THE TENSILE STRENGTHS OF LONG AND SHORT BARS
In the December number for last year of Van Nostrand' Engineering Magazine, there appeared an interesting paper by Prof. W. S. Chaplin, of the Engineering Depar ment of the Japanese University at Tokio. It has long been known that long tie-bars are proportionately weake than short ones ; and we believe that Prof. Chaplin is not the first who has suggested that the reason may be that the greater length of material we take, the greater is the risk of its containing a flaw, or exceptionally weak place. Prof. Chaplin does not, in his present paper, contemplat the existence of actual faws pre bases hi calculation simply on the fact that no two pieces of iron can be made exactly alike in quality and strength. Th conditions under which the material is manufactured are continually varying, through numberless small influences, each one of which is quite unrecognisable, far less calculable Different specimens of what was intended to be exactly strength They all appreach more or less nearly what strength. They all approach more or less nearly what they are intended to be. Some are stronger and some same, and great majorty have strengths very nearly th same, and great deviations from this average strength ar Prof. Chaplin is, we believe, the first who has endea oured to turn these facts to practical account, by dealing hink that Prof Chaplin's theory includes all the influence which make long and short bars differ in strength; but doubt the facts he deals with form a most important element in the complete explanation.

Suppose we take a very large number of specimens, al quality, and by breaking them find the average strength of all of them. Then suppose we take one more specimen still of the same dimensions and still of the class intended to be of the same quality as the previous ones. This one will certainly resemble very closely some one of the previ ously tested large number, but which its strength withon to prophesy. The attempt to guess the previously tested bars piled together in a great indiscriminate heap and selected one of them blindfold. We tind ourselves performing the same gambling feat that we used to be called upon, in the interests of morality and algebra, to imagin ourselves performing in our school days, when we wer struggling through "probabilities," and became learned in the manipulation of lottery-boxes and red, white, and black balls, and in the science of tossing pennies. We have here, however, not only white and black balls which we may draw, but an infinite variety; the greater number standard, and the stragglers away from that standard being few and far between. Thus it is more probable that we shall "draw" one near the standard or average than one deviating much from it. Also the specimen we draw may just as probably be stronger than the average than weaker
The specimen drawn blindfold from the heap is the representative of the new piece whose probable strength we that of the calculation of the probability of accidental errors, the theory of which is per the most inceniou of all useful developments of mathematics. Using' this theory and the elaborate tables which have been calculated to facilitate its application in practice, Prof. Chaplin proceeds to apply it to calculate the probable strength of a long bar in terms of the average strength of a large number of short bars of the same section. The ratio of the two lengths being n, he looks upon the long bar as n
short bars put together. The pull is passed through one short bars put together. The pull is passed through one
after the other of these short lengths. There is a chance that the first length is stronger than the average. The probability of this being the case is just $\frac{1}{2}$, being equal to he probability of its strength being below the average There is just as much chance of the second short length hang a strength greater than the average, and the same engths alone, we have four possibilities Thang the first two en the was, both may he first may be below ; may be below and the second bove. Ferh, or the first sibilities is equally probable, and therefore the pos bility of each is 1 Thus the probability that the frobability of each is $\frac{1}{4}$. Thus the probability that the first and what comes to the same thing, the probability that the double length of bar is above the average in strength is only $\left(\frac{1}{2}\right)^{2}$. Similarly a triple length has only $\left(\frac{1}{2}\right)^{3}$ for the probability of its strength lying above the average and the probability that a bar n units in length has it pieces is found to have dwindled down to (1) n . The mis fortune lies in this, namely, that the strength of the whis ength depends on that of its weakest part, and the reater the number of its parts the greater is and the bility that one or other of them has a strength below the average strength.
But what is specially desired to be found out is not the probability of the strength of the bar n lengths long of the short pieces. What is specially desired is to find out what strength the long bar most probably has Since the probability of its being stronger average of the short pieces is extremely small, it is quite evident that its own strength is most probably not impossible that its strength should urn out to be above that average, because it is not impos-sible-it is only extremely improbable-that each and al of the short pieces of which the longlength is made up should be stronger than the average. The most probable strength of the long piece must evidently coincide with what would be the average strength of a large number of exactly
similar pieces of the same length, if this large number
were tested and their average strength calculated. Now the probability that the strength of this one specimen of the long lengths that we have selected to compare with the short ones lies above the average of all the long piece is evidently again just $\frac{1}{2}$. If, then, we calculate of the average strength of the short pieces a strength
which will give a probability $\frac{1}{2}$ for the chance that that of he chosen long specimen will lie above it, then it is vident that the strength so calculated will coincide with the average strength of the long pieces. This calculation, then, gives a formula for the average strength of pieces mits long in terms of the average strength of pieces and the above is the very ingenious yet simple reasoning by which he arrives at his conclusion
y which he arrives at his conclusion.
Although of all possible values of the strength of a single specimen the most probable is, of course, the averthere is only an extremely small probability that it will agree exactly with that average. Most likely it will deviate from it to some extent in the plus or minus direcplus. If we sum up all the possible deviations in the of small deviations than that of large deviations, and take the average of all these possible deviations, this average deviation is that that is most probable in the plus direc tion for any single untried specimen. It is called the "probable deviation" which phrase is a contraction for the "post probable deviation from the average. The probable deviation in the minus direction is numerically the same

Table of the Values of the Ratio.

$=\{$ Average strength of rods of unit lengtin-A
 \{The probable deviation of the strength of any single untried rod of unit length from the average strength of rods of unit length. $\}$
 ngth. $\}$

 and of the ratio-$\frac{\mathrm{P} n}{\mathrm{P}_{1}}=\{$ Probable deviation of a single untried rod n units long from the average strength of rods n units long. \}

n	x	$\mathrm{P}_{n} \div \mathrm{P}_{1}$	n	x	$\mathrm{P}_{n} \div \mathrm{P}_{1}$	n	x	$\mathrm{P}_{n} \div \mathrm{P}_{1}$	n	*	$\mathrm{P}_{n} \div \mathrm{P}_{1}$	n	x	$\mathrm{P}_{n} \div \mathrm{P}_{1}$
${ }_{\frac{1}{2}}^{1}$	$\begin{aligned} & 0.81 \\ & 0.81 \\ & 1.28 \\ & 1.688 \end{aligned}$		$\begin{aligned} & 112 \\ & 112 \\ & 14 \\ & 14 \\ & 15 \end{aligned}$		$\begin{gathered} 0.54 \\ \text { on } \\ 0.51 \\ 0.50 \\ 0.50 \end{gathered}$	$\begin{aligned} & \text { an } \\ & 222 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$		$\begin{aligned} & 0.47 \\ & 0_{046}^{0.46} \end{aligned}$	35 45 40 55 50		$\begin{aligned} & 0.44 \\ & 0.45 \\ & 0.412 \\ & 0.40 \end{aligned}$			$\frac{0: 39}{0 \cdot 38}$
			$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 18 \\ & 20 \end{aligned}$		0	$\begin{aligned} & 26 \\ & 28 \\ & 28 \\ & 20 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 2 \cdot 87 \\ & 2: 87 \\ & 2: 97 \\ & 2: 990 \\ & 2 \cdot 96 \end{aligned}$	$0^{3 " 45}$			0 0"39 ",	$\begin{gathered} 500 \\ \substack{500 \\ \text { son } \\ \text { son } \\ 1000} \\ 1000 \end{gathered}$		

In using this table we must have P_{1}, which must be alculated from the experiments by the methods explained in probability text-books, but to explain which here would be outside the intention of this article. The theory offers one compensation for the smaller average strength of long
bars. It shows them to be more trustworthy ; that is, that the probable deviation from the average is much less than for short bars. We thus find the ratio $\frac{P_{n}}{P_{1}}$ to have a dexplains the method of finding the value of this ratio an series of values and added them to is table given above, which we have also extended beyond the value of n to which Prof. Chaplin has limited imself.
Prof. Chaplin gives in his paper the results of thirtyive experiments on copper wire which he made to test his theory. They agree remarkably well with it. We hear hat has since made further series of experiment, and hat he has applied his theory to other people's experihat whery fair success. He is, however, anxious elf the means numerous experiments than he has full appreciate the desirability of this being done. Without urther experimental test the theory cannot be accepted as thoroughly sound, and the importance of the subject and what seems to us the soundness of Prof. Chaplin' or disprove the undoubtedly of the greatest utility
The probable deviation from the average strength is, of metal much smaller for very homogeneous qualities of metal in which much care is spent in the manufacture to secure uniformity of quality than for cheaper and less rustworthy sorts. The theory shows that for the latter the difference between long and short bars should be much greater than for the former, and we believe all experiments tend to show an accordance between fact and the above theory in this respect.
ions are undeniable, but we must pe think his conclu to us are undeniable, but we must point out that it appear the the premises do not in some respects strictly first place his hypothesis takes for gra the the lengths into which a long bar gay be nat sholly macine to be livided o may be geometrically lengths actublly separate Now if the separater engths are obtained by cutting them off a long ber, as the engths are obtained by cutting them off a long bar, as the doubt the hypothesis is substantially correct But if the short lengths are manufactured separately in short lengths, then it is by no means certain that the very fact of their being made in short lengths instead of in long lengths does not itself produce some considerable difference in quality. Thus, in our opinion, it is not likely that the theory will be found to apply so accurately to pieces forged to the special short and long lengths in which they are desired for use as to short and long pieces cut off rolled bars or from coils of wire or rope.
Again, the theory does not take into account the highly probable, we might almost say the almost certain fact that produces rupture of each separate short portion of a long bar is greatly influenced by the very fact that it has at each end of it a long stretch of material of the same sec tion, from and to which it is transferring the force exer-
as that in the plus direction. When one mentions the average and the probable deviation, one asserts that the strength of any particular untried specimen is most likely
to be greater or less than this average by an amount equal to be greater or less than

Let S_{1} and P_{1} be the average strength and the probable deviation from and let S_{n} and P_{n} be the sitior average and probable deviation of specimens n units long. Let A_{x} be the prolength has a strength lying between S_{1} and $\left(\mathrm{S}_{1}-x \mathrm{P}_{1}\right)$. The chance that its strength lies above $S_{\text {b }}$ being $\frac{1}{2}$, that of its being below S_{1} is also $\frac{1}{2}$. The probability that its its being below S_{1} is also $\frac{1}{2}$. The probability that
strength lies below $\left(\mathrm{S}_{1}-x \mathrm{P}_{1}\right)$ is therefore $\left(\frac{1}{2}-\mathrm{A}_{x}\right)$. Therefore, the probability that a bar of the same quality, the same section, and n units long has a strength lying below $\left(\mathrm{S}_{1}-x \mathrm{P}_{1}\right)$ is $\left(\frac{1}{2}-\mathrm{A}_{\mathrm{x}}\right)^{\mathrm{n}}$.
If, now, we find x, so that $\left(\frac{1}{2} \cdots \mathrm{~A}_{\mathrm{x}}\right)^{\mathrm{n}}=\frac{1}{2}$;

$$
\text { or } A_{x}=\frac{1}{2}-\sqrt[n]{\frac{1}{2}}
$$

this value of x will give the n units long bar an equal chance of lying in strength above or below $\left(\mathrm{S}_{1}-x \mathrm{P}_{\mathrm{p}}\right)$.
That is, this value of x will give us the average strength of specimens n units long; or
$\mathrm{S}_{\mathrm{n}}=\mathrm{S}_{1}-x \mathrm{P}$
Calculating A_{x} from the formula $\frac{1}{2}-\sqrt[n]{\frac{1}{2}}$ for different values of n, we find the corresponding value of x from Prof. Chaplin has thus calculated the following table:-

Prof. Chaplin 8

```
    \div{Probable deviation of a single untried rod of unit length from the average strength of rods of unit length.}
```

cised through it. The theory assumes that even under the maximum possible stress each short portion will behave Expely as if it were isolated from the rest of the bar. mariment seems to indicate that this is not so, and we retical that we think that there are, besides, good theotheoretic reasons helievin that it is not so. These been yet worked out in definite mathematical form,
In conclusion, we may say that we shall be very glad to hear of experimentalists applying the theory to appropriate series of tests, and if they will publish their results, we are sure they will be considered highly valuable and interesting. The only labour involved in doing so-now that we have published the above extensive table of numericals factor-is the calculation of P_{0}, the probable deviation for each series of experiments. But quite independently of this or any other theory, this is a labour which most certainly ought to be undertaken by all experimentalists on materials if they wish to make their results as useful as they may be. The calculation of the probable deviation from the average makes each set
of experiments at least tenfold as useful for practical of experiments at least tenfold as useful for practical
guidance as it can be without that calculation being made.

TANK LOCOMOTIVE FOR THE BELGIAN CENTRAL RAILWAY.
We publish this week as a supplement an engraving of an eightwheeled tank engine, one of several constructed a couple of years have proved very Cucessful, hauling heavy trains at a fair speed over steep inclines. The dimensions are fully given in French measures on ihe engraving, but it may be convenient to give
here a few of them reduced to their nearest Fnglish equivalents here a few of them reduced to their nearest English equivalents.
The cylinders are $18 \cdot 89$ in in diameter $23 \cdot 62$ in. The wheels are 4 ft . in diameter, the piston stroke being of the engine is 170 lb per pound of effective tressure tractive force inch of piston, or for 100 lb .- which the engines can easily maintain as an average pressure throughout the stroke- $17,000 \mathrm{lb}$., or say, 7.5 tons ; which would suffice to take a load of 300 tons, including the engine, up an incline of 1 in 50 at a good pace. The engine is fitted with a modification of Walschert's valve
gear. The fire-box has the regular Belgian flat top The tubes gear. The fire-box has the regular Belgian flat top. The tubes
are 270 in number, and 11 ft . 2 in. long. The grate is 6 ft . 6 3in. long, and 3 ft .8 zin . wide. The smallest diameter of the boiler barrel is 4 ft . 1 lin. The total wheel base is 14 ft . lin. and a certain amount of lateral play is allowed in the trailing axle, and provided for by a vertical joint in the coupling rod. The total height of the engine above the rails is 14 ft . The centre line of the boiler is 7 ft . $2 \frac{1}{2}$ in. above the rails.
Louvain.
THE EDISON LIGHT IN NEW YORK.
On page 5 we give the first of a series of illustrations intended to show the system adopted by Mr. Edison in lighting
large areas. He selects a central position whereon his stean large areas. He selects a central position whereon his steam mators and dynamo machines are placed, and from whence street
mains radiate in the directions required. The sectional illustrations given in this issue almost explain themselves, but will be referred to when the system as a a whole is described. Mr.
Edison's representative in Edison's representative in London, Mr. Johnson, is rapidly carrying out a similar plan to that adopted in New York, but on
a smaller scale, in Holborn. The lights used in the City Temple, a smaller scale, in Holborn. The lights used in the City Temple,
in the Holborn Viaduct Hotel, in the surrounding houses of business, and in the streets, will all be on the incandescent
principle. The details of the system will be seen
principle. The details of the system will be seen as we proceed
with our illustrations.

				＊
				$\stackrel{\text { \＃}}{\text { \＃}}$
				－
	室		 	\％
				ボッ
		䫀		－${ }_{\text {¢ }}^{\text {¢ }}$
				8 8 0 1
				免
				18
			$\text { \| \% \| } 1$	8 of ® －
		שר,		¢
				\％
				－
				\％
				－
				\＆
				涊
				翗
	\％	㗁		8
				\％
		sox		\bigcirc

RAILWAY MATTERS.
THE gauge of the Toronto City and Bruce Railway has now been As agitation is on
As agitation is on foot in Pietermaritzburg, Natal, for a system THE engineer in charge of the Souris branch of the Canada Pacific Railroad has discovered in that district lignite
ore, and has brought specimens of each to Winnipeg.
As a result of the formation of the Canada Pacific CRailway it is
said that the contractors for section B of the railway are getting their supplies in to the east end of their contract this year by the Thunder Bay route, at an average cost of 2 s.
it previously cost them $16 \mathrm{~s}, 8 \mathrm{~d}$. per 100 lb .
AT the meeting of the Academie des Sciences on the 19th ult, way between the Nigeser and the soudan, by the Fonta-Djallon. way between the Niger and the soudan, by the Fonta-Djallon.
The Fonta-Djallon presents a central plateau 300 kilios. from the
coast and 1000 metres in altitude ; five parallel valleys run from it coast and 1000 metreses in altitude, five parallel valleys run fron
to the coast. The inman of Timbo, in that region, is friendly.
ALL parts of Canada seem already to be benefitting by the out-
lay of the Canada Pacific Railway Company. All the principal lay of the Canada Pacinc Ralway Company. All the principal
workshops and ironfoundries in the upper provinces are full of worrs for the company, and large contracts have just been given out to
firms in the lower provinces. Messrs. Harris and Coo. of St. Jobn,
ins. N.B., have taken a contract for freight cars exceeding $£ 30,000$.
According to the report to the Board of Trade on the accide Accordivg to the report to the Board of Trade on the accident
which occurred on the 10th November last, close to Carrforth station on the Furness Railway, at a set of racing points, the
accident was caused by the signalman having shifted the facing points before all the train had passed over them. This accident
would have been prevented had the facing-points been provided would have been p p
with a locking bar.
A passenger train on the Boston and Maine Railroad on Monday night broke through an iron bridge near Wells, New Homp-
shire. The engine and the bagrage and Pullman coaches had shire. The engine and the baggage and Pullman coaches had
crossed when the bridge broke, precipitating the four hindermost coaches and 100 passengers down precipitating emankment. The wreck
cuaght fire and the coaches were destroyed. Two persons were killed and eighteen wounded.
The average annual length of railvays in France is shown for
the quinquennial periods by the following figures: $1840-44,704$
 $1875-79,20,905$ kilometres. The Ruilway Review says, completion
of the great lines has been followed by a steady decline in the
average receipts. The preponderance of slow freight is very average receipts. The preponderance of slow freight is very
marked of late years. But it has been found that it is only by
continually reducing their charges that the railway companies have continually reducing their charges that the railway companies have
maintained themselves against other means of transport, and will maintainey themsedves against other means of transport, and will
be finally enabled to absorb the greater part of the national

In the six years ending 30th June last, during which tramways
have been in use in this country, they have shown a remarkable have been in use in this country, they have shown a remarkable share capital of $£ 7,602,509$, of which $£ 5,096,030$ is paid up,
whereas on June 30,1876, the authorised share capital was only raised by loans and debentures, the total authorised capital amounts, this year to $£ 10,906$, ,575. The total amount expended is
$£ 6,93,938$. The length of miles open for traffic has risen from 158 in as compared with 9222 iil 1878,40 locomotive engines now against
14 in 1878, and 2045 cars now against 1124 in in 1878 The number
of phen of passengers carriec has increased from 146,001, 223 in 1878 to
$205,623,510$ in 1881; the gross receipts from $£ 1,145,465$ to $£ 1,576,301$, the working expenses from $£ 868,315$ to $£ 1,239,896$, and
the
tet receipts
$£ 230,956$ to $£ 336,400$.
Iv concluding his report on the collision that occurred on the
21st November, at Llanbrynmair station, on the Cambrian Railway, a mixed train, consisting of an engine and tender,
thirteen loaded, thirteen empty wagons, a brake-van with the
guard in charge, and two passenger coaches behind the brake-van guard in charge, and two passenger coaches behind the brake-van, became divided into two parts while descending the incline towards
Llanbrynnmair station, and the rear portion ran into the front part
of the train of the train when tit stoppede at the west-end of the station
ool. F. H. Rich says, "This collision was caused by the hind Col. F. H. Rich says, This collision was caused by the hind
drawbar of the tenth wagon wiving way. I recommend that a
great deal more brake power, which can be applied while the trains are running, should be provided; and although the signal and
point arrangements at Llanbrymmair had nothing to do with the accident, it is very desirable that the modern improvements in the
arrangement of station signals and points should be introduced on arrangement of station
the Cambrian Railway.
In this column of our last impression some reference was made
to the light trains run on the Elevated Railway of New York. In comparing the two the following figures are of interest, as relating
to the heavy trains of the Metropolitan Railway, which carries many millionss of passengers perropolitan .-The gailway, wheatest number corres
trains run on one pair of rails is 16 in the hour out, and of course 16 trains in. The greatest number of trains that have been run out of the station, on each pair of rails, would be on "boat race"
dayss, and then it has been about 20. Out of Farringdon-streetand
 average, and very much more than this during the busy hours.
Through Moorgate-street about 450 trains pass per day in and the same number out, and from this station trains are despatched in
five directions, viz:--To Aldgate, to Mansion House and Hammer Iive directions, viz:- To Aldgate, to Nansion House and Hammer-
smith, to Sow-hill, London, Chatham and Dover Railwa, to
King s-cross, Great Northern Railway; to Kentish Town, de., King s-cross, Great
A Report has been published by the French Minister of Public
Works which shows the condition of French railway work and
enterprise enterprise at the beginning of this year. It is a volume of about
400 pages, so we will not pretend to deal with those parts which
refer to troffc, financo refer to traffic, finance, or reilway wolitics, but it may be ussfu
to note the length of railways open or in hand. There were at the beginning of the year 24,003 kilomemetres of ordinary or standard
gauge lines sanctioned, and 21,492 kilometres in work. There were 356 kilometres of small industrial line sanctioned, of which
239 were in work. The State railways were 2614 kilometres, of
which 1804 were which 1804 were in operation. The network of chemin de fer
dinteret local, or light railwwys, was 3681 kilometres, of which 189
were in working order. The total length of railways of standard gauge declared of public utility and to to be constructed by the thdar
was 5370 kilometres, of which 442 were in operation. jected State lines brought the total up to $76 \overline{2} 2$ kilometres. The
total of French railways under all head
 and 7798 inot yet finally sanctioned. During the year 903 kilo-
and
metres of general light or local railways. As international lines France counts
seventeen in connection with with Switzerlann, two with Italy, and five with Spain. In Algeria at the above date France possessed 1290 kilometres in operation,
of which 189 are in Tunisian territory. There were also 104 kilometres of light rail ways in work, and 1333 kilometres sanctioned,
and 920 projected. Only one other possession of France has railway in operation, namely, the short line of 12 kilometres from
Pondichery to the river Gingy, but 152 kilometres are in course of construction on the island of Réunion, a narrow gauge line from Pointe des Galets to St. Denis, and 980 kilometres are projected as
the Senegal railway from Dakkar to St. Louis, by Rufisgue.
France's rail way work is thus somewhot

As an explanation of the variation in the ratio of oxygen to
nitrogen in the atmosphere of a given place, which Mr. Jolly has nitrogen in the atmosphere of a given place, which Mr. Solly has
observed, he supposes the currents of air showing this deficience to
come from tropical regions, where the consumption of oxygen in the oxidation of organic matter is generally greater than in a chesp lind
chEAP kind of sealing wax as used for bottles is made of -
mon strained resin, 6 1b.; yellow beeswax, $\frac{11 b}{2}$; ; lampblack, 1 lb . Melt the resin and wax, and stir in the lampblack. If
coloured wax is wanted use window-glass resin and white beeswax in the same proportions, adding Venetian red or other pigment for
colouring in place of the lampblack. A RECENT report of the lampblack.
A RECENT report of the Connecticut State Board of Health
describes a series of cases of lead poisoning, the poison being traced describes a series of cases of lead poisoning, the poison being traced
to the use of boiled linseed barrels, which farmers had employed for the storage of cider. Some of the litharge employed in prepar-
ing the oil had been deposited on the inside of the barrels as a sedimentary coating, which the cider had dissolved.
According to the Wiener Geverbe Zeitung, a Vienna chemist
has reecntly discovered a new variety of glass, which is said not to
contain contain any silica, boric acid, potash, soda, lime, or lead. Exter
nally it is exactly similar to has a greater refraction, of equall hardness, perfectly white, clear, Lansparent, can be ground and polished, completely insoluble in
water, neutral, and it is only attacked by hydrochloric or nitric acid, and is not affected by hydrofucoric aciid. It is easily fusible
in the flame of a candle, and can be made of any colour. Its most important property is that it can be readily fused on to zinc, brass,
and iron. It can also be used for glazing articles of glass and porcelai
The submarine cable between Dover and Calais was carried out during the month of December, 1851 , just thirty years ago, and it wasland and the traffic opened to the public. The first message was handed to Louis Napoleon, then Prince-President of the French
Republic. It was simply a congratulatory salutation. The second, Nature says, was sent by an English banker to his correspondent
in Paris, and related to the price of Consols. The Paris firm sent in Paris, and related the the price of Consols. The Paris mim sent
in return the Cote de la Bourse. This exchange of messages,
including conveyance to the several offices, did not take more than including conveyance to the several oflices, did not eake more than
an hour. Before regular messages were sent experimental sparks
were tried. The first which came over from the French shores fired an English gun which saluted the Duke of Wellington when leaving Dover by an express train. It was the last time he vis
the place in his capacity of Lord Warden of the Cinque Ports.
A curve which Mr. G. M. Whipple, F.M.S., has deduced from and thermometric dryness of the air with changes of barometric pressure, resembles in a striking degree the one he previously
deduced from the discussion of the relation between barometric height, sunshine and cloud-so much so, that he thinks it may be amount of cloud and dryness of the air are in inverse ratio to one another, and, therefore, of course, as a rule, the clouds vary with
the humidity; hence it follows that clouds observed at Kew are not brought from a great distance by the wind, but are probably formed comparatively near the place where they are seen. Referring, he
says, to the weather glass legend, it may now be decided that this only holds yood for the summer when the dryness varies directly
oith the height of the barometer. At other seasons forecast outh the height of the barometer. At other seasons forecasts
with
founded on the basis of these terms will probably prove fallacious. According to a paper on the variations of relative humidity and thermometric dryness of the air with changes of barometric
pressure at the new Kev Observatory, by Mr. G. M. Whipple, F.M.S., if the year is divided into two halves, combining the firs and fourth periods, as representing the winter half of the year,
and the second and tlird as the summer half, we find as the result, that during the winter the variations in dryness or relative
humidity are but slightly affected by barometric height, the ange whilst the driest time occurs when the mercurial colum stands at about $30 \cdot 2 \mathrm{in}$. In the summer half year, on the contrary, we have the curve closely a pproximating to a stralght line in form,
indicating thereby that at this time of the year the atmospheric pressure varies in exact proportion to the dryness of the air, the sreatest dryness with the extreme height. Finanly, taking the
whole of the observations for ten years and massing then togethe curve is produced, which indicates that the period of greates dryness is synchronous with that of a barometric reading of 30 2in.,
whilst the extremes of humidity ocour with the barometer at A TABLE of the weight of American coal was reeetly
in the New York Herald, rendered necessary, it is said by by tricks of coal sellers. From this table it appears that of six diffe-
rent coals burning with a white ash, there are from $38^{\circ} 6$ to $38^{\circ} \cdot 9$ cubic feet per ton. Two other white ash give $39 \cdot 6$ cubic feet to two lightest coàls with and red ash give 41.0 to 40.4 cubic feet to the ton. The ton of 20001 lb. contains about 4.1 cubic feet less :-
Colour of

AT a meeting of the Royal Society of Edinburgh, early la He makes a certain assumption as to the law law of variation of density in a stratum of air near the earth's surface, which, aloww
gives an explanation of the eurious erect and inverted images
observed by Vince, and which formed the subject of the Bakerian observed by Vince, and which formed the subject of the Bakerian
Lecture of 1799. The neeessary geometric conditions fulfilled by contiguous rays so as to give either an erect or an inverted image
are well known; but no attempt had been made to imagine simple state of affairs which would give both images at once. If
the refractive index of a portion of a medium is given by the equation $\mu^{2}=a^{2}+y^{2}$, where y is the distance of the portion
considered from a given plane-the plane, namely, of minimum
densitr then it s general method plane of minimum density is a distorted inverted catenary, and is
obviously symmetrieal with respect to a vertical line through its obviously symmetrical with respect to a vertical line through its
vertex. Whatever the law of density, the upper of two such contiguous rays emanating from a given point must in general have
its vertex either a little behind or a little in front of that of the lower ray. In the former case the rays cross before they return to
the same level from which they started, and an inverted image is the consequence; in the latter case they do not cross, and the
result is an erect timage. Hence the mere inspection of the locus of vertices of all possible rays coming from a given point is enough
to tell the kind of image seen by any given pencil of rays belony to thin the system. Also all rays that pass between any two given
inoints on the same level must have their vertices on the vertical line half way between these points. If then the locus of vertices is such that it can be cut in three distinct points by a vertical
straight line, evidently three images will be possible, two direct straight line, evidently three images will be
and one inverted, precisely as seen by Vince.

MISCELLANEA.

The Wirral and Birkenhead Society's next show will be held at
Birkenhead on the 14th, 15th, and 16th of September, 1882 . THE competition to break down the ring in the Australian trade Australia as low as 12s. 6d. per ton.
Mrssss. E. R. and F. Turner, of Ipswich, have considerably increased their turnery and tools departments in order to
them increased facilities for the execution of their specialities. A coxcession has been applied for in the Volksraad to work a
mall steamboat of light draught in the Vaal River, with the view of lessening the cost of coal carriage to the diamond fields.
IT is stated that a scheme for thie provision of a large dry-dock
at Halifax has been taken up by a strong English company. The Hoposal, the Colonies says, is supported by the English and
Conadian Governments, as well as by the province of Nova Scotia. The Bristol Corporation have resolved to expend $£ 100$ in obtaining the opinion of an eminent engineer upon the practi-
ability of utilising the tidal forces of the Avon and the Severn caon providing the necessary motive power for electric lighting and
for THE A merican production of pig iron during 1881 is estimated at ,600,000 tons, and the consumption at $5,658,000$ tons, being 1,681 are estimated at 400,000 tons. The Ironmasters' Association reports that the stock, both foreign and domestic, is vrtually exhausted.
Messss. Tronans and Eadon, of Highbridge Forge, Owleston,
ave patented a new method of making shear steel, by which they have patented a new method of making shear steel, by which they
claim that they can produce a more trustworthy and durable shear teel than has hitherto been made by the old process. The speciality heating appliances.
Messis. Mirrelees, Taitr, and Watson intimate that after this Mirrlees, Glasgow, We may add that Messrs. Mirrlees, Watson and Companys. Works, employing eight to nine hundred hands,
are the largest in this or any other country devoted solely to the manufacture of sugar-making machinery.
IN his steamship circular Mr. J. White says, "Some important
iimited companies, to take over established private shipowning himited companies, to take over established private shipowning
firms and to develope new enterprises, have been amongst the numerous conppanies of the past year, and new projects, including States to England in five days, are spoken of." MEssss. Davr Broverers, Limited, engineers, Park Ironworks,
paid no dividend last year. On Monday the shareholders received the pleasing intimation that as the prospects of trade were some-
vhat more favourable this year, the directors had decided upon what more favourable this year, the directors had decided upon
paying an instalment of 11s. 3d. per share-being at the rate of 5 per cent. per annum-on account of dividend for the current
financial year. Messrs. Davy Brothers have been very busy for financial year. Messrs. Davy Brothers have
months on important orders for new plant.
AT the Newport Rolling Mills a strike has taken place by the of the helpers is, it is said, to be paid by the ton instead of by the
the shift. Inasmuch, however, as they leit their work without notice
their grievances have not been considered as yet; but, on the their grievances have not been considered as yet; but, on the
other hand, summonses have been taken out against them for
breach of contract. Tuesday next before the Middlesbrough stipendiary magistrate.
AT Stockton a largely attended but unauthorised meeting of
ironworkers has been held, at which the speakers mainly advocated the discontinuance of the sliding-scale or any similar arrange-
ment. A resolution to this effect was carried almost unanimously ; so also was one that a week's notice should be given the effect of laying the forges idle on a Monday altogether. It seems probable that some of the advantages of better times will be
thrown away at the outset by unreasonable conduct on the part of
Another serious dispute is going on between the owners of the Wshaw Hoor Coliery and their workmen. The dispute has taken
the form of the whole of the workmen, backed by their union leaders, resisting an attempt on the part of the manager to dis-
charge a certain workman, who is also a union oficial. Mr. Clayton, one of the owners, has made a public statement of his views of the case, which, however, has been flatiy contradicted
with equal publieity by Mr. Crawford, secretary of the Durham
Miners. Association ceased, to the great inconvenience of the customers.
IT was announced by the Mayor at the close of the Birmingham
neeting on Tuesday evening, that a telegram had been received from London to the effect that at 20 minutes past $9 o^{\circ}$ clock the the metropolis. The despatch of the reports of Tuesday's meeting was the heaviest, but at the same time the most rapid piece of
work of the kind yet performed at the Burmingham office. There work of the kind yet performed at the Birmingham otice. There actually transmitted through the various wires, but as some of the the number of words delivered was 541,983 . Mir. Bright began to spank at 1.2ρ p.m., six minutes later the first page of longhand
manuscript was handed over by the reporter to the telegraph
oficials in attendance at the hall officials in attendance at the hall, and at 8.38 the dispatch to
London, Manchester, and other stations began. Mr., Bright sat
down, report for London was transcribed and despatched from the hall
by three minutes to 9 oclock. It was immediately "worked off"
 the Mayor. Mr. Chamberlain spoke 6236 words. The despatch of the entire verbatim report was finished by 10.42 for Manchester,
Bradford, and Liverpool ; 11.5 for London ; 11.15 for Leeds,
Sheffield, and Edinburgh; 11.55 for Nottingham ; 12.10 for Glasgow, and $1.6 \mathrm{a} . \mathrm{m}$. for Dubli
A MoNTHLY meeting of the Mines Drainage Commissioners was tion was apsed, on the motion of the chairman, to the effect that required to make a return of the number of acres of mine should bo by him, and of the number of tons of mineral raised during the
past half-year. The object of this is for the purpose of levying a past half-year. The object of this is or the purpose of levying
surface drainage rate of 1d. per ton. The accounts presented
showed a total expenditure for the month of $£ 3159$ of which $£ 2230$ was for mines drainage proper, the remainder being for surface drainage. The arbitrators, in reports upon the Tipton and Bilston
Mines, recommended the filling-up of no fewer than 166 disused shafts, down which water Howed into working mines. Of these,
110 are styled "urgent cases." . The estimated cost of the work is £1762. Reporting upon the desirableness of deepening and widening portions of the river Tame, and also puddling various brooks
and canal branches, the arbitrators stated that there were 7500 and it was estimated that two-thirds of the tipton and Bilston, and it was estimated that two-thirds of the water now being
pumped flowed again into the mines. The surface works had work would require $£ 26,000$. The cost of pumping might be reduced £ 5000 per annum if new and efficient pumping machinery
were laid down. The chairman stated that and were laid down. The chairman stated that at the next meeting of
the Commission he should ask them to authorise the erowing of £25,000 or $£ 30,000$ for the purchase and and erection of pumping
GALLASANDAUFDERHEIDE'S MOULDING MACHINE.
messrs. pfeiffer bros., katserslautern, bavaria, engineers.

THE EDISON ELECTRIC LIGHT IN NEW YORK, - PRODUCING ESTABLISHMENT.

part plan of engine floor

GALLAS' MOULDING MACHINE. manager, and H. Aufderheide manaer, and M. Aufderheide, engineer, was shown at work in
the Machinery Annexe of the Frankfort Exhibition, and gave
excellent results, judging by the excellent results, judging by the moulds made before the eyes of
visitors and the castings exhibited. The main principle is that, with a uniform speed of winch handle or driving pulley, as the case may be, the travel of the pressing apparatus varies gradu-
ally from fast to slow, with a corresponding increase of pressure. ally from fast to slow, with a corresponding increase of pressure.
The travel may be varied to suit patterns of different sizes ; and detachable portions of the pattern may be withdrawn from the mould. By its aid two labourers require only five minutes to mould an ordinary box, with a saving, it is said, of more than mould an ordinary box, with a saving, it
seventy-five per cent. over skilled labour.
Fig. 7 is a side elevation of a machine
Fig. 7 is a side elevation of a machine somewhat improved in
details, with the moulding blocks in section, so as to show the patterns. Fig. 2 is an end elevation of the same, partly in section, with the truck for carrying the boxes run into position,
Fig. 3 is a vertical section, at right angles to Fig. 2, showing the Fig. 3 is a vertical section, at right angles to Fig. 2, showing the
arrangement of differential gear for transmitting power to the press, and Fig. 4 is a horizontal section of the same. Fig. 5 is a vertical section and Fig. a plan of the table for adjusting the
booxes ; and Fig. 7 shows the automatic fastening for clamping them together.
In the bed-plate A, Fig. 1, are the bearings of the differential gear, which, actuated by the chain and chain-wheel, gear, and
lower winch handle raise the platform C and carriage D by the aid of the rack B. The platform is guided by rollers along the four wrought iron columns, which are secured by nuts to the bed-plate and are stayed at the top. On these columns slide the
sockets which carry the pattern-plate E, provided with a turning arrangement operated by the upper crank handle F , a pinion and an inside toothed wheel. The latter, which is plain on its
periphery, is provided with a handle G, Fig. 2, for locking the periphery, is provided with a hande G. Fig.
plate in various positions. The pattern-plate and patterns are counterbalnanced by weights attached to chains passing over
pulleys above. This arrangement serves not merely to facilitate the turning of the plate, but also to adjust its height to suit
boxes of various sizes. The press-head H is a stout casting boxes of various sizes. The press-head H is a stout casting
capable of running back on rollers so as to allow the pattern-plate to clear while being turned. It carries on its lower side mould-
blocks, shaped roughly to the form of the patterns, so that the blocks, shaped roughly to the form of the patterns, so that the
compression of the sand may be practically uniform. It is procompression of the sand may be practically uniform. It is pro-
vided above with a box for holding the coarse moulding sand, which may be drawn from it when pushed back into the box head slides hang bars for carrying a scraping arranigement J fig. s, for clearing the surplus sand from the boo. Travelling on
rails across the top of the press is a truck K , with screen arrange rails across the top of the press is a truck K, with screen arrange-
ment worked by crank handle and levers for sifting the fine parting sand on to the patterns
For raising the
For raising the platform and carriage to compress the sand
the power, applied uniformly at the lower crank-handle-Fig. the shaft is trasmitted by the gear and chain to the chain wheel, o the shaft of which is keyed the variable curved wheel L-Figs.
and 4 . This gears with the variable wheel M on the shaft of which is a similar wheel P gean P , which takes into one rack
0 . This shaft corries the pinion and also the toothed wheel communicating motion to the
pinion Q taking into the other rack, so that the press table is primion Q taking into the other rack, so that the press table is
raised and lowered evenly. The grooved pulleys $R R$ are for carrying the chains of the weights for counterbalancing the plat-
form and carriage. The effect of the variable curved wheels is to give a quick travel at the commencement of the lift, gradually changing to slow travel and correspondingly great compression
at the end. The variable curved wheel 0 , Fig. 4 , is not keyed on at the end. The variable curved wheel 0 , Fig. 4 , is not keyed on
the shaft, but tixed to a collar, tight on the shatt, by a bolt and nut the shaft, but tixed to a collar, tight on the shaft, by a bolt and nut given for one turn of the chain wheel.
In the table-Figs. 5 and 6 -for adjusting the upper and lowe boxes, the split sockets U U, for receiving the pins are adjustof various sizes. The holes in the lugs of the lower box fit exactly over the split sockets, into which the pins of the upper box drop. In this manner a perfect adjustment is secured. By
means of the counter-weighted treadle and system of levers the boxes are raised clear of the sockets, so that they can readily be removed. In the automatic fastening for clamping the two
boxes together, when the upper box is laid on the lower, the clamp together, when the upper box is caused by the latch W, Fig. 7 , to close over the flange of tho upper box, and a slight pressure with the hand or foot is suffcient to clamp the boxes firmly together. When the position of
the boxes is reversed, the fastening disengages itself by gravity This arrangement is quite convenient, as it is the lower bo which must be moulded dirst when only one machine is used. The operation of moulding is performed as follows :- The halves
of the pattern are fastened to the pattern plate by screws from the under-side. In the case of small patterns, both halves are moulded on the same plate; but in the case of large patterns the
halves must be moulded one after the other, or simultaneously halves must be moulded one after the other, or simultaneously
in two different machines. In the latter case the lower box is placed on the pattern plate and secured by bolt catches, shown
at X X in Fig. 2, some parting sand from the truck K is sifted over the patterns, and the boo is filled up with coarse sand from
the receptacle over the press head. This latter is then brought the receptacle over the press head. This latter is then brought
into position, and the carriage D run under from the side A few turns of the crank handle bring the box against the
press head, and compress the sand. The box is lowered, the press-head pushed back, and the surplus sand struck off by the scraping apparatus J-Fig. 2 . The pattern plate is then turned
round, so that the box hangs downwards. The carriage is run round, so that the box hangs downwards. The carriage is run catches clamping the box to the plate are withdrawn. The top plate of the carriage is supported on laminar springs-as shown
in Figs. 1 and 2 -sufficiently strong to keep it, with the box and contents, off the under frame. A polyhedron arrangement is provided, which, on being rotated on its axis, gives a succession solidating the mould, so as to allow the pattern to leave it. The
carriage is now lowered clear of the pattern plate and run off carriage is now lowered clear of the pattern plate and run off
with the half mould. The same process is repeated with the with the half mould. The same process is repeated with the
upper box, with the precaution of adding the core for the ramer ; and the two boxes are place the on the adjusting when the mould is ready for casting

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our
strains on crane posts
SrR,-If you are not already tired out with the voluminous corre-
pondence which has appeared under the above heading, I should

As I understand the question raised by Mr. Pendred in your impost, with a load suspended from its jib in a state of rest, all consideration of chains, winding gear, \&C., being set aside, what will
be the strains generated in the mast, or vertical portion of the crane?
Now, Now, there are two distinct factions amongst your correspondents
on this subject, those siding with Mr. Pendred and lis safety "n this subject, those siding with Mr. Pendred and his safety
"valve theory," and those advocating what may be called the valve theory, and "those advocating what may be calted the
"neutral axis theory," among whom MIr. Major from his lengthy
and continued correspondence ranks as chief. In his first letter he asks us to imagine that the crane post is a bent lever, communi-
cating with a rocking shaft in various positions; well let us do so cating with a rocking shaft in various positions; well let us do so,
and adding to his Figs. 1,2 and 3 , Figs. 1 A and 3A, he will, I hope,

not be surprised into allowing that, as the conditions in Fig. 1 A are exactly similar to those in Fig. 1 -according to his own assumption-
that, therefore, at the end of his changes of form, Fig. 3 has the same conditions of strains as Fig. 3A. This is, I think, quite indis tion $\mathrm{S}=\frac{\mathrm{W} \mathrm{L}}{\mathrm{d}}$ and not $\frac{\mathrm{W} \mathrm{L}}{2 \mathrm{~d}}$ as would be the case were we to carry out his "neutral axis theory," taking for granted that it is
located at the centre. This one illustration seems to be the only locateat in cavour of his theory he is able to boast of, notwith-
argument
standing the strength of standing the strength of his convictions.
Many of your correspondents who oppose . the safety valve
theory seem to fall into the same mistake of arguing that, because h crane post merely resting, let us suppose, on the ground, may be a crane post merely resting, let us suppose, on the ground, may be
kept from falling ofrwards by a force eating at right angles to the
mast, that, therefore, in order to determine the strains in the mast
 of a crane fixed in position, we must take this force and see what think it will not be difficult to show how erroneous this mode procedure is, and that the height of the post has no place in our
Let us consider the case of a crane having two jibs, one above the

other, resting on the fulcrum F under the breast, or for the benefit other, resting on the fulcrum F under the breast, or for the benefit
of the neutral axis theorists on F^{1} under the neurral axis, and let us counteract the tendency of the crane to fall forwards produced
by the weight W hung from the lower iib by a second weight Wi hanging from the back flange of the post, so that the whole balances on the fulcrum. Now regarding the strains at any section A, they
cannot be altered by our moving the weight W and suspending it cannot be altered by our moving the weight wh horizontal distance
from the top jib, so long as we keep the between W and a vertical above the fulorum constant, because the
counterbalancing weight W^{1} will still maintain equilibrium, which counterbalancing weight Wr^{1} will still maintain equilibrium, which
would not be the dase supposing the strain in the back to have been would not be the case supposing the strain in the back to have been
altered in any way at the section A A by altering the position of W. Having a great wish to see all doubts as to the correctness of model, Fig. 5, maintaining as far as possible the conditions of actual practice, with which to measure the strains developed by any weight desirable hung from its jib. The model is simply a crane
of H section, having near the base a layer composed of indiarubber, shown in black in Fig. 5 , the flanges and web of this layer being carefully cemented together with an elastit cememt, and fixed
to the uper and lower portions of the crane securely. The pointers to the upper and lower portions of the crane securely. The pointers
P and P^{1} being levers having very short arms nearest the crane post, the extremities of which are hinged to the flanges just above the section of india-rubber, are intended to magnify and recor movement in the flanges which may take place in an upward or
downward direction on the cards C and C^{1}. This arrangement is very sensitive, and will indicate by a quite perceptible movement
the pressure of 1 oz. on either of the flanges. It is therefore a very easy matter to hang a weitht W from the jib J, and mark on the by the dotted lines $p p^{1}$. If we now remove the weight W, the pointers will go back to their original positions, and it is quite clear
that if we apply an upward force to the back flange, and a dewnthat if we apply an upward force to the back flange, and a dewn-
ward force to the front flange of such intensities that the pointers wssume exactly the same posicions the we the equivalent forces to those generated by the weight W. To do this
ent I have constructed a simple arrangement by which a weight W^{1},
resting on the lever L, which forks round the crane post, having a, ressing on the lever L, which forks round the crane post, having a
fulcrum F^{1}, produces an upward pressure on a small projection from the back flange, while the weight W^{2} resting on the lever L^{1}, downward pressure. The amount of these pressures is readily calculath.. Now if we place these weights W^{1} and W^{2} on their
respective levers in respective levers in such positions that they bring the pointers
exactly to the marks previously made when the weight W was exactly to the marks previously made when the eight W was
acting, it is quite obvious that we have now got the exact measure acting, it is quite obvious that we have now got the exact measure
of the forces produced on our india-rubber section by W. I have tried several cases with this model, with various and weights, and the result has been to fully bear out Mr. Pendred's valve theory, the figures in many cases working out exactly, while in some others merely a decimal of a pound different,
according to the amount of care taken in manipulating the weights. I fear I have already trespassed unwarrantably on your space, so that I will content myself with taking one case only your space, so
proof of the untenability of the neutral proof of the untenability of the neutral axis theory.
Take the case of 1 lb hanging
Take the case of 1 lb . hanging lin. from the breast of the model
crane, which is 2 in , from flange to flange. Then, according to the
neutral axis theory, assuming it located at the centre--in
this case it is visibly very much nearer the back, which makes it worse for the theory-we shall get $\frac{1 \mathrm{lb} . \times 2}{1}=2$ inch-pounds as the strain in the flanges, compression in the breast, tension in the
back. But what do we find by the safety valve theory and actual experiment whe ind the breast there will be a compression
$1 \mathrm{lb}{ }_{2} \times 3=15$ incl-pounds -148 actual experiment-and in the back a tension of $\frac{1 \mathrm{lb} . \times 1}{2}=5$ inch-pounds-5 actual experi-ment-showing a difference of 5 inch-pounds in the breast, and
1.5 inch-pounds in the back, as discrepancy between the eresults of
neutral neutral ais theory and the actual results obtained by the model, backed up by the safety valve theory.
I have also tried the effect of a w
the breast of the model crane, alternately from two jibs, one 7 in the breast of the model crane, alternately from two jos, one in.
above the other, and the positions taken up by the pointers in each
case were the same, proving that the heibyt of the post has no above the other, and the positions taken up by the pointers in each
case were the same proving that the height of the post has no
effect on the strains produeed by the load, if we disregard its own weight during our investigation.
These results I sincerely hope
"emese resuts I sincerely hope may onvince the minds of the
peminenthy
pleased with the others who like Mr. Major, seem so pleased with themselves at having managee to realise what the
neutral axis is that they must needs press it into their service on every possible occasion, as fulcrum or otherwise, regardless of reason, and will, I trust, be a lesson to that gentleman to postpone
in future his jocularity and wonderful sense of the ridiculous until he is quite sure that others beside himself may not occasionally be in the right.
In conclusion, I may state that in each experiment the weights
were first carefully placed so as to produce the required movement Were first carefully placed so as to produce the required movement
in the pointers, and then measured as to distance, and not vice versa, the neutral axis being always visible, and generally near th
13, Holland-street, Kensington, December 27th.

old-air machines.

SIR,-May I venture to ask for space to briefiy notice some of the remarks contained in the letters
in THE ENGINERR on this subject?
in The Encan on this on which there is no room for differences of opinion, for by wellon which there is no room for difference of opinion, for by well-
known devices employed by almost every engineer these valves can
be arranged so
 without in the least degree sacrificing efficiency, either by intro
ducing complication or by adding even one cubicicinch to the clearducing complication or by adding even one cubici inch to the clear
ance space. As regards my own refrigerators, though I should not
expect either suction or expect either suction or delivery valves to require attention in less
tim
time time than six months, yet Messrs. Douglas and Grant are very
properly providing for their withdrawal, and, if need be, replacement, in certainy not more than the that minutes. That the valve of the expansion cylinder is the only one likely t
require daily examination," as stated by Mr. Sturgeon, will be news to most of your readers ; and is certainly not much of a recommendation for that gentleman's machines. I may say that in my refrigerators there is even less necessity to examine this
valve than those of the compressor, no more indeed than there is to make a daily examination of the slides of a steam engine.
I cannot agree with Mr. Sturgeon's statements that with injection the air is of necessity greatly surcharged with moisture For excepting under the very special condition in which dry air is
supplied to the machine, moisture sufficient to fully saturate the cooled compressed air at the temperature and pressure at which i
is delivered to the expansion cylinder will always enter the com is delivered to the expansion cylmariolly always enter the compressor, even ind and expansion will be effected under precisely similar conditions, whether the heat of compression be abstracted by surface cooling or by injection. Further, I may say that as Mr. Sturgeon only compresses his air to an absolute pressure of 30 lb . per square
inch, in place of the 60 lb . more generally adopted by other makers, inch, in place of the 60 lb . more generally adopted by other makers his losses from condensation and freezing during expansion will,
therefore, be twice as great. It is a curious, though well recognised conditior, that dus actually dried by the injection of cold water; and were it not fo certain practical difficulties, I think this method of cooling would
be more advantageous than that by surface contact, though until these difficulties are removed I shall certainly hold to the latte plan. With properly arranged jets there is also less difficulty in
abstracting moisture in mechanical suspension, as the streams of abstracting moisture in mechanical suspension, as the streams o
water collect and precipitate the fine particles of mist and so obviate to some extent the introduction of baffles and diaphragm I
I very much fear that machines producing a final temperature o 18 deg. above zero Fah., as Mr. Sturgeon appears to recommend with a chamber temperature of 25 deg. Fah., it would requir 10,000 cubic feet of Mr. Sturgeon's air to effect the same cooling a 1000 cubic feet if delivered no deg. below zero Fah.; or in othe ordinary construction
With regard to "Purchaser's" letter of the 13th December, cannot remember ever having made the statement with which I
am credited, and I shall be glad to know the source from which The delivery of cold air at any standard pressure can only be
calculated from the capacity of the expansion cylinder considered in conjunction with indicator diagrams, as the terminal pressure after expansion may vary as much as 20 per cent. in two machine
with similar cylinder ratio but by different makers, while in some refricerators there are considerable valve leakages, which can only be detected by the use of the indicator. There is great variation in the efficiency of compressors, some delivering about 95 per cent of the displacement per stroke, and others only 75 per cent., or
indeed, even less, as 1 myself saw in one case which came unde my notice. In judging of the value of any machine, it is therefor my notice. to know the indicated or actual horse-power expende in driving, and if the steam engine is a special one or self-contained with the machine, the pounds of wa
in the boiler to produce this power
in the boiler to produce this power.
While I am writing, perhaps you will allow me to say that think Mr. Galwey was not justified in his wholesale condemnation of Mr. Coleman's interesting letter in your issue of November 18th The description of the experiment was clearly not intended for the instruction of those well versed in thermo-dynamiss, but for th very large number of non-technical persons who read THE ENGI
NEER. I know from experience how widespread is the belief that cooling can be effected by expansion into the atmosphere withou the help of a cylinder and piston, and I could mention a number cases in which, from this cause, even engineers, competent in othe respects, have made rather curious blunders. Not very long ago
was consulted by a firm of manufacturers in respect to a com pressing plant they had put up, with the idea of producing cold ai for exp in one of their processes, but having failed to incface an My friends, not being in the way of reading treatises on the mechanical theory of heat, might very possibly have been warned at the outset by a practical note in a journal like THE ENGINEER
and so have avoided the outlay of a considerable sum of money in carrying out a costly and altogether unnecessary experiment. Permit me to say, in answer to "Octopus" question, that if that
gentleman will favour me with his proper name and address, shall be pleased to make arrangements for him to see one of my dry air refrigerators at work.

116, Fenchurch-street, E. C., December 26th.

THE ENGINEER.
particulars of, on the average, about one hundred patents every week. Each of the inventions described is believed
by its inventor to be quite new, and it would be trouble by its inventor to be quite new, and it would be troublesome perhaps, if not impossible, to prove that it is not.
Our readers have excellent opportunities of knowing Our readers have excellent opportunities of knowing
whether the inventions thus patented ever come to anything. How many, for example, are adopted in our
cotton mills, on our railways, in our ships? We shall be cotton mills, on our railways, in our ships? We shall be
outside the mark if we say that of the 5000 patents outside the mark if we say that of the 5000 patents
annually taken out in England 100 are used. A truth annually taken out in England 100 are used. A truth
like this should be taken to heart by those who believe in like this should be taken to heart by those who believe in
inventions and patents as sources of wealth. It seems too, a little remarkable that inventors, men with plenty o ability, seem to miss their opportunities, and invent wha is not really wanted, while they will not give a thought to demands apparently pressing enough which are to be found on every side. For example, the pressing want of
the day-a want which will assuredly last all through the day-a want which will assuredly last all through
1882 -is for labour-saving appliances. Much has been done in this direction, but much remains to be done. To indi cate plainly what is wanted would be in a sense to invent
the means of supplying the want. But we may illustrate our meaning by one or two examples which are possibly nothaps simpler manual mechanical work than nailing the boards of a packing case together. In the United State sede hand labour ; and box-nailing machines are well known at the other side of the Atlantic. Again, those who have seen a lid soldered on a tin box know that the operation is one apparently requiring some skill,tact, and manual sympa United Sta lids a lin million by maching These two examples show that in miparently the shat These two examples show hat in use machinery instead of hand work when the latter is dear and scarce. To apply what we have said nearer home we would point out that not in one engineering shop out of ten is the power of the steam engine driving the
shafting made the most of. There are very few machine tools which will do more than one thing well. If anything else has to be done, it must be performed by another and re-set, with the chance that errors will be introduced which must be subsequently corrected with the chisel and file. Let us take the case of the cylinder
for a horizontal engine, 18in, or 20in. diameter. Follow ing the usual practice, the casting, after being "fettled" in the yard, is mounted on a lathe and bored out; then the flanges at each end are faced; the cylinder is then taken to the planing machine, and the port faces, valve drilling machine, and the holes. for the studs to secure the lids are drilled. Subsequently these are tapped with we have three distinct machines used in doing very simple work. Now, it seems to be not difficult to devise a bored, planed, and drilled by successive operations, without ever disturbing the cylinder from the moment it was fixed in the machine until it was complete; and we shall go further, and say that all three operations might be per-
formed at the same time, and that the work could be done by one man instead of by three. It is not easy to go into any shop, however well managed, in which it cannot be seen that what may be called the demurrage on tools is heavy. In other words, they are doing nothing, nex tool-holder, for a portion or a good many pounds in the year without his knowledge. We can do no more than indicate the direction in which improvement is urgently needed. We feel certain that there is ample stock of inventive talent in the country ready to supply the want. It has always been the case in the mechanical arts that demand and supply act and react on each other. A
notable example of this is supplied by the present position of the cold air or refrigerating machine trade. Such machines are by no means new; but the invention of a
practical cold air machine is of comparatively recent date. If it had not been that a determined effort was made to import fresh meat into this country, it is probable that
little or nothing would have been heard of the cold air process ; but the demand for a machine capable of keeping alowe freezing point stimulated invention a temperature was met ; and the circumstance that cold air machines are marketable commodities like steam engines, has in turn enormously stimulated the importation of meat. We do now what ten years-if not five years-ago would have been deemed impossible-import fresh meat in excellent condition from Australia. It would be rash to assume
that a limit has been reached, and that no better cold air that a limit has been reached, and that no better cold air
machines can be made than those now sold. It may not machines can be made than those now sold. It may not
be out of place if, for the sake of the inventor who knows be out of place if, for the sake of the inventor who knows
very little about the cold air machine, we say a few words about the principles involved in their construction, and about the principles involved in their construction, and
this seems to be the more necessary because much confusion appears to exist in the minds of some persons concerning these principles. When air is compressed, it is raised in temperature, and the elevation of its temperature
is, other things being equal, the measure of the work done is, other things being equal, the measure of the work done
on it. If, while heated and compressed, it is cooled down by passing it through tubes round which cold water the work done upon it It would te the precise equivalent of if the air were cooled down to its original temperature, but in practice a difference must always exist between the temperature of the cooling water and the air, depending,
if on nothing else, on the thermal resistance of the tubes, If now the compressed air be allowed to expand yet furth work in driving a piston, it will be cooled on this piston. To begin with, we may suppose that the namely, 60 deg . Fah.; we shall suppose that by compression the temperature of the air is raised to 200 deg., it is then passed through the cooler, and reduced by water at 60 deg.
to a temperature of 80 deg . This air is then allowed to expand, and in doing so it will give back about one-half as much power as was expended in compressing it, and will
fall to a temperature of about 30 deg. below zero, or even less. These figures are taken, not from calculation, but from actual practice. It will be seen that the greater the work done by the air in expanding the colder it will become but this will depend on the initial pressure, because the terminal pressure is fixed at that of the atmosphere.
Practical difficulties, however, stand in the way of getting very high pressures, and it remains to be seen how these ree to be overcome. Hitherto the greatest trouble met vith in working refrigerating machines is caused by the eposit of snow or ice on the valves and in the pipes, which brought about in this way: The capacity of air for aqueous vapour, or, in other words, its power or suspending noisture, depends, other things being equal,
emperature. The cooler the air the less aqueos vapour of the sea, as it is by refrigerators fitted in ships, on cooling. If it could be got rid of in the cooling tubes well and good; but although a portion may be tisposed on the produce snow, hen the air is inally cooled down, in and aboot the expanof some makers of excellent cooling apparatus, we venture of some makers of excellent cooling apparatus, we venture
to assert that the snow problem has not yet been fully disposed of. Three distinct methods are in use for dealing with it. According to one, the condition is accepted, and means are provided for removing the snow from time to time as it accumulates. According to the second, only ai previously dried is used, and so the deposit of snow is holly prevented. This entails the necessity of using the cool by cold-air pipes, the process being precisely the reverse of that by which a hothouse is heated by pipes. In some cases the pipes in the meat room may contain water, pre brine. The water is cooled by cold air. The hird system consists in expanding the air in two cylinder instead of in one. In the first it is reduced in temperature larger part of its moisture in the form of water in the receiver between the two cylinders, and this water is drawn off from time to time. The remaining expansion is then effected in a large cylinder, which exhausts into the meat

Possibly because of the small attention that has been given until recently to this subject, the confusion of ideas engineers. Even such men as Thomson and Rankine have made mistakes, if not in facts, in deductions, and one writing in Nichol's "Cyclopædia of the Physical Sciences published in that year, concerning the phenomena rreezing, stated that it occurred to Professor, now Sir William, Thomson, that according to the great principle of Carnot, water at freezing point may be converted into ice by a process solely mechanical, and yet without the final expenditure of any mechanical work; yet that as water in
freezing expands, and therefore must exert mechanical effect, this is tantamount to saying that mechanical work can be got out of nothing. He then goes on to illustrate lake at 32 deg. we plunge a cylinder full of air inderinite Compress that air suddenly by a piston. Heat will be given out and diffused through the lake. Let the piston, being released from the compressing force, be permitted to start back to its original position. It is evident the heat it gave out, and the water will freeze. But at the close of the experiment all things are as they were at first. The force expended in compressing the air has been
returned by the equivalent force of resillience, while the mechanical effects due to its expansion are superadded. In other words, we have obtained these into the bargain
Mr. Thomson, with great sagacity, detected the Mr. Thomson, with great sagacity, detected the necessary presence of a new and unsuspected element, and at once freezing point becomes lower as the pressure to which the water is subjected is increased.
Now, in this passage there are two errors. In the first place, the cooling and heating of the air has nothing what of compression or expansion ; and secondly, after the expansion had taken place, all things were not as they longer at 32 deg., because it still contained the heat diffused through it when the air was compressed. If this heat had been returned no ice would have been produced may be that the freezing point becomes lower as pressure increases, that fact has no apparent connection with the
phenomena spoken of by Rankine in the paragraph we phavemena

In mechanics no subject possesses more interest for the mhavitants of Great Britain than the marine engine, and finality in its design or construction. Two principal points claim attention-can it be made better as regards the matter of of working. As regards the first poirt it is ecoubtful if there is room for improvement; it may be safely said that when properly used engines never break down at sea, but as much cannot be said for crank and propeller shafts. Indeed, little or no improvement seems broken shafts is still very heavy. The most original attempt that has been made to establish a better order of with built-up jaws we have already illustrated. It continues, we understand, to give perfect satisfaction in the ing the second question little or nothing can be added to ing the second question little or nothing can be added to
what Mr. F. C. Marshall said in his paper real before the Institution of Mechanical Ergineers at the Newcastle
meeting last summer. Progress has been made during the last nine years in the following particulars :- The power of engines made and being made shows a great
increase. We may cite, as examples, the Servia, whose engines have indicated 10,385 -horse power, and the City of Speeds previously unattainable are now possible, The Servia is an example of this in ocean-going ships, having steamed for fourteen miles from the Cloch to torpedo boats supply an illustration at the other, end of the scale of dimensions. The consumption of fuel has been reduced by $13: 38$ per cent., and working pressures until many steamers are being built for 120 lb . Mr. Marshall advocates the adoption of forced draught. It is a curious and noteworthy fact, on which we have already dwelt, that the proportions of the various parts of marine engines and boilers to each other seem to exert no influence whatever on the consumption of fuel, so long as certain very wide and ill-defined limits are not overstepped
The most prominent proposal connected with shipshould be wichted to run from Tiverpol to of steamers she week. This has very nearly been done by one on one voyage, but to do it regularly is quite another thing. It was first proposed by Mr. Holt, of Liverpool, a couple of years since, but it has been seriously revived in the United States within the last few weeks.
It was at one time properly regarded as questionable whether a single screw of comparatively moderate diameter set at rest for ever in the affirmative during 1881. The screw propeller still remains one of the most wasteful instruments ised. Not less than ore-half the whole power exert the engines seems under the most favourable circu to to The steamship De Bay, fitted with De Bay's screw, often described in our pages, has met with a series of mishaps, blades in the Mediterranean during her last voyage. Enough was done, however, to show that the propeller drove the ship much further and faster per ton of coal made iny other propeller. A mistake seems to have been tioning their thickness to the work they had to do. A seinguar device has been tried on the Continent, steam water expelled from them astern. It is said that better results than were expected by any one but the inventor have been obtained.
In the construction of locomotives there is nothing new will berd, nor does it seem probable that any radical change nd made during the year. Mr. Webb, of the Londo motive. In order to get rid of coupling rods, two inside cylinders drive one pair of wheels, and two outside cyliners, placed about midway of the length of the frame, same diameter. Very little is known as yet outside of the Crewe shops respecting this engine. It is said, however,
 as mued continues to earn goldo invented by Mr. F. C. Marshall, which has already been futed to over thirty steamers, and is giving the utmost
atisfaction. Improvements in locomotives can have but one legitimate object, the reduction in cost ; that is to say, in the consumption of fuel and the frequency of repairs. It is a great matter to keep the engines out of the shops oom for improvement as regards steadiness of motion. In America the Fontaine locomotive has attracted a good deal of attention. We need hardly tell our n a complete f reasoning of is invento is that imited section of the American scientific press has endorsed Mr. Fontaine's opinions, no doubt without due consideration.
Concerning continuous brakes, we cannot do better than age 2. It ives to a table which will be found on brakes; but it must be understood that being compiled almost wholly from Board of Trade returns, it is in a great
measure deceptive. It is well known that the returns measure deceptive. It is well known that the returns oade by the railway companies do not agree in principle, ailure which another company would entirely disregard This has been particularly the case with the Midland Company in dealing with the Westinghouse brake. It is
urther to be noticed that all automatic brakes must show larger percentage of failures causing delay of trains than lan-automatic brakes, for it is the essential feature of the automatic system that when it fails it stops the train,
while a simple vacuum or a non-automatic brake may fail repeatedly and entail no delay. In this way is explained repeatedly and entail no delay. In this way is explained
the fact that the percentage of failures, which delayed trains of the Westinghouse brake, appears comparatively high. The figures bear testimony to what may be termed the vigilance of the brake. Again, it is known by experi-
ence that nearly all these failures are due to neglect or carelessness on the part of those in charge ; and as porter and others learn that the brake is certain to complain in a ery ummistakeab way if it is not properly treat hall hear less and less of failures which are really so only in name.
can still be said that engineers are only beginning to understand the principles of action of the steam engine, or,
rather, of steam in the engine. The desire for highpressures and great measures of expansion took its origin in mistaken lesson taught in all text-books that stean behaved like a permanent gas ; whereas in truth it is an land where fluid ends and liquid begins. To this moment not only is the curve of expansion regarded as a hyperbola, back, however, as the year 1846, Mr. Cowper calculated a
true steam curve, and a good indicator card laid on this wonderful accuracy. The difference from a hyperbola wonderful accuracy. The difference from a hyperbola
is well marked. Mr. Cowper maintained that steam to be worked economically must be kept hot, and that in a way which ordinary jackets cannot effect.
The wonderful results obtained with the Ditton engines, and recently recorded in our pages, show the accuracy of his view and the soundness of his practice, and high pressures are not necessarily conducive to economy or capable of securing it. Mr. Perkins, with a courage or capable of securing it. Mr. Perkins, with a courage
worthy of a better cause, will during the year start an engine working at 1000 lb . pressure expanding some three the Salisbury Show more than twenty years ago, which worked with steam of this pressure. That any exceptional economy will be obtained we do not for a moment believe moderate pressure not more than, at most, about eight to ten times, keeping it very hot all the time, and in running the engine at a high speed and with considerable com-
pression. This principle is being carried out with great pression. Mress by Mr. Arthur Rigg, concerning whose engines we
shall have more to say. A demand for high-speed engines of moderate more to say. A demand for high-speed engines now being done by Edison, is certain to arrive in the the preparation of new designs for this class of machinery. Want of sufficient space prevents us from even alludmechanical engineering. We the less regret that we cannot deal with them here, that our pages contain from
week to week a record of most that is worth writing about or illustrating in the mechanical world. One important scheme we cannot pass over in silence, namely, the heating
of houses and whole towns from one or more centres by steam, as carried out by Mr. Holley in the United States In Detroit the system is being tested on a large scale, but it is being applied in no fewer thas, a publishing-office, and a boot and shoe factory, the whole belonging to nineteen owners, and having an aggregate capacity of
$3,300,000$ cubic feet, are heated from one centre. In addition power to the amount of 196 indicated horse is
furnished to eight establishments. The cost last year was about the same as that of private heating, but with th extension of the system it is anticipated that the expense
would be reduced.

We cannot leave this subject without saying a few words concerning our Navy. The Inflexible, 11,400 tons,
has been completed and sent to Malta. Her speed is not so great as was anticipated, but she draws about 18 in . more water than was intended, a result of the substitution
of 80 -ton for 60 -ton guns, and certain changes in her fittings, \&c. Full reports of her performance at sea have not yet been made, but on the whole it is satisfactory.
In the present year that strange craft the Polyphemus will In the present year that strange craft the Polyphemus will
be completed, as well as the Ajax and Agamemnon-small Inflexibles of 8490 tons each, and probably carrying four 38 -ton breech-loading guns of a new type, which will it is
hoped be nearly if not quite as powerful as the 80 -ton gun Besides, there are eight other ships being built-the Imperieuse, the Warspite, the Collingwood, the Rodney,
a new ship not named, of 9000 tons displacement, and a new ship not named, of 9000 tons displacement, and
to carry two 43 -ton breech-loaders, and a new gun, the most powerful to be had, probably a 60 -ton breech-loader,
the Colossus, Majestic, and the Conqueror. Besides, there are to be built four despatch vessels of the Iris type, four corvettes, and over a dozen smaller vessels.
The year's work in the development of
The year's work in the development of the applications
of electricity has been so great that any résumé will necesof electricity has been so great that any résumé will neces-
sarily give but a faint idea of what has been done. There is, however, a growing custom periodically to make, so to speak, a balance-sheet of the position, and the custom has much to recommend it. Comparisons can readily be made.
The future historian will have less difficulty in fixing pretty exactly the date when this or that application was introduced, not merely as a laboratory experiment, but for
the general use of civilised man. The past year will be noted for the wonderful progress made in electric lighting, and as that application of electricity is the most prominent
in men's minds at the present moment, we shall deal in men's minds at the present moment, we shall deal
with it first. The various articles which have appeared in our columns relating to the exhibits at
the Paris Electrical Exhibition will have shown that in the immediate future electric engineers will have a status, and if we may venture to predict, the time
is not so very far distant when they will claim an equality with other engineers. Comparisons are odious, neverthe-
less we will indulge a little. Gas is said to have been discovered in 1690 by Dr. Clayton. Ninety and nine year: after, the first published account of the gasholder was made
in England - that is, in 1789 . Three years after, viz., in $1792, \mathrm{Mr}$. W. Murdock lighted his house and premises at Redruth, and a few years after, in 1797, lighted some manufacturing works by similar means, and in 1802 gave
a public display of gas lighting at Soho. From that time gas gradually obtained more extended use till in 1807 first company was formed with a capital of $£ 200,000$
to supply a part of the metropolis with gas. We to supply a part of the metropolis with gas. We
need not pursue the history further, but will merely say that many years elapsed before lighting by gas three years ago, owing to the ignorant utterances of the
political press-ignorance, we mean, on scientific and hisporical scientific matters- the public generally were led to suppose that the knell of destruction to gas companies had
sounded, and that gas would at once be superseded. The gradual manner in which gas had been introduced was unknown or forgotten ; as was also the gradual introduction of all our most important applications of science.
The electric light was not likely to form any exception to the rule, although in these days of heavy working pressure the time for its general introduction might be somewhat
shortened, It will be well, perhaps, to see how it is that
the electric light is practicable. In the latter portion of tion published in 1873-the question of the cost of work done by electrical methods is discussed, and the very definite conclusion stated that it is far cheaper to obtain energy by the consumption of carbon, i.e., coal, than by the consumption of zinc. At the time of Professor Rankine's writing magneto and dynamo-electric machines were in a explained in our report of the Paris Exhibition, introduced certain modifications into these machines, which afterwards, in the hands of Gramme, paved the way for the one class of machines of the present day. Professor Rankine, p. 540 , states that by the combustion of 1 lb . of zinc in and he states, as we have said above, that this can energy, pete with coal combustion. Now, in a short article in the current number of the St. James's Magazine Mr. F. C. Webb, C.E., has made a calculation to compare a Brush machine with the Daniells cells. He finds that the machine known as the 7 A machine is equivalent to to those who have never thought about the subject; but the figures, though not rigidly exact, are sufficiently so for the purpose of comparison. The machine is intended for The Brush, Gramme, \&c., machines are modifications of Pacinotti's designs, and hence we may say that Pacinotti's work formed the germ which in its development made the electric light practicable. Upon an equal footing with Pacinotti, we ought, perhaps, to place Dr. Siemens, who, introduced improvements which, although previously used by Hjorth, of Copenhagen, only in the hands of Siemens became of practical value. The Siemens machines are ton taking in hand the somewharket. Mr. CrompM. Bürgin has simplified, modified, and raised its efficiency till it has become one of the most extensively used. His ring armature is simpler than any other of a similar class. generally used in England. During the year of grace 1882 we shall undoubtedly see other improvements made, or we have great faith that any new law will be dismade by ribbon, or plates for the armature and field magnets, the use of cast in lieu of wrought iron, symmetry of parts, \&c.
The theory of the dynamo machine is being carefully studied by a number of able men, to obtain but not to impart knowledge, and hence it frequently happens that investigations of great practical value are unknown to the world at large, and remain so till the wheel of fortune has carried us past the period rapid to hoard up these treasures, and we trust that some of the results will ere long be published.
Electric light apparatus consists of three parts - the
generator of electricity, the motor to drive the generator, generator of electricity, the motor to drive the generator, and the lamp. The electric lamp, then, next claims our attention. The improvements in the machines made the it probable. Whatever real progress has been made, has been made since 1876, when Werdermann or Jablochkoff called the carbon andle. Last year we had little to say for the Jablochkoff light, and although it has quite recently been past year a very large business has been done by the past year a very large business has been done by the
company owning the patents. The lamp is simple, which is in its favour. In England during 1881, Mr. Whiteley, of Westbourne-grove, has adopted this light; Messrs. Shoolbred have increased the number of lamps in use; have adopted it, and Messrs. Samuel Brothers, after having given it up once, have returned again to their first love.
Contracts have been taken to light the harbour at Havre Contracts have been taken to light the harbour at Havre
for ten years, and for a similar period the railway dock and basin at Antwerp. We understand that negotiations are being carried on with the Metropolitan Board of Works with a view to extend the use of this lamp, the Board in
April last having arranged for a continuation of the April last having arranged for a continuation of the Bridge for three years. Just lately some 39 installations the provinces. To these must be added 11 installations in other places on the Continent. The company, with a certain tinue not only to use, but to extend their lights. The oldest of the English companies is the British Electric Light Company, which of necessity occupies a prominent United Kingdom. Rumours have from time to time been heard as to the validity of these patents, but it is difficult to trace the rise of such rumours, and as none of those inwe may view the inuendos as the emanations of envy. The company is not prejudiced towards any system of lighting, but is ready to carry out the one thought to be best and is that of Mr. Brockie, which regulates itself periodically. These lamps are in use at Cannon-street; but various modifications have been introduced, which will be seen in the lamps at the Crystal Palace, where no less than thirty the formation of central stations, one such being formed by this company in their premises in Heddon-street, neighbouring clubs, \&c. Thus the Scottish Club, in Doverstreet, Piccadilly, is connected with the central station at Heddon-street at 3 p.m., and disconnected at 2 a.m. The company has an incandescent lamp, which is spoken of
favourably. The three most prominent electric light companies, however, are the Brush Company, Messrs. Crompton and Co., and Messrs. Siemens Brothers and Co. It introducing improvements, and it is hardly invidious to other
engineers if the names of Mr. R. E. Crompton and Mr. A. Sie mens be specified as the names of men who have carefully
studied the art of electric lighting in its every phase. Mr. Crompton takes the initiative in introducing the light into mines at Pleasley and at Risca, whilst Messrs. Siemen have introduced the light into our theatres and steamships, After Mr. Crompton's experiment at Pleasley Colliery lighting the Earnock Colliery of Mr. Watson. The greates lighting the Earnock Colliery of Mr. Watson. The greatest
experiment during the year has been the lighting of a part of the City of London, Messrs. Siemens undertaking Poultry, \&c. They have also in hand the work of lighting the Winter Academy, whilst Mr. Crompton is busy with work at the Mansion House. We have seen the designs of some of the gear to be used in the last-mentioner
work, and believe it will be pronouncel elegant. This work will also have some novel ties, being perhaps the largest in which a combination loguing of the work lo these firms respectively have in hand, would be of little interest; but we may mention a few installations, which lighted Devonshire Park at Eastbourne, a place well lave to all visitors to this fashionable watering place, the Victoria station at Manchester, the Rio Tinto Mines in Spain the Liverpool Corporation Waterworks at Llanfyllin, the Severn Tunnel, Portskewet, Blaenavon Ironworks, the
steamships City of Rome, Alaska, Chimborazo, \&c., show ing the cosmopolitan nature of the work.
Messrs. Crompton and Co., using generally the Bürgin machine, and for large open spaces the Crompton arc light, have been exceedingly busy throughout the year. The the Pleasley Colliery, under the auspices of the Mine Accident Commission. The light used was the Swan lamp, and the lighting was so successful that Mr. Watson, the proprietor of the Earnock Colliery, near Glasgow, electricity This was carried out under the collaboration of Mr. A. Jamieson, Principal of the School of Science, Glasgow, with Messrs. Graham. Subsequently Messrs, supposed to be one of the most dangerous mines. The light till the time of writing has been wonderfully success such towns this onerous work, the firm he harbours, docks, or piers at Greenock, Belfast, \&c.; the stations a King's Cross, Bricklayers' Arms, North British goods at Glasgow, the dye works of Messrs. Ripley and Sons, and some forty or fifty other installations. One feature which might been noticed with regard to the Jablochkof thos who h and extend its ton have supplied apparatus for a second order to the same people. The work in hand includes, besides many other installations, the lighting of the Egyptian Hall and Fraserburgh, the works of Messrs. Brown, of Edinburgh of Messrs. Phillips Brothers, London, Messrs. Tate, Silver town, \&c.
The Brush Company and the various agents, licencees, and branch companies, have had a remarkable year. We
have before us full and complete information relating to have before us full and complete information relating to
their work; but to analyse it into too brief a compass would give a very inadequate idea of their work. The annual report of the company, a proof of which the genera manager, James Humphreys, Esq., has kindly sent us, wil
receive special attention at a future date; meanwhile we give a rough total of the number of Brush lights in use including America, \&c. This number has reached the enormous total of over 8700 lights. Here, again, we finc
second, third, fourth, and fifth orders from the same people. At Paris we carefully watched this light, and found the experiment there to be carried out in an excep tionally good way. Besides the Brush are lights and the Brush machine, this company is manufacturing the Lane
Fox incandescent lamps on a very large scale. It is abso lutely incandescent lamps on a very large scale. It is abso work of this company in a short paragraph, but un doubtedly it has carried on the largest business of any of the light companies

During the year the Electric Light and Power Generator Company have carried out the work of lighting the Blackfriars Bridge, via Queen Victoria-street, Southwarkstreet, and Queen-street. The Weston lamp and machine are used. This lamp is a very good . the whe drawback, shortness of cary by another lamp calculated to burn a longer time. There are altogether thirty-two lomps in four circuits of eight each, owner of the Maxim lamp for this country, some of which are used in the Post-office at Edinburgh; others with machines are to be supplied to H.M.S. Agamemnon and Polyphemus. The lighting of several of
These signs of progress might be supposed to afford a sufficiently satisfactory series of facts for those interested in the particular subject, but the year 1881 will long be memorable, and will probably be regarded as the year in which electric lighting by incandescence came into Mr . Swan had prepared the public mind for the reception of authentic information that incandescent lights were a fact and not merely an experimental demonstration. Expect ancy was for once to be gratified. The Panergy of Brush Crompton, and Siemens had already done for the arc lamp, viz., proved its practical utility. Thousands of incandes of economy in practical use remains to be determined The lights from these lamps is admired by all. In the spring

NOTES FROM SCOTLAND
(From our oun Correspondent.) THE Glasgow iron market was closed from year holidays. Before it closeduen ont the of tormer nay prices of warrants had considerally improved
from the re-action that set in the previous from the re-action that set in on the previous were made known. As explained in this trade spondence last week, the conmittee, who made up the iron report, did not as usual receive returns from ironmasters with reference to the amount of production and the stocks remaining
in their hands. They were therefore obliced to stimate these two important items, and although the principle upon which their calculations were
made appeared reasonable and fair, no little dissatisfaction was manifested with the result. It vas alleged on the part of the ironisters that the stocks were placed at too high a figure,
as well as the amount of production. The ironmasters themselves met on Saturday, privately,
in Glassow and made up the returns of the actual in Glasgow and made up the returns of the actual
production and stocks at all the works, with the exception of two, the owners of which declined to ound that the make of pig iron during the year had amounted to $1,072,079$ tons; whereas the iron merchantst committee had estimated the amount
at1,176, ooo tons, leavinga ifferenceo of 103,921 tons. at received tho works from which furnaces in blast, and calculating the production of these at 195 tons each per week-the method employed by the iron merchants - lt would appear that the production in the case of these works
would amount to 111,540 tons, bringing uo the ntire output to 7619 tons more than the estimate n'the official statistics. The ironmasters' figures showed that there were 266,346 tons in their hands, whiereas the estimate of the iron merth,468 tons. It is well known that there are considerable stocks at the works not included in the ironmasters' returns, but whether they will be sufficient toaccount for the difference of fully 46,000 tons in the estimate can only be certainly known
to the owners of those works. It seems to be enerally admitted that the stocks at these two works cannot by any possibility be less than 20,000 tons. The probability is that they are considerably greater, so that the ironmasters
figures substantially confirm those made upa week figures substantially confirm those made upaweek
ago by the committee hitherto charged with this important duty
The market opened on Tuesday very firm, and a fair business was done at prices rather higher
than those of Friday. In the afternoon transcotions were effected at 51s. 11d. to 52 s. $5 \frac{1}{2} \mathrm{~d}$. sellers 52s. 6d. cash, and 5 sm . 9 d. one month buyers very near. The market was strong on Wednesday at the opening, but gradually became
easier, business being done down to 51 s . 11.td casier, business being done down to 51 s . $11 \frac{1}{2}$ d. 52 s .1 d . cash, also 52 s . 3 d . to 52 s . 2 d . one month, losing at 5 ss. 3 . 3d. one month. of meakers' iron this week, but the demand is considered satisfactory for the present season. the news year holidays. The quotations are as follow:-Garsherrie, f.o.b. at Glasgow per ton,
No. 1, 60s., No. 3, 54s.; Coltness, 61s. 6d. and 54s; LLangloan, 62s. 6d. and 505s.; Summerlee,
 lington, 52 s . 6d. and 50 os ; Shotts at Leith, 60 . 54s. 6d.; Carron, at Grangemouth, 52 se . and 51s. 51 s ;
Kinneil, at Bo'ness, 51 s . 6 d . and 49 s . 6 d . In the manufactured iron districts and at the shipbuilding yards, business has been suspended uring the greater part of the week owing to the holidays. There is every reason to believe, howver, that work will be renewed with increased ctivity, and that these branches of trade have
before them a period of great prosperity before them a period of great prosperity.
Up till the close of last week the coal was exceptionally busy on account of large deliveries having to be made for shipment previous to the holidays. On this account prices have
advanced 3d. and in some cases 6d. per ton. These figures, however, were merely temporary,
and it is expected that when business is fully esumed the prices will adjust themselves to their resumed the
former

WALES \& ADJOINING COUNTIES. THE new year is opening well. In the ironworks, from the steel works of Monmouthshire,
notably Ebbw Vale, Blaenavon, Tredegar, and Rhymney, to Swansea, the activity is very nay be naturally expected to end in an advance Up to a short time ago there was only one branch that showed any signs of weakness, and that was
the tin-plate, in part from internal dissension, the tin-plate, in part from internal dissension,
and in part from falling demand. I am now very pleased to be able to state that tin-plate, which nade a spurt some week or so since, continues to anguine view, are looking very favourable. The only new changes and enterprises in connection
with iron are the forthcoming transfer
 and the establishment of wire works at Merthyr, Tredegar is fast completing its steel, Rhymney
adding to its appliances for greater output, and dding to its appliances for greater output, and
the Swansea Works forging ahead In coal, as I had antici ahead
In coal, as I had anticipated, the year 1881 gave, in the case of the Cardiff port, nearly a
million tons excess over 1880. The figures are not quite completed, but so far as they run, they are as follows - Cardiff, $1880,4,897,440$ tons ;
ditto, $1881,5,508,086$ add the elast month's totals, it will be seen that outlook of the year is also a good one. Freights ire easier from the quantity of shipping coming
into play, and prices indicate more than a ten ency upwards. In many cases which have come that where reasonable chances offer capital is soon
forthcoming. The Nantgarw seams are being
worked again, I see, by a firm under the name of he Ystradbarwig Company. The upper seams appear to have been worked to considerable advantage by the late Thos. Powell, father of the nfortunate aeronaut, and now there is a prosect of the under seams proving as ren Great Western Company to the west of Rhondda. In addition to these movements the railway shemes that will shortly come before the commictee have drawn attention to the virgin track ying westward from the Rhondda, and we ma account of deficient railway service. What wit the South Wales mineral line, and the projected ines, a country little known will be opened ul
The Dowlais tin-plate works are again idle, or The Dowlais tin-plate works are again Mountain Assp seems generally to be be in trouble.
This is the point from whence most of the revoluon mio .onary movements spring. The sliding scale pro manner there than I had expected, and with it n effort on the part of the miners' representatives to get the association into better working
The Llanvabon house coal men are also
beginning to agitate. They appeal against any beginning to agitate. They appeal against any
link being fashioned between them and the steam coal colliers, and if this be persisted in, threaten to give notice in a month from date.
I see that notwithstanding a fair immunits I see that notwithstanding a fair immunity
from large explosions, there nave been throughout the country twenty-seven explosions in mines, were lost.
During last week 135,000 tons of coal were sent way from the whole of South Wales. At Hountain Asfi there has been a little tardiness in output, but ontier parts or thineighbowhood con
tinue flourishing. Appearances in the Swansea iron trade fore shadow an advance. Stocks are very low, and as
the tone of inguiry is well maintained, especiall the tone of inquiry is well maintained, especially
from the States, we may expect prices will mov from the States, we may expect prices will move
upwards Common Welsh bars are quoted at upwards Common Welsh bars are quoted at
$£ 6 ;$ rails $£ 510 \mathrm{~s}$. to $£ 515 \mathrm{~s}$. old scrap unaltered Iron is, however, not so much inquired for as steel, and theser remain in brisk demand. Evi-
dently an impression prevails that the soin dently an impression prevails that the soone Tinchases are made the better
Tin-plate pri.
charcoal, 23 s .

THE PATENT JOURNAL.

Condensed Jrom the Journal of the Conmissioners of

*** It has come to our notice that sonie applicants of the
Patent-office Sales Department, for Patent Speciifcations, have caused much unnceesaryy trouble aud a annoyance,
both to themselves and to the Patent-ofice oficicils, by

 Index and givicing the numbers there found, which onli
reer to the pages, in place of turning to those ppages and

Applications for Letters Patent. ** When patents have ben "communicated" the
name and adaress of the communicating party are
printed in italics. 2tth December, 1881

2sth December, 1881

29th December, 1881
5705. Stups' Rudders, w. Cooke and D. Mylchreest,

30th December, 1881.
5716. Roastiva Cobres. M. Robisinon, Manchester.
5717. Broviks, W. Willeringhaus, Iondon.

571s. Wisd Isstruaknts, W. P. Thompson. - (M.
Harris, Neol York.)

 $31 s t$ December, 1881
5733. Wind Musicad Instreanemts, W. P. Thompson
 London. - (G. W. WCGill, Neal York.). Lersfield.
5T35. HEATIG WATRR, T. Drake, Hud

 Looks, V. Huppe and A. P. Bender, Germany

Inventions Protected for Six Months on
Deposit of Complete Specifications.

 York. - -28th Decemmuncer, , 881
Patents on which the Stamp Duty of

 -27 Cusk 10. Embrocembrra, 187 si . 250. Facrirrous. MuLstronss, G. A. Buchholz, Pots-
dam, Germany,

 Patent on which the Stamp Duty of
\&100 has been paid.
 Notices of Intention Applications. Proceed with Last day for jlling opposition, 20th January, 1882 .
3706. CHan BARREL, J. Lynn, Sunderland. -25 thi

1881.
$\begin{array}{l}\text { 372. } \\ \text { Auvy. } \\ 3733 \\ \text { Si }\end{array}$

 5SS. Weress, W. R. Lake, London.-A communica-
tion from T Friediander. - Tth December, $18 s 1$. 564. RALLWAY RAuls, A. J. Achaster, Sherfileld.- 24 th S670. TMerimprsers, W. L. Wise, London.-A communi
cation from WW. E. Doolittle.-27th December, 1881 .

 August, 1881.

 September, 1881.

Patents Sealed.

(List of Patent Letters vulich passed the Great Seal on
the 2sth December, 18s1.) 497. Provision Casses, W. Rollason, London.- 8 th
 June 1881.
2s39.s.crew Boits, W. R. Lake, London.-28th June,
1ser.

 253. STarrivg Vehicles, A. Piffard, Felden, and
H. Gimingham, London.

 Si. Sharpening Saws, F. Myers, London.-30th Sune Prisirication of Coast Gass, C. F. Claus, London.
Soth June, 1ssi. STs. WAcoer Axums, S. Bradley, Blakedown Works.-
1st July 18s1. S98. Extisguishive Fires, F. Grinnell, Providence,
U.S. $-2 n d$ July, 18si 200. POUIFYINe, FEATHRRS, J. Martin, Liverpool.-
 ${ }^{\text {1854. }}$ Burnishing Edoess of Boors, P. M. Justice, Lon.
 1881. Transmission of Power, J. Hopkinson, London.

 Juhy, 1881.

 Sull, 1ssinina $Z_{\text {inc }}$ H. H. Lake, London. $-22 n d$

 35n. Auriantinc Michises, C. Ruether, Hemnef.- -16 th
August, 1851 .

3793. India-rubber Articles, B. J. B Mills, London.
 383 ${ }^{\text {Th }}$ Sep Sember, 1881 .
 1339. Sopertember, 1881. Wewton, London. $-19 t h$ Septem4072 ent Colourbd Sized Yarns, F. A. Gatty, Accring-
 4092 CUTrisco Conn Crops, J. Howard and E. T. Bousfield, Bedford.-22nd September, 1881. .
4099. UNHAIRING HDDE, J. W. Janson, London.- $23 r$ rd

 4191. GAs Cooring Stroves, G. J. Cox, Maidstone. -

 October, 1881.
4311. ELEETRIC Lasps, J. H. Johnson, London.-4th ${ }^{4349 . \text { STRHREss, }}$ \&e., J. Turner and C. McBride, Glas-

 4599. Food for for Horses, J. H. Cox, Matlock.,
october, 18 th
HI
 (List of Patent Letters which passed the Gieat Seal on
the 30th December, 1881.) 1031. Atrichive Door Knobs, G. Price, Birmingham.
-10 th March, 1881 .
 ${ }^{2866 .}$ Loous, F. O. Tucker, Hartford, U.S. -1 st July, 2869. Gas-Lasps, F. W. Clark, Westminster.-1st July, ${ }_{2}^{2855 . \text {. Cranss, }} 18$. W. D. Bruce, Westminster.- $2 n d$ July, ${ }_{2890}^{1881}$. BLeaching Fibres, w. A. Barlow, London. -2 nd Joly, 1881.
2992. SRIBLINGG Machinery, A. Barker, London.-
2nd Jully, 1881.

 2911. MEchanicai

 ndsey, London. $-21 s t$ ${ }^{3493}$. Registrbing Apparatus, J. G. Wilson, London.

 4071. Lexo or GAVZE CLOTH, T. Bottomley, Butter-
shaw, near Bradford. -21 st Seppember, 18si,

 List of Patent Letters which passed the Great Seal on the 1472. STEAM STEERING Gear, G. W. Robertson, Glas-
gow. - oth
April 1881.
 4th July, 1881.
2907. Cor NalLs, B. J. B. Mills, London.- 4 th July,
1881. ${ }^{2919.15 \text { Exploding G.sses, W. Watson, Leeds. }-4 \text { th July, }} 1$

3178. Fastenting Rubber Threads, T. Taylor, Derby

 3779. BRAKKs, W. R. Mortimer, Rogate Lodge.- 26 th

 4161. Wroterirl Iron Dig
$\square^{-27 t h}$ September, 1881.

 A914. Smear 18isg METALS, S. Pitt, Sutton.-Oth Novem-
ber. bers, 1881 .
498s.
18si. List of Specifications published during th week ending December 31st, 1881
 ** Speciications will be forwarded by post from
the Patent-oftice on receipt of the amount of price and postage. Sums exceeding 1s. must be remitted by
Post-ofice order, made payable at the Post-ottice
 Patent-o
London.

ABSTRAOTS OF SPECIFICATIONS.

 Prepared by ourseives expressly for The Exainger at theofice of Her Mcjesty's Commissioners of Patents.

 Brothersayd Co., MAinneaporis.) $6 d$.
This relates. to means of aroid. a . the neeessity of
a stive room. A is a cylinder of woollen cloth with a
 eddy chamber or pocket to receive heavy particles; D ,
air arrester or baftle plate; E , knocking apparatus;

1045

H, main delivery spout for stive and dust; L, a am
on driving shaft drawing back the knocker or hammer K ,orce at each revoutuion H coming in contact with the pin M on same, and thus compressing the spring
Re, until the cam pasing the pint the knocker is free
to bound bacck and strike a corner on the cylinder. MaCHINES, S. and S. Cook, Buryry, Lancaster.-13th Mayy 1881. $6 d .0$.
A shaft is fixed across the machine and to it motion
 chain, carrying a number of bars in an open lattice
form. When at thread breaks the pin falls and comes
form in contact with the bars, thus stopping the chain and
throwing the shant out of gear. To take the weight
 back rolle is caused to arrive at the botom first
beforo the seond rollor moves, and when ot the
bottom it stricontes the ends of leeress which cause the botcom it strikese the ends of levers which cause the
shiond ito action, and the second the
third, the weight of of one roller only resting on the third, the weight of one roller only resting on the
twist the the same time.

 moans of a pulley ;also in tightened and stopped by
consisting of a

 shut aut.
ment.
2218 .
2218. PADLooks, T. Harrby, Liverpool.-20th May,
18181. 6 Gd
This relates to padlocks in which

This relates to padlocks in which the shackle allows
the patocok when unfastened do drop away from the
loops, and thereby preevents fraud from the shockle
being apparently secured when it is only wedged into
ist Iocked position. The shackle is opened and closed
by the axiol by the axian moverenent of of a part opened the and case, and ad
secured in its locked position by a locking bolt or stud.
s. 2253. Ranwar Srowals W. Margan-Brown, London.
$-24 t h$ May, 1881.- (A communication fron G. H.

寺ead, or groved surface or surfaces capabie of
retaining in the cells, \&c., spongy or finely divided
lad.

lead. 2323 B.

 LNot pre, Scedede evithen) Gerale.
The only new feature is in
 2334. FURNACES USED IN THE M IETALLURGY
Coprer, , A. M. Contr (A communication fom J. Garrier.). $4 d$.
This consists in eliminating arsenic, antimony, and phosphorus from coarse or black copper or matt by
refining on a hearth of basic material, on which at each operation is spread a layer of basic fluxes and carbonates, such as lime or magnesia, raw limestones,
or dolomites, peroxide of manganese, litharge, fluo spar, sc.
2346. Loonss, J. Bottomley, Bradiford.- $-28 t h$ May, 1881.

The object is to to urun a fast reed loom with a loose reed pick and spring at a higher speed and much easier
pick than hitherto.
This is accomplished by removing the swell hinged to the back part of the shuttle-box,
and in its place introducing and in its place introducing a Ioose reed spring, thus
enabbing the force of the shutle to act upon the picker. Mounted upon the picker guide rod and
behind the picker in astrap conneceted to the topop rod
bot
 2347. Rallwars, A. J. H. Smythe, Ireland. - 28 th This relates to the use of sleepers of steel or iron
plates of trough section, and stififened with cement, Concrete, or timber, which sleepers are placed beteveent
the rails at intervals. Also to the use of stee ov irom phates outuide the rails, thso to the use of steel or iron
being fastened together by bolts.
bails, and sleepers 2348. IsidA-ROBBER VALIEEs, \&.c., A. Pegler and T. This. relates to means to prevent india-rubber valves
from cracking, and consists mainly in embedding in the rubber strong pieces of twine, or strands, or shreds of other flexible material, , in such a manner and in such
 Thith relates to a circular hele, fitted so as to be
capable of revolving on a boit seecured to the heel 2351. PuTrisg Togerber or Affixiva STarrs,
 Crutches, bands, supports, or clips have on their
undersidestud, holes, or projections, to tit into holes
or grooved slots formed in supports securred to the or grooved
star framing
2352 .

 hooks, both sets of chains in passing from the slot
over the

 ceaded vith) $2 d$
The chamber consists of corrugated walls of material bing a good condurtur of of heat, around
which is a second chamber the space between tre being in communication with a refrigerator or cooling apparatus.
2355. Machinery for Doubling, Drawivg, \&c.
Wool, Cotton, and other Fibrous Substances, T. Robinson, Leeds.-2sthe May, 18881. 8d. .
This consists, First, in the arrangent
nation of drawing
 machines; Secondly, the arrangement and application
of compensating apparatus. The drawing is a part
section of tule, showing application of drawing 2356. Washivg Coat, \&c., T. Bell, jun., Saltburrn-by-
the-Sea, and W. Ramsay, Durham.-28th May, 1881 . - (Void.) $2 d$.
a semi-cylindrical trough is used, and is mounted in an inclin ined position, the cool bieing placed upon it it
at the higher end, and a stream of water directed
on at the higher end, and a stream of water directed
alon it. An axis is caused to revolve, and by means
lo stirers keens the of stirrers keeps the contents in motion.
2360. SToppisa Morion for Loons, W. Walker,
Ratclife Bridge. Lancoster. -30 th May, 1881 . 6 .

known as "Diggles chain" immediately on the break-
ing of tho welt and thus to prevent the neessity for
In turning back the sley to obtain the correct pattern
and to save the time of the weaver. A A haft bearing a small cam some what resembing a ratchet whee
is fixed at a right angle with the ehan motion, and if

sion thereof, the extension having a plain periphery
upon which the arms of the star wheel may silide instead of being engaged as they are with the cavities
and studs in the existing sley. The shaft and lever and studs in the existing siey. The shatt and tever
are kept in position remans
unbroken by means of a small catch against which the
und unbroken by means of a small catch against which the
shat tis held by a spiral or other spring. A rod is
carried trom the shart is held by a spiral or other spring. A rod is
carried from the finger lever toa poistion opposie to
the catch. To this rod is fixed a projecting forked 2359. Furremisa, so., J. F. N. Macay, Charapoto, The apparatus consists of a barrel or shell of wood,
earthen ware, or other substance not acted upon by by
the solven the solvents, or ohemier sal atantance mployed, and inside
which is constructed an inner barrel or prismatic or polygonal shell, a space sping left between the two. with the filtering medriamed, The outer barrel is pro-
vided with draw-off colls.
 Oxeceded o maith).
of alumese is mixed with a potash sulphate of alumina, or potash alum, and fused, producing a
combinem salt of potassia manganate or permanganate
of of alumina.
2363. Cleaning Milk Vessels, ace, S. J. Pocock,
Vauxhall. -30 th May, 1881. 4d. Two brushes are mounted on axles and caused to
revolve rapidly, one acting on the inner surface and revolve rapiady, one acting on the inner surface and
the othor the outor surface of the milk vesel, such
brushes being partly simmersed in a suitable cleaning liquid. Pocker-knife, G. Roe, Ireland.- 30 th May, This relates to to means for preventing the main blade opening accidentally, and which, when open, cannot
Recoil so long as the handle is grasped in the handle. recoil so long as the handle is grasped in the handle.
A lever of equal length to and outside the ennife caso swing on the pivot of the main ulade, on which pivot
sween the lever and case is keyed a cam, with which pin on the lever engages when desired to open or one blade
 The invention consists in forming the cylinder The invention consists in forming the evlinder
rather more than thre times the length of the stroke
and booring outa a part $\begin{aligned} & \text { rather } 1 \text { longer than }\end{aligned}$ te stroke at rand boring out a part rather longer than the stroke at
each end, in each of which a piston works such pistons bing connected by rods between which, in
the space between the pistons, is fitted the crank haft connected by a connecting rod to one of the
 The drawing shows a. side ele evevtion. of ad direct-
cting steam pump. A is the steam cylinder and B the pump cylinder. The cylinder A, instead of having only one discharge port placed bitween the two
admission ports asin the ordinary slide evalve engines, ad mission ports,
is ofred
one immodith ischarge ports, which are placed
ont outside of the two admission ports. To ne immediately outside of the two admission ports. To
provide for moving the slide valve the distance recuired to open and clooses the severalal ports at the end of each strone of the piston, the central portion of the e lidide
valve rod is removed and replaced by a casting G,

2370

having at each end a small cylinder H H1. The outer
 piston, which pistors are connected together by a
isht rod at suchis distance apart that when one piston is pushed for orard to compress the air in in its oylinder,

 A vith.) $2 d$. mould or frame, the vulcante being cut and sints ao
correspont to the grooves in the frame, and sering as
the straining medium. Another method consists in correspond $\begin{aligned} & \text { the modrium. Another methon } \\ & \text { coating the whole frame with vulcanite. }\end{aligned}$.
 BURNER, G. F. Webster, Nott
18si- - (Not troceded reith.).
$2 d$
This consists in the combination of a governor
burner, 1 lobe and holdar. The burner consists of a
 actuated by the pressure of gas so as to partially close
or open the passage for the gas. The globe has at the or open the passage or tirector coming grato of the way
opening a concol and
up to the flame, and which directs the current of air. triangular U-shaped rim.

 vide, between the centre and the ends, are two other outlot lateral tubular passages, through which the
fuid is conveyed to each side of the opston. An fluid is conveyed to each where oach outlot passage
annular passage is formed when
joins the main shell, and in each is a hollow taper
 On the latter are two piston valves working insidede the
plugh and goverin the pasage of the fluid to and
from both sides of the piston.

The refining or clarifying and proserving mixture is acid, which is poured over from 7 115. to 81 b. of oyster
shells and left in an air-tight vessel for from five to
bix

 he wick

隹

The object is to prodiua e embosed photoraphhs in a

The object is to produce an upward draught in tho

 ndia-rubber band are securra, sinh band passing bore the heel and so soesuring the plate in position.
On the under surfrice of the phate are a number of n the umder rurface of othe
onical temperece steol points.

 econaly, in the oombination of a fulerum pin for the
 2392. HARrbow,

 Thid consist of a white slab of pot opal ghass, the
 lab is hung in a frame so that either surfice can be
eadily exposedif 2397. Funsions for Charying or Cenerxatiow,
 The object is to providid an inpproved furnace or the

 ${ }^{\text {combustible }}$ 2300. MAchisery for trie gradual Reductiox or

inclined sheet of rerforated metal having a smoth
upper surfice ; Fourthy, in the combination of the
 first rolls and daliver its tailings to the second rolls
the eseond ann lowere serems annaged to to oreifved the

 not

 bytheo
2401.

 iron beam which carries the front frame or or pouyh, is
carried by large eserews to admit of its being set
 pole so as to ber reailiy remorable to suit the odraugh
por two, three, or four hornes
In (turnurest
 being mounted in a swing carriage fixed under the
beam.
2403 . Making Paint with the Refuse fron Arsenta FURNACES, \&c., D. Brown, Falmouth, and R.
Michell, Combe Hill, Cornvall. - $31 s t$ May, 1881.2 . $2 d$. The arsenic refuse obtained from crude arsenic after burning is either ground and mixed with ochre and
with oils to form paint, or is incorporated with tar o 2406 .

 upwady indined deflecting plates or olourres placed
one overer the othere, with a spece between them opening into the flue.
 This onsists in intachecing the gun stook so that may be fixed at any desiried incitisition to to the tharrel.
and the stoek shortened or lengthened.

 groes weight when it contains the maiterial to be be

weighed | weificed |
| :--- |
| 2410 |

 2411. Thansantrivc Morive Powze, J. Ajluard, Bii
 the peripheries of tho pulless orer which it passess
The eroses pieces each consitit of two halt fruutra of
 reasses in the pulleys being of a corresponding form.
241 S . Gone
 Theat holder consisist of three arms, two having

 from the lower side of the third arm inside the edgo
of the giobe.
2414

 Hacbind containino spinideles, on one of the cothe the

 cavit into this ono anular
 it travels.
2419. Ascertaning the Deflection of Shot and
Shell, F. W. Panzerd, Harvich.-1st June, 18si.This roltates to an in ind
and is rantesest an instrument mounted on a stand

 of a complete method of staking by mandino thy th
fuel being equall spread orer the mite seond

 Trom which air ir iexcludued, ind aconduycting the pro por
ducts of combustion in admixture with an excess of
 2425. Onnsiscos. W. Palliser, Southi Kensington.-

ए225:

 andinner
screved.
Qut
2422. Loons, R. L. Hattersle, Sieiohley, and D. Bailey,

 mear to
menim,
2427. Waons AxD TRvcks, J. C. Macrtin, Eass

 are hinged at top, and open out wards when
hhe presurue of the load on them forcing them
2431. Ranimuv Sisiontirs Apparatus T. M. Forrl,

(5431

 vilve is oneratecen at the smoum time as the sigignal, , end the air oopmateosad th
isuing by the whiste.
s.
2433. Poraro Droarns, Wi.. Derara, Dundee-2nd

 the fixed spindle, which projects behind the digging
nstrument
2434. Loorrs for Wenving Brace Webrive, \&co, G.

 aro antuated by a cam and lerers, and an up-and doown
motion is commumicated from the neades to the

 2440. Wovey surk Fabrics, de., F.
 ogether, ind thereads of different shaded or or

 and when the number 29 appears at the ringht hand
poening the disce is caused to make one-ninth rovolu-

 drances one tooth.

The object is to prevent waste, and it consists of a

 rests theren, and hin hed to tho bottom in a sooop
shapeo box which is rased and lowerad by a lever.
 The pole stands on four feot one longer than the

 over a puley near the top of tho ot tandard, and carry
ing a wightito to keep the net taut. 2447. Conssivo Corrov, de. W. T. R. .

 2448. Triser

The object is to ottain a aubstitute for malt for nus

 The drawing shows an integrating apparatus applic-

 swive frame with a rertical axis pressed down by
spring . on this axis
sis

 A smailitiothed, nothed, or roughened wheel is
 lines of minute per
forming the stencil.
2451. Strioobrapmo Foovtrans Prass, J. Nadal, Southo

 requiring cleaning.
2454. RoranY Ponrs, , S. Mallor, North Bovo. $3 r_{d}$

2456. Axir:ioxess Fon Loconorives, te., J. Bottoms
 tives and other vehideses so as to enare i its assuming
a oerrocty radial position or an eurre, and also its return to a ountral possition whon ieaving suath ourve.
The axle-box D comimios in one piceo the two bear-

ings; it hass no gulides, but is furnishded with radius
bast E pivotted to to the trame.
The bearing springs

 The mouth-piece is formed with an air chamber
adjustable in size and capacity; whereby it can be adjustable in size and capacity, whereby it can be
adarted to the reaurements of different instruments
and to the use of different performers.
2512. Bottle Wrappers, H. J. Haddan, London.-
9 th June, 1881.-(A communication from B. D.

The wrappen consists. of a. thin sheet or veneer of
wood, paper, or metal, with ridges or flanges on its wood, paper, or metal, with ridges or flanges on its
outer side, which serve to strengthen the wrapper and also prevent thich sorteve to strengthen the wrapper and
contact with each other. contact with e
2513. Bortie Wraperrs, Hi J. Haddon, London.-9thl
June, 18si.- (A communication from B. D. Marke, Louns, isille. V.S.A.A.) bd.
cord, band, or strip of A cord, band, or strip of paper is wrapped spirally
round the bottle, and to its lower edge a vencer of round the bottle, and to its oower edge a veneer of
wood is secured while strisp of soft elastic mmterial are fastened inside the veneer so as to come into contate with the bottle.
2514. Hatchway Doors, H. J. Haddan, London.-9tr
 This reates to means for automaticaly operating the object bieing to prevent draught in cese of fire, and
avoid accidents through leaving them unguarded. avoid accidents through leaving them unguarded. There are two series of hatech doors, one above and the
other belwo the eleator car, and they are adapted
to be successively collected upo or by the top af and to be sucessively youllocted upon or by the top of and
distributes from the bottom of car in its ascent and distributed from the bottom of car in its ascent, and
to obe engaged with the botom of and distributee from the top of the car in its descent.
 This consists in the combination of the vertical
lever D with the upper and lower bolts or silides G and H, the upper boit op ridid G being withdrawn by the
excentric hand lever on the tang through the headed 2531

pin L , the said pin L working in a slot M in the said
tang; the lower bolt or slide H on the withdrawal of the upper boltor slide G advances, and by its advance
motion effecting the cocking of the hammers. A motion effecting the
modification is shown.
 This consists of a central core of earthen wire, the

 G. Bover, St. Neets. -23rd June, 1881. 2d. iron and steel surfaces coated with magnetic oxide by attrition by rubbing such surface with a brush or
device having filaments or attenuated or finely divided boodies composed of or coated with the metal 3422. Pianoforte Ac This conevist, Mss1. 10d. ction or hammer mechanism of an ad jiostabie with the the lever, which receives its impetus direct from the rear
end of the key, and transmits the action direct to the hammer butt by means of sticker connecting the two;
Secondly the application ank use of an adiustable check lever, acting also as an angmenter and escape-
ment, and which is actuated as and controls the 3594. Targers, H. J. Haddan, London.-18th Aupust, 1881- $($ A communication from
nati, $V . S . A)$.- (Complete.)
$6 d$. This relates to a flying target made of burnt clay or
other material which will break upon being struck by a shot, and which is furnished with a tongue on its brim, by means of which it is grasped in the jaws of
any siutable trap used to project it in the desired
manner
 The front parar of the chamberer to receicenvethete dust is
bent to form a double incline, the outer one facilitating the entrance of the dust when purshed by the the dust. Under the double incline a recess will be be
formed formed, and such part receives a weight, so as to
ensure the front of the coine resting hatily upon
the floor, and not be so ousily moved by the action of the foro, a

 This relites, First, to the mode of preparing com-
 and mixing apparatus, and simultaneously reducing
and mixing the charge; Secondly, to the combination with a rotating drum of independently revolving driven at a higig velocity to reduce and mix the ingredients, while the drum is independently rotated at a 4004.

 with spring jaws, capabie of being closed upon a pro jecting portion Thirdly, an outer tube or case, capable of longitudinal movement with respect to the lead-receiving tube, so
as to protect the projecting end of the lead. as to protect the projecting end of the lead Cer, 1851 .- (A comennunication fiom J. J. H. Bullard This relates more particularly to fire-arms with a

4110

magaine, and the objects are to rapidy transfer the
premature explosion by the forward movement of th
hammer, to ensure the locking in place of the bol against the cartridge whe exploded, and to provide
for the rapio loadig and discharging by the move.
ment of the lever to and fro. A is the frame, B the
It barrel, and C the magazine; D is the carrier moving in a recess and actuated by arm G. The swinging
lever H operates the arm G, and is also comnected
lither with link F carrying a pinion gearing with a sta tionary rack I , and which moves the bolto 0 to and
fro to carry the artridge from the carior into the
banrel . The lever H is barrel. The lever H is also connected with an arm L
pivotted to brecch block Ef firmly up against the bolt $\mathrm{O} A$ proo
jectin jecting piece on handle of lever H is adapted to strike
against the pawl of the triger, and permits the arm to be discharged ra
the lever to and fro

 with a seroll or or extended channel having a sufficient
length to reduce the liquid or material passing
the through to the desired consistency before it escapes
this scroll or channel, inoreover, is so formed that the

said liquid or material will have its parts kept sepa
rate or unncommingled in its passaze through the pan rate or uncommingled in its passage enrough te pan
or has the divisions or walls high enough to preven
the the fresher parts from mingiling wh flowing througl
fuly condensed parts of the stream formen It also consistst in an improved method o o applying
steam, and in the means for disposing of the heated
and steam, and in the means for disposing of the heated
liquid, the vacuum pan or eparating apparatus
being designed and arranged for continuous opperation.

SELEOTED AMERICAN PATENTS.

From the Unitel States' Patent office ofitial Gazett

248,938. Hydraulic Derrick, orange M. Loveridge Claimer (1) In combination with 18 derrick consist and operating gears, the horizontal water-wheol beneath the plation, , spur gean, and pinionse F F
vertical shaft G, and bevel gears, substantially as an
 Yor the purpose hereann descoribed. (2) The mast A A A A
a derrick having gudgeo secured in its foot and
passing loosely through the hub of the water-whee

E48.93

substantielly as herein described. (3) In a derrick
having the mast A, boom P , and tackle, the reel shati M, having insote shatal J, with corresponding and operating levers, and the driving or winch shaft
I, with its gear, in combination with the vertical
 described.

 resonant and non-magnetic material, made in two
parts, consisting of a central disc and a ring surround-
249.064

ing said disc and holding it against lateral movement. a A diappragm composed of a central disc and an
annular portion surrounding said distr, in combination
with col with clamping rings overlapping the outer edgeo o
the central disc and preventing its displacement. 249,085. Mechanisin for Oprrating Fan Doors o
Thrashing Machises, Zebelee Macomber, Brail

of a separator blower, the shafts journalled at ato opposite
sides of said blower, and d the sideo of sidid blower, and the gearing for operating the
doors, the loose sleeves thounted oor said shats and
addupted to engage and disengage the same
connecting chain or belt, substantially ys and for the
purposes specified
(2)
In combination with the

the worm-gar at their lower ends, and the pivotted doors, having pinions or toothed segments
substantially as and for the purposes specified. 249,172. Pipe Frrtive. Frederick Grinnell, Provi-Claim.-As a new article of manufacture, a screw-

threaded pipe fitting containing a split strainer sprung into it, substantially as before set forth.
249,192. Rocker Torpedo, W. H. Mallory, Bridge Clait, - (l) A Procevetotrpedo. provided with a num.
cer of independent radially arranged propelling

249.192

charges, and mea 249,215. SoLperp pe simpereo samuel Woodheal Claim.-(1) The combination of the shank A, point

as shown, for the objects set forth. (2) In combina tion with a point, the perforated shank and adjustable
block and tongue, the knob D , peg E and ring, sub
249241 D.

Breiel-The armature is composed of a hollow
cylinder having radial tubular projections, about which

the conducting wiri is wound, whereby air is avased
to circulate through the ores.
the mathine th is in operation. 249,383. WAsher For Locking NuTs ov Bowrs,
George H. Moore, Verona, Pa. - Aupust 11 tht , 1ssi.

[3-4. 383

section, and having its angles or edges formed in a
spiral direction around its surface, substantially as hown and described.
249,612. Valur, Frederick Grinnell, Providence, B. I.
craim. The combination, substantially as before set

seated and unseated from the exterior of the case, and
yielding diaphragm secured within the casse and pro-
which, when the valve is seated, is held against said
valve by internal pressure against the diaphragm at
the the side opposite the valve.
249,496. Ekecrrar Lrort, Chus. E. Ball, PhilaBrief. Paralilel aldrims ane rotated by clock work or
an electro-motor each carbon having commutators for

reversing the current ateach revolution. The lenngth
of arc is governed by an electro-magnet in the main circuit.

CONTENTS.

The Exginerr, January 6th, 1882.

THE EDIsoon Eleccrric Lïght in N̈zw

 Garretr's Subiarine Torredo Boat. (illus.
trated.) AnNTAL Article, ïs 82.
 Yotres fron Laxcashire
Notes from the North of England

Abstracts
trated) of Patent specifications. (illus-

ARARARAPS-
Naval Enginer Appointments
The Institution of Mechhnical
The Institution of Mechanical Enginee.

Castings of Iron and Bessemer Steel.-A Arizona Territory, who has been in the foundry business twenty-five years, and who owns a shop, writes that he has melted pig iron and Bessemer three years with the most satisfactory results, although the mixture cuts out a cupola twice as fast as the melting of pig alone. The castings, he says, are almost as tough as wrought iron, and can be chipped or planed as easily as wrought in making the charges in the furnace as well as practical experience in handling the metal in its melted state.
Tractive Force upon Macadamised Roads.Some interesting experiments have recently been
made at Salem, Massachusetts, to ascertain the tractive force requisite to move 'street cars and vehicles on a macadamised road. The apparatus used consisted of an inclined plane, at the upper
end of which was an iron wheel, over which passed a rope. A loaded box-car, weighing, with by a weight of 970 lb . suspended at the other end of the rope. The empty car, weighing 4820 lb ., 2831 b . A smaller box car, weighing when empty 730 lb . was occupied by 14 persons, and drawn An ordinary load of sand on a macadamised road was started by 514 lb , an empty hack, weighing 1550 lb . by 196 lb . The same hack
with four passengers inside required 230 lb . to move it. On a level road the load of sand
was started by 240 lb ., while the large box car yielded to 561 b . The experiments, the Times says, were made by a horse railroad company
to prove that their work was not unusually severe for the horses, and the result was dered to have been altogether satisfactory.
Epps's Cocoa.-Graterul and ComForting which govern the operations of digestion and nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has
provided our breakfast tables with a delicately provided our breakfast tables with a delicately
flavoured beverage which may save us many flavoured beverage which may save us many
heavy doctors' bills. It is by the judicious use of such articles of diet that a constitution may be gradually built up until strong enough to resist every tendency to maladies are floating around us ready to attack mherever there is a weak point. We may escape many a fatal shaft by keeping ourselves well fortified with pure blood and a properly nourished frame." - Civil Service Gazette.-Made simply
with boiling water or milk. Sold only in packets with boiling water or milk. Sold only in packets
labelled-"JAMES EPPS AND Co., Homeopathic Chemists, London. - Also makers of Epps's
Chocolate Essence for afternoon use.-[ADVT.]

