THE ROYAL AGRICULTURAL SOCIETY'S SHOW at READING.
In our last impression we gave our readers such particulars of the show of the Royal Agricultural Society as
will enable them to form a fair idea of its magnitude. We will enable them to form a fair idea of its magnitude. We
this week publish a key plan of the implement section, this week publish a key plan of the implement section,
arranged on a system which has been found to answer arranged on a system which has been found to answer
very well. The whole of the implement ground is on our very well. The whoures, the implement ground is on our
map cut up into squares, and in the margins will be found map cut up into squares, and in the margins will be found
the names of the exhibitors, the numbers of their stands, and letters which indicate in which square of the plan the number sought for may be found. The ground on which the show is held stands high, and a great ded to reauce it to mud. Warned, we suppose, by the results of the experience
of past years, which goos to show that while the of past years, which goes to show that while the
last week of June and the first week of July are dry,
the secons and third weeks of the second and third weeks of Juiy are always wet.
Exhibitors have this year taken care to avail themselves of the opportunity afforded them by the clerk of the weather, and even on Monday last most of the heavy machinery was in place, and the whole implement yard was wonderfully will be in any sense or way a specially interesting show, the contrary, although the number of stands, the length of shedding, and the number of exhibits compare favourably with those of past shows, there is more than the are inadequately represented, and manifest, indeed, a very lukewarm feeling concerning the Royal Agricultural Society. If the programme of trials proposed by the
Committee could have been carried out, there would Committee could have been carried out, there would
have been much done to attract attention and excite interest. But the world apparently begins and excite little indeed for the prizes of the Royal Agricultural Society. A smart competition was expected in trials of steam drainage ploughs, There were, however, only two entries, both of which have been withdrawn. It was anticipated that the farmers of England would take a great deal of interest in machinery for harvesting corn, but the competition in this class of machinery almost
fell through altogether, and there are but six competitors for a prize of $£ 105$ offered not by the Royal Agricultural Society, but by Mr. Sutton. Again, the Society went to a great deal of expense in
getting up appliances for testing centrifugal creaming getting up appliances for testing centrifugal creaming withdrawn save two, namely, Messrs. D. Hald and Co.,
Great Winchester-street, London, and the CentrifugenbauGreat Winchester-street, London, and the Centrifugenbau-
Actien Gesellschaft, of Hamburg. At one time the prizes Actien Geselischaft, of Hamburg. At one time the prizes
of the Society were eagerly contended for. Now no one of the Society were eagerly contended for. Now no one
seems to care to have them ; and the Committee will do seems to care to have them; and the Committee will do
well to consider in time what steps should be taken to well to consider in time what steps should be taken to
restore the influence of the Society. We but echo a restore the influence of the society. We but echo a
generally expressed feeling when we assert that manugenerally expressed feeling when we assert that manu-
facturers ought ; not to have seats at the Council Board. We do not mean even to imply that these gentlemen are not honourable, high-minded men. But are prepared partially at least, and the arrangements for tests are made, by men who may be at any moment the trade rivals of the competitors, and this is, in plain terms regarded as a scandal which ought to be put an end and of its committees and Council, when we say that the high position which it has held can only be regained and retained by the steady maintenance of a policy which will render its strict, unvaried, and absolute impartiality a fact which no one, not even a disappointed competitor, will dare to question.

The relative values of centrifugal cream separators may not appear to be a subject likely to interest engineers; but of working; and the results and even elegant in their mode cannot ping; and the results obtained are so curious, that we silence. pass over the trials which took place this week in is to separate all the of the centrifugal creaming machine of peimitting it to separate at its leisure. Cream contains the more oily portions of the milk, and being of less specific gravity, it rises to the top in an ordinary vessel, but
it only does so very slowly, because the difference in specific gravities is very small. Df, now, by anence in specific difference could be augmented, the separation would take place more rapidly. Let us suppose, for example, that the force of gravity were increased, while the internal resistance of the liquid which tends to prevent separation remained unchanged, then the difference would be intensified. Let us assume, for example, that given
similar quantities of milk and cream weigh respectively similar quantities of milk and cream weigh respectively
10 lb . and 9 lb , the definite tendency to cause separation is 1 lb . If, now, the action of gravity were multiplied ten-fold, the figures would become 100 lb . and 90 lb ., and Now this is practically what the se 10 lb . instead of 1 lb . Now this is practically what the separator does. The milk
is put into rapid rotation within a cylindrical vessel. The is put into rapid rotation within a cylindrical vessel. The
"skim milk" being the heaviest
 is carried with more force to the outside than the lighter cream and if means could be provided
for scraping the cream off, it for scraping the cream off, it
could be obtained distinct from the more watery portions of he more watery portions o minutes than that of the hours now required. The hennexed now required. The annexed
sketch illustrates the principle of the Hamburg separator, and will serve to make our meaning clear. A is an iron vessel or
cing shown in cross section and mounted on the shaft A is about 3 ft . in diameter, and makes 1200 revolutions per
to 95 deg. Fah., is poured into B minute. The milk, heated to which it is delivered in a small stream to the inside of the cap A. It is immediately impelled against
the curved lip by centrifugal force and assumes somewhat the position shown at H H, the milk outside, the cream inside or next the centre. D shows a peculiarly-formed scoop or scraper, which goes just far enough into the
curved lip of A, and nearly on a level with the axle to curved lip of A, and nearly on a level with the axle to
scrape off the cream and deliver into a suitable vessel scrape off the cream and deliver into a suitable vessel.
The machine costs $£ 250$, and will skim, it is stated, 300 gallons of milk per hour.
The separator shown by Messrs. Hald and Co. is some what different. In its case the milk heated to 95 deg. is allowed to run into the inside of a small cup of pecoliar
form, which is caused to revolve on a vertical axis at no

fewer than 8000 revolutions per minute. The milk and cream climb up the sides of the cup, the cream being lightest on the top, from whence it flows away through a
mall slot, while the heavier milk is delivered at a some what lower level through a round hol detvered ampanying engraving illustrates the machine. The milk is delivered through a tap nto the funnel a, and passes through a small tube connected with the funnel into the rotating
vessel A, which runs at a velocity of 7000 or 8000 revolutions per minute. To the bottom of the funnel is soldered a thin wing, which forces the milk to follow the rotation of the vessel. As soon as the fresh milk enters the rotating vessel an instantaneous separation takes place. The
heavier portion, or the skim-milk, is thrown towards the circumference of the vessel, and forced up the bent tube b, whence it is delivered through the aperture c into the an outlet two tin trays or covers B, which is provided with rises around the outside of the funnel a, and through a small slit in the cylindrical upper part of the rotating bowl it delivers itself at e into the upper cover C, whence it is discharged through an outlet pipe. At k is the driving pulley.
arrangements made for testing the machines were very complete and extensive. Mr. Anderson, of Erith, lent the Society two large sugar clarifiers, with 370 gallons; steam was supplied by a double cylinder Clayton and Shuttleworth engine, which also drove the apparatus. The clarifiers stood on a high stage at one end delivered thence, and the milk was heated in them and competitors drew their supplies of milk through suitable pipes. A somewhat complex system of shafting was fitted up overhead to convey the power to the machines. In front of the dairy shed was laid a line of rails, on which
travelled a truck carrying a beautifully made 4-horse semitravelled a truck carrying a beautifully made 4-horse semiportable engine, by the Reading Ironworks Company. this engine could be put on to drive any of the machines, dmirable service dairy shed was a small testing room for Dr. Voelcker, and opposite to it was an office for the judges. A Stroudley's speed indicator was fitted against the wall, to give the
velocity of the line shafting. A series of raised steps at velocity of the line shafting. A series of raised steps at
the back of the shed afforded privileged visitors an opporthe back of the shed afforded privile
tunity of seeing what was going on.
The first trial of the cream apparatus, which we have described, took place on Tuesday, after a great deal of time had been wasted in endeavouring to get the driving
gear right. This was not the fault of the competitors, but gear right. This was not the fault of the competitors, but
arose entirely which have on other occasions been supplied by Messrs. which have on other occasions foen supplied by Messrs. bands were new ; consequently they stretched when put to work. Then the engine had to be stopped and the bands cut and relaced; as there were a good many bands, and plenty of stretching took place, the interruptions were numerous, At last, about half-past two o'clock, Mr. Carey, the Society's engineer, got things right, and a shaft, and further delay was incurred. From three p.m. however, the trials went on without interruption till nearly five, under the superintendence of Mr. Anderson, Dr. analysis have yet to be made public. This is, in one sense, the crucial test, but regarded from other points of
view it appears to us that the Lamm machines, exhibited by Messrs. Hald and Co., were better than those of their
competitors. They are much lighter and smaller, and will cost less for driving gear than their competitors. Again,
while the cost of the Hamburg machine is $£ 250$, and the while the cost of the Hamburg machine is $£ 250$, and the quantity dealt with per hour 300 gallons, the cost of the from 60 to 80 gallons per hour. Taking the smaller quantity, we find that five Lamm machines, costing $£ 185$, will do as much as the single Hamburg machine, costing $£ 250$, which is a very important consideration.
It is true that the Lamm machine runs at 8000 revolutions It is true that the Lamm machine runs at 8000 revolutions per minute, but neither of those at Reading gave the slightest indication of heating in the bearings, and they are so well made that we see no reason why they should not give quite as little trouble as the bearings of the
Hamburg rotating vessels, which make 1200 or 1300 revolutions per minute. In both machines, so far as could be lutions per minute. In
seen, the action is perfect, the cream being separated very seen, the action is perfect, the cream being separated very
completely from the milk. Some very interesting facts in the motion of fluids are supplied by both machines. For example, in the Lamm machine the milk falls through a
the moter example, in the 6 in. in a stream about $\frac{1}{2}$ in. diameter on to the flat base of the separator cup, which is revolving, as we have said, about 8000 times in a minute. The base imparts some of its motion to the liquid column, which is accordingly set in rotation, and revolves from the cup to the resembles to the eye a screw with a rapidly increasing twist. This rotation is quite different in character from that frequently acquired by liquids in flowing through orifices. Again, in the Hamburg machine a complete ring of milk is formed, in section as in the sketch, where the shaded portions A A are the milk, the indicating the position of the cream. This forms a thin ring resting on the milk, which, being the heavier, keeps, as we have explained, to the outside. to be bored of cream has, so to speak, this is done by the pointed end of the scoop, which dips about the
twentieth of an inch below the twentieth of an inch below the rotating surface. The point of the which does not fill up until more than one complete revolution is made, and if something did not happen, the point of the scoop or skimmer would enter the groove again as it came round, and so no skimming
could be done; but something does happen; the single groove cut by the scoop parts into two almost immediately, which two divide, one going toward the inside, the other toward the outsil he breadh-from H to H-of the cream ring-and by the time they have come round again inches level of the point of the scoop they are a couple of only does the scoop always find them. For this reason not but every portion of the surface of the cream ring is brought by degrees in contact with the scoop and peeled off, flowing by degrees in contact with the scoop and peeled off, flowing
down the scoop into a can placed to receive it, while the milk is drawn off in a way which we cannot make intelligible without drawings of the actual machine, which we hope to publish next week.
It is noteworthy that the Lamm machine removes impurities from the milk in a remarkable fashion. Dr.
Voelcker showed us a tin containing some ounces of thick matter consisting principally of epithelial cells, blood corpuscles, serum, and dirt, the whole presenting an appearance sufficiently disgusting to make those who saw it vow they would never touch plain milk again; but after all the quantity was very small considering that it had been obtained from about 60 gallons of milk. This mach
will be shown in action throughout the show week.

TRIALS OF HAY AND CORN DRYING

Great have been the disappointments at Reading this week. Many people have travelled long distances to witness the trials of hay and corn drying apparatus and machines, which were, according to the programme, to have fairly commenced on Tuesday. Many visitors, anxious to come to some decision as to the best of the machines of this class, as they are now wanted in all directions, sought the trial grounds on Tuesday, only to find a number of Samuelson'smowing machines cutting the grass as the preparatory step to further experiments, and to see a Gibbs hay-drier worked cold. Others, who had perhaps some idea that delays would be very probable in trials which depended much on weather and the Society's staff arrangements, concluded that it would be certainly safe to give one day's grace, in order that competitors might get fairly to work. They might, however, have given several days more, for nothing but grass cutting and some tossing took place on Tuesday, and grass cutting on Wednesday, except hat on the latter day a few more of the competing rick-drying machines made an appearance ing. The crop to be treated by the machines is very heavy ing. The crop to be treated by the machines is very heavy,
and in one meadow it is exceedingly coarse grass and of great length. This was a very heavy test for the mowers, for not only is it, as one man working Nicholson's haymakers said, "as long as ropes," but it is rank, tough, and in some places rotten at the bottom. It frequently clogged the mowers and the haymakers also when going with the wind. The meadows are very near to or are part of the sewage farm, and are often a long way under water. No actual operations with the new apparatus took place on
Wednesday and if any do take place to-day it will probaly be only with one of to take place co-daybs hay and cor drier by means of heated air, exhibited by Mr. W. W. Champion, the manager of the Reading Urban Farm, may be at work. On Saturday more may be at work, but we believe that those who wish simply to see
them in operation, and to gain some idea of their relative merits, but do not wish to see the trials all through, will be quite in time to learn all that can be learned on Monday Here we may not unprofitably mention that visitors wil do well not to ask for Manor Farm, on lands belonging to which some of the trials take place, but to ask for The Farm, that the near these, and a long way from tano Butts is far less than to the farm, the nearest way being by Castle-street and Coley-street.
Of the machines entered for trial, eight at the time of writing were in the meadows, and a ninth had made its appearance, though it was put down near the entrance to the meadows, as though uncertain to enter the fight or
not. If Gibbs' machine is excepted, all those yet in not, If Gibbs' machine is excepted, all those yet in
appearance are for treating the crop when stacked. Gibeas machine, as our readers are arop ware, is a large affair with an attached furnace and a great fan driven is delivered on to the grass or corn to be dried, while the litter is kept in agitation by shaker forks, the onward latter is kept in agitation by shaker forks, the onward
motion of the material being effected partly by the forks motion of the materia being effected partly by the fork or tines and partly by the reciprocating motion of the long
double-inclined platform on which it rests, and over which double-inclined platform on whicit passed. The machine exhibited has been considerably it is passed. The machine exhibited has been considerably
used by Mr. Champion. He cut 50 acres of rye used by Mr. Champion. He cut 50 acres of rye
from the sewage farm, and after it had been half made in the ordinary way, bad weather set in, and he finished by this machine with the satisfactory
result that whereas he had not been able to use the sewage rye but for litter before, that dried by the machine was cut up and used for fodder, and the cattle liked it. Owing to the partial fermentation that had taken place Mr. Champion says, it had a sweetened taste, and when being cut up had a malty smell. He had also cut 911 acres of grass, and the weather being very wet had successsfully treated it in the machine, its employment in both case being economically satisfactory; but the chief objections to the machine are its size and cost. The cost will probable be reduced, and improvements made in design and workma
The machines for treating the crop in the stack consist through the stack exhaust fan by which air is draw be used as cores to leave holes in the stacks, and rough slide boxes for controlling the quantity of air drawn through the stack or stacks. In each case the fan is the main element of the set of apparatus, and in some ingenuity has been taxed to produce either a good fan or one which should run at a high speed by hand, and the latter problem was not, perhaps, to be solved readily; but one maker, the Agri-
cultural and Horticultural Association, has been so imcultural and Horticultural Association, has been so impressed with the desirability of doing without straps, and as
much as possible with high-speed cearing, that they employ much as possible with high-speed gearing, that they employ a sun-and-planet motion, by which a speed of three to one
is given to a large flarged disc, within the flange of which is given to a large flanged disc, within the flange of which
runs a pair of idle or friction wheels which press runs a pair of idle or friction wheels which press
the small leather-coated pinion of the fan shaft on to the smang leather-coated pinion of the fan shatt on to
the flange of the disc. On Wednesday a bystander upon hearing of the combination enclosed in this fan-box said he could no longer wonder why the weather was so
very unsettled. As though to show the opposite extreme very unsettled. As though to show the opposite extreme
in construction, one maker, Mr. Bamlett, shows a small fan on the end of a long wood frame, carrying also a wrought iron fly-wheel 54in. diameter, and with one strap connecting strap and fan. There are several diffecent forms of ran employed. Five of them have the common square or rectangular blade rumning in a large case,
with the tips nearly touching the case near the delivery part of the casing, while in others a Schiele or turbine wheel form is employed. The first met with on entering the trial meadows is that exhibited by Mr. entering the trial meadows is that exhibited by Mr.
James Coultas, of Grantham. This is a large fan of James Coultas, of Grantham. This is a large fan or removal from stack to stack, and provided with three sucremoval from stack to stack, and provided with three suc-
tion inlets for three sets of pipes from or to as many ricks or places in a large rick. This seems to be quite unnecessary as one inlet pipe attached to a main pipe with branches to any number of ricks would do equally well, except that in this case the slides employed have in some cases to be under the rick. This, however, is not necessary, as the have branches into the run by the side of fan is 35 in in diameter over the tips, and has four flat blades 12 in . square. It is driven by a portable engine of about 8-horse power, by Messrs. Brown and May, and will, in the first trial at least, be tried on a rick 30 ftt . in length and
10ft. in width, built over the mouths of five 9 in. diameter pipes. The latter are imbedded in the fan, are of glazed earthenware. In building the ricks over the mouths of the pipes a light wood cage, splines nailed to about four small wood frames, is employed so as to leave the space shown at G-see diagram-into

which the air and moisture from all directions are drawn through the pipe F by the fan A. In the diagram B
shows the trunk inlet for the inlet pipes and bends E E;
dampers or controlling slides are placed at C C, D is the and thermometer tube, S the horse shats for without any pipes or bends. The fan was set running on Wednesday, but the rick will not be ready for it to work or a day or two
The next fan met with is exhibited by Mr . C. Phillips, of Newport, Mon. This is a 15 in . fan of the centrifugal pump or closed air wheel type, drawing in air from both ides. The inlet pipe is 7 in . and the outlet $7 \frac{1}{2} \mathrm{in}$., galvanised iron sliding sleeve pipe connections being mployed. It is mounted on a cast iron stand on four wheels, carrying a small countershaft with a 5in. pulley for the engine strap, and a 173 inin. pulley for the fan strap, the fan spindepulley being also in. diameter. The cost is $£ 13$, without piping. The piping employed is light iron 7 in.
diameter, and costs 1 s . or 1 s .2 d . per foot galvanised. The thermometer tubes are of wood or of iron as the purchaser may wish. The fan is about 3 ft . from the ground, a vertical pipe descending to the pipe leading to the stack and being connected therewith by a bend. This fan of Mr. Phillips is to be driven by a $1 \frac{1}{2}$-horse vertical engine by Messrs. Ransomes, Sims, and Head. Mr Phillips also has sent for trial a fan in wood case fan with rectangular blades, with outlet $10^{\frac{1}{4}} \mathrm{in}$. by 7 in . and 24 in. across tips of blades, and it draws through wood tubes $10 \frac{1}{2}$ in. by 8 in. inside. This fan is worked by one large spur wheel gearing into a pinion on the fan spindle. The cage used by Mr. Phillips for building into the rick consists of three wrought iron rings 24 in . diameter, to which are attached ten wood splines about 7 ft . long. A the end of the pipe under the stack or stacks is a slide or damper box fitted with a slide and a rod handle passing to the outside of the rick through a tube. To the performance of these fans and those of other makers we must return in our next impression. The following table give the name and numbers and machines of this class in the trial fields on Wednesday night

Maker or exhibitor.	Number entered	$\begin{aligned} & \text { For } \\ & \text { hand. } \end{aligned}$	$\begin{gathered} \text { For } \\ \text { power. } \end{gathered}$	Deseription of fan
Coultas..	1	-	1	Common.
Phillips	2	1	1	Closed wheel and common.
Lister	1	-	1	Turbine wheel.
Bamlett	1	1	-	Turbine wheel.
E. Pratt	1	1	-	Common.
Agricultural and Horticultural Association	2	1	1	Common.

VISITS IN THE PROVINCES. the engineering works of leeds. No. I.
Leeds, very long celebrated as a home of the woollen manufacture, may now be said to be equally celebrated for itsengineering and ironworks; for the value of its products in iron and steel is now at least as great as that of its textile manufactures. For this reason it is an appropriate place for the visit of an engineering institution. From a technical point of view the Institution of Mechanical Engineers could hardly visit a town which has so much to show and from which so much may be learned. Machine tool and engine building are perhaps the chief features in factures the Leeds engineers use tooss, bud in the extent to which they aepreciate the value of f all kinds as the means of saving time and labour lie ne of the points of interest to the technical visitor.
Leeds is a very old town, or perhaps it might be more correctly said that a town has existed for a very long period on part of the site of what is now Leeds with its numerous parishes. The first positive mention of Leeds seems to be by bede, who wrote about 690-731, and called quently, in common with most Yorkshire towns and villages, it had very bad times under the Normans. The castle or castles built by them have all gone; though in xcavating for buildings in 1828, and again in 1868-7 oundations of a castle and the course of a moat round it Charles I but it suffered severely during the civil wars 1639-1649-but under the Commonwealth it flourished though of the buildings then erected few remain. In the Leeds Museum may be found many interesting relics o the past history of the town; but the great modern manufacturing growth of the place seems to have obliterated almost all the evidences of middle age, for Leeds is singuarly barren of the external evidences of a history, such as are yet to be found in many towns with which it was contemporary. Leeds is now a big manufactory, and for a southerner there is something not altogether inviting in ife. In such a place even the intervals of leisure seem so much like mere rests to gain breath and strength for the renewed struggle of the morrow. The forest of chimneys, which can be seen for miles round, and which make it a second Sheffield, sending forth during the evening a light
smoke, seem continually to say "fires banked down, but smoke, seem continually to say "fires banked down, bu the place the ey for the morning. To thsse ace course as free from any depressing sense of ever present workshop as are those of the London man of business who gets away where far from the scene of his toil, and perhaps even more so than with some London men. To most visitors, however, it does not seem it can be so, although at no great distance from Leeds the hills afford the sites for many very pleasantly situated dwell will of the Institution of Mechanical Engineers next month
will therefore be almost wholly of a technical character,
for one of the only early remains, the Kirkstall Abbey, is associated with the Kirkstall Ironworks. During the week of the visit a large number of the ironworks and engineering works will be thrown open by the proprietors
for the inspection of the members and their friends and for the inspection of the members and their friends, and
as no one can hope to visit all-and indeed if they attend as no one can hope to visit all-and indeed if they attend prepared chiefly by local engineers, but a few of them will e visited by any one individual-we propose to give a brief description of the leading features of the works, or he things now being made in the works to be visited, so a a selection may be made by each visitor, of those engaged in the particular branch of engineering in whic
he is most interested. We may commence then with

KITSON'S LOCOMOTIVE WORKS.

These works are situated in Hunslet-road. The visitor first enters a fine suite of offices, the general character of which bespeaks the prosperity and good manageorks thench ample evidences are to be ound in between eleven and twelve hundred men, and are occupied almost wholly on locomotive, stationary, and tramway engines, though a number of Parson's high-speed engines, designed for driving dynamo-electric, and similar highspeed machines, are to be seen in various stages of connumber are being built for the Western of France Railway, some being 6 -wheel and others 4 -wheel coupled engines for goods and mixed traffic, with 16 by $22 i n$. cylinders, all being fitted with the Westinghouse brake. ome very notable differences between French and English locomotive practice are here to be seen, and these re perhaps in no point more remarkable than in what we hould consider unnecessary work, formation of details, and in the large quantity of brass work and polish. The afety valve cases, for instance, are heavy castings in brass, while on the ther and bors, Wht in for cast iron for engines in course of construction for Ceylon they buy the engines by the kilogramme they may put in they buy the engines by the kilogramme they may put in
as much brass as they like. The brass glands, which in English engines are of a form which admits of machine finish, are so designed that they involve a lot of hand work; and the regulator casting, which in the English engine is of a well-known simple form, is, in the French engine, one which taxes the founder's ingenuity. The connecting rods are made with a very long fork for the crosshead end, and with a fork for the big end somewhat thus, so that they are expensive forgings and expensive

fittings, while if one of the screw ends, which take the place of bolts or keys and cotters in our rods, breaks, the whole forging is a waster. The cylimders onglish engees would deem very bad practice. The cast bracket plate at the side of the cylinder is comparatively small and coniderably out of the centre line of the cylinder, while they are housed on to the side frames thus, so that to get the

cylinder off the frames have to be separated; but if the casting were made as indicated by dotted lines, it would have a good hold on the side frames and good support, and ould be fued all thike ons to be done for no better da f the cy material of the side frames by cutting the the chap wave The French engineers will not, howpiece out as the Foglish constructors, and as an example f the way in which unreasoning persistent adherence to e n ecif郎 mentioned that a locomotive firm, not in Leeds, had ecently the whole of a lot of the polished brass sheets, with which a number of locomotives were to be lagged and made pretty, rejected because on analysis it was found the metal contained about 2 per cent, more copper and per cent. less spelter than the specification stipulated.
The works are undergoing alteration, and amongst the machine tools in course of erection is the largest rivetting machine, Tweddel's system, that has yet been made for rivetting up boiler shells vertically. This machine is 12 ft . between the rivet dies and the bottom of the jaws, and will give a squeeze of 40
xed engine work a lathe to take in a 2 ft . wheel is being erected, and close by is a new shop specially devoted to the erection of the tramway engines, of which Messrs. Kitson have now a large number in successful work and a large number in course of ensive struction. These engines have now been ice they are in use in Blackburm where steam traction alone is employed, and are working in the streets of Leeds, Glasgow, Edinburgh, Bradford, Dublin, and elsewhere. They are of the locomotive type, bed the couplenser, consisting of a grid of thin copper pipes
covering the engine cab, the pipes having a large number covering the engine cab, the pipes having
of radiating plates soldered to them thus-

0 (0) 0

These tubes are about an inch in diameter, and are placed transverse to the cab, and connected to larger pipes roof, and into which the exhaust steam enters. This condenser effectually prevents all noise and appearance of the exhaust steam. About sixty of these engines are now at work, and large orders are in hand, including more for Edinburgh, now that the Act for employing steam power has been obtained. We are informed that these engines work for $4 \frac{1}{d} \mathrm{~d}$. per mile, including every charge,
and that of this 0.9 d . is the cost of fuel, and as only 90 gallons of water are required per day, the quick services, like the seven and a-half minates run in Glasgow, are not affected by the stoppage for water, which had been required with water condensers. In the machine and fitting shops the visitor will be struck with the very large quantity of machine tools employed, and especially with the number of revolving catter tools, incluaing disc wheels thel calters forming circlar saws used for catting and man fork joints, and many other purposes. In the foundry full appreciation of che valid pore there being besides wo steam jib cranes. . The electic cised to be of used value in the foundry, though of course it costs more than a similar quantity of light would cost where as be a similar quantity of light would cost where gas can be had, as in Leeds, for 1s. 10d. per thousand. The Leeds instead of using the profit, as in Manchester, to lower instead of using the profit, as in Manchester, to lower
other rates, thus allowing the consumers of gas to reap the benefit instead of extending it to all, including those who do not use gas. In speaking of the tramway engines whe should mention as one of the details which show how we should mention as one of the details which show how with their levers are all forged in one piece instead of keying the levers on a plain shaft. These levers cannot get loose.
There are very few old machines in the works, but amongst the few is a punching and shearing machine made in 1848 by Joshua Buckton, and this is apparently as good as new, and in design and workmanship is an evidence of knowgh quality of the tools turned out by that wellgreat many mo whose works we touched upon demand the attention of the visitor, though our space will not permit is to dwell further on these works, but as belonging to the same firm we may next refer to the Monkbridge Ironworks, which are situated in the White-hall-road, near Wortley, Leeds, and the entrances are just at the foot of the Monk Bridge. This bridge is over the Aire, and deserves a passing remark, not because of any
features which would now be considered worthy of imitafeatures which would now be considered worthy of imita-
tion, but as an illustration of what was done in 1827 and tion, but as an illustration of what wa
which we should be afraid to do now.

This bridge was erected in 1827 from the design of Mr George Leather, of Leeds, by John Sturges and Co., of the Bowling Ironworks. It has one main span, as here roughly sketched, and two very small openings in the abutment piers. The main span is 112 ft . and the
bridge is 36 ft . wide; the cost was about $£ 4800$. The roadway, supported on light cast iron transverse girders is suspended from arches by double rods about 1 in. diameter placed about 5 ft . apart. The rise of the two arch ribs is pernaps 3oft., and though they are of cast iron, of the section here given, the only lateral support they by the two struts ingis that by the section eve, supplied by the two struts, as indicated by the section sketch above. the ribs seem to be in four pieces, a hollow key-piece at halves, as indicated by the sketch. There seems to be no halves, as indicated by the sketch. There seems to be no girder at the top of the ribs and if we may judge by the girder at the top of the ribs, and if we may judge by the
sinuous lateral vibration which accompanies the passage of a sinuous lateral vibration which accompanies the passage of a tho-horse omnibus across this bridge, we should say that
this bridge certainly ought to receive such support and other strengthening additions. The bridge is known as "the suspension bridge," and there is another similar to it crossing the river Aire between Hunslet-lane and Knostrop-road. We must defer our notice of the Monk Bridge Ironworks to another impression.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
hydraulic ship lifting docks,
SIR, - My letter to you on this subject, which appeared in your
iournal of the 9th June, was not an unjust attempt to divide the journal of the 9th June, was not an unjust attempt to divide the
honours of this invention, which is now an old one, and las long honours of this invention, which is now an old one, and has lons
ago become public property. It was, however, intended to give correct information on the subject of your article and illust
of the 19th Nay as they credit of the design and construction of the hydraulic ship-liftin docks at the Victoria Docks, at Bombay, a
the firm of Messrs. Clark and Standfield.
Mr. Standfield admits an inaccuracy with regard to the Bomba Dock. He should have cleared up all mystery on the subject by admitting that he had nothing to do with the Vietoria Dockj, which
is quite an old affair, or with the Nalta Doclk, which was is quite an old affair, or with the Malta Dock, which was almost,
if not entirely, constructed during his absence at Bombay, and a in existence. It is true that three only of your nine instration refer to the Bombay Dock, though this is made the title of your article, and is therefore very prominent; ; and I must remark that
five of the others are intended, as far as novelty is concerned, to ive of the others are intended, as far as novelty is oncerned, to
explain improvements in which I purchased a share since Mr.
Sta explain improvements in which I purchased a share since
Standfield returned from Bombay. Mr. Standfield wrote me few weeks ago that he had no share in them. How, then, can
Messrs. Clark and Standfield be sole engineers to them without Messcs. Clark
my authority
My authority?
As far as I
As far as I know the air-bag illustrated in Fig. 9 is the only your correspondent's firm. It is quite true the transergs and the pontoon of the Bombay Dock were made and very well made, by the firms mentioned in Mr.. Standfield's letter, , but per-
mission was first obtained for these firms to aet as sub-contractors mission was first obtained for these firms to act as sub-contractors
to Messrs. Emmerson and Murgatroyd; Mr. Standfield may have inspected these parts of the work before going to Bombay, but Mr Duer rexularly inspected them and all other parts of the work during their construction. Mr. Standfield is wrong in insinuating
that a lhere that a arge portion of the work was done before Mr. Duer com-
menced liis labours, as the contract was not settled at that time due, however, to Mr. Henry Wyndham to say that he and As Mr. Standfield now talks of canal lifts, I may say that I was asked a short time ago by a member of his firm to lend them drawings of the Anderton Canal Lift. It was said they had lost their copies, but the truth is that the working drawings were not made
in the office of any member of the firm of Clark and Standfield and never have been in their possession. J. T. EMarierson. Peover, Knutsford, July 3rd.
SIR,--In your number of the 23 rd of June Mr. Standfield begin a letter to you on this subject by saying, "It is within the know-
ledge of most engineers that Mr. Edwin Clark was the inventor patentee, and engineer of all the hydraulic docks and canal lift that have yet been constructed." I have not previously taken any
notice of this letter, as I wished to give Mr. Edwin Clark the notice of this letter, as I wished to give Mr. Edwin Clark the
opportunity of correcting the extraordinary statement which I opportunity of correcting the extraordinary statement which
have quoted from it. He has not corrected $i t$, and I will therefore not let it pass any longer unchallenged.
docks , or he would have hesitated beut the history of hydraulic assertion with regard to them, and a little more inquiry will show him that his remark is incorrect. I wish, however, more especiall refers to canal lifts.
It would, perhaps, be too absurd to suppose that your corre-
spondent seriously means, which he however says, that Mr. Edwin Clark was the inventor, patentee, and engineer of all the canal lifts of every kind that have been constructed ; and I will therefor
without Wenout further remark, confine my observations to the hydraulic
canal lift at Anderton, and even with this limita will suffice to show that your correspondent is in error. The ide of raising and lowering floating barges vertically at Anderton by
hydraulic power was originated by Mr. E Leader Willi hydranlic power was originated by Mr. . Leader Williams,
M. Inst. C.E., who at the time was engineer to the Weaver
Tither Trustees. I do not remember that any of the ideas involved in
its construction were originated by a member of the firm of
in Messrs. Clark and Standfield; in fact, I assert that they are The English patent
the Anderton lift was granted to Mr. Edwin Clark on the 18th February, 1873; but the contract for this work was dated the 16 th of September, 1872 -that is to say, the construction of the lift had
proceeded for five months before it was patented. The reason that this invention was left unpatented for so long would come better from Mr. Standfield than from me; but whatever it may have been, it follows, from the delay, that there is no patentee for it
I wrote a paper on the subject of the Anderton lift, which was
read at the Institution of Civil Engineers on March 21st, 1876, and your readers will find in it more information than I can give in a letter like the present. I could say more about the engineer ing and design of this lift, and could probably give a differen appearance to what your correspondent says about the docks, but
think that I have exposed his inaccuracy sufficiently to render it

Sidengham Duer.

6, Westminster-chambers, Victoria-street,

London, S.W., July 3rd

electrical accumulators.

SIR, -I should feel obliged if you would grant me space to call important articles upon "Electrical Accumulators and Secen and Batteries," by Professor Cilver Lodge. It is in reference to thi
very hei very high electromotive force that he assigns to the Faur
accumulator, namely 2.5 oocasions the opportunity of measuring and testing several lead secondary batteries of various forms, and amongst others the Faure
accumulator. Now not once have I been able to obtain accumulator. Now not once have I been able to obtain such a
high electromotive force as 2.5 volts ; in fact it was in all cases rather under than over 2 volts. As this is a most important factor in calculating the amount of work obtainable from secondar batteries, as well as in comparing their respective values, it woul
be interesting to know whether Professor Lodge has himsel obtained an electromotive force of 2.5 volts from a Faure accumu-
lator, or only assumed it for lator, or only assumed it from hearsay. I believe M. Faure give
the electromotive force of his accumulator as 2.2 volts.
July 4th.
F. G. Howard.

MR. SCOTT RUSSELL.
SIR,-In the excellent article under the above title contained in your issue for 16 th June, 1882 , you make no mention of the steaì
coaches designed by Mr. Scott Russell, and which ran rell well for some time between Glasgow and Paisley. These carriage have been referred to by numerous authors, but, so far as I am
aware, they have not been illustrated and fully described in any the numerous works dealing with the history of the steam engine
The Earl of Caithness in a paper "s before the British Association in 1859 , says : ""Mr. Scott Russel" made a successful steam carriage, and if it had not been for a
most unfortunate misunderstanding between the promoters of the carriage and the road trustees, whereby a atal accident took place,
I believe it weld I believe it would then have made a great stride in the right direc
tion. It performed its journey very well for some time

conveyance. These ran for many months with the greatest regu-
larity and zuccess, and the trip, a distance of seven miles and a-half, was run in from forty to forty-five minutes. An accident, caused y the breaking of a wheel, which happened to one of these carle
the Court of Session to interdict the whole set of carriages from unning
Among some introductory remarks in the report of the traction engine trials at the Wolverhampton show in 1871, contained in the
R. . . E. Journal, vol., vii., mention is made of these cariages
designed by Mr. Scott Russeli, and it is here stated that the boiler The fullest report of these carriages is given in Mr. John Head's paper on "Steam Locomotion on Common Roads," read before the
members of the Institution of Civil Engineers in 1873, and from his soure we learn that thes carriages were among the and from cessful ever designed. "In 1834 six of them ran for hire between
Glasgow and Paisley. They were abandoned chiefly on account of Glassow and Paisley. They were abandoned chiefly on account of
hee opposition of the road trustees, who placed every conceivable he opposition of the road trustees, who placed every conceivable
impediment in their way, at last causing a serious accident, which mpediment in their way, at last causing a,
resulted in the death of several persons."
I should be very pleased if some of your numerous readers could give us more particulars of these interesting carriages sand in you,
Mr. Editor, could furnish us with an engraving of one of them in a subsequent number, you would gain the thanks of all, who like ater, take a great interest in everything pertaining to stean 29th June.

the foundation of mechanics.

Sir, -I shall not require much of your space-and this shall be the last time I ask for it-to reply to the letters of "O."" and
" Φ. Π." in your last issue. It is survising that the latter did not see that the sentence he quoted from Rankine was his ow condemnation. I need only recall the first words-"In a heat engine moving with a uniform periodical motion.", Of course in such an engine the resistance measures the pressure, because the
fact that the motion is uniform shows in itself that the two equivalent. But a locomotive starting a train is not a heat engine moving with a uniform periodical motion, because every successive
troke is made quicker than the last, and therefore the statement stroke is made quicker than the last, and therefore the statement
does not apply. Why is the qualification put in, but that Rankine does not apply. Why is the qualiitication put in, out that Rankine
knew, as every student should know, that withoutit the statement would not be true? I must repeat, for the last end that the different and must not be confounded together.
Again, it is surprising that both "C." and " Φ. Π." shoul actually take the term "cylinder pressure" to mean the average pressure, and not, as is always customary, the initial pres
sure. It is obvious that by manipulating the point of cut-oft we can make the average pressure vary as we like, from the initial pressure down to a small quartity, quite independently of the resistance. To
impart this idea into the discussion would therefore be absurd. impart this idea into the discussion would therefore be absurd. A
for "C.," I would advise him to try a simple experiment. Le any engin full steam with a full charge, disconnect the throw off the main driving belt. If the steam pressure in the cylinder falls to next to nothing-as it should do on his theory-
shall be astonished. But I think that it is "C." who will be astonished.
As to the other point, I am sorry I cannot "take ' Φ. In's.' wor for it "that "the act of melting is nothing more than the moving
f the water molecules," or that " the internal motion of a liquid is greater than that of a solid "" "the internal motion of a liquic has more internal motion than a pound of red-hot iron-or that the difference between a solid and a liquid is exactly this "-fo The true difference, as generally supposed, see Maxwell's "Theory
of Heat," p. 306.' On the contrary, I affirm, once. more, that the internal motion is exactiy that which is measured by temperatur - see baifour stewart on Heat,' pp. 367, $360-$ that the tempera ure a pound of water or ice, each at 32 deg, being the same
their internal motion is the same; and therefore the heat expended, or the work done, in turning the ice into the water is
not represented by the motion existing in the water.-N.B. I do not therefore assert that it is not represented in some way I do not suppose it can be for the interest of your readers that the "Foundations of Mechanics," which you were kind enough to insert, because I felt it to be desirable that many engineers should think more clearly, and write less confidently, on these matters
than they have done ; and that conviction has certainly been deepened by the present correspondence. Perhaps I ought formally o disclaim all connection with any such monstrous equations $\mathrm{FM}=\mathrm{R}$, or $\mathrm{F}=\mathrm{MR}$, which have been fathered upon me. My views on the relations between force, motion, and resistance-
which are simply the views of all authorities on mechanics-have been fully set forth in the papers referred to

SIr,-In my letter, which you did me the favour to publish in
 the sentence eatter the words "to be 6 ib. upon the square inch,
by adding "the ititial pressure, say, 60 lb . per square inch," but Isuppose I must inadvertently have omitted those words in the $\stackrel{\text { MS. }}{\text { July 1st. }}$
the north-EAST COAST EXHibition.
SIR,-The Committee of the above Exhibition regret to find that ocal affair, and that there is no wish or desire to include exhibit from a distance. Such is not the wish of the Committee ; on the contrary, they hope that exhibitors from all parts will send
exhibits. If they do so, I am sure they will be heartily welcomed exhibits. If they do so, I am sure they will be heartily welcome.
GEOD RENWICK, Hon. Sec.
and appreciated.
castle-upon-Tyne
July 5th.

the royal agricultural show

SIR, -I find there is a new rule this year that all machinery mus be in its place, fixed, and painted, by July 1st, or a clear weel
before the show. On discovering this yesterday I immediately before the show. On discovering this yesterday I immediately
wired to the secretary asking whether my machinery would be be
admitted. Itwasall loaded upand would havebeenin position to-day admitte. It wasalllooadedupand would have been in position to-day
the reply was in the negative. I hear that goods have sinco been admitted into the yarc. The ordinary rules are well known to aniual exhibitors, and such a clange as the one mentioned, 1 maine
tain, should be specially pointed out, and if the hard-and-fast line is drawn in one case it should be in another. I trust you will find room for this to explain the non-appearance of my exhibits.
Castle Engine Works, Stafford, July 5 th.
W. G. BAGNALL.

A Large Boring and Turning Machine.-What is described as the largest boring and turning machine in the United States has
just been set up in the establishment of McIntosh, Hemphill, and Co., of Pittsburg, Pa. It weighs $235,000 \mathrm{lb}$, or 110 tons, is 25 ft high, and occupies a space 30 iot. square. It will turn, bore, and
cut a key-way in wheels of any size up to $16 f t$. in diameter by 11 ft .
wide wide on the face.
A REMARKABLE Block of Amber,--Some fishermen of the Isle Weighing more than 81 1. It is is pin. long and 5 zini. in circumference. It is a most remarkable piece of amber, having all the
qualities which distinguish the rarest pieces-colour, dark yellow, shining like glass, and not transparent. It is rare that a piece of amber weighs. 1 lb . The piece which is preserved in the Museum
of Natural History at Berlin weighs about 14 lb.

WATER-TANK ENGINES FOR THE CAPE COLONIES' RAILWAYS.
MESSRS. HAYWARD TYLER AND CO., LONDON, ENGINEERS.

Messrs. Hayward Tyler and Co., of London, have lately supplied to the Cape Colonies Railways a rather novel description or combination of engine for the combined office of washing out locomotive fire-boxes and carrying water up the line to outlying stations. The engines, six in number, were made for the ongineer to the rail ways, Mr. Hutton Gregory past president of the Institution of Civil Engineers, being consulting engineer to the Crown Agents of the Colonies. In some of the outlying stations on the Western system water is scarce and of exceedingly bad quality, necessitating frequent washing out of the fire-box casing of the locomotives-hence the use of one of the pumps shown in
our engraving. It is one of the well-known "Universal" steam pumps of Messrs. Hayward Tyler and Co. It has a 7 in . steam mander and a 4 in . double-acting pump, and is fitted with ball valves of india-rubber. The pump is capable of throwing from sure of some 80 lb per square of water per hour against a presthe engines are applied is that of filling a train of water trucks of which we are told the railways have provided themselves with some thirty. The second, or auxiliary, pump has a steam cylinder of 5 in . and pump 5 in . diameter. By means of hose, water can thus be picked up on the roads and carried into the interior. The boiler is of the locomotive type, made of steel; all flanges
formed by hydraulic pressure. It is of 6-horse power, and capable of supplying steam of 150 lb . should it be desired. Both pumps are provided with ample hose in lengths fitted with unions, and the washing-out engine is fitted with nozzles suitable for going into the mud-holes of the fire-boxes. Coal bunkers the railways Water tanks for the supply of the type used by provided. All parts are of the best description of material, and great care has been bestowed in the design so as to have everything conveniently arranged for performing the duties for which the machinery was intended. The engines were built under the inspection of Mr. Stanger, of Queen Anne's-gate.

THE CENTRE-CYCLE.

[^0]HIGH-PRESSURE FILTERS.
MESSRS. J. HALLIDAY AND CO., NEWTON, MANCHESTER, ENGINEERS.

CAST IRON SIEVE STANDARDS AND CHARCOAL BOX

By the accompanying engravings we illustrate a form of char- When it is necessary to clean the filter the stream is reversed, Woal filter made by Messrs. Joseph Halliday and Co., Portland purifying large quantities of water for drinking and manufacturing purposes, but it is also made for filtering sewage water. The filters we show in elevation and section above, and also an arrangement of the filters for sewage water treatment is shown. In the latter the water is received into settling tanks, and pumped from them into the filters, which may be duplicated and placed in one line, or set apart as shown. The ilter is charged with charcoal made for this purpose, and is constructed as shown in section, the fluid entering at the bottom and passing upwards through the filtering medium. In this way
all the solid matter is kept at the bottom side of the filter. into a tank for cleansing discharge, and is there dealt with; the water for cleansing purposes is taken from a well of clean water, so that t
process.
The fil
The filter case is made of boiler-plate, the pipes of cast iron, nd all valves are of brass with brass seatings, the outer casing with perfast iron. The interior of the filter cylinders are fitted rings. Charcoal for the purpose of sewage filtration differs from the charcoal used for domestic or manufacturing purposes, and can be made where the filters are used at a cost of $£ 3$ per ton.
The cylinders are 8ft, diameter, and will take a charge of char-
coal to fill two cylinders-which is called one filter-of 11 tons This charcoal may be taken out and reburnt, but it would be cheaper to only wash the larger sort and renew the fine beds, which may be said to be about five tons, costing at each renewal $£ 15$ without labour, and would require renewing every three 80,000 gallons per hour of sewage water taken from, would filter tanks; and adding the cost of pumping, he says the cost thi mode of treating sewage would not be more than 18s per $1,000,000$ gallons.
The filters are being extensively made for boiler purnoses, and are now used to cleanse the water from the hot well, and are 1000 gallons: it into the boiler at a cost of one halfpenny per 1000 gallons:

BREWING IN \#ENGLAND. No. IV.

improved maltings.

Now that the malt tax is repealed and malting is absolutely free, it is to be expected that many changes will be introduced into the system of making malt. Formerly malt had to compete with sugar alone, and although the past ten years have revealed
retrogression in the actual quantities of malt made, the immense retrogression in the actual quantities of malt made, the immense up the increased quantity of beer produced, but also materially to assist in keeping down the prices of malt. Now, however, malt has a third rival, and one which the trade, both as to its mode of production and the value of its products. Other grain than malt can be used entirely at the discretion of the brewer. Hence, rice, maize, or similar cheap starchy grain is already extensively by all brewers. As a consequence, for a long time to come it will be idle to expect any material addition to the number and capacity of our malt-houses, but improvements in the re-model-
ling or a replacement of existing maltings may not only be safely predicted, but is an absolute necessity.
In the maltings illustrated by us this week, page 8, as designed by Messrs. H. Stopes and Co., Southwark-street, London, a number of novel features are introduced which add materially
to the effective power, safety, and economical working of an to the effective power, safety, and economical working of an
ordinary malting based upon the English type, or following the ordinary malting based upon the English type, or oen invariably
system of working which, until recently, has been
adopted in Great Britain. It is planned as a series of four con-

ON TIDES AND TIDAL SCOUR.* By Mr. Joseph Boult, C.E. [Continued from page 470.]
On referring to the tidal hours of the British Isles, it will be found that the earliest point of contact is the islet of Rockhall, is at 3.30 . On the west coast of Ireland the earliest time is also 3.30 ; that is at the Blaskets, off the extreme point of Kerry,
long. 12 deg. At the extreme west point of France, the Isle of Ushant, the hour is practically the same, or 3.32 ; at Cape Ortegal
and Finisterre, the north-west extremity of Spain, the time is and Finisterre, the north-west extremity of Spain, the time is earlier-or later-to the Straits of Gibraltar, and the West Coast of Africa, sugggestive of a meeting in the Bay of Biscay between
the North Atlantic return and an offshoot from the equatorial the North Atlantic return and an offshoot from the equatorial
regions of the African coast. Rockhall and the Blaskets are nearly on the same meridian. From the latter the tide hour point, on the south, at 6.0, Tuskar at 5.45, and Ballycastle Bay, on point, on the south, at 6.0 , Tuskar at j.4., and Ballycastle Bay, on 11.0 at Carlingford Point. On the north the tidal force is detained in the narrow passage between Fairhead and the Mull of Cantire 11.13. On approaching Scotland the tide hour at St. Kilda is 5.30, at Bernera in the Western Isles 6.11 ; its further progress
eastwards is very irregular and slow until it passes the Mull of eastwards is very irregular and slow until it passes the Mull of
Cantire at 10.45 , reaching Morecambe Bay at 11.26 ; the numerous Cantire at 10.45, reaching Morecambe Bay at 11.26; the numerous the force is divided, the tide hour is 9.45 , thence it advances southward and eastward, with considerable regularity of increase, the mouth of the Thames, the hour being very uniform at place twelve hours later at the Thames.
that the time of high-water of an equinoctial spring tide, April Sth, 1875, is nearly uniform at Whitehaven, Fleetwood, Liverpool,
Belfast, Dundalk, Dublin and Kingstown, the greatest difference Belfast, Dundalk, Dublin and Kingstown, the greatest difrerence
between any two places not exceeding forty-five minutes, whilst it is the same in four places out of seven, two of the other three considerable, being much earlier at Holyhead and much later at Barrow. All these places border the area round the Isle of Man, in which the forces from the north and south unite. Admiral Beechey observed that the time of low-water at the northern and
southern entrances of the Irish Sea, and at the entrance of the English Channel, were identical with that of high-water in Morcambe Bay and the Straits of Dover, and the reverse. Taking Mr. Shoolbred's observations, for the convenient comparison of the
tidal range on the west coast of England and the east coast of

Whitehaven the extreme range is
Fleetwood
Liverpool
Holyhend

$\frac{13488}{20750}$
and at

$\longdiv { 7 }$
That is, the range in England is twice as great as it is at the other each side coincide, the surface is inclined from east to west ; at low-

ONE HUNDRED AND THIRTY QUARTER MALTING.

tiguous buildings of unequal height, each perfectly distinct and fireproof, so that should a fire occur it will be confined to that particular portion of the building in which it arises. At one end hoisted to the top floor ; then, as wanted, it passes through the screen and half corn separator, and is placed upon the floor immediately above the upper set of cisterns, into which it descends as needed by opening a slide. The number of cisterns is twelve ; they are made of iron, and are square, tapering to a point below. When the steeping is complete the water is drained away, and by opening a valve the corn rapidly gravitates
to the floor upon which it is intended to be grown. By these arrangements no manual labour of any descriptionis required in the barley store or cisterns, excepting the small amoun it. The next building to the barley stores is devoted exclusively to the growing floors, three in number. These are arranged so that two are below the ground line and one above. To
ensure perfect regularity of working throughout the whole ensure perfect regularity of working throughout the whole
house, each floor would receive a fresh wetting every day, and a piece would be elevated to the upper kiln floor once every twenty-four hours. In this way each piece is necessarily narrow and under good control. The only mode of communication between the barley store and growing floors is through one smal
iron door and the discharge pipes from cisterns. The kilns are double, each possessing two drying floors, an air distributing chamber, a malt store, and a powerful fireplace. The kilns are of unusual height, so as to gain great effective power. They are designed for wire floors. The grown corn is elevated first to the upper floor, where it is loaded to a depth of 4 in . or 5 in . only.
With the great height of the kiln and an enormous volume of With the great height of the kiln and an enormous volume of
air passing through as a consequence of its construction, the air passing through as a consequence of its construction, the
moisture is speedily driven from the corn, little or no turning of the floor being necessary. Several doors are placed at convenient distances in this floor, which open downwards, and the corn is charge is then placed upon it, so that the same air and heat which continues drying the lower floor can be utilised in driving off the moisture from the second floor, a purpose for which it is particularly well adapted. After being sufficiently kiln dried - i.e., maintained for a number of hours at a high temperature The lower drying floor is fitted with to the adjacent malt store. the only manual labour required in the kilns is the distribu that the only manual labour required in the kilns is the distribution,
levelling, and discharge of the floors and the necessary attention to the fire. As the first floor is at a height of 22 ft . from the furnace bars, this space is utilised by putting a floor round the central shaft. 7 ft . 6 in . from the level of the stokehole floor, and the space between the floor at the bottom of the distributing chamber forms a malt store of large capacity. Ample room is left in the stoking floor for an adequate
supply of fuel. The fourth building is a store for malt combs, supply of fuel. The fourth building is a store for malt combs,
$\&$., communicating with the lower drying floor and kiln malt store by the supply pipes and discharge doors only.
In addition to the many novelties of construction and arrangement of this malting, it is especially designed to have the whole of the hoisting, turning of floors and screens, and pumping of
water to cisterns performed by an electrical motor in connection water to cisterns performed by an electrical motor in connection
with a dynamo machine driven by the main engine of the brewery, with a dynamo machine driven by the main engine of the brewery,
which may be at a considerable distance, or by a fall of which may be at a considerable distance, or by a falcal
water or running stream, should one exist within practicable distance. By this method sufficient power can be gained in an economical form, which would require no shid with little or risk of any kind. Our engravings so fully illustrate the malting above-described, and show the main dimensions, that further explanation is unnecessary.
advances from 4.30 at the Scilly Isles, until it meets that from English Channel, the hour advances steadily to Portland Bill, a little eastward of which it is detained for two or three hours by the contraction arising from the projection of Cape de la Hogue afterwards it advances slowly and gr
Dover to the mouth of the Thames
Dover to the mouth of the Thames.
On the coast of Norway the tide hour at the Romdals Islands, a ew degrees north of the Shetlands, and about 6 deg. east, the tid lands. At the Loffoden Isles, considerably north and east of the Romdals, the hour is noon. Going southwards there is a detention 1.30 , about the same as it is at Arbroath in Scotland, showing a in-draught to the Baltic. At the Skawt, south of the entrance to the Baltic, the hour is 5.56 ; here the hour from the north meets that which travelled through the English Channel along the coasts
of France, Belgium, Holland, Germany, and Denmark. In thum of France, Belgium, Holland, Germany, and Denmark. In thus tracing the progress of the several divisions of the tidal force in
these parts of Western Europe observation has been confined to the most prominent features of the respective coasts, such as headlands or islands, so far as they can be obtained from the Admiralty
tables. The detention caused by islands has been referred to tables. The detention caused by islands has been referred to in
the case of Greenland and the isles of Scotland ; there are two the case of Greenland and the isles of Scotland; there are two
other instances, on the coasts of England and Ireland, which are worth special notice. In the Solent, and as far to the westward as Portland, there are what are termed the first and second high waters. After low-water the tide at Southampton rises pretty
steadily for seven hours, which may be considered as the first steadily for seven hours, which may be considered as the first or
proper high-water; then for an hour it ebbs 9 in., at the end of
which time it bins proper high-water; then for an hour it ebbs 9 in, at the end of
which time it begins again to rise, and in about $1 \frac{1}{4}$ hours
reaches its former level, and sometimes higher ; this is called the second high water. The tidal level is therefore nearly stationary for rather more than two hours; similar first and second high-
waters occur on either shore of the Solent. This phenomenon is ascribable to the tidal force being divided at the Needles, one part travelling up the Solent, passing Hurst Castle at ten o'clock and West Cowes at 10.45, the other passing to the southward, and turning round Bembridge Point at eleven o'clock into Spithead,
reaching West Cowes at 11.45 and Hurst Castle at noon. reaching West Cowes at 11.45 and Hurst Castle at noon. At
Havre the water remains stationary for an hour, with a rise and fall of 3 in . or 4 in . for another hour, and it rises and falls 13 in . only for the space of three hours. This irregularity no doubt arises from the sudden projection of Cape de la Hogue, combined
with the peculiar formation of the coast of Havre. On the coast with the peculiar formation of the coast of Havre. On the coast
of Wicklow county, and abreast of the Arklow Bank, is Courtown a place which is termed a node or hinge of the tide, where it is often said the tide neither rises nor falls. This spot appears to me another example of the division of tidal forces here by the bank of Arklow. Courtown is about midway between Wexford Harbour and Wicklow, and protected
from the sea. There is a difference of four hours in the tidal establishments of Wexford and Wicklow; that is, high-water is four hours earlier at Wexford Haven than at Wicklow Head. At Kilmichael Point, a little north of Courtown, the establishment is exactly two hours later than at Wexford Haven and two hours
earlier than at Wicklow Head. The tidal range is 2ft. at Wexford and Wicklow 6 ft . or 7 ft . It is clear the times of high-water at one end of the channel of Courtown and of low-water at the other so nearly coincide, the tides become complementary, and nearly balance each other at Courtown, producing a state of almost no-tide.
To a limited extent the phenomenon of two tides is found in the Mersey, the flood through the Horse, or Hoose, and Rock channels being twenty minutes to half an hour in advance of that through banks. On the ebb the tide I thined by Great Burbo and other Cheshire than on the Lancashire shore, but not always; in making observations it is necessary to be very careful, as light bodies on
the surface may drift down the river while heavier bodies are stil carried upwards.
From observations reported by Mr. Shoolbred, C.E., it appears
*A Paper read before the Liverpool Engineering Society,
water the inclination is reversed, or, as it may be briefly expressed, at high-water the current is from England and Wales to Ireland;
at low-water from Ireland to England and Wales. tion of this phenomenon is to be found probably in two facts, viz. the re-union of tidal force in the area round the Isle of Man and in Morecambe Bay, and the much greater volume and velocity of the streams in England and Wales as compared with those in reland. If a person carrying water in an open vessel stop suddenly
the surface of the water will rise higher, if he has been moving quickly, than with a slow movement; and so, though in the ocean the surface of the water is not usually much elevated, yet, if any obstruction present itself, the rebound of the force causes an ncreased elevation according to the size and abruptness of the obstruction. In meeting a land stream the result is similar, with
this additional feature, that the surface of that stream is also aised, action and re-action being equal; and when the obstruction raised, action and re-action being equal; and when the obstruction
is removed by the advance of the tidal force a re-action follows which carries the surface of the water about as much below its mean level as it had been raised above, unless the basin is too
shallow. The ebb, then, is not caused by any continued tidal influence, but is the return of the water which had been dammed back by the tidal force during its passage up the river, in which it finally expires at the highest attainable limit.
The motion of this force may be conceived of as resembling the
undulation of a carpet or table cloth when a little air has been caught between it and the floor or table, but the particles of the carpet or cloth do not flow down each side of the undulation as do the particles of water. In the paper before mentioned I have ompared the action of tidal force in channels of irregular section to the rapid propulsion of an elastic dam, which contracts and
expands with the form and size of the channel. Assuming the vertical section to be parabolic, the dam forms a weir of two slopes, up which at each stage of advance the upland waters rise on the one side to descend upon the other; there being two streams on the upward face of the dam, one over the other, the depth of each different draught referred to above. Other things being equal, the height of the weir will vary with the depth of the channel, because the level of the crown of the weir, that is, of high water of any tide, is uniform, or nearly uniform, throughout the tidal portion of river. Thus the reason why dredging has been so serviceable passes into the river, for, if the views enunciated above are correct, tidal force is as viewless as the wind and as immaterial, but because more upland water is pent up and afterwards discharged, force or to if not uniformly, failed . where said to be successful the increased elevation of the level of high water has been very trivial. On the other hand, where the altitude of the tidal weir has been increased by lowering its base, that is by dredging, the effective force of the result is conspicuous in the Tyne, the Clyde, the Tay, the Ribble, the Liffey, and other tidal harbours.
I have been favoured by Mr. Stoney, of Dublin, with interesting information respecting the improvements in the port of Dublin. The history of the operations in Dublin Bay has been recorded by
Mr. J. P. Griffith in a communication to the Institution of Civil Engineers, May, 1879. The bar is from five to six miles east of Carlisle Bridge; in 1819 there were $6 \frac{1}{2} \mathrm{ft}$. of water on the bar at low water ; in $1822,8 \frac{1}{\mathrm{ftt}}$; in 1838 , $10 \frac{1}{\mathrm{f}} \mathrm{ft}$; in $1856,13 \mathrm{ft}$; in 1868 ,
15 ft ; and in 1873 , the date of the last Admiralty survey, 16 ft . $15 \mathrm{ft}$. ; and in 1873 , the date of the last Admiralty survey,
There does not appear to have been any subsequent survey.
o have been any si
(To be continued.)

Smelting Copper in America.-It is not perhaps generally known that very low-grade copper ores are now smelted success-
fully in the United States, and that there is a market for such fully in the United States, and that there is a market for such
ores. We understand that the Orford Nickel and Copper Company, at its works at Bergen Point, is smelting imported, ruming 2.87 per cent. in copper, 4 dols. 88 c. per tor was paid.

RAILWAY MATTERS.

The London, Chatham, and Dover Railway Company announces that the new Kearsney loop line, affording direct communnuicatioes
between London and the Deal and Walmer branch line, has been Our the Ceylon railways the drivers and guards are mostly Europeans, and are said to get salaries ranging from two to thre huudred pounds a year. The station masters are usually Burghers;
that is descendants of the Dutch and Singalese races, and the
remainder of the employes are natives. Iv concluding his report on an accident that occurred on the 29th
May-Whitsun Monday-near Whittington Station, on the Cam. May-Whitsun Monday-near Whittington Station, on the Cam
brian Railway, Col. Rich says:-" "The accident was caused by brian Kaing way, sonting enginge to the tail of the 8 a..... passed by
attacher
train from Aberystwith. This engine is of a description which is quite unfit to run safely with any train.'
A Great Northern train, with an sft. single driver outside cylinder engine, which recently took the Duke of Edinburgh from
Leeds to London on the Great Northern Railway, did the journey, 186a miles, in exactly three hours. One stop was made at Grantham,

A colusision occurred on the 29th May, at Farringdon-
street Station, on the Metropolitan Railway, and in reporting on street Station, on the Metropolitan Railway, and in reporting on
this Major Marindin says:- "I the evidence of the driver of the
Great No Great Northern train could be accepted as correct, the cause of this
collision would appear to have been the accidental failure of part of collision would appear to have been the eacidental failure of part of
the mechanism for applying the continuous brale with which the
train was fitted," train was fitted
Trafyio by steam tramcars has recently been opened between Hanley and Burssem, the engines being supplied by Messrs. Man-
ning and Wardle, of Leeds. ning and Wardle, of Leeds. By the opening of this section the
last link has been added to a chain of steam tramways, seven miles in length, by which conneetion is made between all the chien towns
of the Staftordshire potteries. The system is served by as many as ten steam-condensing smores-consuming engines. From Hanley to
Burslem is said to be the track of the first tram line ever laid in Bursem i.
In a report on the double collision which occurred on the 18th Major-General thutchinson says: :-"'This double collision, which was nearly being attended by most serious results, though contributed to by other causes, was mainly brought about by a direct
violation of the train staff and block telegraph regulations under which the Cockermouth, Keswick, and Penrith single line is worked." He further says: "But for the promptitude which was
afterwards displayed by porter Robinson at Bassenthwaite Lake Station in first despatching the message about the runaway engine and then by clerk Patterson at Cookermouth in receiving an
acting on it, the loss of life would probably have been great," IT will be remembered that some months ago terrible acci happened at Spuyten Duyvil, which was attributedto the Westing house brake, which, it was said stopped a train by its failure, and this train was then run into by a following train. The Spuyten Duyvil
Investigating Committee, has however, reported to the New Yorl Investigating Committee, has however, reported to the New York
Senate attributing the responsibility for the disaster to the en egligence of the rear brakeman, and deprecating the idea that the
automatic brake-cord was used to stop the train. The committe recommend "the Government to exercise such supervision as will
more completely insure an observance of those precautions which more completely insure an observance of those preautions which from the companies.". This verdict
in favour of the Westinghouse brake.
AT the date of recent news the surveyors were busily engaged on
the route of the railway from the Semaphore to Larro Bay Soutl Australia. The Government contemphore to Largo Bay, south reductions in railway fares throughout the Colony. The details o the change have not yet been thoroughly completed. On May 17 th last sections of the Gireat Northern Railway. The former section
is from Orroroo to Quorn, a distance of $58 \pm$ miles ; the cost of this is from Orroroo to Quorn, a distance of $55 \frac{1}{2}$ miles ; the cost of this
was $£ 116,000$. The latter section is from Beltana to Government Gums, and completes the line from Port Augusta to Governnen Gums, as wall as from Adelaide. The total length of railway fron
Adelaide to Government Gums is 406 miles. The total cost, The The collision which occurred on the 13th May on the Midlan
 Moorgate was standing at the up home-signal at Midland junction Midland pilot engine-No. $691-$ which had left Kentish Town for Farringdon-street at 6.30 , and which had by a mistake been
allowed to pass Paulss-road junction, the next block post to Mid land junction, King's-cross, while the preceding train was still in the same block section, was due to a failure in the block working
between Paul's-road junction and Midland junction, King s-cross, and considering that it took place in a tunnel, and with the tatmosphere too thick for the driver of the pilot engine to see the tail
lamp of the passenger train more than 20 yards off, it is fortunate Iv a paper recently read before the Instituticn of Civil Engineers in Ireland, entitled "Engineering Notes in Ceylon," by H. F. A.
Robinson, the author says:-" "The centre of Ceylon is mounwhich a rail way could be brousht up to Kandy from the low
country. At it is, the line runs for about fifty miles nearly level, and then ascends for twelve miles at a uniform gradient of one in forty, with curves as sharp as five and a-half chains. Two engines
are necessary to take the train up this pass, and the time for the
distance is over an every car separately, which, as may be imagined, has the effect of greatly shortening the life of the rolling stock. The gauge of this
line is sft. Gin., or the ordinary Indian gauge. The sleppers, which sleeper, renders it impervious to the ravages of white ants. The carriages are very similar to those ine ordinary use at home, although
they are better ventilated; but they are very stufy and uncom fortable, and, in fact, not fit for the climate. American cars would be much more suitable for the European passenger traffic, as as they
have through ventilation, which is so necessary in the East."
In a recent impression reference was made in this column to the spondent says that there seems little reason to wonder that the horses soon grow thin. The horses on the Reading tramways are
overworked; they are driven a good part of the journey too fast they are driven by very young mon, or mere boys, without experi-
ence and with the thoughtlessess of boys ; they have quite
enough of whin enough of whip, and they have a great deal toomuch of the brake.
Some of the thoughtless drivers employed by the Reading Tram-
way Company seem to imagine that there is something fine in way Company seem to imagine that chere is something fine in
bringing up the horse or horses and car as rapidy as possible,
directly a passenger signifies the desire to alight or enter.
Wite
 Work they are not treated with the carre of an experinenced driver the cars are one-horse and some two-horse, and all are worked two-
horse over part of the road. The company possesses about thirty seven horses, and only about six cars are worked, so that this
should be enough horses if they were fed as well, for instance, as men. Some of the cars are in bad order, and on Wedenesday one car
ran into another becuse of the failure of the brake to aot, and a horse was puch injured.

NOTES AND MEMORANDA.

 AT a temperature of 773 deg. Fah. steam cannot beinto water, no matter how much it may be compressed.
The following test for fusel oil has been recommended by Jorrisow: - Ten drops of colourless aniline and two or three drops
of sulphuric acid are added to ten cce. of the spirit ; a red colora-
tion will fion will b
f less tha
spirit must If less than $0 \cdot 1$ per cent. is present then a greater quantity of the
spirit must be shaken up with chloroform, and the test applied to
霛 the residue after evaporation of the chloroform.
THE number of miles of streets which contain mains constantly charged and upon which hydrants for fire purposes could at once
be fixed, in each district of the metropolis, is as follows :- -Kent,

The first screw boats ever built in America, and, as far as we Diamond, built on the plans of Captain Ericsson, and employed in
carrying coal through the Delaware and Raritan Canal. The first carrying coal through the Delaware and Raritan Canal. The first eailt on Captain Eriesson's designs, under the direction of Captain Stockton. It was a funl rige
use steam only as auxiliny
For the conservation of yeast the following has been recom-
mended in the Cremical Revient - "The thick portion of the yeast is filled into a champagne bottle, and on top of it is poured about $\frac{1}{2} \mathrm{~cm}$. of olive oil. The bottle is then closed by tying a bladder
over its top, and in order to protect it from explosion a pin is put the yeast will keep well for a long time kept in a cold place. Yeast, if mixed with about one-eighth of
pure glycerine, also keeps well for some time if kept in a cool M. ALexandre St. Ives is reported by the Journal of the Society of Arts to have succeeded, after numerous experiments,
extracting from sea-weed a composition like that of starch and sugar, which is well adapted for the economical manufacture o erant substances. The sea-weed, previously washed in pure wate or water impregnated with a little lime or potash, is dried, and
then pounded or ground, according to its variety, and introduced nto a conical boiler. A soluble substance is extracted by a bati of hot water or steam, when the residue on cooling assumes a gelainous consistency.
The following experiment, called "Unburning of Water-gas by Iron and by Magnesium," is given by Nature. $3-4$ grams very
finely divided iron (fervum alcoholisatum) are placed in a small piece of hard glass tubing about $12 \mathrm{cm}$. . long and 14 mm . diameter. One with an ordinary gas exit-tube and small pneumatic trough. The
iron is heated, the water brought to and just maintained at the oiling-point, and the end of the delvery-tube is plunged under
 shown without the use of a furnace or poreelain tube. A similar apparatus serves to show the decomposition of water-gas by
pagnesium ; a piece of magnesium-ribbon about 60 cm . long magnesium; a piece of magnesium-ribbon about 60 cm . long. is
folded on itself so as to form a bundle about lom. in lemgth, which fis placed in in the glass tube ; the water is kept nearly boiling ; the
in t this moment the wat plunged under the water in the trough), when the magnesium is ound to burn vividly in the steam, and hydrogen to be evolved in
quantity.
A remarkable instance of the development of electricity by friction, the Breaver's Guardian says, has been brought to
ight in a Berlin brewery. The building is constructed of stone and iron, with the floors laid in asphaltum. Located
in the upper story of the malt-house is a malt-cleaning n the upper story of the malt-house is a malt-cleaning
machine, from which the cleaned malt is conducted down, through n iron shoot, to wagons in the
through the works, It the malt-cleaning machine remains a long time in operation-which freqently does occur without intermission for three weeks at a time-electricity is developed by
friction of the malt in the iron shoot ; and in the most isolated portions of it, such is the tension of the electricity that spark sparks fly from it to the hands of the employefs. The men at first their fears. This gentleman, Herr Nehrich, brought the subject before the Electro-technical Union, and the discussion thereupon similar appearances in other breweries, \&c. Dr. Werner Siemens showed how, through the existence of the asphalt floors, the malt
room is so solated from other portions of the building that it electrically resembles a Leyden ja
The American Signal Serviec Bureau has in press a monograph,
by Sergeant Finley, containing a review of the observations of biod by sergeant himeey, which have occurred in America during the past eighty tornadoes, which have occurred in America during the past eighty-
seven ears, with generalisations from the reorded facts and
suggestions as to the methods which ought to be followed in the nvestigation of such storms. It appears that tornadoes occur most requently in summer, and in the min ond april than in July, and
have occurred, however, more frequently in in May and September than in August. The average wiat of the
path of paln of destruction is
velocity of form twe to sixty miles. The wind within the
vortex sometimes attains a velocity of 800 miles an hour, the vortex sometimes attains a velocity of 800 miles an hour, the
average velocity being 392 miles. Among the suggestions made in the paper are some having reference to the peculiarity of the move
ments of tornado clouds, containing rules for arriving at thei venteo. A tornado cloud always has a centre, and it always moves forward from west to east. It may, however, sway from
side to side in its progressive movement. Changes in motion are ometimes very sudden. In the event of a sudden change the quikly, to the south. II he in on orth-east he sounld move to the
quith. If within a very short distance of the cloud the observer north. If within a very short distan
should run east, bearing to the south
 Society, on June 15th, an important paper Ont the Caoutchouc
yielding Apocynacea of Malaya and Tropical Africa." After giving a general sketch of the structural and physiological conditions of
the occurrence of caoutchouc in plants, the author pointed out that the plants which appeared to yield it in commercial quantity in three widely-separated regions all belonged to one tribe of Apocynacea,
the Carrisece. In the East Indies the Gutta singuarib of the Malay
Pe Peninsula, the Gutta soosoo of Borneo, was the produce of a new
species of Willuqhbeia (W. Burbidgei). Many other species of this and allied genera also seemed to produce caoutchouc in quantity
worth collection. In Central Africa, Landolphia, which was worth coliection. In Central Africa,
closely allied to Willughbeia, but differed in possessing terminal
inste Mnstead of axillary flowers, was the most important source.
the east coast caoutchou, was ynelded by L. Ocariensis and L.
lorida, the latter a very ornamental plant. As the ruber herida, the latter a very ornamental plant. As the rubber
exuded from the cut stems, it was plastered on the breast and arms,
nd and the thick layer, when peeled off and cut up into squares, was
called "thimble rubber") sipecies was L. Kirkiei, the rubber of which could be wound off into
balls or small rolls from the cut stems, like silk from a cocoon:
 was called im incungu, its rubber was worked up into balls, but
was inferior in value. The rubber of L. Peterana was of little
importance. In South America Hancornia speciosa yielded what importanoe. In South America Hancornia speciose yielded what
was called Mangabeira rubber,

MISCELLANEA

A Gow medal has been awarded to Gandy's patent cotton
The Anchor Tube Company, of Gas-street, Birmingham, has
Tpointed Mr. John Frankish, 24, Corporation-street, Manchester, its agent for Manchester and district.
Mfssrs. Priestrian Brothers have been awarded first order o merit, carrying a silver medal, and a special certificate with a gold
medal, for their patent dredger, excavator, \&co, at the International Exhibition at Christchurch, New Zealand.
THE General Steam Navigation Company has just added to its fleet, now numbering fitty vessels, a new steamer, the Malard,
This, and another now on the stocks, are of a larger class than the
rest ; and it is intended to gradually supersede all the smaller craft by ocean steamers.
THE French Government are projecting a oanal to unite the
Meuse with the Scheldt, for putting the collieries and blast furnaces of the North into communication with the mines and ironworks of
the East, and thus restoring to Dunkirk the importance of which the East, and thus restoring to Du.
she has been deprived by Antwerp.
According to the Liver pool Journal of Commerce an exhibition has been held at Oelnitz, Saxony, and it was a noteworthy fact that
the whole of the machinery exhibited was of English manufacture In the embroidery trade the number of machines in use in 1881 was THE cent. greater than that of the provious yea.
The Local Government Board have given their sanction to the
purchase by the Corporation of Bridgnorth, Salop, of the Gas purchase by the Corporation of Bridgnorth, Salop, of the Gas
Company's Works for $£ 14,000$, and the expenditure of $£ 2000$ in improving the approach rood to the works. The Corporation is now improving the approachroad to the works
advertising for a Ioan of \&16,00, and wh
the works will be formally transferred.
Accordisg to'Möller's steamship circular, "the mere possibility of a stoppage in the Suez Canal, has already diverted many
steamers from the India and Cha trade, and accumulated
stan tonnage elsesiore. . Trie
severe depression in freights in general, and charters from Indian severe depression in freights in general,
ports can only be effected with difficulty.
The Parkes Museum, which was first instituted in 1876 as a
memorial to the late Dr. Edmund Parkes, and in order to promote the health of the community, was incorporated on the $28 t \mathrm{th}$ ult. The museum has been temporarily located in University College, manently keeping it in connection witht the college has been under consideration for some time, but negotiations are now being made
for acquiring an independent building in a more central position for acquiring an independent building in a more central position
than University College. The frrst Council of the incorporated
institution collection of apparatus and appliances valued at upwards of $£ 1000$. The Association of Belgian Gasworks Managers has arranged for an international exhibition of gas-heating appliances, to be
held at Brussels from 1st August to 1st October. The object is to popularise the use of gas for industrial, domestic, and culinary medals, are offered for appliances of sumficient merit. Gas engines are admissible for exhibition, but not to compete for prizes. No
charge is made for space, for reception, installation, or re-expedictarge is mas will be supplied gratis. Nor will any charge be
tion, and gas
made to the public for admission. No goods will be received atter made to the public for admission. No goods will be received atter
the 15 th inst, and applications must be made to the president, M.

The s.s. Essex, which has recently been built by Messrs. Ray Sons, Limited, of London, for their famous Australian line of steamers, has made her trial trip to London. She is a handsome
iron screw steamer of the following dimenions :-Length over all,
 having iron main deck and upper deck covered, with teak poop, having iron main deck and upper deck covered, with teak poop,
long bride and foreastle, steam steering geer, extra steam
winches, and is altocether a very superior vessel of her class, winches, and is altogether a very superior vessel of her class,
intended principally for cargo carrying, but having some handsomely fitted accommodation in the poop for a few passengers.
Her engines. of $250-\mathrm{H}$.P. nominal , by Messrs. T. Richarson and Her engines, of 20-H.R. nominal, by Hessrs.
Sons, of West Hartlepool, indicating up to
remarkably well, giving a speed of 12 knots.
M. CLAMOND has made a gas burner in which the gas is burnt
with air heated to a very high temperature, the combustion talking place within a cone or basket of platinum wire, which, raised to incandescence, forms a light-centre of remarkable softness, steadi-
ness, and brill ness, and brilliancy. The air, which must be provided under pres-
sure, has a pipe system distinct from that of the gas, and reaching the burner, the air traverses a tube of refractory matter kept at a
temperature of 800 deg. to 1000 deg. C., it is said, by a number of small gas flames about it, and thence it passes into a chamber,
where the gas joins it. M. Clamond has succeeded in so grouping where the gas joins it. Mi. Clamond has succeeded in so grouping
the heating and the mixing chambers that the whole burner may The heating and a clinder about tinn, diameter and 4 in. in in heimht.
be enclosed in
One-horse power, it is stated, suffices for an illumination of 150 to One-horse power, it is stated, suffices for an illumination of 150 to
200 Carcels. One Carcel requires, with various burners, 27 to 45 litres of gas, The platinum has to be replaced every forty or
fifty hours, and this is rendered easy. A modification of this
fing arrangement has long been used for illuminating magic la
lime disc being employed instead of a platinum wire cage.
This week the town of Tipton, near Birmingham, has, for the first time, been lighted with gas made by its own Corporation,
instead of being dependent upon Birmingham for its supply. The by the Birmingham Corporation being considered as excessive. The neering Company, at a cost of \&11,000. The meters, pipes, and
gas mains will be purchased from the Birmingham Corporation for E34,000. In the retert house there are at present eighty-four retorts; The there is provision for about thirty more, should they be needed The condenser, which receives the gas from the retorts, consists of
ten cast iron tubular columss, fift. in diameter ; and from them it passes into the exhauster, which has been manufactured by Messss.
Walker and Co. The exhauster is worked by a 6 -horye power engine, and can force upwards of 400,00ofte. of gas per day throwgh the pipes.
154,000 cubic feet of gas each, and the total capacity of the new works is estimated at $60,000,000$ cubic feet of gas per annum. The
work of erection has been carried out under the supervision and from the plans of Mr. Thomas Proud, C.E., Birmingham
THe largest whistle in the world may be seen at the store of the
Eaton, Cole, and Burnham Company, 58 , John-street, New Brunswick, Iu wan made at their factory in Bringeport, Conn., and
ordered from them by Manning Maxwell, and More street, for a Montreal firm. It will be used by the largest sawnill in Canada. Experts in brass work and steam whistses shave pro-
nounced it one of the best-proportioned and the largest of all the steam whistles they ever have seen. It is about the size of a flour ter of sawmill whistles is 4in. Its extreme. length, from the bowl ter of sawmill whistles is 4in. Its extreme length, from the bowl
to the ornament on top, is fft. 9in. Its spinde is 3 zin. in diame
ter, or as large as an ordinary steam whistle. It is made of cast ter, or as large as an ordinary steam whistle. It it made of cast
brass, and cost 50 od dols. It will be bown my means of a spring
valve connected with a steam pipe tin. in diameter. A long blast valve connected with a steam pipe 4in. in diameter. A Aong blast
upon it would allost empty a 100.horse power boiler. The Cana-
dian mill that will use it has a boiler of 100-horse power. has been totally destroyed by byire severaral times. The power. Tropre miters,
in order to guard against future destruction of property, ordered in order to guard agaiist future destruction of property, ordered
the whistle. In case a frie breaks out all employes of the mill and
the various fire departments in neighbouring towns will be sum

ONE HUNDRED AND THIRTY QUARTER MALTING.
designed by messrs. h. Stopes and co., london.
(For descrrption see page 6.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

** With this veelk's number is issued as a Supplement, a Map of Machinery Department, Royal Agricultural Society's Shooyard,
Reading. Every copy as is isued by the Pubisher contains this
Supplement, and subbscribers are requested to notify the fact should Supplement, and s.
they not receive it.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1d. postage stamp, in order that voriter to himself, and bearing a 1 d. postage stamp, in order that
answers received by us may be forvorarded to their destination. Noith these instructions.
${ }_{*}$ We cannot undertakie to return drawings or manuscripts; we must therefore request correspondents to keep copies.
$*_{*}^{*}$ All letters intended for insertion in THE * All letters intended for insertion in Thes Enginere, contaning questions, must be accompanied by the name and
addreess of the woriter, not necessariy for pubbication, but as a
proof of good faith. No notice whatever will be taken of adaress of the writer, not no neessariy for mbibication, out as
proof of good faith. No
anonymous communications. J. H. 13 A., Graseat feorge-strect, Weatminster.

HORIZONTAL SCREW PRESSESS
(To the Editor of The Engineer.)

BRIIQUETTES.
(To the Editor of The B
Sir,-Will some of your readers kindy say which is the best process
for making briquette fuel from Cannel without the addition of tar?
July 4th. for making.
July 4 th.

THE ENGINEER.

JULY 7, 1882

our fleet at alexandria.
The modern Turk, if not an enterprising and original being, has, at all events, a good memory. The present
alarm about the entrance of Alexandria Harbour reminds us of what doubtless is present to many a Mussulman's mind, our disaster in 1807, when our fleet, under Sir John Duckworth, sailed up the Dardanelles with ease on February 19th, but returned with heavy loss on March 2nd,
the Turks in the meantime having mounted a number of heavy guns. We do not contemplate the flower of our fleet being destroyed in Alexandria Harbour. At the same time submarine mines are far too serious and necessarous to tamper with. Vigilance is, therefore, mos batteries at Alexandria highly Our information on them however, is meagre. The Standard, June 28th last, said : muzzle-loading Armstrongs. At the harbour point three of the same, one bearing on the Monarch are in readiness,

Fort Ada has one heavy 10in. gun. Some heavy guns are at Kafarillia. Two rifled guns are bearing on the Invin cible (query Inflexible). Inside the harbour there is a hos of smooth bore batteries, All the guns, howerer, ate
miserably mounted, and would be silenced by our fleet in miserably mounted, and would be silenced ayer informed us that "the Egyptian troops have been busy with the fortitications. This morning it was discovered by the
officers of the fleet that two big guns had been placed in officers of the fleet that two big guns had been placed in position between forts Pharos and Ada, pointin
They bear so as to threaten the ships of war."
The question naturally arises as to the powers of our fleet against forts. We should be surprised if the Alexandria batteries are at all formidable, but it is well to
consider how we stand against them as well as more serious foes. Egypt bought a number of Woolwich muzzle-loading guns about the year 1867 and subsequently. These are probably the guns in question, as they are said to be
muzzle-loaders. They were obtained, with their projectiles, through Efflatoun Pasha from Elswick, and corresponded exactly to our then service muzzle-loading armament, and we know their powers well. The 9in. 12-ton guns can perforate a little over 12 in . of unbacked iron at The vessels which $9 \mathrm{in}$. . 18 -ton gun a little over $14 \frac{1}{2}$ in. Inflexible, Alexandra, Temeraire, Superb, and Monarch. Now without saying exactly what could be done against
these ships by different guns-for this hardly seems to be these ships by different guns-for this hardly seems to be
the moment to parade such information-we may say that the moment to parade such information-we may say that
while the weaker and less important parts of the weakest of while the weaker and less important parts of the weakest of them are, no doubt, not impervious to the fire of the guns range and of oblique impact, face such fire with great con fidence, considering that the injury likely to be caused wa a matter of cost only, rather than detriment to fighting
From a defensive point of view then, the position of our ships in Alexandria is satisfactory. As regards their offensive powers, there can be no doubt that the powe and accuracy of the guns would be more than sufficient for all that is needed at Alexandria. Still we can-
not help wondering how we should stand suppose Alexandria to be stronger and more fully representative of a modern defended harbour. We may suppose that there would be, as in this case, a limited number of fairly powerful rifled guns and a great many smooth bores s our fleet well adapted for the attack of such a place Unquestionably it is so, both from the fact that we have
heavy side armour and heavily plated decks, and that our guns and men, as well as the vital parts of our ships, are well-covered. Our armament is, however, not calculated to produce the greatest possible effect against ordinary supply of ammunition for heavy guns is necessarily very limited. At Alexandria the first work would be to silence the more formidable rifled guns, and then the numerous work than the Nothing cout the Inflexible. The Alexandra, Temeraire, Invincible, and Superb have good batteries of 25 -ton and 18 -ton guns; but the Monarch only carries six guns, and the Intlexible only four. The last surely would hardly be allowed to waste the ammunition of her 80 -ton guns in killing the scattered flies of Alexandria. her in the said, we could no doubt do vell take this as an illustration of the need of a second armament of medium new-type guns. Supposing them even not to be protected by armour, they would be available in all less serious cases
of exposure. They would enable fire to be directed on a number of objects; they would save the expenditure of heavy ammunition; and so they would greatly expedite the work. As to the Inflexible, the best use we could suggest her being put lo, supposing the Admiral's instructions admitted of it, would be to point her guns at the largest and most imposing object within safe hitling distance, and after fair warning, on the first call to display force, bring down the object with one or two of her enormous common
shell, as a specimen of what might be expected to follow.

the chanvel tunnel in chancery

Iv the year 1874 the South-Eastern Railway Company obtained from Pariliament an Act which, among a number of provisions connected with its undertakings, contained a clause authorising the company to expend a sum of $£ 20,000$ towards the cost of experimental borings. The whole intent and effect of this clause was to avoid to that extent doctrine Rilway is technically called thed for certain specified purposes, and every single person who subscribes for shares in such a company is by law entitled to require other funds of the company, shall be applied for no other than those purposes. It is only by the bestowal of express statutory powers that railway companies have been enabled
to work steamboats or keep hotels-things which, however common now, and however beneficial to the shareholders, are not within the objects of a railway company. They are ultra vires. The effect, then, of this clause in the Act of 1874 was only to prevent a single dissentent, or even a manner of expending $£ 20,000$ of the company's money It did not even authorise the company itself to make the borings. Accordingly certain clauses were iuserted in an Act obtained by the company in 1881-which, as dealing with many other matters, was styled by Sir H. James an Omnibus Act -empowering the company to acquire for the purpose of experimental borings certain lands bounded So far there is clearly nothing to empower the company to So far there is clearly nothing to empower the company to in anything below low-water mark. If there is anything it thust he found in a worcurent clayse, which authorises the Woods and Forests, with the consent of the Treasury to execute all necessary conveyances and agreements relating to any land, soil, or rights belonging to the Crown and under the management of the Woods and Forests :
and these clauses are followed by numerous provisions,
excepting and reserving almost every conceivable right of the Crown and its prerogative
To see what, upon these somewhat limited powers, has been done, let us turn to the accounts of the proceedings on the 1st July. The guests on that occasion appear to ave descended the shatt at the ccording to the mo "" one seemed to be looking point, a great tube, and as the glowing electric lamps, placed alternately on either side of the way, showed fainter and fainter in the far distance, the tunnel, from anything one could tell from appearances, might have had its outlet in France. A journey of some seventeen minutes, however, not counting a stoppage for refreshments when 1000 yards had been traversed, the workmen drawing the cars on the down grade at a fast walk, brought the party to the end
of the boring, 1900 yards from the shaft." Sir H. James Co, Wednesday last, and it was not denied, that in April last the attention of the Board of Trade, as epresenting the Crown, was brought to the fact that low water mark was reachea, or nearly so; that from that time to the present many applications had been made by the President of the Board of Trade for inspection ; but that while the representatives of the South-Eastern Rail way Company were profuse in their hospitality to the Board of trade, they raised objections to minute inquiries The practical object of the suit was to ascertain how far hese works had been carried, so as to determine whether the tunnelling had actually gone on under the bed of the We rear
We regret very much the impression which is produced in our mind by the story of these proceedings on the part of the Company. If Sir E. Watkin wishes to overcome the existing repugnance felt to the scheme of a Channel tunnel, he will do well to avoid exciting repugnance
to the means adopted for pressing it on. If he desires to the means adopted for pressing it on. If he desires
to reason the public out of groundless fears, he had to reason the public out of ground less fears, he har better strive to produce confidence in his own straighforsilly as to believe that the Company was justified in point of law, upon the enactments we have stated, in working beyond low-water mark without the consent of the Crown, the Treasury, the Board of Trade, the Woods and Forests, the Admiralty, or the War Department, people will hesitate to accept them as instructors on the delicate and complicated question of the possibility of a continental invasion. How do they receive the intelligence of the intended application to the Court? Sir Edward sneers at the President of the Board of Trade and his caucuses. M. de Lesseps drinks the Queen's health, and remarks that the completion of the work is required in the interests
of mankind. Sir Edward ironically recommends his friends to console themselves with reflecting that they live under a Liberal Government. But what on earth else could the Government do, when they found, as they believed, that the limits set by Parliament were being transgressed, unless they were prepared to liberally disregard Parliament in the interests of Sir E. Watkin and his Company? Could he really be vain enough to expect such a thing? If, he exclaims to his friends, they lost any of their property, if they found any portion of their rights sequestrated, or if any aspirations they might entertain of contributing something to the great interests of mankind were put an end to, they might always fall back on the glorious idea that they were governed on Liberal principles. Aspirations after the interests of mankind can only produce in ith which thee of a Gladstonian Mimister the twhile he insinuation that is augur met his colleague; Comany whose property and rightsue being neoch upon must be ludicrous to everybody There is, however, a ense in which it may prove to have been actually true; as the directors of the south-Eastern Railway may possibly find out, if they should ever be sued by shareholders whose money had been used for purposes not authorised
by Acts of Parliament. by Acts of Parliament.

THE DEMAND FOR GAS
The extent to which the electric light will probably affect the demand for gas is a matter of direct concern to a public at large. On this subject we have obtaint to pubic at lary sub bly Registrar-General and partly from Mr. John Field's "Analysis," to which we made reference a few weeks ago. Mr. Field has not yet included in bis valuable annual publication those results which we are now going to work out, and we would suggest to that gentleman that he might advantageously comprehend in the scope of his xcellent tables the kind of inquiry which we are thus tering upon. The question to be considered is sumicis suply with those of the population. Mr. Field may carry this to any extent he pleases, but we shall limit ourselves on this occasion to a few leading considerations,
Beginning in 1869, we find that the population of Registration London-which is practically the same as that of the Metropolitan Board-comprehended 3,176,308 souls. The quantity of gas actually sold was $9,885,857$ thousands of cubic feet, amounting therefore to 3112 cubic feet per head. If we perform a similar calculation for all the years down to the present time, we shall gain an idea concerning the popularity of gas as an illuminant and as a source of heat. Taking the series of thirteen years down
to the close of 1881, we find not only that the demand for to the close of 1881, we find not only that the demand for gas in the metropolis increases in the aggregate year by
year, but also that the demand per head of the population hows an annual augmentation The rate poparce varies, but it averages 150 cubic feet per head. We may reckon that this quantity of gas, if properly consumed, would give the light of 480 candles for the space of an hour. This may seem a small matter when distributed this is the additional ; bantity per head remembered that several persons in the avery per head, and hat there are several persons in the average household. The statistics
of the London water companies show more than seven
persons per house ; and if we apply this to the gas supply
we find that the yearly increase per head, if distributed over the entire year, amounts to nearly ten candles per
household for the space of an hour per day. It may still household for the space of an hour per day. It may still represents the light of three candles for three hours each day in the year; and this is simply the increase which in 1881 than in 1869. This quantity is equivalent to the light of sixteen candles for one hour each day in each st date.
is by no means regular. The greatest increase was in the year 1879, and the least in the year following, the additional cubic feet per head being respectively 291 and 47 . Last year was better than 1880, the increase over the preceding year being 116. Comparing 1869 with 1881, we see an extraordinary advance, the actual consumption of
gas for the year being equal to 4916 cubic feet per head at the latter date, as against 3112 at the former, the increase per head being 58 per cent. No doubt this is partly
occasioned by the increased use of gas for cooking occasioned by the increased use of gas for cooking
purposes, and for the raising of steam. Still the fact is remarkable. Concerning the progressive use of gas,
for whatever purpose, we observe that the rate of the for whatever purpose, we observe that the rate of and again in 1877. In 1878 there was a rise in the ratio, and again in 1879, the leap in the latter year being especially
marked. Why 1880 should have been so sluggish is difficult to explain, except that the advance in 1879 was so great as to leave little room for immediate progress. The years 1872 and 1873 also showed a comparatively smail
rate of increase per head, and these were preceded by a leap in head. But the fact that what we may term the though the rate of increase varies-is a fact which proves the craving of the people of London for accounted for by the growing practice of using gas as fuel, The gas companies themselves reckon that the brilliancy of the electric light operates in their favour, by stimulating the electric light operates in their favour, by stimulating
the public to a more liberal use of the older illuminant. Some of the statistics, we apprehend, are affected by the Some of the statistics, we apprehend, are affected by the
state of the weather. A foggy winter has a decided influence on the consumers' gas bills, and this may have been the reason why, in one particular season, there was a great outcry in London that something was wrong with the by the fact that while the yearly increase per head averaged by the fact that while the yearly increase per head averaged
118 cubic feet in the four years $1870-73$, it became 160 ft . in the next Olympiad and 173 ft . in the last.
The use of gas is of course stimulated or checked accordexpect as much, though the effect is not likely to be instantaneous. So far as price can influence consumption, we should expect to see the London gas companies doing a large trade in the present year. Last year the net rental for gas per 1000 ft . sold was 37.08 pence, being the lowest ever known in London. The effect of cheapness in promoting consumption seems to show itself when we compare
1869 with 1875, and these again with 1880 . In 1869, when the net rental of gas was 48.41 pence per 1000 ft ., the year's rental per head of the population was $12: 5$
shillings. In 1875 the net rental per 100oft. was 45.19 shillings. In 1875 the net rental per 1000 oft. was $45 \cdot 19$ pence, and per head 14.7 shillings for the year, or
more than two shillings in advance of 1869 . The effect on revenue, where the population consists of millions,
is, of course, a very appreciable sum. In 1880 the net is, of course, a very appreciable sum. In 1880 the net
rental per 1000ft. had fallen to $39: 38$ pence, and the rental per head had risen another shilling, being $15 \cdot 7 \mathrm{~s}$. per
annum, as compared with 12.5 s . in 1869. Last year the annum, as compared with $12 \cdot 5 \mathrm{~s}$. in 1869 . Last year the
rental per 1000 ft . was more than 2 d . below that of 1880 , and the net rental per head showed a slight decrease, being down to $15 \cdot 2$ s. There is, indeed, some difficulty in accounting for all the fluctuations, if we take them year by year.
The largest revenue per head was in 1872, when the price of gas was abnormally high, being as much as $54 \cdot 62 \mathrm{~d}$. per loooft. The net rental per head was then 16.8 d., the highest point reached in the series of thirteen years. But
this point was nearly reached in 1879, when the average this point was nearly reached in 1879, when the average
rental was down to $41 \cdot 10$ d. per 1000ft. Since 1879 the rental per head has fallen rather more than 1s., although the price of gas has been reduced. We may say that the
drop in the price of gas has scarcely yielded its due results drop in the price
in 1880 and 1881 .
Thus far the effect of the electric light on the London gas supply can have been nothing more than that of stimulating the gas companies to lower their prices. As soon as the new illuminating agent enters into commercial
competition with gas, we may expect to see the result competition with gas, we may expect to see the result
showing itself by a reduction in the consumption of gas showing itself by a reduction in the consumption of gas
per head of the population. It is here that the effect will per head of the population. It is here that the effect will
first make itself evident. Not until the electric light has really mastered the situation may we expect to see a falling off in the gross manufacture of gas. The perpetually demand for artificial light, and a powerful check must be imposed on the consumption of gas ere we shall see its total manufacture declining. In the thirteen years, 1869-81, the population of London has risen from 3,176,308 to $3,831,719$. Had the consumption of gas per head
remained unaltered after 1869 , the total demand would have increased, but in 1881 it would have been under $12,000,000$ thousands of cubic feet instead of exceeding $18,800,000$ thousands. The difference of nearly $7,000,000$
thousands of cubic feet is due to the fact that while the thousands of cubic feet is due to the fact that while the
population has increased, the demand for gas has grown population has increased, the demand for gas has grown
still faster. The population has increased by 20 per
cent.; but-as already mentioned-the demand for cent.; but-as already mentioned-the demand for gas
per head has increased ly 58 per cent. The circumstance that the net rental for gas has been declining during the last three years is probably a token
of apprehension; but a reduced charge for gas is also of apprehension; but a reduced charge for gas is also
induced by the operation of the sliding scale, whereby the induced by the operation of the sliding scale, whereby the
metropolitan gas companies, with one exception, have been
offered the privilege of paying a higher dividend on condi-
tion of going below the initial tion of going below the initial price specified in the
statute. These two causes operate in favour of the public, and will continue to do so. How severe the contest may become between the gas supply and the electric light it is impossible to foresee ;
seems to be impending.
The destructive qualities of gas form an element in the calculation which the public will increasingly appreciate according to the experience which they gain in the use of electricity. It will soon be found that the services of the painter, the decorator, and the upholsterer will be less frequently required under the dominion of the electric light difference wall continues to hold sway. The value of the this part favour of the electric light, the latter will be often wel comed even where the mere cost of the light may seem to to aftancea. At present the new light has done noth nfluenced the metropoitan gas supply, except so far as it has ment and reduces companies in tur eirection of ill a diffe rent tale, but the metropolitan gas companies have a wid margin in which to prepare their defences against their
brilliant antagonist. The figures we have thus presented brilliant antagonist. The figures we have thus presented prove how well the gas supply is adapted to the requirements of the public. The fact is significant that in the sace of twelve years the consumption of gas in London person now burns 5000 ft . of gas where formerly he burned 3000 ft . For this enlarged supply the individual pays 15s., instead of the former an ar 12s. 6a. The increased consumption per head is, of course, partly occawhere formerly it was unknown. But this process may still go on, and the domestic use of gas may be extended where it has to overcome the opposition of the chea mineral oils. These oils are very popular with the poor but are apt to prove dangerous as well as trouncesome In agricultural districts, where gasworks are impractic towns class dwellings as well as among the middle classes. The electric light is probably destined soon to become the lectric light is probably destined soon to become th
luxury of the higher classes; but that it will work its wa downwards is a result which comes within the range probability, despite many remaining difficulties.
and lamm's fireless locomotives in lille The tramway between Lille and Roubaix, 12 kilos.- seven and has always been worked by steam, the difficulties of the line being too great for horses. Brown's and Hughes' tramway engines have both been used, but for the last year the line has been worked exclusively by five of Carel's locomotives and fifteen fireless locomotives on Franeq and Lamm's system, built
by Cail et Cie., of Paris, The first " locomotive sans foyer" "that vas ever made on a working scale is still in the shed, and afte having already done good service, will be again available after thorough overhauling. Steam at a pressure of 17 kilogs. per
square centimetre- 244 lb . per square inch-is supplied by two out of three Belleville boilers, which evaporate over 8 kilogg. of
water per kilog. of coal, superseding boilers of the locomotive type made by Cail et Cie. The steam passes into a steam trap in in suspension, and then ascends to a horizontal steam pipe of $11 \frac{1}{2}$ centimetres- $4 \frac{1}{2}$ in. diameter-carefully cleaded, where it has
a
pressure of about 15 kilogs, per square centimetre, or 215 lb . pressure of about 15 kilogs. per square centimetre, or 215 lb , shed, and as each engine is brought to the yard it is run up th this common steam pipe. Opposite each line of way is a copper pipe of 45 millimetres- inin.-internal diameter, taking
a large turn to give elasticity, and provided at the end with an croou i volant, or nut and hand wheel combined. By these means the connection is readily made with the engine, stop valves being also provided both on the engine and in the steam pipe. When the engines come in from Roubaix, after the run there and back, they generally have a pressure left of 2 to 3 kilogs. per square
centimetre- 30 lb . to 45 lb . per square inch-which is sufficient oo shunt with and get into the running shed; and it only rarely happens that an engine has become so sar spent as to require
towing in. When the communication is opened with the steam pipe the water in the reservoir of the engine is heated by the the locomotive a power of twenty-five horses; and it can work for nearly an hour with a pressure of 14 kilogs. per square
centimetre, or 200 lb . per square inch. The quantity of wate contained in the reservoir when fully charged is 2500 litres $=$ 550 gallons ; and there must always be at least 2000 litres $=$ 440 gallons. This is ascertained by a series of gauge-cocks set at
the levels of $2000,2220,2400$, and 2500 litres. The the levels of 2000 , 22220 , 2400 , and 2500 litres,
exhaust steam is condensed in a surface condenser, and at the same time that live steam is admitted from the sta
tionary boiler, the condensed water is blown out into the pit. All the valves are then closed, and the engine is ready for its run to Roubaix and back. On the road, the disregulated by an appliance from the " hot detendeutr," or expander ; and this is opened more or less in proportion to the resistance encountered. Drawing an ordinary tram-car, and with the steep
gradients of the Roubaix line, the total cost of working-trac tion at least--with the fireless locomotives is found to be about 65 centimes per kilometre-that is to say, under 10d. a milewhich is estimated to be one-third the cost of workm enines
horses if that were possible. The Francq and Lamm eng run quite into the centre of Lille, and stop and start again at least as easily as horsse, while no difficulty appears to attend
their passage along the streets. The fares charged between Lille and Roubaix are :- Single, 75 c .- first-class-and 65 c .- - second-
class - and return, 1f. 10c., and 90 c. We have to thank class ; and return, ir. 10.., and goc. We have to thank M
Marsillon, Ingenieur, Chef de Traction of the Lille Tramways Company, and M. Grijffon, Chef de Depot, for the particulars which we have given.

Shipbuilding in the half-year.

There appears to have been good ground for the belief that has been entertained that during the present year the number
and tonnage of the vessels built will be the largest that have
been known been known. On the Clyde in the six months now ended the tonnage of vessels launched is larger than in any previous corre-
sponding six months, 168,674 tons having been reaehed this
year, a large increase on the very high figures for the past year
for the same period.
Similar statistics have not yet been compiled for the Tyne; but on that river, on the Wear, and at West Hartlepool, and on the Tees, it is expected that
the tonnage launched has also been in excess of that of any previous corresponding half-year ; and at some others of the centres of the shipbuilding industry it is auticipated
that there will also have been an enlarged output. At most of that there will also have been an enlarged output. At most of these places it is acknowledged that there is a slackness in the
demand for new vessels at the present time, but it is felt that he orders that are already placed are sufficient to give bristhess for the present year. This being the case, it may be readily believed that unless there should arise some unexpected difficulty, the total tonnage built for the present year will exceed that of any
of its predecessors. The details of the average tonnage of the of its sredecessors. The details of the average tonnage of the
vessels
launched some of very heavy tonnage gives some ground for the beliet hat the increase that has for the last few years been known in the average is being still continued

LITERATURE.

The Modern Applications of Electricity. By E. Hospritalitre. Translated and enlarged by Juluus Marir, Ph. D. Illustrated
Kegan Paul, Trench, and Co. 1882. Magnetism and ElectroiKegan Paul, Trench, and Co. 1882. Magnetism and Electri-
city: An Elementary Text-Book. for Students. By R. Wormeri, city: An Elementary
D. S., M.A. T. Murby. 1882 .
These two books on electrical subjects treat the matter from two different standpoints, and hence are widely different so far as the treatment of the subject is concerned. . Hospitalier is a young Frenchman-well-known, however, to many electricians in England-who, possessing years in particularly studying the electrical problems which have during that time been brought into prominence. Electric lighting and telephony then form the principal features of his work. Dr. Wormell, on the other hand, is one of the leading teachers of this country. The head
master of the City Middle-class Schools has done much to master of the City Middle-class Schools has done much to
put scientific teaching upon a proper footing. His works on put scientific teaching upon a proper footing. His works on mechanics, dynamics, hydrostatics, and geometry are well known, and although extensively used, might, with advan-
tage, be still more used. This new work of Dr. W ormell's tage, be still more used. This new work of Dr. Wormell's is one of the "High School Science Series," written thus
with a view to the wants of schoolboys. From this point with a view to the wants of schoolboys. From this point
of view it must be judged. Dr. Wormell thoroughly of view it must be judged. Dr. Wormell thoroughly
understands that something besides mere telling is required in education, hence he lays great stress upon experiment. The first ten chapters of the book deal with magnetism, and then we have a series of experiments for laboratory practice making of the apparatus and the performing of laboratory experiments is insisted on at the end of most chapters. A boy will learn more by making and pulling to pieces a corpore the the ond or far as they can be treated in a work of this kind, are described in aimple langur a described in simple language, and require but a very nderstood The introduction of new symbolsisa mistale The ordinary thick and thin lines to indicate a battery, thus
||||, are to be found in every printing establishment, but the new symbol for a condenser, for example, as introduced into this work, will not be so found, and must be specially made. Thereisnocomparison between the illustrations in the two works we have named at the head or this article. in English books-they serve their purpose, and that is ill. They do not give a character to the book like those in M. Hospitalier's work. Although we placed the latter frst, we have left it till the last to notice. The translation is founded upon the Second Edition of the French, but contains extensions and additions. The whole work is descriptive, and being well illustrated, the reader is able obtain a good idea of the difference of the various historical descrived. chapter on batteries, in which the more important forms are described and illustrated. This is followed by a short hapter on thermo batteries, and then we come to that seems to us a pity that so little of M. Hospitalier's own experimental work is given, especially when we
call to mind a remark made by one of our best elecrical engineers, to the effect that no person whom he had ver met seemed to so thoroughly understand these machines as M. Hospitalier. We are glad to see that some machines are mentioned, more to intimate that they are faithful copies of others than as possessing any feature worthy of distinction. Secondary batteries are described
as "electric transformers." The work of Planté, Faure, Sutton, Houston, Thomson, and D'Arconval is amply recognised. This concludes Part I. of the work ; Part II eals with electric lighting. The various arc lamps, semirendescribed and it is here that the most generallined have been made by the translator. Part III is devoted to telephony, and Part IV. to various applications of electricity not previously treated
As might be expected when a science has no recognised nomenclature, some of the terms used by writers on the Continent differ from those in use here. We have given
the word "tension" as used in this work, we also generally talk of electro-motive force, not electro-motive power; both terms, however, are used. Clerk-Maxwell,
han whom could no better be followed, uses C not I to indicate current, and has Ohm's law, $\mathrm{C}=\frac{\mathrm{E}}{\mathrm{R}}$ not $\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}}$. On
the whole the work is rendered into very good English, and reflects credit on the translator. It would have been better in several cases if the complete descriptions of pparatus had been given insteaud of referring lat reader necessarily fragmentary, while the aim of a book is rather to necessariy fragmentary, facts and give them completeness,

ELECTRICAL ACCUMULATORS OR SECONDARY BATTERIES
By Professor Oliver J. Lodae, D.Sc

No. V.

I now proceed to the complete investigation of the most advantageous conditions when charging a set of similar secondary batteries with a shunt dynamo driven at a constant speed :-
Let P be the horse-power actually applied to the driving of the dynamo when it is in full action, at the given speed, as determined by a dynamometer.
Let P^{\prime} be the power required to drive the dynamo at the same speed when it is not allowed to produce any current whatever ; that is, the power necessary to overcome the friction and the resistance of the air. So that $\mathrm{P}-\mathrm{P}^{1}$ is the whole horse-power available for electrical purposes, and of this some will be expended in heating the armature and field magnet wires.
Let A be the resistance of the armature wire in ohms.
B the resistance of the wire on the field magnets.
R the resistance of the leading wires conveying the current to the cells.
r the resistance of each of the cells
Let $\mathrm{N}(=n m)$ be the number of cells being chargedarranged n tandem and m abreast.
e the maximum electromotive force in each cell opposing the charging current in volts.
c the current flowing through each cell in Ampères.
b the current flowing through the field magnets of the
E dynamo.
E the difference of potential between the terminals of the dynamo when it is in action charging the cells. Of these quantities it is essential that E shall be greater
than $n e$ if the cells are to be charged at all. If $n e$ is the than $n e$ if the cells are to be charged at all. If $n e$ is the greater they are slowly discharging themselves thr nough the
dynamo and are helping to turn it. The nearer $n e$ comes up to E the easier will it be for the engine to drive the up to E the easier will it be for the elgine to drive the
dynamo, and as soon as $n e$ exceeds E it will begin to drive the engine instead of the engine driving it. If the engine strap is slipped the dynamo will go on turning at the expense of the now discharging battery in the same direction as when it was charging it.
The following relations hold among the above quantities :-
$\mathrm{E}=n e$
$\mathrm{E}=\mathrm{B} b$
$\left.746\left(\mathrm{P}-\dot{\mathrm{P}} \mathrm{i}^{\prime}\right)=\dot{\mathrm{E}}(\dot{m} c+b)+\mathrm{A}(\dot{m} c+\dot{+})\right)^{2}$
$\mathrm{E}+\mathrm{A}(m c+\bar{b})=\Phi(b)$
, (4) force generated by the revolving armature is a function of the current flowing round the field magnet; but what that function is depends upon the construction of the machine, and especially upon how near the iron of the magnets is to being saturated. If it is saturated the function is a constant; if it is nowhere near saturation, the function is simple proportion. It can be determined by experiment and plotted.
Of all the above quantities,
P^{1} has a fixed value determined by the speed employed, and ascertainable by direct measurement.
e and r may also be taken as fixed and known quantities, for the size of the cell is a matter of convenience,
and this determines r; while e is a function of the and this determines r; while e is a function of the materials used in the cells, and for Plantè or Faure it is about $2 \frac{1}{2}$ volts.
R is easily measured, and can be made as small as convenient.
A and B are also easily measurable, and though not uncontrollable, must yet be considered fixed for a particular dynamo.
n and m are of course completely under control, and we have to determine what is the most economical ratio $n: m$. But at present they can be regarded as given quantities.
remaining four of
The remaining four of the above quantities, viz, c b, P, and E , are dependent variables, and are given in terms of the others by the preceding four equations.
The number of thermal units (water-gramme-degree -centigrade) produced every (oco is

At the bearings and in the air churned by the machine, $178 \mathrm{P}^{1}$;
in the armature $\frac{A}{4 \cdot 2}(m c+b)^{2}$;
in the field magnet $\frac{\mathrm{E}^{2}}{4 \cdot 2 \mathrm{~B}}$;

> in the cells $\frac{1}{4 \cdot 2} \mathrm{~N} r c^{2} ;$
> in the leading wire $\frac{1}{4 \cdot 2} \mathrm{R} m^{2} c^{2}$;

The energy utilised as chemical work is $\mathrm{N} e c$
What we want of course is to make this last term as great as possible in comparison with the preceding five
terms. Now it goes without saying that the smaller P^{1} terms. Now it goes without saying that the smaller P^{1}
and R can be got the better. It also appears from the and R can be got the better. It also appears from the
second and third of the above terms that it is good to have second and third of the above terms that it is good to have
A small and B large. But what about N? N appears as loss only in the fourth term, and as gain in the sixth; hence it must be advantageous to make N large. But then N contains two factors n and m; and the second of them appears squared in two of the above loss terms; hence, though it is good to have n as large as possible, it ever, by a little calculation thould be we hake however, by a little calculation, that to make $\mathrm{Ne} e$ as large as the ratio of useful work to the waste a maximum, we must have-
$\frac{m}{n}=\left(r+{ }_{e}^{e}\right)\left(\frac{\mathrm{A}+\mathrm{B}}{\mathrm{B}^{7}(\mathrm{~A}+\mathrm{R})+2 \mathrm{ABR}+\mathrm{R}^{2}(\mathrm{~A}+\mathrm{B}}\right)^{\frac{1}{2}}$. (5) or since R and A are, in practice, small, compared with B, we may say that the

$$
\frac{m}{n}=\frac{e+r c}{\mathrm{~B} c} V\left(\frac{\mathrm{~A}+\mathrm{B}}{\mathrm{~A}+\mathrm{B}}\right)
$$

(5')

We perceive, therefore, that the best value of m depends upon c. If the current flowing through each cell is very weak, a large number may be arranged abreast; but if c is pretty strong m must not be great. Now, the permisfor it is the "intensity," or as some call it the "density," of current-that is the current per unit area of electrodewhich is to be kept small. But though a very small current is economical, not only because it reduces the waste heat, but, more important still, because it allows the chemical changes to go on slowly and steadily withou evolution of gas or secondary disturbances ; yet in prac tice a charging current of only one Ampère through large cells would be felt to be somewhat tedious, and an allow ance of five Ampères would still be very moderate.
I will therefore suppose that the actual value of c is by a galvanometer. Equation (51) fixes the best value o m in terms of n-but what is the best value of n ? The equations indicate that the nearer $n e$ is to its maximun $\underset{\mathrm{F}}{\mathrm{p}} \mathrm{p}$ ermisible value the better. This maximum value is $\underset{\mathbf{E}_{0}}{ }=\Phi\left(b_{o}\right)-\mathbf{A} b_{0}$
But if it is too near this value, not only will the charging be very slow, but, unless the engine is absolutely steady, there will be a risk of the cells sometimes helping to drive it. It need not be so very far short of this upper limit, however, for the current tapped of through the outer circuit $(m c)$ will not be usually great enough to reduce ${ }_{\mathrm{E}_{0}}$; and so we may put pretty nearly
$n e<\mathrm{E}_{0}-\mathrm{A} m c$
Or putting in the best value of m from $\left(5^{1}\right)$ we get $b B^{2} \sqrt{ }(\mathrm{~A}+\mathrm{R})$

$n=\frac{\bar{e} \mathrm{~B} \sqrt{ }(\mathrm{~A}+\mathrm{R})+(e+r c) \mathrm{A} \sqrt{ }(\mathrm{A}+\mathrm{B})}{}$

The current through the field magnet which enters into this expression is not an absolute constant, even at a given speed, since it depends somewhat upon how much current Nevertheless, if the wire on the magnet has a properly high resistance, it will be found that b is very nearly independent of $m c$, unless the latter is enormous. And as we have expressly said that $m c$ is not to be very great, we constant, and may measure it with a galvanometer
Practically, the value of n would be determined by adding to the series of cells until the current is brough down to the desired small value, taking care that the limit E is not too nearly approached, for fear that a diminution in the speed of the engine might cause it to fall below $n e$. Observe that the greater n is the greater m may be too o as to maintain the most economical ratio (5). Liverpool.

IMPORTS OF RAW AND MANUFACTURED

Every one interested in the iron and steel industries of our country is familiar with the difficulties wherewith the tition. But it is not generally known that the struggle is not solely confined to sustain a position abroad. During recent years it has been extended to our home markets. Not only have the raw and half manufactured materials been freely imported from various quarters of the globe but foreign manufactured iron and steel work, comprising building materials, rails and plates, have now a place of some importance in our dealings. Belgian, German, and with their produce to during the short space of five years, 1876 to 1880. This is very nearly double the amount paid to foreign manu-
facturers during the previous five years, 1871-75, when the facturers during the previous five years, 1871-75, when the imports summed up to $£ 3,902,079$. Prior thereto, imports into the United Kingdom of manufactured iron were things
almost unknown, saving in the shape of a few articles of almost unknown, saving in the shape of a few articles of
steel of comparatively little importance. As for the raw materials, there were for several generations imports of very microscopic dimensions; they consisted of charcoal the ten Russia and the Scatal value of foreign ore the ten years 1861-70 the total value of foreign ore im $1871-80$, the value was equal to $£ 9,446,500$. The bulk of these imports came from Spain.
Pig iron had likewise but a small demand, so far as it nicerned foreign products. Bu fang has thened as impor of is for two decades:

$1861-70$, total imports, value $1871-80$ do

 A five-fold increase during ten years. Not fully two-thirds of this supply came from Sweden, the remainder fron item therefore appears in the Board of Trade Returns a imports from the Netherlands. Unwrought bar iron has been imported from time immemorial from Russia and Sweden. The aggregate supply of this commodity ha doubled within the last twenty-five years,A carefully compiled table,subjoined hereto, tendsto show that the total imports of all descriptions of iron and iron or steel work has risen, so far as the supply from European countries is concerned, from $£ 3,097,288$ in $1856-61$, to $£ 19,910,984$ in 1876-80. Independent thereof, there are imports of iron manufactured from the United States, as well as ore from Algiers, Asia, and other countries out of Europe. The second table is designed to illus trate the value of each special commodity, distinguish ing the raw material from manufactured iron and steel The aggregate amount furnished by German establish ments occurs under the head of imports from the Netherlands. The Dutch foundries are mainly calculated to supply domestic wants. They export little or nothing. It of the districts of Essen and Bochum. The Belgian facturers have managed to introduce the thin end of the wedge and to the activity of Belgion and German of wedge, and, to the activity of Belgian and German agents,
a certain amount of credit is due for the pressure brought
on railway companies with the view of securing special rates of freight. By reason thereof, English manufacturers have often been beaten at their own door. These oreign manufacturers began in an exceedingly small way Nothing daunted, they have travelled the uphill road, and manufactured iron, of which the United Kingdom imported during the quinquennial period of 1856-60 to an extent ony of $£ 18,556$; it has been swelled to $£ 7,278,654$ during the exports during to phows a move ment in the opposite direction.

The Import of Iron and Stekl.
Statement showing the value of Ore, and all descriptions of raw and
manufactured Iron and Steel imported from undermentioned Countries during twenty-five years:-

	1856-60	1861-65	1866-70	1871-75.	1876-80
Imports from	£	\&	£	£	£
Ore..	-	12,894	10,767	6,450	-
Scrap	-	-	-	9,468	42,446
Pig	93,373	217,902	320,778	1,351,079	643,356
Bar	2,430,815	2,292,026	2,754,085	4,463,349	4,516,418
Blooms	64,251	96,708	89,323	-	-
Unmanufactured steel	64,012	247,412	350,921	244,105	144,372
Manufd. steel	-	-	106,301	27T,754	971,195
Total	$\overline{2,651,441}$	2,871,942	3,632,175	6,302,200	6,317,787
Norway-					
Or	-	8,37	46,66	104,657	16,958
Pig ..	-	2,87	17,981	22,615	71
Bar ..	10,54	23,908	23,141	21,848	8,661
Bloom	15,875	7,867	4,706	-	-
Total	26,42	43,021	92,4	149,1	30,390
Russia-					
Ore ..	-	-	22,297	278,583	246,609
Bar	376,686	210,956	124,093	115,590	20,066
Manufactured iron \& steel	-	-	-	-	123,341
Total	376,686	210,956	146,39	394,17	390,016
France-					
Manufactured steel \& iron	-	249,618	459,152	534,415	497,508
Belgium-					
Pig.	3,143	-	-	-	-
Bar ..	8,913	22,786	102,363	205,20	514,760
Manufactured iron	5,578	285,228	558,417	2,097,527	2,800,344
Total	17,634	308,81	660,780	2,302,731	3,315,104
Netherlands-					
Pig	-	4,242	109,195	878,825	361,315
Bars	-	13,604	232,010	116,971	92,674
Unwrought steel	1,600	137,32	189,97	286,500	191,795
Manufactured steel \& iron	9,641	352,511	726,131	1,042,333	2,885,966
Total	11,241	507,684	1,257,312	2,324,909	3,531,750
Spain-					
Ore..	13,865	130,680	375,983	2,909,787	5,750,515
Portugal-					
Ore	-	-	-	55,851	77,575
Total Europe ..	3,097,288	4,321,952	6,624,285	14,973,380	19,910,984

wrought and manufactured Iron and Steel imported into the
United Kingdom during twenty-five years from undermentioned United King
Countries:-

	1856-60.	1861-65.	1866-70.	1871-75.	1876-80.
Iron Ore from-	\pm	\pm	£	£	£
Sweden	-	12,894	10,767	6,540	
Norway ..	-	8,372	46,665	104,657	16,458
Russia	-	-	22,297	278,583	246,609
Spain	13,865	130,680	375,983	2,909,757	5,750,515
Portugal	-	-	-	55,851	77,575
Total	13,865	161,946	455,712	$\overline{3,355,388}$	6,091,157
Pig Iron-					
Sweden ..	92,373	217,902	320,778	1,351,079	643,356
Norway .	-	2,874	17,981	22,615	5,271
Netherlands..	-	4,242	109,195	878,885	361,315
Total	92,373	225,018	447,954	2,252,579	1,009,942
Bars, unwrought					
Sweden	2,430,815	2,297,036	2,754,085	4,463,344	4,516,418
Norway	10,548	23,908	23,141	21,848	8,661
Russia ..	376,686	210,956	124,093	115,590	20,066
Belgium.. ..	5,578	22,786	102,363	205,204	514,760
Netherlands..	-	13,604	232,010	116,971	92,674
Total	$\overline{2,823,627}$	$\overline{2,568,280}$	$\overline{3,235,692}$	4,922,957	$\overline{5,152,579}$
Steel, unwrought					
Sweden	64,012	247,412	350,921	244,105	144,372
Netherlands..	1,600	187,327	189,976	286,800	191,795
Total ..	65,612	384,739	540,897	530,905	336,167
Steel and Iron, manufactured					
Sweden	-	-	106,301	227,754	971,195
Russia	-	-	-	-	123,341
France ..	-	249,618	459,152	534,415	497,808
Belgium ..	8,913	285,228	558,417	2,097,527	2,800,344
Netherlands..	9,641	352,511	726,131	1,042,383	2,885,966
Total	18,554	887,347	1,850,001	3,902,079	$7,278,654$
Blooms, scrap andbroken iron andsteel-					
Sweden, Belgium, \&c...	83,269	94,573	94,028	9,468	42,446

VIADUCTAT STOURBRIDGE, GREAT WESTERN RAILWAY.

VIADUCT RECONSTRUCTION ON THE GREAT WESTERN RAILWAY.
The Great Western Rail way Company is carrying out some extensive works of this description in Worcestershire, on the Oxford,
Worcester, and Wolverhampton section of their line. On Sunday, the 14th ult., was opened for traffic a new viaduct of brick and stone at Stourbridge, to replace the old timber structure, which has stood about thirty years. The new viaduct is built on the west side of the old one, and the rails diverted on to it. It is 571 ft . long, and 98 ft . high at the highest point. Built of very high-class Staffordshire brindled bricks, it has a handsome and pleasing effect when seen from the valley below. There are
ten semicircular arches of 44 ft . 6 in. clear span, faced with blue pressed bricks, and these arches spring from Derbyshire stone pressed
springers 2 ft . 9 in . high and 7 ft . across.
The piers are 6 ft . thick under the springers, and batter outwards 1 in 40 . The plinth is 31ft. below springers, and is of blue brick splayed 6 in. projection, 9 in . high. The parapets are relieved with string course and coping of Derbyshire stone.
The deerest foundation is that of the north abutment, the end nearest Wolverhampton, which is carried down to a depth of 4 ftt . below ground, and was a difficult piece of work owing to
its contiguity to the abutment of the old viaduct and the main line. Over 1000 tons of concrete were put into this foundation. The other foundations vary in depth from 36 ft . to 18 ft ., and are either on sandstone rock or hard fireclay. The centres were of very light construction, as shown in the accompanying figure. The combination of timber and iron resulted in elasticity which allowed the arches to take their form while the centres were yet under them, and no settlement took place after their removal. On September 20th, 1880 , the first excavation was commenced; on October 13 th of the same year the first brick was laid, and the
last coping stone was bedded January 11 th, 1882 , the viaduct having been under sixteen months in progress. Messrs. Kellet and Bentley carried out the work in a very efficient manner. The cost of the viaduct was $£ 13,835$. Mr. W. D. Robotham, of Wolverhampton, was the engineer, represented on the works by Mr . C. R. Williams.

The same firm of contractors are building a similar viaduct at Blakedown, near Kidderminster, for the same company, which viaduct is shorter by one opening than Stourbridge viaduct, and of less height, but otherwise is a fac simile. It is likewise being built alongside the old viaduct.
The third viaduct in this district-the contract for which is now open-is that at Hoo Brook, near Kidderminster. This will be a more extensive work, as there are twenty arches, and its average height is about 70 ft . A description of this will be given on its completion.

STEEL SHIPS STERN FRAMES, STEMS, AND RUDDERS.
Some very large castings have been made during this century and complex casting too, so it may not be altogether beyond the range of possibility that some day a founder or metallurgist
will arise who shall show the world how to cast steel ships all of

a piece. It would truly be a hig piece of founders' art, and graving docks to be plastered and sanded up to the outer form difficult to hold up and to vent; but if it were shown that be shells of ships could be cast it would not be impossible to range cupolas along a monster mould and do it within the present decade. Messrs. Cooke and Mylchreest, of Liverpool, have begun with the thin end of the wedge, and are only casting steel stern frames, rudders, stems, keels, keelsons and stringers. It will be seen from the series of engravings which we give on page 13, that the rudders are made with the head in one solle pource of considerable danger in built-up rudders, and also to avoid the use of a hollow plate structure in which corrosion proceeds quietly and harmfully. By making the rudders of cast steel, the stops for preventing the rudder from going too far over may be more in number, and in the drawings it will be seen that there is one to each joint, thereby steadying the rudder better and safer than by relying on one on each side, as at present, and that they are solid instead of being rivetted on. to connect them with the frames of the vessel as well plates shell, and this is done on the inner or outer post or both. It will be also seen that a portion of the keel, keelson, and garboard
strake are made with the frame, so that there will be a much better connection than at present with the keelson. Some of these keels and keelsons are now being made for test ing purposes, and it is expected that from the fact of their being
solid, that is the keel-either a plate or bar keel-keelson, rider keelson, and brackets to attach the floors, that they will be found to be considerably stronger, while they have the advantage of requiring very few rivets for connection. As angle iron or steel is dispensed with, the limber holes may be made very near the skin, and as they do not require to be above the angle frame as at present, a much smaller quantity of cement than now used will be required ; this will probably, the inventors think, reduce the weight of cement in a cannot be rolled-as, for instance, with large brackets-offer very considerable constructive advantages; advantages which wil perhaps have the greater importance in vessels of war.
The engravings show also some forms of stems for war vessels, These again are cast with connections which cannot be got in th manner or in the desirable form shown, by forging nect the pating of the and rivetting through the stem and stern frame, but by having a portion of all the strakes of the vessel solid on each frame and

COOKE AND MYLCHREEST'S STEEL CASTINGS.
(For description sec page 12.)

stem respectively, thus giving a diagonal fastening of the plating
to the stem and stern, instead of the short nip the rivetting has to the stem and stern, instead of the short nip the rivetting has
in the present method. Several stern frames and rumners made in crucible steel have already been completed, and some large ones are being made by the Steel Company of Scotland, on the
Siemens-Martin process. Messrs. Jessop and Sons, of Sheffield, made that lately exhibited at the Naval and Submarine Exhi bition.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,

(From our own Correspondent.)

Firminess characterised the business done on 'Change in Birming ham to-day-Thurscay -and yesterday in Wolverlampton. In-
deed there were finished iron makers who sought better prices than last week by from 5 s . to 10 s . per ton. Instances were quoted in which sheet mills had three monthes' worl ahead. Quotations by the chief medium sheet firms were to-day and yesterday based upon $£ 71$ 15s., $£ 8$, and even $£ 8 \mathrm{ss}$. per ton for
singles. The difference of only 10 s . between either singles and doubles, or between doubles and trebtes, was no 1onger quoted ; and
the firms who last week were maintaining a difference of 20s. now required 25s., and there were others who required the full differenc

 prices, nor were makers all firm at the revised rates; but they
would not meet buyers to the extent the latter demanded. New transactions
three weeks.
Hoops and strips were steady at all the money that regulated sales a week ag
£9, and for bridge building at ater at, for good boiler-making sorts, ment the competition of the North of England plates was felt These were obtainable at $£ 710$ s. delivered into South S Staffordshire High-class bars are in better request for Canada, the Australias,
New Zealand, and the Cape; and there has recently been some buying of such iron for the States. The purchases are known to have been augmented by the strike of ironworkers upon that side,
Earl Dualeys's bars are quoted firm at $£ 82 \mathrm{~s} .6 \mathrm{~d} ;$; and "B. B.
, brands $£ 7$ 10s. From that figure prices to-day tapered down to their adhesion to the compact arrangement to keep the
notified the rate of extras in that department ; and the rates before agreed
upon have been revised with the result that and and stand at 45 s s., No. 7 at 65 s s., No. 8 at 95 s , and No. 9 at 135 s . per ton. These fifures are a drop of from 5 s. to 10 s. per ton upon the
The London and Liverpool exporters of tin-plates are making freer inquiries ; but they hesitate to give the te.
Staffordshire and W orcestershire makers stipulate.
Pigs were slow of sale to-day, though there were consumers of both forge and foundry sorts who desired to buy in advance of
requirements if makers would accept their terms. All-mine pigs
 and $£ 3$ 2s. 6d. respectively.
Ore was not in brisk request, though native "gubbin" might
have been bought at about 14s., and "blue flats" at within 15s. have been bought at about 14s., and "blue flats" at within 15 s .
Cool was procurable at from 6 s . . di. for forge sorts of a poor quality up to 6s. 9d. and 7s. for
The furnaees now in blast number 48; but there are several
which have been thoroughly repaired-certain of them, indeed, nearly rebuilt, and are being kept in readiness to be relighted at hardly more than an hour's notice.
The steel experiments continue
reports from the manufacturers by whom slabs are being manipulated are looked for with much expectation. So far as is known, these reports are likely to be of a somewhat varied description.
Entervrise is being shown by at least two of the cable and chain Enterprise is being shown by at least two of the cable and chain-
making firms of this district, with the object of making steel-welded goods. Several irms had experimented with the same object, bu
they had cone to the conclusion that only Messrs. Brown, Bayley,
and Dixon, of Sheficield, were making a steel linked chain, and that they were employing a method distinct from welding.
Messrs. Brown, Bayley, and Dixon have for the present, I am in a position to say, abandoned the making of these chains,
Chains of steel welded links are being made here by Messss, J.
Vernon Hope and Co., Limited, of the Atlantic Works, Wednesbury, and by Messrs. Forrest, Bros., and Co., of Cradley, near Birming ham. The first-named firm make cables as well as chains; and
though Messrs. Forrest have not at present made cables of steel though Messrs. Forress have not at present made cables of steel,
they are quite prepared to make them. In these cases steel of capable of welding without injury is employed. There is reason to oonclude that unsuccesss in other cases was mostly a question of
manipulation. Nevertheless the fault was laid at the door of manipulation. Nevertheless the fault was laid at the door of
quality, and there are chain and cable firms hereabouts who are looking for success when they employ the steel of local production.
Such firms are as yet without information of the trials that I have mentioned which have been made with that steel.
The colliers around Dudley are dissatisfled with the ruling of
e Superior Court in the action of Grifitiths v. the Earl of Dudley tow which I have previously referred, and they have determined to start a subscription to enable Mrs. Grifitiths to take her case to the
Court of Appeal. It will be remembered that contrary to the opinion of Sir Rupert Kettle, the County Court Judge for Worcestershire, the superior Court has ruled that a
tract himself out of the Employers' Liability Act.
of steam power, for a term not exceeding three years, by the bir mingham and Aston Tramways company, subject to conditions to be agreed upon with the Public Works Committee. It is under-
stood that the engines, which will travel from Corporation-street to Aston, will go at the rate of six miles an hour a a pace which is
the same as that at which the horse cars are allowed to travel and the company have volunteered to give the Councila guarantee that they will put down a much improved line of rail. Some members
of the Council were in favour of permitting the use of steam on all the tram lines which chose to use it, but the general opinion of the Council was averse to so wide a permission being granted,
On Monday the Walsall Town Council had before the posal for purchasing a locomotive engine for drawing from the rail-
way siding the conl used at the new Corporation Gasw way siding the cont iseat the new corporation Gasworks. The think that the work could be done much better and cheaper by a locomotive. The cost of such an engine of from 6 to 8-H.P. was
estimated at $£ 500$, and allowing for percentage on outlay and cost of working, the annual expenditure, it was believed, would not be
more than $£ 109$, which would be saving of $£ 170$, yearly more than £109, which would be a saving of £170 yearly. No
decisison was come to in consequence of a suggestion that the railwas company might agree to do the haulage for 1d. per ton, and
the General Purposes Committee will further oonsider the proposal. At a monthly meeting of the South Staffordshire and East Worecstershine Institute of Mining Engineers, on Monday, Mr. H. H.
Johnson, jun., vicepresident, ,read a papere On Electricity and
the Utilisation of Small Coal." He said it had been stated over and over again by electricians. that they oould caery stated over
tricity without any any appreciable loss. If that were so, he saw great
bringing the motors to the coal instead of taking the coal to the
motors. One of the chief advantages to the company supplying motors. OOne of the chief advantages to the company supplying
the electricity would be the reaced price of fuel at the pit's
mouth, and the non-necessity for expensive sites as in horouths mouth, and the non-necessity for expensive sites as in boroughs.
The advantage to the coolowners would bea constant demand for the smallest coal or slack which could not now be sold at a profit.
Mr J. Davies wondered what sort of plant would be required at a colliery to supply a large town with electriciily. From what he
had seen it required heavy machinery to produce the electric light. The paper was considered a suggestive one, and the best thanks of
the meeting were accorded to the author.

the meeting were accorded to the author.

THE SHEFFIELD DISTRICT.

Dr. WEBSTER, the Consular agent for the Sheffield district, in his return of exports from the town and neighbourhood to the enited
States for the quarter ending 30 th June last, does not afford us such gratifying results as were anticipated. Steel has been ex-
ported to the value of $£ 105,929$, and cutlery $£ 53,673$, the respec ive totals for the corresponding period of 1881 being, $£ 82,925$ and e5s, 577 , the latter showing a derease of £1904, and the ermer an
norease of $£ 23,004$. But it is is in the gross values that the de being only $£ 326,440$, while for the June quarter of 1881 the eached the amount of $£ 360,557$; the decrease being thus $£ 34,147$, The falling-off must be in steel rails, Bessemer booms, and simila heavy goods. Of these the Consul gives no speific return, as the
trade being in so few hands, it would practically be revealing each others business. A diminution in value of over $\approx \sim 5,000$ in a singlo
quarter is undoubtedly a serious matter.
quarter is undoubtedly a serious matter.
The exodus from Dronfield to Workington is quietly proceeding Messis. Charles Cammer and . the Dronfield people are taking time by the fore-lock, and findin
for themselves new quarters at Workington. Dwelling-houses three hundred workmen are to be erected close to the new yard It is said that the Workington authorities are likely to get into
trouble through the Derwent and Moss Bay Ironworks requiring so nuch water. The neighbouring town of Harrington and the illage of Distington are short of water from this cause. An addi-路 sion. will add adresent supp ly coop dronild was about eaten up by rates.
Workington is not touite so bad, but with this extra expense looming Workngton is not quite so bad, but with this extsa expense looming in the immediate future, the present
the pound will be materially increased.
A pleasant incident has to be noted this week. Mr. Samuel was presented on Saturday with a splendid silver candelabrum two pretty side dishes, and an enamelled silver salver. On the
candelabrum was this inscription:-"To Mr. and Mrs. Samuel Osborn, in honour of their silver wedding day, from the partner and employés of Messrs. Samuel Osborn and Co., June the 11th
1882." Messrs. James Dixon and Sons, of Cornish-place, supplie the presents. The occasion was really a double event, for while
celebrating the silver wedding of Mr. and Mrs. Osborn, the coming of age of their son, Mr. Wm. Fawcett Osborn, wa
also honoured. There were over 650 members of the staft and employés. present. Mr. George Jackson. Smith, one of the
partners, in making the presentation, said that the firm of Samuel Osborn and Co. were now in the proud position of the second largest private steel manufacturing firm in Sheffield. It
was mentioned by the head of the railway department-Mr. George Tilfourd-that in addition to the home representatives the firm
had others in Belgium, France, Germany, Russia, the United states, Canada, and Australia, while business was also done i India, China, Japan, South America and South Africa-thei
manufactures indeed being carried over nearly every sea and found in nearly every land.
The new line of railway between Lincoln and Spalding is nov
ompleted. It is forty miles in length, and has cost $£ 1,000,000$ For the purposes of construction, it was divided into two sectionsKirk Langley, M.I.C.E., engineer to the Great Eastern Company; the Leond, from Ruskington to Line Goln, was constructucted by Hy Messrs
Baker and Firbank, contractors, under the supervision of Mr. R. Johnson, M.I.C.E., engineer to the Great Northern Company. The latter part, twenty miles in length, has cost $£ 300,000$. The per
manent way is laid throughout with steel rails 30 t. new line the Great Eastern, in addition to other advantages, has running power to Black Bar Junction, at Doncaster, so that the In referenco to the statement mentioned last week that " Messrs, have been informed by telerram that they have gained sold meda for their sheep-shears, exhibited at the New Zealand Exhibition now being held at Christchurch," Messrs. Ward and Payne write ust been received we find the facts are as follows :-' First order of merit and silver medal, Ward and Payne, Sheffield, tools and
shears of excellent workmanship; Burgon and Ball, sheep-shears price and quality.

NOTES FROM LANCASHIRE

(From our own Correspondent.)

Manchester:- There has been only a limited amount of business spurt now siron market here during the past wobt, the thiderabl purchases made during the last few weeks have pretty well covered In prices has tended to check the placing out of orders of a specuand with but little business stirring was not of tory attended, pig iron were firm at their full rates of 455. Lanchesses $2 \frac{1}{2}$ for forge and foundry qualities, delivered equal to ness, chierfly in forgee quarilities, they lining the week. In outside
brands, although the last advanue has scarcely been realised to the full, makers have not been giving way to any material
 qual to Manchester. At a trifte under these figures sales have low as 45 ss . 6 dd . per lots of Lincol special requirements are made on the basis of about 52 s . per ton,
net cash, for
g.m.b's. delivered equal to Finished iron makers are in a better position than they were employed, and although there is not any actually large business being done, there is a fair inquiry in the market. Bars an still be
bought at as low as $£ 67 \mathrm{~s}$. 6 d . for delivery into the Manchester district; but makers are not anxious sellers at that figure, an iron, howeverar, the are stifitenening in up to about e 6 per ton. For hoop
intil only limited, this branch of trade
being at present adversely in Egypt, and I have heard of quotations in the market of af aidairs chester.
The position of the engineering trades remains much the same as I have reported for some time back. The large works throughout
the district are generally full. employerd ineol-makers and
machinists are well supplied with orders, which include a good deal
of work in hand for machinery connected with electric lighting hilst 1 hear of good American orders in hand for cotton ma
chinery. In general machine tools a good trade is being done with France, and German inquiries are again coming into this district.
The ol

Id-established engineering firm of Messrs. Nasmyth, Wilson, hares., have, howevever, I I understand, been taken up privately,
shiefly by members of the concern, and have not been thrown open chieffy by members of the concern, and have not been thrown open to the public.
At the ann
tion held onnual Theeting of the Tron Trades Employers' Associa-
least Mr. David Greig, of Leeds, was reelected the president for the ensuing year, and a resolution was
passed recommending the General Committe of Manasement to evise the rates of subscription, with the view, to widening the basis of the Association. An abstract of the annual report, which was
presented and adopted at the meeting, was given in your columns

The present session of the Manchester Geological Society was
rought to a close on Friday last by a meeting held at Wisan, brought to a close on Friday last by a meeting held at Wigan,
when the programme brought before the members was one entirely when the programme brought beig to mining engineers, of whom here was a large number present. Mr. Chas. Cookson read a paper or Mine Ventilation." It had become now-a-days, he said, not so nuch a question as to the superiority of mechanical or furnace
ventilation, but which was the best mechanical ventilator the majority of engineers having become convinced, on the ground of fety and efficiency, that mechanical was greatly superior to fur
 Which were eentrifugal ventilators, and the second consisted of those fter the manner of an air pump. The latter class, however, in his opinion, were not at all suited for the enormous volumes of air which were required at the present day for the ventilation of coal nines, and perhaps the most convincing argument as to the
uperiority of the centrifugal ventilators was that while the aperiority of the centrifugal ventilitors why tat while the varyng capacity machines at work in this country might be counted on
ones fingers, there were of the Guibal fan alone 250 to 300 at work, whilst on the Continent, where all types of mechanical ventilators
had been more fully tried than with us, the centrifugal fan was sing put actically to the exclusion of all others. It was, lass of ventilator. Taling the useful effects, results as shown by rials at several collieries, there was little to show that any one fan was superior to the other. The fans in these cases had not
been working under the same conditions, and as it was impossible to secure these with present experiments, they must turn their quite as important as the question of the percentage of steam utilised. They must first consider what the work of a fan was.
trimarily, of course, it was to produce a ventilating current in the Primarily, of course, it was to produce a ventilating current in the produced by a fan running at any speed. Since the quantity of air type of fan was able to produce, the queqeatest water gauge was
the of great importance because it might be said that he fan which at a certain speed could produce the greatest water sauge was the most eficient ventilator. As a basis on which to
test this class of ventilator they might consider that in all centrifugal fans the air travelled the fan at the speeds at which the tips
of the blades were travelling. The work which was stored up in the air when travelling at a certain speed was nearly all lost by pen running fans. If they could utilise any of this stored up
work by lessening the velocity of the air before discharging it ut the amossphere they would increase the useful effect of the fan.
If all this stored-up work could be utilised, and the tan cunsed no riction to the air in passing through it, they would arrive at what a perfect fan could produce. In order to get at a fair average of results in this respect he had worked out the percentage
of efficiency of some six Guibals, three Waddles, and five Schiele fans, and he found they gave the following com-
parison: Guibal's, $64 \cdot 5 \cdot$ Waddle's, 44.78 ; and Schiele, $34 \cdot 54$ f efficiency with regard to water gauge produced. Taking this shat each of the calculation, they would find out approximately
whes of fan would do at the same or different speeds, and taking 9000 ft. per minute of periphery speed as being about the limit of safe working speed of fans of such dimensions as would pass large volumes of air, he found that working
under similar conditions the Waddle would give 16.6 per cent. and the Schiele 26.9 per cent. less air than the Guibal, or that to pro 20 per cent. and the Schiele at $36^{\prime 6}$ per cent. greater speed than
the Guibal, so that whatever the result as to the useful effect calculation, they might say that as a matter of efficiency with The test of water cure produced was one of areat importance and would, he hoped, be of service to persons thinking of changing from (tance
furnace to fan ventilation. Mr. Wm. Bryham, although prepared to admit that the time was coming when mechanieal ventila-
lation would be more applied than it had been, scarcely thought be said that under some conCockson said that no doubt at certain depths furnace ventilation and to more economical than mechanical vented
At the last meeting of the Manchester Geological Society the different types of lamp were brought forward. Nothing, however, efinite was arrived at, except, perhaps, the general conclusion
hat a perfect lamp had not yet been introduced. Mr. Wm Bryham said that what colliery proprietors desired to know was hat was a safe lamp; at pres Commissioners on Mines Explosions had come to. They required a lamp to meet not only the ordinary conditions, but the extra-
ordinary conditions which might perhaps not arise more than once or twice in the life of a mine.
The coal trade continues in a depressed condition, owing to the are kept down extremely low. House coals are, of course, however, a fair demand for ironmaking and manufacturing classe of fuel, but the supplies more than meet all the 1 consumers. There is a good deal of irregularity in prices where without material change, and at the pit mouth average about 8 s . to
8 s .6 d . for best coals ; 6s. to 6 s .9 d . for seconds $; 4 \mathrm{~s} .9 \mathrm{~d}$. to 5 s .6 d . or common ; 4s. 3d. to 4s. 6d, for burgy ; and 3s. 6d, to 3s. 9d. fo The wages question is being forced to the front by the action of
Tessrs. Richard Evans and Co, of St. Helens, one of the largest olliery concerns in Lancashire. of St. Helens, one overal of their pits a reduc ion oo 10 per cent. is being enforced, which, if carried out, will no realise that this is simply the preliminary to a more general reduction, have resolved to stop, not only the pits directly affected, but Barrove. -The hematite pig iron market continues to be much but the demand is much brisker, and orders are being taken with a little more freedom. From all quarters the demand is good; but that from America especially so. A number of furnaces have been relighted during the past few days, and this will be the means of ncreasing the production, but even that wind not place has set
in a position to be able to meet the demand which has
in. Stocks are rapidly declining, as the demand is in
as Stocks are rapidly declining, as the demand is in
in. Heavy consignents of metal are
being made the production. Head, principally to America; but deliveries on local
account are pretty extensive. Steel makers,
within the past week or two, have made heavy lemands on Bessemer pig iron, owing to the increased demand for steel qualities. No. 1 On no ac orders extending over three months. Steel rails are firmer in price, being now quoted at $£ 515 \mathrm{~s}$. per ton. The inquiry is very active, and some
good orders have been booked. The mills are good orders have been booked. The mills are
running in regular work night and day, exeept
Sundays. The output of steel rails is very heavy, principally to complete foreign orders. Iron ore in good request at unchanged values, 13 s 6 d . to
16 s . per ton at the mines. Iron shipbuilders are rather quiet, other industries in steady employrather quiet, other industries in steady employ-
ment. Coal and coke in steady request. Shipping ment.
active.

THE NORTH OF ENGLAND.
(From our own Corresp ThE Middlesbrough ironmasters held their
usual meeting before 'Change on Tuesday last and decided not to alter their prices, which, therefore, remain at 43 s . 6d. for prompt f.o.b.
deliveries of No. 3 foundry quality. Merchants deliveries of No. 3 foundry quality. Merchants
are now asking fully as much as makers, and in are now asking fully as much as makers, and in
some cases even $1 \frac{1}{2} d$ per ton more. They have some cases even 12d. per ton more. They have
considerable difficulty in supplying the needs of
their customers under contracts entered into as their customers under contracts entered into as
"bear" transactions some time since, and there bear" transactions some time since, and there are many complaints against them on this score.
Warrants are rather more in demand than they Warrants are rather more in demand than they
have been recently, and now command full makers' prices.
The quantity held by Messss. Connal and Co.
at their Middlesbrough stores is now 122,439 tons at their Middlesbrough stores is now 122,439 tons,
or 2285 tons less than a week since. The demand for hematite pig has improved considerably both on the east and west coasts, and several sales have been reported at improved prices.
The demand for finished iron is
The demand for finished iron is well main-
tained. Buyers for postponed delivery have tained. Buyers for postponed delivery have
been holding back their orders in hope of lower prices, but there is very great pressure from those whose requirements need immediate attention. In some cases manufacturers have asked and obtained 5s. per ton more for prompt than for
deferred delivery. Plates are quoted at from $£ 615 \mathrm{~s}$. to $£ 7$ in trucks, Middlesbrough, and bars and angles at from $£ 6$ to $£ 65$ s. per ton.
Materials for iron manufacture are everywhere in excess of the demand for them. This is largely due to the recent ironworkers' strike, at the end Old rails are now offered at 72 s . 6 d . ex-ship Tees. Purple ore commands about 18s. per ton delivered
Middlesbrough, and covered sand castings $£ 4$ per Middlesbrough, and covered sand castings $£ 4$ per
ton. Towards the close of the market the ironshow that seventy-nine furnaces are making
Cleveland, and forty hematite or basic iron, in the Cleveland district, this being the same numtotal output of 14,427 tons a deorease in the roughly speaking, is accounted for by the day
less in the month. The stocks have, on the whole, decreased 8376 tons. If the make had been proportionate to May, they would just hav
remained at the last figure. Makers' stocks, as a whole, have increased; and stocks in public stores have, as a whole, decreased considerably.
This bears witness to the continued struggle carried on between the makers and the bears, Shipments have decreased in all 23,204 tons Exports contribute only 1540 tons of this, whilst coastwise shipments are debited with the re-
mainder. This is mainly due to the decreased demand from Scotland, owing to the relatively ıonmasters. As Scotch pig is now again higher in price, we may expect to see Cleveland iron sent northward at the previous rate of delivery.
The rolling mills, and indeed, works of all The rolling mills, and, indeed, works of all
kinds along Tees-side and at Hartlepool lost two shifts at the beginning of the present week, owing to the boatrace between an Australian oarsman
and a Middlesbrough publican. The working and a Middlesbrough publican. The working
population seemed perfectly demented with excitement at this trivial event. There were the to an inordinate extent, benefitting publicans and book-makers, and leaving the working men so much the poorer. The only redeeming feature money was realised in return for admission tickets to wharves, shipyards, \&c., and which will be handed over to the North Riding Infirmary and the North Ormsby Hospital. It may be added that the impecuniosity resulting from the
boatrace will have a good effect in keeping the boatrace will have a good effect in keeping th
ironworkers steadily at work for some time to come.
One of the most clear-headed, far-seeing, and Fallows, chairman of the Works Mr. William Fallows, chairman of the Works Committee of
the Tees Conservancy Board, and aged 85 . the lees Conservancy Board, and aged 85. At
the last meeting of the Board, he called attention to the great need of another dredger to expedite he deepening of the river Tees, so that ships rawing a great depth of water might be able to ver the tons are already capable of passing Fallows. The four dredgers already at work will require six years to complete the necessary
work, and this delay he cannot brook. Thereflas he advocates a new one to be ordered a proposed to pay out of revenue. The motion was opposed by Mr, Richardson, who advocated a ing of rates to other less immediately a tangible dvantages. But ultimately Mr. Fallows pre vailed, and the engineer was directed to make the neee
dredger.

NOTES FROM SCOTLAND.
 (From our oom Correspondent)

 THE iron trade is in almost every respect in ket have slightly fluctuated during the weekbut the tone on the whole has been firm and
steady, and the value of makers' iron has been
fully maintained. At the close of last week the
(strength was imparted at the begyinning of the present week by the large shipping return, which
showed that the shipments of pig iron for the week had exceeded 15,000 tons, as compared with
10,000 in the preceding week, and 13000 w th 10,000 in the preceding week, and 13,000 in the
corresponding week of last year. The stock in Messrs. Connal and Company's stores has been tween 300 and 400 tons, and makers state that
the the med they are well sold, and in most cases making only what meets current requirements. Owing to the
increase in the prices of No. 3 g .m.b. the imports is probable that they wit now slightly increas week by week should the quotations of Scotech on be maintained,
Business was done in the warrant market on
Friday morning at from 49 s .2 d d. to 49 s , cash, and
 tions in the afternoon being 48s. 11d, to 48s. 8d cash. On Monday the market was stronger, with
business from 48s. 9d. to 49s. cash. On Tuesday forenoon transactions were effected at 48s. 11d. to 49s. cash, and in the afternoon at 49s. to 49s. 4 d
cash, and 49s. $5 \frac{1}{2}$ d, one month. The market was. firm on Wednesday, with business between
49s. 2 d and 49 s .5 d cash, and 49s. 42d. to 49s. 7 d one month. co-day-Thursday-business wa As stated above the values of makers' iron have and are now as follows :-

 33s. 6d. and 50s. 6d.; Clyde, 533., and 50s.,
Monkland and Quarter, each 50s. 6 d and 49 . Govan, at Broomielaw, 50s. 6d. and 49s.; Shotts at Leith, 60 s . 6 da . and 5 5s. 6 d. ; Carron at
Grangemouth, 50 s . - specially selected 52 s . 6 d .
 Glengarnock at Ardrossan, 53 s , and 5 s s.; Eglin
ton, 5 sos . 6 d . and 49 s .6 d .; Dalmellington, 50 s . and 49s. 6d.
There is still a very good demand for hematite
ore and hematite pig iron, and the prices are very firm.
At some of the finished ironworks there i rather less doing, but generally makers repor
that they have still a sufficiency of employment nd in several cases the demand for malleable iron has manifested an improvement. There is no change to report in prices.
A strike is threatened in the engineering work
of Edinburgh and district in consequence of a of edinnorgh and district in consequence of a dvance of hd. per hour. The present wages are so. per hour for firty-four hours a week.
some cases it is stated, the employers have com plied with the men's request.
The coal trade is in a rather more satisfactory The coal trade is in a rathe

WALES \& ADJOINING COUNTIES (From our oon Correspondent.)
A GooD deal of speculation is rife as regards
the future of Plymouth works and collieries. In the House of Lords' Committee Mr. Simpson was yo on, and this is taken as indicating that sootch firm will very likely come into the field. It would be possible to revive the old Plymout bar trade, and this with a share of the steel rai business coming to the district would warrant ter of a million sterling in transferring the works from cold blast to hot blast. This would be no advantage now. Thorough clearing away and is intended at Cyfarthfa. A strong force o At length sharp, determined business is meant and is being conducted, Mr. Edward Williams, of Middlesbrough, the owner of, perhaps, the nost pattern works in
being the general adviser.
Some important alterations will be required by Cyfarthfa with respect to rail ways, and the action
of the Rhymney Tlaff Vale, and Great Western is watched with interest
The present time is favourable for iron and coemina with a moderate amount of busines coming in, some degree of impetus is given to the other is being carried on all over the district. ear of a French order for coming. With our colonies the amount of iron trade done is satisfactory. Last week one good
shipment of over 3000 tons took place to Montreal. a considerable degree of partisanship. One thing is certain, Mr. Lewis is making a good fight or ock accommodation, and it would be far better, one would imagine, to adopt the scheme pro-out-of-the-way spots.
The common sense opinion in Cardiff is that though certain regulations are distasteful-an this is a matter of opinion-the whole scheme more reasonable one than that propounded by the shippers.
The promoters of the opposition dock scheme the Great Western Rpil way. It is announced a probable that Lord Windsor may give $£ 150,000$ and the Great Western $£ 100,000$; but I have no heard of any substantial reasons being afforde or this rather remote "probability"
The men are now working at The men are now working at the variou regularity, and the new scale is generally approved coal colliers of Fernhill, Gelly, and
the steam cond
Tyn'ybedw collieries with reference to lowering expected until the men can be arranged with. The Dynevor Tin-plate Works are to be brought
to the hammer next week. There is a whisper in to the hammer next week. There is a whisper in
the market; unless these doings ar One of the leading questions under discussion this week is the action of the colliers' representa-
tives with Lord Aberdare and Mr. Mundella in re reducing the educational standard to the 4th so as to allow children to go to work at the
age permitted by the Mines fter their twelth year. It is generally conceded
hat Mr. Mundella, who refused to aid, had the etter hand in the argument, and yet an influntial section will be found to combat him. The mass of workmen do not require the fifth tandard; the analysis of sentences and vulgar
fractions are not wanted in the every-day life of ractions are not wanted in the every-day life of
collier, and the regulation which floods th tti with "clerks" or men who shun coal cuttings and labour, does not work
cally, Mr. Mundella to the contrary.

THE PATENT JOURNAL.

Condensed from the Journal of the Commissioners Patents.

 * It has come to our notice that some applicants of theatent-oftice Sales Department, for Patent Specifications, ave caused much unnecessary trouble and annoyance
oth to themselves and to the Patent-otice oficiols, b both to themselves and to the Patent-ofice officials, by
fiving the number of the page of THE EviNER at siving the number of the page of THE EEGINER at
chich the Specification they require is referred to, instead
if givin the proper umber of the Specification. The
instake has been made oy looking at THE ENGINEER nistake has been made by looking at The Enornee efer to the pages, in place of turring to those page
Inding the numbers of the Specification.

Applications for Letters Patent.

 * When patents have been "communicated" thename and address of the communicating party are printed in italics.
3021. Detaching Hooks, J. King, Pinxton.
302. Indar-ruber Tires, A. J. Wyley and B. Collins,
Manchester. 3023. VELLCIPEDEs, G. Moss, London.
3024. Gas, S. Chandler, jun., \& J. Cha 302. GELOCIPEDES, G. Moss, London.
3024. GAs, S. Chandler, jun., \& J. Chandler, London
3025. DYNMO-ELECRIM MAHINE, E. Sperry, U.S.
3026. BLow-PIPL LAMP, J. T. Garratt, London 26. BLow-PIPE LAMP, J. T. Garratt, London.
307. Horssioss, J. Vernon, Newton Stewart.

3031. Stopping Cars, F. J. Prince, London.
3032. SAFETY LAMPs, W. Jenkins and D. Morgan, N.B,
3033. Producing Carbons, F. S. Isaac.-(Sir J. Vogel,

Australia.) 3034. Collecting Foul Matters, F. Bonnefin, London
3035. PHotoraphic Camers, G. Hare, London.
3036. DyNAMo-Ehectric Machines, W. Ayrton and J. London.
LRINGING
Maidstone.
038. Stable Fittings, D. MeGill, London.
28th June, 1882.
3039. GALVANIO BATTERIEs, C. Nezeraux, Paris.
304. CLEANING KNIES, R. Wallwork, Manchester
3041. Bottie SToppers, W. Frogratt, Nottingham. 3040. Cleaning Knives, R. Wallwork, Manchester.
3041. Bortle sfopprs, Froggat, Nottingham.
3042. Izcandescent Electric Lamps, F. L. Willard, London.
3043. DRAWING Corks, T. Wymond, London.
3044. ALPHo OxYHYRO-CHINOLINE, J. Erskine.--(The
Farbuerke vorm. Meister Lucius, and Brining, Germany.)
045. SLIING into STRIPs, J. Whytehead, Ilkley
046. ABSTRACTING GoLD, R. Barker, Seacombe.

 1050. Bat Handles, C. Meiter and R. Moth, London.
3051. GLass Melting, L. Mount, London.
1052. Preparing Cotton, S. Lord \& J. Kaberry, Rochdale M5. BREEGH-LLADING, SMALL-ARMS, T. Webley and T
Brain, Birmingham.

 3057. CưCKs, H. H. Lake- (L. Frobeen, Berlin.)
3058. Rollers, E. Hancock. - (W. Grine Berrin.)
3059. PREVENTING Explosions, G. von Nawrocki. Jacobi, Germany.)
3060. SECURING BUTTONs, E. C. Barron, London.
3061. MAGETIC Compasses, F. Betbeder.-(E. Bo
France.) 3061. Magnetic
France.)

963. Refining Saccharine, D. MacEachran, Greenock.
3064. Prodving Ingots, A. Longsdon.- (F. A. Krupp,
Ger.

Gebermany.) Openina Fur, J. Woodrow, Stockport.
3066. Workivg SIGNALs, W. Stroudley, Brighto

3069. Looms, C. Catlow, Burnley, w. Harding, Leeds,
3070. Elecrric-ARc Lamps, E. de Pass.-(c. Roosevel
B. Abdank, Paris.) B. Abdank, Paris.)
307. Hooks, W. Down
3072. Hyposulphite
7. Hyposulphre of Siverpool.
Verein chemischer Fabriden, German Nawrocki.-(The
 075. FURNACES, W. Bell, Lancaster.
076. MILLs, W.Lake.-(W. Hartman, Germany.)
O77. Sharfenina Saws, C. P. Martin.-(E. Vallingin

3108. Secondary Bateriez, H. Haddan.-(C. Brush,
Cleveland, U.S.)
3109, Preventing Boat accidents, H. O. Grünbaum, stratford.
3110. Door Furniture, J. Brownrigg, Windermere.
111. Scouring HANks, J. F. Kilburn, Meltham. 3112. CoLour Printing, J. Bromley, Leeds.
3113. PEAT for LITTERE, S. D. Cox, New Charlton.
3114. GLASS INTATIONs, C. D. Stearn, Newcastle-up Tyne.
3115. Generators, L. P. Martin, Vienna.
116. VENETIAN BLINDS, E. V. Emery, C. 3116. VENETIAN BLINDS, E. V. Emerv, Canonbury,
317. LTrtise BarRelled Beer, W. Wood and W.
Whitaker Burnley Whitaker, Burnley.
11. STEAM Bollers, J. T. Ward, Ossett.
3119. OraANs, \&c., J. M. and J. B. Draper, Blackburn.
120. GALVANIC BATERIES, J. H. Davies, Ipswich.
 3123. Syphos, F. Sara, Plymouth.

3130. Exhaust Fan, G. Capell, Northampton.
3131. PERMANENT W. W, A. Clark- (J, Meacham, U.S.)
3132. VALLES, A. Clark.--(W. Scott, U.S., and W.

H133. MoTIVE PowER, J. Jeffs, London.
134. Grain Elevators, H. Newton.- (J.Roger, Vienna.)
13. Malt Extract, L. Hoff, Iondon.
136. Shackles, R. Ruck, Chatham.
137 CARTridee CASEs, C. D. Abel.-(IV. Lorens,

Germany.)
3138. Quarting Slate, G. Hunter, Egham.
Inventions Protected for Six Months on
Deposit of Complete Specifications. 025. Dynamo-electrio Machines, E. A. Sperry 3039. GALVANIC BATTERIEs, C. P. Nézeraux, Paris.-
28th June, 1882 . 200, SEwING CARPETs, W. R. Lake, Southampton-
buildings, London.-A communication from A.
Neustadt, San Francisco, California, U.S.- 0 . 1882.

Patents on which the Stamp Duty of

 2636. Dies or Moulds, J. Hamblet, West Bromwich 2661. Separating Matters, J. A. Stephan, Madeley.1st Jely , , 879 g.248. Locomotive Boilers, J. Wavish, Leytonstone 2654. TELEGRAPHY, E. Warburton, Manchester, and L. Crossley, Halifax.-1st July, 1879 .
249. Coloured Tiles, G. A. Marsden, Cobridge.- 5 th July. 1879 . 1879. Locomotives, W. Adams and J. Cleminson U.S. Volatilising Uresylic Acid, J. H. Valentine 260. REAPING MACHINEs, W. McI. Cranston, London. -1st July, 1879 . $-1 s t$ July, 1879.
250. Boors, R. McDonnell and T. Forster, Leicester.
-1 st July, 1879 . 788. Cleansing Meshes, W. R. Lake, London.-2nd Ju8. METALLIC Bedstends, J. B. Roweliffe, Glossop.-
2nd July, 1879 . 682. Enriching Gas, J. Livesey and J. Kidd, London,
-2 ned July, 1879. 683. Harvesting, W. R. Lake, London.-2nd July,
251. Sectional Boiler, J. Keith, Edinburgh.-3rd July, 1879 .
252. DREDGER Buckets, W. R. Kinipple, Greenock - -4th July, 1879. So9. SULPHATE of Soda, J. Hargreaves, Widnes.10th July, 1879 .
253. Couks, . Tambert, London.-10th July, 1879 .
254. CoLour Printing, W. G. White, Paris.-26th
 269. Stockings, H. J. Griswold, London.-1st July, 1879.
255. Signalling, S. Pitt, Sutton.- -2 nd July, 1879 .
256. Scafrolding, W. R. Lake, London.-2nd July,
 751. Brass-headed NAILS, W. H. Richards, Birming-
ham. - th July, 1179.
257. FIRE ALAR,
July, 1879 .

Patents on which the Stamp Duty of
$\& 100$ has been paid. 2363. Horse Rakes, J. Howard and E. T. Bousfield, Bedford.-29th June, 1875 . Lowe, W. Renton, J. Johnson, Leeds. - 30th, June, 11775. l . Renton, J.
401. House TrAPs, E. G. Banner, London.-2nd

1048. Fritrer Presses, S. H. Johnson, Stratford.-4th

 ${ }^{\text {13856. Drvinisg MAchinerr, }}$ 23. Truman, Birmingham. 2418. sTivss and Corsers, A. Ottenheimer, Stuttgart 2428. Tutbarantr Prinvirg, J. Imray, London-

 2657. Rantway Brakes, A. E. Harris, London.-6t

Last day for flling opposition, 25th July, 1882.

1034. Gatvinic CHains, C. D. Abbel, London.-A com-

 com. from G. D. Dennis, jun. - 1 tht March , 1882.
124s. Rotating Drum, T. Cope and W. Brewer, Liver

 1713. ELLCrcric ARC LAMPs, J. Brockie, Brixton. -11 ith 1749. Reoorivg Turss, c. Major, Bridgwater.-12th

 munication from A.

 721. FALSE Spencor, Londonis to Tuss, A. W. Gillman and S . 9th. SEcondary Battreries, A. P. Price, London.748. Burning Pyritrs, E. Bramwell, London.-12th

 -1

Patents Sealed.

[^1]42. STroves, E. G. Lakeman, Modbury.-4th January,
50. L. Locomorive Esoinss, T. Morgan, London.- 4 th 55. Danuary, 1882 2.

 M1. Crushiva SuspiAxcess. J. Spencer and J. Conster-
dine, Hollinwod and N . Gimberley, London.-

 January, 1882 . Gresnhouses, T. R. Shelley, Smethwick 11. Courtuxar, H. E. Newton, London. -16 th Janur-

 borough, J. Hill, Rochdale, and T. and T. Green
wood S. wood, Smithy Bridge.-9th February, 1882.
630. Lasps for PETRoLEvaI, S. Pitt, Sutton.-9th

 London. - 3rd March, 1882.
LO33. SHAPING GIIss, F. Wright and M. W. W. Mackie, 1201. Roiler BEaRIIGs, T. F. Hemmich, Reading.-
14 th March, 1882 . 265. CHats, Curs, J. Smith, Thornliebank, -15 th

 ${ }^{1} 599$. Reverberatory Fernaces, w. W. Hughes, Lon-
 1881. Brebeh-loading Small-Arms, W. Tranter, Bir

 1958. Bolures, G. W. Hawksley and M. Wild, Shef
 ${ }_{19}{ }^{\text {Ant }}$ 26. Decorticating Stalks, W. R. Lake, London.2042. Trempless for Looms, w. R. Lake, London. $-29 t h$
 (List of Letters Patent which passed the Great Seal on 4880. Porrabis Forges, G. H. Pym, Nottingham.-
 5746. N TMMERRING Machines, W. R. Lake, London. 31st December, 1881.

January, 1888, J. Vernon, Newton Stewart.-6th
 S1. W. Writhw Janu, J. I. Foryham, London.-6th Janu-
 88. Coth JTinucary, Tokacco, C. J. Fox, London.-Tth Janu91. Cry. 1882. Frib Frames, F. W. Pim and T. Sands, Harolds
 Januryy, 1882. Machines, F. Wolff, Copenhagen.-
100. Weichiva
 Huddersfield.- 7 th January, 1882.
116. K MIFE CLEASNXG,
E. M. Knight, Manchester.124. Remporvocisis Engravings, L. H. Phillippi, Ham

${ }^{1882}$ Sinatrs, J. S. de Bellob

 ${ }^{3} \mathbf{j}$ 320. Reorondive the Movess in Chess, A. M. Clark,
London.-21st Januuary, 1882.
 180. PRepreller, C. Cornchy, Poplar.--26th January,
408. Cooung PAPER, F. C. Glaser, London.- 26 th January, 1882,
50 . Sast S. Hazlehurst, Runcorn.-2nd Feb.

 75982. Punifying Antirachione, J. A. Dixon, Glas

1400. Elecrric Lasps, T. E. Gatehouse, Camberwell. ${ }^{1927 .}$ Despiliss on Tissubs, J. Mugnier, Lyons. $-22 n$ nd 1933. Cintrifugal Skiparating Macines, F. H. F.
Engel, Hamburg. $24 t h$ A pril, 1882.

 ** Specifications will be forwarded by post from
the Patent-ofice on receipt of the amount of price and

ABSTRAOTS OF SPEOIFIOATIONS.

Prepared by ourrelves expresaly for THe Exanver at the
ofice of Her Majesty 3 Comimissioners of Patents.

 This relates partly to what aro known as ring
spinning frames or throstles, and consists in a novel arrangement of mechanism that gives motion to the
lifting rail; a heart or cam working horizontally, or nearly so, by preference in contact with a slide, is con-
nected to a chain or other flexible band, by which means a direct pull or orush is is iven ot tote parts work-
ing the rail, and this without the intervention of a

 This. consists, First, in applying the ores, fluxes, and
fuel in a pulverulent state ; Secondly, in transforming these pulveruent materialsinto pieces or agglomerates
of uniform size t Mhirdly in dryin ond of uniform size; Thirdly, in drying and heating the
said agglomerates before their introduction into the
sist blast furnace.
4388. APPARATUS For Propulsioy, J. Pursell, not atloweed.) $2 d$.
gas engine and a reservoir are fitted to reeeive air from a paup, the said air under compression being passed
andive power in an engine employed for propulsion
 This consists in in applying the device or advertise. ment to the base of drinking glasses.
 Throvisional protection not alloved.). $2 d$.
This consists in the employment of tabiets of thin This consists in the employ.
 Thiso realates sto the addition to non-fermented and
non-alcohotic beveray as of a chemical substance con-non-alcoholic beverages of a chemical substance con-
taining the pure antiseptic element boron. taining the pure antiseptic element born.
4958 . Apparatus for Rerving Tradrs' Orders $-12 t$ November, 1881.- (Provisional protection not This reved. 2 tes to the employment of boxes or compartments pros tided with shoyment of through which the
order is dropped. The box or compartment is marked order is dropped. The box or compartm.
with the name and address of proprietor.
 This rectates no to the employment of steel or other This relates to the employment of steel or other
strips of material, preferably spring, in tha front, to
thie sides, ar or one of them only, or or the the back of a boot, so that that part man be easily openee for the inser.
tion and removal of the boot and be closed to assist in retaining the boot in position without inconveni-
ence, and without exercising any restrictive action on ence, and without exx
the motion of the foot

 carbonile arici gas together with the othrer gaseous and
rolatile products generated in and produced during
whht is what is known as the vinous or alcooholiced fermentan
tion which occurs in the manufacture of beer and of spirits.
5080. Prevextivg Accidents in Horgss, S. Bmpsall, This consists in the employment of for protecting the entrances to the wells of hoists.
 The blocks are The blocks are made of any suitable shape or
patern out or role bars of iron and steel, and cut
int suitale e lenghs and trimed into suitabe lengths and trimmed
tilit, or press, or sheared into shape.
 Tris relates, first, to improvements to facilitata the piecondly, to improvesenents whereby the hands and arms aro more efticiontly employed to propel the
vehicle; Thirdly, to improvements whereby the axle
 parts, so 514 .
 Theibe (Not proceceded with.). 2 .d. from to an ordinary pen or " "nib," the rate of suroh
fow being adjustable as required to suit the speed and flow being adjustable
thickness of writing.
5149. VELocipronss, IV. H. J. Grout, Stoke Newington.
 5150. Vessels for Contatinisa. Fluns, J. Imray,
London- -25 th Novenber, $1881 .-(4$ communication

 are join
 Thins relates to thenerranging and combining of the
 The inventor claims, First, in apparatus for brewing being closed tightly, and furnished with an arrange ment of rakes or stirrerrs, in which vessel the materials
are trated. Seocnly, In apparatus for brewing the
combrintion with the vessel in which the materials
Com tration with the are treated of a pump or air forcing apparatus for
onabing the material to be treated by stear ster
and pneumation

 ciently close approximation to the effects of diffiused
light may be obtained without the use of expensive
refiectors. 5183. Puripliation or Watre for Donkeric Pur-
posss, doo., P. Spence, Manchester.-28th November, 1.881. 4d. 4 . ${ }^{\text {This }}$. ossists in the use of salts of alumina
alumina and iron for the purification of water.

 throug which the sindde pases, the pawl engaging
io the teth on the spinder
or by insertiting a apoint. 5187. Loons, R. and R. Rickers, Burnley. -28 th No.
vember, 1881.- (Not troceeded with.)
 5188.
 This ri.erates. to appliances used in combination with
the heald staves, whereby elasticity is secured for the healds, so as to prevent jerking thereof or undue
strain thereon when a "float" or any impediment to the for the shed arises

 lining tile A, that is to say, a tile consisting of the
combination of the two members B and $B 1$, projecting

 5193. Pulleys, de., W. H. Price, Wreeham. -28 th
 5196. Cooks and Vavves, D. R. Ashton, Clupton, and
J.
B. Sperryn, Brixton-hill.-28th November, 1881. This. consists essentially of a screw-down cook or
valve in which the valve spindole is furnished with ${ }_{a}$ coupped plumger or piston, and the body of the ock ib
formed
with a formed with.
piston works.
510 .
5107. Maviracture of Malurable Iron, W. R.
Iake, London--28th November, 1881.-(A commur

bearing material, which method consists in placing the batory or ordinary puddiling furnace in a sloping mass or masses, leaving a free espace on the hearth upon
which the iron may be balled, and then raking down
and the metallici iron from the sloping surrace or surfaces,
when it has come to nature, and balling the same on when it has come to nature and balling the same on
the free spae of the hearthn The drawng shows a
log itiduinal section of a a undling furnace. 5190
 Teith.) 2 .d.
The base ormposition is a metallic salt of any
kind, but chlorides or fluorides are preferred.
 The invention is based on the principle that the
internal thermal resistance of metals is generall small compared with the external thermal resistance. 5203. Pristing Fabrics, J. Kerra and J. Haworth
Church, Lancoaster:-29th November, 1881. 6 bd . In carrying out the invention the inventors attach
to the machine a self-acting motion acting upon the printing rollers, so that any pattern can be impressed
upon the cloth or woven fabric being printed during
 appapatus, by whicict the distance between such patterns
apan be varied wat will
and apparatus, by which th
can be varied at will.

 link to take the place of the frog now in common use
$\underset{\substack{\text { forg, and } \\ \text { ororet.t. }}}{ }$
 seadd whith) 2.2
 mastio cushions.

Theo objectet is to makke button-holes in $\frac{1}{10}$ more perfect

Thisiarieltotot the processof manutacturing animal

 5213. HEATISC Crequalent.
 Warmed hy at Ban sumall heating apparatus, preforably

 \xrightarrow{c} nhetr) matid

 interisoct enah other at at , ilit
tho axis of the intended barrel.
 shid

Issititidy
stanary ring rail is fixed below the cap, used

 and das the yarn is so buit on to tho tub
in the cap until the tube is quite filled.

Chis relates to the construction of wrought iron or

 This onsistst partiy in tho deposition upon a fabric

powdered surface
5224. WIrrow

5224. WRyDuw Sasiss, R. J. Harris, Winchester:This reatates to thitairangiment, ommbination, and moting rails are rebatod together to form at alose oin
 remain stationaryat any deiried angie, ala
5225. Extrisousurso Fars, doi, N. H. Phillips,

5226. Mastructure Rer Rivas,

 5228. Dans, Rethiniso w,

 enough to withstand the stain of the concrate of ol

 5230. M

 Wharogy it if randered possilie to othain a greateit adopted.

 ${ }^{\text {power }}$
 This consista of an anparatus that, shall on the

 ${ }_{5}^{\text {fames }} 5$

dipping them in tho
innaimmablo materrial.
 The inventor elaims, First, the application of ${ }^{\text {a }}$

5236

2 hlokk having corresponding toeth and pinching

The oujectsa are, Amst to in incease by the addition of

 from the staram under these

 of exhaut or suction
 This relatas to the generalal oonstruction of tastenings
 Thotinvention od onsist in in mploying an instrument
 portion, and at the same timo oxtingushing the tame

 rotated.

material with such centrifugal force against a hard mixture to be broken up while the harder particles
 5247 . Apparatus and Wheri Pads for Polishing
KNives, Forks, de., J. F. Walters, Baysioater:30th November, 1881 . 6 d.
This consists in a special combination or arrangement of appliances forming a machine for polishing
nives or forks ; also a special arrangement of pad as part thereof, particularly applicable for polishing spoons.
5248.
Nove November, 1881 . - (Asss, H. H. H. Lake, Londonication - 30 from
and J. Grant, Boston, U.S.) 4d. This relates , First, to applying to a plate of glass a
liquid dye of the proper colour to represent any
desired wood, and then applying photographers' desired wood, and then applying photographers
vanish, and after heating the glass applying various
shades of dyes to represent the different shades of the
 ywith yarion duy
imitation of wood.

 5250 . Hanrow J. Jkinington, London. -3oth Nowanh

 5253. Triorcurs, J. F. Toomenend, Coventry. - 1.t Thiis roatasesto to madhine to acommodate four

and dismounting.
5254 . PICKs, PICKAXES, '\&c., T. N. Robson, Durham.
5254. Proks, PICKaxEs, dec., T. N. Robson, Durham.
-ist Deember, 1881. 6d.
This relates to means for fixing the head of picks,

This relatas to noens for fixing the head of priks

This ratates to thine rapid and effective cooling or hating of fuids by passining them inan oxtremely yhin
film botweon two surfaces omposed of of tubes, which
then

[5256]

Chromato of fon is omploged for the production of a strongly oxidisisng tame at a bright tred heot until

of solublo soda aompounde, suxh as sodid carbonato or sulphate or austic sodation

 turs of alisarine
of superficial heat

 fortad, and the space between them filled with

5267. Destcantrad Apxanarus, A. MM. Catak, London: Tiis relates to apparatusus tor desicicatining liquid and

 Coke from winid the gas has been oxtracted is taken into rough , integular bits, and plated ont the frise

 5270. Ron .
 being drawn aparat from thaidi ordinary worting dis
tance, Seoondy, to means by which the errushed or

 acoumustion of moist rapour which is prodined in
the erushing process, and which rusts or turisibes the tho orushing proass, and
polished surfaceo of the rolls
 This consitsiniticeting tho saparation of arasenicial
 5273. Carsourse ron Borruses, J. Thratay. London.-
 beocmes separarated from trome hhe body which ennloses the

 spropertes as an insect killer.

 Thio obieot is to providea prompt and certain sound
ation of the pipes of an or oran, or orther intutrument wooted by wind, and toimporve tho mod of phying
 Yalves notactuateod directiy hir tho tey.joarh, but in in

5276. Fire Grates, J. Teer, Salford.-2nd December
1881. (Not proceded vith.) $2 d$. The object is to effect a more perfect combustion an lessen the emission of smoke, and it consists of a per-
forated fire clay back with an air chamber formed be-
hind it, into which air is admitted from the space Salow tho grate so as to bebome heated asisit tosased to

1881.-(Not proceeded voith Hackney.-2nd Decembe

解
 sponding pivo on the
tibhtene A up by nuts
5278. Purification of Coal Gas, G. B. Spence and
J. Desvignes London.-2nd December, 1881. 2d
The object is to remove ammonia from coal gat

of lime to neutralise any free sulphurio acid. The
manss is then dried, and thit powder obtained placed in
apur

 tarhoug a seand puritior containing oxide of iron or
other sutable purifing agent and parts with the
sulphur and carbonic acid in the and 5270 and carbonic acia in the usual way.

 This relates to upright gas burners, and consists,
First, in making them in the form of narrow boxes
with one or more faces pierved with small holes for the passage of mixed gas and air, such piarerced foce
bieing inclined downards towards the
horizontal. holes in the upright rows, and also a projecting two
 ot conical form.

 balow the fusibible alloy.
5281. Currvimber
 The implement - is formod soceced that the the furrow slice
when separated from the land in the usual way is carried up to the interior of a revolving screen with
internal flanges, which break it up and allow the fin
 5282. Fancy Yarns, B. Horstall,

This relates to machines for twisting or doubling plain or fancy threads of wool or other fibrous material
so as t form knots therein at certain distances apart
 The object is to reduce the power required to propel
 pivotted at one end to the frame and carrying the
ppatals at che other, oin oombination with spring
actuated clutch pulleys, and chains and means for varying the point of attachmente to the lever of the chains with wout dismounting, and also in the use o
anelastic strap connected to the levers to effect their
return movements. 5285. FưRYAOERS,

This relates to a new form of bearing bar and firebar applicable to the flues of furnaces of circular or other shape. In each furrace are two or more bearing
bars tying in the ifrection of the lengtro the frue
and their ends are formed on the underside to to tit the hmer edge of the dead plate at one ond ond the the
bridg berer at the other F Fach bearer bar is reticu-
lated on the side neanest the opposite side on the tower edge a recessed and bracket the recesses one end of a slotetted fror aross bar rests. arrangement prevents the expansion of the cross ba
forcing outwards the side of the flue some of the fire-bars rest on the dead plate at one end
and on one side of the slotted cross bar at the othe ond; the remainaider resting at one end on the bride
bearer, and at the other out the opposite side of the slotted cross bar. Each fire is formed with its lowe is thicker at topr and raved reversely whole lengthath. The bar mates in two or reversely inclined reticulations at the top edge, so that the streams of air entering are
caused to cross or impinge upon each other. 5287. Velocipedes, C. Beger, Berlin.-3rd The main axis which supports the rider is formed in

 for the rider
 from J. H. Baxter, Syd ney.). $2 d$.
The object is to enable wardrobes, de., being readily

 ing at the backe comnections thembthithe water beescend
 5290. Lubricators, H. J. Haddan, Kensington.-3rad
December, $1881 .-$ (A communication from E. Quesnot
 cates at top with the receptacie and at bottom with the pump barrel in which a small ram piston is actuated
 close the top and bottom. On the valve stem are two
perforated discs one fast and the other loose, the two perforated discs one fast and
being held apart by a spring.
5291. Chrome Yri.Low Axd Chrowe Red, W. Spence,
London.- -3rd December, $1881 .-(A$ communication
 solution of dichromate of potassium and sulphuric upon white lead or litharge suspended in water and in a cold state; and Secondly, to a new methor of pre-
paring chrome red based upon the proess of boiling paring chrome red based upon the process of boiling
a suspension of white lead or litharge in water together with a solution of dichromate of potassium in 5292. Sprisvisg Cotron, \&ce., J. Leyland, Bolton.-3ra
December, 1881. \&d. Tubris relates to means for mounting, driving, and matern̄is. A tube contains the spindle and its bear Migs with their lubricant, and is attached to the top
rail.
This tube contains a bolster or top nock fot rail. This tube contains a bolster
step.
spind inderemediat bearigs, so
spind eontain the lubricant.
5294. Furnaces, B. Kaulbach, Lonion, - 3 rd Decem-
 verticas siliae door or grating is opened so to as throw
the two compartments into one. The coal is then or threan of a serewis forced by the rotation of the
latter into the furnace beneath the mass of ardent fuel, which is thus upheaved and remains upon the

The composition consists of linseed oil 200 parts by
weight, litharge, $20 ;$ wax, $160 ;$ tallow, 15 ; molnaseses,

190; lampblack, $103 ;$, spirits of turpentine, 280 ;
alcobolo, 35 ; gum lac, 5 ; violet aniline,
2.

5293

 5298 Chasks, dec. W. D. Driestman, Kingston-uponThis relates to a duplex and self-baluncing crane,
 consists in mounting two jibs on a movable or rotating
Oatfor platform so that they balance each other.

This relates to the use of a chemical substance to eemove obstructions caused by frost or to prevent
liquids freezing in meters and
other vessels. The iquyan with carbonate or hy hyrate of lime also the residue after separating ammonia from its chloride by
means of hydrate of lime, or by saturating hydromeans of hydrate of lime or by saturating hydro
chloric acid or chlorine liguor with lime Aitter
 down metallic oxides and other impurities, the liquid
is filtered and enaporated to dryness, or or to uuch
stane is
state
soluti
5302. Drying Corpre Beans, \&e., F. Des Veurx
London. - thl
December 1881 . A from W. A. Dieseldor(f), Guatemala.) $6 d$. with circumferential and central channels for the passage of the beans and tecthtrau ced anir. A central dined and spriny.cushioned stirrer blades, and a hook shaped rake for for the final delivery of the beans to the discharge pipe.
5307 . OII, Ta
 This relates partly to means for raising the wick of
miners' and other lamps, and consists of a prong or picker lever mounted on an axis outside the wiol
unbe, so as when turned in one direction to proiec into the tube erhe picker is connected with a rod
sliding in guides, and by moving which the picker is slidisg in in guides, and by moving which the picker in
caused to raise the wick .he inetention furthe rolates to means, for more rapidily metting the grease
or paratime wax and consits in making the inner
or side of the wick tube with an opening, so that
he wick is in contact with the grease throughout it rength The lamp casing is covered with a non-con-
ducting material so as to prevent loss of heat. A copper wire is placed in the spout, one end terminating near the flame, and the other p
or wax which it helps to melt.

 A.D. 1879 , No. 68 , A.D. 1880 , and No. .1161, A.D. 1881 ,
and it consists, First, in remoring or neutralising the scoss of carronic acid by adding caustic soda to the sen remored by filtration: and, Secondly, in effecting
the more rapid separation of the insoluble compounds
 5315. Fixing or Skeoring Window Glass, W. Clari,
 5320. Hats, ©c., R. Wallwork, Manchester. - 6 th
Decenber, 1881,
6d.
 fter D.D 1867 . The slididg bed is prepared to hold th hape or mould, and the solid india-rubber shaper
whinch acts on the brim is anttached to the head of the ram, but s space is left between them when the ram
is lifted from the hat, and round the ram head are set sorows, the heads of which come against the top side
of the shaper near its edge, such serews serving to
odinst the djust the pressure of the india-rubber on any part of
he brim. 5321. Printrivg Machiverv, J. Salmon, M. Smith
and J. Hamilton, Manchester. - 6 th Decenber, 1881 This relates, First, to mechanism for "taking off", of machines with reciprocating type beds or plattens
and delivering the sheets printod side upwards on to areceiving table and it ocnsists is in improvements on
natent No. 643 , A.D. $1877 . \mathrm{A}$ swing frame cantrin
 osillates on an axis above its grippers and carried on
the end of one or two levers, secured to a shait belon and some distanco invers, secured to a shait the impression
cylinder, which shaft is oscillated to and fro by
che

 further relates to the application of the above arrange
ments for taking the printed sheots from the gripper of the im
machines.
5326. Wasivivg Machings, de., A. Mill, Glasgov.-
bith December, 1881. The meachiner, oonsisits of a deep box open at top, and
in which is placed a shorter box open at top and
actuated by a connecting-rod attached to a crank shaft
mounted above the outer box T The bottom of the box is corered with a coarse wire oloth, and the top is
covered with a s imiliar cloth hinged so as
to enable covered with a simiar coloth hinged wo as to enable
the clothes to be inspected and withdrawn. The he chothes to be inspected and wite whe
washing liquid is placed in the outer box.

 hhollow bow or crescent, the
its middele towards each end.
5348. Distlulation of Glycerine, de., W. Cark,
London. 7 the December, 1881--(A communication
 tion of glycerine in vacuo, whereby the expenditure
of steam which is caused to traverse the still is re of steam which is caused to traverse the still is re-
duced and the production of glycerine greatly in-
 This.
Thnsists partly in constructing a spring wheel
wwhich the sprins use
 parts, or to each other
5371. Furnacrs
 Ther, reltates to the arrangement and combination
of ha heating furnace and tubular air-heating appa of at
ratus.
 This consists in the formation of the spring with extenced straight or equivalent wire extening
longitudinal bearing parts alternately formed on its
upper and lower bearing edges these
 ond eurvilinear parts, and which construction ensures the desiriod verti
tion of the piston rings

2d consists in the production of sulpho acids b he treatment of rosaniline or itit derivatives or or othe similar bases wha tho and
79. VEhricle Axles, C. Pieper, Berlin.- - bth January, bach.) (Complete) $4 d$. end of than axle arm with a conical portion fitting inte
nn internal cone of the obturating ring, which close an intornal cone of che obta.
the axle-box ati its outer end.
1108. SAFETY Piss, W. R. Lake, London. - Tth March,
1882:
A
A. communication from, Jersey, U.S.)-(Complete.) $4 d$.
This onsists in a safete or toile pin which has the coils of its spring in part either enclosed in a hood or
oold ored together whereby the garment of the weare is prevented from entering between the coils of the spring.
1479.
 munication from H. Heckel, Cincinnati.)-(Complete.)
Thidis consists in first extracting the glycerine from
 he

 The object is to provide for the re-charging of a
magazine shot gun without requiring the gun to be magazino shot gun without requiring the gun to be
taken down from the position in which it has been
fired 1719.

 has both a long watuder moterrs sn which an oval float
cylindrical case.

SELEOTED AMERIOAN PATENTS.

From the United States' Patent office oficial Gave

259,548. Pusp, H. Jones, Sterling, Ill.-Filed April Claim,-(1).
Cliainicl In a pump, the hollow plunger C , of nid bottom channels G and, , and eventral annular
and
hannel H, and provided slanting from the intermediate a annular chamber or
channel K , in a downward direction toward the

Ittrior of the hollow plunger, substantially as and
forthe purpose heroin shown and set orth. (2) In a
ootlow pump plunger havin ollow pump plunger having a valre and valve sean
of suitable construction serios of ducts abliqualy from the inside of the of hollow K vive toning an
onnular chamber on channel H on its outside, sub. stantially as and for the purpose herein shown and
259, 1 B18. Drana-rle
 December 13 th, 1881 . , is wound with two systems of
Brie.-The armature
coils, each section containing four coils, those of each
system being alternately above and below. The

terminals of the two systems are connected to form a 259,692. Cuttre-head for Mouldina Machings,
Edivo.
K. Jenkins, Albany, Claim. $-(1)$ The combination and arrangement, with

 each said slots and hoid with said head, of cuttung
knives or bits K, each provided with slots, whereby
 in the manner and for the purpose set forth, (2) The
combination, with a autter-head having longitudinal com
siots C made in its four sides and in its two opposite

sidos transverse slots D, , connecting with slots C of
said opposite sides, and transverse slots $\mathrm{D1}$, made in said opposite sides, and transerse slots D1, made in
its transerse sides, relatively staggering or dodging
the the first-mentioned transverse slots and communi.
cating with slots C in said transverse sides, of attach. ng bolts E , adapted to work in all of said slots, and
also with siots made in the knives or outting bits,

 ither airection, and be capable of a similar attachhead, with the knives and hend balanced, substantialls hea, with
as and for the purposes set forth.

CONTENTS.

The Enginerr, July 7th, 1882.

$\begin{array}{r}\text { PAGE } \\ \hline 1 \\ \hline\end{array}$ Tistrs in the Provinces. (Illustrated.)

The Nonthreast coast Exhirrio

CENTMstrated.). (niliusträted.)

Abstracts of American Paitent Specificantioss.
(llustrated.)..
Paragraphs-
Tube Wells for

Copper Smelting in America
South Kensington Museum

South Kensington Museum.-Visitors during he week ending July 1st, 1882 :-On Monday, Tuesday, and Saturday, free, from 10 a.m. to
10 p.m., Museum, 9359 ; mercantile marine building materials, and other collections, 4266 On Wednesday, Thursday, and Friday, admissinn
6d., from 10 a.m. till 6 p.m., Museum, 2668 ; mercantile marine, building materials, and other ponding week in former years, 11,729. Total ponaing week in former years, 18,729 . Tota
from the opening of the Museum $21,104,004$.

[^0]: of velocipede invented by Mr Burston described a new form This machine we now illustrate. It presents several features ment by which the frame carrying the small wheels is jointed so may rise between them without inconveniencing the rider. The machine is light, can be mounted at any time, the weight of the
 rider is immediately over the main wheel, yet he cannot be thrown over the machine. The riding movement is like that of
 kating, the bicycle crank being retained, the best and most ontrollable form is crank being retained, the best and most that they but seldom touch the ground, and generally the with the may be said to combine the advantages of the bicycle with those of the tricycle.

[^1]: | List of Letters Patent which passed the |
 | :--- |
 | 30 th June, 1882.$)$ |

 5239. HATP-NAKIIIG MACHINES, W. . N. Nicholson and W.
 8. Decenber, 1881.
 5240. Nonker-platiing, J. E. Chaster, Manchestor.-2nd
 5241. Hanur-AII, 1882. Eins, T. Morgan, London. -2 nd Jan-
 . uarry, 1882.
 January, 1882. NEs, J. S. Stubbs, Manchester.-2nd

