INSTITUTION OF MECHANICAL ENGINEERS.
The annual general meeting of the Institution of Mechanical Engineers was held on Thursday and Friday, Mee 27th and 28th ult., in the hall of the Institution of Civil Engineers, 25, Great George-street, Westminster. The first meeting began at 7.30 p.m., and the second at 3 p.m. We published in our last impression the report of 3 p.m. We pubucil read on the 27 th ult., and from it it will be seen that the Institution is in a very prosperous condition, with a considerable sum in ready money available for any required purpose. Nevertheless, the Institution is, like many others, wholly dependent on the courtesy of the Institution of Civil Engineers for a place in which to meet; and we are disposed to ask what has become of Dr. siemens scheme for the erection of all scientific bodies should be a a London home.
The meetings were in no sense brilliant. The attendance was comparatively good, but the papers did not seem to be of the proper kind to evoke discussion, and very little took place. The first paper was read by Mr. Samuelson,

On Harvesting Machinery.
The author began by saying that in a paper read before the Manchester meeting of this Institution by
turist, however well they may suit the short, thin crops of the American farmer.
The discussion that ensued was exceedingly meagre. In spite of various efforts which had been made to insure the presence of agricultural engineers, and also
of agriculturists, but few of them attended, and those who durists, but few of them attended, and Of course the attend were unwiling to open tly account for this. Implement makers and farmers are not collected to a large extent in London, like those interested in other branches of engineering, but, on the contrary, are scattered pretty uniformly all over the three kingdoms; and we cannot wonder that most of them hesitated to take a long journey to the metropolis in face of the late frost. We believe, however, that another cause was at work, and that one which we have before lamented in these columns, namely, disinclination of those who have studied special classes of machinery to give to the public the benefit of their experience. Makers of mowing and reaping machines were, no doubt, glad to hear what Mr. Samuelson had to say, or will be glad to read it when published; they are very willing to learn, but they are not so desirous to teach. We fear that so long as human nature continues what it is, this will be an abiding difficulty; and all the more honour is due to those who, like Mr. Samuelson, are
stances, rapid extension of working, and good management, the profit has been very small on the capital outlay. The manufactories at the two other places, being much less favourably situated, have failed after a short and profitless existence. Their failure has shown very clearly that their founders laboured under a strange delusion in supposing that cheap motive power was in itself sufficient to create industries in localities where their essential elements were wanting. The author accordingly considers there is not much to be gained from this method of transmitting power to a distance, and that it can only succeed financially under exceptionally favourable conditions. Having premised so much, he next proceeded to examine the various methods used, or proposed, for transmitting power to a distance. He first considered transmission of power by wire ropes, which is merely an extension of the simple case of transmission by ordinary hemp ropes, and the same principles apply to both. Let A and B be the axes of two parallel shafts carrying two pulleys whose planes coincide. The driving power P acts on A , and the resistance Q on B . For simplicity, let it be assumed that those two forces act tangentially at the circumference of the pulleys. The motion is communicated from A to B by means of the rope passing round the two pulleys; of this the part which is passing towards the driving pulley is called the driving

COLD AIR PRODUCING MACHINERY.

Mr. W. R. Bousfield, the operations of agriculture were divided into four chief divisions, as follows:(1) Preparation of the land; (2) sowing of the seed; (3) harvesting of the crops; ; (4) preparation of the crops for consumption. The writer took for his subject the third division, and without going into the history of the question, discussed some of those machines which are in practical use in the country at the present date. Harvesting machines may be divided into two main classes, as follows -(1) Those in use for cutting and gathering our hay crops, whether of natural or of artificial grasses ; (2) those designed for the harvesting of corn crops. The first division may be subdivided into three classes- (a) Those machines used for cutting down the standing grass, or mowing machines; (b) those used for spreading the cut grass in order to expose it to the influence of the sun and wind, or haymakers; (c) those which are used for gathering the spread crop, or horse-rakes. As time would not permit of the latter two subdivisions being included in this paper, the writer confined himself on this occasion to mowing and reaping machines, and he proceeded to describe these at some length. It would be quite hopeless to make the paper intelligible without a large number of diagrams ; and this refers particularly to that part of it dealing with self-binding reapers, and even though we published the diagrams, we believe that very few indeed of our readers are sufficiently interested in the subject to undergo the labour of endeavouring to understand them. It is not, perhaps, too much to say that the great body of Mr. Samuelson's hearers knew no more after he had read h s paper than they did before about self-binding reapers ; and this is hardly matter for regret, seeing that not one of the devices described by Mr. Samuelson has been proved to be calculated to meet the wants of the English agricul-
found to step forward and explain so fully and frankly the processes and the mechanism they employ. We trust also theire Council of the Institution will not be deterred from classes of machinery py fors of this kind, dealing with specia classes of machinery, by finding that the discussions upon
them are apt to be short and unsatisfactory. In this case practically only two questions were asked, one referring to practically only two questions were asked, one referring to the tractive force required for the various machines, and one to their adaptability for crops such as rice, which have to be cut about lft. from the ground. As to the first, Mr Samuelson referred to the elaborate trials made by the Royal Agricultural Society, and recorded in their journals, As to the second, he stated that there was no difficulty in adapting a reaping machine to rice, \&c., by mounting the wheels on adjustable bearings, and also providing a mean of altering the level of the cutter-bar; it was also neces sary to increase the size of all the wheels, otherwise the
machine would stick fast in the deep irrigation channels of machine would stick fast in the deep irrigat

The next paper read was by M. A. Achard,
On the Various Modes of Transmission of Power to a Distance.
The author in this paper furnished a summary of the practical results obtained in the transmission of power to a distance. While the interest attaching to this subject is unquestionable, the author is, nevertheless, very doubtfu whether a successful result can be attained in one particular application-namely, the establishment of large undertakings for distributing hydraulic power to a number of factories, either existing or contemplated, similar to the undertakings at Schaffhausen, Fribourg, and Bellegarde.
At the first of these places, in spite of favourable circum-
san, and the part which is passing from the driving pulley is called the trailing span. Let T be the tension of the driving span, and t that of the trailing span. Neglecting friction, \&c., we should have $Q=P$;
and the values of the tensions in the two spans are given by the equations $\mathrm{T}-t=\mathrm{P}$ and $\frac{\mathrm{T}}{t}=k$; denoting by k the smallest practicable value of $e^{f a}$ for the two pulleys, where e is the base of Napierian logarithms, f the coefficient of friction between the pulley and the rope, and a the ratio between the arc encircled by the rope and the radius of the pulley. Accordingly the values of T and t are given by the following equations:-

$$
\mathrm{T}=\frac{k \mathrm{P}}{k-1} ; \quad t=\frac{\mathrm{P}}{k-1}
$$

If the ratio $\frac{T}{t}$ be greater than k, the rope will slip on the driving pulley. The values of T and t, as above calculated, when k has its exact value, are only just sufficient to prevent slipping, which would occur on any accidental diminution of friction. For safety, therefore, it is necessary to assign to a somewhat lowervalue thanits practically amounts to increasing the tensions T and t a little beyond what is requisite in theory. The tension common to the whole rope when at rest is somewhere intermediate between the tensions T and t of its two spans while running; and by adjusting the rope while at rest to this intermediate tension, its two spans assume of their own accord the required tens a w to be given the requi site strength, is regulated by the driving tension T , and
must be such that the quotient \underline{T} shall not exceed the
working strain which the material of the rope is suited to bear in practice. It is evident that, in transmitting a given amount of power, the driving tension, and consequently
the section of the rope, may be diminished by increasing the speed; for if N denotes the power transmitted, and v the speed of the rope, then

$\mathrm{P} v=\mathrm{N}$, and $\mathrm{T}=\frac{k \mathrm{P}}{k-1}=\frac{k}{k-1} \frac{\mathrm{~N}}{v}$

In practice the rope elongates under the continuous pull, and requires shortening from time to time to keep the tension the useless rosistances neglected for the sake of simplicity. The useful resistance Q is now necessarily less than the driving power P , and the ratio $\frac{\mathrm{Q}}{\mathrm{P}}$

represents th

 efficiency of the transmission. The useless or stiffiness, due to the imperfect flexibility of the rope. This effect, howaccount of the large size of the pulleys employed. The other useless resistance is the friction of the two shatts A F of all the external forces acting on each shaft. It appears from the principles enunciated above that the employment of rope trans sion, the value to be allowed for $k=e^{f t}$ is not more than 2 and since in the limit ${ }^{\mathrm{T}}=k$ and $\mathrm{T}=k \mathrm{P}$, we have as the least possible values $\mathrm{T}=2 \mathrm{P}$, and $t=\mathrm{P}$. These ten Q may also act in the same direction, the total pressure F on the shaft may $=\mathrm{T}+t+\mathrm{P}=4 \mathrm{P}$, as a minimum, where the most favourable conditions the pressure on the bearings will be given by $\mathrm{F}=\mathrm{T}+t-\mathrm{P}=2 \mathrm{P}$, as a minimum. Hence the average pressure may be taken as at least $3 P$ shaft friction much greater than does transmission bytoothed wheels. But the effect of this friction is reduced by the large diameter of the pulleys in comparison with that of their shafts, in consequence of which the pressure on the shaft bearings has to be multiplied by a
number not exceeding at most 0.003 , in order to resulting tension on the rope. The author dealt briefly with belting and went on the nature of the strains to which ropes length It is difficult to lay down any general rule as to the duration of the ropes, for this depends upon the conditions
under which they work assumed that a rope in constant use will last more than year. In fact, Professor Amsler-Laffon recently wrote to "A author on the subject of the ropes at Schaffhausen:little less. But it must be understood that we do not wait till our ropes break, but replace them as soon as we can no longer depend on their strength. They might there of interruption in our work." Their short life is certainly a defect in this mode of transmitting power.
According to M. Ziegler, who has considerable experien on this subject, horizontal oscillations are very injurious to the duration of the ropes, and they appear to last longer The author next considered transmission by compressed air. Hitherto the method of transmission by compressed boring the headings of mines, and the long tunnels through the Alps. In these cases, as is well known, the work to be blasting the rock with powder or dynamite. As this kind entirely precludes the employment of expansion, the but in consequence of the peculiar convenience which compressed air offers for the work, and particularly the its employment is undoubted, and leaves in the back great length with the somewhat complex mathematics of Referring to the motors fed with much if any new data author held that this subject is still in its infancy from a practical point of view. In proportion as the air becomes containing it is impermeable to heat. Under these cossdi-
tions, it tions, it gives out in expanding a power appreciably less
than it it retained its original temperature, besides which the fall of temperature may impede the working of the machine, by freezing the vapour of water contained in the
air. If it is desired to utilise to the utmost stored up in the compressed air, it is necessary to endeavour to supply heat to the air during expansion, so as to keep its temperature constant. It would be possible to attain this pression, namely, by the circulation and injection of waterquantity of water for injection, as the water, instead of acting by virtue both of its heat of vaporisation and of its specitic heat, can in this case act only by virtue of the
latter. These methods might be employed without difficulty for air machines of some size. It would be more
difficult to apply them to small household machin which simplicity is an essential element ; and we must rest satisfied with imperfect methods, such as proximity to
a stove, or the immersion of a cylinder in a stove, or the immersion of a cylinder in a tank of water.
Consequently, loss of power by cooling and by incomplete expansion cannot be avoided. The only way to diminish air at a pressure not of this loss is to employ compressed The only real practical advance made in this matter is M, Mékarski's compressed air engine for tramways. In this
engine the air is made to pass through a small boiler, con${ }_{2} 48$ deg. Fah.-before entering the cylinder deg. Cent.248 deg. Fah.-before entering the cylinder of the engine.
It must be observed that in order to reduce the size of the
reservoirs, which are carried on the locomotive, the air
inside them must be very highly compressed, and that in inside them must be very highly compressed, and that in
going from the reservoir into the cylinder it passes through going from the reservoir into the cylinder it passes through
a reducing valve, or expander, which keeps the pressure of admission at a definite figure, so that the locomotive can continue working so long as the supply of air contained in the reservoir has not come down to this limiting pressure
The air does not pass the expander until after it has gone The air does not pass the expander until after it has gone
through the boiler already mentioned. Therefore, if the temperature which it assumes in the boiler is 100 deg.
Cent.- 212 deg. Fah.-and if the limiting pressure is Cent.- 212 deg . Fah.-and if the limiting pressure is
five atmospheres, the gas which enters the engine will be a mixture of air and water-vapour at 100 deg. Cent. and of its total pressure the vapour of water will contribut one atmosphere, and the air four atmospheres. Thus this
contrivance, by a small expenditure of fuel, enables the contrivance, by a small expenditure of fuel, enables the
air to act expansively without injurious cooling, and even reduces the consumption of compressed air to an extent which compensates for part of the loss of power arising from the preliminary expansion which the air experience before its admaly investigated by the author Next Mas then mathematically investigated by the author. NextM. Achard Of machines worked by water pressure, the author referred only to two, which appear to him in every respec the most practical and advantageous. One is the well known piston machine of M. Albert Schmid, engineer, Zurich. The cylinder is oscillating, and the distribution
is effected, without an excentric, by the relative motion of is effected, without an excentric, by the relative motion of having the axis of oscillation for a common axis. The convex surface, which is movable and forms part of the cylinder, serves as a port-face, and has two ports in it com-
municating with the two ends of the cylinder. The concave surface, which is fixed and plays the part of a slide valve, contains three openings, the two outer one serving to admit the pressure water, and the middle one
to discharge the water after it has exerted its pressure. The piston has no packing; its surface of contact has two circumferential grooves, wion produ a sort wate packing acting by adhesion. A small air chamber is connected with ine inlet pipe, and serves to deaden the
shocks. This engine is often made with two cylinders shocks. This elline is often made with two cylinders,
having their cranks at right angles. Its efficiency is equal to from 37 to 83 per cent. The other engine, which is to from 37 to 83 per cent. The other engine, which is
much less used, is a turbine on Girard's system, with a much less used, is a parbine on Girard's system, with a horizontal axis and partial admission, exactly resembling St. Maur, near Paris. The water is introduced by mean St. Maur, near a distributor, which is fitted in the interior of the
of turbine chamber, and occupies a certain portion of its circumerence. This turbine has a lower efficiency than
Schmid's machine, and is less suitable for high pressures; Schmid's machine, and is less suitable for high pressures,
but it possesses this advantage over it-that by regulating but it possesses this advantage over it-that by regulating
the amount of opening of the distributor, and consequently the quantity of water admitted, the force can be altered without altering the velocity of rotation. Its efficiency
varies between 35 and 68 per cent. The transmission varies between 35 and 68 per cent. The transmission
of power by electricity was considered last of all. The author stated nothing new on this subject. He gave a table by Mr. Hagenbach, which promised to be useful, but he added that the brake measurements
obtained were inaccurate, consequently the table is of little obtained were inaccurate, consequently the table is of iittle
value. He concluded his paper with a retrospective glance at the four methods of transmission of power which had been examined. It would appear that transmission by
ropes forms a class by itself, whilst the three other methods ropes forms a class by itself, whilst the three other methods
combine into a natural group, because they possess a character in common of the greatest importance. It may be said that all three involve a temporary transformation
of the mechanical power to be utilised into potential energy. Also in ezch of these methods the efficiency of
or transmission is the product of three factors or partial
efficiencies which correspond exactly, namely, (1) The efficiency of the instrument which converts the actual energy of the prime mover into potential energy ; (2)
The efficiency of the instrument which reconverts this potential energy into actual energy, that is into motion and delivers it up in this shape for the actual operations which accomplish industrial work; (3) The efficiency of the intermediate agency which serves for the conveyance
of potential energy from the first instrument to the potential energy from the first instrument to the
second. This last factor for transmission by electricity is second. This last factor for transmission by electricity is
the exact correlative of the efficiency of the pipe in the case of compressed air, or of water pressure. It is as useful in the case of electric transmission, as of any othei
method, to be able, in studying the system, to estimate method, to be able, in studying the system, to estimate
beforehand what results it is able to furnish; and for this beforehand what results it is able to furnish; and for this purpose it is necessary to calculate exactly the factors
which compose the efficiency. In order to obtain this desirable knowledge, the author considers that the three following points should form the aim of experimentalists kinds of magneto-electric, or dynamo-electric, machines kinds of magneto-electric, or dynamo-electric, machines
working as generators. (2) The determination of the efficiency K , of the same machines working as motors. (3) The determination of the law according to which the magnetism of the cores of these machines varies with the intensity of the current. The author added that he would ladly have concluded this paper with a comparison of the efficiencies of the four systems which have been examined the losses of power which they occasion. Unfortunately the losses of power which they occasion. Unfortunately
such a comparison has never been made experimentally because hitherto the opportunity of doing it in a demonstrative manner has been wanting; for the transmission of power to a distance belongs rather to the future than to by ropes furnishes the highest proportion of useful work but that as regards a wide distribution of the transmitted power the other two methods, by air and water, might merit a preference.

The discussion which followed, the author being facts and set forth certain experiments on the efficiency
in accordance with English ideas. He observed that they confirmed the previous experiments of Dr. Hopkinson and
others as to the very high efficiency of such generators but this of course proved nothing as to the efficiency of ransmission by electricity, where the electricity, after being generated, had to be reconverted into power at the other end. In this reconversion Dr. Siemens' experiments showed a loss of about 50 per cent. Recent experiments of his own, however, led to the hope that this loss might be largely reduced by adopting proper precautions between the two machines, the generator and the motor. Anyhow, here were many cases where efficiency was of the
first importance, e..g., where natural sources were utilised, or a large central steam engine could be drawn upon, or a large central steam engine could be drawn upon,
$\&$ c., and here the greater compactness and economy of the electric transmission would give it important advantages Mr. Alexander Siemens followed in the same strain, and thought far too much was made of the question of efficiency, which was often of little importance. He instanced ir wiliam Armstrongs arrangement at Rothbury, lately described by him in these columns, and that of Dr. when large steam engines would be established at central positions in towns, whence the power would be distributed by electricity as required. He held that a few experiments were necessary to settle the arrangements of such
transmissions, because the conditions might always be preserved constant, by arranging the proper resistance in the leading wire ; and considered that prejudice was now the only
thing that hampered the transmission of power by electric thing t
Mr. Fernie recalled the attention of the meeting from electricity, and gave some examples of the extensive use of
transmitted water-power in Switzerland. He mentioned that in Geneva the men who cut firewood for house use used small machines, which they worked by attaching
them to high-pressure mains laid along the streets. Schönheyder then drew attention to a statement in the paper with regard to the wide belts used in America-viz, that at high speeds a partial vacuum is formed between the belt and the pulley, which gives an adhesion more like the tension which the belt will bear without slippincreases Schönheyder altogether disbelieved in the existen. M. this action-and probably with justicteng it has undoubtedly been claimed in the case of American belts. He discussed the reason why the iron ropes used in hausen only twelve months ; and surgested that the must either be drawn too tight, or given too high a working strain. He also spoke of the great friction
of water in pipes under heavy pressure, examples of which were given in the paper ; and suggested that further experiments were desirable on this subject. Mr. W. E. Rich took up a point neglected in the paper, viz, the proper pressure to be used in transmission by compressed
air. This, he held, should be as low as was convenient, say, 30 lb . per square inch, for pression he considered was better suited to intermittent than constant transmission. In the latter case the freezing at the exhaust ports was a great inconvenience, but this might be remedied by placing a small fire near them, or
otherwise. With regard to water engines, the greatest inconvenience was the slide valve, which the greatest trouble, and should be done away with if possible, a result already attained in Mr. H. Davey's water engines,
described by him to the Institution in 1880. The hour being late the meeting was then adjourned.
On Friday afternoon, Mr. Cowper in the chair, the first paper read was by Mr. T. B. Lightfoot, of Dartford,

On Machines for Producing Cold Air.
This was an excellent paper, quite scientific in its cha racter, and calculated toattract much attention, as Mr. Light large Messs. John Hall and Co., Dartord ishow to be used for the importation of fresh meat from Australi One of the machines described by Mr. Lightfoot we illus trated on pages 248 and 249 of our last volume. An im roved machne we ilustrate herewith. Mr. Lightoor prepared a great number of wall diagrams to render
the construction of the machines he described clear He began by pointing out that air is rapidly com pressed under a piston, without either loss or gain
of heat from without, it is raised in temperature mechanical work expended on the piston being transferre to the air in the form of heat. If this compressed and heated air, at that pressure and temperature, be then
introduced below another piston, and expanded without introduced below another piston, and expanded without loss or gain of heat from without down to its original pres
sure, it will also resume its original temperature, and will have given back, while expanding, useful work precisel equal in amount to that absorbed during compression. If however, after compression, the air is first cooled, by allow ing some of its sensible heat to be absorbed by some coole
substance, and then expanded under a piston to atme spheric pressure then expanded under a piston to atmo back than in the first case, and the aire will be give will be found to occupy less than its original volume, and to be colder than its original temperature by a differenc which is greater or less according as the quantity of hea taken away before expansion is large or small. The opera-
tion just described forms the basis upon which the cold air machines treated of in the paper are constructed, an the author proceeded to illustrate the proposition graphically. So much has recently appeared in our own pages on
the subject, that we need not follow Mr. Lightfoot closely The diagrams annexed are reduced from those pre pared by Mr. Lightfoot to illustrate the theory of his
machines, and to a large extent they explain themsely machiges, and to a large extent they explain themselves.
Fig. 1 illustrates the theory of cold air machines graphically. A B represents a volume of atmospheric aii
-considered for the sake of convenience gas-at a temperature of 52 deg. Fah. This air is rapidly compressed under a piston to the volume CD. The pres-
sure A C, above the atmospheric pressure, is then, in the
present example, 50 lb . per square inch, and the tempera-
ture 321 deg. Fah., giving a rise of 269 deg. Fah. Now ture 321 deg. Fah., giving a rise of 269 deg. Fah. Now
suppose that, instead of immediately expanding the volume suppose that, instead of immediately expanding the volume
C D of hot compressed air back to atmospheric pressure, we first abstract a portion of its sensible heat, and so reduce its temperature to 52 deg. Fah., it will be found that its volume will also be reduced to C F, where C F bears the
same ratio to C D as the new absolute temperature bears same ratio to C D as the new absolute temperature bears
to the old, or CF :CD ::513:782. On now expanding to the old, or CF : CD :: $513: 782$. On now expanding
the volume CF to its original atmospheric pressure, the piston will only be pushed out to the position E , and the final temperature of the air will be 125 deg. below 2
Fah. The efficiency of the operation is represented by

$\frac{\text { Volume swept through by expansion piston }}{\text { Volume swept through by compression piston }}$

and the area B D F E gives the theoretic mechanical force required for driving the machine. Fig. 2 gives in thick
black the adiabatic and in dotted the isothermal curve of compression of a perfect gas, from 14.7 lb . and 52 deg. to of compression of a pel fect gas, from 14.7 lb . and 52 deg. to
65 lb . per inch. In Fig. 3 the adiabatic and isothermal lines are shown in thick black and dotted lines. The volume CD is got in practice. In Fig. A the dotted line shows force of aqueous vapour at temperatures from 0 deg. to 100 deg. Fah. pound of saturated mixture of air and vapour at ordinary pound of saturated mixture of air and vapour at ordinary
atmospheric pressure, and at temperatures from 0 deg. to 100 deg. Fah. Figs. 4 and 5 are diagrams from the compresthe firm. Fig. 6 is a diagram giving a comparison of the two the firm. Fig. 6 is a diagram giving a comparison or depoling of the wet compressed air by means of the cold expanded air acting through metallic pipes, and the other by utilising the ex
pansive action of the air itself, on the author's plan. Here pansive action of the air itself, on the author's plan. Here
$C D$ represents the volume of tte air at 95 deg. Fah. and 65 lb . per square inch absolute pressure, as it leaves the first cooler ; to 42 deg. Fah., by the external application of the cold air, during which process heat is given of the dry cold raise the temperature of an equal weight of the dry cold air by E G the actual curve, allowing for the effect of the moisture still remaining in the air at 42deg. Fah. The final temperatures for these curves are 127 , zero Fah. respectively. On the the pressure is then reduced to 35 lb . per square inch absolute, and the moisture deposited is the same as in 42 deg . Fah. The condensed vapour having been absylinder, J K the dried air admit ted aen sen to expansion cylinder, while D B is the line of adiabatic expansion from the point D . The final temperatures are 68 deg. below zero Fah. for J K, and 96 deg. below zero Fah. for DB. and the final expansion under the piston, the horse-powers being of the compression and perpeninut. The are 27 in . and 20 in . respectively, the stroke in each case being 18 in . Fig. 10 is a diagram of crank strains. An important fact to be noted, is that air at constant quantity of water in solution as vapour or steam, at each different temperature; or conversely, the temperature of
 air, the more water can it hold without depositing. Thus if air is highly heated by compression, and water is then admitted to it, in the form of spray or injection, it will take up much more water before becoming saturated than it could have held before it was thus heated. Again, if
air under compression and saturated with vapour is allowed air under compression and saturated with vapour is allowed
to expand, a large quantity of such vapour will condense and freeze into snow, thereby giving up a large quantity of heat to the air, which air is in consequence cooled less than it would have been, had it been dry air to start with.
This freezing is also a serious practical evil, from the This freezing is also a serious practical evil, from the
deposition of ice about the valves and in the air passages, which necessitatesfrequentstoppages even in small machines. or less completely of its contained moisture, by employing or less completely of its contained moisture, by employing
some chemical material, such as chloride of calcium or some chemical material, such as chloride of calcium or
sulphuric acid, which is a powerful absorbent of water. But in the author's opinion the are known to him is inadmissible, except perhaps for
small machines, or for those working under special consmall machines, or for those working under special con-
ditions, because of the trouble which would be experienced in changing the material, and evaporating offt the Mr. Lightfoot next proceeded to explain the nature of the isothermal and adiabatic curves, and he compared the from machines made by his firm. In one case the initial temperature of the air entering the cylinder was 52 deg. Fah.; and it contained, as ascertained with a hygrometer, 0.007 lb . of aqueous vapour to the pound of mixture, this
being about 88 per cent. of saturation for the observed temperature. By calculation from the volume, the temperature at the end of the stroke was 267 deg . Fah., whereas if the compression had been accomplished adiabatically, it is delivered to the cooling apparatus, consisting of is delivered to the cooling apparatus, consisting of an
arrangement of small brass tubes, having cold water flowing through them. The air is thus reduced in temperature to within from 5 deg . to 10 deg . of the initial temperature of the cooling water, and with this abstraction of heat, its capacity to retain vapour being lessened, a portion of the
moisture it contains is condensed, and may be collected and run off if suitable means be provided. In practice, the air, if cooled to 70 deg . Fah may be made to part with about one-half of its contained moisture at this stage. Mr. Lightfoot then noticed shortly some of the
machines previously devised for producing cold air machines previously devised for producing cold air
Kirk's machine consists in principle of a single cylinder in
which air is compressed at one end and expanded at the other. The heat caused by compression is partially carried off through the cylinder cover, which is water-jacketted,
and the cold from expansion is used to abstract heat from a current of brine or other medium, circulating over the cover at the expansion end. Between the two ends is a regenerator, formed of several thicknesses of wire gauze.
Through this both the hot compressed air and the cold expanded air pass, on their way from one end of the cyinder to the other ; so that there is a continual alternate compression and expansion of the air, and a continual
heating and cooling of the regenerator. The Giffard cold air machine consists of one single-acting water-jacketted compression cylinder, and one single-acting expansion
cylinder, both worked from cranks on an overhead shaft cylinder, both worked from cranks on an overhead shalt, which is merely a cluster of small tubes placed vertically in a case. The cooling water passes upwards outside the tubes, and thence goes to the compression cylinder jacket,
the air is admitted into a casing below the ends of the tubes, passes up through them, and is taken off from the top to a wrought iron reservoir. A pipe from this reser voir supplies the air to the expansion cylinder; the admission and exhaust being controlled by two inde pendent steel mitre valves in the cylinder bottom, worked by cams made at drying the air; all the moisture taken into the frompression cyinder is discharged in the form of snow portion expansion cylinder, with the exception of the portion deposited ine Win owing to the partial cooling air from compressed air. Windhausen's machime expand the fom ind and a pressure under apiston the cooled and expanded air being discharged much below the atmospheric pressare, ether through tubes surrounded where the objects to be frozen are placed. After this where the objects to be frozen are placed. After this cooled, and re-expanded. The disadvantages of this machine are the large size of the cylinders, \&c., necessitate bytirely very low pressure employed, and the fact of its entirely depending for its action on the production of a
partial vacuum. The Bell-Coleman refrigerator consists of partial inacua. he Bell-Colenan rerigerator consists of an ordinary machine for producing cold air by compression, cooing, and expansion, combined with an apparatus fo admitted to the expansion cylinder. In this system the admitted to the expansion cylinder. In this system the
air is partially cooled during compression by the actual injection of cooling water into the compressor, and by pumps the con compressed air flowing from the pumps to come in contact with a spray of water. From
the pumps the mixed air and water is led by pipes into a chamber or chambers with perforated diaphragms, which catch a portion of the suspended moisture. The air, stil of the initial temperature of the cooling water, is then led to the expansion cylinder through a range of pipes, or othe apparatus, with extended metallic suffaces, cooled exter nally to a lower temperature than that of the cooling water
so as to induce a further reduction in so as to induce a further reduction in temperature and consequent deposition of moisture. This extra cooling of
the compressed air is effected either by allowing the cold expanded air, before it reaches the chamber to be or by exposing these pipes to the spent air passing from the cold chamber. The author then considered at open. Itshould, hewever, be stated thathe very frankly added that these machines have been successfully worked in cases where a large amount of cooing water of low temperature steamer. There is no doubt that moderately dry air would be obtained wherever a sufficient supply of water at 46 deg. horizontal machine with some novel arrangements as regards the construction of its air-valves and pistons. Th through tubes surrounded by cooling water, and then passed tho ture, before being admitted to the expansion cylinder. If
the charcoal or other material is properly changed and renewed when necessary, this may form a dry air process but, as already stated, the introduction of a chemical drie is in the author's opinion undesirable, except under specia manufacture cold air machines of horizontal form, in which the Corliss cut-off gear is applied to the admission valve
 at each stroke ; it then passes through a series of receivers in which the water mechanically carried over is deposited expand finally admitted to the expansion cylinder, and expanded to attempt is made at drying the air, which passes to the expansion cylinder fully saturated for its temperature baffles, abstracts the bulk of the snow from the coled o after expansion and before its introduction to the chamber, In a machine of this description which the author has seen, the snow had to be cleared outfrom the exhaust valves every few hours. The author then proceeded todescribe the cold-air been illustrated in our columns, as stated above. Neither of the machines so described were intended to produce dry devised by the author. This process depends for process on the varying vapour capacity of air at different temperaplished by contact whe transfer or heat being accomlarge apparatus and difficulties from the formation of ice it is effected by the act of expansion itself. The partiallycooled compressed air, which, when the machine is taking saturated with vapour for its temperature and pressure saturaduced into a small primary expansion cylinder, and there expanded under a piston to such pressure as gives a
final temperature of about 35 deg. Fah.
The result is the condensation of almost the whole of the contained vapour,
which is discharged, in the form of mist, with the air, into an apparatus having surfaces so arranged that the mist is
deposited on them as water, falls to the bottom, and is deposited on them as water, falls to the bottom, and is
drained off. The dried air, still at a high pressure, is then admitted to the second expansion cylinder, exspanded down to atmospheric pressure, and discharged cold and free from moisture. As an illustration, assume that compressed air at 95 deg. Fah., and 65 lb . per square inch absolute pressure, fully saturated with vapour, is introduced to the primary expansion cylinder. Each pound of air will then
contain 0.008 lb . of vapour. To bring this mixture of contain 0.008 lb . of vapour. To bring this mixture of
air and vapour to a temperature of 35 deg . Fah. will require a ratio of expansion of about 1775 , the pressure being reduced thereby to about 35 lb . per square inch
absolute. The 0.008 lb . of vapour per lb . of air will now absolute. The 0.008 lb . of vapour per lb . of air will now
be reduced to 0.0016 lb ., owing to the lessened vapour be reduced to 0.0016 lb ., owing to the lessened vapour
capacity, or lower dew point, of the air; the difference, or capacity, or lower dew point, of the air; the difference, or
0.0064 lb ., being condensed into water, and collected in a 0.0064 lb. , being condensed into water, and collected in a suitable receiver. On admitting the dried air to pressure in almost exactly an adiabatic curve; and the pound of cooled air, as it is delivered from this second cylinder, will only contain about 0.001 lb . vapour in suspension. The difference between this amount
and the 0.0016 lb . admitted from the water collector is discharged as snow, and caught in a snow-box Both these amounts together are, however, so small that the air is practically dry; in fact, on exhausting the cooled air, with this moisture and snow in it, direct from the machine into an atmosphere at 50 deg. Fah., only the
slightest trace of mist is visible. A horizontal dry cold slightest trace of mist is visible. A horizontal dry cold
air machine for marine purposes, one of several now being air machine for marine purposes, one of several now being constructed, is shown in the accompanying engraving.
is intended to supply 5000 cubic feet of cold air per hour. is intended to supply 5000 cubic feet or colinder, with gunIt has a double-acting compression cylinder, with guu-
metal liner forming the water-jacket, this material being metal liner forming the water-jacket, this material being employed in preference to cast iron on account of its
greater conductivity. This cylinder discharges the air, greater conductivity. This cylinder eischarges the ain, compressed of coolers, made on the same tubular principle as those already described, whence it passes to the expanas those already described, whence it passes of this cylinder is fitted with distinct adjustable cut-off valves. The is fitted with distinct adjustable cut-or of grids, placed t an angle ; an idea for which the author is indebted to Mr. E. A. Cowper. Jacketted adjustable cut-off, supplies the necessary driving power.
The disposition of the cylinders in this machine was arrived at and decided upon after very careful consideraarrived at and decided upon after very careful consideranumber of different combinations being taken. For larger machines the arrangement of cylinders would be somewhat nodified, depending upon the number of each kind er compound. The author concluded by dealing with the
or pplications of cold-air machines
The discussion which followed was very brief, and of small interest. Although Mr. Lightfoot had freely enough them or objected to Mr. Lightfoot's statements. Mr. them or objected to Mr. Lightfoots statements. Hr. Mr. Lightfoot had used the words "rapidly compressed," because it might mislead. Whether air was compressed He supposed that what Mr. Lightfoot meant to convey He supposed that wat h. was that the compression should be done so quickly hat
heat could not get time to escape from the cylinder. He then went on to say that he had carried out several experiments with Giffard's cold air machine which gave very fair results, the air being cooled by spray, snow was its latent heat and keeping the air warm. The temperaure of the air as it left the compression cylinder was 131 deg., while the temperature leaving the expansion power in working the plunger through the ring of special packing designed by M. Giffard ; rather more than onehalf the power required to compress the air was given back in the expansion cylinder. The machine was not
economical, inasmuch as 9 or 10 tons of ice may be made on other systems pe ton of coal. He thought that the whole of the heat iven out in the compression cylinder should eappear in the water
Mr. Gorman said thathehad had twenty-two years' experience in ice-making, and that he was certain the reports conerning a certain ice machine at Hongkong must be wrong. With an ether machine from four to six tons of ice could than one ton of ice to half a ton of coal. The Hongkong than one ton of ice to half a ton of coal. The Hongkong nachine.
Mr. Crampton pointed out that all these statements concerning the relative quantity of fuel burned and ice produced were worthless and misleadig of the engine employed was also stated. The amount of
power required ought to be taken as a standard, not the oal burned.
Mr. Joy warned the meeting against comparing cold-air machines with ice-making machines, which were totally
different things. Mr. MacFarlane Gray then dealt different things. Mr. Mack ane Gray then dealt at regretted that the author had not put the line of no pressure as well as the atmospheric line on his diagrams ; and he then explained how it was possible graphically to calculate the precise dew-point under all circumstances.
Mr. Price Williams said that it was impossible to overestimate the importance of any combination of mechanism which would facilitate the importation of food, and he ead a short extract from a letter which he had received from Sir William Armstrong bearing on this point, in f anything happened to prevent the importation of food. As regarded economy, he thought that a small matter as compared with efficiency. Coal was of no importance as
In replying, Mr. Lightfoot said that he did not believe
compressed air, and he had used the word "rapidly" to imply that the compression would take place adiabatically in a conducting cylinder, which would not be the case if the compression was slowly effected. As to economy of
fuel, that was a question for the purchaser. If they were fuel, that was a question for the purchaser. If they were
wanted, he would supply compound engines of the greatest wanted, he would supply compound engines of the greatest
economy to drive the cold air machines. He would have the zero line added to the diagrams before they appeared in the "Transactions."
The next paper read was by Mr. J. D. Brunton and Mr. Trier

On Stone Dressing Machinery.

The authors said that it had been for some time their desire to introduce to the notice of the members of that Institution their machines for dressing and turning stone; but they
had delayed doing so until now, because they wished first to perfect the details ; and especially to be able to say that to perfect the details; aad especially to be able to say that of stones to deal with. The machines now to be described of stones to deal with. The machines now to be described pronounced to be good, serviceable, labour-saving machines by persons who have used them for some time past, and are using them still. Much ingenuity had been put forth, and numerous attempts been made to shape or dress stone by mechanical means, but no attempt would be made to
describe the various machines that have been devised. Suffice it to say that, saws being excepted, they for the most part aim to do the work by means of chisels of some form or other, applied either to chip or scrape away the irreguother, applied either to chip or scrape away the irregu-
larities of the stone. It is at this point that the authors' machines diverge from the beaten path, and take hold of a mew principle of action; the action, namely, of circular new principle of action; the action, namely, of circular
rotating cutters, operating by rolling to chip off from the rotating cutters, operating by rolling to chip off from the
stone the inequalities of its surface. This constitutes the elementary principle, and may be stated as a rolling pressure brought to bear at the base of a certain projecting
portion of stone, with the intent to force it off. The great portion of stone, with the intent to force it off. The great
power of such a pressure to effect the desired object is due power of such a pressure to effect the desired object is due
to the fact that its incidence at any given moment-or what may be called the tread of the cutter-extends over a very small space, and that upon this small space the whole
force in exercise is concentrated. It remained to contrive such a mechanical arrangement as shall successfully apply such a mechanical arrangement as shall successfully apply
this principle. We have in stone a material composed for this principle. We have in stone a material composed for
the most part of particles hard enough to cut and wear the most part of particles hard enough to cut and wear
away the hardest steel, but held together by a cohesion away the hardest steel, but held together by a cohesion
relatively far feebler than that which holds together the molecules of steel or chilled cast iron. Hence it will be evident that in attacking such a substance by a metal tool,
it is of the first importance that attrition be avoided. If this enters in any considerable measure into the conditions question of simple pressure, the stone will. inevitably be overcome. The first application of the principle was to the overcome. The first application of the principle was on the
turning of stone, especially granite. The simplicity of this application was due to the circumstance that the con-
stantly revolving stone presented a continuous sufface for stantly revolving stone presented a continuous surface for
attack, and the contact of the edge of the cutter with the attack, and the contact of the edge of the cutter with the
surface was therefore unbroken. The cutter once set in surface was therefore unbroken. The cutter once set in
motion by contact with the stone continued rolling, and being placed at an angle of about 25 deg. to the axis of the stone chipped the surface away incessantly in a spiral line, as the slide rest and tool holder moved along the bed of revolutions of the stone and the cutter reduced attrition to a minimum, and considerable speed of surface rotation was a minimum, and considerable speed of surface rotation was column, an inch and a-half or more would be taken off at one time. In fact, the work of a fortnight was brought within the compass of a day, and the character of the work produced was in every respect superior. But when the presented themselves. To accomplish a useful quantity of presented speed was required, but to bring cutters into rapid work speed was required, but to bring cutters into rapid
rotation by a contact with the stone which was made and rotation by a contact with the stone which was made and
broken at every moment, involved much attrition and consequent wear. Although it may seem, as it does now difficulty, to drive the cutters, in other words, to cive this difficulty, to drive the cutters, in other words, to give them
a mechanical absolute rotation, such that their edges should roll on the stone; yet this simple remedy was not thought of till several years had been spent in efforts to represented by the diagrams, was the offspring of this

slowly-attained perception of what, in the shape of
mechanical arrangement, the nature of the case demanded mechanical arrangement, the nature of the case demanded. The diagram represents in section the chuck, or cutter
carrier, and exhibits the way in which the cutters are carrier, and exhibits the way in which the cutters are
given a determinate rotation on their own axis, at the same time that they are carried round in a circle by the revolution of their carrier ; their outer edges thus describing a circular path, which may be called the track. The chuck A is a cast iron circular box, bolted to the flange F of the
shaft C on which it revolves. Into it are fitted the cutter shaft C on which it revolves. Into it are fitted the cutter
spindles h, in number three, six, nine, or twelve, according to the size of the chuck. The cutters g are fixed on their spindles by split nuts; a part of each of these
nuts is a cone, which enters into the conical hole in the
centre of the cutter. When screwed up the nut contracts and grips the thread of the spindle, so that nut, cutter, and spindle become as one piece. On each spindle is keyed a bevel pinion e, and all the pinions contained in the chuck
gear into, and are driven by the central bevel gear into, and are driven by, the central bevel wheel b this is keyed on the central shaft k, which passes through the centre of the shaft, and receives its motion by means of pulley f. The rates of cutter rotation and of chuck rotation aresoadjusted relatively one to the other that the cutteredge
shall exactly roll in the track shall exactly roll in the track. For instance, in the case of a chuck having a track of 2 ft . diameter and cutters of 8 in .
diameter, for every revolution of the chuck the cutters will diameter, for every revolution of the chuck the cutters will make three revolutions. The ordinary speed of a chuck
is 300 to 350 revolutions per minute, the cutters themis 300 to 350 revolutions per minute, the cutters them-
selves making 900 to 1050 revolutions in the same time With regard to the material of the cutters, it has been found that for all kinds of sandstones, grit stones, and free stones, as well as for the magnesian limestones and oolites,
chilled cast iron cutters answer perfectly. A cutter will chilled cast iron cutters answer perfectly. A cutter will
usually last for twenty such grindings before it is worn usually last for twenty such grindings before it is worn
out. Its first cost is three shillings. For hard limestones steel cutters are necessary on account of the resistanc presented by these stones; but the wear is quite insigni-
ficant. A set of cutters will last several days without ficant. A set of cutters will last several days without
changing. For granite also steel cutters are required. In the lathe a cutter will run for about en hours withou sharpening, dressing once over 250 square feet of granite In dressing plain surfaces the wear, in the case of granite is greater than in turning, but still moderate. The construction of the machine was fully illustrated by diagrams.
No discussion, properly so called, followed; but Mri No discussion, properly so called, followed; but Mr. explained certain matters more fully than the paper had done. Mr. Crampton asked for information the relative cost of the machine work and hand labour, and was told that machine work was 2 d . per square foot, against 6 d . for hand labour; working on grit stone or granite the saving was much greater. In reply to Mr. Price Williams, it was nothing but plane surfaces could be machined.
Mr. Brunton said that all the large firms now making granite columns used lathes and his cutters. The grea not for strength, but to obviate tremour or jar. In Paris a machine was employed in dressing the large edge roller used in chocolate factories. His machine would beautifully dress a 5 ft . stone in thirty-five minutes, while it took man five days to do the same work, or even more. Mr, angle and speed was used with different stones, but Mr Brunton said that this was not required ; 45 deg. was good working angle for all kinds of stone. As to speed, chuck he found the best, toletions per minate of the sideration. In reply to Mr. Cole, he said that the machine would dress burr stone perfectly, but the great difficulty was that the blocks as they came from the quarry were so small When was almost impossible to fix them in the machine. off half an inch at one cut. The next paper read was by Mr. Henry Chapman,

On the Farquhar Filtering Apparatus.

The paper opened with the statement that sewage of filte satisfactorily got rid of because of the difficulty went on to explain why mechanical filtering had failed. The principle of the Farquhar filter is that of the conbecome deposited on the surface of a filter-bed. The filter-bed-which is composed of sawdust, or sand, or powdered cinders, or other suitable granular materialcanvas or cloth, which is supported by a perforated plate resting on a strong grating. The liquid is forced into the filter, and passes through a hollow screw spindle direct to uniformly through the channels on to the surface of the filter-bed. The filtered liquid passes through the filter bed, leaving all its solid impurities on the surface of the bed, and finally issues from a pipe. During the process of filtration, the cutter-plate is made to revolve by means of a pulley and bevel gearing, and, when desired, is caused to descend at any speed required, irrespective of its speed of
revolution, by means of a feed-motion. In some cases the solid matters held in suspension in the liquid to be filtered are of a chalky nature, a thin deposit of which forms of itself a good filtering medium. In these cases it is only surface of the filter-bed in the cylinder, and not to cause it to descend. The accumulating deposit will then be continually scraped off, and forced up an inclined plane of the knife on to the top surface of the cutter-plate, the under supply of liquid will be continually in direct contact with the surface of the filter-bed. In other cases the solid matters held in suspension in the liquid to be filtered are of a slimy nature, a thin deposit of which, if left on the surface of the filter-bed, would stop the filtration. In these cases it is necessary to cause the cutter to descend as well as to revolve, so that at each revolution of the cut up and scraped off, together with the slimy deposit autter tically starting a new filter. When the cutter-plate has descended to within two or three inches from the bottom of the filter-bed, the descending motion of the cutter-plate the filter-bed, which at the commencement of the operation was underneath the cutter-plate, will now be at the top of impurities which and intimately mixed with the solid filter-bed it is necessary first to unbolt the cover, and to raise it. Then, by means of reversing gear, the cutterplate, which may have taken many hours, or several days, to descend to the bottom of the filter-bed, can be made to
revolve in a contrary direction, when it will quickly ascend the full pitch of the screw at each revolution, and the fouled filter-bed will, in a few minutes only, be automati-
cally discharged over the top of the cylinder. Both the cutter-plate and the cutter are the cylaised to a suitable height above the cylinder, so as to allow of the cylinder being cleansed, and a fresh filter-bed placed therein ready for another process. The whole of the above operation for
a large machine should not exceed one hour. The en a large machine should not exceed o
graving below is a section of the filter.
The paper went on to state that very satisfactory results had been obtained in Paris, especially at the sewage work where eaux-vannes were dealt with, MM. Duval and Durant-Claye stating that at the beginning of the operation
the filtering bed was 25 centimetres deep, and the end only the filtering bed was 25 centimetres deep, and the end only 75 mm , or 3in., and the liquid still passed out clear. At
sugar works M. Pellet pronounced the filtration to be as sugar works M. Pellet pronounced the filtration to be as perfect as though effected through blotting paper. Sawdust was the filtering material used. The author urged the value of the machine for waterworks, and pointed out panies was at the rate of filtration of our great per hour while the Farquhar machine could filter at the rate of $247 \frac{1}{2}$ gallons per square foot per hour, or a machine 10 ft . in diameter would filter 466,560 gallons per day.

The discussion which followed was brief, and only important for the part Mr. Hawksley took in it. He said that the statements made were so remarkable that he woulieve it to see the work done Pellet mefore he could believe it to be possible. M. Pellet must be mistaken.
In preparing river water for town consumption it was In preparing river water for town consumption it was
imperatively necessary to filter it as slowly as possibly. The limit of speed was fifty gallons passed per square foot The limit of speed was fifty gallons passed per square foot
of surface of a bed of sand 2 ft . or 2 ft . thick. The water of surface of a bed of sand 2 ft . or 2_{2} ft. thick. The water
would not be perfectly purified if it was passed any quicker. It was for a long time held that the process of quicker. It was for a long time held that the process of
filtration was purely mechanical in its nature, but it was now known that this was not the case. Mechanical action only removed the grosser impurities, and to render the water quite pure it must be kept a long time in contact with the sand. The facets of the sand appeared to exert a special power of attracting to themselves even the most minute impurities, but time was required to enable the sand to get the all but chemically dissolved particles to itself, the principle of aggregative attraction coming into play. Again, it was not impossible that during the time pa and rendered harmess by oxidation, But ithe Farquar filted har pess oy oxidation, but in the Farquhar filter the process was so rapid that only and he could hold out little he that the machine would and he could hold out litte hope no doubt that for the ever do for waterworks. He had no doubt that for the detention of thick matter it would prove very effective but costly. For sugar clarifying it mighto. order to etard the rate of iltration hat it was impossible the was so be more than 2 ft . of head to force the water through the bed. In the filter described the water would pass at twenty to fifty times the proper rate, and to believe that it would ever produce a potable water was a great mistake.
After Mr. Hawksley sat down, a desultory conversation ensued, in which Mr. Crampton, Mr. Newman, the President, and Mr. Hawksley took part. It was pointed
out that, in dealing with sewage, much expense would incurred in pumping it up to get the head required to incurred in pumping it up to get the head required to
drive it through the filter. Mr. Newman wanted to know if it would sores in a phe the made muddy by periodical rains. Mr. Hawksley said he had no doubt that the filter might be used for said he purpose, but it would leave the water tinged with colour, but not necessarily unfit or unpleasant to drink. In reply to Mr. Cowper, Mr. Farquhar said that a somewhat similar machine to that described had been tried at Messrs. Barclay and Perkins' Brewery, and had been removed. He then replied on the whole discussion, and pointed out and that even powdered glass would do better thom sand,

The sawdust, under pressure, squeezed together, but sand would not. No doubt some of the statements made appeared incredible, but they were none the less true ; and he relied on the accuracy of so careful a chemist as M. Pellet.
This terminated the proceedings, and after a vote of thanks to the members of the Institution of Civil Engineers for the use of their Hall, the meeting terminated. Several of the members dined together in the evening.

THE BLACKHEATH SUBSIDENCES.

During the night of Wednesday and the early morning of Thursday, April 11th and 12th, 1878, an extraordinary fall of rain visited the metropolis and its outskirts, causing an amount of distress from floods which appears scarcely ever to have been equalled in that part of the kingdom The inundations were particularly severe in the valleys of the Ravensbourne and the Quaggy - a fact to which Sir oseph Bazalgatte bore witness in a report which he made as the engineer of the Metropolitan Board of Works. On
the morning of Thursday a singular phenomenon prethe morning of Thursday a singular phenomenon pre-
sented itself on the broad open plateau of Blackheath. At spot near the ride known as "Rotten Row," the earth was found to have sunk in to a depth of about 20 ft .,
ceedings, a newly-formed society, designated the Lewisham and Blackheath Scientific Association, came to the rescue, and appointed a committee to see what could be done. At the instance of Sir George Airey, the Metropolitan Board transferred to this Association the permission which they had previously given to him alone, and the Association took the further step of obtaining the consent of the Earl of Dartmouth, as Lord of the Manor, to the carrying out of the exploration.
The committee thus formed commenced operations short time back, and through their courtesy, with that of the honorary secretaries, we are in a position to lay before our readers the full particulars of what has already been done, together with information as to the proceedings which are now contemplated. We are thus enabled to give a plan-Fig. 1-showing the position of the earth falls on the Heath, together with a section-Fig. 2-of one of the subsidences which has been explored, and a rough sketch-Fig. 3-of a third. In addition to these, Fig. 4 drawn by Mr. T. V. Holmes, F.G.S., shows a section across the Heath in a direction leading from the Roya Naval College at Greenwich, to the railway between Blackheath village and the tunnel. It will be seen that the area affected lies to the south of Greenwich Park. The aperture A is that which first appeared. It is situated about
J. C. Price, and Mr. E. W. Brabrook, F.S.A.; together with the honorary secretaries, Mr. Henry W. Jackson, F.R.A.S. and Mr. John Yeo, R.N., and several of the leading inhabitants of the neighbourhood. From among the parties thus elected, an executive committee has been formed, who are taking steps to carry out the exploration. The estimates for the proposed operations range between $£ 100$ to $£ 150$; but in order to provide a margin, it is proposed to raise a fund of $£ 250$.
It will now be interesting to consider what is the probable cause of the strange phenomenon which the com mittee are about more fully to investigate. Already the explorers are overwhelmed with theories-geological archæological, engineering, and nondescript. A résumé o the whole would be amusing, but we must limit our atten tion to those which possess a reasonable aspect. There are theories within the committee as well as theories from without. One of the former is from Admiral Hamilton who refers to the fact that when the main drainage work were being executed, some very powerful springs wer tapped in the Lower Woolwich-road, and he suggests that the escape of water which then took place may have depleted some natural reservoirs beneath the surface of the Heath, so as to leave a void into which the superincumbent strata have ultimately fallen. Whatever may be said as to

FIC. 4

MAP OF BLACKHEATH, AND SECTIONS OF HOLES
leaving what was described at the time as " a dangerous hole eight or nine yards in circumference." The Metropolitan Board, who had jurisdiction over the Heath, first of all placed a fence round the mouth of the shaft, and subsequently filled it in. The fence was then removed; and there was apparently an end of the matter. But early in November last another hole of a similar character opened in the Heath at a spot considerably to the westward of the first subsidence, and on the 19th of that month a third aperture presented itself, not far from the first. Parties residing in the neighbourhood began to think that these earth-falls were looking serious, as it was impossible to say where they might ultimately show themselves. There were traditions of strange subsidences in Kent at remote times, one of which, near Eltham or Mottingham, was said to have been big enough to swallow up three full grown elms. Granting that there was some exaggeration in such stories, it was thought there was at least some modicum of truth about them, and curiosity was aroused as to the probable cause of such a departure from the ordinary rules of terra firma. The Astronomer-Royal, who, from his watch-tower in Greenwich Park, was accus tomed to keep an attentive eye on the stellar regions, began beneath his feet, and accordingly proposed to the Metro politan Board that they should explore these strange sub sidences, with a view to ascertain the cause. The Board having already had trouble enough with the Treasury auditor, replied that they had no money to expend for any such purpose, but that if he liked to explore the cavities on his own account, he had full leave and licence to do so, so far as they were concerned. At this stage of the pro-

250 yards from the nearest point of the Park wall, close alongside of which rums the Charlton-road. Its position upon the Heath is very central, being abou 370 yards E.S.E. from the large gates leading out of the Park. The second aperture B is situated rather more than 600 yards distant from A, in a direction S. W. by W., while the third, C, is only about 110 yards from A, in a south-easterly direction. The subsidence A, being filled up, is not available for examination; but the committee have examined the fall C, with very interesting results. The subsidence was found to consist in the first place of a shaft, almost circular in form, being 7 ft .8 in . in the longest diameter, and 6 ft . 9 in . in the shortest. The sides went down vertically to a depth of 18 ft ., and had all the appearance of a well, or artificial shaft. At the bottom was a heap of fallen earth, and when this was removed the sides were found to recede, the hole increasing in its diameter to about 14 ft . Whether on a deeper descent the diameter would increase still further, is of course uncertain; but there seems very little doubt that some enlargement would display itself. Further progress has been delayed through lack of funds, but steps have since been taken to raise a sum sufficient to continue the exploration. A conference on the subject has taken place between the officers of the Association and the West Kent Natural History Society, and the general committee now includes Sir G. B. Airey, AstronomerRoyal; Dr. H. E. Armstrong, F.R.S., President of the Association for 1881 ; Admiral Hamilton, R.N.; Rev. Brooke Lambert, vicar of Greenwich ; Rev Thomas Wiltshire, Professor Cotterill, Dr. Prior Purvis, Mr. J. K Langhton, R.N., F.R.G.S.; Mr. T. V. Holmes, F.G.S., Mr
the precise terms of this hypothesis, we think it must be allowed as highly probable that the underground waters are the cause, in some way, of the singular phenomenon for which an explanation is now sought. But when we remember that the first great subsidence was coincident with the extraordinary rainfall and flood of April, 1878, we are forced to the conclusion that an exhausted subterranean reservoir is not the exact cause of these strange subsidences. One member of the committee, an accomplished geologist, has ventured to conclude that the subsidence C is artificial. That its regularity of form suggests such a conclusion cannot be denied; but there is a striking and unmistakeable fact which is in a great measure adverse to the theory. We have stated that at the foot of the shaft in subsidence C there was a heap of fallen earth. With excellent judgment Mr. H. W. Jackson had this material carefully removed, layer after layer, in order that it might be compared with the bedding as seen at the mouth of the pit. The soil when taken out was placed in such a position that it could be easily examined, and it was found to correspond, layer by layer, with the virgin soil, as seen in sectionat mouth of the cavity. One well-marked line of red sandy clay in about the middle of the earth which was removed, was very obviously identical with a thin streak of the same material in the unfallen portion. From this examination Mr. Jackson observed that it seemed clear it was the superficial beds of the Heath that had fallen in, and not, as had been suggested, a stopping of rubbish which had been thrown over some timbering for the purpose of making an artificial surface.
The fact thus brought to light at once settles the quesy

WOOD PULP MAKING MACHINERY.
mM. THEODOR AND FRIEDRICH BELL, KRIENS, SWITZERLAND, ENGINEERS.

Fig. 21.

THE MANUFACTURE OF WOOD PULP.
Ir has been asserted that the paper-making industry was best represented at the late Paris International Exhibition of 1878, for the reason that the various national sections were more or less represented by some speciality pertaining to this industry. Among the more important exhibitors of wood pulp-making plant were Messrs. Theodor and Friedrich Bell, of Kriens, Switzerland, and it is their patented system which we now propose to illustrate and describe. Briefly stated, the process consists in allowing peeled timber cut to certain dimensions to press against a revolving grinding stone under constant water supply, whence a pulpy liquid is obtained. This liquid is next subjected to certain mechanical operations, whereby the woody fibre is sorted according to its fineness, and made finer when required; besides which it is rendered down to a more or less water-free pulp, and useful in making paper or cardboard, or other ornamental paper the same both for the vertical and horizontal machinery types but it appears that of the two the vertical arrangement proves itself best in practice, so that we shall confine our attention to this system of manufacture. In Figs. 1 and 2, page 88, we show in sectional elevation and in plan the plant of a wood-pulp factory of

200-horse power producing about $2 \frac{1}{2}$ tons of air dry aspen pulp
in twenty-four hours. The manufacturing process may be in twenty-four hours. The manufacturing process may be
described as follows :-The liquid pulp passes from the grinding
stones a on to a shaker b in which the coarse fibres are kept back and removed as occasion requires. The pulpy liquid runs fine fibres pass on to the water extractors, whilst the coarse fibrous pulp remaining outside the cylinder surface is forced out by jets into a bottom box e fitted up with stirrers to prevent any
settling of the liquid. This coarse pulp is next lifted by a pump f into a reservoir g, furnished with a small cylinder h, for the purpose of extracting some of the water from the pulp in order better and more expeditiously. The refined pulp is next passed the pulp into the stirrers R, whence the pulp is raised by small uckets on to a sieving machine and the pulp press l, wher about 50 per cent. of water is extracted from the pulpy mass.
When the pulp has to be stored for a considerable length of time, Then the pulp has to be stored for a considerable length of time,
or is sent on long voyages, it further requires to be dried, which done on drying machines by steam, or on endless blankets in $\frac{1}{1} \frac{0}{0}$ full size. ay now give a more detailed account of the machines we have just named. As we said before, the grinding machine receives the wood ircular saw, or by the wood chopper shown in Fig. 3. The working of this machine explains itself, but we may add drawn to one-twentieth full size-or as a single machine with one atchet; and accordingly it requires 3 or 2 -horse power to drive capacity of either 525 or 282 cubic feet of loosely-piled chopped

As the dimensions of the machine are given on our engraving, we pass on to the grinding machine, ilustrated as fitted with We have already enunciated the principle on which this machine works; but as two principles are here involved, namely, that of shows that a more uniform fineness of woody fibre is obtained y pressing the wood only slightly against the stone; that is to say, by producing for a certain stone surface a small quantity
of stuff, whereby simultaneously the driving power is considerably of stuff, whereby simultaneously the driving power is considerably
reduced. Hydraulic pressure appears to be preferable in this respect to that obtained by suspended weights, or by what we alluding to the power exerted on the wood to keep it up to the surface of the stone. This superiority is due, firstly, not remain mathematically circular, partly owing to the nonon certain points more than on others, and so producing an
untrue surface circle. This undue wear causes the weights to be ontinually rising and falling, as may be seen when the machin s working, as shown in Fig. 4. These vibrations carry with them an uneven pressure of the wood against the stone, for
naturally this pressure is smaller during the downward than uring the upward motion of the weight; in fact, we may say the weight having reached its highest point is on the point the weight having reached its highest point is on the point of xerting its force, the off the wood than at other times. These irregularities in the actual pressure of the wood against the stone are, however, he hydraulic pistons pressing the wood against the stone are connected with one accumulator, it stands to reason that the various inequalities of pressure resulting from the uneven wear of
the stone will balance each other; for instance, if one of the hydraulic pistons is being pressed back, the piston diametrically accumulator, if not entirely balanced, will still be very slight We thus obtain a more even pressure than weights would permit, besides the lifting of the weights by the attendant for machine e-filling purposes is entirely dispensed with, as the turning of will be presently shown. The grinding machine consists of evolution on a vertical shaft and revolving at 150 to 190 evolutions per minute ; its diameter is from 4 ft .9 in . to 5 ft .7 in .,
and its width is from 14 in . to 22 in . The wood is pressed under tone's periphery, and for this eight different places of the ooxes surround the stone, and these boxes are fitted with pistons either worked by weights or by hydraulic pressure. The cast on casing round the stone is supported on four cast iron pillars, intersecting point forming the bearing for the vertical shaft. The fibre or pulp. The mg underneath the stones receives the ground adopted for driving millstones. The manner in which the wood is pressed against the stone by suspended weights explains itself
in Fig. 4; we may add that one-half of the machine exhibited at Paris was fitted with these weights, whilst the othe half was arranged under hydraulic pressure, so as to exemplify
the two systems. The press cylinders are not unlike comnon steam engine cylinders, and are fitted with four-way cock ander manual control ; their diameter averages from 4 in . to 6 in ., amulor, keeping th is worked by belting, ind keeps up a regular water. supply. We feed-water merely fills the lower part of the cylindrical vessel A second cylinder cast in one piece with the cover dips with have the usual plunger weighted according to the pressure
equired. The upper part between the two concentric cylinders serves as an air vessel. The feed-water at first com presses the air contained in the upper part of the vessel, whilst Any water excess is made to flow out of a safety valve. Ga is evident that one uniform pressure corresponding to the and it sure exerted by the plunger is maintained. The hind portions of the press cylinders have a flow-off passage, so that after the or putting back, a simple quarter turn of a four-way cock places the front end of the cylinder in communication with the accumulator, whilst its back end is open to the exhaust. A second quarter-turn of the four-way cock reverses the direction of pressure on the cylinder pistons, and so on. The ordinary
working pressure on the last-named is about 0.1 atmosphere, that is to say, a mean pressure of 2.2 lb . per 1.5 square inch grinding is to say, a mean pressure of $2 \cdot 2 \mathrm{lb}$. per 1.5 square inch grinding
surface is obtained. The press cylinders for a 50 -horse powe
grinding mill are $14 \frac{5}{3}$ in. high by $6 \frac{7}{8}$ in. wide. The following

$\begin{aligned} & \text { Weit } \\ & \text { sto } \end{aligned}$

The wood, previously cleared of its knots, splinters, and bark, placed in the cylinder, in such a manner that its fibre is a nearly perpendicular to the running direction of the stone as possible. The nature of the water employed to grind down the
wood, the time of felling, and the manner in which the wood has een stored until ground down, all have an important influence o the keeping properties of the manufactured wood pulp, which, i days' keeping. If the waterisimpregnated with manyorganicimpur dies, nomatter how the wood pulpis treated it becomes matter utter impossibility to store it long in a damp states wood pulp of this kind must be used up quickly, or artificially dried by ho ir. On the other hand, if it is imperatively required that wood pulp should be stored for many months in a humid state without becoming damaged, then the wood must be felled in the winter or towards the end of the autumn, and dried in the open air out of the sun's rays. It must be piled up loosely with fre currents of air running through the whole pile, and must be so kept until it is ready for grinding down, during which operation these precautions are carried out, then the wood pulp will keep for many months in its damp state. The harder the wood pressed against the stone the coarser is the pulp obtained nd the greater is the driving power required ; the quantity
of pulp strained is also increased, though not in the same proportionate degree. Practice proves that the quantity of pulp obtained per horse power driving power is the greater the smalle the pressure of the wood is against the stone, though naturally certain limit must not be surpassed. This limit depends on the hall again refer The sharpness of the cut, to which process the smaller is the driving power for one and the sam production.
It consed
It consequently is of importance that the stones should be kep sharp whilstrunning, and for this purpose a self-acting stonegrinde two of thitted up to the stones whilst the latter are working. Betwee place of which the stone sharpener-shown in Figs. 7 and $8-$ may be inserted into the lugs $e e$. This apparatus consists of he latter h, which, by turning the scrarries a number of shar teel discs g, as represented in Fig. 8. By pulling over the leve end o these steel dises g are pressed firmly against the surface of the stone a, and are so caused to revolve with the latter, whilst of teethed edges make small indentations in the stone. One The pulped liquid obtaine a set of eighteen discs weighs 88 lb . he box a-Fig. 9-placed in front of the cylinder b shown in Fig. 10. This cylinder is covered with a coarse metallic cloth, t llow the ine pulp to pass into the interior of the cylinder, whenc sc., remain in front of the cylinder, to be thence removed for re-grinding purposes. In Figs. 11 and 12 we represent the eve-boll the ducted on to the "sorters." Figs, 9 and 10 are drawn to thirtieth, whilst Figs. 11 and 12 are drawn to one-twentiet full size.
These "pulp sorters" are shown in end and front elevation, erve to one-twentieth full size, in Figs. 13 and 14, and they in the liquid pulp after the preceding machine bas eliminate the splinters, \&c. It consists of four cylinders of 2 ft . $3 \frac{1}{2} \mathrm{in}$. diameter and 4 ft . $1 \frac{1}{2} \mathrm{in}$. long, which are merely covered with hollow, but rest with their cast iron ends on four rollers, which mpart to them a rotary motion. The pulpy liquid is allowed that on the top of these cylinders, when the fine pulp passe outside and falls into a receptacle placed underneath. In order o promote the falling off of the coarse pulp, powerful wate jets are applied inside these cylinders, and so force all hanging
ibres to clear off the metallic cloth. The fine liquid pulp inside the cylinder is either passed on to a water extractor or to th pulp board machines described hereafter. The sorting cylinder consist of two cast, end rings, connected together by twenty-four wrought iron rods equidistant in their circumferential distance in . apart, and over these the brass wire eloth is drawn. These nstructed in the various sizes mentioned in the following table :-

As stated in our preceding remarks, the coarse pulp, requiring on to the refining mill represented by our Fig. 17. This pump drawn to one-thirtieth full size, is worked at between 20 and our sizes, $4 \mathrm{in} ., 6 \mathrm{in} ., 85 \mathrm{in}$., and 10 in , diameter, with working capacities, of 9 to 66 g
being $\frac{1}{2}-H, P$, to $2-H, P$

As we stated previously, the pulp-found too coarse-is ground
down again in the refining mill, shown in Fig. 17, which in its down again in the refining mill, shown in Fig. 17, which in its It consists of two stones, 4 ft . 4 in . in diameter and 1 ft . 5 ? in wide, which are surrounded by a sheet iron casing. These stones are run at 135 revolutions per minute, and on thei setting towards each other the grinding of the pulp will naturally or two wood grinders each of 50 -horse just quoted will suflee is again brought back to the "sorters," till it is allowed by the -also drawn to one-thirtieth full size
The sorted liquid pulp passes first into the trough A, when the water extracting cylinder \mathbf{B} and thence into the trough C trough E ws off through the pipe D. The pulp next enters the trough E, where it is kept in a constant agitated state by the
agitator G . The liquid pulp is next lifted by the bucket wheel F into the pan H, whence it flows off through the pipe J on to the pulp press. The bucket wheel ensures a uniform feed, and jets. At first thought one might think that these water jet jets. At first thought one might think that these water jets
used for keeping the various cylinders clean would act detrimentally on the pulp production. The reverse, however, is the case; for the watering of the pulp is necessary and beneficial because large volumes of water, containing much fine pulp, flow through the cylinder sieves and pass off to be extracted in the water extractors, whereas the coarse stuff, comparatively poor in water, falls off the sorting cylinders and is hence ready to receive ates the passage of the cesrse woody fibres through theig. 19-pump, which might otherwise become choked. The perforated lengthways in two rows by 1 in. holes drilled 3 in apart The pulp press, on to which the liquid pulp is now passed, i andith plall size. It must, however, be observed that the liquid pulp is only conducted machine, when it is not wanted in thick boards, but is thi contrary required for distant destination in leaflet style The pulp, as our engravings clearly show, is here rolled o f water, in which state it is packed in sacks and sent to mall distances ; for greater distances the pulp is, however, dried by hot air, so reducing its water to about 20 per cent., when it i pressing, then it is very difficult to pressed too hard during the pressing, then it is very difficult to get it back into its pulpy vater contained should be pressed out between the calendering rollers. The more water the pulp is permitted to retain the thicker may the pulp liquor be allowed to run on the machine. For the reason already stated this press is often replaced by one of the machines shown in our Figs. 21 and 22. The pul arrives in a highly liquid state in the agitator box shown to the right of our engraving-Fig. 21 -where it is agitated. Hence, it
passes over into a second wooden box in which the water extracting cylinder is fitted. The latter is of similar constructio as the before-mentioned sorting cylinders; it is hollow an uns on friction rollers which cause it to revolve. At it ends the cylinder is boxed off by leather or caoutchouc, and it pulp linence is limed with brass wire cloth. The water of the is is either passed off direct-as in the machine represented by Fig, 21-or passed back into the first box-as in the arrange ment shown by Fig. 22. This water which finds its way into the interior of the cylinder is still more or less impregnated with woody fibre, and as the wood pulp used for feeding the used for this pu water, this cylinder water may be pres are thereby recovered whic ould nachines consists in the latter having a bucket wheel fo returning the extracted water, as well as in its having a placed between the two boxes for arresting any coarse fibres, caught off the extractor cylinder and passed on to the wood pulp is ollers. As the water passes through the cylindrical wire cloth the woody fibres stick to the cylinder surface. An endles elt-shown in dotted lines, and kept in constant contact with this cylinder surface by the small roller clearly representedtakes off the woody fibres from the cylinder surface, and passe along with these fibres between the cast iron calendering rollers. By strange property inherent to the wood pulp, the pressed fibres leave the felt to attach themselves to the surface of the top cast iron roller, when a scraper working against the latter detache
the pressed wood pulp and allows it to fall into a basket placed the pressed
It is this property of the pulp attaching itself to the cast iron hown which is also utiised in the pulp board making machinedetaching pupose were the to lap itself round and round the top roller as the latter revolved This is allowed to take place, when after lapping itself round wo or three times, the board is cut-whilst the machine is in motion-and the board is stripped off the roller, the cirpulp board. This top roller is fitted with an indicator, showing the number of revolutions made, answering to the thickness of the pulp board required. 100 great a rolling pressure must not e applied, otherwise the board is not properly formed into on mass. The diameter of the cylinders er minute. The bottom roller forms the main driving shaft nd revolves the 13 to 17 revolions per minute shat working capacity of these machines is given as follows:-

Naval Apporntments.-Frederick Skelton, chief engineer, to
the Northampton, additional, for service in the Griffin. Charl Allsop, engineer, to the Pembroke, additional, for service in the Assop, engimeer, to Adhe Pembroke, ad Shoolbred, engineer, to the Asia, additional, vice
Kik, Ailts; Charles E. Stewart, engineer, to the Warrior ; William H Moore, engineer, to the Pembroke, additional, for service in the
Tweed ; and W. Brown, assistant engineer, to the Griffin.

RAILWAY MATTERS.

STEAM has ben tried on the tram lines at Naples instead of
horses. The first trial was made last week from the Porta Capuana to Poggio Reale, and with great
another trial trip has been made to Afragola.
CoLoNEL Yolland, reporting on the recent accident near Leeds,
states that the alterations made by the Midland Company in 1872 states that the alterations made by the Midland Company in 1872^{2}
in the station-yard were not reported to the Board of Trade, and wempany has made itself liable to a daily penalty of $£ 20$, or
comporen upon $£ 60,000$. lose upon $£ 60,000$.
" Measurenenss for mile posts have been made recently on the
w York, Pennsylvania, and Ohio Railroad over its whole line in a somewhat novel way," says the Railrood Gazette. "A velocipede
hand car with a Aft., wheel was fitted with a revolution counter, and after determining carefully the number of revolutions per
mile, the distances were rolled off by running it over the track.
There was found to be There was found to be a slight irregularity in the eveasurement,
owing to the play and coning of the wheels, but the error was far
within the limits of within the limits of ordinary careful chaining."
The directors of the Great Western Railway, having decided to
considerably improve the communication between Uxbridge considerably improve the communication between Uxbridge and
Paddington, are laying additional rails from West Drayton to the
first-named town. The directors also contemplate making Ur-first-named town. The directors also contemplate making Ux
bridge the terminal station for their Victoria trains instead stope ing them at Southall Junction. The works for the new
station at Slough will be commenced this spring. The construction of the auxiliary line to Taplow, whence it will be beradually
extended to Reading, is in progress. These advantages are being extended to Reading, is is in progress. These advantages are being
tardily conferred on UUbridge, beause the Metropopitan District
Railway Company propose to extend a line to Urbridge. Railway Company propose to extend a line to Uxbridge.
IV accordance with the provisions of the Berlin Treaty, the
Railway Commission appointed to deal with the new lines of the Railway Commission appointed to deal with the new lines of the
south-east of Europe will assemble in Vienna for the despatch of
business in the second half of February. The Bosnia Valley Railbusiness in the sesond half of February. The Bosnia Valley Rail-
way Bill has passed the UVper Chamber, Austria. This measure is very important, as it will bring Austria into direct communication
with the port of Salonica. Herr von Schmerling remarked that he looked upon the Austrian occupation of Bosnia not as a temporary
but as a permanent thing. This railway, he thought, would help to attach the natives of the province to Austrian rule by identifying their interests with those of the empire.
Thaple indusutracture of of bicycles and velocipedes has become one of the staple industries of the Midlands, and lately the railway charges for
the carriage of these products have been considerably increased, in
some cases up to 100 per cent. The manufacturers some cases up to 100 per cent. The manuuacturers of Wolverhampton
and Coventry have consequently interviewed the managers of the Railways, seeking a return to the rates that prevailed before 1881. The result has been that with this month the recently advanced rates have been lowered 50 per cent. on bicycles, and something
like 75 per cent. on tricycles. The manufacturers in the Wolverhampton district have formed themselves into an association. AN electric head-light for locomotives will soon be tried on the
Cleveland and Pittsburg Railroad. The power will be furnished by a small engine placed behind the smoke-stack and durnished with
steam from the main boiler. It seems to us that electric head lights are always going to be tried. It is about time that American locomotive superintendents-we beg pardon, master mechanics-
began. The electric head-light is just the thing for unfenced railway. If properly managed, it would awaken sleeping cows; and if
applied to some of the fast-time trains, of which we have heard so much, electric head-lightst would trains, of whe streaks of light across wake up all creation.
DURING the early part of last year the total length of the
Prussian railway system was 6197 kilometres, including 798 which Prussian railway system was 6197 kilometres, including 998 which
had been added in the course of the year. By the end of the year
the length had been increased to 6299 kilometres. The cost of the whole system had been $1,493,305,418$ marks - $774,665,270$-or at
the rate of 244,312 mark per kilometre. The recieits for the year
were $163,877,969$ marks, as aiganst year. There was, however, a diminution of receipts per kelometetre
from 29,582 marks to 26,580 , or at the rate of 9 per cent.; though, 16,326 marks per the expenditure also decreased from 18,042 to 16,326 marks per kilometre, or 912 per cent. The general result
shows an excess of receipt over expenditure of $61,826,748$ marks,
s.and

THIS continent,"
"THIs continent,", says the American Manufacturer, "seems destined
the Atlantic and Pacifico oceans. The Thition and Central Pacific
is completed ; the Atchison, Topeka, and Santa Fe will in a few weoks connect with the Southern Pacific, of California ; the com-
wheterion of the North Pacific, the Texas Pe pletion of the North Pacific, the Texas Pacific, and the Mexian-
National roads is secured ; the Canada Pacific is pushed with
 a ship railroad are in such shape that the completion of two of the a ship railroad are in such shape that che completion of two of the
three may be counted among the great enginering works to be
completed in this generation." If a continent like America will get in the way what can it expect? People must cross it somehow,
especially English people, who, when they take a fancy to go anyespecially English people, who, when they
where, generally go in spite of obstacles.
ADVICes from Vienna state that the preparatory operations having been finished, the work of boring the great tunnel through
the Arlberg has now actually commenced. This tunnel will be
one of the longest in the world, though not so one of the longest in the world, though not so long as that of St.
Gothard.
So far the operations on the eastern side of the Arlberg have progressed very favourably. The rock there found is
micaceous slate, through which the contractors find it possible to advance at the, rate of from three to four mentres a day. possible to the
On thestern side, on the other hand, the advance of the tunnel is western side, on the other hand, the advance of the tunnel is
retarded, and the operations frequently disturbed by the repeated
inrush of large quantities of water. The contractors were warned before commencing the work that this was only to be expected
The geologists further advised that the tunnel should be carried through a lower stratum of rocks, which are of de
watertight, but their warnings were disregarded.
A serious accident occurred at an early hour on Sunday morn-
ng on the Solway Junction Railway to the iron viaduct across the ing on the Solway Junction Railway to the iron viaduct across the
Solway Firth, and the viaduct has been so much damaged by the
sea that traffic has been suspended. The structure, which has been available regularly for railway traffic for about twelve years, was
designed by Mr. Brunlees, C.E. It trrethenes across the Solway
Firth from Bowness irth from Bowness, and is more than a mile in length. It is con
tructed of iron girders, resting upon a series of piers of iron
columns, each bay consisting of five pillars 40 oft. high, and the columns, each bay consisting of five pillars 40 ft . hifh, and the
whole being braced together by iron lattice-work. For several days
since the thaw set in the Solway has been very full of ice. On since the thaw set in the Solway has been very full of ice. On
Sunday morning there was a hifh tide, and when it began to ebb
it travelled with such velocity that the blocks of ice were dashed against the bridge with great force. Four watchmee were on the
bridge or near it, and so loud were the crashes they heard in the drage or near it, and so oud were the crashes they heard in the
darkness that they felt sure that the bridge had been seriousl
injured day broke their fears were fully realised. It wa
then then discovered that five of the bays or piers had been entirely swept away, twenty-five iron pillars having thus been destroyed
and that a few other pillars in other bays had been damaged
Fortunately the bays that Fortunately the bays that were washed down altogether were at
considerable distances from each other, though towards the middle of the bridge, and the iron girders were bolted so strongly together
that they maintained their position, and so left the permanent way of the railway unbroken. their position, and so left the epermanent way ice, and the bridge is now impassable even on f
further particulars in a succeeding impression,

NOTES AND MEMORANDA.

SouTHERNERS have discovered, it is said, that smooth, strong,
and pliable parchment can be manufactured from the palmetto of Florida and other Southern states. The parchment can be washed,
rubbed and handled just like cloth, and the writing will not be rubbed and handled just like cloth, and the writing will not be
effaced. It can be cheaply manufactured, and is likely to come effaced. It can be cheaply manufactured, and is likely to come
into general use for conveyances, land oftice receipts, \&c. As
much as 60 per cent. of the weight of the palmetto can be utilised in paper making.
WatERProof paper is made by a new German method as
follows: To a weak solution of ordinary ylue add a little acetic acid; then make another solution by dissolving a small quantity
of bicromate of potash in of bicromate of potash in distilled water. These two liquids should
be well mixed together, and the sheets of paper which have be well mixed together, and the sheets of paper which have to be
made waterproof drawn through the mixture, and suspended from suitable lines to dry. The proportions are not given, but 5 per
cent. of acetic acid and 7 per cent. of a saturated solution of cent. of acetic acid and 7 per
bicromate of potash will answer.
A smeriter's ton of copper ore is 21 cwt., and weighs 2352 lb ,
the manufactured copper being sold at 2240 lb . to the ton. Coke for a run-out frie is bought 2000 olb. to the ton. A ton of pig iro for a forge is 2228 ll .; blooms being sold at at 2464 lb . to the ton, and
2700 lb. constituting a ton of refined metal. Coall in America are
bought an bought at 2240 lb , to the ton, and retailed at 2001 b . to the
Here they are now always bought and sold at 2240 lb . except
Newcastle, where they are shipped by the chaldron of 30 cwt. Newcastle, where they are shipped by the chaldron of 30 cwt..
3380 obr., and Neweastle coals are to-day so bought and sold in
Quebec, Canada. Quebec, Canada.
Some one who has taken the trouble to count the United States
patents issued to women finds that the number for patents issued to women finds that the number for the year ending
July, 1880 , was seventy, or ten more than the average. Most of the nventions of women have to do with household appliance. Among protector, two dust pans, a washing machine, a fluting iron, a dress chart, a fish boner, a sleeve adjuster, a lap table, a sewing machine treade, a wash basin, an iron heater, sad irons, a garment stiffener, invalid's bed, a strainer, a milk cooler, a sofa bed, a dipper, a pape A good many a device.
with the enormous crops of whens have been made in connection farm in Dakota. This farm has fields of fabulous size. Last yea Inter--cean has been indulging in some new calculations relative t the last harvest. From the speed of the harvester and the length
of the cutting-bar he calculated that there would be 900 sheaves to the acre, or seventy-five shooks of twelve bundles each. As there were 18,000 areres in the field the shooks numbered $1,350,000$,
and the sheaves $16,200,000$. Allowing 30 in, of wire to the sheaf, over 7670 miles of wire were needed for binding the crop-almos
The 4 rican Mo the
The A merican Manufacturer and Builder gives the following
rule for fixing the size of governor pulleys. "To find the diameter
of the governor shaft pulley, multiply the "the "To find the diameter of revolutions
of the engine by the diameter of the engine shaft pulley, and divide the product by the number of revolutions of the governor. To find the diameter of the engine shaft pulley,
multiply the number of revolutions of the governor by the diameter of the governor shaft pulley, and divide the product by the
number of revolutions of the engine." There is nothing recondit or abstruse in this; we have reason to believe, however, that every one does not know how to calculate the size of such pulleys pro
perly, perhaps because the calculation is so simple. Therefore w perly, perhaps because the cal
quote from our contemporary
AT the last meeting of the Asiatic Society of Bengal an interest
ing paper was read by Mr. Valentine Ball, of the Geological Surves of India, in which he discussed the identity of the diamond
mines visited by M. Tave rnier in mines visited by M. Tavernier in the 17th century. These mines
have long been lost to memory. Mr. Ball now identifies Raolconda with Randukonda, on the Tungabudra river ; Ganicolour, where
the Kon-i-noor was found, with Kallur, on the Kisana, and Soumelpour, with Simah, in Chota Nagpore, and not with Sam-
balpur, as hitherto supposed. Burageesh, which is mentioned in the Ain-i-Akbari, is identified with Wairagurh, in the Centra with diamond mining as formerly practised in India, and throw
much light on this attractive, but now almost extinct industry,
WE learn from Geneva that the celebrated Brunswick monument is showing ominous signs of giving way. It is built on land which
not many years ago was reclaimed from the lake. Such land is notoriously treacherous, for orten beneath it and only superficially
covered, there are enormous holes hollowed out by the ice action when the Rhone glacier swept over the present site of Geneva. A night and left not a trace behind. In the case of the Brunswicl monument every precaution was taken to assure its integrity by
placing it on an exceedingly thick and seemingly solid foundation of concrete, but it appears only too probable from present indica-
tions that the ground underneath is subsiding and that the structure is threatened with serious danger, if not with complete destruction.
Thk American Manufacturer states that three or four years ago overhauling an engine, and they found a peculiar irregular rut
worn, or rather eaten,
tin. deep, several inches long, and from tin. worn, or rather eaten, gin. deep, several inches long, and from sin
to lin. in width, into the steel of a steam chest. It was evidently the result of the action of some rapid and powerful corrosive, but
its source was a mystery. For the oiling or lubricating of steam chests or cylinders a preparation of tallow is used. The company's rapid decomposition, and after considerable experimenting he dis-
overed it. He found that where animal fat covered it. He found that where animal fat is allowed to lie a
long whilie before rendering, the decomposition sets free in large
quantities stearic, palmatic and olecic acids, and that the stenrie acid, heated to the temperature of steam, acted very rapidy in decomposing iron. This at once yielded a. elue to the corrosion
found in the old steam chest, and now every barrel of tallow used by the company is subjected to analysis to determine whether it is made
of new fresh fat, or whether it is charged with the various ncid of new fresh fat, or
due to decomposition.
IN a note to the Vienna Academy-Anz. December 16th-Prof tion in development of an electric current and the extrial the telephone by currents from a rotating, coil. The coil used was
56 mm. in external diameter, and 11 mm . in width. The earth's influence is best shown by so connecting. in the apparatus with a galvanometer that the circuit is closed during one half of the coil's
rotation, and broken during the other half; if the completion of the circuit correspond to the positive maximum of the electromotive force of the earth's magnetisis, and the interruption to the
negative the galvanometer is positively deflected. The deflection displacement and the number of rotations the potential may be inferred in absolute measure. Next the telephone was so con-
nected with the coil that the full alternately opposite currents went uninterruptedly through the circuit. This gave a simple tone.
With 100 rotations per second the horizontal component of the earth's magnetism did not suffice to excite an ordinary telephone, but it excited one having a horse-shoe magnet. When the intensity
of the field was doubled the ordinary telephone was also excited The tone corresponds to the number of rotations. When the coil was rotated 220 times in a second the ordinary telephone sounded.
The telephone was shown to be less sensitive to currents whose The telephone was shown to be less sensitive to currents whose
intensity periodically changes than to interrupted currents-an circuit was closed only during a shortt time of each rotation.

MISCELLANEA

MIFSSRS. RICHARD GARRETT AND SoNs, Leiston Works, Suffolk, THE Hotchkiss cannon bas been officially adopted in the German
Navy. The ships, according to their classification, shall in general
be armed with this weapon in such manner that every point surbe anding the vessel in question may be kept under the pire of at
round
least two AT a meeting of the Sanitary Institute of Great Britain, held January 27th, B. W. Richardson, M.D., F.R.S.S., in the chair, the
secretary read a list of books presented to the library sinee last institution apparently does not rapiilly increase in numbers.
haps the conditions of fitness for election are very stringent
The shipbuilding yards on the banks of the Mersey are well
supplied with work, and the activity in this branch of trade has enabled the ironworkers in the different departments to obtain an
advance of wages, the employers within the last few days havin advane of wages, the employers within the last few days having
consented to restore wages to the point at which they stood at
the close of 1878 , which represents an advance of about 2 . per theek.
In the year 1870, the Pratt and Witney Company, of Hartford Connecticut, built for the Tilton and McFarland Safe Company, of
New York, a milling machine for shaping safe doors. Thi machine weighed 17 tons, would mill work up to 3 in. wide and
9ft. long, and was capable of making a cut 6 in, wide, 1ft. deep, on a combination of iron and steel. This machine is now in use by
the Continental Ironworks, of Grenpoint, LI. No machine anything like these dimensions has been built in this country
Can any of our readers say who invented the milling machine?
The miners in the Manchester district who have been working for about a fortnight are again becoming unsettled upon the wages
question, and a demand has been made for a further advance of question, and a demand has been made for a further advance of ing upon the employers with reference to this demand, but so fa ent masters have declined to concede any further advance at pre and on the in other districts with which they have to compete no
and thance at all has yet been made. What action the men will take
a advance at all has
A NEW hopper dredger, named "Ely," built and engined by from their works at Renfrew. It is the property of the Taff Vale Railway Company, and has been built under the direction of Mr Riches, its engineer. This vessel is to dredge to 30ft. depth, an oads side barges and tows them when required. This is the nint hopper dredger this firm have constructed, and they have anothe
in progress to carry 1400 tons of its own spoil; ; it is to stem nealand, and will be the largest dredger in the world.
The Phosphor-Bronze Company held its seventh annual genera per cent. per annum, less the interim dividend $-2 \frac{1}{2}$ per cent.-
irready paid. The directors have devoted they say, considerabl attention several novel applications of phosphor-bronze-among thers, to its adaptability in the form of sheet, angle bars, an
ivets, to the construction of steam launches and torpedo boats; and aving thought it desirable to make a practical trial in this dire f phosph have ordered a small steam launch to be built entirely resistance to the oxidising effect of sea water. Should the ventur prove a success, there is every likelihood of a considerable busines
THE American Ma Manuacturer is lost in admiration of a casting
shown at the Brussels. National Exhibition by the Seraing works. shown at the Brussels National Exhibition by the Seraing works
It consists of what is practically the whole cast ironwork of marine engine, with a pair of cylinders about 20in. diameter by
20in. stroke, cast in one piece-bed-plate, condenser, air, and feed, 20in. stroke, cast in one piece-bed-plate, condenser, air, and feed,
and bilge pumps, standards, cylinders and exhaust pipe. Ou contemporary forgets that Messrs. Winans many years since ar
eeported to have done much more. They took contracts from the Russian Government for locomotives. These engines were paid fo by the pound, and, weight being no objection, are said to have been cast whole, and to have been such triumphs of the founder's
art, that when lifted out of the mould, fettled up a bit, and lubricated, steam could be got up in them and the engines put to work
at once. The United States need fear no rivalry while her sons an accomplish such feats as that
coumns by the late Mr. W. B. Adams was once described in ou
cock deck, and another flat board set on edge for a hull," is still in existence, but she is undergoing such radical changes in construc-
tion, that she will be the America no more. She is nearly thirty years old, was designed by George Sellers, was built in the States,
and crossed the Atlantic to beat English yachts, which she did for
the tione the time being with a vengeance. She got the reputation of bein able to sail straight in the wind's eye, which nautical exaggeration ever built. After going through many vicissitudes she is now being ebuilt; she was a most uncoomfortable boat, anything rather than capacity than her model afforded, and the lack of height in the major portion of her cabin was always her bane. With a view t increase her head-room her forward deck has been raised flush with
her quarter-deck. Her stern, too, has been lengthened above water-for what reason, will be a pertinent query sometime in the ature. She has been fitted with a new stem, apron, and knightplankshered flush with the deck over a new set of locust in, making her 10 gift . long over all. Her new stern finishes out
fairly with her fairly with her old lines, terminating in a very small V. If report
be true, her mainmast is shorter than the old-time stick, being only 78 fft . long. The main boom will be 70 ft . It is intended, it is
said, to race her during then
A Correspondent of the Hartford Times describes as follows
he factory of the Georgia Ice Company at Atlanta :the factory of the Georgia Iee Company at Atlanta: -On the
ground floorisa boiler 50ft. . Iong and $4 \frac{12}{2} \mathrm{ft}$.indiametercontaining 150ft. of 312n. pipe. The boiler is kept filled with aqua ammonia, which
is separated by the steam heat into ammonia gas and water. The
The aas, leaving the water in the boiler, forces its way through a 6 in .
pipe outside the building to the roof, three stories up, where passes into $15,000 \mathrm{ft}$. of coiled pipes, in which it is converted into passes into 15,000ft. of 3in. pipe, arranged in vertical sections 30 ft .
high and 3 ft . apart, and its sudden liberation into these pipes turns the liquid pure ammonia in on apor, and the sudden expanof vertical pipes are innumerable little fountain jets throwing spray all over the pipes, the spray freezing gradually, forming an immense
icicle of pure ice around each pipe. The gas next goes into 15,000 ft. of absorbing pipe, and, being cooled by water running on the pipes,
it is met by water forced into the pipes, and thus converted back into aqua ammonia, which goos into the big boiler, and is used
over again. There is no waste, the same ammonia her reabsorbed any number of times. The water used for the spray is of ice-which are loosened from the premises, and the large block
by a little hot steamcome out pure and clear, and entirely free from any odour or
objectionable taste. After the pipes have been stripped, about five weeks are required for a new lot of the requisite thickness to time, the ice towers being in all stages of formation. The factory
has a capacity of 35 tons per day, but 20 tons keep pace with the has a capacety of of stong per day, but 22 tonnat keep pace wath the
demand, and it is not stored, but cut every day as it is delivered, demand, and it is not stored, but cut every day
and it sells at from 10 dols. to 12 dols. per ton.

WOOD P ULP M AK I NG M A C H I N ER Y. mM. theodor and friedrich bell, kriens, switzerland, engineers

Fig. 8.

?

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS

* In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the voriter to himmelf. and bearing a $2 . d$ poptage stamp, in order that
answers received by us may be forvarded to their destination. No anster siecieve aky us may ue forvadr ode wo their destination. No
notice will be taken of communications which do not comply with these instructions.
* We cannot undertake to return drawings or manuscripts; we must therefore request correspondents to keep copies.
All eetters intended for insertion in THE ENGINERR, or
containing questions, must be accompanied by the name and containing questions, must be accompanied by the name and
address of the writer, not necessariily for publication, , hut as a
proof of good faith. No notice whatever will be taken of anonymous communications.
.W. D. There avill be an exxibition of electrical apparatus held in Paris R. this year.
B. (Tancashire)
What do you
.

SUBSCRIPTIONS

 Cloth Cases for binding The Enainerr Volume, Price 2s. $6 d$.
Many Volumes of The Evainer can be had price 1ss, each.

*The charge for Advertisements of four lines and under is three stillings

 Advertisements cannot be Inserted unless Delivered before Six
0^{\prime} clock on Thursday Evening in each Week.

THE ENGINEER

FEBRUARY 4, 1881.

The Act "to extend and regulate the liability of employers to make compensation for personal injuries
force about four weeks. We have not yet heard of a single case where action at law has been taken under its
provisions, and we are satisfied that no legal decision has provisions, and we are satisised that no logal decision ha to wait patiently for results before saying or doing anything further. While as yet before Parliament the measur was amply discussed. Now it has been passed, and has
become the law of the land, surely peace might be allowed become the law of the land, surely peace might be allowed
to reign until experience affords fresh data. Those, howto reign until experience affords fresh data. Those, how
ever, who are most immediately affected, viz, employer and workmen, do not seem content to do this. Even before the law came into operation employers in some
districts took fright, and apparently came to the conclusion districts took fright, and apparently came to the conclusion
that the Act must not be allowed to take effect. There arenot many cases, in modern times, where enent. position in thi law-abiding land have combined for the purpose of trying
to render any law inoperative. Nevertheless, it has been to render any law inoperative. Nevertheless, it has been
sought to do so in this instance, notably in Lancashire though from want of success the attempt appears now to
have been abandoned. We do not contend that in so doing employers have acted illegally; on the contrary they were strictly within their legal rights. They said in effect to their workpeople, "We have had a new liability cast upon us as regards yourselves. This liability may be man per an pecuniary terms. A certain sum per workemployment, would maintain a fund sufficient to meet al claims under the Act. We are willing to contribute
one-half if you will give the other half of such neces-one-half if you will give the other half of such neces-
sary contributions, and provided you will undertake never to put the Act in force against us." This is what the employers who sought to contract themselves out of the Act are understood to have offered to their workmen.
With very few exceptions such offers have been declined generally and strenuously used in the same direction. S far, dissatisfaction with the untried Act would appear to be confined to employers. But that is hardly so, for
recognised labour representatives in the House of Commons have been inquiring whether the Government intend bringing in a new Bill to amend the Act, so as to preven employers from contracting themselves out of it. Having received a negative reply, Mr. Macdonald has actually
introduced a Bill himself to amend it. The present posi fion seems therefore to be one of apprehensiveness instead of satisfaction ; eagerness for fresh legislation rather than contentment with what has been done; and this is the case with both parties, though with different aims and objects. In short, the contest which should have been concluded in Parliament is now being continued outside. In our view both parties have been acting unwisely. The employers unwisely-though by no means unfairly-in seeking to
neutralise the Act before it has been fairly tested; and the workmen unwisely in seeking to amend it-in the direction of greater stringency-before it has become cleaa how it is likely, as it stands, to affect their interests. It a quest of the readjustment of an old one. The effect ought to be, firstly, to diminish the number and severity of accidents carefulness; and, secondly, to shift the pressure occasioned by them from weak or innocent to strong or culpable shoulders. Accidental calamities to producers, if liable to recur may be regarded as impediments to production, and concost to the ultimate consumer, that is to the general public The general public will get the benefit of the diminution of accidents resulting from increased carefulness. The em ployers and workmen, whose voices are heard most loudly a the present moment, are both mistaken if they suppose that which have to bear. Let us suppose a case of accident involving personal injury, and liability for compensation under the
old system. A subscription would probably have been got up for the sufferers, and the sum needed, or part of it parochial, infirmary or other charitable diliect. If not, been forthcoming up to a certain value to keep alive those
left dependent until they should become self-supportin All these contributions come from the general public, and largely from the employer class. But that is not all Workmen, in competing for employment, have alway taken into account the riskiness of the occupation, avoiding, except at a higher rate of payment, those which are
attended with extra risk, and competing for those without such disadvantage till the wages were lowered propor tionately
Any one who compares the average rate of wages earned pared with compared with ironstone miners ; both as comgoing engineers, and stokers, as compared with the class from which they are drawn on shore, will at once notice that an extra price is and has always been paid as an equivalent for the extra risk run. Therefore employers have all along been paying workmen for their risk of personal injury, either by increased wages, or by subscriptions to benevolent institutions, or through the poor rate ; or where the general public--the universal ultimate customer -has contributed direct, the employer has refunded by selling his products so much cheaper, in reliance upon such help whenever needed. Looking at the question from any possible point of view, it becomes clear "the "have the tendency would borted by diminution of the workin population, which would bring higher wages, and so even tually extract the same payment in another form. If, then the employing class have hitherto been actually paying, in some form or other, compensation to workmen for pers, it finally reached the ultimate consumer, how will it be now Will they have to bear it themselves, or bear it twice over? It is argued that this cannot be, and for the following reasons:-W orkmen will now begin to take into accoun that they need not consider this item of risk at all. In
comparing different occupations in respect of personal
danger, they will see that all occupations are now on an equality, in so far as the pecuniary compensation recover-
able can make up for loss of life or limb. The able can make up for loss of life or limb. The
thrifty man who was accustomed to insure agains accidents will now no longer need to do so, and will be able to take so much lower wages. Of course, he will, as heretofore, get as much as he can for his labour but in times of scarcity of work he will inevitably be The thow to a proportionate extent on this accoun The thriftless man who relied on the public through
charitable institutions and through the rates before, will rely on the public through the employers now. The em ployers will have to establish insurance companies at once These will, for an annual charge per workman, undertak the risk, or the major part of it. The premium payable
to the insurance office will be a charge on production. It to the insurance office will be a charge on production. will not be an extra charge, but will merely take the place
of other charges, which have hitherto been paid with of other charges, which have hitherto
the same ultimate destination and effect. These olde contributions will be withdrawn or decreased. Poor rate ought to diminish. Benefit societies, accidental insurance soeieties, and the like, may lose the reason of their exist
ence. Subscriptions, levies, and so forth, for injured and for the relatives of accidentally killed workmen, whethe promoted by employers, fellow workmen, or the public will go out of fashion. Where hospitals or infirmarie are made use of, it will now be only fair that patient entitled to compensation shall be asked to pay for the benefit they take; and many similar alterations will ensue, the net result being that the old burden will still be borne by the ultimate consumer as heretofore, but wil reach him through somewhat new channels. All these ar arguments, but they should not be pushed too far, for must be borne in mind that only one element of danger in employment has been removed, namely, the resut o employers negligence. In the case of every accident no
referable to such cause, the men's insurance, benefit, and other societies will continue to have an ample field, and we doubt whether rates will be materially or at al reduced. Returning to our starting point, we think the pith of the discussion is that the new measure should not be resisted or amended as yet, but simply acquiesced
in and provided for. We therefore would make two suggestions-one to the workmen, that they should be patient, leaving it alone, that is unamended, for the present, and that in putting it into operation
they should evince a conciliatory and compromising spirit, and discourage all attempts which some o last number may be disposed to make, to get the The other suggestion is that insurance societies which employers may be driven to join may possibly adopt some plan by which no insured shall be fully insured, the reason supposed that the insured will be more careful.

doctor J. h. Maclean's " peace makers.

Under this title the Army and Navy Journal of anuary 8th gives a long illustrated description of a nev McLean, of St. Louis, and in course of experimental manufacture at New Haven, United States. The invento appears to be prompted by a kind of patriotic philanthropy devote himself to the construction of ingenious machine or the destruction of life, convinced that itish readers will, therefore, understand that abolish waf. Ou of destructive power argues a corresponding intensity in desire on the part of the doctor to save life. From a pecuniary point of view we are shown little beyond the fact that a gentleman of very large wealth is the responsible principle by which ente. Perhaps on the same homæopatur facturers of war material are to be deprived of their profit by the vastly greater gains of the benevolent doctor However, our business is with the actual designs, and thes are so numerous and original that we cannot hope to do them justice; for it appears that the doctor's activ has evolved new conceptions, until floating impregnable fortresses, ships shot and torpedoproof, torpedoes and projectiles of various sizes is the object of its contemplation."
The starting point appea
have been a new breech parts to take to pieces when of large guns being made in ncreased powder charges, to consume the powder perectly, to render fuses unnesess, and prevent ell poctly, to combine rapidity and simplicity, and lastly, to take the recoil of the gun. Our readers will perceive what blow even this elementary design deals to inventorsperhaps Armstrong, Krupp, Noble, Boxer, Moncrieff, and Morgan, more especially. We are unable to gather the exact means by which success is achievel egrets that "thus far no cuts have been made, so that so little that we do not give them. Our contemporary then conducts us through illustrated descriptions of very varied designs. The "General Sherman" and "General Grant" appear to be light magazine field guns on siege carriages mounted on rather sporting-looking platform wons. The latter fires forty-eight shots in a minute. The "Annihilaguns : Besom," and the "Lady McLean are machine 152 cartridges It would be obviously futile, containing 152 cartibgs. t would be obviously
 matter is the pattern of in shield proposed under the ame of lam the the ham, but brought into a more complete shape. The plates continuous iron breastwork; or they may be formed into ontinuous iron breastwork; or they may be formed into boxes, and flled with earth, and so built up into regular battery parapets. There is something to be said for this device in siege operations, but the weight would probably templated. Dr. McLean quietly settles this question by
assuming that 10,000 men supplied with shields are equal to 20,000 without-an assumption that at once sugg-
gests similar reasoning in other matters. The fact gests similiar reasoning in other matters. all is not
is, that the advantage of such shield at at all
extraordinary, though we should be inclined to think them extraordinary, though we should be inclined to think them good under certain conditions. If freely used as depicted,
however, they must frequently fall into the hands of the enemy, a consideration which disposes of the idea that they
would enable a campaign to be conducted with half the would enable a campaign to be conducted with half the
troops otherwise required. It is to be observed also that they admit of being turned by an enemy much more
readily than an ordinary field trench when it is captured. readily than an ordinary field trench when it is captured.
For permanent iron defences against heavy artillery Dr. McLean proposes to use plates placed like books in a shelf and bolted together, the edges of the plates being presented
to the fire of the enemy. This is an ingenious substitute to the fire of the enemy. This is an ingenious substitute
for thickly rolled iron, but we do not believe it would answer. A shot, we should expect, would drive plates out
of the row, breaking the bolts and quickly destroying the of the row, breaking the bolts and quickly destroying the
whole structure. How bolts could be expected to stand transverse shearing under such circumstances we cannot explain, except by the fact that such designs have not been
proved. The double turret of horizontal plates is one of the weakest designs we have ever seen. It consists of a
double dome built up of horizontal plates apparently. double dome built up of horizontal plates apparently.
We should expect the first powerful shot to shear the bolts and drive in some plates, and then one or two well-directed
shells ought, we think, to blow the whole structure to pieces; unless, indeed, the quantity of iron used was totally out of proportion to that generally employed, which it is
in the figure given, where we should suppose at least 70 in. of iron was contemplated for the outside walls alone, judging from the size of the men shown.
Another figure depicts a cross section of a floating iron fortress, in which apparently two guns revolve on one
table fixed breech to breech-a feature that in itself speaks volumes. Let the reader try and work it out. Is it supis it probable that an enemy will appear in two directions so exactly opposite to one another that the guns can
fire at both? Or is one gun to fire and then the other to be rum round to fire in its turn? If so, is it to be loaded while it is being run round ? and even if so, why not have
both guns abreast, which necessitates much less room and much less labour and waste of time. In fact, the man who, having seen two guns abreast of one another in a
turret, designs such a thing as this, shows a marvellous preference for what is utterly bad. Here is a turret of uncouthly large size, yet without room for the recoil of the guns, and arranged so as practically to render only one
of the two guns available, for clearly it would be better only to work one than to waste time and labour be bring eaders will hardly care to hear of the "Octopus torpedo" which travels three miles an hour, and which, "if dispatched in any considerable number," "will be certain to reach a 100-ton gum which takes into small pieces, so as to enable the "monster to travel piecemeal."
mament atl Journal is indulging in a joke? At all events it is a fact that eight full pages of the journal are devoted to the
subject. We, therefore, commend it to such of our readers as ace. curious on the subject of an enterprise stated to be in actual operation on a large scale.

gas production in cleveland

The Middlesbrough Corporation, which owns the gasworks supplying the borough, publishes from time to time valuable and production of gas in that borough. Of the first of the facts which appears in the most recent of these is one proving that
indirectly as well as directly the revival in the iron trade i greatly benefitting Cleveland and Durham. In Middlesbrough there are now sold about $2,000,000$ cubic feet more gas than there
were a year ago, and there is ground for the belief that the neighbouring towns are receiving a similar benefit. Confining our
remarks for the present to Middlesbrough, it may be said that in the month of November last-that being the latest period to which the figures are yet obtainable-- there was made at the gas
works of the borough the quantity of $18,630,000$ cubic feet o tively young borough, and one subject to periods of a fuctuation ively young borough, and one subject to periods of fluctuation
it trade. It is not so satisfactory to find that more than oneeighth part of the whole was disposed of as "leakage," In pro-
ducing the gas slightly over $1799 \frac{1}{3}$ tons of coals were used, so that the production of gas was at the fair average of 10,350
cubic feet of gas for every ton of coals used. The cost of pro duction of the gas may be thus stated :- Wages, 6.93 d . pro
thousand cubic feet of gas sold, the quantity sold being that made less the leakage ; coals, $10 \cdot 28 \mathrm{~d}$. per thousand feet; lime
$0 \cdot 11 \mathrm{~d}$ per thousand feet; tallow, oil, and stores, 0.06 d . pe
thousand feet ; salaries, 1.09 l . thousand feet ; salaries, $1 \cdot 09$ d. per thousand feet; and general
charges, such as gas for works, rates, bad debts, \&c., $4 \cdot 64 \mathrm{dd}$ per thousand feet sold. The residual products yield : Tar, $2 \cdot 03 \mathrm{~d}$ per thousand feet ; ammoniacal liquor, 3.03 d ; coke, $5.30 \mathrm{~d} . ;$ and
other items give a total of 1133 d . per thousand feet. The ne cost of the gas, then, appears to have been 1178 d . per thousan
feet of gas sold. The net price received for gas sold is, it may be said, a fraction less than 3 s . per thousand feet, and the
balance towards interest, redemption, and profit is considerable £1581 in the month named-which, though one of the winter
months, is not the largest in production or yield. It may be months, is not the largest in production or yield. It may be
added that the cost is slightly more than it was a year ago, and the sums received for residual products slightly less, so that th the production of gas has varied in reeent years from 140,000,000 cubic feet to $167,800,000$ cubic feet yearly ; that the illuminating may be taken as from 8 s , to 9 s , per ton at the works, the figures for orming an opinion as to the economical working are at hand. I may be said that the purchase of the gasworks has been one of
the most fortunate of the ventures of this corporation, for it has madea large profityearlyafter paying interest and redemption, and
there are all the indications that the profit will be considerably increased for some time to come. It it evident that there remains,
and will remain, a large field for the use of gas for illuminating purposes, and it is possible, and even certain, that its use for pur
poses of power-production and for heating will grow, so that in the graducers will aim at improving the product and lowering the price.
the manchester, sheffield, and lincoln rallway.
From the official reports and statements of accounts of the Manchester, sheinida, and Lincolnshire Railway Company, it on capital account $£ 237,108$. Of this $£ 107,391$ was expended on
lines open for traffic, chiefly lines open for traffic, chiefly in the construction of way and stations,
nd their extensions, and including over $£ 12000$ seat block system. On the lines in course of construction $£ 12,51$ only was spent; on the working stock $£ 34,392$. This latter
item includes the purchase of four tank engines and two item includes the purchase of four tank engines and two
contractors engines, 311 goods wagons, and $£ 2376$ spent brakes, On the dock works at Grimsby $£ 15,10$ has been spent; and the balance of the total expenditure
on the capital account has been spent in the subscriptions on the capital account has been spent in the subscriptions intended to be spent in the half-year that is now entered upon, nd contrat of the probable efistrict that is served by the Man chester, Sheffield, and Lincolnshire Railway. It is proposed in the current half-year to expend on lines open for traftic
$£ 116,730$-rather more than was expended in the past half-yearnd the bulk of this is to be expended at Gorton, Sheffield Staleybridge, and Grimsby. On rolling stock the estimated expenditure is $£ 35,000$; on lines in course of construction-the Barnsley coal line and others- $£ 34,000$; and in subscriptions to there is not a materialdifference between the amountactually spent in the past half-year and in that estimated as needed to be spent in the one now entered on, and looking to the fact that in the future the sums proposed to be expended on the lines open, and those helieved that the capital expenditure on this line is likely to be speedily reduced. There has been in the past half-year a satisfactory growth in the revenue, and with the continuance of this that may be expected from the revival of trade now known, a
better return may be hoped in the early future on the capital better return may be hoped in the early future on the capital
that has been invested in this line. It serves a rich district, and that has been invested in this line. It serves a rich district, and
thas recently spent very large sums on the port of Grimsby which it has been fostering, so that the looked-for return should not be small. The parent system in the past half-year has done wel $£ 11,284$; but in the fact that the joint lines have given only a net increase of $£ 13,422$, and that the increase in the work-
ing expenses has been to the amount of $£ 15,232$, there is the explanation of the reason why the deferred stock in the Manchester and Sheffield has received no dividend for the past year. If the joint lines were made feeders of the net revenue instead of suckers, the prospects of the Manchester, Sheffield, a
shire Company would be brighter even than they are.

LITERATURE.

The Principles of Graphic Statics. By Geo. Sydenham Clarkf, Lieut., R.E. E. F. and N. Spon. 1880
The author of this work complains in his preface that the study of Graphic Statics, as a subject sui generis, has the great engineering schools of the Continent it is thought worthy of a professional chair, in England it is left to be gleaned almost haphazard." We are by no means sure however, that the English practice in this respect is really generis, and taught by a separate professor, ought either to e, like statics and dynamics, the complete discussion of some the brachch of science, or else, like tche differential carcu-
lus, the description of a method of calculation so important and so universally applied that its principles deserve a separate study. Now graphic statics does not fall under either of hese classes. It is the description of a particular method -the graphic-as applied to parts only of a particular science-statics. We say to parts only, because it soon
becomes evident that there are many portions of statics to which it cannot be applied with nearly the same facility as methods of computation, and other parts to which it cannot be applied at all. But a special professor of graphic tatics will inevitably ignore this fact as much as possible in order to make the most of his subject: he will insis on applying the graphic method to all problems where it
can be applied at all, at whatever expense of time and trouble, and the parts where it cannot be applied he will be tempted to slur over or disregard. We are not, therefore, disposed to regret the fact that we have no such professors in England.
or further, that as such it should never be employed except by those who have already obtained a good grasp of the subject by other means. This last conclusion is to some extent a necessary one, as is sufficiently shown by the
book before us. Let no draughtsman imagine that by taking his drawing-board and instruments and setting this book before him he can master the science of statics without reading any other basis than a little arithmetic
and Euclid. At the very outset he will find that the Parallelogram of Forces is simply stated and not proved; and "momen" "ur be expected to know what is memint by a of readily couputh study the book with no other foundation of knowledge, a ew pages will suffice to land him in hopeless confusion There is no short cut to the exact sciences; and no approach progress through algebra, trigonometry, and analytical geometry. When, by their aid, the student has mastered the main principles and chief problems of statics, it will be
time to take up graphic methods, and see how far he can clear his conceptions and lighten his practical work by clear his concept
their employment
The point for which we wish to contend is, that graphi and computative methods should not be taught separately, but conjointly, and that each should be employed in turn
whenever it is shorter and simpler for the particular whenever it is shorter and simpler for the particular
problem in hand, The same, we are inclined to think
might be done in other subjects; e.g., the student of Euclid, Book II., might be saved the labour of wading through cong propositions, to prove what algebra would give in a
couple of lines. But confining ourselves to statics, our first aim should be to determine what parts of the subject are best treated by graphic and what by computative methods. We could wish that Mr. Clarke, who has
studied the subject so thoroughly, had given us his view studied the subject so thoroughly, had given us his views
upon this point. All that can be gathered from him on apon thas point. All that can be gathered from him on and which he has omitted; and as to these we are unable at all times to approve his selection. Graphic methods, it
hould be observed, though tempting in many cases, and should be observed, though tempting in many cases, and which practically limit their use. For example, every engineer who has been through the shops will probably remember one workman at least who was profoundly versed in the mysteries of the slide-rule, and was always anxious to demonstrate to his mates the marvellous calcu-
lations which he could effect by its aid. Now the slide-rule is lations which he could effect by its aid. Now the slide-rule is simply an instrument for performing mathematical calcula tions by graphic methods; but it is scarcely ever used by cacat congineers, who find that they can perform thei anculations quite as rapidly and safely by ordinary comhat method is pretty sure to be the most generally used which rup is pretly sure to be most generally combined most readily with other work. An arithmetical calculator needs nothing beyond a pencil and a bit of paper, or the margin of the book he is reading; while the graphic calculator is helpless when away from his T-square and compasses, as the mechanic is when his slide-rule is out of his pocket. Again, an arithmetical calcula tion, once made, can be checked over again at any inent without any apparatus whatever, simply by runion, the eye over the figures. To check a gap hrough again, exactly as they were at frst, This difficulty is sure in practice to prevent many calculations from being checked at all, and thus to lead to frequent errors Thirdly, every one who has conducted long series of rithmetical calculations, knows that there are gene rally circumstances which enable him greatly to simplify and shorten the process ; for instance, in calculating the strains on girders, the points of application oad at ans ans anstance of this sort is obtained in nearly conshods. Lastly, the result of a graphic method must always be an approximation, given by the reading of a scale; and therefore an approximation, mining. In most practical cases this is of no great import ance, but it still leaves a somewhat unsatisfactory impression.
Hence, if the actual time of reaching the same result by arithmetical and graphic methods be compared, we is supposed, on the side of the former ; except in case where the number of operations to be performed considerable, and their nature such as lends itself pecially to linear transformation. On this ground we present volume might have bo the propositions in the he work opens with a chapter on sraphic arithmetic howing how we may multiply, divide, obtain powers oots, \&c., by means of lines or diagrams. We doubt if there is one of these problems which would not take onger time if worked out in this form than by simple be distan, and are sure there is none that Mo. Clarke bly ing men, but surely it would be no les ens to teach such re the men the nderstand of pithent any allusion to trigonometry nce to shics, wroing any ics we th ose that nowled of trigong is asumed to bere cquired The parallelogram of forces being assumed, the acquired. The parallelogram of forces being assumed, the rainary modes of fixing the conditions of equilibrium of a body under any forces in one plane, by means of the
funicular polygon, is worked out at length. As the funicular polygon is the foundation of the graphic method, this is desirable ; but there is some confusion in the subsidiary propositions, e.g., in page 16 we have the proposition to propositions, e.g., in page 16 we have the proposition eal
"resolve a force in three directions," whereas the real enunciation is "to find the forces acting along three given ines, of which a given force is the to case of the prinwhich might well have been dwelt upon at greater length, as it is one which is peculiarly susceptible to graphic reatment. The next application is to determine the think the arithmetical will generally beat the graphic method, unless where the directions of the forces are much varied, and their values very irregular
We are now introduced, after a brief general dissertation on reciprocal figures, to what is really the main work of the book, namely, the application of graphic methods Here we are on safe ground, where the advantages of the graphic method are incontestable ; and, so far as we are able to judge, this ground is ably covered, and with due attention to practical requirements. The general method is first described Then seve common forms of roof-truss are taken, both for swall and This is a common problem, and one where the method shows perhaps to more advantage than anywhere else, owing the number and variety of the strains, and the accuraey with whieh they can be fixed. The question of wind it has been variously taken at 40 lb . and 50 lb . per square foot. Recent events have shown that the limits taken till varied much more widely, and that the matter is articles on the Warren and Bollman girders, which seem a little out of place,

Chapter V. deals with the action of stationary loads, with various distribution, on beams, As to many persons that word still suggests nothing but a rectangular section,
like that of a beam of timber, it might have been stated like that of a beam of timber, it might have been stated
that the whole investigation applies equally well to any that the whole investigation applies equally well to any
structure, cantilever, or girder which is exposed to a crossstructure, cantilever, or girder which is exposed to a cross-
breaking strain. All that it proposes to calculate is the breaking strain. All that it proposes to calculate is the
nature and amount of the stresses upon any section of given depth; the form of the section, and therefore its resistances to the strain, are left for the present out of
account. The next chapter deals with travelling loads, account. The next chapter deals with travelling loads,
and very properly gives chief attention to the case and very properly gives chief attention to the case
of railway bridges. We come then to braced and lattice girders, of which three forms only are considered-the
Warren, the bowstring suspension, and the ordinary bowWarren, the bowstring suspension, and the ordinary bow-
string. It seems a pity that some of the American forms string. It seems a pity that some of the American forms
of truss should not have found a place here. From this we return, somewhat unexpectedly, to consider the centre of
parallel forces and the centre of gravity. Graphic methods parallel forces and the centre of gravity. Graphic methods
are given for determining the latter, in the ease of polygons, circular segments, and other figures. It is needless to say that these are very much longer than the simple and weliknown plan of cutting the section out in cardboard or
zinc, and suspending it from two points in succession; whilst zinc, and suspending it from two points in succession; whilst method has been long in successful use by Mr. B. Baker,
as we learn from his paper on the "Practical Strength of as we learn from his paper on the "Practical Strength of
Beams," lately read before the Institution of Civil Engineers; and as it is really a mere extension of graphic
methods, we think Mr. Clarke would have done well to methods, we think Mr. Clarke would have done well to
mention it. In Ch. IX. we pass on to moments of inertia, and the modes of determining these by means of the
central ellipse ; and in Ch. X., these principles are applied central ellipse ; and in Ch. X., these principles are applied
to their usual object-the determining the moment of resistance of a given beam. Mr. Clarke has here introduced from Germany a new term, "kern," to express the
locus of the stress centre of a section, when the axis, about locus of the stress centre of a section, when the axis, about
which the moment of inertia is taken, is made to move so as always to pass through one point, and one only, of the out-
line of the section; and he gives the form of this kern for line of the section; and he gives the form of this kern for
various simple figures, including I sections, L sections, $\&$. In this chapter a useful table of the moments of inertia for various common sections is also given; but, on the whole,
this, the last chapter of the book, has a decidedly fragthis, the last chapter of the book, has a decidedly frag-
mentary character; and a student coming to this part of the subject for the first time would be considerably puzzled as to its drift and purpose. This is, in fact, a final instance
of the essential difficulty attaching to any book which deals only with graphic methods.
We have not hesitated to speak frankly as to the defects in this work, partly because we think them inherent in
this method of treating the subject, and partly because the this method of treating the subject, and partly because the
book is really so good that we wish to see it improved to book is really so good that we wish to see it improved to
the utmost. We will not dwell on minor points, except to
express our regret that a large number of the figures have express our regret that a large number of the figures have
been relegated to a set of lithographed plates at the end. been relegated to a set of lithographed plates at the end.
The tiresome process of glancing perpetually from the text to the figures and back again, which is inseparable from the reading of a work on graphic methods, becomes
almost insufferable when the two are on widely separated pages. Woodcuts carefully inserted at the right spot are
the only satisfactory method. Even so the difficulty of comparing text and figures has apparently produced some errors, e.g., two misprints-
bottom of the very first page.
It will be seen that we are inclined to wish that Mr Clarke had written either a shorter book or a longer one.
If he had strictly confined himself to those problems in statics which are treated with decidedly greater convenience by the graphic method than by any other, then much which is here included might have been omitted, and this would have the arch. But what we would far rather see would be a work on statics for practical purposes, starting from frist principles, and proceeding on the old lines, but differing
from 'such works as Rankine's "Applied Mechanics" by being far shorter and simpler, and from ordinary theoretical works by confining itself to those branches which have a practical interest, and by using graphic or algebraic
methods in turn, as each was most suitable to the matter in hand. The college at Cooper's Hill possesses in Prof. Calcott Reilly, Prof. Unwin, and Mr. Clarke himself, three gentlemen admirably qualified to produce such a work, and we cannot conclude better than by commending it to their joint attention.

SELECTED AMERICAN PATENTS.

Iv round numbers, 260 patents are issued every week in
Ihe United States. The number is sometimes greaterthe United States. The number is sometimes greater-
seldom less. These patents ostensibly represent a great seldom less. These patents ostensibly represent a great
deal of inventive work; but hitherto next to nothing of the character of this work, or of the nature of the inventions the character of this work, or of the nature of the inventions
patented, has been known in this country. We believe that patented, has been known in this country. We of our readers would like to learn something concerning the inventions patented in the United States,
and we therefore commence this week the publication of and we therefore commence this week the publication of
selections from the Official Gazette of the United States selections fro
Patent-office.
It will easily be understood that we cannot possibly find space for more than a few American patents each week; but
at the end of the year our readers will find that they have had the opportunity of learning something concerning some hundreds of those inventions which possess most
interest for English readers. In other words, we shall use the utmost care only to publish those drawings and specifications which represent the very best work of its kind that
the American inventor can do. It must not be supposed that our readers will lose a great deal by not having the whole American weekly list before them. As a matter of
fact, American patented inventions are peculiar in their character, and the greater part of them possess only a very circumscribed value and a purely local interest; many,
indeed, being for the merest trifles. Collar and sleeve indeed, being for the merest trifles. Collar and sleeve
buttons, hand stamps, egg whisks, potato and apple parers, buttons, hand stamps, egg whisks, potato and apple parers,
packing boxes, curtain tixtures, carpet stretchers, sewing
machine attachments, tea and coffee-pots, and such like,
appear in the Official Gazette by the dozen. There also are to be found a very large number of patents which only
interest Americans - as, for example, patents for car interest Americans - as, for example, patents for car
couplers, spark arresters, ore separators, ©c. In agricultural machinery, strange as the statement may appear to many persons, very few of the inventions are useful, we will not say out of America, but out of the district in
which the inventor lives. Thus we have devices for which the inventor lives. Thus we have devices for
scraping mould-boards of ploughs, which only apply to one special form of plough, as indigenous to a district as the turnwrest is to Kent ; and fittings for reaping machines, which would be quite useless in a crop much more than 2 ft . high ; or a seed-depositing machine, which can only
serve to plant Indian corn ; or a hoe for rice crops. Such serve to plant Indian corn ; or a hoe for rice crops. Such
things it would be useless to illustrate in our paces. We things it would be useless to illustrate in our pages. We
shall take care, however, that every American device likely to prove useful to the English agriculturist as it is, o capable of being improved upon here, shall be adequately set forth in our columns.
It will be seen that the descriptive particulars are given in language very different from that of our own abstracts of specifications. We describe the American inventions
in the words found in the Official Gazette. It is claimed that in the United States in the Official Gazette. It is claimed that the patenting of old devices. Our readers will soon be able to judge for themselves how far this claim is justified by the facts. Furthermore, should they be disposed at any time to regard the patents we illustrate as uninteresting or
trivial, we beg that they will bear in mind that they are the best and most likely to be generally week by week in the United States. Finally, we would point out that a comparison of the character of the inventions
patented in England with those patented in the United States appears to us to bese patele very much in favour of the English inventor. There can be no doubt that much more that is insignificant is patented in the
United States than in this country. First, because patent are cheaper at the other side of the Atlantic than they are here, and, secondly, because the facilities for making money out of patents are greatly enlarged by the circumstance that in a young and pushing country men are continually investing in new plant, while the American inventor is as a rule would hundred dollars by an American if he clears a couple English inventor would expect at least $£ 200$ for the same thing. For important inventions, involving new principles, we may search almost in vain in the United States
Patent-office. There are, of course, a very few exceptions to this rule; but inventions concerning little every-day matters, which after all concern social life very nearly, are importor ; and to thousands of men it is really far mor a pair of sleeve links, than it is that steel should be freed from phosphorus, or that engines should burn but $1 \frac{1}{2} \mathrm{lb}$. of coal per horse per hour; and the inventor of the convenient
sleeve link will probably make fifty dollars out of hi patent, and go on his way rejoicing, while the man who sets about improving steel will lose-if he has it-a large their and his peace of mind. Americans are wise patents, with small profits and quick returns ; and so it happens that the cream of American invention - the - can be set forth in a comparatively small space.

Kenyon's Indicator.-We are requested to state that Messrs
Wilden King and Co., 41 and 42 , Parliament-street, West . Winser, are King and Co., 41 and 42 , Parliaments for Kenyon's Patent Indicators, illustrated
mint in our last impression.
LAUNCH ON THE Ty
urthen wh burthen was launched by Messrs. Wigham Richardson, and Co.
from their Neptune Shipyard for Messrs. Stumore, Weston, and Co, of London and Liverpool. She is intended for the American
Crade, is snecially fitted up for cattle, and has engines by the trade, is specially fitted up for cattle, and has engines by the same
builders of 1300 effective horse-power; the boilers, three in number, comprising the very latest improvements for economy of
fuel, and for burning any kind of coal. She was christened by Miss Mary Down, from Edgebaston, the "Barden Tower," the name of hia lovely seat of the Duke of Devonshire on the Whalder' 100 -ton shear-legs to be masted and to have the machinery put on board.
The building has been superintended by Messrs. Ashlin and Asbridge, naval architects and consulting engineers, of Liverpool.
This is the third steamer built by Messrs. Richardson for Messrs. Stumore, Weston, and Co., who have also lately added the Cunard liner, the Algeria, to their fleet.
THE Institution or Civin
announce that meetings of the students of this Institution will be held at 7 o'clock on the undermentioned Friday evenings, for read,
ing and discussing the following papers : February, 4th, "Boilers,
 preside, February 11th, " TThe Internal Corrosion of Cast Iron
Pipes," by Mathew, Buchan Jamieson-Mr. Rawlinson, C.B.,
nember of Council, will preside ; February 18th, " The Road to member of Council, will preside ; February 18th, "The Road to
Northampton Railway," by John Edward Waller-Mr. Bruce, member of Council, will preside ; February 25th, "Stewer Work,
by Robert Henry Thorpe-Sir Joseph Bazalgette, C.B., vice president, will preside. It has been intimated that the Council are
prepared to award, for a paper of adequate importance, a Miller scholarship of £40 per annum tenable for three years, as well as
Mill Minler prizes for other a approved commuxications; and it is stated sufficient number of suitable papers are received. ing of this Society, held on Friday, January 28th, an interesting
discussion took place on the merits of "Stone v. Iron for Rridge discussion took place on the merits of "stone v. Iron for Bridge
Construction." The debate was opened by the president, Mr. H.
 Where practicable, claiming for it superiority over iron in dura-
bility, strength, stability, and architectural beauty. Mr. P. Ellis,
on the other hand regards primary cost, but also in consideration of its lightness, facility and rapidity of construction, and the greater spans that
were obtainable. Mr. Harry J. Thompson, in viewing the subject
from both sientifc from both scientific and practical points, considered that the pre-
sent methods of testing iron structures were ineffective, and predicted that the iron bridges of the present age would give much
trouble to the engineers of the future. A spirited discussion was continued by Messrs. F. Thomas, S. Hanner, A. Sharpe, Douglas and other members, and after a few closing remarks from the
president the meeting adjounned. At the meetings to be held
duringthemonther president the meeting adjourned. At the meetings to be held
duringthe month of Febraary the following paper areannounced for
reading and discussion. "February 4 4h, "Sea Walls," Mr. E. reading and discussion, "February 4th, "Sea, Walls," Mr. E.
Thrupp; February 1th, "Oran Construction," Mr. F. Nunn;
February 18th, "Style in Architecture," Mr. C. Bradley, A.H.C.; February 18th, "Style in Architecture," Mr. C. Bradley,
February 25th, "Sugar Manufacture," Mr. S. Brunton,

LETTERS TO THE EDITOR.

We do not hold ourselves responsible for the opinions of our

fire engines at melbourne exhibition.

SIR,--In the Argus account of thesteam fire engine trial appearing in your last issue, it was omitted to be stated that the "Merry-
weather" steamer was a single cylinder engine, whereas the
"SSol "Shand and Mason" steamer was a treble cylinder engine of much greater weight, which explains the difference in the working results.
Greenwich-road, London.
MERRYWEATHER AND SoNs.

February 2nd.

jones's vertical boiler.

SIR, - Referring to your notice of one of our specialities -"Jones's
patent vertical boiler "-in last week's ENGINFER, we have only just completed arrangements with the patentee for "sole manuWe have a large number of these boilers now at work, and are daily receiving the most satisfactory reports of their excellent results as regards superior economy and freedom from priming or
scaling. With the special modern plant just laid down by us, we shall in future be able to supply our numerous customers without any delay.
41 and 42 , Parliament-street, London, S.W., February 1st.
kitchen boller explosions.
SIR, -I was much interested in reading your article in this
week's ENGINEER on kitchen boiler explosions; and I have the pleasure to enclose a sketch showing the system adopted by me in
several houses in this town, and which has hitherto worked severally. I shall be extremely obliged by your opinion of same, and any suggestion or improvements you may make shall have my and any suggestion or improvements you may make shain ave my
very careful attention. If you can find spee for this and the
sketch in your valuable paper, I shall be pleased, and the sketch may be s.aful to those who are fitting up hot-water apparatus
in their houses. in their houses.

The cold-water service from main rises direct through the pipe A to the cold-water cistern B, which is placed under the roof.
The cold water descends and enters the bottom of the copper cylinder \mathbf{C}, thence to the bottom of boiler and return to the same level as the water in the cold cistern \mathbf{B}, the pipe E
proiecting and being turned over the cistern B as shown. The end projecting and being turned over the cistern B as shown. The end
of this pipe E is always open, so that any sudden accumulation of steam would merely blow off into the cold cistern B, and do no harn. I may say that the pipes from kitchen boiler all are made of
wrought iron till they project through the brick wall or jamb of fireplace, and then they are connected by lead piping to the cylinder C. I think by this arrangement there can be very little
danger of an explosion. I shall feel obliged by any improvements you or any of your readers may suggest.
31 , Westbourne-street, Stockton-on-Tees,

January 24th.

Sir,-The usual list of killed and wounded from this cause has cumbrous and costly mode of heating baths is persisted in is difficult to tell, but it it probable that until the plumber is made liable to be brought up for manslaughter there will be no change. The average Briton is far too conservative to give up an old system for
a better. There is not the slightest reason why a kitchen or bath
biler boiler should ever explode if properly fixed by a plumber who has
the smallest amount of common sense. There are two simple ways by which an explosion can be totally prevented-one by fixing a dead weight safety valve which should be for convenience fixed
when the apparatus is put up first. The other is to cut when the apparatus is put up first. The other is to cut a hole in hole being from $\frac{1}{2}$ in. to tin. in diameter, and to solder over this a piece of sheet lead about ${ }_{3}{ }^{1}$ in. thick, just sufficient to stand safely
the general the general water pressure, making, in fact a weak place in the
system of pipes which will be the first to give way. This hole must system of pipes which will be the first to give way. This hole must
be cut in such a position that the ppipe is certain to be warmed from
the fire the fire, and as near as possible to the boiler. It must also be
where, in case of the sheet lead being blown out, the water will not be thrown into the room, but into the fire so as to extinguish it. Any plumber should do this for a shilling or two, and atthough it in liable to make a mess it only does this when an explosion would
occur in its absence. It is also easy to put an escape pipe through
which the water coild he led a which the water could be led away to the outside of the building to fix in a brass socket and be ensily raplaced if an accident did so as The whole system of circulating boilers as at present fixed is radically wrong, as, with few exceptions, the hot water is rarely to be
got when wanted in any quantity and the cost in got when wanted in any quantity, and the cost in fuel expended is
utterly out of proportion to the useful result obtained. There are utterly out of proportion to the useful result obtained. There are
many simpler, cheaper, and more satisfactory arrangements
which can be fixed many simpler, cheaper, and more satisfactory arrangements
which con be fixed at less than one-tenth the cost, and of all these the best is a galvanised iron or copper cylinder of about eight
gallons capacity, with a tap, and a good gas heating burner undergallons capacity, with a tap, and a good gas heating burner under-
neath it the chinder having a loose lid and a water supply tap over it for filling as required. After some months' daily experience
with this there is no doubt that it is far cheaper to use than the with this there is no doubt that it is far cheaper to use than the
circulating boiler system, and far more useful for general work. It circuatiang boiler system, and fart mare of abolute safety under any possible con-
dition. In case of a stoppage preventing the use of the kitchen
 more than probable that a good gas cooking apparatus, even if got
as a makescift, will quickly find its spoper place, and permanently
and supersede the fire for all work. It is generally considered that
circulating boiers with a reserve cylinder are safe from explosion.
This is This is a mistake, as a case where the cylinder burst and flooded the house has come under my notice within the last few days, and
this is by no means the first accident of the kind which I have this is by no means the first accident of the kind which I have
known. Ishall be glad to give any further information on this
matter to those interested, but must desire that any letters shall be as concise as possible.
4, Museum-street, Warrington,

THE INSTITUTION OF CIVIL ENGINEERS,
At the Meeting on Tuesday, the 18th of January, Mr. James Abernethy, F.R.S.E., President, in the chair, the paper read was
on "Deep Winning of Coal in South Wales," by Messrs. Thomas Forster Brown and George Frederick Adams, MM. Inst. C.E. The authors, who were professionally associated with Harris's Naviga -
tion Pits, the deepest winning in tho tion Pits, the e eepest winning in the district, described the opera-
tions as a fair example of the details connected with winning deep tions as a fair example of the details connected with winning deep
coals in South Wales. The depth of the lowest seam at present
sunk to was 760 yards; the pits were each 17 ft . in diameter inside sunk to was. 760 yards; the pits were each 17 ft. in diameter inside
the walling. In addition to the depth, a special feature was the
thickness of hard and heavily-watered rock penetrated thickness of hard and heovily-watered rock penetrated. Guide
ropes, upon the Galloway principle, were used in sinking, and the ropes, upon the Galloway principle, were used in sinking, and the
value of this system was shown in the saving of over two minutes in steadying the bowk at the bottom of the pit at depths of 475 and
530 yards, the total time occupied in clearance at the latter depth being thrree minutes twenty-six seconds. Thane at the latter depth
bith the various feeders of water during sinking was described: one of the pits was drained by a hole coried by the diamond machinine,
which was put down, at depth of 175 yards from the surface, cut up by faults which intersected sll thata were conformable, and cut up by faults which intersected all the measures, considerable
oojection existed to metal tubbing, even for comparatively shallow
depths; for the water could rarely be prevented from forcing its way through fissures into the underlying, strata. Moreover, pro-
vision had to be made for the probable working of the Brithdir seam, vision had to be made for the probable working of the Brithdir seam,
a very watery measure, lying at a depth of 250 yards. On account vide for the permanent pumping of all the feeders, and a powerful
ver vide for the permanent pumping of all the feeders, and a powerful
looin. Cornish pumping engine was erected. The paralle motion
for the main pump rods was obtained by a gudgeon, attached to the top of rods carrying two slide blocks, which worked in cast iron guides 13ft. Iong and 27in. wide. This gudgeon was attached to
the beam by two hammered iron radius-rods 43ft. long, 10in. wide,
and tapering from 3in. thick at the top and bottom to 1 and tapering from 3in. thick at the top and bottom to $1 \frac{1}{2}$ in. at the
middle. The space between the rods was filled with pitch pine 12in. thick at at the topen and botom wand 18iled. with pide in the
middle. Five lifts, three of which were 26 in. in diameter, and the
midhe middle. Five lifts, three of which were 26 in. in diameter, and th
others 22 in. and 21 inin., were worked by the Cornish engine. Th
total feeders amounted to 440 gallons, of which 298 were pumpe from a depth of 467 yards. The rons, were double, of pitch pine,
16 in. square. To economise space in the pit, the lifts were fixe 10in. square. To eonomise space in the pit, the lifts were fixed in
one perpendicular line; to effect this the rods directly above the plunger and the rods below were connected by side-rods and distance
pieces; the horizontal connecting pipe of the H-pieee being cast semi-circular to allow the rods to pass down in a straight line.
The total weight of rods, \&c., amounted to $181 \frac{1}{2}$ tons, that of the water being 133 tons; 35 tons of the difference were counter-
balanced by a balance beam in the pit, leaving $13 \frac{3}{2}$ tons to over
come friction.
A large diamond boring machine was used for a portion of the
sinking. The apparatus weighed 10 tons, and consisted of four placed the drills-ten in number-which, on the transoms were part of, or inclined to any any angle - whirallel with, the face of the the
transoms, and each drill could be started or sto making the first trials, thirity to forty short holes, at varying angles, and from 3ft.to to 5tt. in depth, were bored, the operation requiring
twelve to fourteen hours. Nearl occupied in jacking the machine for the various positions required co bore the sumping holes, bench holes to sump, and finally the
cropping holes. Long holes from 15tt. to 3oft. in depth were
subsequently tried, and blasted in sections; but having to be wored vertically, so as not to pass out of the line of the shaft, they had not always the most effectual lifting power. Better progress was
made with single drills, but the cost of diamonds became too great completed their contract by means, of a percoussive drinll, designed these had a diameter of 3tin., and a stroke of 4tinin, and gave
excellent results; the only difficulty experienced being in the wear and tear of the tappets, which, when they broke, generally cause
lamage in the cylinder. In hard the cylinder:
In hard and wet rock dynamite was found to be a much more
effective explosive than gunpowder, requiring about half the number of holes, and saving tamping. In shaile, without water, powder
was more effective, dynamite being more rapid in its action. In sinking through three yards of dry Pernant ro
owder and dynamite were, respectively, \&1
¢10 1s. 8d.
Under the circumstances which attended this sinking in hard
and wet rooks,, y yards were considered good progress by hand,
and 4 yarcks and 41 yards by machine per week; but the authors were of opinion
that this rate ought to be improved upon with further experience ;
they had also arrived at the conclnsion the the machine was less than by hand labour. The average sinking by ing, including walling, but exclusive of stoppages, was 3.77 yards per week, there being nearly an equal per ecntages of hard rock and
shale: the actual sinking occupied about one-half the total time, and walling 12 per cent. The south pit, which was the deeper of Februar, was commenced in February, 18e average cost per yard of sinking in shale by
hand and without pumps, near the bottom of the shaft whe

 yard. These averages yard; withed pumps, to lat labour, stores, 7 s . 5 d . perl, per cubic
items of which were given in a tabulated torm The authors alluded to a furnace as being probably the most
effective means of ventilation at such a depth; but leaving this question for future consideration, they had meantime erected a Schiele fan 14 ft .3 in. in diameter, and capable of producing a
current of about 250,000 cubic feet per minute this has been done
after a series of experiments in after a series of experiments in various districts. The authors
stated their objections to the positive type ventilatow
then that in the event of obstructions occurring in the aenir-ways, undue besides whicht they caused a vibratory motion, were costly to erect and the working parts, in some cases, were liable to get out of
repair. Of the closed fans, which, it was stated, gave slightly
better results than open fans, the Guibal and Schiele were the best. The winding engine was designed to raise 2000 tons of coal in tel
hours of constant drawing the weight, exclusive of the rope
being 10 tons, tond the velocity of whe ascending cage 40ft. to 45ft.
per second. The seroll
 with 7 ft strokes ; the rope. The cylinders were 54 in . in diameter ports, the drum being fixed below on masonry pillars, The valve
were double beat, and for the steam valves Barclay's simple tri expansion gear was used. The rope was a parallel flat rope of the
best selected steel, and consisted of 114 No. 1 g guge wires. The
calculated breaking strain was 104 tons, and the factor of cas
was
Th
cages, prams, and guides in thas entirely of prought iron, sheare fully described salsos, a
scheme for loading and unloading a single-decked cage by gravita tion of tubs ; the empty trams were hoisted abed cage by grtavita- and made
to run down an inclined way to the cage, being stopped and ret by astem of catches. The coage was so sarranged that on rlanding
by the
on the steps the bottom was inclined. The shaft pillar was 400 yards square, and the laying out. of roads and pillar was
working trams about the pit bottom were fully explained.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
OTHER DISTRICTS.

(From our ove Correspondent.)

Coas has risen 1s. per ton. The condition of the iron trade
during February will determine if the advance is to be only very temporary or of prolonged duration.
There were consumers of pigs for which 42s. 6d. are of the rise. had bought at 37s. 6d. supplies that are now running out, and who they were unsucesssful. Makers required similar terms; and consume
had to give way. At the same time finished ir had to give way. At the same time finished iron makers
who were not in urgent need held off, hoping to satisfy
their requirements on quite as good terms later on. Parttheir requirements on quite as good terms later on. Part-
mine iron changed hands at £2 10. per ton, and all-mine
pigs were procurable at 2s. 6 d . under makers pigs were procurable at 2 s . 6 d . under makers' quotations of $£ 35 \mathrm{~s}$,
With delivery into next month makers' No. 3 could not be bought at under 40s. 6 d . at the furnaces, and No. 3 warrants were held for
41s. 9 d . per ton. Northampton pigs were quoted $£ 2$ 10s., and so too were Derbyshire, but the consumers of the former expressed
confidence in their ability to buy at 47 s . 6 d . No transactions calling for recordin either brand were announced. Hematites a
75 s . were unsaleable, but best cold-blast pigs suitable for chilled roli casting and other high-class work were in revived demand.
Most works are resuming with more orders in hand than whe the frost stopped them.
Plates and angles and T's are again sought after for consumptio in the local yards, and tank and similar qualities of plates were
here and there called for, both in Birmingham and in Wolverhe ton. As a rule consumers were able to place their orders for thesp inferior qualities at a trifle less money than would have becn taken on quarter-day. Sheets are quoted at $£ 710 \mathrm{~s}$. The difference of
$£ 1$ between singles and doubles, and of $£ 1110$ s. between doubles and latens, was maintained in the majority of instances. As to upheld. Hoops were mostly dearer upon the week by 5 s. per ton
Yesterday and to-day a fair quotation for Staffordshire brand hoops was $£ 6$ 15s. at works.
Galvanised sheets were
firms, as much as $£ 15$ per ton being sought for 24 w .g. delivered at the ports, and $£ 17$ for $26 \mathrm{w} . \mathrm{g}$.; yet there were other makers who
would have booked at \&13
Whas. and $£ 15$ 10. per ton respectively The orders on hand are the the current quarter demand is steadily improving, and shipments are going forward to Italy, Sweden, Denmark, and South America.
Tin-plates were to-day mostly quoted at 18 s. for coke qualities
per box, and from 21 s . to 22 s . for charcoals. per box, and from 21 s . to 222 . for charcoals; yet one firm cited
special sales a day or two ago at 28 s . for coke and 23 s . for char-
coals. The business has lately been very irregular. Yesterday and
to-day the demand was only languid.
Coal is now quoted at 10s. for furnace, and 8 s .6 d . for forge sorts, and 5 s is the price asked for engine slack.
Local enginerering
Local engineering concerns are doing more in their foundry than in their purely engineering departments. The chilled roll makers
are busier than for a long time recently. Work of this sort are busier than for along time recently. Work of this sort is in
hand for France, Belgium, and Germany, together with Russi and Australia. Constructive work is resumed in the yards The condition of the cut nail trade is deppersed. The mail
delivered this week from the West Indies was quite up to the recent The dispute
The dispute amongst the Lancashire boilermakers is interfering ironmasters, whose merchant iron mills are also beginning to need The pig iron trade is but quiet. Mischief is threatened to both ironmasters and also colliery owners in North Staffordshire
by the action of the colliers, who, at a meeting which was addressed by Lancashire colliers on strike, resolved to give notice for a rise prices, and doing a better business in supplying consumers in the Lancashire district.
The rise of coal in South Staffordshire carries a rise also in
colliers' wages to the extent of 3 d . per day in the thick coal seans, and $1 \frac{1}{2 d}$ d in the the thin.
The South Staftorn
meeting yesterday afternes Drainage Commissioners, at thei of the money which they had expected to taise by their new loan
had been secured.

NOTES FROM LANCASHIRE.
Manchester.-Lancashire makers of pig iron report only a very orders. There is still no disposition to sell for a longer period than three months, but, if anything, rather more anxiety to secure orders is being displayed. The quoted prices for delivery equal to
Manchester remain at 46s. 6d. for No. 4 forge, and 47 s . 6d. for Monchester remain at 46s. 6 d . for No. 4 forge, and 47 s . 6 dd . for
No. 3 foundry. For outside brands of pig iron coming into this district quotations are nominally without material alteration from last week, but the transactions reported in this market are very it is in favour of the buyer. Although the finished iron trade all through is still only dul, there is generally a healthy feeling. Con-
siderable orders for finished iron of various descriptions have latel been put into the market by the railway companies, some fai various branches of industripment to America are reported, and in classes of manufactured iron, which are indications of an increasin volume of consumption. Finished iron makers consequently,
although but moderately employed just at present, are only prepared with concessions to secure prompt specifications, and for
forward Ielivered into the Manchester district averaging about $£ 6$ per ton In the engineering and machine making branches of trade the ments are moderately employed, but there is very little worl ahead, and theree is not yet any substantial improvement in th machinery being given out at present in this district. For the
work which is offered the competition is son down to the lowest possible figure.
throughout the West Lancashire districts, and consumers to a large exte breare still dependent upon outside districts for supplies. Since regularly, but the railway companies do not yet appear to be in a position to deal promptly with the large quantity of coal which are still generally complained of, and the inconvenience suffered by onsumers arises almost solely from this cause, the quantity of coal
offering from outside districts being more than sufficient to meet all requirements. Consumers who deare directly sufficient to meet
chester firms who the Manprices fixed by the advance made in January, but numbers buyers are compelled to obtain their supplies from outside district
or through dealers, and in these cases extra rates have to be paid although pricess have been tending downwards during the week Common round coal for steam and forge purposes delivered int
the Manchester district are fetching about 10s. per ton and engin fuel about 7s. 6d. to 8s. per ton.
So uneasy a feeling b
So uneasy a feeling has been created in the Wigan district owing
o the violent conduct of the men on strike, that on Friday last i was considered advisable to postpone a meeting of the Manchester
Geological Society, which had been arranged to be held in that
town, owing to the apprehension that the
number of colliery proprietors might lead to disturbance. During
the last few days strong precautions have, however been taken to the last few days strong precautions have, however, been taken
prevent any further breach of the peace on the part of the men. The law as it relates to the rateability of machinery, tools, and plant, was the subject of a paper read at a meeting of the Man-
chester Scientific and Mechanical Society on Friday, by Mr. G. C. B. Corbett, who urged an alteration of the law so as to include in the rateable hereditament all machinery, plant, and furuiture
which might be placed on the premises for permanent use by the which might be placed on the premises for permanent use by the
ocoupier during the continuance of his occupation, in which case
houses would be assessed at their rent as furnished house hills as furnished millse and this he thought would result in a mor equal distribution of the burdens of maintaining the poor and providing for local government expenses.
The proposal to which I referred so
Government to appoint special commissions to tor for requesting
lesirableness of widening desirableness of widening and deepening the bed of the rive
Irwell, with the view of preventing the recurrence of flods also of converting the river into a navigable stream betwee
Salford and the Mersey, was brought before the Salford tion at their meeting on Wednesday, but it was resolved that the question of the tidal navigation of the Irwell should be referred to request to report to the Council.
Barrov.
eliable sources, shows that so far as the dected from a variety of iron is concerned, it is very fairly maintained. It is expected
that continental users will need more than usual Russia and Germany. American inquiries are coming to hand in pretty fair numbers, but on the whole, I find a dulness this week Which was not quite expected. The new year set in with a brisk
demand, and a falling off just now was hardly looked for. I find at this time the year, on referring very temporary character It is known that America we hematite pig iron largely, and orders from that guarter must soon be forthcoming. Bessemer qualities are quoted at 67 s . pe to at makers' works, while Nos. $1,2,3$ forge are realising
from 6s. to 66 s .
five give anything like a correct figure, as many producers are
well sold forward, and at present they are only doing business hothing new to chronicle in the steel tradecial therm I hav demand for both rails and plates. Steel mills are briskly em-
ployed and there is no lack of orders. Iron shipbuilders still main ployed and there is no lack of orders. Iron shipbuilders still mainIn this department of trade there is not likely to be any scarcity of
work for a long time ; not only are good orders held but specifo tions for new contracts are being wanted quicker than it is possible to get them out. Iron ore finds a good market at from 13s. 6 d . to
16 s . 6 d . per ton at the pit. Raisers of ore find plenty of buyers. Coal and coke are in good request, though the South Lancashire colliers's strike is affecting the supply. Shipping is very fairly em
ployed for the time of the year.

THE SHEFFIELD DISTRICT

INTRREST at present chiefly centres in the coal trade. In the per ton being a common price in the town itself. At Sheffiel branch and first house coal are higher still. Very little steam coa has been sent away of late by water, owing to the canals and the
Humber ports being almost unapproachable through the ice. Fo gas coal there is a brisk demanu, and companies are pressing fo coal from Lancashire, but the demand is now subsiding. Thirtee thousand miners in the South Yorkshire district are said to contemplate a strike for 10 per cent. advance in wages. At several coliieries offered $2 \frac{1}{2}$ and 5 per cent., and the men replied that the resolution of the Union did not permit them to take less than 10 per cent, Main, where the sliding scale arrangement was agreed to last week is sure to be an example pretty generally followed.
Prices of iron are stiffening, and
or their labour. Business in several of the leadite better return in other departments, has been considerably interfered with by the interruption of traffic, limited work in fur fuel during the temporary and rolling mills. The thaw will soon make things "level "again,
Messrs. John Brown and Co., Limited, have been remarkably successful with their last test-made on Tuesday at Portsmouth The plate was made upon the principle of the last patent taken ou the armour they have in hand for the Conqueror and Majestic been cut down to 8 ft . long by 5 ft . 9inactured wide, being 10 inin. thick, to suit the frame on board the Nettle, where the experiments tool
place. It was fastened to the backing by means of four bolts, a place. It was fastened to the backing by means of four bolts, as
usual, screwed into the back of the plate. The test to which it
was subiected is the iz, $12 \frac{12}{2}$-ton muzzle-loadinpted for steel-faced armour 11in. thick
 weight; three shots, fired at a triangle, the points of impact being
about 2ft. apart. The first shot gave a penetration of 5in. the about 2 ft. apart. The first shot gave a penetration of 5in.; the
second, 4 . 9 .in.; the third, 5 . 6 in. - all unprecedentedly small. actory This tered slight, and the res and Majestic. The same firm are in the act of delivering onq esterel
faced armour-plates for the turrets of the Ajax, which has been sent round from Pembroke to be finished at Chatham.
hear of another very heavy contract for railway material which has been placed in this district-no less than 2000 pairs of wheels for the Lancashire and Yorkshire Railway Company, which ha I Iaceat the order with Messrs. J. Armstrong and Co., of Rotherham. came to hand last week, and was obtained by Messrs. John Copley and Sons, manufacturers of table cutlery, pen,
knives, \&ce., Richmond Works, Creswick-street.
In May last several interesting experiments were conducted a ngine $\begin{gathered}\text { Briage, near } \\ \text { shene, }\end{gathered}$ nvented and patented for the raising of sunken ships. His plan is to raise such vessels by means of a series of submarine buoys
which can be made any size, to lift 100,500 , or 1000 tons. The time, and were stated to be very successful. A limited company has been formed to acquire and work Mr. Atkinson's patents. The
capital is $£ 100,000$ in $£ 2$ shares, and it is proposed to call up 20,000 . The eromoters anticipate a profit of 3 Tr per cent. on the
alled-up capital. If this scheme be sucessful. it will prove extraordinary exception to the rule
The Staveley Coal and Iron Company, Limited, announce the payment of an interim dividend on account of the current year at
the rate of \&2 per share on the A and C shares, and of 6s. 8 d . per
share on the B and D shares. These amounts are the same as those paid last year.
A sale of much interest to local manufacturers and merchant porate and registered trade marks, one of which was granted by the Cutlers' Company in 1795, and the other in 1843. The trade marks
belonged to the estate-in liquidation-of Messrs. Joseph Teur belonged to the estate-in liquidation-of Messrs. Joseph Teuton
and Sons, steel, file, and cutlery manufacturers, and general mer
chants, of the Sylkes Works EFrestreet onsiderable reputation for files and steel in Australia and othe markets, including, among the home markets, that of Ireland
The marks were purchased, after a keen competition, by Mr The marks were purchased, after a keen competition, by Mr
Blaydes -Messrs. E. Blaydes and Co., cutlery manufacturers and
general factors, Advance Works-for

THE NORTH OF ENGLAND. (2rom Corrcspondent.) BuT little business was done on Tuesday at
Middlesbrough Exchange. The general thaw which commenced on the previous Wednesday has certainly removed most of the many difficulties heavy stocks which are known to have been heavy stocks which are known to have been
accumulating are having a depressing effect. The
actual amount of increase cannot be known till towards the end of the week, when the statistics for January will be issued. Few competent judges put the estimate at less than 50,000 tons. 30,000 tons less than in December. They amount only to 48,000 tons, and are the lowest known for many months. No doubt the present open
weather will lead to a certain revival in the coasting trade; but northern foreign ports
will be blocked with ice for some time will be blocked with ice for some time
to come. The price of No. 3 foundry iron is 40 s. per ton for prompt, 40 s . 3 d . for next week, and
40 s . 6 d . for delivery over the month. Forge iron is fully 1s. per ton less. Scarcity of limestone and of water at some of the furnaces has thrown them out of order, and an excessive make of by manufacturers that some of this is of unusually silicious character, resulting in loss of yield and
extra consumption of fettling in the puddling extra consumption of fettling in the puddling
furnace. This is always the case when from any cause the regular working of blast furnaces is
interfered with, and nothing but time and a restoration to uniformity of treatment can cure the evil.
during the stocks show an increase of 2450 tons during the week, the total at Middlesbrough being
136,211 tons. There is still a fair demand for 1 s .6 d . to 1 s .9 d being willing to give from for prompt iron. It is estimated that the sumption cannot be less at the moment than 15,000 tons per week in the Middlesbrough and Thasgow markets taken together.
The manufactured iron trade mater steady at the same prices as last week. Had the frost continued, it certainly would have been
flatter, as there was scarcely a shipyard on the flatter, as there was scarcely a shipyard on the
coast, which was not forced to discontinue operations. Now, however, all have got to work
again, and are beginning to press for materials. again, and are beginning to press for materials. but makers are generally unwilling to quote until
they see which way the pig iron market is likely to go.
An interesting contract case between two local
firms was tried at York Assizes on the 26th ult. Stockton, had sold to Messrs. R. Dixon and Co shipbuilders, of Middlesbrough, a certain quantity
of iron plates, on certain conditions, Upon the of iron plates, on certain conditions. Upon the
line marked "Quality," in the contract note, were line marked "Quality," in the contract note, were
filled in the words, "Crown, to pass Lloyd's survey." In the month of May, 1879 , the con-
tract being still in force, the price of plates had fallen considerably below the contract price; so low
indeed that to continue making them was quite unremunerative. Messrs. Johnson and Reay decided to close their works, and informed
Messrs. R. Dixon and Co. of the circumMessrs. R. Dixon and Co. of the circum-
stance, and said that they would supply
another make of plates fulfilling the contract conditions. Messrs. Dixon replied that they would not accept any other, as they in the quality of which they had confidence. until sellers' works should be re-opened. Messrs. Johnson and Reay said, in answer to this, that
they might never re-open their works, and insisted on their right to supply under the contract any plates which, were of "Crown quality and
would pass Lloyds' survey." A dead lock ensued, and an action was commenced by sellers, but ap-
parently it was not pushed to an issue at parently it was not pushe to an issue at known as the "American spurt" began, and by
January, 1880 , the price of plates had risen above the price of the contract in question.
Messrs. Dixon now began to specify and press Johnson and Reay for delivery, and their overaction has now been tried before Mr. Justice Manisty, and he, without hearing witnesses on
either side, has decided in favour of Johnson and either side, has decided in favour of Johnson and It is understood, however, that leave has been given to the other side to appeal, and that the case will be carried to a higher court.
The directors of the Consett Iro
Limited, have announced their int Company, a dividend of 15 s. per share, on the 15th inst., to The dispute in the South Stockton Shipyard
still continues. A member of the firm-Richardson, Duck, and Co.-had an interview on the 1st inst. with the platers-helpers, and offered them
1s. per week advance at once, and a second 1 s . 1s. per week advance at once, and a second 1 s.
when a similar advance was given at a neigh-
bouring yard. This offer was inmediately declined, the men claiming 2 s . at once, and declaring they would remain out till they got Steel blooms or "cogged ingots" continued to
be sent in considerable quantities to the United States, the new direct line of steamers from purpose. The enterprising firm of Furness and Co., who established the line, bring back Ameri-
can produce of all sorts. This finds a ready can produce of all sorts. This finds a ready beneficial to senders and It is announced that Mr. Swan, of electric
lamp celebrity, being dissatisfied with the imlamp celebrity, being dissatisfied with the immeeting of the Cleveland Engineers, has offered to read a paper at their next meeting, and illustrate working order. The offer has been accepted, and
Mr. E. W. Richards, the president, has undertaken, as before, to provide dynamo-electric again be available, if no other. Mr. Swan is will again be available, if no other. Mr. Swan is cer-
tainly wise to make an effort to do away with the bad impression given as to his lamps, owing to
their imperfect action at the January meeting,
and there is no doubt the
a most interesting evening. It is but fair to Mr. Shoolbred to add that the failure alluded to was
no fault of his, but was due to accident, or to no fault of his, but was due to accident, or to
want of time or care on the part of the senders of the apparatus, It will be remembered that sixtransit, and the remainder lamps were smashed in meeting was being held, and too late to fix
properly.

NOTES FROM SCOTLAND

The Glasgow iron market has again been very
dull this week, and there does not appear much prospect of an early improvement. Advices from the United States are decidedly the reverse of encouraging. There is a good demand there for
Bessemer pig and steel rails, but Scotch pig iron, bessemer pig and steel rails, but Scotch pig iron,
according to the information sent to some of the
most influential most influential iron merchants in Glasgow, is
not wanted, and, indeed, cannot be disposed of at an advantage. I am aware that certain iron masters have been shipping pigs to New York,
and selling them too ; but this is done consider ably under market prices. The capacity of the
American ironworks American ironworks for producing cructe ion han has
of late been very greatly increased, and it is no of late been very greatly increased, and it is no
exaggeration to affirm that the time appears exaggeration to attirm that the time appears
at length to have arrived when the Americans are in a position to make as much iron as they re Busine
Friday f
Friday forenoon at 52 s . 8d. to 52 s . 4 d . cask on 52 s .10 d . to 52 s . 6 d . one month, the afternoon
quotations being 52 s .42 d . to 52 s . 3 d . cash, and quotations being $52 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. to 52 s .3 d . cash, and
52 s .6 d . to 52 s . 5 d d . one month. Monday's market was a shade weaker, and on Tuesday
business was flat from 53 s , 4d. cash and 52 s . 6 d one month to 52 s . 2 d . cash and 52 s . 4d. one month. The market was flat on Wednesday,
when the price declined to 51 s . $7 \frac{1}{2} \mathrm{~d}$. cash. Toabove figure, but improved to 51 s . 9 d . cash, the above eigure, but im.
51s. 11d. one month.
Makers' prices have a downward tendency, the
quotations being as follows:--Gartsherrie, fo.

 dito specially yselected.
Kinneil, at Bo ness, No.
Glengarnock, at Ardros Glengarnock, at Ardrossan,
54s.; Eqlinton, No. 53 , 5 ,
Dalmellington, ditto ditto.

The manufactured iron . The coal trade is fairly active, there having been a good demand as a resslt of the cold
weather, and better prices have been obtained for household sorts. There is little or no change in
the value of shipping iron. the value of shipping iron. In the eastern mining This week Messrs. William Dixon, Limited, of wages of their colliers 6 d . per day, but as yet the advance has been given only in a few isolated cases. At a conference of miners' eelegates in
Glasgow, on Monday, the men were advised to
press for press for an advance of 6 d . per day, and a resoluwas not conceded by the 14tn inst., when the delegates again meet, "effective steps" be taken to enforce the demand.
About 100 boiler
Alasgow, and proceeded this week to engaged in where they are to be employed in a shipbuilding
The report of the directors of the Caradon Copper Company to the annual meeting in
Glasgow, states that the low prices obtained for copper and ore have told unfavourably upon the operations of 1880. So far the explorations future of the mine, the report says, must depend upon the discoveries yet to be made.

WALES \& ADJOINING COUNTIES. Quotatrons in steam coal have advanced by 1s. 6d. per ton, but possibly an " "all round ",
advance will not exceed 1s. per ton. Upon that advance rests the success of the Miners' ' Permanen Fund. Instead of slowly progressing as the light
illumines the rather obtuse minds of the workers, t would go up with a bound were the colliers to see papers abound with controversy in respect of the inquest and the explosion at Penygraig. One
advocates returning to the old pillar and stall advocates returning to the old pillar and stall
method "long wall" giving such a sweep for
the explosive gas to riot in. Another suwvests arches here and there, or anything to break the arches An ingeniouse, colliery manager hints thet
line.
the issue of blowers during certain barometrical the issue of blowers during certain barometrical
conditions is due really to a magnetic throb which conditions is due really to a magnetic cthrob which
goes through the mineral veeins at times and seasons. Another excellent idea is given by a
gentleman of sextemplosions invariably occurin ince. the infancy of a colliery, and not in its old age; and he main-
tains that no colliery should be worked except after certain defined plans which should be sub-
mitted to a duly authorised person, who could mitted to a duly authorised person, who could see
at once a dangerous point, such as foul air coming by the return way into workings, or the position
of the lamp room, as at Penygraig. Tapping of the lamp room, as at Penygraig. Tapping
virgin soil, he states, should be a most cautious operation, and done under approved rules, for the
Rhondda and other coal measures abound with gas at a pressure of 100 lb . to the square inch. Mr. Galloway has invented an excellent little
instrume that demonstrates the action of instrument that demonstrates the action of coal-
dust under the influence of carburetted hydrogen dust under the influence of carburetted hydrogen
gas. Mr. T. Riche's, the locomotive superintendent, T. V. R., Cardiff, new hopper dredger named
the Ely, built by $\operatorname{limons,}$ Renfrewshire, under
his direction, is not only complex but simpl his direction, is not only complex, but simple,
and the seming paradox is shown by the excel-
lent way in which it dredges to 30 oft
floatation in shoals, carries it
barges, and also tows them.
barges, and also tows them.
Considerable rejoicing ha Cwmavon by the announcement that Mr. Shaw will remain there.
A considerable degree of firmness characterises the iron trade, and though no advanced quotations are given, prices are sufficiently stiff to
indicate an upward movement. Steel rails are indicate an upward movement. Steel rails are
fixed at $£ 6$, hematite pigs not unlikely to touch e4. Old rails and scrap in request.
Tin-plate still keeps dull. I have seen an Tin-plate still keeps dull. I have seen an
offer as low as 14 s . 3 d . for ordinary coke plates elivered at Cardiff
The Rhymney Iron Company has declared dividend on the half-year of 15 s . on each £50
share, and 4 s . 6 d . upon the $£ 15$ shares. Shares now range from 34 to 36. They were going steadilily up and touched 39, but so much scrip was
sent into the market that depression followed. sent into the market that depression followed.
Still those conversant with the works think that still those conversant with the works think that
an investment is sound. The works are being an investment is sound. The works are being
conducted with great vigour and marked ability. Pig iron and "blooms" are in demand for the

THE PATENT JOURNAL.

** It has come to our rontice that some applicunts of the
Patent-afice sales Departmeent, for Patent Specitications
Pate

Applications for Letters Patent.

 * When patents have been "communicated" thename and address of the communicating party are
printed in italics.
 26th Januacry, 1881.
Trimming-up, de., Wheat or

Dry Gass Merths, W. Hancldane, Edinburg
 Lotary hass, Je. D. Daviason,
Lyon, Whitehven.
SadDLEs, A. Scholefield, Halifax. SAUSAGE Machine, W. H. Skipper, London.
STEAM Bollers, W. Lord, Bury
 Reningen.)
 MorTEFPowER, L. Temple, Rotherham.
GAs Moron Encivs, H. P. Hoit, Leeds, and F.
. Crossley, Manchester. Corsive ATED MEstal Platers, H. A. Bonneville.

407. Loons, J. Kenyon, Blackburn.
40. STran
Besnard, Nantes.). H. H. Lake.-(P. B. and F. E.
409. Drying Coffer 31 tanuary, 1881.

Inventions Protected for Six Months on
deposit of Complete Specifications 254. Wind ENaINE, de., A. M. Clark, Chancery -lane,
London,-A communication from M. E. de la Torre,

 don-A communication from J. N. Chamberlain,
Springfield, mand
U.S. $-28 t /$ January, 18si. Patents on which the Stamp Duty of
\&50 has been paid. 321. Axie-roxes, F. Attock, Newton Heath.-24th

 412. UMBrbelis, de., Runvers, w. Holland, Birming
 London.-2sth January, 1878 .
364. TTV and TERER PLIATE, E. Morewood, Llanelly.365. Coatince METaLS, E. Morewood, Llanelly.-28ti Jonnuary, 1878.
409. Weaving Fancy Fabrics, J. Hamilton, Strath
 sis. BRAKE 1 PPRAR
Februury, 1878 .
Patents on which the stamp Duty of
\&100 has been paid. 327. Inseorors, A. Budenberg, Manchester. - $26 t_{l}$

 Notices of Intention to $\begin{gathered}\text { Applications. }\end{gathered}$ Proceed with

 ${ }^{540}{ }^{-22 n d}$ BREcember, 1880 . .

 London. -A communication from M. E. de la Torre.

3912. Roving Frames, T. E. Smith, Royd Works,
Keighley. 27 th September, 1880 . 3913. Velocipedes, H. J. Lawson, Coventry.- 27 th
September, 1180.
3931 minster.- 28 th September, 1880 . September, 18SO. \&c., Enoines, F. Savage, King's
3937. Portable,
Lynn.-2sth September, 1880 ,
 Ann-street, London.-29th September, 1880.
3949. Covsuming Smoke, J. Teer, Salford.-29th September, 1880.
395. Cog Whexs, \&c., A. B. Child, London.-Com.

 3ion. Mramsuriva Thick iessep, J. Miner, Alderney-
street, Pimlico.- 30 th September, 18s0. 3960. FIRE-ESCAP-Es, G. Tiviotdale, Cheny-street, Bir-
mingham.--30th September, 1880 . mingham.--30th September, 1880. Steenberg, Copen-
3969. ExAMINING APPARATUS, A. Ster
hagen.-Com.from R. Jensen.- 30 th September, 1sso. hagen.-Com.from R. Jensen. - - 30 th September, 1 seso
3989. Indicatina Aprapatus, B. Tower, Beaufort-ter3989. INDICATING AppArATUS, B. Tower, Beaufort-ter-
race, West Brompton, London. $2 n d$ october, 1850 -
4026. HARDENING CEMENT, de., W. R. Lake, Southamp4026. HARDENING CEmENT, dc., W. R. Lake, Southamp.
ton-buildings, London.-A communication from A. Magaud.-4th ©etober, 1880 .
ELEcTrical Sionsic Apparatus, W. R. Lake,
Southampton-buildings. Andon.-A communica-Southampton-buildings, London.- A communica-
tion from A. Lemaireand E. Lebrun. -7 th 0 October, 1880 . tion from A. Lemaireand E. Lebrun.- 7 th October, 1880 .
4109. ORDNANC, A. Noble, Jesmonddine House, New-castle-upon-Tyne.-9th october, 1880 .
4199. HEATING APPARATUS, W. Love, Glasgow.-15th 4222. Treating Coffee, E. G. Brewer, Chancery-lane,
London.-Com. from P. Pesier.-16th October, 1880 , 256. Indicating Aprarates, J. H. Beeteley, Fleetstreet, London.-19th October, 1880.
4333. GAS VALVE, P. J. Wates, Balham, and S. and
J. Chandler, Newington-causeway, London. $-25 t h$
 4424. Valve Gear, J. Crighton, R. Crighton, and P.
Chell, Manchester.-29th October, 18so. 4576. ProDUchisg DEsigns, W. L. Wise, Whitehall-
place, Westminster.-A communication from H. Gmeiner.- 8 th November, 1880.
45si. Regulating de., InJecrion Water, J. Griffiths, 45s6. Regulating, de., INJECTION Water, J. Grifiths,
Water-street, Liverpool-9th Nocember, 1880.
4933. Electric Lamps, J. W. Swan, Neweastle-on-TYne.- 27 th November, 1880 .
5000 . RAG ENGINE, R. K. Miller, Edinburgh.-lst
December, 1880 . December, 1880.
sios. SEcurisg Ends of WIRe, H. Eyre and E. Heath-
field, Leadenhall-street, London. - the Decenber. field, Leadenhall-street, London.-7th December, 1880.
514. Hypavurc Lifts, E. B. Ellington, Chester.-
9th December, 18so. 9th December, 18S80.
519. STRANING Paper Pulp, A. Paisley, Clyde Paper
Mills, Lanark.-10th December, 18so. 5180. Preparing Alikali Salits, J. A. Dixon, Glasgow.
-Com. from C. Koeing.-11th December, 1880 . -Com. from C. Koing. - 11 th December, 1880 .
521s. METALLIC ALLoys, G. Höper, Chancery lane,
 Ham, Essex. -17 th December, 1880.
529. WINDow She December, 1880. Com. from C. Keing.-20th. December, 1880.
5337. Fire Extincteurs, E. D. Bruneel, Sheffield.Com. from H. Gübler--20th December, 1880 .
S399. Treativg Ores, J. H. Johnson, Lincolns-inn-
fields, London. -A communication from P. G. L. G. Designolle.-23rd December, 1880.
5471. GAs Motor Engines, R. Hutchinson, Mildmaygrove, London.-29th December, 1880.
5491. Printina Machines, J. Foster, Preston.-30th December, 1880 .
Go. GAs Motor Engines, C. D. Abel, Southampton
 Wolverhampton.-Sth Jannary, , sss1.
26. Flue TuBes, J. A. and J. Hopkinson, Hudders-field.-14th January, 1881. from H. A. Clark. -1 Sth January, 1881 .
Inmunicatio London.-A communication from T. C. Comstock -21st January 1881 .
ton-buildings, London.- A communication from
F. R. F. Brown.-21st January, 1881 . Patents Sealed
(List of Letters Patent which passed the Great Seal on
the 28th January, 1881.) 3143. Pianofortes, H. W. Pohlmann, Halifax.-30th
July, 1880 . Y153. Water-closkrts, T. W. Helliwell, Brighouse,
Yorkshire.-31st July, 18s0.
316. Evaravisg Rolers, E. T. Gadd, Salford.31st July, 1880
3167. WhEELS a
2nd Aueels and Rails, J. Ormerod, Manchester.-
3168. Drguwing Curves, A. R
3168. Drawing Curves, A. R. Molison, Swansea.-
2nd Auqust, 1850 .
3171. Separating Mineral Matters, sc., S, Hallam and G. L. Scott, Manchester. - Brd, August, 18 , Hallam
3172. PURIFYING APPARATU, W, Lyon, Cowper
 3183. Trid AuTist, Copper, dec., J. H. Johnson, Lincoln's
 Ironworks, St. Albans.-3rd August, 18s0. Renfrewshire,-4th August, 1sso. Robertson, Govan,
3198. STEAM EnginEs, W. H. Beck, Cannon-street, Lon-
don. - th August, 1880 . 3205. Tinder-boxes, F. Grimal, Paris.-5th August, 1880
3206. Lavatorivs, B. Finch, High Holborn, London 3214. Germinating Apparatus, E. de Pass, Fleet
street, London. -5 th Aupust, 1880 . street, London.- 5 th August, 1880.
2230. DISINTEGRATING APPARATUS, F. C. Glaser, Berlin 3264.'Filtration of Sugar, H. Springmann, Gneisenau-strasse,-10th August, 1880 .
3267. GAs-PURIFIERS, tc., J. Whiteley and R. Pickles,
Bradford.-10tl August, 1880. B279. PuLLEvs, F. A. Harrison and C. Priestland, Bir-mingham.- 11 th August, 1880_{0}
3285. FIRE-ARMS, C. T. H. Bennett, Launceston, and S
le N. le N. Neave, New-inn, London.- 11 th August, 18s0,
328s, PURIFING- IlvUMINATING GAs, J. Ireland,
Plymouth.-12th August, 18s0. 3290. Smutter, \&c., MachiNEs, W. B. Dell, Mark-lane,
London. -12 th August 3315. Sprivg Matrresses, de., W. R. Lake, Southamp-
ton-buildings, London. $-14 t h$ August, 1880 . W361. Refining, Sugar, A. Sauvee, Parliament-street,
Westminster. - $19 t h$, 4006. Waste Water Preventers, F. J. Henderson
King's Cross-road, London.
 4269. Hydraulic Lirts, E. B. Eilington, Chester.4406. Spinning Apparatus, F. Craven and A. Craven,
Bradford. -28 Oth October, 1580 . 4485. Ingor Moulds, D. McKechnie, Stevenston, N.B.
-3rd November, 1880 . 4573. Recevering Indigo, F. A. Gatty, Accrington.-
Sth November, 1880 4643. Explosive Com
4643. Explosive Compounds, C. D. Abel, Southampton-
buildings, London.-11th November, 1880 .
4799. Veloctpedes, Sir T. G. A. Parkynis, Stapleton.-
20th November, 1880 .
4884. Lead, te., Holders, J. H. Johnson, Lincoln's 4884. Lead, \&c., Holders, J. H. Johnson, Lincoln's-
inn-fields, London:-24th Norember, 1850 .
 4972. Firegratbs, A. C. Engert, Mills-lane, Bromley-by- Bow, London.- 29 th Notember, 1880,
5011. DIving ArpARATUS, S. P. M. Tasker, Philadelphia,
U.S. -1 st December, 1880. U.S. - 1 st December, 1880 .
5039. Screw-NuTs, H. J. Haddan, Strand, London.-
3rd. December, 18so. 3rd December, 1880.
5091. ELecrricriv, H. J. Haddan, Strand, London.-
7th December, 1850 . (List of Letters Patent eelich passed the Great Seal on the
1 st February, 1881.) 2866. Match-boxrs, C. Kesseler,Berlin.-12th Juty,1880. 3179. Umbrellas,F. Engel, Hamburg.-3rd August, 1880 .
3150. Feed-water Apparatus, F. H. F. Engel, Ham-burg.- 3 rd August, 1880 . \&c., J. and T. Brittain,
3187. MovLDNG Brcks,
Ber Chesterton, Stafford.-4th August, 18se.
3192. RuIING Appanatus, W. L. Wise, Whitehall-place,
W. Westminster.-1st February, 1881.
3197. PowEr Looms, W. H. Beck, Cannon-street,
London. London.-4th August, 1880 .
320. Governors, de., W. Chadburn, Liverpool.- 5 th
 3224. STop-wATCHES, L. A. Groth, Finsbury-pavement, London.-6th August, 1880 .
3225. METER for WATER, \&c., pavement, London.-6th., August, 1880 . Groth, Finsbury7. Fog Signal Apparaives, H. Whitehead, Bucknall,
R. Hodgson and T. Dodd, Winsford. 7 th Alu R. Hodgson and T. Dodd, Winsford.- 7 th A A ugust, 1880,
32s6. SpinNing Machinery, J. H. Johnson, Lincoln's-isn-fields, London.- 11 th A August, 18so.
3300. Tempering Cast Steki, C. Kesseler, Mohren3300. Tempering Cast Stel, C. Kesseler, Mohren-
strasse, Berlin. 13 th August, 1880 .
3339. Transporting Grain, J, Wetter, Strand, Lon don. -1 tith August, 1880. . 3365. Forming Mouds, H. J. Haddan, Strand,
London.- 19 th A August, 1880.
3457. SPIKEs, W. Clark, Chancery-lane, London,267h August, 1 SSO .
3477. Bricycles, N. K. Husberg, Stockholm.-27th 347. BICYCLES, N. K. Husberg, Stockhoim.-2
August, 1880 ,
3556. AIR, \&c., PUMPS, W. P. Thompson, High Holborn, London.-2nd, September, 18s0. -6th September, 1880.
3834. QUARRYING SToNE, J. Williams, Commercial-
road, Liverpool road, Liverpool.-22nd September, 1880. Newark, U.S. - 12 th October, 1888 .
445c., Ho.DERS for EMBRODER, A. G. Duncan,
Goldsmith Goldsmith-street, London.-1 st Nocember, 1880.
4588. Decoratine Frames, \&c., M. Hartmann, Amster dam. - 9 th November, 18SO.
4648. DIGGING MACHINERY, Gobson, Sunderland, and
E. Herdman, Para, Brazil. E. Herdman, Parí, Brazil. -11 th November, 1880 .
4663. ObTAINING OILS from FISH, W. R. Deheer, Hull. - 12th November, 1880. 4734. Haviing, dc., Machines, W. H. Harfield, Mansion House-buildings, London, -17 th November, 1880 .
4821. PREPARING OIL, W. R. Lake, 4821. Preparing Oil, W. R. Lake, Southampton-
buildings, London.-20th November, 1880 buildings, London. - $20 t h$ Novenber,
4842. Looms, W. Wian,
Noidderminster. - $22 n d$
 ampton-buildings, London.- 23 rd November, 1880 .
4890. Mexalic Packines, J. A. Osgood, Mildlesex, U.S., \& E. Monroe, New York. - ${ }^{24 t h}$ Aovember, 1880. Leipziger-strasse, Berlin.-25th November, 1880 .
4968. DIssolving,
\&c.., Appanatus, J. F. N. Chancery-lane, London--29th November, 1880.
5010. REMoving Dust from Carpers, A. J. Boult, High
Holborn, London. - 1 st December. Holborn, London.-1st Decenber, 1880. . 9 December, 1880 .
5160. Evacuating Fire-damps, F. Wodiczka, Graz.10th December, 1850 .

List of Specifications published during the
week ending January 29 th, 1881 .

** Specifications will be forwarded by post from
the Patent-office on receipt of the amount of price and postage. Sums exceeding 1s. must be remitted by
Post-office order, made payable at the Post-office, 5 , Post-office order, made payable at the Post-office, 5,
High Holborn, to Mr. H. Reader Lack, her Majesty's
Int Patent-
London.

ABSTRAOTS OF SPEOIFIOATIONS.

1990. Propelling and Steering Vessels, de., G. and A is a cylinder divided into two parts, the upper one
of which, marked \mathbf{B}, is destined to receive a charge of exploding gas or gaseous mixture, whilst the lower one
C becomes filled through the valve L with the water that is to be ejected by the exploded gaseous mixture Now suppose the upper part B of the cylinder A to be

charged with the gaseous mixture, the lower part C to be brought to explosion, the consequences will be that the water contained in the chamber C is forced by the
expansion of the gases through valyes D , and through
the sluice cock E into the large air vessel F , whence,
under the pressure in the air vessel, it finds its way
thror through the orifice H into the water surrounding the
vessel. 2011. Cheques, Bills, ,kc., A. T. King.-Dated 17th
May, 1880.-(Procisional motection not alloured.)

Rows of figures are placed at each side of the cheque,
and when filled in part of these columns are torn off and when filled in part of these columns are torn
so as to indicate the sum the cheque is drawn for. 2073. Driving Mechanism for Bic
Dutton.-Dated 21 st May, 1880 . $6 d$. This consists of a spur wheel on the axis of the main in gear with the first. The axis of the second spur
wheel is carried by an arm so contrived that this axis wheel is carried by an arm so contrived that this axis
can be clamped in different positions, either higher or can be clamped in different positions, either higher or
lower as may be required, but always with the two
spur wheels in gear. In the case of a bicycle this arm

2073

is attached to the fork on which are the bearings for
the axis of the main wheel and the arm is formed as a the axis of the main wheel and the arm is formed as a
segment of a circle, of which when the arm is in
place the place the axis of the main wheel is the centre. Fast with the second spur wheel there is a ratchet wheel
and a pawl engages with the ratchet teeth. The pawl
is and a pawl engages with the ratchet teeth. The paw
is carried by a lever mounted on the axis of the second
spur wheel, so as to be able to turn freely thereon spur wheel, so as to be able to turn freely thereon,
the same lever is formed at its rear end as a treadle 2070 and of the rider is placed on the 2076. Velocipedes, Sir T. G. A. Parkyns, Bart.
-Dated 21st May, 18s0.-(Void.) $2 d$. Steam power is applied to drive the vehicle, the
boiler for producing steam being heated by liquid fuel. 2090. Type Writing Apparatus, J.G. Tongue--Dated
22nd May, 1880. - (A communication from E.

Recordon.) 6 d. scribed the letters of the alphabet, de. In placing the finger on one of the keys, a slight pressure suffices for
the letter represented on the key to be printed on a

sheet of paper placed vertically at the back of the
printing apparatus. In the printing of each letter the printing apparatus. In the printing of each letter the paper moves automatically the width of a letter, in
order to receive the printing of the following letter at
the side of the former one. Pare the printing levers carrying at their upper ends the engraved letter corre-
sponding to that seen on each key under a glass plate 2091. Coupling and Uncoupling Rallway Wagons,
dc., J., $W . T ., ~ B ., ~ a n d ~ J . ~ H i l l .-D a t e d ~$
22nd May, 1880. 6 d .
A cross bar B is supported in guides and is provided
with a handle D, by which it is operated. Attached 20요

to B is a lever E to the end of which the coupling link C is connected by a joint, so as to be raised for passing
it over the draw bar hook. 2103. Protecting Trousers against Wear and Dirt,
M. Loeb.-Dated 24th May, 1880.- (Provisional proA spur is attached to the back of the heel of the boot so as to support the lower part of each trous
leg, and thereby prevent it dragging in the dirt. 2217. Shaprng Machines, W. R. Lake.-Dated 31 st
May, 1880 .-(A communication Jrom P. P. Huré.)

This consists partly in a shaping machine for cutting
either in a vertical or in a horizontal direction, in the either in a vertical or in a horizontal direction, in the
combination with a movable head carrying two shafts
and pulleys B B and F of a belt tightening device, 2217

pivotted on the shaft of the driving cone and held in
position by a screw upon a quadrant in such a manner as to serve for driving either the pulleys B B or the
shaft A, or the pulley F of the shaft \mathbf{E} without altering shaft A, or the pulley F of
the length of the driving belt.
2145. Liquor Stands or Frames, \&ec, H. T. Felloves.-
Dated 26 th May, 1850 . Gd. This consists in the combination with stands or
frames of a locking slide working on the underside of
$t_{\text {he }}$ top horizontal bar or plate of the stand, the said
slide being furnished on its underside with a peg or projection or with pegs or projections, equal in
number to and situated at the same distances apart as the stoppers or covers of the bottles or vessels in the
stand, the locking slide when in one position causing its stems to be berought over the stoppers or covers oo
the bottles or vessels, and when in the bottles or vessels, and when in another porition
removing its stems from over the said bottles or 2285. Candlesticks, \&c., B. Henneguin and H.
Callard.-Dated 5th June, 18s0.-(Provisional pro-

The different candlesticks of a household are pro-
vided with numbers corresponding to the numbers of vided with numbers corresponding to the numbers of
the different chambers, os as to be able to see if any 2475.

A pitcc chain wheel on the main wheel drives the
binding mechanism. An upright frame supports four chain pulleys over which passes a chain having a clip F for holding and conveying one end of the string. Guides G, placed at points round the upright
frame, hold the string in the form of a large loop while the sheaf is being pushed partly through the
frame by the revoving rake of the machine. To each side of the frame is attached a separate piece forming
together a platform for the reception of the sheaf; they

2475

are placed a short distance apart so as to leave a slit
for the passage of the string. The clin F when movin along the top of the string. The clip F when moving
trigger H which comes in contact with a draws the string tight round the sheaf until it takes up the other part of the string. A short distance
beyond the point where the clip has hold of both beyond the point where the clip has hold of both
parts of the string is placed the apparatus for forming
of the knot. The lever L takes up the slack when the of the knot. The lever L takes up the slack when the
string is released from the holders G. The knotting string is released from the holders
apparatus is of special construction.
2491. Slotting and Planing Machines, J. Barroz
and J. Craven.-Dated 19th June 1880 . Fig. 1 is a front elevation, and Fig. 2 a plan. A A
are the driving pulleys which give motion to the spur are the driving pulleys which give motion to the spur
whee \mathbf{B} in either direction by the intermediate
pinions \mathbf{C} D. Ehither of the pinions may be geared into the spur wheel B by turning a plate which carries

them on the centre or axis A^{2}. The spur wheel B is
loose on the shaft which operates the feed motion, loose on the shaft which operates the feed motion,
but may be firmly connected (so as to rotate with it) but may be firmly connected (so as to rotate with it)
to it by means of a clutch F operated by the lever
G; upon a vertical shaft is fixed the cam \bar{I}, which on making one revolution comes in contact with the
bowl J fixed on the lever G, and throws the clutch out
of gear, the desired feed having then been effected. 2495. Brake Apparatus, J. Hirsiger.-Dated 19th
June, 1880. 6d. This consists in the arrangement, combination, and construction of brake apparatus, in which the longi-
tudinal shaft G connected with every carriage is caused

to give motion to the steelyard or lever C and movable regulated pressure can be put upon all the wheels of each carriage of a train
2496. Stean Wheels, J. T. Hozson and W. Tate.-
Dated 19th Jure, 1sso- (Not proceded vith.) $2 d$. The wheel is constructed as a plate wheel, that is
to say without arms, the heavy rim and the centre
boss being connected by a web or plate. The pockets are formed in the periphery of the wheel, and
may be of any desired number, according to the
diameter of the wheel. The wheel being secured it is diameter of the wheel. The
mounted in a suitable casing
2503. Dyeing Corton Fabrics, ${ }^{\text {E. }}$. Poselt and R.
Peters.-Dated 21 . 1 June, 1880.-(Not proceded voith.) The fabric is passed over rollers in a cistern contain-
ing hot water, then through squeezing rollers to a second cistern containing a mixture consisting of $13 \frac{1}{2}$
gallons water, 131
gallons solution of chloride of
 fabric is then washed and allowed to age from eight to
ten hours, when it is passed through a cistern and
receives an injection or shower of concentrated solu-
tion of bichromato of potash, made acidulous by
 acid, bichromatere oonteratimng a man muxturure of of iron or
copper. The dyeing is then
and copper. The dyeing is then finished by passing the
fabric through a bath of dye woods and sulphuric eacid.
 The distillation of low wines into coarse spirits is
effected in the still shown in the drawing, the low
 vapour outlet A from the still is conducted into a
chamber containing a two-way valve, so that it can be

oonducted to a separate condenser or into the bottom
of the spirit still. The condensing cold water coils in of the spirit still are arranged so as to always be filled With water, the outlet of each coil being above the
inlet, and each supplied by a separate valve, arranged so that they may be worked together or separately. The
pipes through which the vapours pass from chamber to chamber are formed so that the raporir may be
teaused to impinge against a bell-shaped, flat, hollow cause
 , poceceded vith.) $2 d$. of the main spring is extended, so as to play over or
come in contact with an arm of the hammer. The stand side of the main spring is controlled by a movable stud operated either automatically on the
opening or co cosing of the gun, or is extended and
worked ay a lever. Worked by a lever. A second improvement consists hameran fult cock) forward, ond provide it with a second hook, which should the hammer be acitdent.
ally jarred off the usual hook, it is caught by the ally jarred off the usual hook, it is caught by
second hook before reaching the cap or striker.
 An excentric in fitted, about the driving axle, to each
to increase the the steering fork in such a position as
and increased addius siall be most effective, Fheh excen-
trie is fitted with a strap provided with an arm to tric is fitted with a strap ,
which the crank pin is fixed.

${ }^{2}$ communication from E. Oehter.)-(Not r roceceded with.) 2
Betanaphthol, or its substituted derivatives, or com-
binations of these bodies with metallic oxides or mixtures thereof, are heated for a considerable time at a high temperature, together with salts of ammonia,
or of substituted ammonia, either alone or with addiHon of neutral bodies, and the bases thus produced are esparated by any suitable means from the
substances that
do not enter into the reaction, or from impurities produced.
2518. Heativa and Vextluating, o. Sheppy.-Dated Ais the outer casing of the stove; B is the hot-air
chamber lined with fire--brick or tiles and fitted with battle plates; CH is a perforated gas tube or row of
burners for heating the hot-air chamber. This hot-air chamber B commumicates with the room by means of
the connecting pipes B 1 B 1 , the mouths of which pass
2518

through the outer casing A, and fresh air from outside
the house is conveyed into this chamber inlet pipe D. C1 C1 are pipes convering gas to the main burners or perforated gas tube C, and also to a
small flat flame burner C^{2} situate towards the front of the stove, and serving to cost a taram glow throught the
red glass, with which the front of the stove may referably be fitted.
2530. Pratess For Shoss. de., R. Chapman.-Dated This consists of a socket or foumdation plate which
is fixed and retained on the heel or other part of the boot, and a slidide or wearing part which is fixed to the
socket plate by means of screws and retained in position by one or more stays or wards.
2531. Febding Apparatus for Thrashing Machises, A number of prongs are secured at their centre to a cross-bar warping in bearings. The upper ends of
these prongs are also connected by a crossbar, to

Which is dttached a sprifg lever with its outer end gripped at the back of the apparatus. The prongs
work in connection with a square roller, and can be 2534. Packing Cases, F. Hoyer.-Dated 22 ud June, This relates to so constructing packing cases, that
the same are collapsible, or can be easily taken to
pieces or folded together when empty. 2552. Kaitting Machinery, S. Loice and J. W. Lamb. The needle bar A carries the bearded needles, which receive an up-and-down motion, but without any
dwell in their downward progress. In front of the
needles is mounted a set of points \mathbf{E} carried by the heodizontal bar X and standing parallel with and oppo-
site the stems of their respective needles. These

[255]

points have a short vertical motion, and between them
project the jack sinkers C and the dividing sinkers, project the jack sinkers C and the dividing sinkers,
when they are required to act upon the thread,
pressing it acainst the points in the same way as herewhen they are required to act upon the thread,
pressing it against the points in the same way as here-
tofore against the needle stems. As the thread is laid over the points E the jack sinkers C will advance to
form the required amount of slack thread, and the
dividing sinkers will then advance and divide the form the required amount of slack thread, and the
dividing sinkerss will then advance and divide the
slack thread upon the points. The points then retire 2552
and allow both jack and dividing sinkers to carry the
divided thread to the advancing needles. At this of the the sinkers effect a more complete diding proceed. Two threads are laid in for every complete rotation of the cam shaft instead of one. The second
figure shows the position the knitting instrument figure shows the position the knitting instruments
assume at the moment the thread is being laid upon
the webs of the sinkers. the webs of the sinkers.
2554. STEAM Boilers. G. E. Vaughan.-Dated 23 rd
June, 1880.-(A commurication from J. M. F. dut Temple.) $6 d$.
The boiler is com
communicating directly with each oother by one or several pipes of large calibre, and by a number of
small zigzag vaporising tubes which are alone exposed
to the fre to the fire. The tubes are provided at each end with
conical bronze ferrules, secured in corresponding holes, conical bronze ferrules, secured in corresponding holes,
pierced in the collectors (as shown in the second Fig.),

by means of forked levers, of which the longest branch
clamps the tube above the collet of the ferrule, and engages on a T-shaped piece, which separates the
holes of two series on each of the reservoirs, while the [2554]

down on the said collet. The feeding is effected at either end of the lower collector, by means of a stop-cock in
connection with a pipe T which passes through the collector a little above the lowest range of vaporising
tubes, and pierced in front of each orifice of the latter with small holes, the diameters of which increase gradually as they recede from the cock. The aggreagate
sections of these small holes should not, however, sections of sese sman ho way of the cock, so as to to
exseed the setion of the wis
insure as far as possible the simultaneous admission of insure as far as possible the simultaneous ad, imssion of
the feed water into all the vaporising tubes which are 2569 .
2569. Machine Screws, J. Wetter.-Dated 23rd June,
1s80.-(A communication from W. H. Bddy.) 1ε,
trimming the head of each blank, nicking such head,
reshaving or finishing it, transferring the blank to reshaving or finishing it, transfirring the blank to turning it over end for end and finally threading and 2575. Cutris

Fenner.- Dated 2 the June, 1850 . Ged. A rising and falling table, and a hinged platen are through cranks on the shaft S. The hinged platen B is lowered by hand, and catches F engage with
recesses in the framing, so as to form a surface for

platen comes in contact with and forces back a bolt
H connected with the swing lever K , and one arm of a bell-crank lever, the opposite arm or which throws action of lowering the platen automatically causes the
aising and falling motion of the table. The cam T rising and falling motion of the table. The cam T
serves to throw the clutch out of gear again through serves to throw the clutch out
the rod K and bell-crank lever.
2581. Steam Road Rollers and Traction Engines,
T. Green and J. Thyme.-Dated 24th June, 1800 .-(Not

To the underside of the boiler is fixed a bracket projecting to the front and having a socket formed in it.
The socket receives a vertical spindle having a collar upon it, which bears upon the lower end of the socket.
Bew the collar there is a duplex knuckle-like joint with a joint pinconnecting the spindle with the centre of a bridge piece or fork, which spans a pair of
supporting rollers or whels, and has bearings formed at its extremities in which the fore axle is held. Brackets from the ends of the fork arms carry
scrapers at the back of the rollers or wheels, and front scrapers at the back of the rollers or wheels, and front
scrapers are also attached to the portion of the bridge
piece or fork which extends over the rollers or wheels. 2583. Raising and Forcing Liquids, dc., J. W.
Midgley.-Dated $24 t h$ June, 1s80.-(Not proceeded

A cistern and ball tap is placed in an elevated position. The cistern is supplied with town or other
waters. From the cistern is a pipe or piper to the waters. From the cistern is a pipe or pipes to the
receiver or receivers, the pipes having a four-way and check valve. The cisterns firstly contain air, and are connected to the vessels or barrels containing the fluid
to be raised. The water from the cistern entering the bottom of the receiver compresses the air in the receivers, and a pressure is put upon the liquid-to be raised or forced-in the vessel or barrel, and its con-
tents are raised or forced to any height lower than the supply cistern.
2587. Tricycles, J. H. Walsh.-Dated 25th June,

This relates partly to an arrangement whereby the steering wheel can be locked or steadied as required, by the pressure of the rider's back and receive the
necessary guiding from the action of either of his
shoulders respectively. 2595. India-Rubber Products, H. Gerner.-Dated
25th June, 1880.-(Not proceded with.) 24 . 25th June, 1880 . - (Not proceeded evith.) $2 d$.
This consists in the process of mixing in proportions productive of either hard, semi-hard, or soft
india-rubber, camphor, and sulphur, the flours of agricultural fruits, gherms, $\begin{aligned} & \text { dec., which do } \\ & \text { or do not contain sulphur, and then properly vul- }\end{aligned}$ or do not contain sul
canising the mixture.
2604. Lighting and Heating Apparatus, J. C. T.
Thomas.-Dated 26th June, 1880. 6d. The drawing shows a vertical sectional elevation of
the lamp or lighting apparatus. A is the oil tink or reservoir; B the wick tube provided with holes for
the escape of vaporised oil ; C the burner the escape of vaporised oil; C C the burner with its slot
arranged diagonally in relation to the parabolic
reflectors; and F the milled head of the wick pinion reflectors; and F the milled head of the wick pinion
spindle. The whole of the above parts are connected together and are attached by a hinged joint, and secured
by a catch to the upper part of the lantern. G is a
metal chimney with holes at H H for the emission of

2504

light. Around these holes are secured the 3inner ends
of the parabolic chambers J J made of bright or of
reflecting material. The outer ends of the chambers
are closed by sheets of glass K carried in sliding
frater frames L L. Around the upper part of the chimmey is
a perforated plate N furnished with a tubular
defter deflector, guide, or wall M , so arranged as to leave an
annular space S , for the circulation of air between M and the chimney, to prevent overheating of the outer
casing T of the lamp. O is a deflector attached to the hinged cover P. $Q Q$ are ventilating holes protected against draughts by a guard plate, and R R are small
holes communicating from the chambers into the body of the lamp.
2607. Chronograph Watches, J. Wetter.-Dated
26th June, 18so. - (A commenication frome Le Coultre et Compagnie.)-(Not procected with.) $2 d$. Thich, whensts in in the applit in contact with a a toothed wheel (preferably by supporting the roller in a pivotted lever
acted upon by a spring), shares the motion of the acted upon by a spring), shares the motion of the
latter the said toothed wheel being fixed on a pinion completing a revolution once per hour, or per minute,
2608. Steam Generators, J. Nicholson.-Dated This consists partly in constructing a steam generator having any desired shell form, with one or more rows
of vertical water tubes communicating with the water in the generator above and below the furnace or fire-
place, and with horizontal tubes to conduct the place, and with horizontal tubes to conduct the
heating gases or products of combustion to the heating gases or produdo or
chimney. 2611. Ships' Berths, de., B J. B. Mills.- Dated $26 t h$
Jene, 1880 .-(A communication fiom J. C. Thomp-
son.) A are berths or pitch frames, and B roll frames sus-
pending the pitch frames from either side in the pending the pitch frames from either side in the
centre of the direction of their length, and such frames B are supported in the bulkheads by axes of motion.
The berths A are controlled by the pendulous weight 2611

(1)And

 2612. Garters, \&e., E. V. Eimery,-Dated 26 th June, This consists in fixing spikes, pins, or their equivaflexible material when brought over it, and it is specially applicable to garters for holding up socks or
stockings. stockings.
2614. Accumulators, de., A. Wedsiorth.-Dated 26th June, 18s0.- (Not procceded vith.) $2 d$. .
The pressure is applied downwards instead of upwards, and an accumulator is used provided with a
table which fits inside the accumulator. 2616. Continuous Railway Brakes, R. Elgey.-Dated
26th June, 18s0.-(Not proceeded with.) 2 . This consists of an arrangement whereby the brakes of railway trains may be applied to arrest or retard
their motion by means of hand levers, or levers actuated by compressed air or steam, or by a combination 2618. Manuracture of Iron and Steel, dec., G.
Ellinor.-Dated 26 th June, 1880.-(Not proceded This consists in the removal of phosphorus and
sulphur from steel and iron, or from the ores from which metallic iron or steel are made by the use of calcium hydrate, or magnetso-calcium hydrate, or quick lime or other forms of lime or its carbonates, in com
 The rails are made very light and seat themselves firmly in their chairs and no keys or wedges are 2621. Measuring and Cutting Out of Cloth, \&e.,
IV. . Leke.-Dated 26 th June, 1880 .- A communica. fiom F. Fabre.) $8 d$. The apparatus is designed to indicate or show the they may be accurately cut according to the measure-
ment of the person for whom the garment is to ment of the person for whom the garment is to be
made, or according to any desired measurement. 2622. Grinding TooLs, W. Wutson.-Dated 26th June, A is the stone; B the frame to which are attached
inclined, grooved, or slotted standards or having adjustable brackets or levers D or carriers pivotted on shaft E1, or fixed by bolts and nuts in
slots of standards. These brackets, levers, or carriers are provided with vertical slots G, and have the shaft are provided with vertical slots G, and have the shaft
E1 passed through them, upon the ends of which aro
fixed or keyed two levers R and R^{1}, having curved or

excentric slots F and F1 in the upper ends thereof, directions to each other. Through the slots $\mathbf{G}, \mathrm{G}, \mathrm{F}$, and F^{1} is passed the loose shaft or spindle H^{1} upon
which the tool-holder is pivotted. The tool-holder is which the tool-holder is pivotted. The tool-holder
preferably of a lever-like form, and the tool is held in
the preferably of a lever-1ike form, and the tool is herew M,
the holder by an adjustale nip lever L and scrent
and brought to bear upon the stone by means of springs, cords, weights, or levers, preferabily by weight
and lever N. 2623. Pile Fabrics, D. Marcon.-Dated $28 t h$ June, The ground and back warps are both supplied from
the warp beam A, and the pile is supplied from the

pile beams B, one for each piece. The weft is beat u1p warps is effected by the shafts or healds E, actuated as follows: Four shafts for the pile warps, or two for each
pile warp; six shafts for the ground warps, or three
for each, the healds E E being raised and depressed at
suitable times by the tappets F acting on the treadlos G. The cutting arrangement consists of a dise H arriage, and traversed across the loom upon the slide Tail. The cutting edge of H is kept sharp by grinding
aces fixed at both top and bottom round the periphery
 2629. Werghivg Aparatus, J. Wetter--Dated 2sth
June, 18so. (A communication from E. Feyel.) - (Not This consists in applying a weigh-beam provided vith a series of knife edges forming a seale and serving
or the suspension of a movable weight, so that the ddition or withdrawal of weights for weighing dif ferent objects may be dispensed with, and the weight
of the objects accurately ascertained by moving the uspended weight alon
 This consists in the use or application of electro-
ecomposition or electrolysis for the treatment of orgamic or inorganic subsstances or bodies.
2632. Prakrrs ron Loons, C. F. and E. Burslem.
 or similar material, which is to act against the 2634. Pipss for Smoking Tobacco, A. A. Percy.This consists in the means of trapping nicotine by the employment of an inner and outer bowl, in com-
bination with a channel leading from near the top oo the outer bowi to the stem of the pipe.

The stretchers are constructed of corrugated sheet
teeel, and the ribs are formed of semi-tubular steel that when closed the stretchers fit into
 2641. Raising Suxken Vesskis, Werigrts, dce, H. F. This consists essentially in the employment of levers,
which are mounted upon floating vessels for the purpose of raising sunken bodies, or upon wagon
or suitable frames for raising or lowering weight The drawing shows the levers mounted upon a truck
or wagon A , upon which the support L is pivotted.
 over pulleysat the ends of the ehort arms of the levers,
nud are attached to the weight. These ropes, chains and are attached to the weight. These ropes, chains,
or cables pass along the levers i And C , and over the
pulleys at the extremities of their longer arms, when pulleys at the extremities of their longer arms, when
hhey are wound on to the winch G. When it is

intended to raise a weight the two levers, are lowered
to their lowest position, and the ropes, chains, ,nd
and cables are attached to the weight. One, rope is then
wound up on the winch, so as to bring its lever into Wound up on the winch, so as to bring its lever into
the position shown by the e ever C. The weight will hen have ben raised a certain distance, and the rope The other rope will be slack. This rope will then be
wound up till the lever B is raised to its highest
the position, thus raising the weight still higher. The
cope F will now be slack, and ready to be wound up again. By suitably weighting the ends of the shorter
arms the levers will gradull fall intoo their lowest
position as their ropes become slack. Modifications are hown.
2642. Ornamentrisa Paper, de., J. Salmon and R.
Plillips.-Dated 29tl June, isso. (Not proceeled

The paper, which has been previously printed, is ing' table, which has a series of rollers arranged so
that they are quite free to revolve. These rollers are , of atabl

 portion of the bronze or powder; man an thus, whilie
these rollers prevent the sheets from being smeared,
the the bronze or powdeder unon them preventsty smeared,
rom adhering to the surfaces of the rollers.
 The specimen, or pattern, is inked with lithographic
ransfer ink, then pulled between lithographic transfe paper, then transserred to stone, and afterward glass. Steram Traps or Drain Valves, W. Datis.-
 mixture of ether and other ingredients, and as the Chamber expands it closes the aperture of the outlee
G and stops the escape of steam. When condensation

the spirit in chamber C, and causes the latter to contract, letting the water run off. Over the chamber is
a bell-shaped guard Dof spun copper, and any water
in the botto of the oulve box is fored un my the in the bottom of the valve box is forced up round the chamber by the steam pressure, and thus chills the
chamber, the water being between it and the guard so as to cat orr the herce heat or the steam 2649. Seat and Life Saving Apparatus for Ships This consists partly in making the ends of the seat
in the shape of light rollers, preferably made hollow
for containing provisios and water, and having suffib
cient buyovancy to keep severl, fient buoyancy to keep several persons a float, the
iwo two rollers being connected by a rod or axle passing
through the axis of the rollers, and capable of fixing
 theer on the proond.

This consists in a partieular application of hinges to
he bows of the scissors, and in making these bows o the bows of the scissors, and in making these bows of
such dimensions that when they are openod and extended they will meet a
shield to the closed blades.

This portfolio has back, front, and side flaps, and and
overlapping top, and being broad, square, and flat a he base will stand upright
2653. Teafors, de., C. Totit-Dated 29th Tune, 1880

The rim by which the cover is to be secured is con
trucucted with a grooved, recessed, or indented portion so deeply yrooved, recessed, or indented that when th suitable rim, flange, or tongue is sitted on the same, it
shall not be liable to fall off unless the article is turned ver to a conside erably greater angle than a right angle 2654. Pulverising Grain, Ores, dce., L. S. Chicheste The chamber A is supplied with air from a com pressor, which is conveyed to the pipes C and chan-
hors D. The prin or othe material passes from
hopper E, and being acted upon by the compressed [654) \square Cole
air entering chamber D is forced against at arget K in
chamber L , against the sides of which it is thrown and passes through into the second chamber D, where
it is again acted upon by the compressed air, and orced against a second target also contained in necessary to complete, the pulverisation of the necessary.
material.
2656. E
2656. Exhavstiva Coxdensers, \&c., R. S. Candish
and W. J. Norris.-Dated 29th June, $1880 .-$ (Not

This consists essentially in dealing with the wate and gases in the condenser quite independently, the
air pump exhausting air only, and not drawing air and 2657. Rotary Engines, W. Allan.- Dated 29th June A disc - is fats upon the elhatt to be driven. On the
nee of this dise there is a projecting "piston," whicl is reecived into an annular groove in the face of
second or fixed disc. Within the groove in the fixed
.
 exhaust are on eachicide, of the thasumes orne entrance. In or
Ind
order to permit the " piston" to pass, the abutment is order to permit the piston to pass, the abuement is
is the proper time withdrawn ina radial lirection. It
is controlled by means of a cam groove formed in the ace of the piscon aros and a stud upon the abutmen Dy rod with a piston, contained in a small auxiliary
ylinder, and pressure is caused to be admitted at the cylinder, and pressure is caused to be admitted at the
proper time to the cylinder, frist on one side of the
piston piston, and then on the other.
2658. Lacomotive Air Evaings, dec., E. F. Piers.A represents one of the driving cylinders of the
engine. In a line with this cylinder is arranged air-
 ylinder so as to receive motion from the same. The
ir-compressing cylinder is provided with values $\Lambda^{1} \Lambda^{1}$解解 ampressing end of the cylinder, for the admission o

air from the cylinder, and with valves $\mathrm{Bl}^{\mathrm{BI}}$ als

 pir reservoir E, where it
working of the engine.
2680. Loons, J. Stannfild.-Dated 29th June, 1880. Near the end of the shuttle-box is applied a sickle
shaped spring, the loose end of which projects througl sit or passage way armoniln he back board of the box, or a made or spiral spring may be so spplied a
that when the picker is by its picking stick and stran returned it cannot rebound, but is by the spring-
arainst whichin in returning it auts trapped at the end
of the box, so that on the shuttle entering the box of the box, so that on the shuttle entering the box
the ordinary owwell acts on the shatte and eases
it, depriving it of the power of impact upon the
2661. Pressing or Levelling Yarn on Beans fo
Weaving, A. Hitchon -Dated $29 t h$ June, 18s0. Sd The drawing shows part of a tape machine fitted with the improved apparatus. A the the yarr beam
B a pressing roller revolving on the antifiriction bow

C, the ends of which rest in slots formed in the radial end of the machine. A weight secured thereon im-
parts the pressure to the yint
in a vibrating lever E actuated from the side shaft F
by pulless and bands and worm and worm-wheel H, t
 By the vibration of rod E one end of the roller B i
moved obliquely each way out of its parallel position moved obliquely each way out of its parallel position
with the yarn beam. The otation of the latter cause the presser roller not only to revolve, but to traverse alternately from one flange to the other of the
beam when moved obliquely in reverse position. 2662. Masuracture of Hats, J. Taylor:-Dated 29th This rolates partly to the construction of a block to manchinery, whereby the necessity of having dimiferent
blocks to suit different shapes and sizes is obvinted blocks to suit different shapes and sizes is obviated.
2663. Bookbinmers' Blocking Presses, A. $W \cdot B$ BreatThe top plate on which the cover is laid to take the also act as guides. It also has sides attached to it
to keep it in line with the under plate These
to
sides are prolonged at the back, and form bearing tor sides are prolonged at the back, and form bearingsesp for
inking rollers. When the cover is laid in position the plate, and the plate pushed in-by means of
handle attached to the front- to take thie impression the rollers attached thereto protrude at the back and
impinge on an iron ink-distributing cylinder or drum which is caused to revolve as the hand lever is brought down to give the impression by being connected by
means of levers and a rack and pinion, or other suit 2664. Loconotive Evaines, W. R. Lake.- Dated 29th

Driving wheels I are provided which are not in direct
contact with the rails, but which are placed above and transmit motion to wheels L on the rails. This whee provided with two treads or bearing surfaces, on
of which O runs upon the rail, while the other tread projects from the face of the wheel L and is designed to gear with the driver or driving wheel I. The steanm
chindor and the vale chest are comecte the
driving axle by the usual pitman and crank, rools, and

excentrics. The truck R which is designed to act as a guide to assist in keeping the engine on the rails,
is supplied with elastic bearings X, and the equiliser S ss also provided with an elastic bearing X ${ }^{1}$, so arranged
that the weight of that portion of the locomotive that the weight of that portion of the locomotive the axle H and driving wheels L ,
through the said wheel L to the rails.
2665. Casings for Underground Trigeraph Wires This consists of blocks of terra-cotta or other suitable material, having one or more passages or ch
lined with india-rubber, or equivalent material.
 The frame of the buckle is cast in one piece, an consists of side end, and cross bars to which latter
the tongue D is hinged. This tongue is a straight
2667.

fat bar with a prong projecting downward, and
which enters a hole in the end bar B. The tug passe betweon the iront cross bars and aver the rear bar
The tongue is held closed by a spring catch J, tormed
of coiled wire in the top bre, the ends of which spring into recesses
the side loons M, and are released by pressing on the side loops ${ }^{\text {M }}$

cam ring and vertical transverse section through the of amahine and shows
one form of transfer device in oosition for transtering

 has a portion or portions of its lower wall cuta away cam G^{2} and a switch cam G^{3} which, when in the posi
tion shown in Fig . 2, serves to shunt all the needles it the proper time into the said auxiliary grove the th
hooks of the sid needes being thereby al brough
the nto one plane or level with each other above the toi
of the needle cylinder A, the said needles being firmly

held up or supported in this position by the lower wal est. When it is designed to bring the needles again into action a switch cam G^{4} is depressed End the the
pivotted cam G^{2} is raised. Having looped the ribbe top upon the quills C of the transfer frame and
ravelled off the surplus
rows of yarn, the transfe frame is placed upon the machine in such a manner
that the hook of each needle is embraced or enclosed by one of the said quills C . In ordinary cases whee
the transfer device is lifted the web will remain on the

 2671

of this rod projects through the end of the tube, and
its pointed end bears on the road, when it is lowere
for this en for this purpose. Should the vehicle be stopped in
ascending an incline the weilht of the car will com press the spring, so that when the the vehicle starts camain
the spring will propeling the vexicle.
 The botle is constructed of india-rubber or water2672. Roller Milss, C. Pieper:-Dated 30th Juñ ${ }^{\text {The }}$ Thollers $A A$ revolve by their journals sin bearings M, which are e either capable of stiding in horizontall
guides formed by the frame of the machine, or which
[67a

are made movable in any suitable manner; springs composed in the style of carriage springs press on the
bearings. The tenioo of these sprigs, and consed
quently, the pressure of the rollers againt each other, can be regulated by the screws E.
 A stationary tube or bolster is fixed in the footstep
rail, at the top of which is fixed a bush of suitable
 2677. Swerping Floors and Carpers G. H. Ellis. An oblong flat crase or iox, open at the bottom, is circular recess. Into this recess is disposed horizontally a series of arms, upocess which sposederens hare
fixed, formed of pieces of leather or other suitable mad, Yormed of pieces of leather or
material, one side being cut into fringes.
2678. TiLuING LasD, T. R. H. Fiskin-Dated 30th This consists in apparatus for enabling power to be more efticiently and simply conveyed from the engine
or other soorce of power to ploughs or other culti-
vating in vating i implements, and to anchors used in connection 2679. W

 In which is placed centrally a vertical spindle, which
is so mounted as to be capable of revolving, and which
is

 outlet, the fluid pressure carries these vanes with it
like floating bodies, and the other three form stops
lin 2681. Manduacture of Yarv, W. R. Latke.-Dated
30th June, 1850 .- (A communication from J. Rieses This consists in the process of making mixed yarn
by forming separate slivers of worsted and of cotton, then mixing these slivers on a doubling frame the passing the mixixed band over roving frames, and finally
spinning the roving so produced 2682. Treatment in Memt,
2682. Treatmen This consists in the treatment of meat by converting
it, together with flour or vegetable absorbent, into a it, together with flour or vegetable absorbent, into a
sooth and homogeneous doughthand reducing the sid
doungh into thin sheets tubes, or other forms dough into thin sheets, tubes, or other forms, and

The piston chamber is of triangular section, and ha ond wais and a curved floor cast in one. The side chamber being completed by cap E. The ossilitating
piston C swings between the end walls on trumnions.

Motion is imparted to the piston by a lever or othe
suitable means. The water is admitted alternately to suit the means. The water is a amitted alternately to
firstone then the other side of the piston the the tube
D fitted with suitable valves, and and disch the D fitted with , suitable valves, and a discharge pipe
fifted with similar valves also communicates with both sides of the piston, so that the water is admitted and
discharged from first one and then the other side of he piston altermately
 The stopper has an internal hole partly blocked at
the bottom, and into which is fixed a suitable tube of sufficient capacity to contain one dose, or required
quantity of the substance, and which is s.laso partly he interior tube on its axis the two openings arg brought to gether, and a free communication is
otbanined from the botlle e thito the tube ormeasure. By
By

 window curtains.
2686. Hobsy or Toy Horses, S. Loebl.-Dated 1 st
July, 1880 .-(Not proceeded with.

horse. This rod, which is free to rotate so as to cause
the guiding or steering wheel to turn, terminates at its uppor end in a cross bar, whose outer ends are pro-
vided with reins, which on being pulled to the right or loft impart, a corresponding moverment to and
actuate the said guiding or steering wheel. 2687. Swekping Chimneys, W. Ross.-Dated 1st July, A sheave is fixed on the top of the chimney and a
wire connects the sheave and the fireplate havingloops for attaching the brush. An iron rod is fixed on the
fire-grate by means of a screw clasp which grips the barg, and turning the screw firmly secures the rod to the grate. This rod is sufficiently long to admit of an
arm sliding upwards or downwards at the will of the operator, and has a screw to secure it when in the ruquired position, The arm has a horizontal spindle
with a handle for the purpose of turning it. It has with a handle for the purpose of turning it. It has
also on the opposite end to the handle a \boldsymbol{V} sheave
securrely fixed on it. The wire is placed in the V sheave end the armis pressed tighttly downand secured,

 of the cowil to torma small chamber, ${ }^{\text {, }}$,
mumication with the stem of the pipe.

[2690

marked X, and the arms are marked $Y ; A$ and B the are placed one above and one below the arm, two to ench arm.
2691 .
1st Jill-CANs, J. Hesestwood and H. Wedster.-Dated purpose at the base of the spout is a a valve seating whith an hole arger in idianeter than the rod C, which passes
through it and carries two valves D. The spindle एख्वा

Coses)

passes out and is fitted with a button near the handle
of the can. The outer valve is kept a gainst the outer side of the seating by the spring H. By pressing the
button the outer valve is removed from the seating button the outer valve is removed from the seating,
allowing oil to flow through the opening; but if allowing oil to flow through the opening; but if
pressed to far the inner valve closes this opening and
prevents the flow of the oil. 2692. SEpasation or Potatoes, D. Bragg.-Dated 1 st
July, 180. (Not proceeded with.) 2d. Two oscillating screens are employed fitted with
strong wire riddles, and worked from the same shaft by two excentrics, one for each shaker.
2694. Colour Box and Palette, R. Spear:-Dated 1 st
mann.)- (Not proceeded with.) $2 d$.
suitable slab is employed with depressions to receive the saucers and brushes. To outside of the
slab is hinged the lid, and to the other side is hinged a hande provided with an elliptical hole through
which to pass the thumb. which to pass the thumb
2696. Differential Screw Devices for Fastening
or Adusting, J. Hastie.-Dated 1 st July, 1880. $6 d$. In one arrangement two nuts A and B are employed,
one of which (A) is formed with an internal screw
thread to screw upo

or rod, and with an external screw thread to screw
into the other nut B, which latter is formed with an internal screw thread to fit the external one of the
first nut A. first nut A.
2697. PARING THE Bri
Dated 1st July, 1880 . Upon turning the shaft \dot{B} round by means of the
handle D, the bowl E will revolve, handle D, the bowl E will revolve, and cause the hat
to turn round against the curved guide plate I, whilst

a stationary knife G will pare the inner edge of the
curl as it revolves, the pressing plate H holding the curl as it revolves, the pressing plate H holding the
hrim down and preventing the knife from cutting
through the same. 2698 .
2698. Cutring Knitted Fabrics, II. A. Martin.-
Dated 1st July, 1880.-(Not proceeded aith.) This consists in knitting the fabric without
omitting the loop, but in knitting the said fabric perfectly cylindrical without a blank or space, and in
cutting the same at an oblique angle to the bottom of 'he fabric, so that when opened out the twills shall
beat an angle to the outside edges. The fabric may
be cut by insertinc fabric, and in cutting the fabric from corner to corner of the board.
2699. Hose or Socks, W. J. Ford.-Dated 1 st July.
1880.- (Not proceeded vith.) A seamless leg-piece is first produced upon a
circular frame.
pleted so far as the leg-piece, having been completed so far as the instep, is removed from the
needles, and is taken to another circular frame of
smaller size, suitable to produce needles, and is taken to another circular frame of
smaller size, suitable to produce a seamless foot. In
placing the work upon the second circular machine, the loops of the instep part only of the leg-piece are
run upon the needles, so that on the completion of rum upon the needles, so that on the completion of
te seamless foot the work consists of two seamless
tubes of different diameter connected in front or at
the instep, but separated behind or where the heel i
to be worked. The heel is afterwards produced in separate frame, the loops remaining at the bottom of
the leg-piece, being rum on to the needles of this frame
Toe-pieces are also, in like manner, worked upon the end of the seamless foot, and these are joined up to close in the foot,
2701. Tuns,
2701. Tuns, Casks, or Barrels, L. A. Groth.- Dated
1st July, 1880.- (A communication from Di: Stahluchmidt.) (Not procecded with.) $2 d$.
The staves of the barrels, if old, are scraped and leaned up; or on the other hand, the new wood is
subjected to a heating treatment interiorly, either by means of fire directly or by hor air, until the outsides
of the staves are warm to the hand of the staves are warm to the hand. Melted paraftine
is then to be cast in or poured over the casks, the warmed wood whereof will readily over absorb the casks, the
which will fill cleanly into the which will fill cleanly into the grooves.
2702. FINGER
2702. Finger Guides for Type-writing Machines,
A. M. Clark:- Dated 1st Juy, 1880.-(A communicution from $A . M . D a$ Costa.). $6 d$.
The key-board is provided with guides for the fingers, so that the keys may be instantaneously found with-
out the aid of sight, for which purpose one or more
longitudinal bars and one or more transverse bars are

employed, and arranged between or above correspond-
ing rows of keys, thus separating them into easily distinguishable sets, and the former also serve as guides,
tiong which the fing difterent keys. In the drawing B and Care the longh-
tudinal bars. and KL M the transverse bars. The projections R divide the numerals into groups. The 2704. Trimating Ships' Cargoes of Grain, \&ce., W.
S. Brice.-Dated 2 nd July, 1880 . Gd. This consists in a shovel A, preferably in the shape rope B at right angles, fastened at or near each of the

2704

corners of the shovel blade. To the back of and above the shovel blade by means of two strong supports, is
arranged a handle by which to actuate or guide the
shovel. C is a hauling rope 2706. Sxow F. Nrele
2706. SNow, F. N. Mackay.-Dated 2nd July, 1880. $6 d$.
One method of manufactiring snow consists in use of the apparatus shown at Fig. 1, and consisting of a chamber round which the refrigerating fluid cir-
culates and maintains a temperature within the chamculates and maintains a temperature within the cham-
ber below freezing point. A perforated tube 4 conveys
water at about 35 deg. . to the chamber 1 , which it enters in jets of spray, and becoming frozen falls as
snow on the door 6. Another method drum rotating in the liquid to be frozen, and through
[2706]

which the refrigerating liquid circulates, so that ice is
formed on the drum, and is removed in the form of formed on the drum, and is removed in the form of shrw. A third method shown at Fig. 2 consists of
cylinder 1, round which the refrigerating fluid circulates. Air containing moisture is caused to enter and leave chamber 1 by the openings 15 and 16 , such
moisture being deposited on the sides of the chamber
in the in the form of snow as the air passes through it, and is
removed by a rotating brush 17, and falls on the door 6 removed by a r
at the bottom.
2707. Cleaning and Polishing Table Knives, \&ce.,
J. Pinchbeck:-Dated 2nd July, 18s0.-(Not proIn a piece of wood a recess is worked to receive a
pad of vulcanised india-rubber. On each side of this
pad is fixed a C spring, and on the top limbs of the pad is fixed a C spring, and on the top limbs of the
springs bearings are fixed, which form part of the
sides of the hopper into which the cleaning powder is splas of In these bearings revolve a sipindle upon
placed.
which a roller of vulcanised india-rubber or other suitable substance is fixed, and at the extremity a
crank handle, by which motion is imparted to the 2708.
2708. Operativa Railway Brakes, A. W. Wigott.-
Dated 2nd July, 1880 .- (Not proceded vith.) $2 d$. Water or other fluids is used to act on pistons or
rams, and such fluid is brought into operation by means of pumps operated by the axxes of the bearing
wheels, the direction or. flow of the liguid being effected by a valve capable of being shifted by excentric or otherwise, so as to cause its pulley to be held in
contact with that on the axle of the bearing wheels, or
withdrwin the withdrawn therefrom.
2712. Repatring After-part of Screw Steambrs,
\&c., Without Use of Dry Docks, Dated 2nd July, 1880. - (Not proceded with.) 2 d.
A chamber is constructed, which may be called partial floating dock, open at one end, and wide
enough to let the largest screw propeller pass, for
which enough to let the largest screw propeller pass, for
which it in intended, while the lenth is sufticient to
reach with the open end some distance beyond the screw prop
the ship.
2713. RAISING SUNKEN VESSELS, D. IV. Sargent.
Doted 2nd July, 18so. (Not proceded vith.) 2 d .
This consists in employing levers fixed ond
vessel, ropes being passed over the levers and attac
to the sunken vessel and worked by a windlass. 2709. Tools for Cutring Tubes or Pipes, S. Buckley.

- Dated 2nd July, 1880. 6d. This inved 2ntion consy, 18sists. principally in combining wrojects inwards through the claw B, its cutting edge

2709

being at right angles or thereabouts to that of the tool D removes the burr as fast as it is thrown up
the 2716. Pevo
716. Revolving or Endless Travelling Rail-
Ways, J.A. Mays., -Dated 2nd July, 1880 . - (Not proceeded with.). $2 d$.
This relates to improvements on patent No. 4109 , ing the noise which arises when the rail at the rear o the wheel strikes against the rear face or periphery of
the wheel on being lifted from a horizontal to a vertical position, it is proposed that the blow shall be
taken by suitably constructed springs or buffers, placed taken by suitably constructed springs or buffers, placed either upon the wheel itself or upon the rails or other
parts of the revolving railway, or upon some part of
the vehicle.
2719. Materials for Clarifying Sugar, Olis, de.,
C. G. Pfander:-Dated 2nd July, 1880. 2d. This consists in the employment of charcoal saturated with blood, and suitably dried.
2721. Substitute for Eyes or Eyelets of Boots,
\&c., B. J. B. Mivles.-Dated 2nd July, 1880 - (A

This consists of a metal loop or bridge piece eyeletted or otherwise rivetted or fastened to the article. 2723. Adjusting Sprivas for Doors, \&c., M. Stobbs, In the top end of the spring a block or solid piece A
is secured, in which two holes $A^{1} A^{1}$ traversing each other at right angles, are made for the purpose of in-
serting a small rod or key to act as a lever for turning

2723

or twisting the spring B. The block or solid piece
is formed cylindrical, and is passed through a cast or formed upon a plate, which is secured to the door or the door jamb. The spring is retained at the
bottom on a pivot pin passed through a solid block to
which the spring is secured. which the spring is secured.
2728. Pumps, A. M. Clark.-Dated 3rd July, 1880.(A communication from E. Leprohon.) 4d.
This relates to cast iron pumpp, and has its object to enable the water above and below the foot
valve and in the suction pipe to be run off to avoid the
bursting of the pump by frost. A is the barrel, B the

2728

tail piece, with a bye-way H for running off the water one with the tail piece, and the valve is fitted therein,
and consists of a boss with a central stem more equidisistant rods D D converging and annited to a
pointed weight F . The frame thus formed serves to guide the valve
2746. Shepr-shears, W. E. Gedge.-Dated 5th July,
1880. - A communication from J. Corey and N. W. A A are the blades of a pair of shears, and B is th connecting curved or bow spring, which unites the
rear ends of the shanks C. A curved or U-shaped spring D is secured between the shanks. The ends of
this spring are bent outward so that they may be

rivetted or otherwise secured to the inside of the
shanks. The bight or curve E of the spring whit
bow. Between the parallel sides D of the spring is
placed a fulcrum F, which may be moved from the
curve E to the opposite end, and fixed at any desired curve
point.
2766. Steerina Vessels, t. Glover, jun.-Dated $6 t$ This relates to the method of transmitting the power
from the bridge steering and from the bridge steering apparatusus to the tiller of the
rudder, and consists of doubling the purchase block ry means of a block with a traveller attached to the

2766

top of it. A is the purchase block attached to the tension upon the chain D to wheor amidships is
increased or relieved by action of the steering increased or relieved by the action of the steering
wheel. E is the chain to the tiller. 2820. Protectors for
820. Protectors for the Soles and Heels of
Boots And Shoes, de., C. H. Puglh.-Dated 9th Juy,
1880 . 6d. This consists in constructing studs or protectors of
metallic frames containing reticulations or opening metallic frames containing reticulations or opening
for the reception of pieces of leather, wood, or othe hard and durable material in combination with countersunk holes in the said metallic frames for the
purpose of receiving the heads of fixing screws ornails. 2615. Manufacturing Fanay Yarns, J. Lawo and W.
and T. Kitchin.-Dated 26th June, 1880.- (Not proThis relates to improvements on patent No. 4703,
A.D. 1879 , In addition to the forward motion an interA.D. 18 . In 1 addition to the forward motion an inter
mittent lateral motion is imparted to the frame and apparatus, so that the several coloured slubbing from
which the "knobs" are made will be changed in posiwhich the "knobs" are made will be changed in posi-
tion in relation to the doffer, and various coloured tion in relation to the doffer, and various coloured
deposits of slubbing will be rubbed upon and incorpo-
rated with each finished slubbing of yon 2650.
2659. Connections of Lamps, \&c., A. Clark.-Dated
29th June, 1880.-(Not proceded vith.) $2 d$. This consists in the construction and combination of parts for connecting the reservoirs of oil and spirit
lamps, flower vases, centre pieces, and other articles lamps, flower vases, centre pieces, and other articles,
to their pillars or stands, and for conneecting the
burners of oil burners of oil and spirit lamps to their reservoirs.
2879. Fountain or Reservoir Pens, W. R. Lake. Dated 12th July, 1880-- (A commumication fiom A. This consists partly of an ink delivering tube of
small diameter in combination with an enclosed tube claring spindle provided with means, extending
through an enclosing tube to the upper portion of the through an enclosing tube to the upper portion of the
ink reservoir, for drawing it upward or backward
against the downward action of a spring. against the downward action of a spring
3226. Clipping Sealskins, L. A. Groth.--Dated 6th
August, $1880 .-(A$ communication from F. F. and G. Cimiotti). $6 d$.
This consists of a knife-edged bar, over which the
sealskin is tightly stretched, and intermittently sealskin is tightly stretched, and intermittently
fed by means of winding and unwinding rollers C C ${ }_{1}$.
The narrow portion or strip of the skin directly over
the knife edge is exposed to a vertical blast of air 3226

from a bellows or blower D, and the fine hair or wool is retained at both sides of the knife edge by laterally
movable guard-combs F. The stiff bristles projecting movaule guard-comss a . The stir then clipped off by
through and above the combs are thent knives or shears G arranged above the 3377. Manufacture of Sheets of India-rubber, D. This consists in corrugating, fluting, or arching the
material on both sides and also in uniting the corrugated sheets to produce cylinders or tulb the corru3500. Closing or Fastening Gloves, J. Trefousse.-
Dated 28th August, 1880 . 6d. This consists in closing or fastening gloves by means
of nippers or pincers throughout their length, and on either side of the glove opening, the said pincers being
made from a metal piece folded in two for forming surfaces more apart at the mouth than at the bottom, so as to allow of the ready introduction of and nipping
or catching of the lace serving to close the glove. 3761. Heavy Guns, J. B. Howell.-Dated 16th SepAn ingot is cast which may be hollow or solid, to
form the barrel or tube, and is subjected to the action of a hammer, squeezer, or similar compressing apparatus.
The block or tube is then reheated and when at a sluxient heat to liquefy a flux, borax, or other suitable
flux is applied to the surface of the it is at once placed in a prepared mould. A quantity
of molten fluid steel is then run round it sufficient to of molten fluid steel is then run round it sufficient to
produce the thickness required at this stage of the produce the thickness required at this stage of the
process, and which welds and becomes perfectly com broced with the metal of the block; pthis is is again-
subjected to the action of the hammer or squeezer, subjected to the action of the hammer or squeezer,
and again placed in the furnace. These operations
are repeated are repeated until the desired size is attained, the
block being afterwards bored and finished in the usual
4412. Breech-Lioading Fire-nrMs, A. J. Boult.-
Dated 28 th October, 1880 .- (A communication from

Pivotted at its lower end within the stock is a
breech block D, which is breech block D, which is capable of being turned
against the rear end of the barrel, so as to close the

opening therein, and also turned down so as to un-
cover such opening and enable the cartridge to be
inerted
the block is locked by the piece E, provided with a lut
by which it it worked, and a spring to keep it in it
it locked position. The hammer F is pivotted at the
same point as the block D, mand is thrown forward by a
flat sming G Gecured at it tront fat spring G secured at its front end to the barrel),
and an its rear emd by b bride to a lug on the
and
 ocked position, and is released by tre trigger K which same point as the breech block, to which it is so conneeted as to operatece on the explodedec cartris so conse
nnd withdraw it when the block has nearly reached its
ned owest position. A locking bar engages with the
ear I to prevent the opening of the breech block or he springing of the hammer.
4489. Feeding Nail Machines, H. J. Haddan.-
Dated 3rd November, 18s0. - A communication frion W. Briggs.) (Complete.) 6d. ment of a feeding apparatus so arranged in its action
that the parts employed to hold the plate from which the nails ar to be cut will turn over and present the
plate to be cut, and then remain stationary asufficient

amount of time for the operation of cutting to be fully performed, when it again turns over and acts in a
imilar way. The second part consists in the con truction and anangement of the jaws employed fo halding and guiding the said plate from which the
nails are cut. TThe first part consists in the combina-
tion with the barrel L of a rack or similar device for tion with the barrel L of a rack or similar device fo revolving said barrel operated by a crank I, which i
in turn operated by a crank D. The second Fig
shows a plan of the upper inclined surface of the rear shows a plan of the
part of the barrel L.

SELECTED AMERICAN PATENTS.

俍 the United States' Patent office Official Gazette
236,138. Dredaing Bucker, Jolin A. Ball, oukland,
Cal.-Filed July 23rd, 1879. Brief:- The bucket has an externally-swinging
ottom connected to the chain by two pairs of bars or bottom connected to the chain by two pairs of bars or ithe rear. In passing the straight portions of the
in the reat course the bottom is thrown up against the bucket;
but in passing round a pulley the curving of the chain hrows the bottom back from the bucket and releases the contents thereof. Claim. - (1) The bucket, having
he gate F attached to the link E , by which it is con-
nected to the belts or chains
236.136

, or the mechanical equivalents, substantially in the K and L , with bearing roll J and the shaft, in comnstructed and operated substantially as and for the with the hangers B, chain G, links C in combination ses set forth. (4) The links D and E and gate F , nen combined and perated in connection with the hangers B B and neeting links C and D, and b
and for the purposes set forth.
236,174. Boller Front, Thomas I. Parvin and John Caim. -The within-described boiler front support
Cat water heater, consisting or and water heater, consisting of a box, with a recesss
adapted to receive the end of a cylindrical boiler, pro-
236.174

ided with fuel and ashpit openings, communicating from the latter and from the walls of the fireplace,
and constituting the front and supporting the end of and constituting the fro
the boiler, as set forth.
236,184. Pneumatic Brake for Elevators, \&c.
John H. J. Schmidt, Cincinnati, Ohio, assignor o.
Frank X. Oehler, Onio, assignor of
Clain.- (1) In combination with a pneumatic eleva-
or brake, the driving shaft C , air compressor N , excentric O, shiftable clutch P, lever \mathbb{S}, piston T,
spring R, and receiver L, which receiver communicates with the cylinder for the purpose of permitting
the compressed air to operate the piston T , as herein the compressed air to operate the piston T, as herein
described. (2) In combination with the air cylinder J , pipe K and tank L of a pneumatic brake for elevators,
the throttle valve K and regulator M, for the purpose described. (3) In combination with shaft C, gearing
with the racks B B of an elevator, the air cylinder J, with the racks B B1 of an elevator, the air cylinder J,
lever H, brake band G, and drum, which drum is
attached to said shaft, as herein explained. (4) The
combination of driving shaft C , brake apparatus G H
236.184

J, regulator M, reservoir L, and compressing device
substantially as described.
236,185. Apparatus for Producing Chilled Cast 236,185. Apparatus for Producing Chilled Cast
tings, Joseph Seaman, Chicago, Ill.--Filed Januar:

Claim.- (1) The combination of the hollow chill block provided with journals, by which it is supported
so as to be capable of rocking in its bearings, and the so as to be capable of rocking in its bearings, and the
steam and water inlet pipes provided with cocks and
communicating with the chill block, substantially as communicating with the chill block, substantially as
and for the purposes hereinbefore set forth. (2) The
tubular journals, in connection with chill blocks, one

236.185

of which journals serves as an inlet pipe for the supply
of steam and water, or their equivalents, as temperof steam and water, or their equivalents, as temper
ing mediums, the other tubular journal serves as an escape pipe, substantially as hereinbefore described
and set forth. (3) The chill, having a chamber, in combination with a supply pipe and a perforated cross
pipe, as and for the purpose of equally diffusing the pipe, as and for the purpose of equally diffus
tempering medium on to the back of the chill. 236,221. Spelter Furnace, Albert Harrickell, Brook-
lyn, N. Y., assignor to George A. Pope and George lyn, N. Y, assignor to George A. Aope and Greorge
B. Cole, Baltimore, Md. Filed March 14th, 1879. Claim. - (1) In combination with the fire-box and
stack, the fues J, M, K, L, retort chambers and fur-
naces as set forth. naces as set forth. (2) In combination with the com-
mon ffre-box G, the retort furnace wings located at
either side of the same and provided with channels mon fire-box G, the retort furnace wings located at
either side of the same and provided with channels
$\mathrm{J}, \mathrm{K}, \mathrm{L}$, and ducts M , leading to the common stack E , $\mathrm{J}, \mathrm{K}, \mathrm{L}$, and ducts M, leading to the common stack E
the channels L being provided with dampers Q , as set
forth. (3) The retort furnaces N having openings 00 the channels L being provided with dampers Q , as set
forth. (3) The retort furaces N having openings O
communicating with the fire-box below or above the communicating with the fire-box below or above the
grate, or both, as described. (4) In combination with
the retort P and grate, or both, as described. (receiver B, having per-
the retort P and pipe R, the rem
forated false bottom S, as set forth. (5) In an apparatus for separating zinc from other metals, the receiver
B, having registering condensing pipes R T, as set
forth. (6) In combination with the retort P, the

236.2e1

receiver B, having the inclined registering pipes $\mathrm{R} T$
for the discharge of condensed products and for the inspection of the colour in the retort, as described. (7) In combination with the receiver B , the pipe T ,
having semicircular partition and scraper, substantially as described. (8) In combination with the re-
tort furnace and flues $, K, L, M$, and pipes connect-
ing tort furnace and flues J, K, L, M, and pipes connect-
ing the flues M J with the interior of the retorts, as
described. (9) The method herein described of rendering metallurgical retorts metal proof or impervious to the molten metals, consisting in decomposing
within the retorts a hydrocarbon gas, whereby the
walls of the retorts become coated and impregnated walls of the retorts become coated and impregnated
with graphitic carbon, as set forth. (10) In an appara-
tus for the separation of zinc from other metals by tus for the separation of zinc from other metals by
distillation, a retort having its interior surface coated
with graphitic with graphitic carbon deposited from a hydrocarbon
decomposed within the retort, as set forth.
236,239. Clamp, Edwara L. Morris, Boston, Mass.-
Fliled May 21st, 1880.-(No model.) Claim.-In a clamp having bearing surfaces C D, be-
tween which articles are to be griped, the sliding
wedge-shaped half-nut wedge-shaped half-nut G, constructed to operate in
connection with the screw B and the chamber E , the

said chamber having one side parallel with the screw
and the other side at an angle with the screw to fit the half-nut, for the purpose of engaging or dis-
engaging the screw at will, substantially as described. engaging the screw at will, substantially as described.
236,245. Machive for Redocing and Straighten-
ING TUBES, Joshua Nuttall, Allegheny, Pa., assignor ING TUBES, Joshuca Nuttall, Allegheny, Pa., assignor
to himself and Johi uar Rhoodes, same place.-Filed July
24th, 1880. Caim. (1). In a madel.) mane for reducing, rounding,
and straightening pipes, tubes, and rods, a plurality
or series of rolls arranged in close succession in a com-
mon frame on one side of the line of feed, said rolls
having their axes parallel and all crossing the line of having their axes parallel and all crossing the line of
faed at other than a right angle, in combination with
a set or series of like number of rolls arranged in similar succession in a commben frame on on the opposite
side of the line of feed, the latter set or series also side of the line of feed, the latter set or series also
crossing the line of feed, but in a different direction
from the first set or series, substantially as set forth.
236.245

(2) In a machine for reducing, rounding, and straight-
ening pipes, tubes, and similar articles, the combina tion of a series of rolls C arranged in a common
frame B on one side of the line of feed, with a similar rame B on one side of the line of feed, with a similar
series of rolls C^{\prime} arranged in a common frame $\mathrm{B}^{\text {B }}$ on the opposite side of the line of feed, and mechanism
for adjusting either or both ends of such frames toward and from each other, substantially as described,
whereby the two sets or series of rolls can be adjusted whereby the two sets or series of rolls can be adjusted
to produce the desired amount of reduction in one pass of the tube or rod.
236,256. Spring-Tooth Harrow, Oscar J. Punches,
Plymouth, Mich.-Filed November 10th, 18so.-(No Claim. - (1) A double harrow tooth formed of a bar of curved spring metal, with a rigid cutting tooth in ront and a spring tooth in rear, substantially as
described. (2) A double harrow tooth formed of a ba curved spring metal, with a rigid cutting tooth in
front and a spring tooth in rear, the rigid cutting
tooth being twisted so as to present its edge to the

flat portion of the spring tooth, substantially as
described. (3) The curved double harrow tooth B having the spring point C, twist perforated socket and
rigid cutting teeth D with its plope perpend Hlat portion of the D with its plane perpendicular to the
flat
described A of the curved double harrow, with a harrow frame spring point E, twist rigid cutting tooth D and pivotal
bolt F , substantially as described.
236,269. Grain Separator, Cyrus Smith, Canton,
Ohio. Filed July 7th, 1880.- (No model.).
Caim.-In a winnower, the combination, with the Claim.- In a winnower, the combination, with the
fan of the vibrating shoe, constructed with the upper screen I inwardly inclined chantructed with which carries the
grain away from said screen and

236.2.69

thereto, an outwardly inclined screen, the inwardly
inclined chute N , the grain trough M attached to the rear of the shoe, and the shield or apron Q between
the grain trough and the chute K, substantially as and for the purposes set forth.
236,321. Duplex Telearaph, Joseph F. Fenn, Eliza-
beth, N.J., assignor to the Western Union Celegranh
beth, N.J., assignor to the Western Union Telegraph
Company, New York.-Filed October 28th, 18so.-
Cuaim. - (1) The combination, substantially as here-
inbefore set forth, of a duplex telegraph apparatus inbefore set forth, of a duplex telegraph apparatus
and a main line, with a bar of soft iron having its
ends so connected that it will form a close ends so connected that it will form a closed magnetic
circuit, and a coil or helix enveloping said bar, or a
portion thereof, which coil is included in the main circuit at a point between the main line and the re ceiving is ${ }^{\text {tialument, }}$
tially as hereinbefore set forth, of two or tore
detached of equal, or substantially equally, magnetic length
and each and each forming a closed magnetic circuit surrounded
by a series of helices having unlike numbers of con-

2363 2ा

volutions respectively, and a commutator, whereby
the helices surrounding any one or more of said inde pendent cores or bars may be included in or cut ou
of a circuit. (3) The combination, substantially a hereinbefore set forth, of two or more detached and
independent cores or bars of soft iron of different independent cores or bars of soft iron of differen
magnetic lengths, surrounded by a series of helices
having an equal, or substantially equal, number of convolutions, and a commutator, whereby the helice
surrounding any one of said independent cores or bars may be included in or cut out of the circuit.
236,399. Magneto-eleotric Machine, Alfred G.
Holconbe, Neve York, and John N. Crandall, Nor-
Claim.-(1) A magneto-electric machine in which
the whole induced conductor, wound to and fro longitu-
dinally on a cylindrical armature, and having no pole pieces projecting between its sections, is in one cir-
cuit, with only two free ends, in combination with series of field magnets, substantially as and for the urpose hereinbefore set forth. (2) The armature of a 236.399

magneto-electric machine, composed of the dises or
rings G , with or without the brass hubs F and bars H ,
in combingtion with the tudinally to and fro thereon and secured to the bars tudinally to and fro thereon and secured to the bars
H, substantially as set forth. (3) An armature for a
magneto-electric magneto-electric machine, composed of a magnetic
cylinder, either solid or with interstices, having a
conductor wound to and fro on the face or faces cylinder, either solid or with interstices, having a
conductor wound to and fo on the face or faces
thereof, in one circuit, with only two free ends, with no poles pieces projecting between the seections of the
conductor, substantially as and for the purposes hereinbefore set forth.

CONTENTS.
The Engineer, February 4th, 1881
Institution of Mechanical Engineers
On Harvesting Machinery
On that
On

 Express Loconotive. (Ilustrated.) (Ilastrated.)
Wood PULPMAKING MACHINERY. Rallway Matters.
Votes and Memorand
Miscellanea ...
Leading Articles
The Employers' Liability Act.
Doctor Jo McLeav's Peicen
Goctor Jo. Mclean's Peace-make
Gas Production in Claveland
The Manchester, Sheffield, and inincoln-
Literature-
The Principles of Graphic Statics. By G. S.
Letters to the Editor-
Fire Engines at Melb
 The institution of Civil Engineers\quad.. 92 Birmingham, Wolverhampton, and otie DISTRICTS
Notes FROM
Notes fror Sancashire
Notes from the North of England

Abstracts of Patent Specifications. (illus
trated.)

Naval Engineer Appointments
Launch on the Tyne ${ }^{\text {King's College Engineering Society }}$
King's College Engineering
Institution of Civil Engineers
Kenyon's Indicator
Newsvendors' Benevolent $\ddot{\prime \prime} \ddot{d}$ Provident Inst \ddot{i}
A Great Steel Casting
A Great Steel Casting.-We omitted to state last week, in giving an account of the grea
crucible steel casting at Messrs. Jessop and Sons Brightside Steelworks, that it was supplied to
the order of Messrs. Buckley and Toylor, the order of Messrs. Buckley and Taylor, engiSouth Kensington Musedm.- Visitors during the week ending Jan. 29th, 1881 :--On Monday, 10 p.m., Museum, 6681; mercantile 10 a.m. to building materials, and other collections, 1856 On Wednesday, Thursday, and Friday, admissio mercantile marine, building materials, and othe collections, 137. Total, 9747 . Average of corre sponding week in former years, 15,142 . Total
from the opening of the Museum, 19,666,430. Newsyendors' Benevolevt and Paovio Institution. - The annual general meeting of thi institution will be held at the office, 28 , Martin' Lane, Cannon-street, City, on Tuesday, 8th Februpresident, in the p.m., Mr. Horace Cox, vice report and balance sheet; to elect the annual the institution; to elect one pensioner ; to tak into consideration the transfer of that portion
of the capital of the society of the capital of the society, now invested in consols, into such other security or securities a
the meeting may direct; and other ordinary business.
Epps's Cocoa. - Grateful and Comforting which govern the operations of digestion and nutrition, and by a careful application of th hine properties of well-selected Cocoa, Mr. Epps cately flavoured beverage which way a deli use of such articles bills. It is by the judicious may be gradually built up until strong enough to subtle maladies are floating around Hundreds of attack wherever there is a weak point ready to escape many a fatal shaft by keeping ourselvy well fortified with pure blood and a properly
nourished frame."-Civil Service Gazette only in packets labelled-"JAMES EpPette.-Sold AND Co of Epps's Chocolata E isence for afternoon maker

