aware that at that figure no business can be done in this district, yet they decline to give way or to encourage the expectation of buyers that less money will soon be taken. They aver that such is their experience in the steel branch, that buyers must look for steady ad-
vances rather than reductions. And it is notable that compared with the quotations of a twelvemonth ago the figures I have cited are a reduction of from $£ 25 \mathrm{~s}$, to $£ 27 \mathrm{~s} .6 \mathrm{~d}$., since at the earlier date no less than $£ 6$ a ton was asked for the same quality of raw iron melted from red ore. But there is no record of business here at shaken a figure. The little business dhe firmness of vendors has not been the continued refusal of the consumers of forge sorts to buy at vendors' terms. Blaina hematites also were $£ 3$ 15s.; Tredegar sorts were to be bought at $£ 312 \mathrm{~s}$. 6d. easy. Yet this last quotation did not secure business.
Round Oak bars were firm to-day, as yesterday, at the Earl's circular prices of $£ 82 \mathrm{~s}$. 6d. for common qualities. An encouraging dor smithy bars for export to the Australias or artillery plates, requirements of the West of England markets at home: but much more of this iron might be rolled if the demand called for it. rapidly increasing in demand, though the firms report a better business doing this week than previously this year. Certain firms of this order are once more humouring the market by taking orders for unbranded iron at prices appre-
ciably under their marked bar quotations. Bars of $£ 5$ 15s. and upwards were quite as easy to buy as at any time these three months.
Small rounds were plentifully offered by two or three small firms, who accepted prices which firms of longer standing promptly
 to-day at from were down to $£ 517 \mathrm{~s} .6 \mathrm{~d}$ and $£_{5} 15 \mathrm{~s}$. The plate trade was dull in Birmingham. Firms who had booked orders on account of bridge and roofing requirements were some of them complaining that specifications were being withheld because
of the difficulty of continuing work in the erection yards during of the difficulty of continuing work in the erection yards during
the inclement weather. Tank plates were in larger output, some to be used black and to be galvanised upon the completion of the rivetting, and some to be worked up in a galvanised state. Ungalvanised they might have been bought at from $£ 8$ down to £7 10s. per ton. Consequent upon the quarterly meeting business a trifle more is this week being done in boiler plates.
Sheets varied in price according to the state of makers' order
books. Firms who are better off for work now than last week books. Firms who are better of for work now than last week asked to-day a further 5 s . per ton, making singles $£ 715 \mathrm{~s}$., doubles
$£ 815 \mathrm{~s}$., and latens $£ 105 \mathrm{~s}$. Consumers would not, however, give the money. Those consumers who were galvanisers made known that they were selling galvanised corrugated roofing sheets of 24 w.g., some of them at as low as $£ 13$ to $£ 1310$ s. for minimum qualities, delivered in Liverpool. Sheets for tray stamping were
from £12 for medium, up to $£ 1210$ s. for best qualities. from $£ 12$ for medium, up to $£ 1210$ s. for best qualities.
the Welsh houses are delivering to Liverpool merchants at which firms hereabouts but little chance of making a profit on any but best qualities.
Pottery
Pottery mine or calcined ore from North Staffordshire is in larger demand this week, and it is worth 6 d . a ton more at the the steadily advancing rates of the hematite ores. Coke sold better to-day, for the blast furnaces
to consume coke almost exclusively, through the suspension in the delivery of coal by canal. Most qualities showed a tendency to rise alike yesterday and to-day.
Coal was obtainable at from 6s. 6d. for Cannock forge to 7s. for
Tipton forge qualities; but an order for 1000 tons would have been Tipton forge qualities; but an order for 1000 tons would have been
taken at 6s. for Cannock sorts. Activity in the household branches in particular is increased by the colliers' strike in West Lancashire. Furnace coal was offered to-day at from 8 s . 6d. to 9 s . per ton.
The ironmasters in this district have now completed the sche The ironmasters in this district have now completed the scheme, which they will submit to the ironworkers in lieu of the Employers
Liability Act. It is proposed to embrace alike the manufactured and the raw iron trade. An Insurance Fund is to be established as a separate branch of the Mill and Forge Wages Board, and it is to be under a special board of management. There are to be two
classes of contributions-first, ironworkers, whose wagesareregulated classes of contributions-first, ironworkers, whose wages are regulated
by the sliding scale, are to pay one penny per month as contribuance ; and second. Board, in addition to sliding scale are to pay only the premium for insurance. It is proposed to insure against death from accident, or to provide a weekly allowance in cases of disablement, and to find medical attendance. The scale of payments, it is proposed, shall be left to the Comscheme that both masters and men shall pay part of the premiums, and that the employers should pay as their contributions to the Wages Board a sum equal to that paid by the operatives. A representative meeting of the ironworkers is to be held to consider the scheme.
At a mass meeting of ironworkers held at West Bromwich early
this week to consider the wases this week to consider the wages question, the men were advised by
the operative secretary to the Wages Board to do nothing to disturb the present amicable arrangements existing between themselves and their masters. At the same time Mr. Capper contended that the men were not bound to have their wages regulated upon the basis of a single class of iron, as was now the case. The men decided to continue working under the sliding scale upon the
understanding that at the end of March an effort should be made to obtain a reconstruction of the basis of the cale
The operative chainmakers in the Cradley Heath
surroundA meeting of brass-workers, to protest against "the continued reductions in prices and wages attempted by Messrs. Smith and Chamberlain, Birmingham, was held on Tuesday. It was stated
that female labour had been introduced into the factory, and that the process of manufacturing high-pressure water taps which Messrs. Smith and Chamberlain adopted meant a reduction of 30 per cent. upon the lowest prices paid in the trade. A price-list for making hinges had also been agreed upon by the trade, but Messrs. Smith and "Chamberlain had-so the speakers urged-been
underselling the "list." It was decided to instruct all brassunderselling the "list." It was decided to instruct all brassworkers and a resolution protesting against the reductions was unanimously passed.
The operative casters in the employ of Messrs. T. and C. Clarke and Co., of the Shakespeare Foundry, Wolverhampton, are upon strike against a proposal of the masters to increase, at a given
point, the ratio of reduction from their pay hitherto made on point, the ratio of reduction from their pay hitherto made on
account of spoilt castings. It is not likely that the men will remain out long.
An order for
has just been 1000 revolvers for the use of the Irish constabulary everal thousand to Ireland within the past few months. Prices are said to have revolver has risen from two or three shillings to 7 s .6 d . and 10 s . It is stated that an order for 450 converted Sniders has just been declined by a Birmingham house.
The chief accident during the
The chief accident during the gale on Tuesday calling for notice
here was one at Dudley, where a chimney 136ft. high, at the iron here was one at Dudley, where a chimney 136ft. high, at the iron
founding works of Messrs. Harper, of Wadham's Pool, Hallstreet, was blown down. The engine-house, cistern, and shopping,
were completely wrecked, and damage estimated at between $£ 1500$ were completely wrecked, and damage estim
and $£ 1800$ was done. No one was injured.

## NOTES FROM LANCASHIRE.

## (From our own Correspondent.)

Munchester.-The strike in the Lancashire coal trade seems now to be drawing towards a close. In the Manchester district the men
are returning to work, and since Wednesday the collieries owned by the principal firms have again been getting into operation. The
pits, of course, have been opened under the Employers' Liability cot, but with regard to the question of wages the advance of about
en per cent. asked for by the men is being held in abeyance until $i t$ is seen what action is taken in the West Lancashire districts, and also whether the Manchester colliery proprietors can maintain an
advance in prices, the masters pointing out to the men that advance in prices, the masters pointing out to the men that in Decem-
ber last they had granted an advance of wages equal to about ten per cent. which had not yet been followed in other districts
with which they had to compete, whilst the prices they were now obtaining practically only placed them in the same position in obtaining practicaly only placed them in the same position in
which they stood previous to the last reduction in wages. In the
Ashton and Oldham districts the miners have also returned to Dshton and Oldham districts the miners have also returned to
work, but here the masters have conceded the advance in wages
asked for by the men, and a similar course has been adopted in the sked for by the men, and a similar course has been adopted in the
Skelmersdale district where the pitt got to work again at the close of last week. In the important has resolved itself purely into a struggle for an advance of wages, the colliery proprietors having
fiven way on the question of the adoption of the Employers jiven way on the question of the adoption of the erimarily has
Liability Act. With regard to this question, which pres athe
been the cause of the almost general stoppage of work at the pits throughout the whole of Lancashire, I may mention that he colliery proprietors distinctly disclaim any intention
af bringing pressure to bear upon the miners in order
one
compel them to contract out of the Act. They urge that
The compel them to contract out of the Act. They urge that
he proposal for the adoption of a system of mutual insurance
and manated the the arrangements for carrying out this proposal were nen at many of the collieries. Although the masters still think the miners would receive more substantial benefits from the system of mutual insurance than through the precarious remedies provided
yy the Act, now that the men, acting under the advice of the provisions of the Employers' Liability Act, the colliery proprietor have readily consented to work their pits under these conditions. The employers, however, who have previously contributed liberally
to the funds of the relief societies, and had offered to still further increase their contributions, will now have to reconsider their
position with regard to these societies which have hitherto proved ence on a sound basis is more than doubfful without the pecuniarassistance of the employers.
ut through Lextensive auld acter as that which has been carried free from some exhibitions of violence. Intimidation has been vork, and one or two collieries have been attacked by the men on strike to prevent the filling up out of stocks. But although the
general cessation of the output of coal throughout Lancashire ha naturally affected seriously, so far as the extra cost and increased
difficulty of obtaining supplies are concerned, the important manu-facturing industries of the district, and in some cases mill emarkable how little actual scarcity of coal has been experienced.
The strike indeed has demonstrated the important fact that the trade throughout the country has not yet developed into a general
state of activity, but that there are still in the neighbouring coalI Lancashire consumers almost independently of the eurement output of the Lancashire collieries. The temptation of a tempo
rary advance in prices, which consumers here have been willing to pay to secure supplies for their present requirements, has drawn
large quantities of coal into the district from Yorkshire, Derbyshrike, wotthinghamsinire, and doubt, leave heavy consignments on the hands of course scarcely quotable, as they have varied according to circumstances,
but in many cases the advances asked, coupled with the extra cost of delivery, have necessitated asked, coupled with the extra cos sapplies.
the trade of the only a very limited amount of business doing in are steady, any indication of weakness being chiefly in outside brands, where advanced rates have recently been asked. Buyers,
however, who are mostly well covered for the next two or three months, do not show any anxiety to give out further orders, and basis of present prices, which makers do not care to entertain. Lancashire makers of pig iron have during the week booked
Later fair number of orders over the next three or four months at late
rates, which for delivery into the Manchester distriet remain at 46 s .6 d . for No. 4 forge, and 47 s . 6d. for No. 3 foundry less $2 \frac{1}{2}$ pe quoted for Lincolnshire and Derbyshire brands coming into the district, local makers are very firm.
The finished iron trade generally is only dull, and local manu facturers are still only very moderately employed. In heavy rail
for shipment, and in hoops and sheets, a business has, however been done, but no material advance upon late rates has bee ${ }_{C 6}$ peble. Bars do not meet with much inquiry, and the Mai chester district, a few transactions are still reported at slightl
Cotton machinists are reported to be not quite so busy as they
were, but engineers and tool makers seem to be still fairly
employed. The chief event of importance in the North Lancashire
Barrow.-The district this week is the threatened stoppage of supplies of coal from
the Wigan district, and the consequent advance in prices to the extent of from 1 s , to 2 s . per ton delivered. The activity of the iron and steel works throughout the district is maintained, and
makers, while busily employed in the production of delivery engagements to home and foreign consumers, are in dainly receipt of orders and enquiries from all parts of the world Hematite pig iron is in request, more especially for the purpose of conver-
sion into Bessemer and other kinds of steel. The steel trade
Ste itself is, perhaps, in a more active position thanises to be a
known to be for some time, and this year promises much more active period than any of its predecessors. Engneers are well supplied with orders, and bysily employed on con-
department, and shipbuilders are very
tracts which will guarantee a continuance of activity for many tracts which will guarantee a continuance of act
months to come. Indeed, for two years there is reason to believe there will be plenty of work in shipbuilding. Finished iron is in in the direction of an improvement in prices.

## THE SHEFFIELD DISTRICT

There has been a brisk demand for coal from the whole of South this, of course, will not bo a trade of any prolonged duration. Eight train-loads-over 2000 tons to a train phave heen sent of
each day since the strike commenced, and the result is that heavier each day since the strike commenced, and the result is that heavier
orders are placed wwith the local coalowners than they see their way
to execute to execute. The strike which was threatened in the South York-
shire district has not quite collapsed, as the report went
the round of the papers the other day. The men do not
seem very enthusiastic over the matter; but the Miners' Associa
tion at Barnsley seem reluctant to let the affair drop. Fresh reso lutions have been passed calling upon those miners who have not given notice to do so at once. I do not anticipate, however, that there will be any extensive strike in this district. The miners hav
not forgotten the suffering they endured on the last occasion, an they know their union is not wealthy enough to maintain them if they go out. The coalowners state most positively that they will declare that the price of coal will not permit of any increase in wages, and they add further that the twenty-eight days' notice In ayddition to the the orders for railway material noted last week,
In and and ter and find that the Caledonian Railway Company has ordered 1000
wagons from Mr. S. J. Claye, of Barrow-in-Furness, and another 500 wagons are being tendered for on account of the same company The Glasgow and South-Western Railway have ordered 300 pairs of axles and wheels from Messrs. Craven Brothers, Darnall Works,
Darnall, Sheffield, and Messrs. Baker and Burnett, Conisborough. The Lancashire and Yorkshire Railway have placed an order for Company, and have invited tenders for 1500 wheel and Axlo wagons are at present in course of construction for the North
British Railway by local and other builders. Heavy traffics must At this season of the year the agricultural machine and impleAent makers give out their contracts for the year, and the greater a particularly brisk demand for boiler plates on this account.
I have to note an important change in the building of shis. An order has been received by the Atlas and Cyclops Works for two-inch composite deck plates for H.M.S. Collingwood. Up to
this order the deck or skin plates have been made of iron or steel, te plates for apply the same principle to decks as to the sides of war-ships. In
blique firing it has been found that shot will almost glance omposite plate, while it would enter or crack an ordinary plate of ron, and maybe of steel. This information about the "new
departure" of the Admialty in the adoption of composite plates comes to
The severe frost of the last fortnight has proved a good thing for
skate makers. Three capital seasons- $1877-8,1879-80,1880-81-$ kate makers. Three capital seasons- $1877-8,1879-80,1880-81-$ lave enabled the manufacturers to make up for adverse years when
frost was rare, and did not last long enough to " move" the accutraordinary, and it has not been confined to Englishmade skates, but to the American and other inventions. A meeting of the shareholders in the Sheepbridge Coal and Iron
Company, Limited, was held here on Monday. The resolutions
 and D. Pochin, of Conway who presided, stated that the company
Has formed in 1864, with a capital of $£ 500,00$. The works at Sheepbridge then consisted of four blast furnaces, two acres of
coal-nearly the whole of which was sub-let to tenants-some ronstone mines in different districts, and also a foundry.
At that time their furnaces were tons of pig iron per week each, or 800 tons per week as
the maximum production. The coal that could then be drawn from the Sheepbridge pits did not exceed 200 tons a-day.
They had now seven blast furnaces, producing very nearly 1500 tons of iron per week, and there was anthe furnace tion they have now a forge for producing wrought iron, brick works, coke ovens, and other additions which had cost the company
f232,000. The chairman further $£ 232,000$. The chairman further explained that the new capital
was necessary for the vigorous working of the new ironstone field and collieries they had acquired. At Newstead they prop instead
double the get of coal, at Langwith to get 1000 tons a day of 400 , and at Glapwell they proposed to spend $£ 50,000$ to $£ 60,000$.
With With the remainder they proposed to pay off, as far as they could,
the debentures of the company. The meeting was a very unanimous one, and the proposals of the directors appeared to be
generally satisfactory to the shareholders. With a return of good generally satisfactory to the shareholders. . Whth a return of good
times there is no reason why Sheepbridge should not be as profitable a concern as it was a few years ago.
At the Canal Steel Casting Works, Blast Lane, since October last, Messrs. Hansell and Co. have effected considerable alterations,
and erected several improved steel furnaces and foundries for the nanufacture solely of genuine crucible cast steel castings for machinery and mining purposes. For these the firm claim special excel
lence for soundness with tougness used for this trade for some time back, but are now entirely devoted
to their "special" steel casting business. to their "special" steel casting business.

## THE NORTH OF ENGLAND.

THE attendance at Middlesbrough iron market was, on Tuesday, quite up to the average, but the amount of business actually done
was very small indeed. The severity of the weather has been was very smal in the way of stopping consumption and distribu
telling a tale, in the worth of Europe sea tion. Owing to the closing, by ice, of the North of Europe sea
ports, and of the Forth of Clyde canal, shipments, foreign and coastwise, have fallen off considerably. The result is an increased and a tendency towards weaker prices. Warrant purchasers have also become scarce for the moment, for all such expect, by waiting,
to do better from their point of yiow, The shinyards and manu factured ironworks have been seriously impeded by the frost. At the former it has been almost impossible to proceed with outdooi
work. Men cannot safely handle iron when the thermometer sands at zero or thereabouts. Id takes the effect is described by the astisans as "scalding", At the rolling mills there have been two
aificulties, viz, firstly, the usual one of burst, or stopped up, water pipes; and, secondly, the scarcity of coal. The latte from extra difficulty in working the railway traffic. Engines coming from the collieries have all been bringing lessened tramloads, and a temporary scarcity at the points of consumption is
the natural result. The effect of these impediments upon the pig iron market has been to flatten it, because the blast furnaces continue unerringly to turn out their daily quantities whatever may be
the position of consumers. The same causes have, doubtless, been pro theposicionoconsums.
ducing the eameefetasat laseow, and the consequent flatnesssof that
market has not helped its Niddlesbrough rival. No. 3 foundry iron may be said to be 40s. 9d. for prompt delivery and 42s. ove the first three months. Still more is asked for the second quarter.
In fact, in the present state of mind of most producers, every In fact, in the present state of mind of most producers, every
additional month of postponement is worth some addition to the
soll selling price. Connal's Middlesbrough stores now contain 133, ha4e
tons, or 1690 tons stock is 507,854 tons, and is asaid to be increasesing by 990 tons daily.
In finished iron the market is quiet and steady. The price In finished iron the market is quiet and steady. The price
plates varies from £6 15s. at works for shipbuilding iron in larg
lots to $£ 7$ per ton at works for smaller lots or less favourabie specifications. Few sales are, however, being made, though there
is not a litle inquiry. Producers and consumers have, to a great
in extent, both completed their arrangements for the first and secon
quarters, and they cannot agree about price for the second and quarters, and they cannot agree about price for the second and
third quarters. Angle iron is $£ 517 \mathrm{si}$. Ad to $\& 6$ at works, and ba
iron $£ 515 \mathrm{~s}$. to $£ 517 \mathrm{~s}$. 6 d . Mr. Walterhouse's returns for the sliding scale will be issued shortly, and it is expected by those who are most intimately acquainted with the trade that they will result
in a reduction of wages, though not to a great extent. There seems
to be little doubt that the average value of the contracts of las quarter was less than of those of the preceding quarter. Th Hanson, of the firm of B. Samuelson and Co., president for th
current year. Mr. Hanson is well fitted for such a post, and hi appointment has given general satisfaction.
Notwithstanding the extraordunarily prosperous state of the to the petition of the Middlesbrough Town Council and the Middlesbrough Chamber of Comine to remit or defer the propose increase of rates on mineral traffic. It has now been determined to send a deputation of ironmasters and mineowners to wait upo them, and to induce them if possible to modify their decision Meanwhile the extraordinary success of the Hul and Barnsiey
project, and the irritation which exists against the North-Eastern Company on the above and other accounts, is causing a feelin to apise in faveur of inviting the Midland Railway Company to
extend its lines into the Cleveland district, as it is said this might easily be done; and there seems every reason to believe it wil be attempted unless the North-Eastern Company show a more
conciliatory spirit, and are a little less exorbitant in their idea of profits.
The
The miners at Brotton, in Cleveland, are doing their very best to bring arbitration into disrepute, and to leave their employers no
resource but coercion. A dispute arose some time since as to the tonnage rate at which they were to be paid for working iron-
stone. The general rate of the district varies by a sliding scal mutually adopted about twelve months since. At the last adjust ment there was a slight reduction, which the Brotton men resisted on the ground of the special difficulty of working certain
parts of that mine. The matter was referred to the fina decison of Mr. G. B. B. Foster, a well-known mining engineer at
Newcastle - on- Tyne. After hearing all the arguments Noth sides, Mr. Foster gave his decision a few days since. This does not appear to have pleased the men, who at once struck work
Meetings have been held, and their representatives, Messrs. Toyn and Dum, has their to pornd injustice an avail the position they tly to the seeches of their fice the decided, by 166 to 35 , to continue the strike. The disposition so frequently shown by English workmen to break away from con-
tracts into which they have voluntarily entered is a sad and a serious thing. In the above, and similar cases, they practically
constitute themselves into a court of appeal to review the decisions of the referee, notwithstanding that they are parties to the disput in their own favour, into execution. Such proceedings are so absur that they would not be intelligible on any other ground than the ignoranceandimperfectciviisationof the ererpetrators. nexhininin in more ways than one. They are not only losing their wages an political antagonists. When the approaching attempt at extend ing household franchise to the counties is really made, there will
not be want .
The "Hunning" telephone has been for some time on trial in the offices of Messrs Stevenson, Jaques, and Co., and thei furnaces at North Acklam, which are one mile, and their mines at Boosbeck, which are fourteen miles distant. So satisfactory
has been the result that it has now been decided to extend the has been the result that it has now been decided to extend the
wires to the inmost recesses of the mines. The Gower-Bell telephone, the one adopted by the Government postal department, has Redcar. There is no question as to the distance. The disadvantage is firkely to we be the absence of any
record of messages passing, and therefore the greater need to have only attendants who are absolutely trustworthy

## NOTES FROM SCOTLAND

(From our oven Correspondent.)
THE Glasgow iron market has again fluctuated this week, and it still continues to
increasing stocks. There is bundoubtedly a strong feeling, however, among speculators that the prospects of the trade are such as to
justify investments in warrants at present prices. Large transerences of warrants have accordingly taken place, and it is reported nat the bankers do not hesitate to accept warrants just now as
very reputable securities. Since last report close upon 4000 tons of pig iron have been added to the stock in Messrs. Connal and are 123 furnaces in blast, as asainst 104 on the production thus being much larger, while the eeportss are not
so good as in January, 1880 . The last return of the pig-iron slipments shows them a little better than in the preceding week,
although they are yet below the mark. The arrivals from Niddles Crough Caving been interfered with by the freezing ore and show a otal decrease since Christmas of feout 8000 tons. Some merchants report a rather improved inquiry for pig iron from the Continent,
where prices are higher ; but the trade with the United States just and comparatively unremunerative
Business was done in the warrant market on Friday forenoon at
from 53 s , 5 d . to $53 \mathrm{~s}, 6 \mathrm{~d}$, cash and 53 s . 7d, to 53 s , 8d, one month the afternoon quotations being $53 \mathrm{~s}, 6 \mathrm{~d}$. cash and from 53 s . $7 \frac{1}{2} \mathrm{~d}$. to tions down to 52 s .6 d. cash and 52 s . 8 d . one month. Tuesday's business was from 52s. 5 d . cash and 52s. 7 d . one month to 52 s . 11 d .
cash and 53 s . one month. The market was flat on Wednesday, nd to-day-Thursday-it was marked by a quiet feeling, with
business from 53 s .1 d. cash to 52 s . 2 d d . one month, and 52 s . 11 d .
cash to 53 s . 1 d . one month. cash to 53s. 1d. one month.
The quotations for makers' iron are rather firmer. There has Glasgow, No. 1, is quoted No. 3. Gartsherrie, free on board at ness, 63s. 6d. and 54s.; Langloan, 63s. and 54s.; Summerlee, 63s. Clyde, 54s. 6d. and 52s.; Monkland, 54s. and 52s.; Quarter, do. do.;
Govan at Broomielaw, 54 s . and 52 s .; Shotts at Leith, 63s. 6d. and 55s.; Carron at Grangemouth, No. 1, 55s. 6d.; ditto, specially
selected, 57s.; No. 3, 53s. 6d ; Kinniel at Bo'ness, 54s. 6d. and 51 s , $6 \mathrm{~d} . ;$ Glengarnock at Ardrossan, 59 s . and 54 s . 6 d .; Eglinton,
54 s and 51 s, Dalmellington, 54 s , and 51 s . ikewise iron and steel
At present there is a large trade in coals, but it is not very remunerative owing to the excessive competition, and the heavy output
expenses necessitated by too many pits being in operation. The nquirg quantity of coals is consumed at the ironworks, but the
in coals at some of the eastern ports has been rather backward nhilst in the west it is generally good. has been rather
At a conference of miners' delegates in Glasgow on MondayAt a conference of miners' delegates in Glasgow on Monday-
Mr. Gillespie, of Stirling and Linlithgow, presiding-it was reported that in the districts represented, the colliers were, as a
rule, getting steady employment. The conference adopted a resolution strongly advising the men not to agree to contract
themselves out of the Employers' Liability Act, and also counselled we miners to press their employers for an
wages to the extent of 6 d . per day. wages to the extent of d . per day. met Aamilton a few days ago
The Mining Institute of Sotland mater More, inspector of mines,
under the presidency of Mr. Ralph Moor
when discussions took place on a paper by Mr. J. T. Robson,

THE ENGINEER.
assistant inspector, "On Accidents by Falls from Roof and Sides of Coalpits," and a paper
by Mr. Robert Calderwood, descriptive of the South Staffordshire thick coal. Mr. J. S. Dixon, mining engineer, subsequently contributed a paper called attention to the waste of labour incurred by the present mode of trimming the tops of The shipbuilding trade of the Clyde continues active, and fresh contracts are being received.
Among the latest booked are those obtained by Messrs. Scott and Coo, of Cartsdyke, Greenock, for several
6000 tons.
The exports of gunpowder from Glaggo during the past year amounted to $1,434,000 \mathrm{lb}$,
valued at $£ 30,150$, of which $395,000 \mathrm{lb}$. went to Melbourne, $310,000 \mathrm{lb}$. to Sydney, $70,000 \mathrm{lb}$. to
Adelaide, $150,000 \mathrm{lb}$. to South America, and Adelaide, $150,000 \mathrm{lb}$.
$50,000 \mathrm{lb}$, to Singapore.

## WALES \& ADJOINING COUNTIES

 (From our own Correspondent.)Trade is stopped this week. On Tuesday evecon train failed to start for its destination Swansea and Neath traffic was almost closed, and a greater part of the London and North-W estern The same evening the Cyfarthfa colliers were
unable to leave the pits for home until near 8 p.m., and then only by a passenger train on the
Taff Vale line. The same condition of things prevails all over the country, so that the weekly
totals will be seriously lessened. All vessels weather bound
Last week there was one of the biggest totals for foreign destinations, leaving out bunker coal and coastwise which would have made up another 30,000 tons. On one day, Friday last, the Cardiff largest one day's totals known. Similar briskness in proportion marked the coal. trade at Newpor
and Swansea. The French trade is in a healthy state, and large demands are coming in from the
East Indies, Brazils, and River Plate. Prices
very firm.
The iron, steel, and other branches of trade are
in a good brisk condition. Prices are firm and are decidedly looking up.
heculated largely at the last "boom," bas notifife to his agents in Wales that he is on his way again to this country, and I happen to know that large
transactions have already taken place on the strength of his coming. Hematite pig has been re in hand. Pig is at present in free demand but some works are better placed than others, the old-fashioned iron pig containing too much
phosphorus for tin-plateoperations, raising blisters, phosphorus for tin-plateoperations, raising blisters,
for instance, on the plate. Within a fraction, ast week
I hear of possible extensions at Dowlais, pos-
ibly on a large scale. The great sinking at Bedinog still continues unsatisfactory. The inention seems to be to plod on until some good
workable seam is reached. Operations have been suspended on the Caerphilly, Newport, and Rhondda line, also on the Cly dach. A petition Midland, and London and North-Western. This is in connection with the Rhondda. The Swansea
railway movement in connection with this famous coal district is going on hopefully
I had an interview with the secretary of the
Miners' Permanent Fund a day or two aao and was glac to learn that it is being slowly but hope fully established. Lord Bute has paid his firs coming in from employers and honorary members. pients of wh, four workmen are arready rec thorough establishment is only a question of time. That it is imperatively needed I have fullest accidents happened in Welsh collieries in 1879 One of the largest mantment in the Rhondda dis trict describing the appliances at work, and the vas amount of gas which has to be contended with, says we cannot expect to avoid accidents, or to
escape these disastrous explosions. The only them at a minimum
The employers are now vigorously prosecutin all reckless colliers. Two cases occurred this Powells Duffryn collieries at Mountain Ash the found with pipes and matches in their possesto be no screening from just punishment in
future. Since employers are to be liable for accidents due to any proved shortcomings on their part, they will see that the shortcomings of the As my despatch is leaving,
damage at the Welsh ports-steamers and sailing ships blown ashore, and the loss already in the
case of Cardiff shipping has been estimated at many thousan sol pounds sterling over 3000 tons left Cardiff last week to inquiries, there are several leading works at Cardiff or in the neighbourhood. One of the principal is the "Crown." This
Rails, steel, are firm at $£ 67 \mathrm{~s}$ s. 6 d . to $£ 6$ bars, $£ 5$ to $£ 55 \mathrm{~s}$. Good orders on Indian account booked at these figures. liers, suggesting extreme care on account
-

[^1]
## THE PATENT JOURNAL

 Condensed from the Journal of the Commissioners of ** It has come to our notice that some applicants of thePatent-ofice Sales Depor
ario nave caused much unnecessary trouble anil umnoyance
 tehing the Shecitcation they require is referved to instead
of giving the proper number of the Specification. The


Applications for Letters Patent.

* When patents have been "communicated" the
name and dadress of the communicating party are printed in italics.

> 121.

| De |
| :---: |
| 122. |
| 123. |



 130. Pialu, W. Martin, Manchester.
131. VALVES, J. N. Rowe, Tuebrook

134. Tooss, \&c., J. M. Bibbins, Lond.

Withid wwing, ©e., Pluas, J. Reffit and W. Irwin,
Treens.ang Textile Materials, H. J. Haddan.-

. Kive , J. Briggs, Clitheroe. Stanford, Glasgow.




MICroscoorzs, F. H. Wenham, London.
ELECTrIC BATTERES, J. A. Lund, London.


de., L. A. Groth, Lo
13th Jenuary, 1881.
59. Checkive, dec., Apparatus, S. Fym, London,
150. CArrices R. B. Butcher, F.









14th January, 1881.


182.
183.
183.



 Mowbray, North, Addems, U.S.)

Lalunce, and Co., Lutterbach.)
194. CAKEs, dec., W. R. Lake.-(J. H. Mitchell, Phila-
del


108. SHEar Bindinge, de., MachINEs, E. G. C. Bomford,
Fladbury, and


York, U.S.
20. SVEs, J. Dewrance it $G$. H. Wall, London.
OT. BRAKE GEAR, B. Lefebure South



17th Jamuary, 18s1.
212. Revolvisg F.ars, J. Whaterbuse, Bolton.
313. Bobsiss, H. Boden and S. Whitehurst, Derby



Grants and Dates of Provisional Protec3514. Crunvers, dce., W. Payton, Masbro-road, Brook-
green, London, and A. Wilson, Wandsworth-road,


## 41 42 45 42 43 50 5 5

## 50 55 5 52 52 52 52 52 52 52 5




 -ith Docirimers, sisi Kirby, Harpur-place, Bediord.












































 London-212t Decenber, 18s0. do Cuignier and J. I 5359. Boots and, LHoss, L.
Lang, Hoxton, London, 21st December, 1880 .
5361. Wood-TurNING MAchine, W. R. Lake, Southamp6361. Wood-TURNIN Machine, W. R. Lake, Southam
ton-buildings, London.- A. A communication from
Hanson, Hollis Maine, U.S.- 21 st December, 1880 .

 ampton-buildings, London.- A communication from
F. Hanson, Hollis Maine, U.S. 22 nd Decerber, 1880 .
5369. Combiva Macinery, A. Smith, Bradford.

 5375. Leocms, E. Smethurst, Manchester.-22nd Decem-
ber, 1Sso 5379., Sosss.
Actons. 22 nut J. Fecember, 1880 . 5381. Barrels, W. Morgan-Brown, Southampton-build-
ings, London.-A communication from E, and B,
Hol Holmes, Buffalo, U.S.-22nd December, 1880 .
5383. SHIPS, dec., J. Tange, Birmingham, and R. J.
Cunnack, Helston, - 22 ne December, 1880, 5385. ExTRACTING Good, W. R. Lake, Southampton-
buildings, London. A communication from $O$. Baildey, White Londoud, U.S. communication from O
bund December, 1880.
S3S7. Micro-TraNsMITERS, W. Johnson, Sheffield.22nd December, 1880 .
5389. ExTracting Apparatus, A. M. Clark, Chancery-
lane, London. A communication from B. Odio, New York, and F. Perozo, Brooklyn.-22nel December, 1880.
5391. CEANING Roods, © ©., F. H. F. Engel, Hamburg.
 London.-A communication from P. Pesier, Valen-
ciennes, France, - $16 t{ }^{\text {on }}$ October, 1880 .
4804. GRIDIRONs, A. C. Henderson, southampton-



















 Ses. Skirtis, T. B. Drybrough, Edinburgh.-200h




 Ton-buididings. London.-At ommumication from G .




















## Inventions Protected for Six. Months on deposit of Complete Speeifications.


 sitrand, London, - A communicat J. Hadan,


## Patents on which the Stamp Duty of







 3it. Giass Tvars, L. Peroini, Hatton garden, Holborn,










Patents on which the Stamp Duty of 153. Charatisa Retorts, W. Foulis, Glasgow. $-12 h_{h}$ January, 1874.
20. FLoNTINC Docks, \&c., J. L. Clark \&.J. Standfield,
Victorin-street, London.- 1 sth Jankery, Notices of Intention to Proceed with Last day for fling opposition 4the February, 1881. 3462. Weighing Machines, T. Poseck and I. Selten, Berlin.-2012 August,
Brook-green, London, wid
W. A. Wiyton, Masbro-road, road, London.- 30 th, Aupust, 1880 .
3649. Solitarars, dc., J. Appleby and A. L. Stamps, Birmingham.-Sth September, 1880. row, London.- 10 th Se Setember, 1880,
3672, BANDAGEs, J. H. de Busy, Lordship-lane, Dul-
wich -Com from C. de Nooy, 3672. BANDAGES, J. H. de Bussy, Lordship-lane, Dul-
wich. - Com. from C. de Moy. 10 th September, 118so.
3676. PRESIING APPARATUS, W. Marsh, Whitechapel, 3676. Pressing Apparatus, W. Marsh, Whitechapel,
and J. Morris. Stepney. - 10 th September, 1880.
3680. Sugar CANDY, T. Morgan, Cockspur-street, Charing Cross, London.-A communication from J. Pitman.-10th September, 1880 .
3692. DAMAsK Looms, W. R. La
3692. Dasask Looss, W. R. Lake, Southampton-
buildings, London.-A communication from J. L. Döhmer.-10th September, 1880 .
3695 . Gas, J. F. Parker, Gravelly-hill, Birningham.10th September, 1880 .
3703. ScREw Threads, G. W. von Nawrocki, Berlin.Com. from W. Erichson.- i1th September, 1880 .
3705. Purifying AIr, dce., J. C. W. Stanley, Barns-
 3709. Bottles, J. Neal, Aston.-11th September, 1880. 3714. Beativa Carpers, S. Simmons, St. Augustinerood, Camden-sauare, London.-11th September, 1880 .
3715. Tricycles, S. Chatwood, Cannon-street, London. -11 th September, 1880 .
371. SEwING MAchises, T. Chadwick, T. Sugden, and
C. Shaw, Oldham, -1 Sth September, 1880. C. Shaw, Oldham, - 13 th September, 1880.
s718. Motive Power Encines, W. Adair, Liverpool.13th September, 1880.
3720. LiquID METRES, H. J. Haddan, Strand, London.

- Com. from P. T. y Puig.- $13 t h$ September'; 1880 . -Com, from P. T. Y Puig.-13th September; 1880 .

3734. Stowaluing, A. M. Ritchie, Dundee,-14th
 3739. SEEAM BBoILEEs, W. R. Lake, Southampton-build-
ings, London, -A communication fromJ. Prégardien. ${ }^{-14 t h}$ September, 1850 . Turning Wood, \&e., L. Vallet, Liverpool. -15 th Soptember, 1880 .
3735. Rolusg STo
3736. RoLlivg Stock, J. le Clair and J. de Rees, New-
port,- 16 th Septenber, 1880 . port.-16th Septenber, 1880 ,
3737. Burrovs, H. J. Haddan, Strand, London.-Com. from N. Fritzner:-20th Sptember, 18s0.
3738. DrivING BeLr, dce. S. A. Dickens, St. Helen's place, London.-A communication from O. Dickins.
3820th September, 1880. Cadbury, Birmingham. -218 t September, 1880,
3739. HEating Apparatus, R. M. Ritchie, Edinburgh. 3873. RoLelva Srock, G. C. Glaser, Berlin.-A commu mication from G. Thomas.- 24 th Sejtember, 1880 .
35s3. Motive Power, W. Prowett, Birmingham.- 25 h 3890. Brewivg Stout, \&c., P. L. Manbré, Valenciennes, France,--25th September, 1800.
30so. Morops. $P$. Jensen, Chancery-lane, London,Com. from E. J. Hahn.- 1 st October, 1580 .
3740. PAPER, P. Ambjörn, Boulevard St. Denis, Paris. -1st October, 1880 . 4057. Dress Stands, E. Eavestaff, Upper Berkeley
 155th Nocember, 1880. Bury, New London-street, Mark-
 Surrey.-26th Novenber, 1880 .
3741. Screve Propeliers, Wh D. Cooke and D. Mylchreest, Liverpool.- 7 th December, 1880 .
527 SA SING MAcHINEs, R. Rayner, Liverpool,- 16 th necember, 1800.
Last day for Rung opposition, 22nd February, 1881 3i23. Looss for 13 Estember, 11880.
3742. Locks, W. H. S. Aubin, Willenhall.-14th Sep3737. Expanding Boiler, dec, Tubes, W. Thorburn Luton.- 14th September, 1880.
3743. ANEALING BoxEs, C. H. Onions, Queen-street
Wolverhampton. -15 th September, 1880 . 3749. Carding Woor, sce, E. Wilkinson, Marsden Huddersfield. -15 th September, 1880 . Albion-terrace
3744. CARBoLIC ACcID, G. Wischin, Mlanchester.- 15 th September, 18s0,
3745. TuE-sToper, A. M. Clark, Chancery-lane, Lon-
don. -Com. from L. G. Jobet.-16th September, 1880 .
 London.-Com. from W. Lorenz.- 17 the September, 1 sso
Bist. NALIS, H. Sharow, Smethwick, and T. King
Bi Birmingham. -17 th September, 1880 ,
SSO. RALIWAY SwITCHEs, de., W. R. Lake, Southamp ton-baildings, London.-A communication from S. Williams.-18th September, 1880 .
3S63. Daspring TABLEs, J. Harper, Clerkenwell, Lon 3663. Dasping Tables, J. Harper, Clerkenwell, Lon
don. 23 Sed September, ilso.
3746. Cases, T. Heath, Hylton-street, Birmingham.27t September, 1880. SER W. Standing, Nassau-street
3747. HEATTNG Wate, W. Dublin.--2Tth September, 1880.
3748. Type-writing Machivs, A. M Clark, Chancery-
lane, London.-A commumication from A. M. lane, London.-A commumication from A. M. d
Costa. $28 t h$ September, 1850 ,
 3940. Ventilating Sewers, J. S., T. A., and E. R.
Walker, Wigan.-29th September, 1880 .
3749. Taking in, Cce, CAbles, J. Taylor, Birkenhead. 4002. Furnaces of Steam Generators, J. Salter, Man-
 mont-street, London.- 7 th O October, 1880 .
3750. Roan Locomotives, J. Marshall, Gainsborough, 424. REGULATING Fow of GAs, \&e., W. R. Lake,
Southampton-buildings, London.-A communication from M. G. Wilder.-11th October; 1850 .
3751. Fastening Tubuar Handes, F. Ryland, West Bromwich,- 26 th October, 1880. . S. Sutton, Stockport.
5020 SETrNG Brims of HATS, T. L.
 117. Drevoing Buckers, R. Hadfield, Bloomsbury
London.-Sth December, 1880 . 5252. OVERHEAD SEWING, A. Storer, Vienna,-A com-
munication from L. Bollmann, jun., and J. Boll mann. -14 th December, 1880 .
3752. COLovrivg MATrEss, J. H. Johnson, Lincoln's
inn-fields, London,-A communication from A. inn-fields, London.-A communication from A.
Baeyer.- 15 th December, $1880 \cdot$
3753. Rotary Propelems, M. P. W. Boulton, Tew
 Dye Works, Lanark, -1beh Decenber, 1880.
528s. SNATCH, dc., PuL.Ex BLocks, W.R. Lake, South-nmpton-buildings, London, -1 A communication
from H. Loud, -16 lh December, 1880 .
5291 SHuTrLs,
Eer, 1880 .
3754. Sugar, C. D. Abel, Southampton-buildings, Lon-
don. -Com. from N. Rillieux. - 17 th December, 1800 -
5209 . Caloric Encinse, M. P. W. Boulton, Tew Park, 5318. Herd.-17th December, 1880. December, 1880 . 5361. Woon TurNise Machise, W. R. Lake, South-
ampton-buildings, London-A communicationfren ampton-buildings, London.-A commumication from
F. Hanson--21st Decenber, 18s0, B67. WooD-TURNING MACHINERY, W. R. Lake, South-
ampton-buildings, London.-A communication from
F. Honson

 WIRE NAILS, H. H. Lake, Southampton-buildings,
London.-A communication from J. Hitchcock and D. C. Knowlton.-4th Jenuary, 1881 .
3755. Duvprng Wagos, W. R. Lake, Southampton-buildings, London.-A communication from W. H. Paige.

- 6 d Janvery, 181. a. Cloth Textering Machine, H. H. Lake, South-
ampton-buildings, London-A A. A. Lommunication from
G. P. Wood.-10th Jenuary, 1881. G. 1. Wood.-10ah Jeneary, 188
(List of Letters


## Patents Sealed

2556. Nue 14th January, 1881.) 2556. Nalls, G. W. von Nawrocki, Berlin.- 23 rd
June, 1850 ,
2557. WATER GAuges, J. Ellis, Gun-square, Hounsditch, London.-14th July, 1880 . road, London.-16th Juty, 1880.
2558. Hemstitchina Michines, D. MeGlashan, Glasgow. - 1 tht July, 1850 .
2559. TEAPOT, de., HANDLs, J. Ridge, Sheffield. 17th July, 1880 .
2560. SHirs Windasses, A. Steenberg, Copenhagen -1 Tth July, 1880 . U. Etzensberger, St. Pancras,
2561. INvusiovs, R. U.
London - 17 . London.- 17 th July, 1880 .
2562. METAL EyELEs, ${ }^{\text {dc.. W. W. Harris and J. G. }}$ Coper, Manchester.-
 2990. STAMPING APPARATUS, A. Scherb, Vienna.-20th July, 1880 .
2563. SAND-parering Wood, de., M. Benson, South-ampton-buildings, London.-2th July, 1850 .
2564. WINDow SASH, \&c., BARS, J. D. MacKenzie, Glasgow--27th Juy, 1880.
2565. Cooking Pans, dce., w. L. Wise, Whitehallplace, London.- 30 th Ju'y, 1880 . Wrat
2566. WINDING APARATUS, A. M. lane, London.- 31 st Juty, 1880. Clark, Chancery-lane,
2567. HALTER ATACHMENTS, W. Clater 332. BuFFERS for RALIWAY S32. BUFFERS for Rallway Locomotives, de., D. N.
Arnold, Solihull. -16 August, 1880 . 3481. Locomotive Engines, T. Hunt, Manchester.-
209th Aupust, 1880.
2568. Colouring Matters, J. A. Dixon, West George 4477. Forming Juscrions of RAILwAYs, R. P. Williams, P77. Forming Junctions of Railways, R. P. Williams,
Parliament-street, London. - 2nd Nocember, 1880 ,
56in. FURNACES, dcc., F. J. Cheesbrough, Water-street, 4561. Furnaces, dce., F. J. Cheesbrough, Water-street,
Liverpool. - $t$ No Nocember, 1880 .
2569. RALLWAY VEHICLES, W. R. Lake, Southampton 459. RAiLWAY
buildings, London.- $9 t h$ November , 1880 .
2570. Toy 4601 . Toy MoNey Box, W. R. Lake, Southampton-
buildings, London.-9th Novenler', 1880 . buildings, London.-9th November, 1880 .
2571. CHAIN CABLEs, S. Baxter, Mansion Housebuildings, Londos. 1 Lith Norember, 1880. .
2572. Fire-ArMs, W. R. Lake, Southampton-buildings, London.-12th November, 1880 .
2573. Dressing A ALE ArMs, J. B. Savage, Southington,
U.S.- 18 th Nocember, 1880. List of Letters Patent echich passed the Great Seal on the
18th Jenveary, 1881.) 2490. Curving Ratlway Bars, L. Richards, Dowlais.Sth. July, 18so. Matter, A. Hellhoff, Mayence.-7th
2574. Explosive Mat 2984. STEAM Boilers, A. C. Henderson, Southamptonbuildings, London.-20th Juty, 1880,
2575. RING FFame Bobbins, H. Southwell, Rochdale.-
2576. Bricks, \&c., E. J. Shackleton and G. J. Kemp Dartford.-21st' July, 18500 .
2577. Life-sAving, de., Dress, G. B. Thornton, Edinburgh. -22nd July, 18s0. Wolverhampton.-22ne July, 18so.
., C. F. Clark, 3032. CAsEs or HoLDERS, C. Cheswright, Parkhurst
rood, London.-23rd July, 1880.
2578. Dog-cARTs, \&c., J. and C. G. McDowell, Warring ton.-26th July, 1888 . 3090. Rotary Esinges, \&c., M. G., A. M., and S. M
Imschenetzki, Russia. -2 the July, 1sso.
 Birmingham, - 2 Sth July, 1880.
2579. KNITTING Machines, C. Cresswell, Lough 3148. Knitting Machines, C. Cresswell, Lough-
borough.- $31 s t$ July, 1880 .
2580. BRAKE APPARATUS, H. H. Lake, Southamptonbuildings, London.-2 id August, 18s0. Clark, Chan
2581. Clothes WASHER and WRINGER, W. cery-lane, London,- 26 th August, 1880.
2582. DANDY RoLLERS, W. Green, Camberwell, Lon don.-2nd September, 1880 . land.- bth September, 1880 . cery-lane, London.-25th September, 1880 .
2583. BLACKING BRUSHEs, A. M. Clark, Cha London,-27th Septeinber, 1880 . A. McKen 597S. Boring, de., Machinery, J. A. Mckean, Covent
garden, London.- 18 October, 1880 .
(285. Repairing Convertere, dce, S. G. Thomas, Che

 Hastings.- -27 th October, 1880 .
444s. FIRE-cRATES, E. R. Hollands, Stoke Newington
 Hughes, Bayswator, London.-3rd Nocember, 18so.
2584. FLEsH GLoves, \&c., I. Livermore, College-hill, Cannon-street, London,- 3 rd Nocember, 1850 .
2585. DExTRIE, SUGAR, de., W. F. Nast, Paris.-4th 4536. Tipping Wagons and Vans, A. G. Margetson and
W. S. Hek, Bristol.- -5 th November, 1880 . ec., Apparatus, C. D. Abel, Southamp ton-buildings, London.- 6 th Nocenber, 1880 .
2586. Fog Horns, A. L. Wharton and 'S. J. Dobson, Great Grimsby,- 9 th
2587. November, 1880
Anchoos, dic., S. Baxter, Mansion House-build4650. ANchors,
ings, London. 11 th Nocember, 1880 .
4670 . SEwINO MACHIERY, W. H. Dorman, Stafford.4629. PULP STRAINER
2588. Pulp STraner, C. Ke
Berlin.- 15 th Nocember, 1880 ,

List of Specifications published during the
week ending January 15 th, 1881 . 101010101010101010101810.3




 d.; 1780,
i.; 224,
i.; 2365,
i.; 2403,
i.; 241,
d.; 242,
d.; 2426,
d.; 2434,
d.; 244,
d.; 244,
d.; 2456,
d.; 243,
odi, 240,
d.; 2476,
2d.: 2477,



 London.

## ABSTRAOTS OF SPECIFIOATIONS.

## 

5122 Ovexss por Marisg Cone, A. M. Chumbers.-



 5 5ra]

the oven are ascertained, A is the body of the beehive
or domed-shaped oven; B is an opening or doorway or domed-shaped oven; B is an opening or doorway
through which the coke is withdrawn; $G$ is a pipe surrounding the crown of thie oven close to the firebrick lining of the latter. H is the regulating air valve.
In a line with an open end of the pipe at $I$ is fixed In a line with an open end of the pipe at $I$ is fixed
the small pipe $L$, through which the state of the inthe smail pipe L, the oven at E Ean be observed, or a pyrometer
terior or introduced in order to ascertain the temperature. 1597. Roluing Mills, A Berry.-Dated 19th April, This consists essentially in the employment of one
or more twisted or rifled pipen, troughs, or boxes to
cover the billet or bar from one pair or set of rolls to
a second pair or set of rolls, and turn the said billet

## [597]





 Thiso oonsisiss in so balancing and fixing tubes and

 ntents, that they will indicato such variations,

utomatically or otherwise, for barometrical, thermometrical, and laboratory purposes, and othe the said instruments, and are actuated by the motion,
alteration of balance, or changes of position oj the inIteration of balance, or changes of position oj the in
truments, and by magnetic or electric currents. 1780. Apparatus for the Removal of Earth in
Getting Ironstone, Ores, de., H. Rider:-Dated
 A rope is strained across the space over which
earth is to be transported by means of the anchor C,
to which one end is attached, and near to which is a to which one end is attached, and near to which is a
trestle D to rnise the rope to a convenient height. E
is a post at the other end of the space to be traversed,

$$
\boxed{1780}
$$


carrying a slide H , to which the other end of rope Bi made fast, and capable of being moved vertically on
the post E. Aub receives the earth, and it is
hung from pulleys or wheels, which run on the rope To send the tub towards anchor C , the slide H i
raised by means of a chain, and for its return th
slide is lowered.
1729. Marine StEas Engines, H. B. Yoteng.
Dated 28th April, 1880. 6d.
In the drawing A is the high-prossure cylinder fixe


is fixed upon the high-pressure cylinder A. E is the
piston rod, upon which the high and low-pressure piston rod, upon which the high and low-pressure
pistons G Gare fixed, K is the low-pressuro cylinder cover. A manhole with its lid L is provided in the
low pressure piston. 1830. Resepyotr I 1880.-(Void.)
2d. The oil reservorir has at top a nozzle through which
the oil enters, and fitted with a cap having a vent. the oil enters, and fitted with a cap having a vent.
Surrounding and extending some distance beneath the reservoir is a casing, between which and the reservoir
is an annular space, and a chamber is formed between is an annular space, and a chamber is formed between
the bottom of the case and the reservoir, such chamber communicating with the reservorvir, and through a
hollow block and pipes with a lamp tube fitted with suitable burners. Within the chamber is a float free
to move on a central hollow stem to which a valve is
fitted. fitted.
901. Gas-lighting Apparatus, J. T. Dann.-Date
10th May, 1880.-(A communication fiom IV. Effer.) This relates to apparatus for automatically lighting
and extinguishing street and other gas lamps, in which the ignition and extinction are produced by, the
alternate increase and decrease of the pressure of tho gas in the main.
1944. Lead and Crayon Holders, M. Weill (eld.
ministrator of $J$. Alfelder.)-Detel $12 t h$ Mell, 1880 . The lead and crayon holders are constructed with
the inner jaws of conical or tapered form, so that leads the inner jaws of conical or tapered form, so that leads
or crayons of various sizes may pass through and be
held therein. The lead or crayon is contained in a ongitudinal containing tube or channel in the case of the body of the holder, and the jaws are acted upon
by the tube or sleeve, which is moved longitudinally
by means of wires connected with a spring. 1964. Crushing or Breaking Stones, dec., S. Mar.
shall.-Dated 13th May, 1880. $2 \mu$. The flutes of the pair of jaws, instead of being 30 that the crushed materials readily drop down 2161. Elevators, J. Hancox.-Dated 27th May, 1880. A is the main frame of the elevator; $B$ is the hopper.
Two brackets are fixed to the frame $A$, each formed with a curved slot, through which passes the spindle
of the driving or rake chain pulleys; to this spindle of the driving or rake chain pulleys; to this spindes
are fixed the ends of a pair of lifting chains, which pass
thence over guide pulleys and chain pulleys. The are ixed the ends of a pair of anding chains, which pass
thence over guide pulleys and chain pulleys. The
latter pulleys are fixed to a spindle carrying a worm-

wheel K ; thus by winding up the chain by a worm the slots in the brackets, the upper part of the trough raising arms M, and the hopper supported or hung at the bottom on two pivots moving in iron bearings,
whilst at the top are fixed hooks and chains for reguwhilst at the top are fixed hooks and chains for regu-
lating the height of the hopper to suit different thrashating machines.
2267. Table Cutlerx, T. McGrah and C. H. Wood.-
Dated 3rd June, 18s0. Gel. This consists partly in making the whole or part of oval form, and in making the holes in the handles intended to receive the tangs or stems of a correspond-
ing shape, so as to prevent the tangs, when inserted, from turrining round in the handles.
2280. Incubating Apparatus, M. Arnold.-Dated 4th 2280. Incubating Apparatus, M. Amold.-Dated 4th
June, 18so. Gd. In the cass A is placed a hot-water tank B. The
hatching chamber F is within the water tank, and at its bottom is a layer of sand, covered by a hayer of
its
chaff, on which the eggs are placed. The sand allows 2280

al moisture to find its way through holes in a siliding
 tion of chamber $F$ is effected by wooden plugs $O$, per-
forated in a special manner. 2297. Recovering Useful Matters from Discarded
Heacds, H. Booth.-Deted Tth June, 1880.-(Not Two yarnad aro used in the formation of a heald, one
being knotted and the other looped. The former is
cut away, and the other is subjected to the action of
an apparatus which unwinds the binding yarn, and so an apparatus which unwinds the binding yarn, and so
releases the heald yarn, which is then wound upon a
reel. The binding yarn is at the same time wound reel. The bin
upon a swift.
2318. Lubricating Mechanism, G. E. Vaughan.-
Dated 9th June, 1880 .- (A communication from C. J. A. Dick. br. $A$ is of usual construction, and is
furnished wion the ordinary bearing B for the journal furnished with the ordinary bearing B for the journal
of the axle D. In the interior of the said box and to
one side of the same is pivotted a weighted arm or one side of the same is pivotted a weighted arm or
lever G, by means of a stud, and this arm or lever is
acted on by a spiral spring. By the combination of acted on by a spiral spring. By the combination of
the siid arm with pumping applances, the oil which

## [2310]


falls from the journal and bearing into the bottom of
the box is raised through a pipe and re-applied to the journal or bearing. The pump consists of two discs M
and N , formed of leather and properly secured together near their edges. A force pipe P extends upwards from the upper disc M of the pump, and terminates at such a point that the oil will be discharged from it
against the journal of the axle immediately below the
edge of the bearing. 2319. Moviva Heavy Weights, \&e., T. Hodge.- Dated The platform B is free to revolve on a centre. The
shaft G is driven from the engines, and carries a phation gearing with a wheel on the intermediate shaft
pine between the engine shaft and the winding drum, J between the engine shaft and the winding drum,
and on which a friction pulley is mounted. The drum
shaft also carries a friction wheel which can be shat also carries a friction wheel which can be
brought in contact with that on the shaft J when
required to drive the drum, for which purpose the required to drive the drum, for which purpose the
shatf $J$ is mounted in excentric beearings, and can be
shifted shaft $d$ is mounted in excentric bearings, and can be
shifted by hand lever P. A brake $N$ operated by a
treadle acts upon the drum spindle. A frame Q is
[2319

secured on platiorm B between the crane and the
steam generator, and supports a shaft T carrying a steam generator, and supports a shaft T carrying a
chain wheel driven from shaft G , and also a friction
pulley pulley. A second drum V carries a friction wheel and is mounted in excentric bearings, so as to be capable
of being moved by means of lever Y to bring its fric-
tion wheel in contact with the pulley on shaft $T$. The tion wheel in contact with the pulley on shaft TT. The
chain from one drum serves to raise and lower a grapple bucket, and the chain from the other serves to
open or close the same, or when applied to an exca-
vating apparatus one chain is attached to the rear end vating apparatus one chain is attached to the rear end
of the scoop, and the other to the front end as shown
in the drawing 2337 Gassur.
2337. Gasaliers, \&c., R. Phelps.-Dated 9th June,
1800.-(Not proceeded vith.) 2d. To the outside tube of a gasalier where the water
cup is usually aftixed, are placed two horizontal studs,
while uusidy while outside the tube is a second tube with one or
more slots in which the studs travel. The slots have apertures at intervals into which the studs may enter
so as to hold the gasalier in any desired position. 2350. Stockivgs and Socks, L. Woodvard.-Dated
10th June, 1880 . $6 \pi$. Single narrowings are made at the instep and near
the toe of the foot piece at a distance in from the sel-
vage nearly equal vage nearly equal to the length of the side of the heel
pieces. One broad set of points containing nearly as pieces. One broad set of points containing nearly as
many points as there are loops in the side of the heel
takes the loops of this broad band of fabric, from the needles at one edge of the piece, and after shifting
them inwards lands them on to other needles. Simi-
larly on the other larly on the other side another set of points shifts the
loops on the other edge of the piece. When making
the loops on the other edge of the piece. When making
the narrowings for shaping the toe, the number of
loops shifted at the successive narrowings may be 2358. Cooking And Dishing up Meat, Fish, \&c., $J$.
Hall.-Dated 10th June, 1880.-(Not proceded with.)

The fish or meat while being cooked is supported on
perforated tray placed inside the saucepan but not perforated tray placed inside the saucepan but not
reaching to the bottom. Water is placed in the
saucepan, but does not reach up to the tray, so that the fish is cooked by steam.
2365 . Apparatus for Packing Substances into 2365. Apparatus for Packing Substances into
Parces, W. A. G. Schönheyder:-Dated 11th June,
1880. sd. A is the base plate on which are mounted the two
standards B B, which carry the principal parts of the
working working gear. C is the driving pulley, and D the cam
shaft on which most of the cams are fixed. E E are two connecting rods-one on each side of the machine-
actuated by cams, and giving motion through the

## [8385


smallor rods F F to the rocking levers G , to which the
variously shaped finger-pieces are fixed, varked by cams $I$ at thece lower end. and fulcrumed
worke
at the top, and siving motion to the four plungers $G^{2}$ on which, the rocking levers $G$ are hinged as well as to
two intermediate plungers $G 1$, each with a fixed finger or creasing tool. J is a guard-piece for prevent.
ing the material which is to be packed from spreading
sideways; one is furnished on each side of the machine. L is the presser which forcester paper and material
into the dies of the intermittently revolving wheel 2371. Breech-Loading Ordnance, de., J. Needham.A closely foltting each is other but of a series of tubes A closely fitting each other, but instead of shrinking
them one over the other or forcing them into position by hydraulic pressure they are formed slightly conical,
and to enable them to be forced well home their breech ends are formed with screw threads which by
turning one tube on the other force the tubes fully turning one tube on the other foree the tubes fully
home. The conical breech piece B is formed with a

## 2371


screw to fit a thread in the breech, but it is made
conical, and its seat is formed so that it can take a firm hold of all the tubes A, excepting, if desired, the outer one. This arrangemeut of gun is suitable for
muzzle-loaders, but for breeh-looders the breech piece
$\mathbf{B}$ is divided longitudinally in two parts which close on to each other as the piece B is screwed home, and open out when it is withdrawn for the purpose of
loading. The screw on B is formed with projections, load the thread in tubes A with a corresponding under-
and as shown in the second Fig 2391. Mechantcal mecens
2391. Mechanical Means of Varying the Heichit
of SEats, Tables, de., W. Daves.-Dated 12 the
June, 1sso. 6d June, 18so. 6 d .
This consists in the application and use of a series of
aved line or sloping notches, hollows, or surfaces, so waved line or slopirg anged that projecting pins, studs, or other surfaces fitting or sliding into them, shall be
capable of both safely adjusting and firmly supporting

at any desired height the top or adjustable portion of
tables, seats, or other articles. Fig. 1 is a portion of theles, seats, or other articles. Fig. 1 is a portion of
the waved line notches and hollows (writh the support-
ing and the upper pins), as a rib or projection. Fig. ing and the upper pins), as a rib or projection. Fig. 2
is a plan of a table or large oblong seat with the
waved line lifters at 2392. Mariner's Conpass,
2392. Mariner's Compass, D. MeGregor.-Dated 12th A B are two basins or bowls having weighted
bottoms, the bowl A floating within the bowl B and being provided with any convenient form of guides
and top springs, such as C , to keep the bowl $A$ floting
in in a central position in the outer bowl B. A ring of
copper, may, if desired, be fitted inside the inner copper, may, if desired, be fitted inside the inner
bowl, and the centre pivot $D$ of the bowl A is of fine tempered steel (or other suitable metal, or it may be
pointed with a polished jewel) with brass mourtings, pointed with a polished jewel) with brass mourtings,
or may or may not be fitted in a tube with any elastic

material to compensate for vertical vibration on ship-
board. The bowls A B can be arranged with glass
bottom bottoms in manner similar to ordinary transparent
compasses, so as to let light through from beneath to
illuminate the card E. compasses, so as to lit
illuminate the card E. The directive power of the
card is supplied by the magnets H , which are composed card is supplied by the magnets $H$, which are composed
of one or more flat thin steel bars of equal or varying springs but of harder temper. These magnets or
needles H H are fitted to the underside of the card E by means of the springs J . The second Fig. is a sec-
tional elevation on a larger scale of a compass card and magnets.
2403.
2403. Colouring and Flivouring Beer, \&ce., J. R.
Plunkett.-Dated 14th June, This consists in the employment of roasted maize,
malted or unmalted, as a colouring and flavouring
agent. 2406. Making Paper Bags, \&e., R. Woods.-Dated
14th June, 1880.-(Not moceeded vrith.) This relates to apparatus for automaticically making
bags, wrappers, and envelopes from a continuous web
of prer bags, wrappers, and envelope
of paper fed into the machine
2407. Thread Holder for Sewing Machines, H. $G$.
Grant.- Dated 14th June, 1880 .- (A commenication from $G$. Toussin.) (Not proceeded rith.) $2 d$.
The appliance is in the form of a "Tyrolese box.
On and around the circumference of the box and min way of its length, a groove is formed to receive the eye of a wire clip. The clip is formed with two arms, one
being formed with an eye, in which the other arm
of the clip is held when the applince is attached to any being formed with an eye, in which the other arm
of the clip is held when the appliance is attached to any
convenient part of the sewing machine. 2408. Water Wheers, F. H. F. Engel.- Dated 14the
June, 1880.-(A communication from G. H. Maller.) $\begin{gathered}6 \text { d. } \\ \text { The original part of this water wheel consists in } \\ \text { the inclined bearings for the }\end{gathered}$ wheel which is neither a horizontal nor a vertical one.

The inclination of axle and wheel will be made adjust-
able by placing the step-bearing of the axle in a sledge

footstep, which can be shifted on an inclined bed plate 2410. Combing WooL, J. H. Johnson.- Dated 14th
June, 1880 .-(A communication from $A$. Skene and

The brush is caused to descend vertically on to the needles of the combe, whereby the wortk is more effi-
ciently and advantageously performed. ciently and advantageously performed.
2411. Combing WooL, de., J. H. Johnson. - Dated 14 the L. Devallée.) (Not moceeded voith.) $2 d$.
The rods with rriction balls for pressing the holder are dispensed with, as well as the two pieces of cast
iron which connect the rods to the said holder lieu thereof, rollers, cylinders, or segments are
employed, acting upon the flat upper side of the 2412. Separating Animal from Vegetable Matter,
dce., W. R. Lake.-Dated 14th June, 1880.-(A com. murication fom A. Faidherbe-Danhier.)-(Not pro-
ceded vith.) $2 d$. This consists in a process based entirely upon chemi-
cal or scientific action, either by reaction or by maceration in the open air, and it effects a series of operations
heretofore performed separately and by hand by a heretofore performed separately and by hand by a
combination of mechanical apparatus whose operation
is certain and continuous 2393. Belts or Bands for
2393. Belits or Bands for Driving Machinery, M.
Giandy-Dated $12 t h$ June, 1880 . $6 d$. B is a roll of canvas, which passes through pressing
rollers A, and then through adjustable guide pieces $X$, from whence it is led through one of a nest of concen-
tric rings C, according to its width, and through an oval former D, the rings and former imparting a
tubular form to the canvas. The canvas tube then tubular form to the canvas. The canvas tube then
passes through pressing plates E , which fold it flat,
and it is then pressed by the rolls F . The guiding

2393

appliance $G$ opens the canvas and makes it in the
form of a trough, into which any number of canvas cloths are laid, so as to form the complete belt, such
cloths being supplied from rollers Y. The whole then passes over a table and through pressing plates and
rollers H, and finally enters a forming machine, where
it it is acted upon by press plates I, a nipping guide J,
and press rolls K . The material used is cotton canvas, composed of warp stouter than the weft, both warp
and weft being hard spun, and the canvas hard or
tight woven 2413. Rasising Sunken Ships, \&c., P. Kyle.-Dated
15th June, 1880. 6d. 15th June, 1880. 6 d .
Nets B are attached to the sunken vessel A by
means of cables C running the whole length of the means of cables C running the whole length of the
vessel and cross cables D. E is a floating body carry-

ing guides F, down which a number of balls of some
material of less specific gravity than water are forced by means of rams $G$, and enter the nets attached to vessel A, which, by their buoyancy, they raise to the
surface of the water. 2416. M

15th June, 1880 . 6d.
The invention consists essentially in attaching a

small toothed wheel A to the ordinary winding soua $\sim 2$, or
fusee arbor $\mathrm{A}^{1}$ underneath and outside the chronometer
case 2 with which a toothed pinion B, fitted in the
corner of the box 1, in which the whole is enclosed, may be put into gear when desired. The pinion B is preferably fitted on a vertical spindle $\mathrm{B1}$ the upper end
of which is made in the form of a key ${ }^{2}$. This of which is made in the form of a key $\mathrm{B}^{2}$. This
arrangement admits of winding the chronometer with-
out the necessity of turning it out the necessity of turning it over.
2417. Apparatos
2417. Apparatus Employed in Effegting Chemical
Decomposition, $R$. S. and $F$. S. Nevall. - Dated $15 t h$ The pans employed are made of phosphor bronze, and are so formed that they may wor which by steam or hot air dousteade, and steam or hot hair admitted between
made the two walls. Supposing it is salt that is to be de-

2417

composed in the manufacture of soda, the mixture of salt and acid is placed on the upper surface of the pan,
and stirred by mechanical means until the decomposi-
and tion is carried to the required degree, when the where the decomposition is completed. The pan is
whovered covered as usual to collect the gas which is conveyed
to the condenser. The form of the pan is shown in to the conden
the drawing.
2420. Tues AND Tile Roofing, F. Baclène.-Dated
15th June, 1880. -(Not mooceded vith.) $2 d$. 15th June, 1880.- (Not proceeded rith.) 2 d .
The roof tiles are formed with a r rib or flange along the top and down one side of the face of the tile, the opposite side being provided with an enlargement or
hooked flange, which is intended to fit over the rib or hooked flange, which is intended to
flange on the side of an adjacent tile.
2421. Looms, G. Kirk.-Dated 15th June, 1880.-(Not A sliding bar is operated by a cam on the star or pegging wheel, whirn is so set and regulated as to
push the sliding bar underneath steps formed in the
end of the bell end of the bell crank levers, which horms them up
until the cam has moved out of the way, when a until the cam has moved out of the way, when a
spiral or other spring withdraws the sliding bar from
under the steps in the bell crank levers of the sliding bar are loose catches, which are held
by of spiral or other springs, and can be pushed out of
the way on the rising of the bell crank levers. 2422. Gas Engines, W. Foulis,-Dated 15th June, The cylinders are formed so that while the part in
which the heat of the combustion of the mixture of gas and air is developed is maintained as hot as prac-
ticable, the part in which the piston works is kept mucho parts: A in which the combustion takes made in two parts, $A$ in which the combustion takes place,
and B which the piston works. The piston carries
a projecting tubular piece E, of the same diametrer as

## [24.2a

the cylinder, and nearly as long as either part of it,
and is lined with asbestos. The part A containing
the the compressed charge has a combustion chamber $F$,
and from the centre of the piston projects a second piston $G$ to work in chamber F . H is the igniter. So
as to delay the ignition of the charge until all the gas and air has been forced into the combustion chamber F a sleeve I is fitted to piston G, and encloses the
igniter during this period of delay. The part B is
cooled by a water casing. An arrangement is decribed cooled by a water casing. An arrangement is decribed
for mixing the air and gas in the proper proportions. 2424. Emery Wheels, W. R. Lake.-Dated 15th June,
18s0.- (Pertly a communication from C. Heaton.) $6 d$. In the drawing, $A$ represents the wheel formed of
emery powder or similar substance, and $B$ represents

2424

a disc or dises of wire within the said wheel. The discs are arranged to extend in all directions from the
centre hole of the wheel to the outer periphery or
grinding surface of the latter grinding surface of the latter
2425. Movable Stages for Loading and Unload.
ing Goods, $C . D$. Abel. -Dated 15th June, 1880 . - - A
communication from A. Sue and M. H. H. Compte
The platform, which may be framed of metal and
covered by planking paving, or otherwise, and which covered by planking, paving, or otherwise, and which
may have on it rails or a curntable, is fitted to sink into
a hollow in the a hollow in the ground or floor, so that when it is
lowered its surface is level with that of the ground, lowered its surface is level with that of the ground,
and under this hollow are arranged the means of
ansing and lowering it. raising and lowering it.
2426. Chanvs, S. Pitt.-Dated 15th June, 18s0.)-(A
communication from J. M. Dodge.) Gd. The drawing shows a longitudinal central section of single bar links. The single links are in this case
shown as being of cast malleable iron, and are made

## 2426 <br> 

with lateral projections at or near each end, that are
adapted to engage with certain projections on, and the
connecting rivets of the two bars of the connecting rivets of the two bars of the double links, A A, each of which has an in inwardly projecting rim or 2428 Apanc
2428. Apparatus for Preventing Accidents to
Vehicles, $H$,, . Allison. - Dated 16 th June, 1880 . - (A communication from L. Lievin.) 6 d. pass from the upper side of the splinter bar. These
ping are secured to a metallic piece fitted with a handle pass are secured to a metallic piece fitted with a handle
A, extending up in front of the driver near the splash

## 2428


board. By raising this metallic piece the pins aro released, and will be pulled out of the recesses in the
plinter bar, by the forward motion of the horse or
horses, leaving the vehicle behind. The metallic piece
is guided in its movement and secured to the splinter bar by means of two guide bolts $B$ attached to the
splinter bar, which allows the necessary play to enable splinter bar, which allows
the pins to be withdrawn.
2430. Sewing and Plaiting or Quilting Machine,
IV. . Lake.-Dated 16th June, 1880.-(A commini
cation from H. Buckofser:)-(Not proceded vith.)
The apparatus for laying the different folds consists
chiefly of two knives of steel plate which lic one the other, each one being separately movable on pivots the other, each one being separately movable
and arranged to work in guides in the frame. 2432. Ships' Binnacles and Layrss, de., J. M. Sim.
-Dated 10 th June, 1880. Gd. The binnacle dome A has a hole in the top for the famp, and a raised flange, over which the lamp head
fits. C is the compass card, and D the lamp globe with holes to admit air under the rounded bottom of the
lamp E. The air is deflected downwards, so that in-

stend of blowing out the flame it collects under the
lamp and rises through the annular space between the lamp cistern and the globe in an even stream, which promotes combustion and cools the globe. A handle hangs from the tube F attached to the lower part of
the top. H is the night shade, and K the opening the top. $H$ is the night shade, and $K$ the opening
through which the card is viewed. 2433. Moving. and Locking Railway Points and
Signils, R. Hill and D. Martor.-Dated 16th June,
1sso The points are connected with a sliding bar or part
which is actuated by a screw, formed upon or attached or connected with a hand lever.
2434. Securivg the Blades of Scissors, Shears,
dc., $W$. and $W$. T. W. Simpson and J. Wilkinson,--Dated leth June, 1880. d.d $=$

pair of scissors. A is a set screw, B a locking plate or
lock nut, and C is a washer of ordinary construction. 2435. Coupling and Uncoupling Railway and
Tramway Wagons, de., T. G. Mcassicks.-Dated 16th June, 1880. 4el.
A bracket A is attached to the end of a wagon and
upports a slotted pivotted lever B with a projection supports a slotted pivotted lever B with a projection C having a hook so that it can be raised by the lever
B and placed on the coupling hook of the next wagon.
E2435


There are two slotted levers on each wagon, one at each and at opposite cross comers, so that there is always
one lever within reach of the operator. The lever B
rests on a hook D when not being used. onestever within reach of the operator.
rests on a hook D when not being used.
2436. Perambulators, J. Lloyd.-Dated 16ith June,
1880. - (Not proceded with.) 2 2d. The body proper is constructed somewhat as
hitherto; to this body the handle is permanently secured, the seat, back, and sides, with heelboard,
which are independent of the body, are caused to Which are independent of the body, are caused to
rotate by means of a pin or pivot passing through, or
in some cases affixed upon the base or bottom of the in some cases atfixed upon the base or bottom of the
vehicle, secured by a cotter pin or other suitable
means, 2438. Preservation of Alimentary Substances,
T. F. Wilkins.-Dated 16th June, 1880.-(Not proThis consists.) essentially in first treating the article with a paraffin melting only at a very high tempera2439. Munoricture men. 2439. Manufacture of Pottery, A. F. Wenget:-
Dated 16th June, 1880 . Gd. This relates, First, to an improved plunger or vessel
wherein raw clay is made to slip. The plunger $A$ is made round instead of hexagona, the usual rotary motion to the plunging arms, a
reciprocating or to-and-fro motion is given to them by
means of a revolving crank. The second Fig. shows 2439
 an improved filter press used for extracting the water
from the slip and making plastic clay. The chambers are carried on two side rods or bars E, and in order to facilitate the moving of the chambers anti-friction
rollers $G$ are interposed between the chambers and
rods or bars and to prevent the chambers from rocking rods or bars, and to prevent the cham.
side levers or rods H are employed.
2440. Collegting Stive and Separativg Dust, dec.,
is Working Milt Machivery, J. $F$. Stacuit., Dated 16 th June, $1880 .-(A$ conmumication from $G$.
T. Smith.) The stive trunk $A$ communicates by two branches with the lower ends of two closed wire gauze cham-
bers B surrounded by a casing C. Brushes D mounted on shafts revolve in contact with the inner surfaces of
the cylinders ; F is a flap valve worked automatically

from a cam $L$ so as to alternately open and close com-
munication between trunk A and the two chambers $B$. mumication between trunk A and the two chambers B . Hischarged through spouts $P$ which stive which is
diosened and
closed at the same time as the flap valve $F$. 2441. Compound Steam Pumpring Fngines, E. $\quad$ E.
Ellington. - Dated $16 t h$ June, 1880. 6d. A central high-pressure cylinder has a low-pressure
cylinder on each side of it. The histons of the three cylinder on each side of it. The pistons of the three
cylinders are directly connected to the plungers of the cylinders are directly connected to the plungers of the
three pumps P and are linked by connecting rods in
the uscal shaft C. The condenser D with air pump is situated at the back. S is the main steam pipe which besides
leading directly to the slide cases of the cylinder, communicates by branch pipes S1 with the
slide cases of the low-pressure cylinders B, the commumication being governed by the apparatus shown fitted with a plunger, the stem of which butts against a lever $F$. To this lever is jointed another loaded lever
$G$, the joint having a butt, indicated by the dotted

line, so that G is free to descend, but when it is raised
it causes F to rise. The lever G is connected by a it causes F to rise. The lever $G$ is connected by a
chain passing over a pulley to a counterweight sus-
pended over the accumulator, so that when the chain passing over a pulley to a counter when the
pended over the accumulator, so that when
accumulator rises beyond a certain point, raising this counterweight, the lever $G$ descends, and when the
accumulator descends the counterweight also descendaccumulator descends the counterwelehtase
ing causes the lever $G$ to rise. To the ever $F$ is linked
a slide $K$ which governs a port opening to the branch a slide K which governs a port opening to the branch
pipes Sl leading to the low pressure cylinders. At the
side of the water cylinder E is a piston slide H , which pipes S1 leading to the low pressure cylinders. Ahich
side of the water cylinder E is a piston slide H , which
governs communication between the cylinder E and governs commumication between the cylinder E and
either of two pipes $\mathrm{E}^{1} \mathrm{E}^{2}$ the one $\mathrm{El}^{1}$ being a pressure pipe communicating with the discharge pumps $P$, and
the other $E^{2}$ being a discharge pipe for relief of pressure.
2443. Consuming Suoke and Economising Fuel, $J$.
Terapemay.-Deted 16 th June, 1850 . 4il.

A perforated block or grating $A$ is placed between
the ends of the fire-bars qud the bridge, the perfora-

tion being preferably conical and smallest at the top.
Aiv is admitted through $A$ and causes the ignition of the gases.
2446. Preparing and Decolouring Jute, China GRess, de., or without the addition of other suitable chemical
substances. 2447. Inda-RUBBER BANDS OR Cords, C. Kessele:-
Datel 16th June, 1880 - (A conamuanication from the

This cot proceceded with.) in manumeturing india-rubber bands or ropes by means of a machine, such bands or ropes
having an insertion of rope or twine of hemp, cotton,
hather, flax, jute, or other suitable material, or even leather,
metal.
2448. Thansmit iting and Accelvrativa Motion, $A$.
M. Clauk:-Deted 16th Juhe, 1850. (A cominumica-
tion from J. Schaficld.) ©d. termittent or reciprocating motion. The frame A $\left.\right|_{\mathrm{m}} ^{\text {supports standards } \mathrm{B} \text { with holes in which the rod }} \mathrm{m}$
with sheaves $b$ revolving on pins. Groups of sheaves
E are fixed on opposite parts of the frame A. F is a rope or chain whose ends are made fast to the
standards B at $d$, while the rope itself passes over the standards B at $d$, while the rope itself passes over the
sheaves $b$ and $E$ The bight of the rope is passed over
the sheaves $f$ and along bar $G$, which may represent

## (2448

the keel of a steam boat, while $g$ may be the floats their full surface when moving in the other. When oppose
the carriage D is moved a short distance by the the carriage D is moved a short distance by the rod C
which is attached to an engine the floats move through a much greater space, and as the rod C is reciprocated,
a reciprocating motion is imparted to the floate or proa reciprocating motion is imparted to the floats or pro-
pellers $\frac{7}{}$ If the bight of the rope be passed round
pulley H , motion will be imparted thereto on the forward movement of D D through the ratchet and pawl
arrangement, while it will remain stationary on the arrangement, while
return stroke of D.
2449. Unbrellas and Sunshades, A. M. Clemk--
Dated 16 th June, 1880 . - (A communacation fiom F. M. C. Forraleseche.). $6 \pi$. oint uniting the ribs and stretchars of springs
and jointed and acting in such manner as to press the ribs
applied
and stretchers against the stick when the umbrella is closed. Secondly, in an internally grooved rumner
notch in combination with an inner split tube for retaining the joint pins of the stretchers, and uniting
the same to the rumner.
2450. Layps For Sewing Machines, R. Bowne-
Dated 1 Tht Hune, 1880 - (Not proceded with.) 2 .
This consists in enclosing the light within a metal covering containing upon one side of it a circular
opening, in which may be placed a lens; within this case or covering upon the opposite side of the light is
placed a reflector of metal or glass, pivotted so that it can be adjusted to any angle to throw the concentrated
light which passes through the opening containing the lens upon any object within focus.
2451. Receptacles for Powders, Matches, sce. $R$. Bowne--Dated 17th June, 1880,-(Not proceeded
uith.) $2 d$. This consists in forming a box or case, made of wood,
metal, or other suitable material, in which is placed a false bottominclining npwards,
of the box, thus forming the box at that end or side
shallower than elsewhere, so that the contents can move shallower than elsewhere, so that the contents can move
up into 2452. Metallic Fenders, R. Roberts.-Dated 17th The front and sides of the fenders are con
a series of detached panels or portions, which are 2456. Washivg Woollen Fabrics, $J$. Wetter--Dated
17th June, 18s0.- $A$ communacation from N. Hennemann.) 6d.
The machine consists of a metal trough lined with wood for the reception of water or lye, and of several
(preferably) pairs of rollers placed above the trough (prd forming a series of pairs, the lower rollers of each pair being driven direct by means of a belt or belts or
other suitable gearing, whilst the five upper rollers are other suitable gearing, whilst the five upper rollers are,
set in motion by their cerresponding lower rollers, 24.56

upon which they rest with their full weight. For the
further guiding of the fabric, guide rollers (preferably two) are placed in the above said trough through which
the fabric passes. Between two consectiv the fabric passes. Between two consecutive pairs of
rollers is placed a waterpipe provided with perforations or an equivalent appliance for conveying water
to the fabric when required to the fabric when required.
2457. Levers for Actuating the Brakes of
Tramcars, "de., E. W. Lemm.-Dated lith Juhe, A handle A is pivotted to the projecting arm of a socket piece B through which passess a spindle C having
at top an enlarged piece with teeth to gear with

corresponding teeth on a piece pivotted to lever A.
By lowering $A$ the teeth engage, when $A$ is revolved By lowering A the teeth engage, when A is revolved
and imparts motion to the spindle C , on which is a
toothed wheel, which toothed w
the brake.
2460. Low Water Alarms for Steam Generators,
S. and $H$. $N$. Biclutons June, 1880.-(Not proceeded vith.).) $2 d$. This relates to a low water indicator, in which a opening a communication with a whistle.
2463. Davits for Carrying and Stowing Ships'
Boats, J. W. D. McDonald-Dated $18 t h$ Jtare, 1880. -(Not proceced with.). $2 d$.
The davits are maiecs of suitable
material, and duly bolted to two pither for part of their material, and duly bolted together for part of their
length, and for the lower part they are spread out, so length, and for the lower part they are spread out, so lugs or brackets stepped on the rail or other convenient
part of the ship. On the top of a stanchion, placed part of the ship, the feet of eech davit, are pulleys,
midway between
over which passes the topping lift for the davits,
which is secured to the davits at the top of the sprend-
out legs thereof, and is worked in any convenient way. 2458. Purifying and Softeniso Water, G. Best.-
Dated 17 th Jume, 1880, Gd. The drawing shows a vertical condenser closed at top, where there is an inlet cold water pipe A, at a
suitable distance below which is an inlet steam pipe C,
and between these two is a sieve or strainer B. Near
릊




 matters.
2462. Expansion Gear of Steair Exoinés, A. Dobson.

- Deted 1Sth Jund, 1880 , Gil









 upon a snup or pino on the olose piee or key by which
the lose piece or key is thrown out of the slot or


 antived at the carbolanaouns point; thiss materal is
then mixixed with water of the saime weight. Thito the the

 this new charygis traatod int the same mamner as the

 oi sulthate of zine t tontewater, whiten shouldbo aboud To the second named guantity of faccharino bisulphate
of lime is is added to to the extent of about too
the





rise ana lifts the ball the weige is withdrawn, and
the vald
 a friction roler, but it it may have its end next the
wedge simply rounded.
The phe pin $B$ provents weanger turning round.


A partial yanaum is produced within the mixing

 2470. Fastraves fon Betrs, strups, Cnavars, ice,
 from all springs or other means of presure.

2471. Cune 2471. Cavs or Vessels, W. B. Williemson.-Dated
18th June, 1880. (Not procedal urith.) $2 d$. of parts for making a liquid and air tight joint between the cover and can, or box, case, and barrel, and also of
appliances constructed for fastening the cover to and appliances constructed for fastening the cover to
unfastening it from the said can or box, or case. 2468. Apparatus for Telephonic Sigallino, G. E. This invention relates to that portion of the apparatus used for automatically controlling the connections and
effecting the in connection with a toothed wheel and engaging lever. In the front view shown is a vimrating ever
mounted on a centre in the case B terminating in a
hook or support to carry the receiver C . A binding
serew and relay D to bring into operation a bell is
placed in circuit with line, when A A in in a certain
 postron in line under other conditions, the bell or
placel in
signalling device being then unt off Fis ainother ribrat.
s. signaling aevice beent parts are anshown, is is in contact
inglever which when
with b binding screw, placing transmitter in circuit.


Ordinarily the motion of A is toorapid, and this inven.
tion is intended to obviate this difficulty, which is thus accomplished. A spur pinion fast on a spindle
is carried as shown. A segmental rack engages this
 On the spindle is an escape wheel, the teeth of which
engage the pallet of an anchor carrying a pendulum, engage the pallet of an anchor carrying a pendulum,
the bob of which may be varied in position to regulate
the velocity of motion. the velocity of motion
2472. Furterise Water, G. W. Darsom.-Dated 1sth Jhene 18so. 6 .
The fitering recetace is itted with a four-way
 on each side, adapted to reverse the currents of water
n the filtering receptacle without shutting off the 2472

inlet or discharge openings. The receptacle $A$ is ifled
vith filtering materina and is comnected with with filtering material and is connected with pipes C ,
to which is secured the four-way cock $G$ Goparated by to which is secured the four-way cook G operated bya
handle 1 so ast orverse the flow of the liquatid trovigh
A when roauired to remove the sediment from the A when required
filtering material.
2473. Reardich Machines, C. A. Durall and T. HosThe first part consists of novel mechanism for con-
trolling the switch, so that any desired number of the
 peing operated by the rollers on the rake arms in their
 for cuasing the rarkes to sweep the platiorme shoowtin in
dotted lines; D is the tail-piece, by which the switch
 are rollers on the rake arrms; $F$ is the spring, catch,
which holds the switch in the last-named position

untill locked; $G$ is the tappet piece fixed to the spindle
11 , and projecting partly across the path of the
 arter a ronller has prussed ; $J$ is the pere plinder having
ratehet teeth on

 3,4, and 6 indicate the number of rakes which are to
sweep the platform, ass in in 1 I in 6, \&c. Fig. 3 shows an arrangement for facilitating, the rrasing of the
finger bar for transport. $A$ is the driving wheel; B is
 to the main frame. The finger bar is shown in dotted
lines in the linesis the the raised position C1, and the platform wheel
shited to the axle on the main frame for its recep-
tion, D1 2478. Matches, W. R. Lake.-Dated 1sth Jme, 1880.
 ceated orith).
This invention is designed to provide matches in
blocks of prismatic form, the separate matches being
made by
mutting b block of wood with asw or mawin
such ninner that such a manner that each match remains attached at
 2474. Glazing Hobticultural Buldisas, w. G. The smhsh barra A Are notched so that the panes of
glass may bed flat upon them. The pares B are

clamped to the sash bars by screws C , dished rings
being interposed between the screw heads and being interposed between the screw heads and the
gaase their dges coming against the marrins of the
panes of glass. The panes are further kept in place by
 In hoists having a number of stories, at the bottom
and top rollers are fixed to which are attached belts of canvas, wood, or iron lattice, or other suitable material
the width of the hoist. The cage of the hoist is bethe wid the tho lengthi of the canvas or orther is belts.
the rollers are contected th ropes or chains, and ares so The rollers are connected by ropes or chains, and are so
arranged that in whatever pooition the cage stops, the
entances form arranged that in whatever position the cage stops, the
entrances from the ther rooms are blocked with the
2482. HEative, Habdestig and Tearpritiga Stekl Petroleum spirit passes by pipe 2 through the shell
of cylinder 3 , within which is an axis with lags to receive a lamp wick. The axis is revolved by means
of a pull


gauze sheets in the domes above the cylinder, and
through pipe 8 to the receiver 9 to which more ais is supplied bp pipe 10. TTe gas and ani is burned on the
surface of wire gauze at 9 The wire from swifts 13
 is tempered or hered metal plate 15 , whereby the wire
passes to the creel 16 . passest the the creel 16 .
2484. Rbeclatitg Adission op Stearto Crindiers, mexication from G. con Brochoreski.)-(Not proThis consists in replacing the slide valve now in use by a new or improved slide valve, and in controlling
the exectric roo-enclosed or not in a tube-by a
the spring or an oscillating click.
2485. Coupureses.
 The end of the carriages are provided with hooks or
catches somewhat of the form of a harpoon or harrowcatches somewhat of the formo of a hardoon or hatrow.
head, an extension from which is made to run freely head, an extension from which is made to run freely
on a pin an upwad direction The one hook or
catch ponsists of a single bare, whilst the other consists of double bars with a space obteteene then sonsists to
allow of the single bar-hook or catch catching or
ald allow of the single bar-hook or catch catching or
coupling withint ho double one when two carriages are
pushed against each other.
 This consists in in combining the tube and drawing rollers in such manner that they shanal revervive dogething,
ond so avoid what is known as "false" twist 2488. Stoppers for Bortues, J. Lamont.-Dated 19 th Jume, 1880 . $6 d$.
This relates to internal stoppers, and it consists of a conical stem A , round the lower end of which a groove
is formed to receive a tube of india-rubber D . The

## 2488


larger end of $A$ is recessed or made hollow so as to
make the opposite end heaviest, and thus facilitate its make the opposite end heariest, and thus faceilitate its
entering the neck of the bottle from the inside in its entering the neck of the bottle from the inside in ito
proper position to close the mouth.
248. Dryse, Sovis,
 This consists in a rectangular chamber, through
which hanted air is fored, und through, which the
material is passed sy means of endiess cloths.

 such a manner that they may act simultaniously on
the paste to be moulded, one to mould the pie, and the
other to lid it. 2493. Bicreler Lamp, J. Luces.-Dated 19th June, To the upper portion of the body of the lamp two
semi -c-clin $\begin{aligned} & \text { trical forms are arranged in a horizontal } \\ & \text { line and extend }\end{aligned}$ line and extendinnt the wiarthn of the in amp, hor neartaly
so. These are connected together the means or so. These are comnected together by means of a hinge
or joint tat the top. One of the forms is securely connected to the body; the ofther is securels securrely cond to
the dor, whinh is the front of the lamp, the door
being locked the door, Which is the front of the lamp, the door
being locked by eng
base of the body in two 2499. Ivjectors, \& Borle.

The part A has four branches thesteam cone B, and thereis a diaph of whagm in the the middile
the other end of which is turned to fit a part D in
which the reeciving cone and overllow orifice and
and passages are formed, and the lower end of this part is
tormed to fit a cone in a cap E screwed on to one of
the banhe of the branches of A . X is the overflow orifice, such
overflow passing through a hole in the end of cap E , which may be
2499

closed against admission of air by valve F pressed
against its seat by spring round its spindle. The
Theciving receiving cone branches into two passages at a right
angle to it, and enters a space between Cand D and the
cap F cap $E$, and passes througha a banch of $A$ to the pipe $W$
which
whyeys it to the boiler. $V$ is the pipe supplying the water

A. Li. Wood ( bar inel containing liquor $\mathrm{B} ; \mathrm{E}$ is a saving or overflow chamber having an open-mouthed
conical neck adapted to fit within the bunghole, is a hot-air pipe leading from a coiled pipe loeated within a heater, into which steam is forced through a
pipe. A pump or air distributor is used, by means of

which the air is fored through a pipe to a coiled pipe,
where it is heated and Which the air is forced through a pipe to a coiled pipe,
where it is heated, and passes ont throug the hotair
in
 may be insertetd through the bunghole of the said
barrel. $H$ is an outlet pipe leading from the top of the saving or overfow chamber F , and terminating within 2563.
 This fastening consists of a frame, to which a pronged tongue having a looped end is jointed at the
top, the bottom of the said frame being furnished with an, open loop or pooket, the edge or parto of the
atocking, dress, or other article being secured to the fastening
2589. Paccivg Stear, det, A. Sterart and A. Hunter.

The bed-plate A carries over it all the working parts
below the ordinary vibrating or raising and lowering below the ordinary vibrating or raising and lowering
pattiorm B on which the ackss are sett be befled. In centre of $A$ is a cylinder $C$, fitted with a plunger
actuated to tilt the cask when filled. A large vertical eye or annular fange formed on $\mathcal{A}$ anries a worm.
wheel D, driven by worm E, and fitted with inclines $X$

to actuate the vibrating platform B . The top of A is
formed with an annular
ring of haved rim, fited wood with a
 hydraulic eclinder, and serves to tilt up the filled casks
for convenience of removal from the phattorm B. The for convenience of remoral from the platorm $B$. The
piston in the cylinder is seured to a disc $G$, which, piston in the cylinder is secured to a disc $G$, which,
when raised, comes in contact with the bottom of the when raised, comes in c
cask and tilts the same.
2630. Provisiox Boxss or Casss, de., F. S. Colas.-
Dated 2sth Jeme, 18so. Gd. This consists in the insertion of a wire between a
box or case and the flange of its cover, which wire is fitten at its end with a button or pine, and used to tear
open the flange of the cover of the
2637. Conssis or STAss, W. R. Lake - Dated 285 th
June, $1880 .-$ (A communication fiom M. K. Bortrece)

This consists of a corset or stay in which the breast portions are cut away, and the sures of sure
ports are provided with guides or fastenings, adapted
oreceive to receive and hold in position, vertieall, adjustable
breast pieces, which are not otherwise permanently breast pieces, which are
secured to the said corset.
4130. STEERIsG Apparatus for Vessels, A. M.
Clark: - Dated
1lth October, 1850 - (A communication from J. F. Guild and A. E. Knight.)-(ComFig 1 is a plan view of the steering apparatus, and Fig 2 is 8 a vertical cross section of the steamm and liquid
cylinders. $A$ is the stem cylinder and $B B$ the liquid cylinders placed at opposite sides of the cylinder A. These cclinderer have separate pistons, the rods of
whieh extend through the heads at both ends and are
 eves, and panectaround tixed cosesheades II, and alang
thes deck to the excentric C, from which chaths or
the the
ropes pass around a quadrant Dt that is fixed on the rudder post, the end of of the chains or ropes being
ronnected to the fore arm of the rudder-head or shaft,

and provided with inlet ports to the cylinder $\mathbf{A}$, and
exhaust port. Above the steam chest in suitable
ent bearings is a cross-shaft carrying the stering whee
G1 G1, and aso carrying excentric orom whing woed
extend to a crosshead on the valve rod, so that the

4130

valve is moved by operation of the shaft. The
cylinders B are provided with passages to allow the
 4320. Sk ate Atrachanert, H. J. Haddan.- Dated Brevster.)-(Complete.) 4d. This consists partty in the combination of a plate
having inclined sits, a slide having slots, and clamps
heving suds, with 4345. Spirir Levers, T. W. Vaughan and A. Clark: The level is provided with a longitudinal central tube B and a transserse tube C for a plumb, both of
ordinary construction, and opening equally to botly

sides of reflectors pivotted or journaled above the
tubes, so that the angle of the reflection may be be tubes, so that the angle of the reflection may be
changed from one side to the other, and thrown outchand to any desired degree sho as to render the
warde
image of the bubhle
distinct the thible tube is enveloped by a bright reflecting surface $H$. Eis one of the reflectors.

## CONTENTS.

The Engineer, January 21st, 1881.
The Bureau Veritas and Mild Steel for Ship. page BUILDING PURPosES. (Ilustrated.)
MAchise Guns. (llustrated.) .. Legal Intelligencee-
Re Martin's Patent
Re Napier's Patent
Railway Matters.
Railway Matters.:
NOtes and Memoranda
Miscelinel

Gear. (Illustrated.) .. .. .. .. Expansion
BeLs's Photophone. (Illustrated.).
Institution Co Civil Engineers
Letters to the Editor-
Swar's Electric Lamp
ChEar Patirn
Cheap Patents
Light Traction
Apporntment of City Engineer in Cork $\ddot{\circ}$
KINCHEN Boiles Explosions.
Explosion of Heated Waten
Explosion of Heated Water
SNow and Floods in London
Snow and Floods in London
The Metropolitan Rallway
Quivtuple Telegraphy ..
Quintuple Telegraphy
Steam and the Steam Engine. By H. Evers .
Death of Mr. Whiliam McNaught .. ..
 Borles
trated.)
Thotilating and TASKER's Equilibrium Gas Governor.

 Birmingham, WOLVERHAMPTON, aND other | Districts |
| :---: |
| Notes from lancasishire |


Notes from Scotland..
Notes from Wales and adjoining
.
 ABSTPACTS
trated.)
P
Paragraphs-
The Belgian Steam Cable Towing System
Naval Engineer Appointments
Property in Inventions
Property in Inventions
The Export Rail Trade
Leeds Civil and Mechan
Leeds Civil and Mechanicai Engineers' Society
Snow Clearing in Milan
The Poetry of the Locomotive
Steam Boiler Explosions in Germany..
Fatal Boiler Explosions
In



[^0]:    6 show cross sections of the lock showing the cartridge carrier M N, with the movable wall $N$ in the two successive positions on opposite sides of the breech
    of the barrel. Fig. 5 for the reception of cartridges- 6 for firing. We do not attempt to give further details. 6 may be seen from what is said that the action may be described generally as a very simple and ingenious applicaalternately, in motion to work two reciprocating actions namely, the advance and withdrawal of the lock, and the entrance and extraction of the cartridge. There are only two springs, viz, the $V$ firing spring $L$, and the spiral and the acting on the movable wall $N$. This, however surfaces, not by other springs. The extractor does

    J, by which the cartridge is fired. Figs. 5 and not close or release its hold, for the cartridge- $\mid$ is as follows. It should be understood that all the arms not close or release its hold, for the cartridge-
    rim is slid in bollows. It should be understood that all the arms way. Speaking generally of this system of action, we 0.45 in . bore. see no fault to find as yet, but of course there is other systems other systems. To us it appears to promise well; we may Gardner has adapted his system to five barrels to suit tr. Gardner has adapted his system to five barrels to suit the himself he would his, he considers, has such perfect action that he would undertake to work it turned over on either side, were pressed by hand and downwards if the cartridges were pressed by hand, so as to do the only work which depends on gravity. It will be observed that we have spoken above chiefly with a view to rapidity of action.
    This constitutes the first feature in the programme, which

    Programme for Competitive Trial of Machine Guns, (1) For Rapidity. - The following trials to be carried out from to be noted. ${ }^{*}(b)$ Fire 1000 rounds. Time to be noted, including all delays. (c) Ascertain the number of rounds that can be fired in three, five, and seven seconds. (d) Ascertain the number of continuous rounds that can be fired by one man without assistance.
    Time to be noted. (e) Ascertain the number of rounds that can Time to be noted. (e) Ascertain the number of rounds that can
    be fired by one man in one minute without assistance. The above may be fired by inventors or their assistants.
    (2) Accuracy vith deliberation.-(a) The guns to be mounted on their own carriages, and one barrel of each fired for accuracy; Misfires and other accidents to the cartridge will be noted in all the

[^1]:    South Kensington Musedu.-Visitors during the week ending Jan. 15th, 1881 :-On Monday,
    Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$. to 10 p.m., Museum, 11,$483 ;$ mercantile marine
    building materials, and other oollections, 3734 building materials, and other collections, 3734.
    On Wednesday, Thursday, and Friday, admission 6d., from 10 a.m. till 4 p.m., Museum, 1687 ; mercantile marine, building materials, and other
    collections, 387 . Total, 17,291. Average of corresponding week in former years, 16,209 . Total
    from the opening of the Museum, 19,649,961.

