## THE INDICATOR

No. II.
Indicator's for High Pressures.-If diagrams for very high pressures are required-for instance, with engines worked explosively-the strongest spring graduated to fifteen atmospheres is too weak. In order to make experiments at a pressure of forty atmospheres with the
usual springs, Messrs. Kraft and Sohn supply the tapered piece $d$, Fig. 2 -see vol. xl., page 415 -with a bore having a diameter of 12.66 mm ., $=0.5 \mathrm{in}$., in which a sorresponding piston travels. At pressures of about 100 itmospheres, the indicator is supplied with a separate cylinder, of which the diameter is $8.17 \mathrm{~mm} .,=0.32 \mathrm{in}$.
oiled. Having screwed a fine-pointed hard lead-pencil|communication with the open air ; the spring, having into the loop of the lever $p$, and fixed the paper, the atmospheric pressure on the top and bottom, is then neither regulation of the paper-drum is the only point left. Sup- compressed nor extended. This position of the piston is pose that the spring of the paper drum is in its unstrained position, it has to be bent in order to give the drum a correct and quick return after having been turned by the string. This operation is performed by lifting off the the pull of the string has reach the desired tension In his position the nut is firmly serewed against the . In by which means the latter is secured to the spindle Berere the barrel is replaced on the pulley, its interior, as well the exterior of the cap, must be oiled, in order to facilitate the exterior of the cap, must be oiled, in order to facilitate
the lifting up of the barrel during the motion. After the


DARKE'S INDICATOR

The indicators of these three sizes are sold with springs of

| Indicator piston. | Diameter. | Area of the piston in proportion to that of No. I. | Limits of load in atmospheres for the four springs of each instrument. |
| :---: | :---: | :---: | :---: |
| No. I. | $\begin{gathered} 20 \mathrm{~mm} . \\ \stackrel{=}{=} . \\ 0 . \mathrm{in} . \end{gathered}$ | 1 | $\begin{aligned} & -1 \text { to }+2 \\ & =1 \text { to }+5 \\ & -1 \text { to }+8 \\ & -1 \text { to }+15 \\ & \hline \end{aligned}$ |
| No. II. | $\begin{gathered} 12 \cdot 66 \mathrm{~mm} \\ \overline{\bar{\Sigma}} \\ 0 \cdot 5 \mathrm{in} . \end{gathered}$ | $\frac{1}{2 \cdot 5}$ | $\begin{aligned} & 0 \text { to }+5 \\ & 0 \text { to }+11 \cdot 5 \\ & 0 \text { to }+20 \\ & 0 \text { to }+37 \cdot 5 \end{aligned}$ |
| No. III. | $\begin{gathered} 8.17 \mathrm{~mm} \\ =.3 \mathrm{~m} \\ 0.3 \mathrm{in} . \end{gathered}$ | $\frac{1}{6}$ | $\begin{aligned} & 0 \text { to }+12 \\ & 0 \text { to }+30 \\ & 0 \text { to }+48 \\ & 0 \text { to }+90 \end{aligned}$ |

Fixing and Management of the Indicator.-Notwithstanding that every steam or hydraulic cylinder ought to have a proper entrance for screwing in the indicator, it is very seldom that this is found, even in new engines. The indicator is therefore always provided with a steel tap corresponding to the pitch of the piece $i$.
The proper place to put the piece $i$ on the cylinder will be determined by its giving the most convenient arrange ment of the indicator, and the most perfect communication between the cylinder and the indicator-piston. Hence it must not be at a place within the stroke of the piston. The indicator must accurately report the general pressure in the cylinder, and therefore must not be placed near the ports, where the steam is rushing out or in or at any part where condensed water may be found. The system of coupling the top and bottom ends of the cylinder together by pipes leading to the indicator, in order to avoid the little difficulty of having to remove the indicator from top to bottom, and bottom to top again is a very great evil, especially at high speeds, as the sterm pressure will be seriously diminished by passing through these long and narrow tubes. To put another spring into an indicatornarrow tubes. To put another spring into an indicatorcylinder, the cover is to be unscrewed, and the parallel
motion, the pencil, and the piston to be lifted off. The motion, the pencil, and the piston to be lifted off. The connection between the piston-rod and the pencil-lever is and the latter replaced by the new spring Greatserewed, must be given to insure the new spring. Great attention and to see that the new spring is Before replacing the piston in the cylinder, it ought to be
termination of the experiment, the spring must be restored o the unbent state.
Taking of the Diagram.-We will now suppose the indi-cator-paper- $3 \frac{3}{4} \mathrm{in}$. by 7 in .-to be placed on the cylinder, and the important matter of transferring and reducing the


KENYON'S INDICATOR.
motion of the steam piston to be completed. We have then to describe briefly how, when the indicator has eached the normal temperature, a diagram may be taken. The plug of the cock is so turned that the indicator is in
and to repeat this several times in order to obtain a good mean value. If it is important to know the effect of changes which take place in the engine during the motion the diagrams are best taken on the same paper, in orde to make a comparison. It will be easy for an experienced experimenter to change the paper without stopping the


CASARTELLI'S AND POTTER'S INDICATOR.
motion of the indicator, even at high speeds. But it is much more convenient to make use of the detent motion with which most indicators are supplied, and by which the motion of the paper drum is completely stopped without breaking the connection between the indicator and the engine. Such detent motions will be described later. It
is well worth while to take a great number of diagrams in order to have ample material for subsequent study. The diagram must contain on its face the most important facts, which are necessary for its calculation. These are (1) the gross and effective boiler pressures; ( 2 ) the point of cut-orf
(3) the number of revolutions; (4) the vacuum ; (5) the dimen(3) the number of revolutions; (4) the vacuum ; (5) the dimen-
sions and position of the examined engine ; (6) the scale of sions and position of the examined engine ; (6) the scale of
the indicator spring ; ( 7 ) the areas of the steam and exhaust the indicator spring ; (7) the areas of the steam (8) the cubical ports, and of the inlet and outlet passages; ; (8) the cubical
contents of the clearance spaces. We will now go on to describe some other types of improved indicators, each having special merits of its own.
Richards Indicator, with Darke's Parallel Motion.-This
indicator was illustrated in our impression for March 5th, indicator was illustrated in our impression for March 5th 1880, but we reproduce the block on the preceding page to
make this series of papers complete. Fig. $5,6,7,8$, and 9 are drawings of this indicator, as it is made by Messrs Elliott Brothers, Strand, London. The indicator cylinder is accurately bored, and the piston is made an exact fit
in the same manmer as we have described in Kraft's instrument. The piston rod is firmly fastened to the piston, and passes through a hole in the cover. The construction of the parallel motion will be seen to differ very
nuch from that of Kraft's instrument. This motion is formed by a single light steel lever, carrying at one end a crosshead, moving upon steel centres. To this lever the the piston rod head, which jaw supports, between centres, the varying angle of its motion. The metal pin forming the pencil is carried by a block sliding upon the other end of the lever, the pin being kept in a straight line, parallel placed between the sliding block and the paper drum. The pin is kept against the paper by the elasticity of the lever The paper is drawn through a slot in the paper drum from taken. In order to stop the paper drum without breaking off the connection with the engine, the indicator is supplied with a detent motion shown in the drawing. This consists of the pawl M turning on a pivot, and kept from engagL. On displacing the spring, the pawl will fall into gear with the ratchet, and prevent the recoil spring rom dragging the paper drum back. The drum can be started again by replacing the spring and pulling the
string. This indicator is specially constructed for examining engines running at high speed. In the high-speed ing engines rumming at high speed. In the high-speed indicator the piston is $\frac{1}{4}$ square inch in area only, and the
diameter of the paper drum and the movement of the diameter of the pap
pencil are decreased.
Casartell's's and Potter's Indicator:-Fig. 10 and Fig. 11 are drawings of this indicator, as it is made by Mr. Casartelli of Manchester. Fig. 11 shows the manner in which the unscrewing of the top part of the indicator is to be
managed for changing the spring and cleaning the cylinder. The standard and the parallel motion are in one piece on a socket, enabling them to be rotated round the cylinder without moving the latter. The indicator piston, and the interior construction of the cylinder are the same as in the
two other indicators already described. The new stop two other indicators already described. The new stop
motion or detent B, by which the actuating cord is held mast, is in one piece with the pulleys, and consists of an excentric on the same shaft as the handle B. By moving the latter from the left to the right, the string will be
pressed against the pulley and thus be held fast. The pressed against the pulley and thus be held fast. The
parallel motion is shown in Fig. 11. If the points $a, b$, and parallel motion is shown in Fig. 11. If the points $a, b$, and $c$ are set in the same straight line, the point $a$-the
pencil-will move in a straight ,ine parallel to the piston rod. For the lines $e a$ and $d b$ are always parallel to each other, therefore $\frac{c d}{c e}=\frac{c b}{c a}$; hence if the point $b$ is describing a straight line, the point $a$ must do the same. The pencil will thus move in a perfectly straight line, and if the parallel to each other, the straight line described by the pencil will also be parallel to these two axes. The fastening of the indicator to the cock-piece is effected in the same way as in the Richards indicator, by the differential motion the tightening nut $g$
Kenyon's Pistonless Indicator:-This instrument is made
by Messrs. Storey and Sons, of Manchester and is by Messrs. Storey and Sons, of Manchester, and is
shown in Fig. 12. Its most striking peculiarity is the shown in Fig. 12. Its most striking, peculiarity is the rod, which are replaced by the Bourdon tube, well
known to every engineer from the ordinary Bourdon known to every engineer from the ordinary Bourdon
pressure gauge. It is a coiled oval tube, of which the form changes under changes of pressure. One end
of this tube is open and connected with the steam pipes, of this tube is open and connected with the steam pipes,
and the other end is closed. The higher the pressure, the more will the oval section of the tube approach to a circular
one ; it will therefore widen the breadth of the tube, and increase its radius of curvature. It is this tube with which Mr. Kenyon replaces the usual piston and piston rod.
When the tube is subjected to the steam pressure, it must change its form in proportion to this pressure, and this movement of the tube is communicated to the pencil by
the parallel motion, as shown in Fig. 12. The parallel motion is placed on a socket enabling the pencil to be moved to and from the paper drum.

## THE PALLISER GUN EXPERIMENTS

The recent storm and the state of the ground at Erith have, among other causes, prevented the double$\mathrm{l}_{\text {oaded trials of }}$ Sir William Palliser's 7in. gun being proceeded with. We have now received the following information with regard to them:-It is intended to
resume them as soon as the weather will permit. The projectiles will consist of a flat-headed shot in the rear and a conical shell in front, as shown in the engraving herewith. It has been considered by some that the shell is likely to break up, and thuts add to the strain upon the
gum. In order, therefore, to meet with every possible requirement, a shell should be the front projectile in future the shell by means of a large hollow central pluge to the shell by means of a large hollow central plug; into this plug is screwed the pressure gauge, which is thus protected by the hollow ring of the plug. The rear projectile is made flat-headed in order that when it eventually mpinges on the front projectile in the earth butt it shall not injure the pressure gauge. It is hoped that the pres-
sure exerted by the front charge on the base of the shell sure exerted by the front charge on the base of the shell will be ascertaned.
will be fired will be a 22 lb . charge in the rear and a 14 lb . charge in the front, both of pebble powder ; the rear shot charge in the front, both of pebble powder ; the rear shot
will weigh 100 lb ., and the front shell 85 lb ; both prowill weigh 100 lb, and the front shell $85 \mathrm{lb} . ;$ both pro-
jectiles will be fitted with gas checks and studs. Should the gun not burst under this test, the coup de grace will be given with 24 lb . of powder in rear and 16 lb . of The gua has we understand already beene.
the gun has, we madrstand already been sacked charg, having been fired with excessive experimental charges of R. L. G. powder, and 180 lb . shot, besides the late course of double loading. We do not ourselves expect that it will go through the proposed tests wihou bursting In fact, we put forward this notice of what is proposed in
order to call attention to the subject, and to invite sugges-

There were elected within the year 80 members of al classes ; there were lost by deceases o members of al classes, and by resignation or removal from the registe 40 members of all classes. This effective increase of 32 is highly satisfactory, considering the position in which engineers in general have been placed during the pas year, being fully equal to the average annual increase in the Institution. The following deceases of members of the Institution have occurred during the past year:- ${ }^{\text {Tin }}$
Thomas Bouch, Edinburgh ; William Clark, London Thomas Bouch, Edinburgh ; William Clark, London
Thomas Elwell, sen., Paris ; Thomas Hawthorn, Gates Thomas Elwell, sen., Paris ; Thomas Hawthorn, Gates-
head ; William Ebenezer Marshall, Leeds ; General head; William Ebenezer Marshall, Leeds
Arthur Morin, Paris ; Lewis Olrick, London.
Of these General Morin, director of the Conservatoire Institut Metiers, was an honorary life member of th Institution, having been so nominated by the council on the occasion of the first meeting of the Institution in Paris in 1867
The following gentlemen have resigned their membership in the Institution during the past year:-William
George Beattie, London; John Addison Birkbeck, George Beattie, London; John Addison Birkbeck,
Middlesbrough ; James Irving Carson, Annan ; Walter Chamberlain, Birmingham; Charles Clayton, Preston Robert Moss Collingham, Hull ; William Hackney, New-
port, Mon.; William Edward Heap, Rochdale ; Wilson

## 

proposed loading for palliser gun.
tions which may be valuable, rather than criticisms or objections which after the trial will come too late.
We will then ourselves take this opportunity of expressing our opinions before the event, and may say at once arry out programme is not exactly the one that we should ressure were we in Sir William Pallisers of a shell as the ront projectile, is what the erged strongly throughout; but it is just because we lay such stress upon each of these features that we should modify the programme now proposed. We may say briefly, that the common shell in the Arsenal shows evidence of such wedging, grinding, and violence, that we believe it must have had a share in the actual rending of the Thunderer gun. Our reasons for this belief we have already fully explained.
Sir W. Palliser, we think, does not agree with us; hence he embodies both features in the very next trial without hesitation. We should repeat the last experiment with pressure gauges first, in the hope of giving a value to all the past experiments which they cannot otherwise postrain does not burst gun sufficiently to make sure that the gun cauges some stage of the past trial the higher the better, so long as the gun does not burst. This we think essential, because a burst may interfere with the register. Having done this, which we look upon as desirable from Sir W. Palliser's point of view, we should proceed to fire with a common shell in front, and as large charges as we thought our gun had a fair chance of bearing, or the pressure burst, and the shell to be found wedged and jammed in somewhat the same way as took place in the Thunderer some
gun.
ery possibly the front pressure gauge would be broken and jammed up in such a way as to show only that it had exceeded its maximum record pressure, but by how much it would be impossible to say. We lay no stress on the
flat head or the protection afforded to the gauge by Sir W . fat head or the protection afforded to the gauge by sir W
Palliser's hollow plug-see the engraving-because in the case of the Thunderer gun burst in the Arsenal, the front as check was but little deformed, yet the pressure gaug in its centre was, in a sense, destroyed, and the shel broken and jammed into the state described in The Engr NEER at the time. In short we should carry out two trials (1) To obtain a record by pressure gauge of past experiments ; (2) to re-produce the full strain and conditions of the Thunderer experiment. As many more trials migh follow, as Sir W. Palliser likes, if the gun is still whole, but this we candidly say we do not expect. If it is whole, we shall feel ourselves bound to record that as far as the conditions can be representative on a smaller scale, Sir W Palliser has repeated them, and obtained a wonderfu success. If great stress is laid on the difference of scale, and we hardly know what stress to lay onit ourselves, it is met by the fact that Sir W. Palliser has made an offer to take in hand the actual 38 -ton gun itself. He proposes to re-line he stump and fire it double-loaded at his own expense This will be done by boring out the remains of the stee tube and inserting a coiled wrought iron barrel in its place. The front part of the gun will be rebuilt upon this barrel to the outward form which it originally possessed. sir William expresses complete confidence that the gu thus altered will stand the test of the double charge.

## INSTITUTION OF MECHANICAL ENGINEERS.

The annual general meeting of the Institution of echanical Engineers began yesterday, in the hall of the nstitution of Civil Engineers, the president in the chair, t 7.30. The formal business consisted in the announce ent of the names of the new officers and members elected and the reading of the annual report of council, 1881, fron which we learn that this is the 34th anniversary meeting and that at the end of the year 1880 the total number of members of all classes on the roll of the Institution was 210, as compared with 1178 at the corresponding period

Lloyd, Wednesbury ; William Moor, Hetton ; John Edward Pearson (Graduate), Newton-le-Willows ; Thomas Dyne Steel, Newport, Mon.; James Evers Swindell, Stourbridge ; Enrique de Vial (Associate), Santander

The following gentlemen have ceased to be members of the Institution during the past year:-Henry Berrima Cuss, Manchester ; John Gillett, Melksham ; John R Griffiths, Pontypool ; Robert Grundy, Wigan ; Joseph Holiday, Bradford; Henry Kinsey, Swansea; Jame Lees, Derby; Alexander McNeile, London; William Prideaux Nash, Birmingham ; William Manfield Newton, London ; John James Trow, Wednesbury ; John William Wass, Newcastle-on-Tyne; John Withinshaw, Birmingham. The accounts for the year 1880, having been passed by the finance committee, and having been audited by Messrs. Robert A. McLean and Co., public accountants, were sub mitted to the members. The receipts for the year have been $£ 4085 \mathrm{11s}$. 7 d ., while the expenditure has bee $\pm 32257$ s. 10d., showing a balance of receipts over expendiassets were nit, the capital of the Institution at the end of the year being then $£ 13,1649 \mathrm{~s}$. 5 d . The greater part of this is invested in 4 per cent. railway debenture stocks, registered in the name of the Institution.
Referring to the subject of experimental research, the committee on the hardening, tempering, and annealing of steel-were enabled to avail themselves of a very generon offer made by Professor Williamson, F.R.S., to carry out laboratory, University College, London. Much time ha been expended upon the experiments, owing to the grea difficulty of finding any system of analysis which would give conclusive data on the particular points on which expect now to have the final results in their hands at an early date. Upon rivetted joints a long and valuable series of experiments has generously been carried out at University College, by Professor Kennedy, with his excellent testing machine ; the steel being supplied by the Landore steel Company, and the specimens prepared by the Wallsend Slipway Company, and in both cases free o thanks of the Institution are due to all these gentlemen for their kind assistance, in thus enabling the committee to conduct an investigation which they believe will be found of great practical value. The results would have already been in the hands of the members, but that it was consid ded ments on a larger scale, but embodying in fact the results of in progress, the Barrow Hematite Steel Company having offered the use of their the purpose, and it is hoped that the results of the inquiry will shortly be in a condition to be laid before the Institution.

The library of the Institution has been considerably augmented during the past year, by the books purchased executors of the late received in February frident
The at
factory. There were at the annual general meeting 110 members and 63 visitors; at the spring meeting $73 \mathrm{mem}-$ hers 73 vistors at the summermeeting 164 members and 67 visitors ; and at the autumn meeting 67 members and 66 visitors
The routine business having been transacted, the reading of papers began. We are compelled to hold over our notice of these until next week. The programme includes the fing Ping papers:- On the by M Artheres of trans mitting Power to a Distance, by M. Arthur Achara, of Genev, Cold Air," by Mr. T. B. Lightfoot, of Dartford; "On Machinery for Dressing siliciotus "Stone," by Mr. Js Dickinson Brunton, of London; "On the Farquhar Filtering Apparatus," by Mr. Hentry Chapman, of London "O M. le Baron Clauzel, of Toulon.

The business of the meeting will be resumed torday, at 3 p.m.

RAILWAY MATTERS. The South-Eastern Rail
ine to the Crystal Palace.
Тне length bored on the Tyrol side is pupwards of two two fondred metres. THE report of the London and Brighton Railway is unsatisfac-
tory, working expenses showing a considerable increase for the half tory, working expenses showing a considerable increase for the hal
year. The roof of the London, Chatham, and Dover Company
station at Ludgate-hill is now worse than ever, which is saying breat deal.
The Italian Government have decided that the St. Gothard Railway shall be united with the Italian system by the line passing
to the left of the Lago Maggiore, this being the shortest and most Os the Erie Railway on Saturday, at midnight, a passenger
train for New York was running at thirty-five miles an hour near train for New York was running at thirty-five miles an hour near
Elmira, when an axle of the locomotive broke, throwing the The postal car caught fire, and four postal clerks inside, with the expresss messenger in the express car adjoining, were burnt to death
in full view of the passengers, who were unable to rescue them. in full view of the passengers, who were unable to rescue
Eleven of the passengers were more or less severely injured.
ONE of the Indian correspondents of the Times states that the opponents of the metection of the broad gauge for the new Bhopal
triumph in the section line. It is believed that this in a great measure is due to the objec-
tions to the narrow gauge urged by the clever Begum of Bhopal. It inadequate for traffic on all except some small branch lines, and there seems to be little doubt that it will eventually become
necessary toreconstruct the Rajpootana and other important systems of railway on the standard gaug
The East Angliun †Daily Times announces that important changes are about to be made on the Great Eastern system. The
main route between the metropolis and Norwich will be via Ipswich, nd about guarter of an hour in time. A new branch from Forncett to W Wmondham will be opened on Narch 1st, which will
bring central and north Norfolk into quick communication with Yorncelt central and north Norfolk into quick communication with
brind
London, and will open up the important market of East Dereham to traders of the adjoining county. A service of express trains will be run from London to Norwich, stopping at Ipswich and Forncett where the train will divide, a portion going on to Norwich, and A very curious accident has taken place on the Midland Railway, near Oakham, blocking both lines for some time. The acci
dent, it has been ascertained, was caused by the extended jib o a heavy crane, which was being conveyed on the front portion
the train, breaking loose and projecting outwards, causing it the train, breaking loose and projecting outwards, causing it
come into contact with a signal-box at Egleton, which box it con pletely destroyed. The signalman had a miraculous escape from The force of the collision threw the wagon and the crane on to the down line, and piled all the wagons in a heap. It is fortunate
that the jib did not extend towards the other line, or a terrible collision might have occurred with the first
A MEMORIAL is at present in course of signature to the Premier
and to Lord Salisbury, as chairman of the Great Eastern Railway, urging the adoption of uniform rates on railways, without respect under, and also for piss, sheep, attle, and horses, according to
class, per head. It is also suggested that similar rules should be dopted for rates for sewage trucks and water tanks of not mo than five tons for corporations and local boards of health. It is further suggested that letters go by every train, and that weekly and merchants might with advantage be adopted, and a five-mile uniform w
The Chicago City Railway Company is making arrangements to put down an experimental section of the rope railway now used
in San Francisco, and illustrated in our pages, for motive power, to see how it will stand the test of a Chicago winter. The inventor of
the rope system is in Chicago to superintend the proposed construction. He sees no difficulties about the two points as to which curve, and (2) whether the trench in which the rope is laid would not fill up with snow and ice and prevent the running of cars. With the rope one man and an engine can do the work of three
hundred horses. The ropes have been in use in San Francisco four hundred horses. The ropes have been in use in San Franciscofour
or five years, and their utility and economy have, it is said, been
EETrHRR a lot of rolling stock is just now upon its last legs or con-
siderable increase in traffic is expected. Several heavy orders have siderable increase in traticic is expected. Several heavy orders have
recently been siven out. The Caledonian Railway Company has
ordered 1000 watrons from Mr. 500 wagons are being tendered for on account of the same company. The Lancashire and Yorkshire Railway has ordered 580 pairs of
vheels and axles from the Leeds Wheel and Axle Company, and Wheels and axles from the Leeds wheel and Axle Company, and
has invited tenders for 1500 more pairs. The Glasgow and SouthMessrs. Craven Brothers, Darnall, Sheffield, and Messrs. Baker and Burnett, Conisborough. The Scotch railway companies must
expeect heavy traffic, for the North British Company is also having 1100 wagons constructed in the Sheffield district.
Owisc to the severe weather prevailing for a fortnight past, the
works upon the Berlin Electric Line have been much retarded, and cannot be resumed until a thaw sets in. A period of four weeks
must then pass before progress sufficient can be made with the line must then pass before progress sufficient can be made with the line
to enable it to be opened for traffic. It is obvious that if insulated conducting rails are a no less necesssary part of the system than
the Siemens dynamo-electric machine, a heavy fall of snow will be a more serious impediment to the new line than tor railwweys on
the ordinary principle. TTe carrianes on the Flectric the ordinary principle. The carriages on the Electric Railway will
convey twenty passengers each. There will be seats for twelve, convey twenty passengers each. There will be seats for twelve,
and standing room for the remaining eight. The dynamo-
The floor of each carriage. The rate of travelling will be greater than that usual on tramways, and is expected to reach about twenty
miles an hour. Powerful brakes, combined with an arrangement acting on the electrical apparatus, will enadble the oontioiolal in
to bring the carriage to an almost instantaneous standstill.
A RaLLROAD enterprise, still in the preliminary stage, contem-
plates the construction of a narrow gauge road through the northpestern part of Colorado, with a possible extension to the Pacific
cold
cost. course will be nerreth-westward from Denver to the rich coolfields
south-west of Erie, twenty or thirty miles from Devver, and
throws through Estes Park, a summer resort; thence through midate
Park, and following the course of the Grande River, passing the
Eagle River and other mining camps, to Iron City, Utal. The imgediate object tis tor reach the coasfifelds, mining camps, timber
lands, and quarries surrounding this route. The ground of the route as far as the Utah boundary-line is said to haveen already examined, and the survey will be begun at once. The name or the
company will be either the Colorado, Utah, and California Rail-
road Company orthe Denver, Middle Park, and California Railroad company, ioal Company, er ther Denver, Mididde, Parark, and California Railroad
Tompany. Articles of incorporation have been filed with the
Secretary of State of Colorada. Among the incorporators are
governors Tabor and Reoth, of Colorado, D. H. Moffat, jun., president of the First National Bank of Denver, and Mr. Walcott,
manager of the Argo Smelting Works, near Denver. The capita
is fixed at $30,000,000$ dols.

## NOTES AND MEMORANDA.

The total traffic of the Suez Canal during 1880 amounted to 2026 ships of 4,3 s, 548 tons, producing a revenue of $39,750,000 \mathrm{f}$, , thus the cal
Ar the Royal Observatory, Greenwich, the duration of registered agains sunshine in the week encing the 15th inst. was 8.8 hours
age horizon during 57.2 hours ; the recorded duration of sunshine was, therefore, equal to 7 per cent, of its possible duration.
In the course of dredging operations in the bed of the Limmat,
at Zurich, some very interesting objects have been brought to light, at Zurich, some very interesting objects have been brought to light,
among others ancient coins-including fifty gold pieces of Brabant, swords, and the skeleton of a stagg of a species now extinct in
Switzerland. The piers of a Roman bridge which once spanned the river have also been laid bare. All the finds are being placed in
the Zurich Historical Museum. Historical Museum.
The following recipe for keeping lamp chimneys from cracking
is taken from the Diamond, a Leipzig journal devoted to the glass interest. Place your tumblers, chimneys or vessels, which you desire to keep from cracking in a pot filled with cold water, add a
little cooking salt, allow the mixture to boil well over then cool slowly. Glass treated in this way is said not to crack
even if exposed to very sudden changes of temperature. Chimneys are said to become very durable by this process, which may
also be extended to crockery, stoneware, porcelain, \&c. The proalso be extended to crockery, stoneware, porcelain, \&r. The pro-
cesss is simply one of anneali ing, and the slower the process, especi-
ally the cooling portion of it, the more effective will be the work A NEw microphone, made by M , Boudetin Pa, La Nature, has the general shape of a telephone on a support. It comprises a mouthpiece, in which is an ebonito plate 1 mm . thick, with a short bar of copper penetrating from its middle a short way
into a glass tube in which are six little balls of retort carbon in no a glass tube in which are six littie balls of retort carbon in
row a seond mass of copper following the last, and resting on row; a second mass of copper following the last, and resting on
small spiral spring in a case. The pressure can be varied by means . The instrument is worked with six and a Bell telephone. It is said to transmit the voice very dis tinctly without altering its timbre and without disturbing sound being $p$ roduced
Accordivg to the Registrar-General's returns of births and
deaths in London, and in nineteen other lary the week ending Saturday, January 15th, the amnual rate of mortality in twenty of the largest English towns averaged $23^{\circ} 6$ per 1000 of their aggregate population, which is estimated at more than seven and 2 half millions of persons in the middle of this year.
The rates of mortality in the several towns, ranged in order from the lowest, were as follow:-Brighton, $13 \cdot 4$; Newcastle-on-Tyne $21 \cdot 7$; Wolverhampton, $21 \cdot 7$; Sheffield, $22 \cdot 2 ;$ Birmingham, $22 \cdot 3$ London, 22.6; Leeds, 22.7; Plymouth, 23.4; Norwich, $24 \cdot 1$, , 1 ,
Mr. E. H. PlUNACHER, commercial agent of the United States,
at Maracaibo, says there is in Venezuela a sand-bank full of holes, out of which cush streams of petroleum, mixed with boiling worer, The sand-bank is about 7 kilos. from the confluence of the rivers Tara and Sardinarte. It is 10 metres high and 30 metres long. On its surface can be seen several round holes, out of which rises
the petroleum and water with a noise like that made by steam vessels when blowing off steam, and above there ascends a colum of vapour. There is adense has been called "E1 Infern" About 240 gallons of water and petroleum are spurted forth per hour. The oil is of a very good quality. There are also many inferior wells in the country.
The oil is gathered by the inhabitants in cloths, from which it is
Considerable differences of temperature are often recorded at nearly contiguous places, and it is 9 . M. J. Salleron says that even with well made thermometers, the indications of which are erroneous to 8 deg. or 10 deg., or more, especially at the higher
temperatures and when in constant use at these, the glass undergoes sufficient change to cause inaccuracy. Such changes occur at print.; in slycerine works, and with rectifiers of benzol. Glass is not, merely modified when heated to 300 deg.; it undergoes true notormations at far lower temperatures. Thus the hydrometers used in sugar works, which are often exposed for a considerable
time to temperatures of 95 deg., are affected. After an immersion time to temperatures of 95 deg., are affected. After an immersion
of some days they are completely modified ; their weight decreases, of some days they are comple to the extent of 7 deg . or 8 deg. B.
IN writing to a contemporary on the effect of the great easterly yale, of the 18th inst., in abnormally raising the afternoon
tide, Mr. J. J. B. Redman, M.I.C.C.E., says that high-water was fft. 10in. above Trinity standard at London Bridge, at testminster,
5 ft .-in each case 3 in. higher than the remarkable and then 5ft--in each case 3in. higher than the remarkable and then
hitherto exceptional tide of the 15th of November, 1875, which marked relatively 4 ft . 6 in . and 4 ft . 9 in , above Trinity. The tide on the 1 trh was also fft above the computed elevation by the
tables of the Hydrographic Department of the Admiralty, so remarkable for their accuracy, but which do not, of course, ainow
for or predicate the excess resultant on gales. Hitherto. 3t. to 3 ft . 6 in. has been the excess in rise over the Admiralty estimate of was, therefore, 3in ligher than any recorded tide, and the superelevation above computation under authority was 18 in . in excess of any previously recorded spring tide.
Is a paper on car painting, read before the Master Car Builders Association, Mr. W. C. White said of priming that though seldom looked upon as of chien importance, quality of the subsequent work depends. The purpose of priming is to fill the pores of the wood with a solid cohesive or elastic sub-
stance, which shall readily assimilate with and take to itself any subsequent coatings this work may require, and he is wise who
adapts his means to the desired end. It is too often put into the adapts his means to the desired ence workmen, and some pain
hands of careless and inexperienced think anything in the shape of paint will answer for a primer. which the foundation of a building does to the superstructure. defect in the first endangers the whole. With reference
material, it should be of the best. Good white lead and raw material, it should be of the best. Good white lead and raw oill
with enough litharge or other dryer to avoid any fattiness of the wil, are the essential components. The patent primerss, or those
orm made sy some vaunted secret fore to suppose that a primer can be
On the other hand, it is a mistake carelesly y made or mixed. The materials sh.
and the ingredients thoroughly incorporated.
Acconding to the Comptes Rendus, E. Moride has prepared a new elementary substance, whon
flesh with other nitrogenous food, which absorbs the juices of the fiesh withd perhaps forms with them some organic combinations
flesh, and
which are, as yet. undetermined. He dries the whole in the air or which are, as yet, undetermined. He dries the whole in the air or
in a stove moderately heated, then pulverises and sifts it. The powder is of a fine gray or yellowish colour and of an agreeable
taste. It may be solidified by gum water, allumene, or grease, so as to form tablets, cylinders, and cubes of various weignt, whisuits
can be divided can be duried, ast needed, for making soups, sauces, or
The nutricine contains all the elements of the flesh in their natural condition; even the blood preserves all its properties of solubility,
colouration and coagulation under the influence of heat. It is more nitrogenous and more nourishing, for equal weists,
meat itself, because all the worthless portions of the meat are meat
rejected, and the fluids are replaced by farinaceous substances, Tehich contain some additional amount of nitrogen. The same
wystem, when applied to the blood or meat of horses and the eruse
s.ase

MISCELLANEA.
A ATENT has been granted in America to Professor Bell for the Considerablek exertions are now being made to induce the
Government to advance $£ 72,000$ for the improvement of Newry Harbour.
We are requested to state that Mr. Wurr having retired from the erm of Wurr and Lewis, the business will be carried on in
future under the title of Lewis and Lewis, Cambridge Works,
Cambridge Heath-road, E. Iv the German Post and Telegraph Department large sums have
been spent since 1872 , chiefly in telegraphs, under which head we should more particularly notice the laying of an underground cable from Berlin to the Rhenish provineses and Alsace-Lorraine,
and pneumatio tubes in Berlin. Under these heads wwe find an expenditure in round numbers $-4,000,000$ marks in $1874,7,500,000$
in $187,11,000,00$ in $1876,14,00,000$ in $187,13,00,000$ in
$1878-79$. The estimates for $1880-81$ are moderate, the extradinaries only $2,500,000$ marks.
Les Mondes states that plans have been prepared for a large
crystal palace, to be built in the park of St. Cloud for permanent crystal palace, to be built in the park of St. Cloud, for permanent
exhibitions of industry, art, horticulture, scientific spectacles with experiments upon a large scale, together with pictures and representations of the vegetable and animal kingdom in different geological ages. There will also be views and models of ancient
and modern monuments, and curiosities from all parts of the world. It is proposed to combine the attractions of Sydenham
Palace, the South Kensington Museum, and Kew Gardend Palac, Clarke's apparatus for getting rid of snow has been at work in
Fore-street. It consists of a series of metal plates placed in an inclined position one above another, directly beneath the manhole, so that the snow deposited therein falls upon them ; beneath
each plate are atmospheric gas burners by which they are heated as well as the spaces between them, the burners are supplied with gas from an adjacent main. An air shaft communicating with the
outer atmosphere is provided for ventiation. Flues are also fixed to carry the heat from the spaces between the heated plates to the to carry he shaft, so as to operate upon the surface of the snow
manhole therein. One labourer only is required to work the
placed ther placed therein. One labourer only is required to work the
apparatus, viz, to orake ethe street scrapings from the plates as the The Government Telegraphs Department in Calcutta appear to
be following the e ead of the Postmaster-General in this country. In be following the lead of the Postmaster-General in this country. In
Novembel last they obtained a sample supply of some thirty of
the loudtseaking telephones of the Gower-Bell Company for experimental trials, and we understand that the results have given so much satisfaction that the company has now received by tele-
graph a substantial order for a large number of its instruments. If this may be taken in conjunction with the recently announced refusal of the Government of India to sanction the setting up of
telephonic exchanges on the part of seem to indicate a resolve on the part of the executive to itself supply the Indian public with what will soon be found to be an
indispensable aid to the business and pleasure of life in India. A sivgular explosion occurred in a dwelling house at Salford
on Wednesday. Mrs. Jones, living in Hodge-lane, had placed a bottle full of water, and holding about a gallon, in the heated oven,
to warm the water to place it at the feet of her sick husband, when the bottle suddenly exploded, breaking into framents the oven door and the bottle. The flying fragments struck Mrs. Jones and her three children, so severely injuring them that the latter are all detained at the hospital, one of them being in a critical
condition. It is very probable that we have here a case of delyeded conllition due to the water being heated in a clean class celayed although it is possible that the bottle may have been tightitly corked, and that pressure thereby accumulated in it. It is not likely, ho
ever, that the explosion would have been so violent in that case.
Mr. EDIson is now seeking for bamboo filament for his electric
ights, which will last, he says, for six months. Between seven lights, which will of line are about completed at Menlo Park, and It is estimated that to furnish New York city with 500,000 lights per year, while gas ocsts from $£ 19 \mathrm{~s} .4 \mathrm{~s}$. to $£ 2 \mathrm{ss}$.6 d . each per
per annum. Mr. Edison has also designed a new combined engine
and dynamo machine. The engine is to make 600 revolutions per minute, and indicate 100 -horse power. The armature weighing may as well point out that no steam engine has yet been made
which will run continuously and quite steadily for long periods of time
The new steel works of the North Chicago Rolling Mill Com-
pany, at South Chicago, are fast nearing completion, and will pany, at South Chicago, are fast nearing completion, and will
doubtless be finished by the coming February. The blast furnaces, The latter are nearly ready, and are said to be the largest in Ame latter are nearly ready, anto each furnace will be driven twenty thousand
Ambicace of air per minute. The blast chimney is 195 ft . high by
cubic 12 ftt. in diameter. Besides these buildings there are four casting
 engine-house gas stack, are nearly all completed. The founda-
tions alone of the blast-house are finished. The company intends to -make the machinery of this department the largest in the
country. The building will have a boiler and engine-house of its wh. The rail mill acks only the roof of being finished, and
"The second trial," says the Mellourne Argus, December 7th, "of the two London-made fire-engines by Shand, Mason, and Co., and
by Merryweather and Sons, took place yeterday, in the presence
of the jurors and a large number of spectators. On this oceasion the competitors were placed well apart, so that neither should have
their fires put out by showers of spray. Fires were lighted at the
same moment. The temperature of the Shand-Nloson encine stood at 75 deg., and in Merryweather's boiler at 74 deg. It was
It was
provided that they were to begin work as soon as the pressure in stood at fog deg, and in Merryweathers boiler at 4 dee. At was
provided that they were to begin work as soon as the presure in
the boilers reached 100 lb. on the square inch. Shand, Mason's engine was ready in eight minintes ten seonds; Merryweather
in eight minutes fifty-eight seconds. Water was projected into In each case the Shand-Mason engine did the best work. The highes altitude reached by the single jet was about 13 oft. Water was
thrown from four hydrants simultaneously to the height of 106 ft . and upwards. The test all through was in favour of Shand A large hydraulic pumping engine for draining the Chollar
Norcross and Savage shafts-the largest of the kind, it is represented, ever built- has just been completed in San Francisco.
The engine occupies a space 65 ft . by 20 ft and weighs between 200 and 300 tons, which the underground machinery will increase to
about 1000 tons in all. According to the American Manufacturer, the engine acoumulates water at 1000 lb pressure to the square
inch, in a reservoir at the surface 6 oft. high, from which it will be
conducted by a pine 240 bet, to the bottom of the shaft, there to conducted by a pipe 2400 ft . to the bottom of the shaft, there to operate a pump which will raise the drainage water 80 oft. to the
Sutro Tunnel, into which it will be discharged. The water which does the work returns to the surface by another pipe. The system
can be extended to 3000 ft . in depth or take water from mines hal a mile away, simply by extending the pipes. The new system is netended to dispense with the heavy and cumbersome pump rods
heretofore used. It appears to us that this very system is the invention of Mr. Henry Davey, of Leeds, who has, if we are not
mistaken, patented it. Nothing is said, however, on this point by
our contemporary. Why?

THE "STAVELEY" P U MP VALVE.
Vertical section on line verticalsection on line


The two engravings at the top of this page illustrate a pump valve invented by Mr. Charles Markham, of Staveley, which has been severely tested at the Hartington Colliery of the Staveley Coal and Iron Company. It will be seen that it consists of a block or seating, in which are fitted seven small valves. The seating is treated as one valve, and fixed in its place in the usual way. It can be drawn by the slings shown with a sufficient excess of of the Cornish or double-beat type, a quick lift. This system possesses many advantages. We illustrate for the sake of comparison, the ordinary double-beat as used in South Durham collieries, and the old type of butterfly valve used at Staveley, and now being supplanted by the "Staveley" valve. The following statement will make the matter quite clear to our readers, we think,
without further explanation :-

> Comparative efficiency of pump clacks.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Area of valve under pressure of column |  |  |  |
| Area of openings in clacks for delivery |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Pressure per sq. in. required to lift ditto .. |  |  |  |
| Area of delivery, rerising mame being taken at 100 |  |  |  |
| Area of delivery, Staveley valves being taken |  |  |  |
| Pressure per sq. in. on beating surface, ditto 100 |  |  |  |
|  |  |  |  |
| Pressure ditto required to lift valves, $\ddot{100} . . . \quad .$. | ${ }_{100}{ }^{\text {a }}$. | 199.5 |  |
| Average time of clacks working without changing |  |  |  |

Liverpool Engineering Society.-The hundred and fourth meeting of this Society was held on Wednesday evening, at the Royal Institution, Mr. A. Holt, president, in the chair. A paper was read by Mr. C. F. Findlay, M.A., C.E., of the Dockyard, Liverpool, "On the Design of Movable Bridges." After enumelocalities, and describing the advantages and defects of each type, the author proceeded to discuss the comparative merits of swing bridges constructed in one leaf and in two, advecating the single leaf system on the score of economy up to a limiting span, dependent on the proportion of the moving load to the dead load. He then investigated the ratio which the tail end of the bridge should bear to the total length to make the cost the smallest, and
described methods of determining the strains on the continuous girders of a single leaf bridge, which were illustrated by diagrams. The paper was further illustrated by sketches of a bascule bridge, a drawbridge, and a single leaf and a double leaf swing bridge. A cussion was adjourned to the next meeting on February 2 nd


JONES'S VERTICAL BOILER. The accompanying illustration explains itself. It shows in sec-
ion and plan a vertical boiler, patented by Mr. Jones, of Liverpool,

and manufactured by Messrs. C. Wilden, King and Co., Parliamentstreet, Westminster. It resembles in some respects Cochran's vertical boiler, but instead of having horizontal fire flues it has vertical water tubes. At each side of the central chamber are
pipes, as shown, which return the water from the top to the
bottom. This should be a very efficient boiler. The tubes are of brass, and the fire-box of Lowmoor.

## BLOWING ENGINES AT THE STAVELEY

 IRONWORKS.WE give herewith a set of diagrams from one of the engines and blowing tubs which we illustrated on the 14 th inst. The diagrams or both engines are nearly identical, and on working the calcula-

tions out it will be found that the effective work is nearly 92 per cent. of the total work done. It will not fail to be noticed that rising in an inclined line. It is not easy to account for this. We

have failed to find any satisfactory explanation of the fact, which is equally apparent in both blowing cylinders. The rise of temperature, we may add, is very small, the large surface of metal exposed
and the small pressure acting together to keep it low.

The Arizona.-For this ship it is claimed that she is the fastest ocean steamer in the world. The Arizona is 465 ft . long, 46 ft . beam, and 37 ft .6 in . depth of hold, and about 6000 tons burden, and propelled by engines of about 7000 indicated horse-power. Her cargo space measures 167,000 cubic feet, and she carries over fuel. She is steered by steam, her anchors lifted by steam coal fer fact steam does the work of the ship. She has four iron (hollow) masts, which serve as ventilators to the holds, carries ten large lifeboats, and is in every respect a first-class steamer. The following tabular statement of some of her voyages will give an idea of her
speed:peed :-


The last trip but one in the preceding table, the Arizona left her town 11.48 p.m., November 23, but was unable, owing to a heavy gale, to land her passengers, and continued on her voyage, docking at Liverpool at 4 p.m. on the 24 th of November, making the run from dock to dock in eight days and seven hours, without deduc-
tion for stoppages. Abbreviations:-R. P., Roche's Point ; S. H., Sandy Hook.
Kitchen Boiler Explosions.-The Manchester Steam Users' Association have issued the following circular on kitchens and circuan accumulation of pressure in the boiler in consequence of the outlets being stopped up while the fire is burning. These explosions occur during the frost through the choking up of the pipes with ice. Sometimes stop taps are placed in the circulating pipes, and should these taps be shut, or should the circulating pipes become choked with sediment or stopped up from any other cause,
the pressure would then be bottled up and an explosion might result at any time, whether summer or winter. To prevent this every boiler should be fitted with a small reliable safety valve, whether the boiler be of copper or of cast iron, and whether it be fitted with a copper cylinder or not. A safety valve of dead weight construction is recommended as the most simple. In the event of the outlets becoming choked, it would relieve any undue pressure a slight hissing noise, which would tell those in the kitchen that something was wrong. In the meantime, until a safety valve can efixed, open the hot water tap in the bath room, and any other drawn freely from these taps, do not light the fire, and if the fire be already lighted, put it out at once. If the water flows freely the fire may then be lighted, but this must be done with caution, and the taps just described frequently opened to see that the flow ontinues and that the water gradually heats. If the flow does ot continue, or if the water does not heat, the supply of water with the circulation and the fire must be drawn. Also the cold water cistern as well as the ball tap should be examined, and the cold water taps in the bath room, and elsewhere, opened to see that the water supply is free, otherwise the boiler may run dry. When the fire is once lighted and the circulation proved to be free, the fire should be kept burning by night as well as by day as long the night, choke the pipes with ice, stop the circulation, bottle up the pressure, and thus lead to the bursting of the boiler. But the only true safeguard is a reliable safety valve, and the sooner that is, fixed to the boiler the better. The Manchester Steam Users' Association has nothing whatever to do with the manufacture or of convenience to the public to state that one made in accordance with the association's drawings may be obtained for 10 s .6 d . at Messrs. Isaac Storey and Son's, Cathedral-yard, Manchester."

## STEAM PLOUGHING TACKLE.

MR, T, R. H. FISKEN, ENGINEER, LEEDS.


The accompanying engravings illustrate the steam plough tackle tried with much success by Mr. Fisken at the Carlisle Show of the Royal Agricultural Society, and noticed at some length in our columns at the time. It teel ropes, one end of each of which is inclined, steel ropes, one end of each of which is inclined,
while the other is fixed to one of two drum mounted on the plough or implement. The drums are driven alternately by the well-known Fisken fly-rope, and as the drums revolve they haul the plough backwards and forwards, and the hauling ropes are not rubbed along the ground. The balance plough is mounted in such a manner that it can be moved up and down, each end alternately being in the ground. The frame carrying the winding drums is as it were the plough middle, and the whole orming a com ine wounted travelling wheels, the shafts of which can be trawn when at work to the fitld-side of the anchor, and thus prevent the latter being turned over when the strain of the cultivating implement comes upon it. One end of the coiled steel wire being made fast to the ancho is shown at the end of the field remote from th windlass cultivator, motion is given to the grooved pulley by an endless rope from th engine or other motor, and the plough being let down, the drum of the extended rope is clutched into its spur wheel and winds up the rope, drawing the cultivator towards the sails it anchor, the other dlimator in readiness to draw it back. On reaching the end of the field the drum which has been winding up is unclutched the end of the plough which was in work being raised and the other end brought into action, then the other drum is clutched and motion of the cultivator is reversed.

TYPE DRAWINGS OF SEWERS At page 68 we give another of the Local Government type drawings, of which we have already published several, the last appear-
ing in The Engineer for July 9 th 1880 . The ng in The Engineer for July 9th 1880. Th present drawing is a modification of No. 1, with one or two additions. The modification consists in making the outgoing sewers from each manhole full diameter-that is, the crown of the outgoing sewer is level with the invert of the entering sewers. This arrangement, of course, can only be made where there is sufficient one to be somewhat lavish of it. The fall to enable be effected by this arrangement is that the branch sewer cannot be backwatered until the main sewer is running ful

up. Hence there is less risk of deposit occurring. Figs 1, 2, inghouse Air Br and 3, show various arrangements of manholes and sluices. Fig. 4 occupied by a new' company, about to be organised, and to b is intended to show a means of connecting sewers at different known as the Westinghouse hachine company, and the manufare of patented specialities.-Pittsurg Telegraph. levels, where the gradients are considerable. This has hitherto
been done by allowing a sewer to enter a manhole at the necessary height, while the out roing sewer is perhaps some feet lower The result of this arrangement is that the ewage is churned up, and produces most pernicious smells. By constructing an inverted syphon as shown, all risk of annoyance from this cause is done away. The syphon can be of small size to take the dry weather flow, the storm water being allowed to pass as shown, teep gradients for checking the too rapid flow of sewage and consequent bursting of pipes and for preventing the upward flow of sewage gases. Figs. 5, 6, and 7, show various forms of manhole with and without sluices.

The Westinghouse Atr Brake Company.Although the works of the Westinghouse Air Brake Company now cover the block of ground bounded by Liberty, Twenty-forth and Twentyfifth streets, and Spring-alley, to which a large addition was recently made by purchases o property on Twenty-fifth street to provide for a brake trade, the commencement of the freightbrake business has rendered the present great establishment totally inadequate to the enormous demands of the business. As a consequence the company bought yesterday, through Mr. William completed the purchase-from Messrs. Birming ham, Watson and Co.-of the large property in Allegheny City, two blocks from the Suspension Bridge, known as the Anchor Cotton Works, with the buildings thereon erected, the Corliss engine, sharting, and all the appurtenances. The pro240 ft . by 130 ft . on Robinson and Lacock-streets, and that piece on which the iron foundry and table are situated fronts 120 ft . on Lacock-street by 114ft. on Balkam-street. The old brick cotton warehouse will be converted in tobinson-street, and the present office buildings will be torn down and converted into immense blacksmith and boiler shops. Some alterations will also be made in the main building to furnish increased light. The main $]$ machine shop building, will consist of nine
floors about 50 ft .by 130 ft . each; all provided with steam heating, water, gas, and perforated iron pipe fire-extinguishing devices. The engine is a model in its way, having a cylinder 24in. by 48 in., with $20 f t$. band wheels. The establish ment will admit of the employment of about 1000 workmen, and, when completed, it is believed, will be one of the most United States. It is probable that the present works of the West cannot be backwatered until the main sewer is running full levels, where the gradients are considerable. This has hitherto to the manufacture of patented specialities.-Pittsburg Telegraph.

## LETTERS TO THE EDITOR

We do not hold ourselves responsible for the opinions of our
on the compression of atr, with hypothetical considerations regarding the nature of heat. SIR, -In a letter to THE EvaINEER of November 5th, p. 345 , it
is said that the the work expended in compressing 1 lb, of air is in in
foot-pounds 183 .45 times the augmentation of temperature in foot-pounds $183^{\circ} 45$ times the augmentation of temperature
Fah. deog, or, as said to be expressed by D. K. Clark, the work
W $=183^{4} 5\left(T_{1}-T_{2}\right)$ ). This expression, however, as with your permission I shal
endeavourt oe eplain, does not signify the work of compression
only, but includes also the work expended in expelling from the
 per square foot, and temperature of
1 lb . of air is
$53.15 \times(461 \cdot 2+68)$

$$
2116 \cdot 8
$$

## $=13 \cdot 287$ cubic feet

In the annexed figures let the lines ABCD in Fig. 1 represent
the longitudinal section of a cylinder 13287 ft . in length and 1 square foot in area, and containing 11 lb of air at 68 deg. Fah.
under a movable piston CD. The end CD of the cylinder being open, the atmospheric presssure of $2116 \cdot 8 \mathrm{llin}$. upon the opposite sides
of the piston would be the same, and those pressures being equal,
it is obvious that the piston would be driven a small distance into the cylinder by a slight additional force applied to the external side. In driving the piston 1 ft. into the cylinder, and thereby
reducing the volume of air from 13.287 to 12.287 cubie feet, the pressure would rise-as indicated by 2116 to $\frac{13 \cdot 287}{12.287}=2289 \mathrm{lb}$., assuming the temperature to be prevented from rising by the injection of water or
otherwise The work expended in driving the piston 1 ft . into the cylinder $\mathrm{W}=\left(2116 \cdot 8 \times 13 \cdot 287 \times\right.$ hyp. log. $\left.\frac{13 \cdot 287}{12 \cdot 287}\right)-2116 \cdot 8=85 \cdot 2 \mathrm{ft} . \mathrm{lb}$. But as the external atmosphere also follows the piston with a
constant force of $2116 \cdot 8$ lb, the quantity of heat generated by this compression is equivalent to $2116 \cdot 8+85 \cdot .2=2202$ foot-pounds,
which corresponds to that which would raise the temperature of $2202 \div 772=2 \cdot 85 \mathrm{lb}$. of water from 67 deg . to 68 deg . Fah, this
quantity of heat being nearly equivalent to twenty-six times the quantity of heat being nearly, equivalent to thent by compression
work expended. If, however, the heat generated by co
was Was not extracted, but retained entirely by the air itself while
reducing the volume from 13.287 to 12.287 , the pressure would rise from $2116 \cdot 8$ to $2116 \cdot 8 \times\left(\frac{13 \cdot 287}{12 \cdot 287}\right)^{1 \cdot 408}=2364 \mathrm{lb}$. per sq. ft., and the absolute temperature would rise from $(68+461 \cdot 2)=529 \cdot 2$ to $529.2 \times\left(\frac{13 \cdot 287}{12.287}\right)^{408}=529.2 \times 1.0325=546.4$ deg., being an elevation in temperature of $17 \cdot 2 \mathrm{deg}$, while the work expended is
only $17.2 \times 130 \cdot 3-2116 \cdot 8=124$ foot-pounds $;$ the exantity of work requisite to raise 1 lb . of air at constant volume 1 deg. Fah.
being 1030.8 foot--pounds. Havig now under the piston 12.287
cubic feet of air cubic feet of air at a pressure of 2364 lb,., with the atmospheric
air on the opposite side following the piston with a constant air on the opposite side following the piston with a constant pres-
sure of 211688 bl., let the air now be expelled from the cylinder
through hirough a small orifice or delivered into a reservoir containing air above the atmosphere. The work expended could not be less than
$\mathrm{W}=247 \cdot 2 \times 12 \cdot 287=3037$ foot-pounds, and in adding to this the quantity expended in compression- 124 foot-pounds-the whole work expended in first compressing and then expelling from the
cylinder the pound of air at a uniform presssure of 2472.2 lb per
suane foot above the atmosher square foot above the atmospheric pressure is
3111 foot-pounds, and it will now be observed that those figures correspond - nearly - with the equation referred to by your corre-
spondent, in which $W=183 \cdot 5\left(T, T_{2}-T_{2}\right)$ since in this instance
$T, T$, $\mathrm{T}_{1}-\mathrm{T}_{2}$ is
foot-pounds
Let us now suppose the pound of air in cylinder A B C D, Fig. 1 ,
to be compressed at constant temperature into half the volume by forcing the piston CD D into the position E L . The the prssure of one
atmosphere of 2116.8 lb being represented by the length of the or AP, and th, or A P, and the quantity of heat generated and transmitted to the
cooling medium during this compression would be P V hyp. log. $2=$
$2116.8 \times 13.287 \times 693=28,127 \times 693=19,490$ foot-pounds represented by the area-in Fig. $1-$ D CV L L D, but as the external
atmosphere follows the piston through 6.643 ft .-while the piston is moving from the position C D to E L - with a constant pressure
of $2116 \cdot 8$ flb, the work
$19,490-6 \cdot 643 \times 2116^{6}=$

$$
19,490-114,060=540 \mathrm{fopot-pounds}
$$

represented in Fig. 1 by the area CVEE . The heat thus gene-
rated by the expenditure of 5430 foot-pounds of work is, therefore equivalent to that which is required to raise the temperature of
$19,490 \div 772=25^{2} 2 \mathrm{lb}$. of water 1 deg. Fah., and this quantity of heat must bo abstracted during compression, or otherwise the tem-
perature would be augmented, and the pressure thereby rise to more than double by compressing the air to half the initial volume The area-Fig. $1-A B C D$ is equal to the area $A P V L$, and the
area $C V L D C$ is also equal to the area $C B P V C$, and either of those frrst two areas are to either of the last as 1 is to hyp. log. 2
which is 693 . Or say, if the area APV L represented one squar foot of surface, the area C V L D C or C B P V C would represen The lines B P
would be traced by the pencil of an indicatorl if with those which condensing engine working wition an ind indicator admitted applied to pressure of
two atmospheres, cut off at athals stroke and expanded down to one atmosphero. Under those conditions the work obtained from $\left(\frac{13 \cdot 287}{2}\right)=6 \cdot 643$ cubic feet of steam of two atmospheres would also be nearly the same ( 19,490 foot-pounds) as is required to com-
press at constant temperature 132287 cubic feet of atmospheric air
int into half the volume, and then deliver Having now under the piston E L L Fig. 1 . 6.643 cubic feet o
air at a pressure of $2 \times 2116.8=423 \cdot 6$ air at a pressure of $2 \times 2116: 8=4233 \cdot 6 \mathrm{lb}$, and the external atmo
sphere following the piston with a pressure of $2116 \cdot 8 \mathrm{lb}$, the work expended in driving forward the piston from the position $\mathrm{E} L$ to
$\mathrm{B} A$, and thereby expelling the pound of air through an opening in uniform pressureof foot-pounds, as represented by the area EVPB P , and as this area
is equal to the area D CEL, which represents the potential energy or work one by gravity upon the external air which descends while
following the piston following the piston withapressure or weight of $2116 \cdot 8 \mathrm{lb}$. per square
foot during compression, the $25 \cdot 2$ units of heat then generated and discharged is therefore equivalent to the work expended in first
compressing and then discharging the air from the cylinder higher pressure.
While the $6 \cdot 6$
the pist, or a similar quantity from the receiver, be admited unde slowly from L E to A B, the that while the piston in Fig. 1 moves
Fig. 2 shall, under a similar mitted to the piston in Fig. 2, excluding friction, would trans is Fig. 1 , be nearly equal to that expended in driving the piston in
Fin Fig. 1

Let the pound of air ( $6 \cdot 643$ cubic feet at a pressure of two atmosupposed to expand, without receiving heat from the sides. of of the yimder, , own to a pressure of one atmosphere as indicated by the
urve C in Fig. 2 . The temperature would then fall from $592 \cdot 2$ deg. to $529 \cdot 2 \times\left(\frac{12}{2} \cdot 29=529 \cdot 2 \times \cdot 8179=432 \cdot 8\right.$, which is $28^{\circ} 4$ deg. below
the zero of Fah. thermometer, or which corresponds to a fall $56^{4}$ deg. In consequence of this fall in temperature the volume of air, while falling to half the pressure, would
only increase from $6 \cdot 643$ to $6.643 \times 3 \cdot{ }^{\circ 7}=6 \cdot 643 \times 1.636=10^{\circ} 867$ cubic feet, and the pressure upon the opposite sides of the piston
would be equal after travelling (from E L to C D) 4.223 feet. The useful effect or work recovered from the pound of air on being admitted under the piston, Fig. 2 , at a constant pressure of two
atmospheres and then expanded to 1.636 times the initial volume when the pressure would fall to one atmosphere-and finally dis-
charged at an absolute temperature of $432 \cdot 8$ and volume of $10 \cdot 867$ cubic feet is $183 \cdot 45 \times(529 \cdot 2-432 \cdot 8)=183 \cdot 45 \times 96 \cdot 4=17,684$ foot pounds, as represented by the area B P V CB, Fig. 2. The work
expended in supplying the same air to the receiver as already show is 19,490 foot-pounds represented by the area C V P B C in Fig. 1.
The difference of those quantities being $19,490-17,684=1806$ footpounds.
With a perfect compression air pump and expanding cylinder, and sufficient supply of injection water at a temperature rather less
than 68 degu, it therefore than 68 deg., it therefore appears that by the expenditure of
1806 foot-pounds a cooling chamber may be supplied with $10: 867$ cubic feet of air of atmospheric pressure and temperature 50.4 deg. Fah. below the melting point of ice, and which corresponds to a supply of $10.867 \times 33,000 \div 1806=198$ cubic feet per minute
from the work of an engine or water-wheel of 1 -horse power. It from the work of an engine or water-wheel of 1-horse power. It
is, however, scarcely necessary to say that from mechanical imperfections and losses in the transmission of heat to and from the Walls of the cylinders the practical efficiency of a machine of this efficiency is also much impaired by the presence of a small quantity of the vapour of water which partly liquefies during expansion,
and thereby yielding heat to the air while expanding. Since the
S. and thereby yielding heat to the air while expanding. Since the
areas P B F in Figs. 1 and 2 are equal to each other and repre sent 14,060 foot-pounds, the work expended in compression exceed exceeds the area V E C V in Fig. 2, and as the fornner area repre senteds 543 foot-pounds the latter corresponds to $17,684-1406=$
3624 foot-pounds; the difference, as already stated, being $4530=$ 3624 foot-pounds; the difference, as already stated, being 4330
$3624=1806$ foot-pounds.
While the areas C V P C and C V L D C are in Fig. 1 equal to each other, those areas in Fig. 2 are to each other as the specific heat of air at constant pressure is to the specific heat at constant volume, viz, as $1 \cdot 408$ is to 1 or as $183 \cdot 45$ is to $130 \cdot 3$. Hence the
 foot-pounds of this work is expended in repelining the atmosphere,
as represented by the area $\mathrm{E} C \mathrm{D} L$, the useful effect of the air while expanding, as has already been otherwise computed, is only
$12,561-8939=3622$ foot-pounds as represented by the area V E C V Fig. 2.
When the piston arrives at the position E L Fig. 2, let us sup-

pose an exhaust port to open. The pressure would, of course,
rapidly fall from two to one atmosphere, but the fraction only of rapidly fall from two to one atmosphere, but the fraction only of
388 Ib . of air would flow out. In arresting the velocity with which the first part of this fraction rushes into the atmosphere the
wate ture from falling sensibly below 68 deg.; but as the air in the cylinder continues to expand and lose heat in giving motion to that portion which is expelled against atmospheric resistance, the tem-
perature of the fraction 61131 b . -6.643 cubic feet-finally left in the cylinder fhe fraction $1131 b$ - 6643 cubic feet-finally left in the cylinder falls as before from $529 \cdot 2 \mathrm{deg}$. to $432 \cdot 8$ deg., and the
temperature of the last portion of the $\cdot 3887 \mathrm{lb}$ expelled would not be sensibly higher. By this method of expansion the useful work of 3623 foot-pounds as represented by the area V E C Fig. 2 would be lost, and this work is sufficient to elevate the temperature of
-3887 lb . of air at constant pressure $(3623 \div \cdot 3887 \times 183 \cdot 45)=50 \cdot 8$ deg. Fah. The mean absolute temperature of the 3887 lb . of air volume of 3887 lbe of air at this temperature is-at a a pressure of 2116.8 lb per square foot 4.718 cubic feet, the work done in displacing the atmosphere would be $2116 \cdot 8 \times 4 \cdot 718=9987$ foot-pounds. mechanical effect, is precisely equivalent to the quantity of energy or heat lost by the pound weight of air.
equivalent to ${ }^{\circ} 1113 \times 130^{\circ} \cdot 3 \times 96^{\prime} \cdot 4=7678$ foot-pounds. while the loss of $45 \cdot 6$ deg. by $\cdot 3887 \mathrm{lb}$. is equivalent to $\cdot 3887 \times 130 \cdot 3 \times 45 \cdot 6=$ 2309 foot-pounds, and those quantities taken together correspond,
as already stated, to $7678+2309=9987$ foot-pounds. When xpanded freely into the atmosphere it will be observed that the
inal volume of the pound of air is $6.643+4.718=11.361$ cubi feet ; whereas it is only $6 \cdot 643+4 \cdot 223=10 \cdot 866$ cubic feet, when doing the maximum amount of work by expanding under a piston down to the same terminal pressure.
Let us now suppose the pound of air as it is discharged from the in its passage to be eraised in temperature from ( $68+461 \cdot 2$ ) $=529 \cdot 2$ o (v29.2 $+117 \cdot 8)=647$ deg., so that while the piston in Fig.
travels from E L to $A$-through 6.643 ft --the piston in Fig. 3 shall, in consequence of the expanded volume, simultaneously
travel from $B A$ to $L$ through a space of $\delta \cdot 123 f t$. Furthe admission of air from the heater now being suppressed, let the through a further distance of $5 \cdot 164 \mathrm{ft}$ t., when having arrived at C D the internal and external temperature and pressure upon the piston will be alike, and this cylinder-Fig. 3 -will now contain
13287 cubic feet of air at 68 deg. Fah., and pressure of one atmosphere as at first taken in by cylinder Fig. 1 ; the $117 \cdot 8$ deg.
of heat supplied by a heater to the pound of air while from the con
disappeared.
Let us now see what we have got in equivalence for this lost
heat. In the first place, when not heated, it will be observed the
pound of air only drives the piston at the full pressure of two pound of air only drives the piston at the full pressure of two
atmospheres -4233.61 b . per square foot-through a distance of
6.643 ft . $6 \cdot 643 \mathrm{ft}$., whereas when heated, the distance travelled under full pressure is 1.48 ft . in excess of this, which corresponds to
$1 \cdot 48 \times 4233=53.15 \times 117 \cdot 8=6260$ foot-pounds as represented by the area $m$ SL $\mathrm{V} m$, and as this quantity never appears as heat, but
represents the gross resistance repelled by the air while bein represents the gross resistance repelled by the air while being
heated and expanding latent heat. Hence, after having augmented the temperature of 1 lb . of air to the extent of $117 \cdot 8 \mathrm{deg}$. Fah., that air only contains
$130: 3 \times 117 \cdot 8=15,350$ foot pounds more heat or energy than it did before being heated, and this energy- as represented by the area Lepelled by, Fig. 3 . corresponds to the gross mean resistance
histon, while the pound of air-without receiving
heat from the walls $8 \cdot 123$ to $(8 \cdot 132+5 \cdot 164)=13 \cdot 287$ cubic feet, and is therefore entirely exhausted when the piston arrives at the position C D, the pound
of air being now restored to its original volume of 132287 cubic feet, temperature of 68 deg. Fah. and pressure of one atmosphere of 14.7 lib . per square inch. While so expanding, however, it wil
be observed that much the largest portion of heat lost is expended in repelling the atmospheric resistance through a space of
5.164 cubic feet, as represented by the area ELDC, Fig. 3, and by the expulsion of this volume of air $\left(5 \cdot 164 \times 2116^{\circ} 8\right)=10,931$ foot pounds of
heat energy is in lifting the converted into potential energy. The actual work of gravity mechanical effect realised by expanding the pound of air to half the pressure is therefore only $15,350-10,931=4419$ foot-pounds as represented by the area VECV. This of course also corresponds to the work required to compress 1 in. of air to two atmospheres when the temperature rises from 68 deg. to $(68+117 \cdot 8)=185 \cdot 8$ deg. Fah.,
or to $\left(461 \cdot 2+185^{\circ} 8\right)=647$ deg. absolute, and those figures 4419 footpounds differ widely from about 21,500 as computed by your corre spondent. If, however, we add to these figures (4419) the work expended in delvering twe heated pound of air into a receiver at a
uniform pressure of two atmospheres, which is $8 \cdot 123 \times 216.8=$ 17,194 foot-pounds, as represented in Fig. 3 by the area V P B E is $4419+17,194=21,613$ foot-pounds, as represented by the area C V P B C, and which also corresponds to the area $m \mathrm{SD} \mathrm{C} \mathrm{V} \mathrm{m}$. equation referred to by your correspondent in which the work $\mathrm{W}=183 \cdot 45 \times\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$ as in this instance $\mathrm{T}_{1}-\mathrm{T}_{2}=117 \cdot 8$ and
$183 \cdot 45 \times 117 \cdot 8=21,610 \mathrm{~s}$ The difference between the work expended in driving a force pump supplying air to a heater at a pressure of two atmospheres
(and constant absolute temperature of 529.2 deg.), and the work obtained from each pound of air after being heated to 647 deg .
as represented in Fig. 3 by the area $\mathrm{C} m \mathrm{VC}$, and which is less than elevating the temperature of the pound weight of air. Althougl the whole heat supplied to the air disappears in doing work upon
piston Fig. 3 , this work is only about one-tenth in excess of that which is required to compress and deliver the same mass of air int the heater at a constant absolute temperature of $529 \cdot 2$ and pressure of
two atmospheres, which work ( 19,496 foot-pounds) already stated) in Fig. 1 by the area CVPBC, and which corre spond to the area $\mathrm{C} m \mathrm{PBC}$, Fig. 3, which is also equal to the area
$\mathrm{C} m \mathrm{SDC}$. Either of those areas represent what is termed the rejected heat, being the quantity of heat transmitted to the injec fion water, so as to prevent the ten1 As a general expression which is
equal increments in quantity of heat supplied to that fluid produce equal increments in temperature,

$$
\text { Rejected heat }=\mathrm{CT}_{2} \times \text { hyp. } \log \cdot \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}
$$

$\mathrm{T}_{1}=$ superior absolutel temperature, and $\mathrm{T}_{2}$ the inferior, $\mathrm{C}=$ specific healso the fluid, an
is also expressed in foot pounds. Then, according to this eecress sion, when the absolute temperature of a pound weight of air is under any constant pressure, raised from $529 \cdot 2$ to 647 -, then ex-
panded until the temperature falls from 647 to $529 \cdot 2$, and finally panded until the temperature falls from 647 to 292 , and inally compressed to the original volume at a constant temperature o
$529^{\circ}$, the heat generated and rejected during that compression is
$183 \cdot 45 \times 529 \cdot 2 \times$ hyp. $\log .{ }_{5}{ }^{64} \cdot 9 \cdot 2=183 \cdot 45 \times 529 \cdot 2 \times \cdot 201=183 \cdot 45 \times$ $106 \cdot 4=19,519$ foot-pounds.
and which agrees nearly with the quantity $(19,496)$ otherwise com-
puted. Then, since the pound of air was elevated $117 \cdot 8$ deg., and puted
the quantity of heat rejected during the compression is equivalent
to that to that which would heat the same ahi expanding would exceed that expended in compression to the e extent of of $183^{\circ} 45 \times 11 \frac{1}{1}=2110$
foot-punds, and this corresponds nearly with 2114 foot-pounds as foot-pounds, and this
otherwise computed.
Let us now suppose a pound of water to be confined under a piston at a similar temperature of 185.8 deg. Fah. The pressure
at that temperature being fully 8 lb . per square inch, let the pistor be permited to yied to hour pressure by gradually reducing the load from 8 . the water and vapor would square from 185.8 to 68 des Let the piston now be returned religuefying the perature of 68 deg. and pressure of $\frac{3}{\mathrm{~s}} \mathrm{lb}$. per square inch. The work of expansion would then exceed the work of compression
and liquefaction of the vapour to the extent of $772 \times 11 \frac{1}{2}=8858$ foot-pounds, corresponding to the equation

## $\mathrm{W}=772 \times\left\{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)-\mathrm{T}_{2} \times\right.$ hyp. $\left.\log \cdot \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right\}$

In the first place the quantity $\left(T_{1}-T\right)=(185 \cdot 8-68)=117 \cdot 8$ the pound weight of water and repelling the piston under a load diminishing from 8 lb . to nearly $\frac{3}{10} \mathrm{lb}$. per square ineh, and through a space of fily 13 . compressing and condensins stant pressure of fully $\frac{3}{10} \mathrm{lb}$. per square . Fah., the quantity
square foot) and temperature of 68 deg . $\mathrm{T}_{2} \times$ hyp. $\log \cdot \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=529 \cdot 2 \times$ hyp. $\log .{ }_{529 \cdot 2}^{647}=106 \cdot 3$ units of heat-or say as much as would raise the temperature of 106.3 lb . of
water from 67 deg. to 68 deg.-reappears, and must be abstraeted during compression so as to prevent the temperature and pressure from again rising while liquefying the apowhile expending $117 \cdot 8$
using liquid water or air, it appears that whit parts of heat, not more than $11 \frac{1}{2}$ of those parts can possibly, under the conditions specified, be utilised as a motive agent.
It is now about thirty-eight years since, when in New Orleans, 1 whas shown by Dr. Gorrie a small machine with two cylinders, which he had constructed for the purpose of freezing water by the
compression and expansion of air under pressure. Many cooling machines have since been made ; but although the process may be reversed by first expanding and then compressing, and air thereby moderately heated supplied to a vinery or other building by a smail
expenditure of power, I am not aware of this having ever been put expenditure
in practice.
so be mosin, for example, one pound of air of atmospheric pressure temperature of $(38 \cdot 8+461 \cdot 2)=500$ deg. while expanding in cylinder under a piston to a double volume and pressure of half an atmosphere ; then discharged into a receiver, in which receiver the pressure is prevented from rising above halu an atmosphere by
pump drawing away the same air, in which pump it is recompressed pump drawing away finaly discharged into the building to be heated at atmospheric pressure and temperature of $500 \times 2^{2.29}=611^{\circ} \cdot 3$ or $150^{\circ} 1 \mathrm{deg}$. Fah.
The work expended in compressing one pound of air when taken $n$
at 500 deg. $(38 \cdot 8$ Fahl.), and discharging the same ( 15.35 oubio feet) at atnossherio pressure and temperature of $611-3,3$, is $183.45 \times$
$(611.3-500)=20$, 420 foot.pounds. But the work obtained from the same air when taken in at one atmosphere, then expanded to a
doubbe ovelume and finaly discharged int the treciver at
and pressure of hall an atmosphere and constant temperature 500 deg. $53 \cdot 15 \times 500 \times 693=18,340$ foot-pounds. By this process, 18,340 foot-pounds $=23.7$ units of heat is frrst ex-
tracted trom the injection water, the temperature of which water
 machine, is delivered into the building to be heneated. Thenen, since one poound of air $(12555$ cubic feet is taken in to the
first cylinder at 3888 dee. Fahh, and discharged from the second at
 of 2080 foot-pounds of work, $n$ stam engine or water wheel of one
horse pover would, under the speaified
onditions and exoluive of
 feet of air per minute at the above temperature of $150 \cdot 1$ deg. . Fah.

this quantity of heat being nearly equivalent to ten times the work | expended |
| :---: |
| The pr |


 by Kronig, Herapath, Thomson, Joule, Clausius, and others, corre
sponds to that which a body would acouire by yravity in falline
 of the same gas, the weight of which, on any unit of base, corre
ponds to the pressure., $A s$ long as a amas strictly follows the law of
porle Borle e having at any oonstant temperature precisely a double
resesure at half the volume-the heipht of a homogeneous atmo splhere of that gas is proportional to the absolute temperature, ani
 lute temperature T will be $v=\sqrt{ } 2 g \times 1 \frac{1}{2} \times 53 \cdot 15 \mathrm{~T}=71 \cdot 6$ $\sqrt{ } \mathrm{T}$ feet per seoond. Since the density of hydrogen is 0692 , the height of an atmosphere of uniform density of that gas will be ${ }_{-0692}^{535} \mathrm{~T}=768 \mathrm{~T}$, and the velocity of the molecules $v=\sqrt{ }\left(2 g \times 1 \frac{13}{2}\right.$ $768 \mathrm{~T})=272 \sqrt{ } \mathrm{~T}$ feet per second. The density of gaseous steam being nine times that of hydrogen, the velocity of the moleoules will be $\left(\frac{272}{\mathrm{~V} 9}\right)=\frac{272}{3} \sqrt[V]{ } \mathrm{T}=90.7 \sqrt{ } \mathrm{~T}$; and since the density of oxyen is nearly sixteen times that of hydrogen, the
moleculest of that
move wist The temperature or intensity of heat manifested by a , gas is no enclosed within nuy square of the velooity into the weight or mass of the indivivual
molecules. The oxygen molecules being sixteen times henvier than those of hydrogen, produce the same temperature when moving
 which corresponds to to foot, at at temperature of ofsolute 38.8 deg. Fahe

 striking the six internal sides of the eube-requisite to produce that
pressure corresponds to to that which a body would acoulre in folling

 molecular velocity requisite to produce that pressure corresponds to that acquired by a body in falling from a height of $11 \times 24,000=$
36,000 oft, and which is $68 \sqrt{ } 500=150$ Ift. per seoond.
 Syobgen dey. We should then have the ounce weinht of oxy. to
molecules moving with the same velocity, exerting the same pren sure, and containing, although sixteen times higher in tempera ture only the same quantity of heat or intrinsic e enery as the ounce
weight of hydrogen. The hydrogen molecules being sixteen times of the eubicio foot vessel for each $\overline{\text { low }}$ d delivered by in the molecules, and thereby produce the same pressure, but the oxyen molecules being sixteen times heavier, will, when moving with the same velocity, strike with sixteen times the force, and thereby pro-
duce sixteen timest he absolute temperature, roovided the Mae esixteen timed the abolute temperature,
bell by a blow with a wooden mall or a hammer of steel of equal weight and striking with the sam velocity ; and temperature or intensity of heat may likewise be
similarly modified to some extent by the character or structure of the impinging molecules. It is, moreover, obvious that the actio teen parts, although all of those parts continued to strike with the same velocity, and this division might be repeated until the sound became inaudible, although those smaller parts possessed in the
aggregate the same intrinsic energy, and also exerted the same ass. When upon the internal surface of the bell as the origina within a cubic foot and move in all directions with a uniform nolecules present, whereas the cube foot may contain a million illions of molecules without any sensible change in temperature, provided there is no change in velocity, but provided also that th maller masses, since by such union or breaking up the temperature ould be proportionally elevated or depressed irrespective of the heat enerated by chemical union or lost by disruption. According to this hypothesis the absolute temperature of the interstellar medium
would be doubled without changing either its velocity, energy elasticity, or pressure, were it only possible for each couple of
atoms of that medium to unite, and form one unit of double mass. Returning now to the ounce weight of hydrogen confined in the space of one cubic foot, and exerting a pressure of $384,000 \mathrm{oz} .=$
$24,000 \mathrm{lb}$. per square foot, which requires a molecular velocity of in themselves, but moved all direction the molecules had no heat in themselves, but moved all directions in rectilineal paths with cubic foot of hydrogen would correspond to one and a-half times the pressure in pounds per square foot, i.e., in this instance
$1 \frac{1}{2} \times 24,000=36,000$ foot-pounds. On the same conditions the quantity of heat in foot-pounds requisite to double the pressure of cubic foot of any gas would simply correspond to one and a-hals the volume from one to two cubic feet at any constant pressure would require two and a-half times the pressure in pounds per square foot. In doubling the pressure at constant volume, the
velocity of the molecules must be increased from $v$ to $\sqrt{ } 2 \times v$; but in doubling the volume at constant pressure, the velocity of the molecules must not only be similarly increased, but a load
lent to the pressure must at the same time be lifted 1ft.
The specific heat of a gas at constant pressure, divided by the
specific heat at constant volume, is usually denoted by the letter $y$ or $k$, and on the above conditions we should have
$k=\frac{2 \frac{1}{2}}{1 \frac{1}{2}}=\frac{5}{3}=1 \frac{2}{3}=1 \cdot 666$.

$$
k=\frac{2 \frac{1}{2}}{\frac{1}{2}}=\frac{5}{3}=1 \frac{2}{3}=1 \cdot 666 .
$$

In a short letter, which appeared about two years since in the
 Atomic Theory," by Ad. Wurtz, publijhed this year, I find the
 that the relation between the specific heats of mercury vapout under constant pressure and under constant volume $(1$-67) is the
same as that indicated by theory. It is obvious that in this case there is no internal work, because the molecule is only composed of a single atom.". This, if reliable, is certainly a most remarkable circunstance, as it indicieates the existence of molecules which are
reutral or impenetrable to heat,

 than those of hydrogen will poroducein the same temperature whe
triking with ondenth of the velocity For hydrogen gas $k=1 \cdot 412$ and $\frac{1 \cdot 412}{}=3 \cdot 425$,
For nitrogen $\quad k=1 \cdot 41$ and $\frac{1 \cdot 41}{41}=3 \cdot 44$, For oxygen $k=1 \cdot 4$ and $\frac{1 \cdot 4}{4}=35$, For air $\quad k=1408$ and $\frac{1.408}{\cdot 408}=3 \cdot 451$. For gaseous steam $k=1: 304$ and $\frac{1.304}{\cdot 304}=429$.
foot-pounds, and the pressure being unaltered, the energy is
5186 foot-pounds per culic foot, as at first, since $1+408 \times 5186$
 To4 deg., and the velocity ff the mosecules would increase from 704 deg. and the elooity of the molecules would incr
$7165.500=1604$ to $7165 \sqrt{ } 704=1901 \mathrm{ft}$. per seoond. I shall now conclude by yiving a fev figures, extibiting at an
llance the rate at which air rises or falls in temperature when When the whole heat generated by compression is retained by he air itself while being reduc
of the initial volume, the pressure rises $\frac{1}{\frac{3}{3}}$, $\begin{array}{llllllll}\text { from } 1 \text { to } & 2 \cdot 653 & 4 \cdot 697 & 7.04 & 9 \cdot 641 & 12 \cdot 46 & 15 \cdot 485 & 18 \cdot 687 \\ \text { and the absolute temperature which is proportional to the products }\end{array}$ $\begin{aligned} & \text { of these figures rises } \\ & \text { from } 1 \text { to } 1 \cdot 327, \quad 1 \cdot 565, \\ & 1.76\end{aligned} 1 \cdot 92, \quad 2 \cdot 077, \quad 2 \cdot 31 \quad 2 \cdot 335 \quad 3 \cdot 1$ When air is expanded under pressure, without receiving heat from any ex
from 1 to 2


$\begin{array}{llllllllll}\text { hen atmospheric air is compressed from the volume } \\ 1 \text { to } & 6113 & \cdot 4585 & \cdot 3737 & \cdot 319 & -2803 & \cdot 251 & \cdot 2285 & \cdot 1397,\end{array}$ the pressure rises
from 1 to 2

$\begin{aligned} & \text { atmospheres, and the absolute temperature rises } \\ & \text { from } 1 \text { to } 1.223 \\ & 1.375 \\ & 1.495 \\ & 1.595 \\ & 1.682 \\ & 1.757\end{aligned} 1.828 \quad 2 \cdot 235$. | When air is expanded under pressure |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| from 1 to $1 \cdot 636$ | $2 \cdot 181$ | $2 \cdot 676$ | $3 \cdot 135$ | $3 \cdot 568$ | $3 \cdot 98$ | $4 \cdot 377$ | times the initial volume, the pressure falls $\frac{1}{2} \quad \frac{1}{8} \quad \frac{1}{2}$,

 Glasgow, Dec. 10th, 1880 .

## the patent laws

SIR,-There is a part of the English patent law with which, unfortunately, too few are interested in as the law stands, but which ought o be an important matter. It is the arrangement by which a prolongation of a patent may be obtained. Having lately passed I have felt to be the chief iniquity of the present arrangement? You have first of all to make up your mind to spend between
$£ 500$ and $£ 600$ for the chance of a prolongation. This is bearable, $£ 500$ and $£ 600$ for the chance of a prolongation. This is bearable, to prove that you have been working for fourteen years for the bever, is comparatively a fair game of speculation. Where I find the shoe pinches is when you come into court and have spent your money with the stoicism proper to the occasion, or perhaps being able to appear as if you rather liked being skinned, you have then to appear-metaphorically-with your hat in your hand; in out to you in charity. The slightest hint that your are asking anything which the country is morally bound to grant you is resented as if you had attacked the Queen in person. This is my experi-
ence, though I succeeded in my application. More illogical nonsense ence, though I succeeded in my application. More illogical nonsense
I never heard talked by boys at school than was deliberately put forth as wisdom by the judges. If the case was reported in full I but why should I get this as a beggar and not as a just claim? As regards the conduct of the case by the Attorney-
General and his assistant, Mr. A. L. Smith, on the part of the General and his assistant, Mr. A. L. Smith, on the part of the
Crown, I wish to record my appreciation of their urbanity and fairned to me to, the therd nearly expresses what -whether consciously or unconsciously-that it was unfair that should appear there as a beggar in place of as a claimant, and
assisted me all they could against the Court, which more than once assisted me all they could against the Court, which more than once
pleased itself by conveying to my counsel that we were only beggars, pleased itself by conveying to my couns.
and depended entirely on their favour.

Robert D. Napier.
["Nonsense, logical or illogical," is so rarely heard from the English bench, thand the jues whom he critice understand the judges whom he criticises, possibly becal
could regard the case from only one point of view.-ED. E.]

## THE EXPLOSION OF HEATED WATER

SIR,-I have read carefully your article on the above subject, and on its principles result is rather startling, but as I think it is correct you may perhaps think it worth insertion in your columns, as it
places the thing in a concrete form. The case I have supposed is that of an ordinary Cornish or Lancashire boiler 30 ft . long, having two flues 33 in . diameter ; steam room in boiler
$=$ about one-third diameter from crown $=$ roughly 323 cubic feet Deducting this and the space occupied by the flues-about 355 cubi feet-from the whole capacity of the boiler- 1154.4 cubic feet we find the volume of water in the boiler $475 \cdot 6$ cubic feet $=$ $29,629 \cdot 8 \mathrm{lb}$. Let the working pressure of boiler be $601 \mathrm{~b} .=65 \mathrm{lb}$., now, by collapse of a flue or in some other way, the pressure $b$
suddenly reduced to 14.7 lb ., then the temperature will fall t 100 deg. C., and $47 \cdot 7$ deg., of heat will be set at liberty for the
formation of steam. Taking latent heat of steam at 100 deg. C. as $=537 \mathrm{deg}$., then $\frac{47 \cdot 7}{53 \cdot 7}$, or roughly one-eleventh of the water in the boiler will be converted into steam of 14.7 lb . pressure, and The volume of steam produced from this quantity of water at the atmospheric pressure will be $70,841 \cdot 68$ cubic feet, but as this must
all be contained within the steam room of the boiler space formerly occupied by the water, that is 366.2 cubic feet, the pressure in atmospheres will be $\xlongequal{70,841 \cdot 68}=193$, or about 2840 lb per square inch, a pressure which few boilers constructed for a work-
ing pressure of 50 lb . are calculated to withstand, and which i ing pressure of 50 lb . are calculated to withstand, and which is Of course the above calculation can only hold in the case of in
 the flue, then the diminution of pressure, the increased evaporation, and the enormous consequent increase of pressure--then the
accuracy of the calculation is destroyed; but as these are practically simultaneous it will pretty well indicate the dostructiv energy of one of these explosions.
Kirkton, Dumbarton, January 26 th.

The Employers' Liability Act.-As a means of securing manufacturers against possible losses arising from the Employers
Liability Act, a company has been formed in Birmingham, and registered, entitled "The Employers' Liability and Workpeople
Provident and Accident Insurance Company, Limited." Arrang ments as to premiums, and the full organisation of the company operations, are not yet completed, but a temporary guarantee fund
has been subscribed. At a meeting of employers held a few days has been subscribed. At a meeting of employers held a few days ment of the Act, it was resolved that the system of insurance proposed by the company was worthy of the support of alike employers
TYPE DRAWINGS FOR MAIN SEWERING. mr. robert rawlinson, c.b., westminster. engineer.


FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

## 

NEIPSIC.-A. Twietmeyer, Bookseller.

## PUBLISHER'S NOTIOE.

* This week we publish a Double Number of The Engineer containing the Index to the iste of Applications for and Grants
includes a Complete Casified List of
of Patents during the past six months. Price of the Double of Patent 8 d
Number, 18 ,


## TO CORRESPONDENTS

* In order to avoid trouble and confusion, ve find it necessary to public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly divected by the cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 2d. postage stamp, in order that woriter to himself, and bearing a 2 d. postage stamp, in order that
answers received by us may be forvarded to their destination. No answers received
notise will be taken
these instructions.
* We cannot undertake to return drawings or ma
must therefore request correspondents to keep copies.


## T. C. (Hartshill.)-No

W. ConYress (Dunedin)-Subscription rececived vith thanks





are unable to help you further than to say that it is probable
advertising meet with some gentleman vho wrill aid you to
 Mr. Foaster, maxerer of umbrella sticks.
S. (Birmingham.) $-W e$ cannot give
Sil
 ome of our
ment pages
Runt






 no opinion.
O. Li Farrenheit mixad snor and sult, and obtctined whut he believed to be
the greatest possible cold
He putt his thermomer into the mixture, and







harris's belt fastener. (To the Editor of The Engineer.)
SIR,-Can any reader favour me with the address of the maker
W. J. M.
Harris's patent belt fastener? Harris's patent belt fastener?
Burton-on-Trent, January 22nd.

TAPIOCA MACHINERY
(To the Editor of The Engineer.)
Sir, - I have an inquiry for above, and if any of your readers can giv.
met the names and addresses of makers I shall be much obliged.
Ipswich, Jannury Ipswich, January 21 st.

REMOVING BOILER INCRUSTATIONS.
SIR,-Can any reader tell me if curriers' shavings of leather put into
wooden box perforated with half-inch holes is good for the above?
Scotland, January 27 th.
mexican fibre-producing machinery (To the Editor of The Engineer:)
SIR, Can any of your correspondents inform me of the names
manufacturers of machinery suitable for converting the Maguy
Centuary plant into Mexican fibre?
Mincolican FIBRE.
The EnoINEER can be had, by order, from any.
at the various railuoay stations ;or or it can, if preferred bo supplied direct
trom the oftice, on the folloving terns (paid in advance):-


 A complete set of
 petter of adavice to the Publisher. Thick Paper Covies may be had, cmittance by Post-office order.-A Australia, Belgium, Brazil, British
Columbia, British Guiana, Canada, Cape of Good Hope, Denmark, Egypt,
France Paris only, Germany, Gribratar, Italy, Japan, Matita, Natal,
Netherlands, New Brunswick, Newfoundland, New South Wales, Netherlands, New Brunswick, Newfoundland, Now, South Wales
New Zealand, Portural, Roumania, Switzerland, Tasmania, Turkey,
United States, West Coast of Africa, West Indies, China via Southamp
ton, Cyprus,
E1 16 s . India, $£ 2$ os.6d. ton, Cyprus, E1 16s. India, £2 Os.6d.
temittance by Bill in London, Austria, Buenos Ayres, Ceylon, France,
and Algeria, Greece, Ionian Islands, Noway, Panama, Peru, Russia,
Spain, Sweden, £1 16s. Chili, Borneo, and Java, £2 5s. Signapore,

## ADVERTISEMENTS. ** The charge for Advertisements of four lines and under is three shillinga for every tho lines afterwards one shilling and sixpence odd lines a charged one shilling. The line averages seven words then an advel *or every tivo lines aftervards one shilling and sixpence. odd lines a charged one shilling. The line averages seven words. When an adve tisement measures anch or mor the charge is ten hhillings per inch. A single advertiseements from the country must be accompanied by stamps single advertisements from the country must be accompanied by stamps in payment. Alterate advertisements weill be inserted ovith all practical regularity, but regularity cannot be guaranteed in any such case. All regularity, but regularity cannot be guaraanteed in any such except weekly advertisements are taken subject to this condition.

ents cannot be Inserted unless Delivered before Six
o'clock on Thursday Evening in each Week. ** Letters relating to Advertisements and the Publishing Department of the
naper are to be addressed to the Publisher, Mr. Meorge Leopold Riche; all
other letters to be addressed to the Editor of THE ENaINEER, 163, Strand.

## MEETINGS NEXT WEEK.

The Instiuution of CrviL Enganeers. -Tuesday, Feb. 1st, at 8 p.m.:
Discussion upon "Deep Winning of Coal in South Wales," and the
following paper will be read:- "Portsmouth Dockyard Extension

 Section, "The Industrial Products. of South Africa," by the Right Hon.
Sir Henry Bartle Frere, Bart., G.C.B., G.C.S.L, D.C.L. LL.D. Wenes-
day, Feb. 2nd, at 8 p.m.: Ordinary meeting.. "Trade Prospects," by
Stephen Bourne.
!

## BIRTH.

On the 22nd inst, at 176, High Park-street, Liverpool, the wife of G .
On the 2 2nd ult., at Rawil Pithee, Punjab, HEvsy HARE Scorr,
(ormmerly ex-EEngineer Public Works Department, Puniab

 On the 23rd inst, suddenly, on board the s.s. Ardandhu, on the passage
rom Bilbe Snain, to Clyde, Robrrt Scort, C.E., late manager of the from Bilibao, spain, to to clyde, Robe
Orconera Iron Ore Company, Bilbao.

## THE ENGINEER

JANUARY 28, 1881.
parliament and the rivers.
The Government measure "for the Conservancy Rivers, the Prevention of Floods, and other matters," has been brought forward in the House of Lords, and its
econd reading is promised for Monday next. The second reading is promised for Monday next. The
announcement made in the Queen's Speech with reference to this subject is therefore fulfilled; and the appeal made by the powerful deputation to Mr. Dodson last November has not been in vain. The Bill itself was issued on Tuesday last, and it is to be hoped that it will enjoy a better fate than its predecessors. The Earl of Redesdale, who is nothing if not critical, appears to have his eye on the Bill for the purpose of interposing some elaborate motion of his own, and has already given signs of a scheme that it should be referred to a Select Committee. The Lord President of the Council, who has charge of the Bill, replied to Lord Redesdale on Monday, signifying that there was at present no intention to refer the Bill to a committee, seeing that a Select Committee of their lordships House considered the subject only a few years ago. To
this it may be added, as stated by the Speaker of the this it may be added, as stated by the Speaker of the
House of Commons when addressing Mr. Dodson, that wice within the last two years Parliament has attempted to deal with the question, and Bills have been introduced, framed mainly upon the lines of the
report of the Select Committee of the House of report of the Select Committee of the House of
Lords. The failure of these Bills to pass was mainly due to the pressure of other business, and no hostile motion was carried against either of them. If, according to the usual phrase, any subject was ever ripe for legisla tion, it is this ; and the loss of time which has unfortunately taken place only makes the necessity for the interposition of Parliament more urgent. In the present
instance the earnestness of the country is shown by the Bill which Mr. Magniac has brought forward in the House of Commons, and which contemplates the same object as the Bill introduced by the Government in the Lords.
The Government Bill, as also Mr. Magniac's, is of a permissive character. The Select Committee of the House
of Lords which investigated this subject in 1877, while desirous that means should be taken to ensure the appointment of a Conservancy Board for each watershed area considered that it should in the first instance result, if possible, from the application of persons having an interest in the district. Following the application there is to be an inquiry by the Local Government Board, and if it appear desirable to create a Conservancy district, certain proceedings will ensue, resulting in the preparation of a
Provisional Order, which will await the sanction of Provisional Order, which will await the sanction of Parliament. If the Order be confirmed by an Act, the Conservancy Board will then be formed, with power to execute all such works as may be necessary for the prevention of floods in their district, and for carrying into effect all or any of the other purposes of the Act. In the
scheme for the constitution of the district, the Local scheme for the constitution of the district, the Local Government Board will, wherever it is "just and prac-
ticable," make a distinction between lowlands, midlands, ticable," make a distinction between lowlands, midlands,
and uplands, and will prescribe in what proportion these are to contribute to the expenses of the Conservancy Board. The highest rate in the pound payable by the uplands is not to exceed one-sixth part of the highest general rate payable by the lowlands. It is also to be
observed that an urban sanitary authority may be constituted a Conservancy Board, and may defray their expenses under the Act out of the general district rate.
It is important to forecast how far this measure will be in accordance with what we may term engineering principles. Existing sanitary legislation has failed to deal limited and with river floods, because Th has had respect to of 1877 thorouglly endorsed the opinion expressed by almost all the witnesses who came before them, that in order to secure uniformity and completeness of action in
dealing with each river, "each catchment area should, as a who should be placed under a single body of conservators, who should be responsible for maintaining the river from its source to its outfall in an efficient state." It was in no violation of this principle that the committee suggested the possible advantage of placing the tributary streams
under the care of district committees, subject to the general under the care of district committees, subject to the general
control of the conservators, who were themselves to consist of "residents and owners of property within the shole area of the watershed." It was admitted whole area of the watershed. It was admitted
that in some instances a tributary stream might be of such magnitude and importance as to require a separate Conservancy Board for itself. But in
that case it was conceived that the intervention of that case it was conceived that the intervention of a superior power might be occasionally necessary in order to The id direrences arising between the cordinate bodies. The idea of subdivision pervades Mr. Magniac's Bill, proVision being made in that measure for three grades of Conservancy Boards-namely, sub-district, district, and general. The Government Bill scarcely strikes us as
having been founded on a clear apprehension of the catchhaving been founded on a clear apprehension of the catch-
ment theory. The provision that an urban sanitary authority may be constituted a Conservancy Board cuts at the very root of the watershed principle. The chopping up of a river into sections is the great defect of the pre-
sent system-if system it can be called. We have very sent system-if system it can be called. We have very
little hope of seeing the river floods conquered, or the little hope of seeing the river floods conquered, or the rivers protected against the effects of drought, undess
they are dealt with as part and parcel of a great they are dealt with as part and parcel ona gorks
system of national drainage. The main drainage works system of national drainage. never have been carried out, had the design and execution been left to the disjointed wisdom of forty London vestries. A river is the drainage of a basin, and the basin must be dealt with in its integrity. Towns can be properly represented on a Conservancy Board comprehending the entire catch-
ment area, and no Conservancy Board will be able to deal ment area, and no Conservancy Board will be able to deal
successfully with a river unless it has the entire possession successfully with a river unless it has th
of the area to which the river belongs.
In common with previous measures, each of the Bills before Parliament excludes the Thames from its provisions, as also the Lee, so far as the existing Conservancy Acts are concerned. It cannot be said that the Thames is in a happy state at the present time. It overflows its banks, and half drowns some hundreds of families within the metropolitan area, and seems determined to rise higher and higher as time goes on. Sir Joseph Bazalgette declares that there never was so high a tide as that of last Tuesday week. Yet there was no land water to aggravate it Not only does the main stream run over, but the streams that run into it are likewise rebellious. It does not appear that the Thames Conservators take any thought for the Ravensbourne and the Quaggy, or the mysterious streams which submerge Brixton. The Thames basin possesses a variety of authorities. The Lee, for
instance, has its own Board of Conservators, and very properly so ; but they owe no allegiance to the Conservators of the Thames. The Metropolitan Board have to deal with the Thames floods which occur in their own area, while the Ravensbourne and the Quaggy are in
the hands of the Greenwich District Board, the Lewisham District Board, and sundry rural parishes. The Chinese are said to have a game in which they place a couple of crickets in the middle of a large china basin, and then tickle their tails, each with a feather to make them fight There are several crickets in the Thames basin, and they are by no means in harmony with each other. The Thame Conservators have quarrelled with the Metropolitan Board the Metropolitan Board are subject to a Chancery injunction obtained against them by the Greenwich District Board with regard to the storm overflow in Dept-
ford Creek, and Greenwich and Lewisham are by ford Creek, and Greenwich and Lewisham are by no means in agreement with respect to the Lewisham fort, and good reput wity a dieat city, the Conservancy Bill of the Lord President provides no remedy; neither does it distinctly promise to bring peace and good government into any of the large rive
basins of the provinces. It is simply an instalment of what basins of the provinces. It is simply an instalment of what is wanted-a "tentative" measure, as we are told, which is the way in which we always do things in this country, If passed, it will have to be amended, and for the presen we can only be thankful that there is to
without which there can never be an end.

## railways as state property

A FAVOURITE argument with those who clamour for the Aransference of English railways from private hands, is from great reduction in the cost of management will resuld of central control. That a few of the separate board pensed with by merging the large systems is perhaps true, but the fallacy of the idea that either great economy or increased facilities are likely to ensue from Government possession of the railways, has now been sufficiently shown by the results of the working of the German or Prussian State lines. After considerable experience as a great railway trading concern, the German of district or local manage railways suffer fromelt of this Bill is now before the Chamber of Deputies, which has for its object the provision, as an addition to the State management, of such a local and personal element as will meet the wants of passengers and manufacturers, so tha these wants may not be lost sight of as they apparently descend from the weighty stratesic and bureancratic considerations, and the more salient of the general questions of management, to the matters of local and trade interest upon which the economical profitable management of rail ways largely depends. To a very great extent the profit which can be made upon railways depends upon the attenways which is paid to the wants of those who use the rail proportion the business of any trader flags or increases in themselves receiving at his hands. Hence it has been found in Prussia that it is necessary that the railways
shall be so managed that the wants of the Prussian people
shall be studied and their demands supplied. To this end, shall be studied and their cemands supplied. To this end,
and in addition to the Royal decree, which has already and in addition to the Royal decree, which has already
created an Economical Council for Prussia, a Bill has bean laid before the Chamber of Deputies providing for
the appointment of district railway councillors and of a the appointment of district railway councillors and of a
national railway council for the management of the State national rail way council for the management of the State
lines. This council will consist of a president and vice-
presidents, to be nominated for three years by the King; presidents, to be nominated for three years by the King;
of commissioners from the Ministries of Public Works, of commissioners from the Ministries of Public Works,
Trade and Commerce, Finance, and Agriculture ; of three
members from either House of Parliament; and of one, members from either House of Parliament; and of one,
two, or three representatives of the various provinces, ac-
cording to their importance in respect of the railways. The cording to their importance in respect of the railways. The
council is to begin its labours on the lst of January, I882. It is thus easy to see that the State having
become possessed of the railways, finds that they cannot become possessed of the railways, finds that they cannot
be managed like a post-office epepartment, which puts out half its work to be done. It is foumd that rail ways want
a good deal of management, and that central dictation is a good deal of management, and that central dictation is
not the sort of thing that effects this. It is found that the special management which the railways had under private enterprise cannot be dispensed with, but having dispensed
with the boards of directors it is now found necessary practically to re-create them. In other words, in order that the railways may do as much work and be as useful as they were
formerly, the very means which were formerly employed formerly, the very means which were form
to manage them must be again resorted to.

It is much to be questioned whether the proposed railway councils can ever be as effectual in the management of what
maybe looked upon as apurely trading concern as the boards may be looked upon as a purely trading concern as the boards
of directors directly interested in the welfare of the railways. The stimulus which causes individual railway companies to make those improvements and grant those facilities
which entice custom will be wanting. It may, which entice custom will be wanting. It may,
of course, be said that our railway companies show
considerable reluctance to adopt costly improvements as eagerly as a semi-informed public would wish ; but at the same time there is no evidence that any Government Department ever regards the inventor of any improvement
with great affection. Government officials need at least as much proof of the necessity and value of any proposed reform as the directors of railways, and it is not at all
certain that if our railways were in the hands of the certain that if our railways were in the hands of the
Government, extensive improvements, either for the comfort or convenience of railway travellers, would be made, without the same pressure of public opinion which has now, in some matters, to be brought to bear on private
companies to effect these. With the fact before us that centralisation of railway management has so far failed in Germany as to make it necessary, on the grounds of directors of the railways when privately owned, the argument for state purchase under crounds alone practically that these new district railway councils are found to be necessary. Itisnotorious that on the linesunderstatemanage much more frequent than under the former management as to cause general concern. Salaries have been greatly pointsmen, have been brought down to a sum not much in exess of that given to our poorly-paid letter-carriers. Travelling in Germany was formerly very safe, if very slow ;
but the reduction, on grounds of economy, of the number of officials, such as line inspectors, has taken away even this reason for praise. Such secrecy is, moreover, observed respecting accidents that a long time elapses before the
public is made aware of the true number of killed or injured, and all such matters are hushed up as soon as injured, and ahis is facilitated by the difficulty with
possible. This which the press obtains correct information on accidents, so that very little is said of such things in the news-
papers except when they happen in England. Those who support the purchase of railways in England
by the State will have to show very'strong proof of the possibility of State management being better in this country than in Germany, or their arguments on other grounds will have little weight.

Certans of our readers appear to be determined that a good deal shall be heard about cheap patents, and the
questions raised by these gentlemen in our own correquestions raised by these gentlemen in our own corre-
spondence columns, and elsewhere, no doubt possess spondence columns, and elsewhere, no doubt possess
interest for many people-engineers, manufacturers, work-
men, and amateurs. While we are willing to give all the men, and amateurs. While we are willing to give all the
space we can spare to the letters of our correspondents, space we can spare to the letters of our correspondents,
we may be excused if we express our own opinions on the subject, even if these opinions should not quite meet the
views of others ; and we even dare to hope that an views of others; and we even dare to hope that an
impartial consideration of the questions raised may serve to call back some minds to the path of logical reasoning from which they have wandered. The thing advocated just now by those who write about patents at all is a
reduction in the Government fees. This reduction would give what are known as "cheap patents," and we propose
to inquire here whether it is or is not advisable that the scale of fees for patents should be reduced. It can hardly be overlooked that the advocates of reduced fees do not
base their advocacy on any claim which the inventor may have to consideration from the Government. They take be reduced for the good of the nation. This simplifies our task, and we willingly follow Mr. Standfield and others to
the pinnacle whence they survey the world and disthe pinnacle whence they survey the world and dis-
course on patents. But we cannot wholly dispense with the inventor and his interests. He, too, deserves some
consideration ; indeed, the influence of reduced fees must consideration; indeed, the influence of reduced fees must
act on the inventor first and directly before it can in any act on the inventor first and directly befor
The advocates of cheap patents contend that a mere reduction of the fees would multiply patents at least fourfold, and that as each patent would represent a
valuable invention, we should have twenty thousand valuable inventions every year instead of five thousand
Hence, as a direct consequence the
country would be marvellously increased. We have
not seen as yet one word of not seen as yet one word of logical argument in
favour of this proposition. We have no doubt, of course, that a reduction in the fees would induce many
men to take out patents who do not take them out now; but so far as we can see no one would of necessity be any the better, save the patent agents. The old-esta-
blished firms would make fortunes in a very short time, and quite four times as many men would then make a good hiving as now contrive to earn their bread by playing
the part of patent agents. We may, however put this the part of patent agents. We may, however, put this
fact on one side. It remains to be proved that the inventor would reap any advantage; and there is good reason to
conclude that he could gain no benefit whatever. If our readers will turn to our illustrated list of patents, and examine them carefully, they cannot fail to arrive at the conclusion that many of the inventions patented are really good for nothing. Of the remainder, how many do they
suppose are taken up and made use of ? Not a week passes without numerous patents being taken out for improvements in spinning and weaving machinery. If our
readers will turn to Mr . Spencer's paper on cotton spinning machinery, read before the Institution of Mechanical Engineers in Manchester, and reproduced in The Engineer for November 19th, they will find a history of the progress made
in such machinery during the last ten years; and they will in such machinery during the last ten years; and they will world not, at most, more than half-a-dozen patents have been actually adopted out of, we are under the mark if we say, 500 patents which have been taken out during the last ten years for improvements in this class of mechanism. The remainder are pure waste ; and to reduce fees would
only enormously increase this list of wasted patents. us turn again to the steam engine. Hundreds of patents are taken out every year in this country for improvements in the steam engine. How many of them come to any-
thing? Take the locomotive engine as it stands, and the patents secured within the last twenty years for improvements in locomotive engines and actually in use, may be counted on the fingers. The most noteworthy are
Allan's straight link, Adams's radial axle-boxes, W Adams's traversing bogie, Ramsbottom's safety valves, some form of the injector, and probably the method of securing the tires on the wheels. Not ten out
of a multitude. Again, those who contend that patents are the great stimulus to improvement will do well to consider what patents have not done for the marine engine. In orse power burned 3.7 , with engines indicalos 3600 and carried 250 tons of goods ; in 1880, the Arizona, indicating 6000 -horse power, burns 1.75 lb . of coal per horse per hour, and carries 3400 tons of cargo ton of cargo carried, while the Persia burned over 6 tons per ton of cargo. How much of this improvement is due to patents? How many patented
inventions are to be found in the engines of the Arizona? Practically none. Dozens of patents are, however, taken out, and have been taken out, for improvements in marine engines, and in scarcely one instance have they repaid their patent Almost, if not altogether, the only complete patent marine engine at work is that of Mr. Allan,
manager of the North-Eastern Engineering Works, Sunderland. Patents have done next to nothing to bring about the enormous improvement that has been wrought in transatlantic navigation, for of all the various inventions patented and tried at sea, not half-a-dozen have borne fully the day-to-day progress of events is studied, the more clear will it become that of the host of patents obtained, the great bulk die out without ever paying for their own exist ence. They all as a rule represent dead loss, and this even when the things are good in themselves. We published last week two items of legal intelligence, which ought to be of Martin's fire-door, an invention which the history charm of being at once simple, cheap to make, and efficient. The other is the history of the Napier friction clutch -also an invention simple, elegant, and efficient. Few inventions have had more chances in their favour, and for fought, and spent money, and brain labour, and time. They have undergone humiliations, criticisms, contempt. They have battled and toiled, and lost money steadily. Is the game dorts? Has Mr. Napier's clutch added to his hand hire Their story is the story of thousands, and in the face of such facts to talk of the patent fee of $£ 75$ for seven years as a check on the prosperity of the nation appears to be is known the better-that the cost of getting any invention adopted and put into use must be expected to reach hun adopted and put into use must be expected to reach hion
dreds of pounds under the most favourable conditions, and may amount to thousands of pounds. The notion that cheapening patents would do any good to the nation i totally opposed to known facts, which all go to prove tare
the patent fees are but as a drop in the ocean compared with the subsequent outlay required to make the invention remun
Of course men like Mr. Standfield or Mr. Grierson
will not regard the matter from this point of view. They will not regard the matter from this point of view. They
consider it in an entirely different aspect, and it is only fair that we should say something about this also. They point to Watt and Stephenson and Bessemer, and say,
"Behold, these men revolutionised the world, and only because they had patents. Let us have more patents, and we shall have more Watts and Stephensons and Bes
semers." They hereby confuse the means and the end cause and effect. A cheap patent would in no way have helped Watt, or Stephenson, or Bessemer, and the last man in the world to be cited as a favourable example of
what patents can do is Sir Henry Bessemer. He has taken out patents, not by the half-dozen, but by the score, and we are not aware that any one of them ever brought him in one
sixpence of profit, save his steel patents. His celebrated bronze powders are made by machinery, the construction of which is a secret, and the machinery described in the patents
which he secured for making these powders proved on
trial quite useless. The truth is that Watts and Stephensons and Bessemers will always be rare, and no reduction in the patent fees will multiply them. The fixed idea
with Mr. Standfield, and those who hold his opinions, that once a paterl, and those who hold his opinions, money out of it, is the cause of much mischief. The patent is regarded as an end, whereas it is only which used to be mbles in all respects the letters of marque to all the prize gented to private ships, enting. the donation of a kingdom to an adventurer who had as the next step to raise funds and an army and go and We Wuer the kingdom-if he could.
not desirable that we should have of asserting that it is trary, we regard them as the just reward of men who devote time, talent, and money to effecting improvements that arts and sciences. But we completely fail to see The any wiltiplying them most mor patented every year in this country at the useless inventio int practice. Those who take out these patents have presumably some money and some chance of pushing men who find $£ 25$ a burthen which they cannot bear, will be better educated and more competent to invent well, than the men who can pay the existing scale will for is it probable that the new army of inventor regiment of inventors to push inventions or get them of cheap phese are the questions to whic answer satisfactorily before thes can convince any sound political economist that cheap patents are desirable. Inventors have, however, just cause of complaint, in the fact that more of the money which they pay is not devoted to and gomenise. Both should be under one roof and the building containing them ought to be in a central place. The museum should not be confined to patented notentions. It ought to be an exhibition of all that is it should bin mechanical art and physical science. What haps, explain at length another time. Meanwhile, if Mr Standfield and Mr. Grierson really wish to help the inventor, let them do their best to place the means of acquiring patents seek nothing but the multiplication of patents pure and simple they will, perhaps, not like this suggestion, as nothing would tend more powerfully to reduce the number of patents then the spread of information. The history of inventors is a ghastly record. At one time the the Great Seal Patent-oftice bore the inscriptions "Registrar in Bankruptcy" and "Commissioners in Lunacy." There was a grave humour in the concatenapriateness had the cost of patents been largely reduced years ago.

## the school of mines.

There is some reason to think that matters in certain respects are not going quite smoothly at the School of Mines, South Kensingwith the authorities, while the authorities have some complain of the teachers. As the facts are not as well known as they ought to be, we state them here. A very good education in geology, chemistry, and theoretical mining is given at the $a$ certain number of candidates for the posts of science teachers present themselves at the school. There is no very strict
limit as to age. The candidate fills up a form, and on which is, or ought to be, easily passed; it is in fact a species of then selected and placed on the books of the school. They not only are taught all that the School of Mines can teach, but they have besides an allowance made them in money for lodging and railway fares. In return for this they pledge their word
that on leaving the shool properly qualified they will
become science teachers. The science teacher lives where become science teachers. The science teacher lives where
he pleases, and he holds classes for artisans, and gives lectures, the minimum fee for each course being 5 s. The artisans Whom he has taught go up from time to time to the School of first class the teacher gets $£ 22$ s.; for each one who passes in the second class he receives $£ 11 \mathrm{~s}$. Now it appears that the science their teaching. They assert that Professor Frankland does not their teaching. They assert that Professor Frankland does not
attend as he ought to the laboratory, ond find fault with his lectures. The great body of the students, however, hold different views, and are quite satisfied, as, indeed, seem to be
not a few of the science teacher students themselves. How
the dispute which exists will end remains to be seen. It the dispute which exists will end remains to be seen. It
is now stated that very often the gentlemen who have
promised to become science teachers find that they cannot promised lo become science teachers find that they cannot
make a living at the business, and that they throw it up
and take very good appointments both in this country and abroad as analytical chemists and mining engineers. They thus get an expensive education in return for nothing The whole scheme, indeed, appears to be thoroughly Utopian.
There is no possible check on the men after they have here ise no possible check on the men after shool; and it is hardly to be expected that a man who can earn at most $£ 80$ or $£ 100$ a year as a science
eacher, will refuse an appointment at home or abroad worth three times as much, simply because he has promised, not an individual but a department, that he will do nothing of the kind. Such conduct is wicked no doubt, but the department supplies the temptation. We understand that the whole question will very South Kensington hare Pary statistics to prove that the system has worked well and paid for itself by results, they ought to be got out and put into shape. The department will have to make out
a very good case indeed to justify the existence of the system.
the extension of letters patent.
The letter on this subject, which we print in another page,
deserves a word or two of comment. We do not understand our correspondent to say that a patentee is entitled to extension as
of right. As the law stands, that contention would be imposp
sible, because the Act of William IV,., which autherises the exercise of the prerogative to the extent of seven years exten-
sions, expressly states that the matter may be referred to a comsions, expressly states that the matter may be referred to a com-
mittee of the Privy Council, and that the king "is authorised mittee of the Privy Council, and that the king "is authorised
and empowered, if he shall think fit, to grant, \&ce.
It is not the cost to which the writer objects; what h It is not the cost to which the writer objects; what h
really chafes under is the position of a supppiant which the
petitioning patentee has to adopt. really chafes under is the position of a suppliant is somewha
petitioning patentee has to anopt. But
illogienient. He suggests a moral duty on the part of the "country" It grant the extension. This obligation can only arise in con
to gration of some sacrifice on the part of the patentee, and the
sideration whole drift of the inquiry at Whitehall is to ascertain the fac
and amount of this sacrifice. Prove that fact, and the extent o it within the rules of practice which are necessarily formulate
for the exercise of $a$ judicial discretion, and you are assured 1or the exercise of a judicial discretion, and you are assured of
an extension. To give this proof a patentee must condescend
to particulars. He must show that he is a meritorious to particulars. He must show that he is a meritorious
but an unremunerated person. Surely it could not be
otherwise under any systems of law which did not pro otherwise under any systems of law which did not pro
vide for indiscriminate renewals. We do not say tha a system might not on sugged on of a very considerabie
without inquiry upon payment say of
fee. That is a large question to which serious if not fatal objec fee. That is a large question to which serious if not fatal objec
titon may obviossly be urged. But so long as inadequate
remuneration is a ground for extension, that inadequacy, and the remuneration is a ground for extension, that inadequacy, and the
consideration whether or not it has been due to the fault of the patentee himself, must be submitted to the decision of some
person or persons before whom the applicant cannot but be in a position of dependence, which however, is in
sense dishonourable. We think that Mr. Napier is
hard upon his judges. The Judicial Committee have hard upon his judges. The Judicial Commmittee have
reputation for patience and courtesy remarkable even amon reputation for patience and courtesy remarkable even amone fortunate ns our correspondent shows how willing they are help a deserving patentee, if they can do so consistently with
rules of practice. Everybody will agree with Mr. Napier as to the courtesy of the counsel of the Crown, but we wonder
whether he would have been so lavish of his praise if they had adopted in his case the position which they took up in the otherthat of a most strenuous opposition to the patentee, notwith-
standing that he had another opponent-a competitor in tradebefore the Court

## BOROUGH SURVEYORSHIPS.

THE class of candidates for borough surveyorships who are brought to the front by the offer of $£ 200$ a-year was very
amusingly illustrated at Barnsley this week. For the vacant office there were no fewer than 175 candidates, several of them undeniably good men who ought to command at least double
the money. One applicant was from Sheffield, and his letter was a curiosity in its way. Of course great. minds are superior to
such mean considerations as grammar and orthography, but the
Sheffeld such mean considerations as grammar and orthography, out the
Sheffield applicant was unique in his disregard of the
conventionalities of composition. In offering himself as a candidate for borough "surveyour" of Barnsley, he based
his claims on the fact of his "having had great experience as builder in cheap and jerry line," and therefore "knew all tricks of jerry builders." On that account he
would be able "to see that good property was put up in Barnsley." The rest of the letter would be spoiled by condensa-
tion :- "Jerry building in Sheffield now doe not tion :-"Jerry building in Sheffield now does not pay, so having
made a bit would leave it 2 accept post of borough surveyour
of your important and rapidly increasing towns which I visited several times, and the air of which agrees me also with my wife and five children, youngest of which is 4 years old. I would
give my whole time to the job, and would accept $£ 200$ until you discovered my great capabilities, when I am sure you would give
me a full salary. I used to be clerk of works for building firm until I went into jerry building line-cottages-and should have done very well, but Sheffield is over-built with jerry property
I will look after your important town well and catch them, knowing their tricks. I can wait on you any day this next week, if
appointment be made. I will ,give you references to people here. Your humble servant,
tive in the logic which runs through this application. "Set tive in the logic which runs through this application. "Set
thief to catch a thief," was once considered the acme of polic Corpom. This applicant evidently thinks that the perfection
Corporisom is to set a jerry builder to catch a jerry
builder. "Jerry," it may be needful to explain outside Soutt Yorkshire, is a term for houses which are simply thrown together -half bricks, and these bad half bricks, in the walls; street
scrapings for mortar ; and green wood in the windows, floors, scrapings for mortar ; and green wood in the windows, floors,
and doors. Everything, in short, that is cheap and nasty. Drains, of course, are a luxury that are never dreamed of.
King Death and the jerry builder strike up a partnership which King Death and the jerry builder strike up a partnership which
keeps doctors busy, and thin off the population with unfailing regularity.
the electric light in its naval and military AT the Royal United Service Institution on Wednesday last,
Mr. R. E. Crompton delivered a lecture on the progress of the electric light, in which several novel statements were made. It seems that Glasgow has recently experienced a continued succes-
sion of thick fogs, and as many of Mr. Crompton's lamps are in use in the city, a series of experiments were carried out to obtain
data relating to the fog-penetrating power of the electric light data relating to the fog-penetrating power of the electric light
rays. It will be understood at once that the property of fogpenetration is of considerable value in naval and military operations. Under cover of fog bodies of troops can be moved with
impunity, torpedolaunches canadvancealmosttoa vessel'sside, but given a light whose rays can penetrate the fog, and such movements of parallel rays in any direction was condemned by.Mr. Crompton, fog penetration. Hisexperiments led himto conclude that the rays those rays proceeding from the crater in the positive carbon, a few proceeding from the tip of the cone of the negative carbon,
and practically none from any other portion of the arc or incanand practically none from any other portion of the are or incan-
descent material. The holophote uses but few of the former rays and reflects the latter. Inasmuch as the size of the crater
bears a certain proportion to the carbon current, the capacity bears a certain proportion to the carbon current, the capacity
for fog penetration by a given current, can, be approxi-
mately calculated. Instead of using the holophote, it was mately calculated. Instead of using the holophote, it was the look-out man should be placed below and not above the light. An 80 Weber current, the lecturer inferred, would give command of a circle
fog. These suggestions indicats the necessity of further and
in exuaustive experiment. The smoke from the battery is not
altogether similar to a fog, though there exists a brotherly likeness, and the question must be answered, Do the same rays pene-
trate through smoke as through fog, or are some other rays to be tratefrred?

## LITERATURE.

How to Manage a Steam Engine. By M. Powis Bale, M.I.M.E.
London : Wyman and Sons. 1880 . Rules for Engine Drivers. Mounted Sheet on Roller. London There is room for comprehensive, accurate, and concise works on the subject which Mr. Powis Bale has taken up. our readers may form their own opinions of the value of
his contribution from the following quotations:- "Should a certain bulk of steam be confined in a boiler, the smaller the space it is confined in the greater the strength of the
boiler necessary to confine it." We have not yet seen the boiler necessary to confine it." We have not yet seen the
yard in which a 30 -horse boiler could be made in accord ance with the following:-"The heating surface allowed in the boiler should not be less than 17 ft . 6 in. square per nominal horse-power." The following may be referred to
when reading the instructions given further on :- "The cylinder area should be ample-much diversity of practice unfortunately exists as to what is considered the correct amount of area per nominal horse power ; we are, however, inches.
The meaning to be attached to the following may be clear to some readers :-" When the engine is employed for driving a thrashing machine, it should, if possible, be ontel thal the dust rom the corn lay whether the will be able to reconcile what is said above and in Nos. and 7 of the following, or whether it will be necessary to forego economy if these and the 8th cannot be observed. bine in it engtion the following points :-(1) A strok of twice the diameter of the cylinder ; $(2)$ an efficient condenser ; (3) an automatic expansion slide controlled by a 5) short steamor; (4) a steam jacketed and lagged cylinder and lubricated, and an efficient method of packing ; arge cylinder area ; (8) a fly-wheel of large diameter." The phrase "more or less" is sometimes very handy, to but its excessive cost, more or less, precludes it's use." The meaning of the following is not quite clear, "The heat differ from the combustion of different kinds of coal 95 deg." It may be hoped that few of our readers have conversed with the authority referred to by Mr. Bale in heard annexed: "As a prevention to corrosion we tave be poured in the boiler before getting up steam, this adhering in a thin coat over the interior surface in a degree protects the plates." Boiler insurance companies
should study the following on explosions arising from collapse. "These are supposed to be caused by the combined action of a vacuum, often caused by the sudden admission acting on the plates, and considerable internal pressure some cases insufficiently stayed, and also weakened by overheating, are forced inwards, death in many cases resulting rom the hot water thus let loose.
In the mounted sheet for engine drivers we find the fol-
 sure is at that time shown on the pressure cauge." Usually, it is not thought advisable to permit engine drivers to tamper with a safety valve, and it is not generally considered that the pressure gauge is the more iikely of the remind accurate. The book and sheet amusing contemporary Punch said "did not read books ; he wrote them."

## LEGAL INTELLIGENCE

JUDICIAL COMMITTEE OF THE PRIVY COUNOIL
: Sir barnes Peacock, Sir Montague Smith,
Robert Coluter.) -January $19,21,22$, and 25 .
Re Adair's Patent
THIs was the hearing of the application of Mr. William Adair, of Liverpool, for prolongation of letters patent granted to him, and
dated the $5+1$ April, 1867, No. 1027, for "Improvements in Pumps. It was alleged by the petition, and supported by evidence, that for some time previous to the grant of the patent,
Mr. Adair had sooght to design a pump or use at sea as a shin's
main pump, which should be free from the chief drawback of the main pump, which should be free from the chief drawback of the
pumps then in use-difficulty of access to the valves for purposes of clearing from obstruction. Prior to is patent the practice was their more complicated character; and because, in the event of the valves becoming choked, there was much more difficully in clear-
ing them. The first completed pump made by the petitioner was ing them. The first completed pump made by the petitioner was
suited for a shiin of about 1500 tons burden, and was exhibited in 1867 at the Duke's Dock and Princes' Dok, in Liverpool, for a period of described in the specification of the letters patent, was
the plan
double deation water in an open water head, and valves all accessible, and except as to one pair, also covered by the water of the water head. The
advantages offered by it were evident, but it was not easy for some
 the with the new, and, moreover, single-action pumps cost less.
However, in course of time, sales improved, and with the improvement came infringement. The petitioner was obliged to
defend himself and in one action-that against Messrs. Wallace defend himself, and in one action-that against Messrs. Wallace
and Captain Young, reported in THE ENGINERE at the timethe costs alone amounted to nearly $£ 3000$, all of which was
lost to the patentee by the failure of the defendants-the
OLe Iessrs. Wallace-immediately after their defeat in the Court
of Appeal. Mr. Adair had also taken out patents in France, Belgium, Canada, and the United States. The dates of all the foreign patents were subsequent to the end thermer had expired or lapsed and that for the the
The three former
United States had been re-issued and was still in force No profit had, it was alleged in examination, been made in respect of any of them. The petition was opposed by Mr. Wm. Mills, of Greenock.
Mr. Kay, Q.C., and Mr. Chadwyck Healey, were counsel for the petitioner; Mr. Aston, Q.C., and Mr. Lawson, for Mr. Mills; an The opposition was very severe, as well on the part of the Crown as of Mr. Minlls. Obiection was in the first place taken to the fact
that the petition did not upon its face disclose the fact of the that the petition did not upon its face disclose the fact of the
foreign patents, further that the patentee had been sufficiently remunerated, that he had been lititious and had threatened people,
including the objector, with actions for infringement, and that his
accounts were hypothetical, not to be relied upon, and in any case
not presented in a form which the Court could approve. The
not not presented in a form which the Court could approve. The
petitioner had come to their lordships to make out a case for
indulyence Court as to the facts. The accounts showed that 1706 pairs
of pumps had been sold, and that the balance of profits of pumps had been sold, and that the balance of profits
learned after making allowance for costs of litigation, and other payments, amounted to about fe2000 only, It was explained
that the petitioner had not been in the habit of keeping carc accounts of his pump business separate from those of his general
busines. Moreor he had been unfortunate in losing books and
voincer. vouchers, and had therefore been obliged to make his accounts from
estimates of quantities of material used in masing the fiven estimates of quantities of material used in making the given
number of pumps-which number appeared from his pump register wuch invoices and books as he been carefully kept-supported by salaries, and cartage had been apportioned between, his pump and
general business. Witnesses, the petitioner, his bookkeeper and yeneral
IIesss. J. T. King and W. Fraser, of Liverpool, were called in
supp. support of the fairness of the charges and of the merit of
the invention, and on the other side witnesses, among them Mr. Hastie, of Greenock, and Mr. Alex. Fraser, of Liver-
pool, were called to discredit these accounts on all grounds Objection was also strongly urged by the Crown to the appli-
cation on the ground, not only that the foreign patents had not been stated in the petition, bu be they had
been allowed to lapse, it would be if not to the provisions of the 25th section of the Patent Law Amendment Act, to prolong the patent and so put English manu-
factures to a disadvantage. Neucton's Case ( 15 Moo. P. C.) Winans' Case (LR 4 P. C. 93), Normand's Case (LR 3 P. C. 193), Were referred to as authorities in support of this proposition.
To this it was answered, on behalf of the petitioner, that there the petition te rule that foreign patents shoula be mentioned in fact if there were such a rule it it would opten convenient, that in in
tional expense of prants to the additheir pextitions, which had not been done in this case. Further, that there had been no surprise because the objections filed by the answered that the existence and these patents. It was furthe ground for a refusal. The case was not within the Act, because the patents had all been taken out after the date of the English
patent, and Betts's Case (1 Moo. P.C. N.S.) and Joln son's Case (LR 4 P. peticiones alleged of a refusal, on the point of public policy all the
instances inventions patented here by foreigners, which also was not this Tase. Leir, LorDshIPs, after a lengthy deliberation, stated that they
agreed with the judgment which had been delivered by the Court agreed with the the effect that the invention was meritorious and
of Appeal to the useful, and that undoubtedly the petitioner came before them with a case which entitled him to their favourable consideration.
Their lordships were not satisfied that he had been sufficiently remunerated, nevertheless, they were obliged to consider whether
he had complied with the conditions which the Council had laid down as necessary to be observed by applicants for extension. In the first place it was a rule that foreing patents should be stated these patents might not be a ground for refusal either as contrary to statute or public policy. Such information might be necassary to enable their lordships to consider whether the patentee had
derived profit and to what extent from such foreign patents, and that was an important element for their consideration. It had been argued on behalf of the Crown and opponent that in this case the petitioner having taken out foreign patents and
allowed them to lapse was fatal, but their lordships could not agree allowed them to lapse was fatal, but their lordships could not agree
with this contention. There was no case of a refusal on these with this contention. There was no case of a refusal on the ment
grounds where the patents were the patents of an English inventor taken out after the English patent. On that point Betts' Case and Johnnos's CCase, which had been cited for the petitioner, were con-
clusive authorities in his favour. Then as to the accounts, their lordships had carefully considered whether, consistently with their practice, they could adopt them. The practice as to statement of
accounts was thus stated by Lord Chelmsford in Betts' Case (1 Moo.
P.C. 61): " "There can be no difficulty in a patentee beginning from the first to keep a patent account distinct and separate from
any other business in which he may happen to knows perfectly well that if his invention is of public utility, and he has not been adequately remunerated, he will have a claim for too much to erpect thiginal term of his patent. It is not, therefore arises to give the clearest evidence of everything which has
been paid and reecived on accunt of the patent." Again,
in in Saxhy's Case ( 7 Moo. P.C. (N.S.) 82) Lord Cairns stated the
rule thus:- "I is the duty of every patentee who comes for
the prolongation of his the prolongation of his patent, to take upon himself the onus of
satisffying this committee, in a manner which admits of no contro-
versy in every point of view, the invention has brought him, in order that their lordships may be able to come to a conclusion whether that remuneration may fairly be considered a sufficient reward for
his invention or not. It is not for this committee to send back the his invention or not. It is not for this committee to send back the
accounts for further particulars, nor to dissect the accounts for the purpose of surmising what may be their real outcome if they were
differently cast; it is for the applicant to bring his accounts differently cast; it is for the applicant to bring his accounts before the conmittee in a shape that will leave no doubt as
to what the remuneration has been that he has received." Their lordships repeated that they had considered with anxiety reluctantly come to the conclusion that they could not without infringing upon their practice and establishing a dangerous prece-
dent. These accounts were based upon hypothetical weights dent. These accounts were based upon hypothetical weights, no
properly verified statements of which had been put before the court. In fact there was a con explained, and their lordships were obliged to come to the concly sion that the accounts were not sufficient. Upon the above sion the
grounds then the petitioner failed to make out his case. Mr. Aston applied for costs, but their lordships refused to give Solicitors for the petitioner, Messrs. W. W. Wynne and Son;
for Mr. Mills, Messrs. Field, Roscoe, and Co. For the Crown, The
Treasury. $\overline{\text { Accondivg to a telegram from Cairo to a German paper, two }}$ pyramids of the sixth dynasty, the inner walls covered with several
thousand inscriptions have been unearthed near Saggarah, to the north of the site of Memphis.
A Great Crucirle Stekl Casting.-During thepast week Messrs.
Jessop and Sons, Brightside Steelworks, Sheftield, cast the largest crucible steel casting that has yet been produced., It is a spur ring pots were used, each pot holding 80 lb . weight of molten steel. When pote weel usd bean poured into the three large ladles, the plugs were
the soved, and it ran into the mould, the weight when cast being
reme removed, and it ran into the mould, the weight when cast being
about 10 tons. In its finished state the weight will be about $8 \frac{1}{2}$ tons. It is, without doubt, by far the largest crucible cast steel casting of
and Sons anticipate that this will be the beginning of an important trade with Lancashire millowners, as they discover how much more durable steel wheels are than the cast iron wheels at present
in general use. The firm have previously cast wheels 13 ft . and 14 ft . in general use. The firm have previously cast whels 13 ft and and $14 \mathrm{ft}$.
in diameter, but to 28 ft . was a a greet leap. Now, howeve, they are prepared to undertake castings up to aft., having gone to very
great expense in laying themselves out for this class of work. The operation of casting occupied eight and a-half minutes,

WEIGHT, SPECIFIC GRAVITY, RATES OF AB SORPTION, AND CAPABILITIES OF STANDING HEAT OF VARIOUS BUILDING STONES By Hiram A. Cutting, Ph. D., State Geologist, Vermont. HAving during the past year instituted, and carried out, a serie of experiments to ascertain, as nearly as possible, the capabilities
of the various materials used in the construction of so-called
 result of such experiments, hoping they may be of use to the architects, quarrymen and insurance companies of our country, and also of some interest to those interested in science.
In connection with the capabilities of the various building stones to stand fire and water, weight per cubic foot, so that the identity of the various stones could at any time be compared, and if in the working of a quarr there was a change in gravity, or weight, that it could be easily
detected, and thus all who chose could know whether the tests given would apply or not
I have procured sample specimens of the most important building stones in the United States, and Canada, and, after dressing them
into as regularly as possible, three by four inches, and two inches in thickness, I have taken their ratio of absorption, which ratio I have expressed in units of weight, according to the amount of water taken up. If 450 units of stone absorbed one unit of water, 1 have expressed it thus: $1+450$, meaning that the stone weighed 45 .
To accelerate the process of absorption I have placed the find that in this way as much water is absorbed in a few minute as in days of soaking. When specimens were removed from the
water, I have, before weighing, dried their outsides with blotting paper. In relation to the specific gravity, I have not followed "Gilmore's rule" in full. He weighed the specimens in air bubbling had ceased and then weighed them in water, after which he took them from the water, dried them outside with bibulous paper, and weighed them again in air. From this last weight he pabtracted the weight in water, dividing the dry weight by the
suff
difference difference.
This gave a specific gravity subject to two sources of error. I
have followed the more frequent custom of weighing the dry stone, using pieces of two or three pounds in weight, and then immersing them in water. After the usual saturation I have taken their weight in water, subtracting it from the dry weight in air, and then dividing the dry weight by the difference. This gives the specific gravity of the rock itself, as usually found, which is what
we desire, and I believe as it would generally be in buildings con-
structed of the given material. The specimens were previously dried by long exposure to a temperature not exceeding 200 deg. direct, and after weighing have brushed them over with paraffine dissolved in naphtha, weighing them again so as to ascertain the exact amount of paraffine, which made no visible change in the stone, other than to keep out water. I have then weighed in the usual way, and thus obtained the exact specific gravity of the stone is in the quarry, and I find my method used, as stated, to give the After this I have placed them in
which was shown by a standard pyrometer have placed them side by side with dry specimens, but I Thave been unable to note any marked difference in the action of heat, beyond his, that the dry specimens became sooner to have, howgainst its durability, even in warm climates, and vastly more so in the changeable and wintry climate of New England. It is here often frozen before any considerable part of the moisture from autumn rains can be evaporated.
When the specimens were heated to 600 deg. Fah., I have mmersed them in water, also immersing others, or the same, if
uninjured, at 800 deg. and 900 deg., that is if they are not snoile $t$ less temperatures. I find that all of these samples of building stones have stood heat without damage up to 500 deg. At 600 deg . few are injured; but the injury in many cases commences at or tear cyat to point. When cooled winout immersion they appear to the eye to be injured less, but are ready to crumble, and I think what injured, when water produces any injury
I would remark that my experiments with fact much greate difference i gater thandind
 required to heat them, the saturated ones seeming to thest the heat for a time; but when equally hot they crumble the same as those not previously saturated. Their relative worth can be seen by the table. The conglomerates stand heat badly; while the limestones and marble stand best of all (up to the point where they, y continued heat, are changed to quick lime except soapstone, Chamberlain patent. The indicotions are from samples of artificial stone, that it may be possible to make an artificial stone cheaper and better for fire-proof buildings than our native quarries furnish; and we hope this possibility may
 I give you results in tabulated form below,
$\qquad$

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Kind. | Locality. | Specific Gravity. | Weight of one foot. | Ratio of AbsorpAbsorp tion. | First appearinjury. | $\begin{gathered} \text { Crumbles } \\ \text { or } \\ \text { cracks } \\ \text { slightly. } \end{gathered}$ | Cracks badly or ocomes friable. | Injured worthless fora building. | $\begin{aligned} & \text { Melted } \\ & \text { ruined. } \end{aligned}$ |
| $\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 17 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$ | Light coloured <br> Denning's'Quarry <br> Light coloured <br> Red <br> Light coloured <br> Colou <br> Coloured medium <br> Sanborn's Quarry Carter's Quarry.. <br> Wetmore and Morse"s Quarry <br> Syenite <br> Gray <br> Scranton County Quarry <br> Old Dominion Quarry <br> Light coloured <br> Coarse . | Hallowell, Me. <br> Fox Island, Me. Mt. Desert, Me. <br> Rockford, Me. <br> Red Beach, Calais, Me. <br> Oak Hill, Me. Stark, N. H. <br> Concord, N. H <br> Plymouth, N. H. <br> Woodbury, vt. <br> Barre, Vt. <br> Quincy, Mass. <br> Woodstock, Mä. <br> Port Deposit, Md. Richmond, Va <br> St. C’loud,'Minn. <br> Stanstead, P. Q. North Halifax, <br> Gauauogue, P. O., Can. |  |  | $\begin{aligned} & 1+790 \\ & 1+680 \\ & 1+716 \\ & 1+482 \\ & 1+560 \\ & 1+300 \\ & 1+534 \\ & 1+785 \\ & 1+650 \\ & 1+790 \\ & 1+784 \\ & 1+620 \\ & 1+850 \\ & 1+394 \\ & 1+816 \\ & 1+398 \\ & 1+402 \\ & 1+280 \\ & 1+420 \\ & 1+584 \\ & 1+736 \end{aligned}$ | g. Fah. 800 700 800 600 800 800 600 800 800 800 800 800 750 700 700 700 750 750 700 700 700 800 | Deg. Fah. <br> 900 <br> 800 <br> 850 <br> 800 <br> 850 <br> 850 <br> 700 <br> 900 <br> 900 <br> 900 <br> 900 <br> 900 <br> 800 <br> 750 <br> 7500 <br> 900 <br> 800 <br> 800 <br> 700 <br> 900 <br> 800 <br> 850 | Deg. Fah. 950 850 950 5900 9900 9800 950 950 9500 950 950 850 800 900 950 850 800 1000 800 900 | g. Fah. 1000 900 1000 900 950 950 950 950 1000 1000 11000 11000 1000 900 900 900 1000 900 950 100 1000 900 950 | eg. Fah. <br> 100 1000 <br> 1100 950 <br> 950 1000 1000 <br> 1000 950 1900 <br> 1200 1200 1900 <br> 1200 1200 <br> 1200 1200 1000 <br> 1000 <br> 900 900 <br> 900 1100 1000 <br> 1000 1000 <br> $\begin{array}{r}900 \\ \hline 900\end{array}$ <br> 1200 900 <br> 900 1000 |
| Sandstone. |  |  |  |  |  |  |  |  |  |  |
|  | Freestone <br> Seneca <br> Sandstone <br> Montrose Stone. <br> Freestone <br> S. Cärboniferous <br> Freestone <br> Cincinnati Stone <br> Potsdam Sandstone. <br> Potsdam <br> Euclid Stone <br> Berea Stone <br> Amherst Stone <br> Brown Stone <br> Potsdam Sandstone. Sandstone <br> Fre <br> Brown Stone | Portland, Conn. <br> Montgomery Co., Md. <br> Salem, Md. <br> Ulster, Co., N.. Y. Belleville, N. J. <br> Nova Scotia <br> Br. Phillipe, N. S. Dorchester, N. B. <br> Cincinnati, O. <br> McBride's Corners, 0 <br> McBride, 0 <br> Near Cleveland, 0 . <br> Berea, O... <br> Humbletown, Penn <br> Beauharnois, P. Q. Murray Bay, P. <br> Cheat River, W. Va. <br> Acqua Creek, Manasses, Va. |  |  | $1+27$ $1+27$ $1+26$ $1+24$ $1+20$ $1+314$ $1+27$ $1+240$ $1+29$ $1+26$ $1+23$ $1+28$ $1+22$ $1+22$ $1+35$ $1+20$ $1+18$ $1+28$ $1+38$ $1+36$ $1+80$ $1+16$ $1+17$ |  |  | 950 950 9900 9900 9500 11100 1000 1000 9950 9000 1000 1900 1000 9500 950 chang 9950 950 1000 1900 1000 1000 100 | 1000 950 950 9500 12000 12000 1100 1100 1000 1000 11000 1000 11000 1000 1000 1000 1000 1000 1000 11000 1000 1100 1100 | 1100 11000 1950 1100 1200 1200 11100 1100 1000 1000 11100 11100 11000 1000 1000 1000 1000 1000 11100 1100 12000 1200 |


| 1 <br> 2 <br> 3 <br> 4 <br> 5 <br>  <br> 6 <br> 7 | Limestone <br> Cincinnati Limestone Potts Blue Dolomite Limestone Trenton Limestone. Limestone | Baltimore, Md Bedford, Ind. Hamilton County, 0 Owen Sound, P. O. Montreal, P. Q. Isle La Motte, Vt Isle La Motte, Vt... |  |  | $\begin{aligned} & 1+340 \\ & 1+280 \\ & 1+288 \\ & 1+280 \\ & 1+480 \\ & 1+316 \\ & 1+320 \end{aligned}$ | $\begin{aligned} & 900 \\ & \hline 850 \\ & 8500 \\ & 8500 \\ & 8500 \\ & 9500 \\ & \hline 950 \end{aligned}$ | 1000 900 900 950 900 950 1000 | 1100 1000 950 900 1100 1000 1100 | $\begin{aligned} & 1200 \\ & \hline 1200 \\ & 11200 \\ & 11000 \\ & 11200 \\ & 1200 \\ & 1200 \end{aligned}$ | $\begin{aligned} & 1200 \\ & 1200 \\ & 1200 \\ & 12000 \\ & 12000 \\ & 1200 \\ & 1200 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conglomerates. |  |  |  |  |  |  |  |  |  |  |
| 1 <br> 2 <br> 3 | Conglomerate Potomac Stone Congiomerate | Roxbury, Mass Point of Rocks, Md. Cape a La Aisle, P. Q. | $\begin{aligned} & 2 \cdot 788 \\ & \begin{array}{c} 2 \cdot 724 \\ 2.645 \end{array} \\ & \hline \end{aligned}$ | $\begin{aligned} & 169 \cdot 2 \\ & 170 \cdot 2 \\ & 165 \cdot 3 \end{aligned}$ | $1+49$ $1+60$ $1+80$ | $\begin{aligned} & 700 \\ & 600 \\ & 600 \end{aligned}$ | $\begin{aligned} & 800 \\ & 700 \\ & 700 \end{aligned}$ | $\begin{aligned} & 900 \\ & 800 \\ & 800 \end{aligned}$ | 1000 900 900 | $\begin{aligned} & 1000 \\ & 900 \\ & 900 \\ & 900 \end{aligned}$ |
| Marbles. |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$ |  | Westchester Co., N. Y. <br> Ashley Falls, N. Y. Westchester Co <br> Dougherty's Q'y, E.Tnn. <br> Near Harpers Ferry, Va. Isle La Motte, Vt, <br> Rutland, Vt. |  |  | $1+298$ $1+280$ $1+380$ $1+320$ $1+300$ $1+300$ $1+342$ | 900 900 950 950 9500 1000 1000 | $\begin{gathered} 1000 \\ 1000 \\ 950 \\ 9.950 \\ \hline 9500 \\ 10000 \\ 1000 \end{gathered}$ | $\begin{aligned} & 11200 \\ & \hline 1000 \\ & 1000 \\ & 1000 \\ & 11100 \\ & 11100 \\ & 1100 \end{aligned}$ | $\begin{aligned} & 1220 \\ & 11200 \\ & 11200 \\ & 11200 \\ & 12000 \\ & 12000 \\ & 1200 \end{aligned}$ | $\begin{aligned} & 1200 \\ & 1200 \\ & 1200 \\ & 12000 \\ & 12000 \\ & 1200 \\ & 1200 \end{aligned}$ |
| Slates. |  |  |  |  |  |  |  |  |  |  |
| 1 | Sabin's Quarry .. | Montpelier, Vt. | 28.6 | 1793 | $1+110$ | 800 | 850 | 900 | 1000 | 1200 |
| Soapstones. |  |  |  |  |  |  |  |  |  |  |
| 1 | Soapstone .. | Weathersfield, vt. | 2.668 | $166 \cdot 7$ | $1+3 \cdot 8$ | 1200 | - | - | - |  |
| Artificial Stone. |  |  |  |  |  |  |  |  |  |  |
| 1 | Artificial Stone | $\left\{\begin{array}{c} \text { McMurtire \& Cham- } \\ \text { berlain's patent } . . \end{array}\right\}$ | $2 \cdot 235$ | $139 \cdot 7$ | $1+2$ | 750 | 800 | 1100 | 1200 |  |

ON THE ACTION OF OILS ON METALS.*

## By William Henry Watson, F.C.S., \&o

AT the Plymouth meeting of this Association I brought forward oils on copper, and the conclusions arrived at were briefly these :(1) That of the whole of the oils used, viz, linseed, olive, colza, almond, seal, sperm, castor, neatsfoot, sesame and paraffine, the samples of paraffine and castor oils had the least action, and tha (2) That the appearance of the paraffine and the
and the copper were not (3) That different oils produce compounds with copper varying in colour, or in depth of colour, and consequently rendering comparative determinations of their action on that metal from mere I was disposed to conclude that theossibe
that these experiments would indicat that the extent of action would vary throughout, but that the variations would be proportionate between the different oils. Sinc the publication of these results, however, an interesting paper ha Metals," by Dr S. Jour.- On the Action of Paramine Oils on Metals," by Dr. s. Macadam. He comes to the same conclusion a says, " it is slightly affected by parafine oil', and ren ten d to iron, tact the oil becomes deeper in colour, and throws down a fine ferruginous sediment." Owing to this, I have lately made experiment. on the action of the same ois as those previously used on copper on iron, and the results which are the subject of this communica tion, are interesting to me as showing that there is no relation iron ; that, in fact, in several instances those oils which act largel on iron, act slightiy on copper, while those which act largely copper act little on iron. Of course, the actual extent of action o the same oil, with the exception of paraffine, is greater on coppe than on iron. In addition to the oils used in my experiments o lubricating oil prepared by the Dee Oil Company near Chester The following observations were made, after twenty-four days exposure:- Neatsfoot.-Considerable brown irregular deposit on metal The oil slightly more brown than when first exposed. (2) Colza.-A slight brown substance suspended in the oil, which ${ }^{(3)}$ Sperm. - A slight brown deposit, with irregular markings o (4) Jul. Oil of a dark brown colour.
(4) Lard--Reddish brown, with slight brown deposits on metal (5) Olive.-Clear and bleached by exposure to the light and air The appearance of metal same as when first immersed.
(6) Seal.-A few irregular markings on metal. The (7) Linseed. - Bright deep yellow. No deposit or marks on metal. (8) Almond.- Metal bright. Oil bleached and free from deposit.
(9) Castor.-Oil considerably more coloured-brown-than when first exposed. Metal bright. first exposea., $(10)$ Parafine.-Oil bright yellow and contains a little brown deposit. The upper surface of the metal on being removed is found to have a resinous deposit on it.
(11) Special Lubricating.-Metal bright. Appearance of oil not perceptibly changed.
The sund ine chemically examined, and the amounts of iron found in them were as follows :-

## Natsfoot oll (English) <br>  <br> Almond $\because \ddot{\because} \ddot{\ddot{n}}$ Special lubricating oil

For comparison, the following are the results obtained of the exposure of ten days :- Copper Found

## $\begin{array}{ll}\text { Neatsfoot oil } \\ \text { Colza } \\ \text { Sperm } & . . \\ \text { Olive } & . . \\ \text { Linseed } & . . \\ \text { Seal } & . \\ \text { Paraffine } & . . \\ \text { Almond } & \end{array}$

## Grain. 0.1100 0.0170 0.0030 0.2200 0.300 0.0485 0.0015 0.1030

Owing to the length of exposure being different in the two series, we cannot fix on the actual differences in the rate of action of any
of the oils on the two metals. However, it is shown that almond oil, which acted largely on copper, acts very slightly on iron; i fact, with the exception of the paraffine and special lubricating oil -a mineral preparation-it acted less than any of the other oils on
iron." The same is shown, as already mentioned, as to the action of various other oils; thus, while sperm oil acts slightly on copper castor, almond, same, and very little action on iron, while linseed, olive, neatsfoot almond, and seal have the greatest action on copper.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

To-DAY-Thursday-in Birmingham, and yesterday in Wolver-To-DAY-Thursday-in Birmingham, and yesterday in Wolver supply of gas coke had been nearly cut off, and that they were
driven to buy at higher prices the oven coal of the different districts. Owing to the larger demand they were only old customer whe accepted by the agents at from 15 s , to 15 s .6 d . per ton, and the be accepted by the agents at from 15s. to 15s. 6d. per ton, and the
not in the lots which the buyers demand. For Durham coke the quotation was 18s. to 20 s . Transactions in pig were scarcely mor than nil upon either exchange, because of the inability of smelters to deliver; and there was insufficient reason to justify purchase upon speculative account. Quotations were mostly nominal, but they displayed little or no weakness upon those of my last report.
This week the prospects of a larger trade in the several descriptions of finished iron needed in bridge building are brighter, orders having been received by local engineers which will need for their fulfilment about 2000 tons of wrought iron of the class with which
the Cleveland district is a severe competitor with South Staffordshire. And the quotations of the local firms would have been shire. And the quotations of the local firms
stronger to-day, but for a little weakness in this week's prices of angles and plates.
Most business was done in sheets of nearly all the gauges and
qualities. Common sheets for export to India, the West Indian Colonies and portions of South America ; medium sheets for corrugating; and best sheets for stamping and for tin-plate making were
chiefly in demand. The trade with India is chiefly in ungalvanised
. sheets, and there are similar sheets in hand for delivery overland in The g doing more this wheet because and some hardware departments are tons of sheets which went down at sea is being replaced ; so, too, * Read before the Chemical Section of the British Association, Swansea
meeting, 18801
are certain cast and other goods which were sunk in Thames barges.
Firmness characterised the quotations of the makers of galvanised roofing sheetsto-day. Makers who had quoted up to about the middle of the montht now withdrew the quotations, requiring more money.
Some firms of this class who are customers of Messrs. E. P. and W. Baldwin are receiving supplies drawn some six or seven miles
in powerful railway carriers' teams, while Messrs. Baldwin themin powerful railway carriers' teams, while Messrs. Baldwin them
selves only obtain supplies of fuel by carting it a mile. The tone of the local tin-plate trade has improved upon the
week, somewhat valuable orders having been booked since my last. Prices vary with the character of the specification.

Business is being done at the collieries on Cannock Chase to the extreme of the railway capabilities. The companies are doing
their best, even to the extent of sending occasionally thirty their best, even to the extent of sending occasionally thirty-six
special engines in one day to the London and North-Western
station at Walsall, to bring away Cannock Chase station at Walsall, to bring away Cannock Chase coal. Some of
this fuel is to meet the requirements of manufacturers whose supplies have been out off by the strikes in certain portions of the Lancashire field. Forge coal on the Rugeley side of the district is 6s. to 6s. 6 d , and on the Tipton side 7s. Furnace coal is from
8s. sd .t. 9 s . -all to old custorers. Household coal is offered at
12s. 6d. for best deep, 11s. for best deep kibles. 12 s , for shallow, 12s. 6 d . for best deep, 11 s . for best deep kibbles, 12 s . for shallow,
and 11 . for shallow lumps, all delivered on trucks thocal railway
stations. These are the prices charged to old customers. New purchasers are glad to get the coal at considerably more money
These prices are mostly 2 s. under those of a twelvemonth aso These proces are mostly 2 s . under those of a twelvenonth ago. at Wednesbury to consider the scheme of insurance which has been
drawn up by the Ironmasters' Association, to take the place of the Employers' Liability Act in South Staffordsliire, of which last week I sketched the leading features.
The founders in the emplo
The founders in the employ of Messrs. T. and C. Clarke
and Co., of the Shakespeare Foundry, Wolverhampton, who, I
last week stated were are upon strike against a proposal of the masters to make certain reductions in their wages for spoilt work, have now
gone in, the principle for which the masters contended having
been conceded.
At the hade-yearly meeting of the Wolverhampton Railway
Rolling Stock Company, on Tuesday, the balance-sheet showed a Rolling Stock Company, on Tuesday, the balance-sheet showed a
profit of $£ 3811$, as compared with $£ 3678$ in the previn pand it was decided to pay a dividend at the rate of 3 per cent. per and was decided o pay a
annum ondinary shares. It was stated that 185 wagons had
been bought, and 232 sold during the half-year, leaving 4597 still been bought, and 232 sold during
in the possession of the company.
An important case to ironmasters and others was heard at
Stafford Assizes on Tuesday last. The London and NorthWestern Railway Company, as representing the Shropshire Union Company, sought to recoover $£ 126$ from Mr. Benjamin Wood, of
Tipton. Defendant had been in the habit of consigning railway Timpton., Defendant had been in the habit of consigning railway
material from Tipton to London and other places and in March, material from Tipton to London and other places, and in March,
1879 , wow was iscovered by the company that he had been paying
15 , per ton for the carriage instead of 20s., the rate charged 15s. per ton for the carriage instead of 20., the rate charged
to other persons. Notice was served upon Mr. Wood that he
would to other persons. Notice was served upon Mr. Wood that he
would have to pay the higher rate, but he refused. The jury re-
turned a verdict for the deferidant. There is a fair amount of business doing at those finished iron-
wworks N North Staffordsiie where fuel supplies are not stopped
but but at many works great inconvenience is experienced by reason o
the canals in the district being frozen up, and local malkers by no means a rolling stong sufficiently large to cope with the sudden demand. Pig iron is in improved request, and prices are
frm. The coal trade is bing benefitted by reason of the strike in
the firm. The coal trade is b
the Lancashire coal-field.

## NOTES FROM LANCASHIRE.

Manchester:-It is dificult to sor what is just at present the
ctual condition of business in this district. For a fortnight manufacturing operations have been suffering more or less from the disorganisation of the coal supply caused by the colliers' strike, and
before the market has been able to return to its normal condition a further complication has been added by the exceptional severity of
the weather, which has stopped completely outdoor constructive the weather, which has stopped completely outdoor constructive
and other work, and in some cases interfered with operations at and other work, an
the local ironworks

## So far as the iron trade is concerned business has been dull during the past week, and there was a very quiet market at Man

 chester on Thesday, Although there is no actual giving way onthe part of makers, who still entertain a confident feeling with regard to the future, and are not at all anxious sellers for long less disposition on the part of buyers to place out further orders at present. Lancashire makers of pig iron are kept going on old
orders, but the new sales reported are only very limited in extent. Where business, however, is done, it is at late rates, and for delivery into the Manchester district local makers remain firm at
4ss. 6. for No. 4 forge, and 47 s. . .d. for No. 3 foundry, less $2 \frac{2}{2}$. about 1s. per ton above these figures are asked, but not moch is
being done, and makers being tolerably well sold are not at all pressing for orders
In the finished iron trade moderate inquiries ace reported in some quarters, and the increased cost of coal is causing manufacturers to actual business doing is, however, still too limited to enable any material upward movement in value to be carried out, and prices
at present are practically unchanged, the average quotation for at present are practically unchanged, the average quotation for
bars delivered into the Manchester district remaining at ábout bars deliver.
£6 per ton.
far coal trade is returning somewhat to its ordinary condition, collieries are resuming their average output of coal, and the the
plentiful supplies which have also been sent in from outside disricts are more than sufficient to meet the requirements of consumers. The disorganisation of transit arrange ement ty the ie e block
on the canals and the increased difificulty of cartage from the
collieries in iterposed recently been working, on from hand-to-mouth, any delay in
obtaining supplies is at once felt. The greatest difficulty has been experienced in obtaining engine fuel, and to keep some of
the mills going round coal has had to be obtained by bart from
neighbouring collieries made no further alteration in prices beyond the advance of 10d. of irregularity in the open market, the temporary high prices which were beeng charged by dealers and merchants are not now so
readily obtained. In the West Lancashire districts the pits are still
stopped, and local stocks shipping trade is suffering a good deal, and numbers of vessels have been lying at the docks in Liverpool unable to get their cargoes of With regard to the strike, the position of affairs remains much
the same. The principal Manchester firms have kept their men at have emanated from the threats of renewed disturbances which however, have been necessary, strong bodies of armed police having
been stationed in the neighbourhood of the pits, whilst the military have also been held in readiness to render assistance
should it have been found necessary to protect the men at work from intimidation. In some of the smaller districts bordering on has been attended with loss of life. As I have already intimated, all the pits in the West Lancashire district are still stopped, and
the amount of bitterness which has been introduced into the struggle stand n the way of any conciliatory proposals for a settle-
ment of the dispute being put forward by either the masters or the
a position to advance wages, but if an amicable resumption of work
could be agreed upon, there is little doubt they would be ready to make some offer to theire men. It was they would be ready to io m Manchester
moday that serious riots had taken place at Atherton collieries where men were resuming work. The pits were attacked by a large mob, much damage being done to surface plant, and a troop of cavalry
had to be called out to disperse the rioters. The break up of the frost is facilitating the movement of stocks held in the district, and me men at Manchester collieries all continue working
No definite action has yet been proprietors with the view of protecting themselves with recard to the provisions of the Employers' Liability Act; but this, of course,
is a matter which is occupying general attention now that the is a matter which is occupying general attention now that the
miners have thrown over the mutual insurance arrangement. Incidentally the question was referred to at a meeting of the South Lancashire and Cheshire Coalowners' Association, held in Manthester ontpone andy deffinite action until there is a more settled feeling
to in the trade.
Barrow-in-Furness.-The chief feature this week in connection coal is still limited from the Lancashire coal district, the supply o continuance of the strike. Supplies in the meantime have been
obtained from elsewhere, but some inconvenience obtained from elsewhere, but some theonvenience has been caused,
and increased value has been the result all round, for both and increased value has been the ressut and round, for both
domestic and steam qualities of fuel have increased in price, this difficulty will be got over satisfactorily, and that makers of iron and steel will not have the disadvantage of fighting against
the effects of a small delivery of coal, when on the other hand they haveplenty of work to o oin connection with the proouctiono itionan
steel. There is a very steady demand for both iron and steel, and is evident large deliveries will have to be made during the year to very large, and all is going into consumption direct from the pig bed. Large engineering and shipbuilding orders have been booked.
The Barrow Shipbuidding Company have secured a contract for the The Barrow Smipbuilding Company have secureda contract for the building of two Ducal Line Steamships for the Calcutta trade,
400ft. long each, and Messrs. Caird and Purdie, who commenced shipbuilding at Barrow a few months ago, , have secured seven engines for these steamships are to be made at Barrow. In many respects there are reasons to believe that the year will be the most active season ever experienced as regards the various ird the con-
this district. Mr. S. J. Claye, of Barrow, has secured the this district. Mr. S. J. Claye, of Barrow, has secured the con-
tract to build 1000 wagons for the Caledonian Railway Company.

THE SHEFFIELD DISTRICT.
Thre agitation for a 10 per cent. advance in miners' wages in South Yorkshire and North Derbyshire does not show signs of when the council of the district passed Rotherham on Tuesday, Coliers to at once give notice for an advance to the amount named. The Denaby dispute, which seems a standing dish" in these men should ask to be allowed to resume work upon the terms on which they were formerly employed, and failing the adoption of points in dispute to arbitration, it being understood that if both oposals were declined the men would refuse to resu
At Chapeltown on Tuesday evening there was a lively meeting,
the two leading union officials flatly contradicting each other, and a third attempted to talk while another was on his legs, the result being a considerable disturbance. One official interrupted another,
loftily declaring that the Barnsley Association, which consisted of fifty lodges, would not condescent to ask advice from the officials aimed at got sarcastic, the upshot being that a miner expressed the opinion that they had better "give all three the sack and broke up in confusion. There is not much hope of the 10 per cent.
Some firms are beginning to hear somewhat unpleasant news from Melbourne. 1 mentioned to you at the time that the silver
and plated exhibit of Messrs. Walker and Hall had been wrecked in the Sorato, but that there was a prospect of the goods beeng
recovered. It appears that the larger portion of them were utterly unfit, after they were fished up, to be placed in the exhibition The irrm have consequently been represented by a very small dishave in the exhibition are spoken of in very high terms in all the accounts which have been written. Messrs. Wm. Jessop and Sons
 exhing gone down in the Sorato greater part of their productions having gone down in the sorato
A very large tonnage of col
and all the collieries of the district are fully employed House coal maintains its advance of 10d. to 1s. per ton, and slack is quotations. If the present extraordinary weather continues, coal will soon be subjected to another rise., The coalowner is having Skate-makers continue very busy, bo
account. Cutlery and general hardware is home and foreign demand for the States being as great as ever. Steel is also in demand, and the firms who have a name for true crucible steel
should do well this year if the trade is maintained.

\&c., in anticipation of approaching deprivation. After eight
ocolock, however, relief was at once felt at all the works, and by
oinco Mr. Waterhouse, the ccoance
Mr. Waterhouse, the accountant to the Board of Arbitration, has
ust issued his returns for the last quarter of 1880 . The average price realised for all descriptions of iron was somewhat lower than
was obtained in the preceding quarter, and a reduction of wages, of was obtained in the preceding quarter, and a reduction of wages, of
3d per ton on puddiling, and 2 per pent. on all other wages was
declared. This reduction comes into force on Monday, the 31 st
det inst. It is thought possible by some that the ironworkers may
resist the award, as they every now and then have done when it
operated operated against them. This, however, is scarcely likely to occur to
any great extent, not for want of disposition to do so, but because they are not much in funds just now. The effects of much loss of time
and heavy expenditure during the Christmas holidays has not been and family necessities in food, clothing, and fuel are increased. Therefore the award will probably be quietly acquiesced in.
The liquidators of the West Hartlepool Rolling Mill Company have just issued their report for the year 1880 . When the price
of iron rose so suddenly towards the end of 1879 they succeeded in leasing a portion of their works to a firm who set them going. The
collapse which occurred last summer brought this attempt resurrection to a sudden end, and they found themselves again in
full possession of their "white elephant." They now intend to offer the same by auction at an early date, fixing the reserve price at such a figure that some one will surely buy. On the other hand,
schemes are afloat for new works for making steel for shipbuilding purposes by the basic process, so that the future will probably see
some fierce competition between the old and the new Whilst the superiority of steel over iron for rails seems fully demonstratea, on account of its greater wearing properties, no practical superiority has been yet shown in the case of ship
plates and angles, because their wearing properties are not in question. If steel is to supersede iron in this case, it must be because
it can be offered as cheap or cheaper. There seems to be little prospect of this, even by the basic process, for some time to come Attempts to roll flat ingots into plates without the costly interhas always failed. All steel plates now manufactured are, but wise. So long as that is the case the of their being made othersiderably above that of iron ship plates, and even these can be much cheapened when necessary. Rather than be superseded,
manufacturers will certainly force down their highly-paid rollers, shearers, re-heaters, and others, to such wages as are
given for similar skill in other trades ; and this alone will make a great difference in the cost of production, iron and steel industries during the enext few years. TThe present
time is in many respects a time of transition. Our knowledge and experience in these matters is very imperfect. The tendency caution is really necessary, especially for the investing public masmuch as even experienced technical and commercial autho
rities can scarcely see their way clear. Those will, as usual, not go far wro any new and promising enterprise just now, there may probably
The third meeting of the session was held on Monday evening
by the Cleveland Institution of Engineers ; Mr. E. W. Richards, the president, occupied the chair, and there was an attendance of from two to three hundred persons. Mr. J. N. Shool
bred, of London, read an interesting paper "On Electricity
as a as a Source of Light and Power." The paper was profusely illustrated by diagrams, showing the various systems in use
The Middlesbrough Corporation kindly lent a steamengine,
ihe ste building, and which, by means of a strap, passing through an aperture in a window, wrove two dynamo-electric machines
lent by Messrs. Bolckow, Vaughan, and Co. The current so generated was used in various ways to elucidate the
paper. A large Siemens lamp of some 1200 candle power wit lighted first ; next a similar lamp of Crompton's type, and finally
one of Swan's incandescent lamps. Arrangements had been made for twenty of these to be placed in circuit round the hall. Un fortunately, however, most of them were broken in transit, and
therefore, Mr. Swan's system could not properly be shown. An "Arab", printing press and a small circular saw were put into by the former and wood was sawn up by the latter, until each member had satisfied himself how com tetely power may be con veyed to great distances by means of two small wires. A dis
cussion followed, in which several Harrison explained the system of lighting adopted at the Esto light per hour to maintain.

## NOTES FROM SCOTLAND.

Business in the iron and allied trades has materially suffered eeks. The frost and snow have interfered with operations o different kinds, and the means of transit and communication of goods have not been nearly so satisfactory as usual. As regards the
iron trade, it has been very dull, although there were not wanting
ind indications this week that more activity may before long be ex perienced in the market. Shipments of pig iron were 2069 tons
smaller than in the preceding week, but still considerably better than in the corresponding week of last year. There was a slight
improvement in the bulk of the imports from Cleveland, which have been Clyde Forth and Clo several weeks by the freezing of the ness being done with the United States, but prices there are to new to admit of profitable sales seing made on this side to any
loxtent. There is but a moderate demand from continental
exter extent. . There e bot a moderate cemand from continental
nations, but the consumption at home is good. Stocks continue to
increase at the increase at the ratenal and Coo, and there must also be consider
hands of Messrs. Connal able additions at some of the ironworks on account of the large
production. There are 122 furnaces in blast-nine of which are producing hematite ir against 108 at the same date last year Business was done in the warrant market on Friday forenoon at
from 52s. 9 d . to 52 s . $7 \frac{7}{2} \mathrm{~d}$ cosh and 52 s . 11 d . to 525 s. 10. d . one




To-day-Thus done up-the
52s. 10d. prompt cash.
The tendency in makers' prices has been slightly downwards, per ton as compared with those of the preceding week. The
quotations are now as follows :- G.M.B. f.o.b. at Glasgow,
per tons,


THE ENGINEER.
Jan. 28, 1881.
at Bo'ness, 54s. 6d. and 51s. 6d.; Glengarnook at Ardrossan, 99 s. and 5 s.s. 6. .; Eglinton, 54 s . and 51s; Dalmellington, 54s. and 51s.
The coal trade as well as the iron been much inconvenienced by the severe weather. Buen there really seemss a prospyect of an ape opportunity
at last for our coalnasters to obtain a little more money for their product. Prices are being raised at some of the English ports, and the miners are
now getting so clamorous for an advance of now getting so clamorous for an advance of
wages, that they cannot much longer be refused. But in one or two cases the miners are reported to have obtained an advance of wages thiss week
without any dispute, and it is not unlikely that without any dispute, and it is not unlikely that
the example may be followed by other masters. Returns have been obtained respecting the Clyde and East Indian Shipping trade which
show that the imports in 1880 were 89,656 tons as against 67,435 tons in 1880 were 89,656 tons
190,423 , as compared with the exports
1474,139 to 190,423, as compared with 146,139 tons. booked by Messrs. Russell and Co.. of Greenoel and Port Glasgow. The shipwrights at two of
the Clyde shipbuilding yards were on strike for an advance of wages, but they have now obtained a promise that they will get it on the
14th February, and so have returned to work.

## WALES \& ADJOINING COUNTIES.

it may be tor Correspondent.)
team coal will hen as certain that the price of of February. There has been a long period of and supplies short, further delay in advancing the price is not likely to occur. House coal has
maintained its advance, and as much as 11s. 6d. maintanine ben advance, and as much as 11s. 6 d .
fo.... has been obtained in exceptional cases at but quotations henceforth are certain to take an upward character. The buyers, howwerer, are well
placed, and large contracts for long periods are in force at last quotations.
The verdict at the Penygraig inquest has been accidental death. Mr. Galloway's hypothesis as
to the origin has been published in full, and is certainly a document of great ability. His idea, and very logically worked out, is that a party of
men were blasting down roof near the point where Tubervilles heading enters the solid coal that it it ignited a quantity of fire-damp lying in a
large cavity in the roof near the observed by the overman ; that the explosion of this fire-damp produced a violent air-wave, which swept through the galleries of both the upper
and lower pits, raising the coal dust and produc ing an inflammable mixture, and thus the explosion, in all its severity, was carried in
the form of a sheet of flame to the bo of the workings. The condition of loway's statistics respecting the amount of firedamp given oft per hour in the colliery of Peny-
graig. "After the explosion," he said, "I estimated the whole amount of fire-damp given of
by the whole mine to be about 1100 cubic feet per minute. minute per ton of coal raised in the twenty-four 200 tons and the output of the lower pit at then 440 cubic feet of fived tons daily, we have lower pit, and 660 cubic feet in the minute." Mr. Galloway considers the percentare of gas on the return air-way is too small to be detected by any but skilled men with best lamps, would be that it was in oll the pit by such evidence Circulars have been issued by Mr . owing that a large number of collieries hewis given in their adhesion to the Miners' Permanent and Plymouth Company are included; Powells Duffryn have five collieries, Ebbw Vale three, list, that the colliers of all the large collie the recently opened, such as the Deep Navigation, objectors will very likely give way now, especi-
ally as an advance is probable at the next declaally as an advance is probable at the next decla-
ration of sales according to the sliding scale Coke is fin
I should say that a decidedly upward tendency and advancing prices in coal, there will be an upward bound in coke in a very short time. Coke
generally feels the impetus first, and most frequently advances at
The shipments of coal from Cardiff during the year 1880 were $4,897,440$ tons ; of iron, 164,923 ;
coke, 25,506 ; and of patent fuel 131,083 , as regards coal, it must be understood was for foreign destinations.
I am glad t
looking up, and shall expect to tree firm is steadily advanced quotations next month. There are advanced quotations next month. There are
large holders of pig in the district, and none are Iron rails are firm at $f 5$.
 $£ 6$ 7s. 6 d. . to $£ 610 \mathrm{~s}$; ; hematite $\mathrm{pig}, £ 3$ 7s. 6 d .
One noticeable feature of the present time is the tardiness of sellers in accepting offers, and anything but the exact figure is not accepted. Only
1050 tons of iron were cleared last week from Cardiff and Newport. Sleackness characterises trade at Swansea principally on account of
weather. A petition is to be presented for winding up Onllwy and Dulais Colliery Company,
Limited.
Difference of opinion is very great as to the opening of the new dooks at Swansea this year. e opened, and under distinguished prestige. utmost 15s. 9d. per box. An open verdict has been returned in the case of the Clansman, a Swansea vessel alleged to have been destroyed by
explosion from coal.

The London and China Telegraph understands
that in all probability the service of the that in all probability the service of the
Messageries Maritimes will be altered so as to run at alternate dates in conjunction with the the Far East. This is consequent on the recent
changes in the hometward service of the latter company.




THE PATENT JOURNAL.
Condensel from the Journal of the Tom the
Patents.

## Applications for Letters Patent

*. When patents have been "commmumicated" the
name and address of the communicating party are
printed in tidel


 223. Murrough. G aizivg Rice, de., H. J. Haddan.-(A. Leytens, 24. Powtri. Hammers, J. F. M. Pollock, Leeds, and T.




 $20 t{ }^{2}$ January, 1881.









253
255
25.
2
${ }_{25}^{25}$
Soston, ,.J.S.)
 259. Tricyoles, cte., G. Illston, Birmingham.
260. SEATs of Tricycus, deo, J. Turner

2st G.Fnucry, 18s, Birminghan
261. Chimes Tops, dec., W. Jones, West Derby.



et Compagnie, Paris.) . ester, Ashbrow Mills.




 22nd January, 1881.
27


 5392. Cartridge Bel Fabrics, dec., J. H. Johnson,
Lincolln's.inn-fields, London--A communication from



 Decenser, 11850 .
5402. Syruprig







 ampton-buildings, London- $-A$ communication from









 -244h December, 1880 43. Rousinabours, P. Everitt, Queen Victoria-street,
London, and C. Burrell, junt, Thetfor ber, 1 S880.
4344. SAETY VALves, w. R. Lake, Southampton-build.
ind










 5460. PIRNs or SkEwers, A. W. L. Reddie, Chancery,
lane, London. - communication from J.C. Zeller,
Pant







Rue Errard, Paris.- 2 2eth Decenber, 1850.
5480. Pums, A. M. Clark Chancert-lane,
communication. from W. H. TYiplett, New York,
U.S. $-292 h$ December, 1880 .













 M Midon.-31st Dicember, 1880.


 16. Screw Strian Siris, L. F. Irwin, Liverpool.-3rd



 Mouchere, Paris.- 3 red Jonuary, , 18s1. Brighton--4th JJanuery, 1881. .
30. REvoLviNa SEATS, dce., W. H. Blain, Liverpool.

 0. Steam Bollers, G. Petrie, Rochdale.- - thl Jonuery, 1881. Diva Bricks, J. Craven, Wakefield, and H.
Chamberlain, Barnsloy. 4 thl Junuuury, 1881.







 cery-lane, London.-A communication from C. G
Burvke

 don. - A communication from J. Ericsson, New York,
U.S.-21st December, 1 sso.



 - A communication frpan A. Nohring, Marsonvasar.


 from G. Duryee, New York., -28th December. 1880 .
459. Michise Guvs,
B. J. B. Mills, Southampton-
 461. Pristive Machinsery, w. C. Kritch, Leeds.-
 Borlin. -2sth December, 18s0
467. DEsTROYING FIELD MIEE, de., H. A. Bonneville,
C.
 54t9. Moubing App Aranves, F. Wirth, Germany,- $A$,
communication from P. Gallas and H . Aufderheide, Kaiserslautern, Germany. - 294 L December, 1 1sso.
473. WINDow SAshes, J. Terry, R. Judson, and G.
 5479. Applying Morive Power, J. Graddon, Forest
hill, Kent., $-29 t h$ December, 18so.

 5485. Waterproof, dec., J. Neville, London-lane,
Hack 547. Wiving M YARNs, J. Grayson, Leeds. - 30 th
December, 1 1sso.

 hay-street, Westminster, J. Ylatt and J. Fielding,
Gloucester, , and W. Boyd, Josmond-road, Neweastle-


 1503. Stretchers, J. C. Smith, Birmingham.-31st


 D. ELLocirenes, Starley, Coventry. $-318 t$







 muniration from F. Honirmann, Aix-la-Chapelle $e_{f}$
Germany. -1 Ist Jonuury 1881.
18. Lmmoorapmic Machinss, G. Nowsum, Leeds.-3rch
 Dresden.-A communication from A. Lehmann,

 Curtiva Sheer Merat, J. H. Johnson, Lincoln's.
 20. Recertaclus or 1 VEsse communication from H. S. Schombury, Alt:Moubit,


Inventions Protected for Six Months on Foc Stasals, H. A. Bonneville, Cannon-stret London - $A$ communication frome, F. Brown, New
York, U.S. - 15 th Junury, , 18sil
 -18th Jonemary, 18851.1 .



S. ELECTRIC SEMAP AOREs, W. R. Lake, Southampton
buildings, London.-A communication from F. R. F.

Patents on which the Stamp
\&50 has been paid. ${ }^{2333}$ (G7s Metres, H. Thomns, Oldham.- -1 Sth Jenuary, 1878.





 as. Carts, Wacoss, dec., J. Dobbing, Darlington.304. Nrtro-olvyerrive, T. T. Jones, Basinghall-street,

 Lineoln's-inn-fields, London.-22mi. Jamury, 1875.


 376. Futsre Pressks, F. L. H. Danchell, Oseney-cres-


\section*{Patents on which the Stamp Duty of} | 859. Soluratres, do., W. West and W. F. Spittle, |
| :--- |
| Birmingham.- $24 \mathrm{lh}, ~ J u n u a r y, ~$ |






Notices of Intention to Proceed with Last day for jiling opposition 11th Felruery, 1881.













 386T. OLEsise, d.e., B. Hofman, Millstream-road, Ber-
mondsey, London.- $244 l$ Seplember, 18so.
 isso. SEwise Books, W. Morgan--rrown, Southampton-
buildings, London. $-A$ communication from E.



 4037. VELoctipzers, L. Aviss, Gosford-street, Coventry.








stroet, Westminstor.-24th Noocenber, 1850.
526b. Wituda WISC, dcc, AIR, W. and B. Verity, Stan-
 chester, and F. C. cemstwood, Heaton Chapel, Lan

 202. Foo sioviss, H. A. Bomneville, Cannon-street,
London.- Com, from F. Brown. -1 Sth J Jenuaryl, 18ss1.

Last day for Jlting opposition, 15 th. February, 1881 350s. Divaso MAchises, F. G. Willatt, High Holborn,
 bard-street, London.-20th Septeabber, 1850, Glasgow.
3sis






 L. Ddon- Com. from F. Smith- 2 . 2 th september 1 18s0
3905. Looms, P. Banks, W. S. Siter, and J. Banks

 Richters.--27th September, 1880
394t. Loous, A. F. Firth and J. Boothman, Bailiffe Bridge, Yorkshire.-29th Soptember, 18s00,
3956. PREEENTING PAIN, W. R. Lake, Southampton buildings, London-A $A$ communication from H. E .
Dennets,

 ton-buildingss, London - the october, 1880 . amy
 4181. Combustion of Vo..atus Hypro-carbons, A. M.
Clark, Chancery -lane, London.-Com. from L. A. de
 -Com. from
 444. GAS-HGGHTING APPARATUs, H. H. Lake, Southanp.
ton-buildings, London. $-A$ communication from $F$. W. Pelton.-30th October, 1880 . 4733. Corinc, do., Coast, L. V. Semet and E. Solvay, 4740. GEsERATors, I. R. Blumenberg, Chancery-lane L829. Boorourus, dere, He Hayward, Gloucester, J. Day and J. H. Gosling, Southsen. 22 2nd Norembere, 1880 .
4973. BLespINe Worts, D. Mct. Watson and A.


 December, 1880. M. Mchises, H. Wren and J. Hopkin-
534. Moulivisi
son 5351. SURFACE CONDENSERS, I. R.' Blumenberg, Chan
 Diceanber, 1880 .
 239. C Anectrober, 1850. coln'sinm-fields, London- - A communication, fron 543. RousDatoours, , E. Everitt, London, and C. Burrell,
Thetford. -244 December, 1880.






158. Architectural Orxamests, LL A. Groth, Fins
bury-pavement, London. $-12 t l^{\prime}$ Jonumery, 1881.

## Uist of Patents Sealed

Walers Patent vehich passel the Great Seal on 3411. Kxittixg Machives, W. Morgan-Brown, Soutli-
 London,-211st July, 1880.
3014. Iscomerorss, . Chalinor and W. H. Mawdsley,



 Suty Latiso.
Jo44. CBRD

 Davidson, Belfast. -24th Juty, 1880 . Won Nawrocki

 London.-26th July, 18s0.


 Thiomson, Johnstone, N.B.B- Soth July, 18so.
3161. SEwING MAchINE, E. Wisoman, Luton,-31s


 33Gis. CarDiso Exselines, B. A. Dobson, Bolton.-190 Aunust, 1850
3491.
Friso


$\left\lvert\, \begin{aligned} & \text { 4056. Whitre Lead } \\ & \text { October, } 1350 .\end{aligned}\right.$
 holm. -Tth October, 1880.
4145. TATACHEs and CLocks, M. Cross, Bristol.- -12 th
Octole. 1880 .





 List of Letters Patent volich passed the Great Seal on the S064. Telessoofic BaLance, J. Gorham, Bordyke Lodge,
 P. Filleul, Newport.-2istl, July, 1850. .
30is. Rock-DRILLING MAchinerry, F. J. Adams, Lan-




 ${ }^{3109 .}$ Wrivaliso MA Mrhises, dec., E. Clements, Great Russell-street, London. - 28 th July, 1880 .
B110. ABATING SMOKE, H. Walker, Monkwood Collieries, Derby.-294h July, 1880. .
3129. LEAD PITEE Joistr, B. Bennett, Manchester.-290th July, 1880.
134. CHECKI
 B149. Datr Calendars, D. Ross, Crutched-friars, London. -31st July, 1880 .
3152. Sccesss, He Shield, Grantham, and W. N.
Crockett Nottinher


 Works, Pomeroy-street, London--3rd Aujust, 18s0.


 360. SEWING MAchines, H. Greenwood, Albion Works, 33seds. Sarbevarnus, J. Wetter, Strand, London.- 20 th August, 1880.



 233. Geptemiser, Msos. J. Rae, New York, U.S. -12 th


 stock-road, London-20th october, 18 sso.
4so9. STopreks for Bortues, J. Davies and P. Hum-
 OCtober, 1880.
4504. Firkeracss, de. . A. Jennings, Glasgow. -4 th 4511. Counvicess, J. Mactear, Glasgow.-4th Nocenber,


 H65. PA PRR, A. Ford, Glouccester-crescent, Regent's
Park, London. 1 13th November, 1 sso.

 4747. Govensivg, dici A Aprantus, C. W. Wardle,
Hunslet, Leeds.- 1 Sidd Novender, 18so.
 List of Specifications published during the
week ending January 22 nd, 1881 .





## ABSTRAOTS OF SPEOIFIOATIONS.

Prepared by ourselvesexpresely for The Exaisere at the
ofice of Her Majiestis commissioners of Patents.
1613. Heqtisg, Cooonsg, and Ventiluting, G. E Water or other fluid is introduced between plates
and tubes placed so near to each other as to divide the water into thin sheets, whereby the plates or tubes

Junc, 11sso. bdi
The repulation of thengh of yarn for the time to be operated upon is regulated by stopping the motion
of the apparatus automatically, for which purpose the
scrow C carries forward a tappot D which acts upon
lever E cornected tor second lever which offtects the
俍 shifting of the belt fork $G$. The screw C is geared to
the cheese $A$. In order to provent a slipping of the

yarn on the roll or cheose $A$, a pair of pulleys are em-
ployed, and carry a belt or aproun $B$, such pulleys and beit being appliod to act on an extended surface of the 2369. Furnaces po

Thented 11th Junne, 1880 The ordinary refuse, iss charged through the holes 1 ,
falling upon the plates bel bew which ro angular
grate bars and horizontal grate burs. The inclined [2359]

front of each furnace is supported on step bearers 5 ,
in which step bars are fixed as required when clinkering. The prodacts of combustion escape through out
lets 6 to the chimney flue 7 . 2370. Preventivg the Twistivg of Ships' Cables
de., J. A. Boxco.-Dacted 11th June, 1880, The do. A. Aning shorev-Dan ent end elevition of the appa-
ratus for preventing the twisting of cables by the ratus for preventing the twisting of cabter by the
swinging of the ship, and for transerring the twist
or turuss when they cocur from outboard to tinbonrand to


it can be rotated by the worm wheel D and the worm
E on the vertical shaft F , which worm wheol worm further form a stop or locking device oto pre-
vent the hawse pipe cylinder from turning under the Vent the hawse pipe cylinder from turning under the
action of the cable. A hole is pierced through the action of the cable. A hole is pierced tirough the
stem of the ship tor oree the havye pipe cylinder
and its chase, which are retained in their place endwways by two covering plates.
2378. Knire and Peeler, H. Brends.-Dated 12th $A$ knife is pivotted at both ends to the shaft of a second knife in such a mamer that the cutting edge
of the pivottod knife coincides with the axxes of the pivots, and is always parallel with the shatit of the
second knif. The blado of the thater is of lanet or
Dite other suitable shape, while the other end of the shaft
is fitted with a handle. 2388 Govenver
 To the hollow spindio. $\Lambda$ of a governor two arms B
are attached proiecting at right annles thereto are attached projecting at right angles thereto; on
each of the two arms is losely fitted a metal bail C , each or the two arms is iosely nittod a metal bail
so that when in motion such ball can froely silide to
and fro on the said arms, controlled by the spring D;

the sockets of the said balls project on their outer sides at Cl as shown. On these projecting sockets are
fitted the ends of the spring D made to any suitable or convenient curve. The centre or iupper portion of
sumen eurved spring is searred in any
manner to the upper part of the valve spinde ant E. E.
 Mie drawing represents in section an air outlet or
delivery valve of an air compressing engine, in which

2397

is the gland which is forced against this packing by
serewing down the thumb screw $H$ agaiist the spiral

within cortain limits. This restraininy action when regulating the position of the thumb screw $H$ when the air compressing engine is at work, has the effect of
immediately stopping the "chattering" of the valves
 against the eseat, and instead of a succession of beats,
which rapidy wear and in cours of time break the
valve, it is foumad that but one lift of the valve is made valve, it is is found that but one lifit of the valve is made
to allow the air to pass through it for each stroke of
th ow the engine, and upon the return of the piston as the
inlet valves open the valve closes gently without any low being given
2437. Roor Trusses and Vevtilators, H. P. Holt.The casting s are designed to be interchingeable, so
that they may be sued for roofs of sevral spans. The
The that they mat be used for roofs of several spans, The
bossses to roceive the tonsion rods are circular, and are
formed with sloted doles to ollow the tierod daking forsede with slothed holosen to ollow the tiaerod taking
fangle due to the strain on it. The ventilators in aroof are opened and clesed by a screv, one end of which
runs through a nut forminy the centre boss of a cord
 Which engages in other and of of the screw hixed has a the thead, 2453. Eiectric Aprare tuw ivel on its hinges.
 This is an an improvevement on an former adparatus
invented by M. Achard, of Paris. The leading features are that if the commutator be worked to put the brakes
on, the two batteries, one in the front and the other on, the two baturies, one in the front and the ther
in the rear van, both send their current into the electro-magnets of all the carriages, thus providing
ngainst diminution of the tension of the eurrent by
then brakes are also automatic, and in case of a breakage
act instantaneously. In Figs. 1 and 2 the ordinary

brake levers $A$, which act on the blocks $B$, are fitted at their ends with grooved puileys co over which
passes a chain D with the end fixed at D1 To To this chain are attached two others E , carried obliquely and
wound over a drum F . The ehains E afterwards pass over guide pulleys $G$, and their ends are attached to
 axle and rotated by it by friction when the current is
sent. The magnet is suspended to the carriage frame
s. sint. The magnet is suspended to the carriage fram
by rods J and steel spring copper-covered plates K.
 The tip is circular, and provided with flanges at the
bottom of the internal edge, on which a piece of
 heel oy brads, leaving the tip free to turn.
2461. Rotary Puars, BLowkrs, dec., J. W. Melling.
-Dated 17 th J June, 1880 .
Gid.
 12461

the projections or pistons D D; and D1 Dl are packing which exan randing the whole erelaced when of worn. The The fluid
which
or liluwid enters or liquid enters at the aperture at the top of the casing
and is drawn or forced in the direction indicated by
the errows
2469. Manufacture of Paper Bags, J. Nichols.The rell of paper A is mounted at one end of the machine on a spindlo working in suitable bearings, the
friction of which may be increased as well by tighten ing down the cap toy give the the proped as wount of tonsion-


 trough G illed with paste or other adhesive medium,
and actuated ya can firod on the spinde on which
the severing knife revolves, and by suitable levers. The paper after being thus pasted intermittently

## 2<69


to the extent of the length of the bag; and a corre
sponding length impasted is drawn under a pair o large creasing wheels J , it then passes undor a particu-
lars shapor template Esutatable to the width of the bag
und curling pide and curling yeides or fold ders L , which complete the
turning or folding of the edges of the paper, and thut
forms the
 tinuously pasted or by seams in in its transit being con
to the width of the tic wheels M M adjustable to the width of the bag, and revolving in a trough 1 th
filled with pastho orthr adhesive material, this being
evenly spread by means of two
 two draw rolls P which are adjustable on the spindle in which state it is draww beetween the rolls $Q$ and R ,
The length of the roll Qis such that itrevolves between
the two pasted seams, and its diameter is determined
by the length of the bag to be made. $A$ saw-shaped blace or knife is fixed on an made. proets saw. beyond its
 means of which
bution cylinder
2477. BookrisDrsa, W. L. Wise.-Dated 18th June,
18so. - (A communication from $F$. Martini ind Co.) The machinery is so constructed that the sheet
which are hain in are folded and groopes aut into thei
backs, bookbind


2477

sheet, and having gone through a small box filled with and is carried forward, drawn slightly out of th grooves forming there small ears; and brought out a
the other end of the sheet. Bothends of the thread ar mechanically cut s.ane. to lotenvend onds the thread ar
marks give an exact indication for
 Meissner.) 4 d.
This consists in manufacturing vanillin from engenol acetengenol, with permanganate of potash in a neutral solution, and finally further oxididsing the product
with bichromate of potash in a neutral solution. 2498. HuLLs of VEssels, dec., H. Hirsech. -Dated 19 thi This consistst in applying to the shaping and conlines of the same nature as those which the constituent molecules of water describe in their own motion, This
shaping is effected by means of circles placed in juxtahaping is effected by moan
position one with the other
2501. Braiding MAchine, ${ }^{\text {- }}$ Dated 21st June, 1880.

This machine in case of the breakage or rumning out of any ne or other of the rubber threads. A A are the lower
ends of the hollow axes of the revolving heads of the

## [2501]


hreads to be covered are led; these axes, as usual, vheels all gear together, so that when one axis is turned, all the others turn likewise. Gearing with
 ariving to thed wheel D by a clutch E.
2502. Castors For Furirure, dec., W. Burgess.-
Dated 21st June, 1880. A ball of glass or other suitable material is formed with an axial recess on each side, and is placed in a
pair of clips with projections, which take into the

 21st June, 1880. Sd. R. J. and A. Edxarrds.-Dated B is the roil of paper which passes over a roller re--
volving in paste, and thence to a rail E and through [उ50

prossure rollers F , where it meets a sheet of cloth
coming from roller H . $A$ second length of paper is
led from roller M, and passing over a paste roller K , is
pasted to a length of cloth from roller N , the $t$ tw Pangths thus formed passing together through roller
F. The two lengths pass respectively over the top and bottom surfaces of the trying boxes S S and are wound rollers U
2507. SEwive Boors AND Shors, M. H. Pearson.-
Dated 21 st $J$ June 1850 . In machines for sewing the untocoestat to the weito

 cop of thread, and on its periphery is a point to take hold of the needae thread. A rotary reciprocating
motion is imparted to it through a toothed sector and gearing. The thread lever operates above the neade lever to draw up the the
slack and omplete the stith The presser foot it
ontected to with the to a lever mounted in berings concentrii
2508. Bilusiad Balls, H. G. Grant.-Dated 21ss
June, 1880.-(A communication from T. A. Gason.)To ensure cocerrectuithess of weight of these balls to
 eentre, such hole being screw threaded to reeeive
pluye Before inserting the plug metal or other suit
Ble 2509.
-Dated 21st $J$ June, 1880. (A A communnication from
air of 0 dee. be enclosed in thestin.) $6 d$. applied thheroto, then as the temperature rises to to
272 deg, there will be an internat prosur 272 deg, there will be an internal lpressurare of urses
uf 2 kilos.
os. per square inch.
On the
 for example, if the pressure be doubled. its volume is
diminisked one-hal.t fithe enclosed air is at ot deg. and
the he pressure fiveatmospheres, this pressure will increase
o ten atoospheres, if the temperature be varied to


## 2509


constant, the pressure will be double. The receptacle
is put into communication with a cylinder, as, for is put into communication with a cylinder, as, for
example, the cylinder of an engine ; the piston will be put in motion by a pressure of ten atmospheress;
but as the air is carried away by this process, the oiler pressure diminishes until it arrives at atmo spheric pressure, when the engine will stop. To prevent
this the piston is arranged to drive a pump, which 2510. Bortue STAsDs, $G$. Travis and $T$. Hill.-Dated The bottles stand in recesses formed in the base of the stand, and are prevented from being lifted out by a bar extending over the tops of the stoppers and
securred in this position by a lock and key. 2511. Stands for Spirit Bot

Bartram.-Dated $212 s t$ June, 1880 .
The bottles stand in reecsses in the base of the
stand, and over their stoppers is fitted $d$ slide provided with shields which can be brought over the stoppers and prevent the bottles being withdrawn. $A$ lock is de in this position
2512. Fouming Paprr, . Richmond and $W$. Whiting,

The framing A below the table B supports a shaft
driven by the driving pulley. This shatt carries two cams; one cam, through the medium of a compen-
sating-rod, friction roller, and levers $H$, sives motion



The roller L , during the descent of the knife K , is
brought into contact with the roller L revolving in fixed bearings, and is atgain withdorawn during the time the knife K is descending. The second can transmits, through the medium of a compensating
rod, friction rollers and leverss, motion to the vibrating
roler It whel with the
 rollers L and Li; the said roller I, s, supported in fixed
bearings, has brought into contact with it whils bearings, has brought into co
revolving the vibrating roller I 4.

 the
by the cam E worked by a single excentric rotary
engine F , the shaft of which has


 piston-rod stuffing box $G$ projects from the cylinder

2513

head, and is screw-threaded to receive the pick-holder
sleeve, in which the pick-holder slides.
On the upper side of the steam chest is a rectangular box $J$ which
serves as a guide for two pawls, that engage in the
 grade motion. $A$ pair of ajdustable arms $P$ sidide in
suides, so that they may be lengthened or shortened. suides, so that they may be lengthened or shortened.
The pick or channelling tool is chisel-shaped and has
the bevel wheel wholly on one side, and a $\boldsymbol{V}$ - hhaped
notch on on tis edge, so that there is no tendency to
wedge or glance side-wise. 2514. Artip

June, $1880 .-$ (A communnicationfrom L. B. B. le Coudred
Scraps of Morococo leather are dipped in glue mad
nid upon sheopskin, and when a sumfieient quautity is
 The two skins are then placed between flannod and
betweo
pressure, the plates, and flameel serving to abod to to hydrumlic
flime glue xpressed
 The corlly.) wound in the form of balls is from C. W. n upright cylindrical vessel, a number of halls being outer end of the corsd of eachove the other with the the ond of the cord of the ball below it, so that as each
ball is exhhusted the next supplies cord. To prevent ontanglement or kinks a stemp jointed to the bottom of the box extends upwards through the balls, or a
fexible stem is employed for this
 tension, and thence along a spring arm and over a pulley at its end to the eye of what may be termed a
needie, which is a bent lever mounted bill fulcrum, the needle and its fulurum being made to
os illate by cams, so that the point of the needle
[5517

follows a certain curvilinear path in descending to ${ }^{(p)}$
position where it is for a time held steadily in a notch position where it is for a time held steadily in a notch
ofthe framing and then ascends in a different path. The end of the ocra a atter passing over a pulley in the
eve of the needle extends clamp provided with a a cutting knife, the clamp and
chate and knife being actuated by cams, so as to soize and movements of the mechanism. Near the cord clamp hook eye having peculinr motem, which consists of effected by cam so that at a ceratin time the eye opens to receive the cord, and then closing revolves and moves endways,
so as to pass one convolution of cord through another, thus producing a knot.
2519. Metal Articles with Surface Ornamenta
tion, $W$. A. Barloo. -Dated 2lat June $1880 .-(~$ This relates to the production orssitky.) $4 d$. having ornamentation of inlaid work by means of electrotyping. The pattern is traced on the meatal and the pieces of material shaped to form the pattern are
pasted on the metal which is then coated with metalicic deposit so as to embed the different pieces
 This relates to mill stones $2 d$. face consists of bars of hard material bedded in othe ing surface to wear equally the bras cre made tarer so that the grinding surface increases towards the
circumference. The part of the stone forming the circumfirence. The part of the stone forming the
grooves between the prinding bars is formed together
with the centran portion of the stone groves betwen the girinding bars is formed together
with the central portion of the stone of one and the 2521. Stoppring Borrues, \&e., J. Brool.-Dated 22 nc The neck of the bottle is pinced in or slightly flattened at the lower part, and the stopper of ylass
circular in horizontal section at the upper part whil its lower part is extended do as to asessume an oval
shape. When the stopper is inserted the oval
anal shape. then the stopper is inserted the oval part
passes through the ocrasponding portion of the open-
ing and by turning it partly round it will be locked
ing within the neck by projection of the oval portion
passing under the flattened portion of the neck. passing under the frattene
nodification is described.
2524. Burrons, W. R. Lake. -Dated 22nd June, 1880,
(A communication from T. L. Snyder.) - (Not pro ceedea with.) $2 d$ d. . The button-heand is made of a single pieco of hard
materina and at its rear side is a recess of dovetailed
section and convexexed base. A thin metal shoill has a section and convexed base. A thin metal shell has a
central orifice through which passes a shank of canvas
 between 1tseif and the shell. The shell is now forceed
into the reess in the button, wheo the convex base
spreads the edge of the shell into the inclined edge of spreads the edge of the shell into th
the recesss firmly locking it therein.
2525. Fastrvers For Boors, \&e., $F$. Hinde--
Dated 22nd June, 1880. (Not proceded with.)
2d. A shank button is fixed to one side of the material
and a wire of metal of $\mathbf{S}$-shape with projecting shank and a wire of metal of $\mathbf{S}$-shape with projecting shank
or loop in the middle, which is threaded through the buton proper, is fixed on the other side of the mate-
rial. $T$ The S -shaped wire prevents the button being ed out.
2526. Rallwaxy Siganas, E. A. Sullivan.-Dated 22nd A is the ordinary rail and B a side rail placed pre-
ferably outside the track and having its leading ond ent down, being held up by springs. A frame
supports the gong $D$ above which is a lamp $F$ and disc



pulle is connected to the disc and passing over pulley is connected to the disc $G$. A passing wheel
depresses the side rail, , and thereby forcos down din
lever $H$ When the rail' B is depressed by means of the line wire no signal will be bivessed by means of the line wire no
he line wire.



 sindo as its centre, , making this circle for small face

 | parts, and at each point of division a hole is drilled |
| :--- |
| through the face-plate ot roceive a pindole. When tho |



## 2527 <br> 2527

be formed with bosses or hubs, through which the
spinde will passs and thus have the revuired bearing
siuf
 Urm D, arranged of these eradial arms ise fitted an alldide E ,
from which projects to a considerable length a dog
fre proferably arranged to extend out from one end of the
lide, so that the slide may be detached from the arm D and reverse, in order that in again fitting it upon
the radial arm the dog may be brount nearror to
or futher equired
 These moulds are formed of a combination of
natural metallic sulphides with sulphur. 2529. STone-pressina Machine, J. Cockburn, jun.-
Dated 22and June, 1880.6 . This relates to a new travelling platform $A$, which
carries the stones in front of a rotating disc $E$ with in novel arrangement of outters. The platform consists of a
 which rests a longitudinal boam, extending from, ond

divisions, each of which can receive a stone. These columns can be removed when drassing a long stone.
Each division is fitted with a steadying plate B, which
aro lowered $n$ to the ston ara lowered on to the stones by means of serews, The
thable $A$ is carrieod on wheoels C , rumning on rails, and it it
is fed forward by a chain

 The cutters are arranged round the disatate differens.
radial distances, so as to describe different circles. 2532. BuLuARD BaLLs, $F$. Wirth. -Dated 22nd Jun A composition, consisting of 80 parts bone gellatine

- colled Russian glue -10 parts Cologne glue, 5 parts heavy spar - carbonate of barytes - 4 parts carbonate of
lime, and 1 part boiled linseed oil, colouring matter
bein hein, and 1 part teoiled linseed oil, colouring 1 .

2533. Vrabtable Fibre, F. Wirth. - Dated $22 n d$
June, 1880. (A communication from
S. Mctuger:) Mexican or Tampico fibre is stained black, and
placed in a bath of sulphuric acid, and then into a



 and moulded bo a pross analogous to that used in the
manufuacturo of torracotta. The pieceis it taken of the
mould while red hot nod treated in moundacture while red hot and treated in an amnealing
furmace. furnace
2534. 

 Wasto cuttings of wood are secured. together by
cemont or Ilu, in two or more layers, to form a
wooden body about 3 an thict Wooden body about sin. thick. This structure is laid
doom on the iron deces of shins in slabs and secured
thereto by cement or other adhesive substance on
 25
2538. "Emulsion" Proorsses of Photooraphy, $R$.
Knott-Dated 22 nd June, 1850 . (Not proceded

Two bottles with an intermediato stopper having a
small perforation are employed. The solutions to be smail perforation are employed. The solutions to be
mixad aro containod in the two bootles, and by
shaking the
 wherofy the solutions aro gradually mixed.

Cooper.- - Dated $222 n d$ June, 1880. - (Not proceceded
zothuble set of balls are applied to the wheel bear-
 readily adyustable from without. The two sets of
balds are parallel to each other nater toether,
and the presse is equaly distributed between and
sustained of the 2541. Dasprisa Biscurrs, \&c., E. Harvey.-Dated 22nd
 biscuits as they pass under the door of the oven. The
condensed condensed watro runs along the bottom of the pipe
and enters troughs at the ends. To moisten the
the




 simultaneously.
 So as to provent tropgurectyann or thred being
wound on the cop a plate with a narrow silit for each
 not pass, and will consequently be b
prevented from winding on to the cop.





## 

saline solution or other liquids may be employed. circulate in the pipes N and M between the shower
condenser D and the vessel E where the evaporation wiquid takes place. G is s a com. presser or bump, witha, and forcing tit by the pipe P
yese
into the space surrounding the tubes in the boiler $H$.
 Two or more pieces of lawn, muslin, crape, or or orer
kindred material are placed one over the other, and the pattern worked by hand or machine through and
upon the base thus formed. The stitching is unbroken upon the pase thus formed. The stitching is unbroken
and is carried along the bottoo of the lower piece in
such a manner as to unite by o chain stitch every such a mannor as to unite by o chain stitech every
separate portion of the entire outline of the pattern. 2547. Potaro Drogers, J. Kirkpatrick.-Dated $23 r$ d
 that a jogsing or tiliting motion can be given to it it
This screen is placed in a line with the pronve the end nearest the tail of the machine boing at a lo wer level
than that nearest t the than that nearest the front of the machine, the part
at thiss lower level being near to or touching the
around.
2549. Knives for Woon Planing Machinerv, T.J.
Clarke. . Dated $23 r d$ June, 1880. (Not proceded


 of the soft steel plate comes close to the back of the
knife edgeto prevent trom breaking The holder is
made with a T- Trgoove, so that each bolt used to secure the knife may be put separately into its own
groove.
2558. Comns, F. H. F. Engel.-Dated 23rrd June, 1880 ,
 rubber, horn, and cellulod, and consists in forming $a$
concave grove extending towards the foot of the the
toeth and diminishing in width with the orolongation
 conically taparing broad base so as to render them
strong and elastic. 2559. CIanRs, B. B. Mills.-Dated 23vel June, 1880 .
 parchment or paper rolled so as to form a tube which
spartly filled with clean wadidin and placed on the
sigart, being fixed thereon by the wraper. The
The cigar, being fixed thereon
wadd ding serves to absorb the nicotine and also arrest
any dut in the 2562. Shears for Pruvisg, dec., S. Sult.-Dated 23rd
Junne, 1880.- (Not troceeded lith.)
2d. This consists principally in so constructing the parts
of the shears or pruners that one of the blades or of the shears or pruners that one of the blaades or
cutters is stationary and the other apable of sliding
upon the stationary blade for offecting the shearing or 2565. Pousure



## 

Around the spindle is a sleeve D , on which is secured
rdriving pulley E and the cleaning appliance F , which may consist of a scratch brush as shown, or a bob,
doly, eme ory wheol, or other cleaning appliance. The
pulley E is driven by a cord. 2568 .




 pressure of atmospheres, will thoroughy bleach
two hours the whole of the cotton in the vat.
2570 . ADJUSTABLE SPINDLES Fon Locks, de., W. 2570. ADJUstable Sprsples for Locks, dce., W. B. The handies A are secured on the ends of the twa
parts, B forming the spinde, each of huich has at one
end one or more scrow tapped holes to allow for
隹 end one or more serow tapped holes to allow for
different thicknoessos of dorrs, and an an spon slot in the
dher end through which a screw passes, such screww

being Mserted at one side of the neck of the handle
and passing through the tapped hole intone part o
the spindle, and the slot in the other part, is sprew into the opposite side of the neck. The ficesco of the
two partsof the spinide which aro in contact are
tormed with teeth, which engage with onch othe
 The phate which corvers thin hole to the ocoln, cellar is
on the under side of the plate, its opposite end being
grevo threaded and passing through a cross bar, where
it is then serew threaded and ppas.
it is fitted with a nut.
a57
2572. Founisa Benstrans, de., J. Wetter.-Dated
2th. June, $1880 .-($ A communnication from C. C. Held.) This relates to the general co
chairs, ortatablos, so ga to e onable them to close up into
a small space. 2573. GLasses For Gas on OIL Lamps, B. Webb.-
Dated 24th June, 1880.-(Not proceeded vith.). The glass is made circular at its base in order that it
may fit all existing gas fittings, and is gradually may nt all existing gas nitings, and is gradually
tapered and bromgh a fat aperture at the top, by
which means a flat current of air is made to act on, the which mean.
flat flames.

The stand is so formed that the bottles it contains
when not in uso may be turned upside down, whereby thhe gases in the liquida are erept at the bottom of the
bottle, so that when the bottle is turned up to pour out bottle, so that when the bottle is turned up to pour out
the ligud the gases have topass through the esame end
cannot id imediately escape.. The stand consists of an
 a spring bottom and at top a tapered corks or stopper. 2576. Skarzs, E. R. Kimpton. - Dated d 4 th June, 1880 . The sole plate is divided and pivotted between the
 a small projection in frote which is turred down in
front and slotted to roceive the after end of a forked
link link. A lever is formed with an excentric ear and is
attached to the link by a button sliding freely in a slot of the link i. A bridge supports the after end of the
sole oplate and is fastened to the runner by knees. The
forked forked ends of thasternk have projections whico enter
diver ind slofs in the end of the divided sole plate diverying slots in the ond of the divided sole plate.
The forked link is formed with numerous holes to 2577. Jin in the adjusting plate.
257. Joinss for Prpes or Tubes, J. H. Johnson.-
Dated 24th June, $1880 .-(A$ communication fron
 fingeome and thateses the former provided w whith an externaa
fhich with an internal lip, a portion of away on one side forming an oval mout with and retains one side of the flange on the male
tube. The female tube has also two lugs carrying a
 flange on the male tube by means of a hand lever jointed to the tail of the amehn by a pin passing
through two lugs on one extremity of the latter lever. 2578. Delivery or Conls rrox Sorens on Drops
J. Stokee and W. Tulip.-Dated 24 th. Tune, 1880. 6d The apparatus is constructed as or with a self-acting
trapped coal-tray, which is at one end 2 hinged other wise similarly connected to the coal screen 3 or
drop head, ind in it its other or free end 5 provided
vith a trapped outlet 6 . When the tray is in its

pended position the outlet is kept closed by the traa
10 by means of sten
 2582. Unirrellas and Parasols, W. T. Patr:-Dated
24th June, 1880 .
6d. To retain the umbrelia opened or closed, two slots
are formed one from each end in the runner tube with

 tube, the vertical portions corresponding with the
slots in the runner tube. On the umbrella stick are
IW two studs, and when the umbrella is openeded, the upper
pin enters the vertical slots in the tubes, and by partially revolving the outer one, the pun enters the
bayonet slot in the outer tube, and thus retains the bayonet slot in the outor tube, and thus retains the
umbrello open. The other pe,
the umbrella in position when aclosed.
2584. Collapsible Core Barrels, J. Mortimer.-
Dateed 25th June, 18so. (Not proceeded with.) inks, she is is provided with internal flansess against which two circular end plates rest. The top plate is
made with 2 circular groove in its underside and the corrosponding flange is provided with a circular pro
jecting $V$-shaped rim which fits into this
groove 2585. Preskrying Trousgrs from Dirt and Wear
A. Ligabuue- Dated 25th June, 1880. $4 d$. This consists of a thin metal or other band or ribbon trouser leg either by sewing through holes made for
tho purpose, or it it fixed by means of movable pins the purpose, or it is fixed by means of
held in bearings mounted on the band,
2590. Preventing or Ditinishing Corroston in
Stram Bonlers, \&c., G. and JJ. Weiv.-Dated 25 th

Thene, 1880 . $6 d$.
bates witho surace condenser 11 communi.
cath with a chamber below the foot valve of the

## [2590]


pump 15, and from the 'chamber a passage. for 'the
water deocends st the bottom of feoe pump 17 , such
passach heving stop wilvo to cloe the
tion when desired. A hot woll 19 is applied in oon-
nection with the delivery ond of the air pump and
second feed pump 20 is applied at the side of the air
 pump. TTe vesesse 122 mapy bed either a feed hentor or
an air separator. The pump 17 delivers to a three-way


 passage of free air when the water gets below a a certain
Pevel. Tre feed heater 22 has a pipe 33 leading to the
inlot
 commumication with that pump from the bottom of
hot well 19, the pump delivering int the boiler feod
pipe. From the top of vessel 22 an aipe leadds pipe. From the top of vessel 22 a a pipe e eads air sepa.
rated from the water into the condenser 11. The foed
water may be taken directly from tor water may be taken directly from hot well 19 and
passed by pump 20 into the boiler feed pipe, or it may be ed through float vessel 27 and by pipe, 24 to the
feod heater or arir separator 2, and and theneo to pump
20 ; or again it may be taken directly from the condensor again it may be taken dirrectly from the con-
denser without passing through the air pump 15
nd b b and be forced by pump 17 either through vessel 22 or
diricellty to the biler feed pipe. When an anti-corro
ive
 into condenser 11 by a pipe and stop-cock 37 . An
improved pumping apparatus is described consisting
of two toothed wheels
 which there is the same liquid pressure all round the
wheels, excepting at a small part of each wheel. 2592. Beating Carpets, deo., W. J. Alldred.-Dated

 rod, each end working in a bearing and continued long enough beyond the bearings to alow or crank handles
or wheols for the purpose of giving a rotary motion to the said drum.
2593. Gasainers, \&e., R. Phelps.-Dated 25th June,
1880. - (Not proceeded To the inner tube of an ordinary gas fitting and at
a required distance from the bottom exterior is permanently arranged a seat; a loose cap is fed upon
the tube until reaching the seat, and int this
 washer of india-rubber of any desired length, ${ }^{\text {a second }}$
capis employed which covers the other end of the india-

2504. Top Cliarkers for the Drawivg Rolikrs or
Preparing and worth.-Dated 25th Junne, $1880 .-$ (Not proceceded voith.)
This consists partly in the use of a perforated belt of surface of the top clearer, which belt is driven by a spur wheel or projections on the driving shaft, which
gear into the perforations in the belt; this belt works in recesses in the driver and driven shafts,
 A metallic plate is suitably prepared and a drawing is made upon it or transferred ot it, and it is then
subjected to the action of nitric, sulphuric, or othor subjected to the action of nitric, sulphuric, or other
aicid.
2600. Treads or Risers For Stairs, dec., IV. Bailic The tread is composed of a wrought iron or steei plate with the ends bent or turned upwards and
inwards so as to form a kind of tray, or foundation and binder, for a series of pieces of wood placed close
together and seoured between such turned up ends.
 Thith. carrier. holder, or handle is formed with a slot
or opening through which the string is passed.
 The eortion of the apparatus which is first employed
has the function of restorinu the cartridge case to its proper size and shape. For this purpose a dio tis
employed shown in vertical section at Fig. 1 consisting
of three ports


case. In some cases it may be preferred to re-charge
the cartridge cases before re-capping them, in which Case, in ordor to effect the re-capping with safety, an proper size to receive the cartridge, is formed at the
end of a tube H1 made of some length, so that if the artridgo should be accidentally ignited in the act of
 rom the operator. On the end of the die is pivotted a
ever K which can be moved to and fro between stops. In this lever there is a hole which reecives the cap, and this hole is sitted with a plunger linked to in
spring lever L that is pivotted to K . The lever K being brought against one stop, a charged cartridge is
inserted in the die $H$ and $a$ cap inserted in the hole. The lever $K$ is then moved up to the other stop, and
when it is in this position the cap in the hole is
enan
 pushes $t$
cartridge
 This consists of a flat plate constituting the bottom
of he mpparatus, which platat. is provided with a rim
on of the apparatus, which plate is provided with a rim
having openings therin. From the upper sido of the
plate a tube projects upward to any desired distance
 contained in the vessel. This tabe is fitted at the top
with an inverted
is perforated 2605


 2606. Producing Images on Papre, J. Wetter--Dated

contours of objects by burning, in order to obtain
im ages having the appearance of silhouottes.
 A is the spindie working with its end gudgeons on
centres L. On the spindle A is placed the fan proper
 ring which unites the vanes or parts of the fan and
works freely, but with avery slight lateral play through a circumferential sitit in the outer case $G$. The ring $R$
is provided with side flanges and with teeth or vanes $N$

of any suitable form for a jet to act against or with
brushes E , against which the jet of air, steam, water, or gas under pressure proceeding from the nozzle D on
the pipe $S$ acts so as to give off its motive power in the form of pressure velocity. The fan is then revolved quickly, and the air or gases drawn and forced in the
direction of the arrows or in the opposite direction, -10. $\frac{1}{}$ the direction of ctation or 2610. Improvenents in Teléphones, J. H. Johnson.

- Daled 26th .June, 1880.- (A communication from $F$. A. Gover.) $6 d$. . telephone. A microphone preferably having at least
six contact points is attached to the upver part K six contact points is attached to the upper part K of
box A , a Gower chronometer telephone C being in the lower part of the box. The telephone is provided with

a double apeaking tube as shown. Commutators are
used to interrupt battery current and open call bell circuit. The hanging of the tubes, as in figure, causes
break of contact between commutators E and binding post E1. The microphonone is not neecessarily fixed as point.

2613. Supporting and Regulating the Bearings of Adsustable Rollers of Crushing and Kibbling
Milis. $H$. Chandler and J. G. Richmond.-Dated 26th
June, 1sso. $6 d$. An adjustable bracket D carries the bearings of the adjustable roller and is placed inside the framing. The
two sides of the bracket are prolonged downwards, and two sides of the bracket are prolonged downwards, and
into a hole in one side near the bottom a fixed stud $F$
fits, and a movable stud fits into a hole in the other fits, and a movable stud fits into a hole in the other
side of the bracket, the movable stud being adjustable in a slot in the framing. The bracket swings
radially on these studs, and by the movable stud the 2613

bracket can be adjusted when the roller is worn so as
to keep it parallel with the fixed roller. A screwed rod $G$ passes through a slot in the bracket a and threwed
the top of the frame, and is surrounded by a spiral the top of the frame, and is surrounded by a spiral
spring. $A$ handwheel is fitted to rod $G$, and serves to bring the rollers together, while the spring-which
gives the requisite pressure for crushing or kibblingcomes into
the rollers.
2614. Clipping or Shearing Horses, \&c., P. F. The stationary or fixed comb is attached to the end pierced in the middlee and towards the bottom (at this 2628


A mortice formed in the fixed lever serves together
with this circular hole as seat for a pin of the working with this circular hole as seat for a pin of the working
or movable lever D. This lever D has at its end, beyond the pin, a part which permits placing the
working comb and giving it the necessary to-and-fro working comb and giving it the necessary to-and-fro
or reciprocating motion.
2619. Indicators for Steam Engines, \&c., W. S. and 2619. Indicators for Steam Engines, \&e., W. S. and
W. O. Smith.-Dated 26 th June, 1880. 6d. paper drum, and arranging the pencinders within the
polder so that
it may be traversed along a guide in a direction [6]

means of a lever and links coupling it with the piston 2627. Coupling Links for Railway Carriages, de.,
J. H. Johinson.-Dated 28th June, 1880.- $A$ com. munication from $A$. Middleton.) Gd.
This link is made without welding from a solid bar of steel, the eye being cut or punched out while the The link is then rounded at each end. The grain is straight throughout and parallel with the sides of the
link. link.
2638. 2638. Steam Bollers, S. Fox and D. Greig.-Dated
2Sth June, 18so. 6 d. A plate of any suitable metal is shaped and corru-
gated as shown in the first figure, and the side parts bent back and their tops bent over so as to meet when
they are welded together, and their edges welded to

2638

the back part B, after which the corrugations are con-
tinued over the top as shown in the second figure. Tinued over the top as shown in the second figure.
The tube plate is also corrugated in the thin part and perforated for the tubes in the the thick part, and is
rivetted or welded to the other part of the fire-box. 2640. Cleaning and Polishing Wheat, W. R. Lake. M. Richardson.) $6 d$. Fig. 1 shows a perspective view of one of the
spiders, and Fig. 2 is a central vertical section of the apparatus in which a series of the spiders are mounted
on the shaft B. Each arm of the spiders C terminates on the shaft B. Each arm of the spiders C terminates
in a $T$-shaped blade, on each face of which there is a
ratchet or serrated segment A extending nearly or

2540

quite to the advancing edge of the head or blade of
each arm of the spider, which blade is bevelled in curved lines as shown at Bl , and near the periphery there are two $\mathbf{V}$-shaped ratchet faced spurs Cl Cl, the
outer faces of which revolve in close proximity to the 2645. Steam Bollers, G. H. Babcock, S. Wilcox and
N. W. Pratt.-Dated 29th. Junie, 1850. 6d. An important portion of the heating surface is
formed by a series of inclined tubes M parallel to each

## 2645


other and extending over the fire, being highest at the
front ends. They are secured at the
sectional chambers or front connections $D$, and at the
rear end in corresponding chamber $G$ connected with rear end in corresponding chamber $G$ connected with
the rear end of the barrel A by a series of inclined
pipes $H$ In pipes $H$. In each side of barrel $A$ is a series of holes
covered by caps connected to the upper ends of the sets of side tubes T, and allow a strong current of steam and water to enter the barrel. P are chambers
connecting the tubes T together at the bottom, so as
to form several sections to form several sections which communicate with each
other. A chamber I extends across the front of the grate and is connected to the front chambers D by pipes, such chamber communicating at its ends with
the front chambers P. K is a mud drum extending across under the rear and connected by pipes to the
bottoms of the chambers $G$ and at the ends to the side chambers
2676. Casting Leads and Slugs foe the use of
Printers, J. Wetter.-Dated 30th June, 1880 .- $A$ communication from J. Fleming.) $6 d$. made in two
The apparatus consists of a flask A made
sections $A^{1}$ and $A^{2}$ which are coupled to lower ends by a slotted hinge joint. The base plates

$\mathrm{A}^{2}$ of the flask is provided with a clamping device B by which the plates are clamped togeth
read gate C is placed between for casting.
2711. Breech-Loading Small-Arms, J. F. Swinburn.

- Dated 2nd July, 1880. 6d.

This consists in the combination of the horizontal
cocking arms $G G$, having inclines on their undersides, cocking arms G G, having inclines on their undersides,
jointed excentrically to the knuckle of the joint of
the 2711

of the gun or pistol, whereby on the raising of the
breech ends of the barrels for charging them, a combreech ends of the barrels for charging them, a com-
pound motion consisting of an advance horizontal motion and a vertical motion is given to the free ends of the cocking arms, and the said free ends of the
arms made to cock the hammers. 4300 made to cock the hammers 4300. Mowing and Grain Cutting Machines, .
Smith. -Dated 21 st October, 1880.-(Complete.) The frame consists of a single piece of $L$-shaped steel or iron, bent so as to forma rectangle. A casting
C, bolted to the rear end, receives the bearings attachments of the main operative parts. A spring sheave H is placed on the frame and over it passes a chain extending from the hinge D , that carries and
controls the finger bar E , to the pivotted lever K , by which the hinge bar and finger bar are suspended, adjusted, and raised or lowered. The force of a coiled
spring in the sheave is adjustable and is sufficient to

4300

unterbalance the weight of the hinge-bar hearly counterbalance the weight of the hinge-bar,
finger-bar, and cutter-bar, and other parts connected
therewith, so that the finger-bar and cutter-bar rum very lightly over the ground. A lever $M$ is fulcrumed of the hinge-bar, and one end bears on the inner par of the hinge-bar, while the other
the lifting and sustaining chain
4325. Tubes of Surface Condensers, W. E. Gedge C. B. White and W. Deacon.) (Complete.) ${ }^{4 d .}$.
Instead of soldering a ring or wire around the tube

4325]

to form the enlargement a bead is formed in the tube
itself so as to produce a swell or enlargement directly
itself so as to produce a swell or enlargement directly in its tube material entirely surrounding the tube,
with which a screw threaded ring or thimble is combined, with its inner end bevelled on its inside, and a
packing. This ring or enlargement then forms an packing. This ring or enlargement then forms an without destroying the tube.
4352. Rempigerating Apparatus, W. R. Lake.-
Dated 25th October, 1880 .- (A communication from
J. C. De le Vergne and W. M. Mixer.)-(Complete.)

On the bed-plates of engines B are secured uprights
$H$ on which the air or gas compression pumps $J$ are supported, such pumps being formed with chambers K
containing liquid to seal and lubricate the piston rods outside of the pump cylinders. The liquid is supplied
to the interior of the pump cylinders by the pump

2 are the suction gas pipes; $R$ is the upper chamber in
the compression pump with two outlets $S$ and $T$, the latter connected with the gas pressure pipes 3 , and the former with the liquid discharge pipes 4. When
steam is admitted to the engines a certain quantity of steam is admitted to the engines a certain quantity of
iquid is forced by pump M into the compression
pumps, which have been previously charged with the

refrigerating agent, which is compressed and discharged into the pressure pipes 3, and passes into a
separating foam tank and thence to a coil where it is cooled by a constant flow of water round the coil, and hus separated fom the 4368. Apparatus for Holding Cartridges, de., $H$.
II. Lake. - Dated 26th October, 1880.- $A$ communication from E. . G. Parkhurst.) (Complete.) $6 d$.
B is the bottom part of a pasteboard case which is provided with a cover; C is a longitudinal partition
extending from end to end of the case ; D represents

4368

cross partitions, so as to form square cells in which the cartridges E are placed; G is a central longitudinal
sliding partition lying above the partition C and
between the upper parts of the cartridges. H is a between the upper parts of the cartridges. H is a
plate of sheet metal tacked to the partition $G$ or forming part of the same.
2655. Wire Fences, J. List.-Dated 29th June, 1880 This relates to constructing or strengthening wire fences with anchors and wedges for diagonal and
vertical connecting wires, and thus dispensing with vertical connecting wires, and thus disp
winding pillars and straining appliances.

CONTENTS.
The Engineer, January 2sth, 1881.
The Indicator. No. II. (Illustrated.). Palliser Gun Experments. (Illustrated.)
The Institution of Mechanical Engineer Rallway Matters ..
Notes and memoranda
$\left.\begin{array}{l}\text { Miscellanea } \\ \text { The Staveley Pump Valve. } \\ \text { Pul } \\ \text { (illustrated.) }\end{array}\right)$
BLowing Engines at the staveley Ironworks,
 TYPE DRAWINGS OF SEWERS. (illustrated.)... .. Letters to the Editor-
On the Compiresion of air, with Hypothetical The Compression of air, with Hypothetical
Considerations Regarding the Nature of
$\underset{\text { The Patent Laws }}{\text { Hes }}$
the Explosion of Heated Water
Taproca Melit mastener
REMOVING Boiller Incrubstation
Mexican Fibre-producing Machinery
Railways and the State .
The Value of Patents
The School of Minse $\quad . \quad$.
Extension of Letters Paten
Extension of Letters patent $\quad . . \quad . . \quad . . \quad .$.
The Electric Light in its Naval and Militarary Applications
Literature-
Literature-
How to Manage a Steam Engine, and Rules for $\underset{\text { Engine Driving }}{\text { Leal Inteligence- }}$
Re Adair's Patent.. $\because \because \ddot{ } \quad \ddot{ }$
 DISTRICTS
NOTES FROM
LANCASHIRE
$\ddot{2}$
Notes from Sherfield.. $\because \because . . .$.
Notes from the North of England

The Patent Journal .. $\underset{\text { Specifications. }}{\because}$ (illusABSTRACTS
trated.)
The Arizona $\ddot{\text { Kitchen Boiler Explosions }}$
Liverpool Engineering Society
Employers' Liability Act
$\stackrel{. .}{ }$
Throat Irritation- - Soreness and dryness, ing the voice. For these symptoms use Epp's Glycerine Jujubes. Glycerine, in these agreeable
confections, being in proximity to the glands at onfections, being in proximity to the glands a
the moment they are excited by the act of sucking, becomes actively healing. "Sold only in boxes, $7 \frac{1}{2} d$ and 1s. 11 I d., labelled "JAMEs EPPS
and Co., Homeopathic Chemists, London." A letter received: "Gentlemen,-It may, perhaps interest you to know that, after an extended considerable benefit (with or without medical treatment) in almost all forms of throat disease. They soften and clear the voice. In no case can Hey do any harm.-Yours faithfully, Gordon Municipal Throat and Ear Infirmary."-ADvT

