A NEW TORPEDO BOAT

On Wednesday Admiral Brandreth, Controller of the Navy, Messrs. Morgan, Butler, and Allington, of the Admiralty, and several naval attaches of European Powers, visited a torpedo boat brought up to Westminster Pier for the purpose by Mr. Yarrow, of Poplar. This craft may be regarded as the latest example of torpedo boat construction, and thus deserves more than a passing comment.
Messrs. Yarrow and Co., of Poplar, are well known all over the world as builders of torpedo boats on the most improved system. The experience acquired by Mr. Yarrow during years of successful construction of this
type of vessel he has utilised continually, with the result of making his designs more and more perfect. The boat of which we are now speaking has been built for the Italian Government, and is of the largest size, being 100ft. long. She is of what is known as the Batoum class, and is very similar to many sent by Messrs. Yarrow to the
Mediterranean, which have reached their destination in safety. She is propelled by a pair of compound engines capable of indicating about 500 -horse power, steam being supplied by a boiler of the locomotive type. She has a two-bladed screw, the results of the experiments carried out by Messrs. Yarrow, and reported in our columns, showing that the two-bladed screw is better for high speeds than either the three or four-bladed propeller. This boat has attained the highest velocity ever reached by any
vessel fully equipped and ready for action. Her measured vessel fully equipped and ready for action. Her measured
milespeed isthehighestever officially recorded, namely, $22 \cdot 46$ knots, or very nearly 26 miles per hour. We believe, however, that in a private trialeven this performance was slightly
beaten. She is fitted with a bow rudder, by the aid of beaten. She is fitted with a bow rudder, by the aid of
which she can be turned round almost in her own length which she can be turned round almost in her own length ; and the screw has been so designed as to give great backing
power. This is regarded by all naval Powers as a most power. This is regarded by all naval Powers as a most
important qualification, because in consequence of the extended use of machine guns, it is of the utmost importance to present as small a mark as possible to the enemy, and this can only be done by keeping bows on to the ship
attacked. Immediately after the tornedo is attacked. Immediately after the torpedo is discharged the boat goes ashore as quickly as possible out of gun shot.
The new boat is fitted with two tubes in the bows for discharging Whitehead torpedoes, so that she is a much more dangerous foe than the ordinary spar torpedo boats. She is steered from a point near the bows, the steersman being in a bullet-proof conning room; while the sloping
deck forward is made of steel plates which would prodeck forward is made of steel plates which would pro-
bably resist any but very heavy Nordenfelt or Gatling projectiles, so that the men engaged in getting the fish torpedoes ready for launching would be tolerably safe. The enormous velocity of the boat gives her a great
advantage. It may betaken for granted that at a distance advantage. It may be taken for granted that at a distance
of one mile from a ship to be attacked she would be safe, and she need not approach nearer than 300 yards to discharge her projectile. Thus she would certainly have to remain under fire only while she was attacking. If she did not succeed, she would of course still be exposed to risk, but the chances are that she would succeed, when of course little more attention would be paid to her. But
steaming at 22 knots an hour, she would be only in imsteaming at 22 knots an hour, she would be only in im-
minent danger for about $2 \frac{1}{2}$ minutes, during which time minent danger for about $2 \frac{1}{2}$ minutes, during which time be by any means easy to hit her.
might be supposed that this result tist oraft afloat, and it might be supposed that this result is due in some measure
to her comparatively large dimensions. It is ordinarily to her comparatively large dimensions. It is ordinarily
assumed that, other things being equal, the larger a ship is assumed that, other things being equal, the larger a ship is
the more easiy will she be propelled; that is to say, that the the more easiiy will she be propelled; that is to say, that the
resistance of a steamship does not increase so rapidly as her dimensions. This law holds good with torpedo boats up to about 15 knots; and Mr. Yarrow has found that at that speed a boat 100 ft . long and displacing about 25 tons can be propelled with absolutely-not comparatively-less
power than a boat displacing 15 tons. But after 15 knots power than a boat displacing lat tons. But after 15 knots tion, and the resistance of the 25 -ton boat is just the same proportionately, or nearly the same, as that of a boat of 15 tons. This is another of the anomalous results obtained at exceptionally high velocities
The most noteworthy novelty in the new boat is an for preventing the fire being put out should the stokehole for preventing the fire toreng put out should the stokehole
be drowned. In all torpedo boats previously built, if shot entered the stokehole, and made anything like a large aperture, the furnace would be quickly submerged,
and the boat would be left a helpless log on the water. For those who are not well acquainted with the internal arrangements of torpedo boats, it is proper to explain that they are divided into water-tight
compartments, in which are enclosed the engines, the boiler, and the stokehole, in which the coal is carried in sacks. The stokehole is shut down by air-tight lids, and a fan forces air into it to maintain the draught, speak, fixed in a bulkhead, and in this are made two flap doors. The pressure of air in the stokehole forces open which the boiler is fixed, and gets into the fire through the ash-pit and bars. It will be understood that there is no communication whatever with the ash-pan from the stokehole. If a boiler tube burst while the fire-door was rush of stmoke-box doors might be blown open, be compartment in which the boiler is, and the firemen could not be hurt, because the flap doors before alluded to would close, and shut off the stokehole from the Mr. Yarrow consists in carrying up the sides of the ash-pan as in the sketch, which is not to scale. Here A is the ash-pan, B bulkhead reaching to deck above,
C is the flap-door to admit air to the boiler room. The C is the flap-door to admit air to the boiler room. The
ash-pan, it will be seen, is carried up above the bottom of ash-pan, it will be seen, is carried up above the bottom of
the boat E for about 3 ft . $9 \mathrm{in}$. . The utmost depth to which the water can rise in the stokehole is 3 ft . 3in., representing about 11 tons, which sinks the boat some

7 in . F is the water level, when the stokehole is drowned. It will be seen that the water rises some way up on the
fire-door ; but this door is made of the cupped form, and fire-door; but this door is made of the cupped form, and
the edges are a good fit against the plate. The result is the edges are a good fit against the plate. The result is
that but little water gets past it into the fire-box, and what does is immediately evaporated, and gives no trouble. what does is immediately evaporated, and gives no trouble. withdraw from the cident, the stokers would have time to withdraw from the stokehole, leaving the fire-door shut.
The fire-box readily holds half a ton of coal, and this will The fire-box readily holds half a ton of coal, and this
As torpedo boats are not intended to go far from harbour, it is clear that an ample margin of power is thus provided to give the boat an excellent chance of escape. In the absence of this appliance, should water in quantity find its way into the stokehole, the fire would be ex-
tinguished, and the boat left to float like a helpless log, a tirguished, and the boat left to float like a helpless log, a
ready prey to the most insignificant adversary. On ready prey to the most insignificant adversary. On
Wednesday, as the boat lay beside Westminster Steamboat Pier, the stokehole was drowned several times without in

any way affecting the fire. Indeed, the steam pressure kept rising, although much steam was needed for pumping the stokehole out, and the draught was of course not on, the
hatch to the stokehole being open. This we regard as one hatch to the stokehole being open. This we regard as one
of the most important improvements recently effected in of the most in
torpedo boats.
We may add in conclusion that, as the little vessel is intended for service at sea, she has a neatly-fitted cabin, with sofas, which will accommodate four officers, while forward as many as eight men can be berthed with tolerable comfort. It would be quite possible for such a vessel to remain at sea for a week; and it is worth notice that she can carry coal enough to steam about 1000 miles
at a moderate speed. She will probably go to the Mediat a moderate speed.
terranean under steam.

THE FOUNDATIONS OF MECHANICS By Walter R. Browne, M.A.

No. V.

66. Accelerating Forces.-The laws of motion, with our definitions, enable us to lay down at once the fundamental propositions as to the action between two centres of force, or between two bodies each of which may be supposed to be concentrated in a single centre. Practical examples of such cases are the attractions of the sun and earth, neglecting the disturbing forces of the planets, or the fall of a body to the earth, neglecting the resistance of the air. In such cases the ideas involved become greatly simplified. In the first place, since all motion is relative
to some point assumed to be fixed, we shall naturally to some point assumed to be fixed, we shall naturally
assume as our fixed point one of the two centres of force assume as our fixed point one of the two centres of force
concerned, and thus investigate the motion of the other concerned, and thus investigate the motion of the other
in reference to it. Thus, in the case of the earth and sun, in reference to it. Thus, in the case of the earth and sun,
we assume the centre of the sun as fixed ; and in the case of a falling body, we assume the centre of the earth as fixed. Secondly, if the body assumed to be in motion be a single centre of force, it is an absolute unit of mass; and if it be a group of centres, yet they will all move as one, and therefore the idea of mass need not be included, at least as long as the two bodies are still at a considerable acting, the whole of the action will take place in the acting, the whole of the action will take place in the
straight line joining the centres, and the question of the combination of forces, which has not yet been settled, does not enter
67. Let us consider two bodies, A and B, and investigate the motion of A with regard to B, taken as fixed. The problem will be stated mathematically thus:-Given the distance 1 between A and B , at the instont when A begins to move, and the accelerating force f with which B acts on A ; to find the velocity of A (referred to B) at t seconds after that instant, and also the spaces which it has passed over from its original position tovards B ,
68. Let us, in the first place, assume that the force with which B acts on A is constant. This is, of course, against our definition of matter, and is never exactly true in
nature. But it may be assumed as true-according to the ordinary principles of mathematical reasoning-when either the interval of space or the interval of time is relatively exceedingly small. The former of these suppositions holds practically in the case of falling bodies, where the variation of gravity due to the approach towards the centre of the earth may always be neglected. The latter will enable us to calculate the effect of a varying force by the ordinary methods of the integral calculus.
69. Let us then begin by assuming that the force J is constant. It will therefore be measured by the velocity generated in one second (Art. 57). Moreover, by the second law of motion, this velocity will in no way affect the action of the force, which in the next second will generate exactly the same velocity f. At the same time, by the first law, the velocity f, generated in the first second, will remain unaltered. The velocity at the end of the second second will therefore be $t+J$, or $2 f$. In the third second a third
velocity f will have been added, making the velocity $3 f$ velocity f will have been added, making the velocity $3 f$. By similar reasoning the velocity at the end of t seconds
will be $t+$; or, if V be the velocity of A at the end of t seconds, we have
$\mathrm{V}=r^{t}$
(1).

Next, to find the space s described in the time t. With
the aid of the integral calculus, this is easily accomplished, as follows:-We have already seen (Art. 53) that velocity
is measured by the limiting value of the ratio of space to
time; or, if v be the velocity at any instant-
But from above $v=f t$. Hence

$$
\begin{equation*}
s=\int v d t=\int s f t d t=\frac{f t^{2}}{2} \tag{2}
\end{equation*}
$$

No constant is added, because $s=0$ at the beginning of the motion, or when $t=0$. Combining the two, we have, $\nabla^{2}=f^{2} t^{2}=2 f s$
(3).
70. To extend this to the case of varying forces, such as alone exist in nature, we may assume the above equations
to hold for indefinitely small intervals of time, during to hold for indefinitely small intervals of time, during
which all the conditions are constant. Hence we may put
put

$$
\begin{align*}
& d v=f d t \tag{4}\\
& v=\frac{d s}{d t}
\end{align*}
$$

(5);
whence
$\begin{aligned} v & =\int_{0}^{t} f d t \\ \frac{d s}{d t} & =\int_{o}^{t} f d t,\end{aligned}$
whence, differentiating,
$\frac{d^{2} s}{d t^{2}}=$
(6).

These are the ordinary equations of analytical dynamics, which must then be dealt with as described in any of the text-books on that subject.
71. The following proof of equation (2) above may be given for the benefit of those who are not acquainted with the integral calculus. Suppose the time t to be divided into a very large number n of very small equal intervals w. Then we may suppose that during each of these intervals the velocity remains constant at the value it has at the beginning of the interval; and the smaller the intervals, and therefore the larger their number, the nearer will this supposition be to the actual truth. But if the velocity be constant, the space described in each interval will be simply the velocity x the interval. Now, by equation (1), als, 1 to n, are o, $f \times w, f \times 2 w, f \times 3 w, \ldots, f \times(n-1) w$,
Hence the spaces described in the successive intervals are $0, f \times w^{2}, 2 f \times w^{2}, 3 f \times w^{2}$, .2.
$\times w^{2}$. But the total space must be intervals are
$(n-1) f$ spaces described in the intervals, and it is therefore equal spaces described in the intervals, and it is therefore equal
to $f w^{2}[1+2+\ldots+(n-1)]$, or to $f w^{2} \times$ to $f w^{2}[1+2+\ldots+(n-1)]$, or to $f w$
$(n-1) n^{2}$. But $n w=t$; hence this may be written

$\frac{f t^{2}}{2}-\frac{f t^{2}}{2 n}$

The larger n is, the nearer will this expression be to the truth ; but the larger n is, the smaller does the second second term will vanish, and the true value of the space described in the time t is $\frac{f t^{2}}{2}$
72. Composition of Forces and Motions.-We have next to cons' ${ }^{2}$ er the effect of two or more forces, acting simul-taneq- yy on the same centre. This cannot be done by law il the three laws of motion alone, since the second law, or rather Newlons explanation oin, only decides the question where the fores arf the the she t, will be the algebraical sum of the velocities generated by each force in that time ; it being obvious that velocities, being measured in units of length, may be taken as positive or negative, added or subtracted, exactly as lengths are treated in analytical geometry. But suppose two forces to act on the same centre obliquely to each other ; then the second law states that the effects are to be compounded together, but in what manner does not appear. To solve this question some additional principle pose is thy. The principle generally used for this purpose is that a force may be supposed to act at any point in
its line of action, provided that point may be treated as rigidly connected with the body in question. This principle, though of course true, is by no means self-evident; it involves conceptions, such as rigid connection, which are quite unfamiliar to a student when commencing mechanics; introduces the vague and clumsy conception of a body, of force ; and, lastly, it is accurate conception onever used or heard of on any other occasion, and is no whit wider than the proposition it is adduced to prove. For these reasons another and more satisfactory principle seems desirable, and such a principle, open to none of the
objections alleged, may be found in the principle of Symmetry.
73. This principle, in its general form, may perhaps be stated thus:- When a cause, or set of causes, is so related to two opposite effects that there is no reason whatever other, then neither of the effects will be produced by the cause, or causes ; and this relation is said to be a relation of symmetry.
74. Of this principle, as of others, it may be true that when thus stated in its general form it is not easy at once to grasp its bearings. An illustration or two will make it clearer. We put a rein or a curb on each side of a horse's mouth, and then by pulling on both together we know that we shall not cause him to turn to either side, because there is as much reason to turn to the one as to the other, In Euclid, the unexpressed axiom that figures which coincide are equal to each other, really rests on this principle, since there is no reason why one of two such figures should measure more than the other, or why it should measure
less. In ordinary mechanical practice we admit at once less. In ordinary mechanical practice we admit at once that two equal weights suspended over a pulley by a weightless string will remain at rest, because there is no
reason why either should either rise or fall ; and for the reason why either should either rise or fall; and for the
same reason that two equal weights suspended from the ends of an equal-armed horizontal lever will also remain
at rest. This last fact has indeed been made the basis of a complete system of statics-see Goodwin's "Course of
Mathematics," p. 225 -which would thus rest directly on Mathematics," p. 225 -which would thus rest directly on
the principle of symmetry. Looked at in the light of the principle of symmetry. Looked at in the light of
these illustrations, it may perhaps be thought that the these illustrations, it may perhaps be thought that the principle should be regarded as a corollary from the great principle of causation; the cause, being as likely to pro-
duce one effect as the opposite is really not a cause duce one effect as the opposite, is really not a cause
tending to produce either ; and without a cause there will tending to produce either ; and without a cause there will
be no effect. I do not care to question this way of looking at the principle; but I believe it is at least equally good philosophy to regard the principle of causation as itself a deduction from a great number of observed facts,
of which those of symmetry are some of the most imof which
75. Original or derived, the principle of symmetry is one which nobody has ever cared to deny, and we may, therefore, accept it as an unquestioned truyth, and apply it therefore, accept it as an unquestioned truth, and apply it is the case of forces at right angles.
76. Problem:- - point or centre is acted on by two forces whose directions are at right angles; to find the resulting motion of the centre.
7. Suppose the two forces to begin to act on the centre $d t$, and then to cease. If we assume for the moment that only one force has acted, it will have generated in that second a certain velocity $f d t$, where f is the measure of second a certain velocity $f d t$, where f is the measure of
the force, being the velocity which would be generated if the force continued constant for one second. Since the time considered is indefinitely short, we may consider the force as constant during that time. This velocity $f d t$ will cause the centre to describe, in the next element of time, a certain indefinitely small space $d s$, proportional to the position of the centre at the end of the first interval $d t$, and let PQ be the element of space which wou'd be described in the second interval. Then PQ is proportional to f. Let P R be the element of space which would be described the other force f^{\prime} to be the only one acting. Then by similar rea soning P R is proportional to f^{1} and by hypothesis P R is at right angles to P Q. We have now to P under the joint action of the two forces.
78. By the second law-Art. 63- f will still produce its full effect, and will therefore actually cause P to describe the space P Q, except in so far as that space is increased or retarded - by the action of f^{1}. But since the direction of f is at right angles to P Q, it has no more tendency to produce an acceleration of P along P Q than to produce a retardation, and vice vers \hat{u}-in other words, f^{1} is symmetrical with respect to motion along P Q, and, therefore, by the principle of symmetry, it will produce no effect either in accelerating or retarding. Therefore P will still exactly similar reasoning, it will also travel the f.ll distance PR in that direction ; for by the same principle of symmetry, the fact that it is also mi ving in the direction $P Q$ will have no effect on its motion at the end of the time $d t, \mathrm{P}$ will be found somewhere on the line A Q B, which is drawn through Q at right angles to P Q ; and also somewhere on the line CR D, which is drawn through R at right angles to $P R$. Hence its actual position must be the point S in which these two lines meet. And since the elements of space here considered are indefinitely small, the path of the centre will not differ from a straight line joining its extreme positions; in other words, from the straight line PS. But PS is the diagonal of a rectangle, the sides of which are proportional to f and f^{\prime}. Hence, P S is similarly proportional to $\sqrt{f^{2}+f^{12}}$; and, therefore, the path of the particle is exactly the same as if it had been acted on during the first interval $d t$ by a force $\sqrt{f^{2}+f^{12}}$, whose direction coincided with P S. Hence, we have this result:-
When a centre is acted upon by two forces at right angles to each other, the effect is exactly the same as if it were acted upon by a single force, which is represented in magnitude and sent in magnitude and direction the two forces acting.
79. In the foregoing proof we have supposed for simplicity that the forces cease to act during the second during that interval will not alter the effect due to the action of the forces during the first interval, but must similar reasoning, this action in the second interval will be the same as if the diagonal force $\sqrt{f^{2}+f^{12}}$ continued to act during that interval ; and therefore the result which we have :urrived at will hold also for the second interval, and also for the third, fourth, fifth, \&c., and is generally
true for any time during which the two forces continue to act on the centre.
80. The above proof gives the principle of the combining, or, as it is usually called, the compounding of two forces, at right angles to each other, which act together on any centre. Conversely, if a centre is acted on by a single force, P S, we may in thought regard it as under the action of two forces in any two directions, P Q, P R, at right angles to each other, provided we consider the values of these forces to be represented by $\mathrm{P} \mathrm{Q}, \mathrm{P} \mathrm{R}$, the sides of the rectangle of which P S is the diagonal. On this supposition we are said to resolve the single force into two component forces at right angles to each other.
81. We have now to extend the proposition to es where the forces are not at right angles.
82. Parallelogram of Forces - Proble
82. Parallelogram of Forces.-Problem:-A centre is
acted on by two forces whose directions are at any angle with acted on by two forces whose directions are at any angl
83. Precisely as in the last proposition, we may repreforces f and f^{1}, considered singly,
by two straight lines P Q P P, by two straight lines P Q, P R,
drawn from the position of the centre at the end of the first centre at the end of the first
interval $d t$. Complete the parallelogram P Q S R, and join P S. Draw Q A, R B, perpendicular to P S, and complete the parallelograms C Q A P, Then, by article 80
$\mathrm{P} Q$ as resolved into the two forces $\mathrm{P} \mathrm{C} ,\mathrm{P} \mathrm{A}$, angles to each other, and the force $P R$ as resolved into the two forces P B, P D, at right angles to each other. But by geometry it is evident that $\mathrm{A} \mathrm{Q}=\mathrm{B} R$, and thereequal in magnitude and opesite in direction to the force represented by P D; and therefore by the principle of symmetry they will cancel each other, and will have no effect upon the motion of P . Hence the motion of P will be entirely due to the forces represented by P B and P A, and therefore it will be along the common direction of those forces, that is along the line P S. Moreover, by and therefore $=A S$; therefore $P A=B A+A S=B S$, of the forces f and f^{1} will be to make the centre P move through the space P S, which is the same as the effect of a single force represented by P S. Hence, just as before, we establish the general proposition:-If a centre is acted upon by two forces at once, whose directions make any angles with each other, the effect will be the same as if it was acted on by a single force, which is represented in magnitude and represent in diagonal of the parallelogram, whose sides 84. We have this and Parallelogram of Forces, which forms the foundation of statics; and that branch of mechanics can thenceforward be studied in the ordinary manner, without the introduction of any new principles. It should be observed that the forces, in the proof of the parallelogram of forces, have been represented by the velocities generated by them, as in dynamics, and not by the pounds weight they will balance, as in statics; but it is clear that a proposition
which is true of things when measured in one way cannot which is true of things when measured in one way cannot therefore the proposition may be at once assumed to be true for the science of statics as well as for that of dynamics.

CALCULATIONS FOR HOISTING ENGINES. Those interested, says the United States Engineering and Mining Journal, and in charge of our mining operations, rarely design their machinery for hoisting themselves. In the great majority of cases, it is far more profitable to order it from firms who make the manuacture of winding engines a speciality. Still engineers and mately, what plant will be necessary to do given work; and with a view, to facilitating this, we present, in the absence of such data
in works generally available, the following outline, which may in works generally available, the following outline, which may
serve as a guide:-
Assuming the simplest case for vertical shafts, the points given, Assuming the simplest case for vertical shafts, the points given,
as a rule, are the depth of the shaft and the quantity of mineral to be hoisted in a given time. The latter will depended largely upon the nature of the arrangements for attaching and removing equipment of the shaft. If the former arrangements are good, little time will be lost during pauses in hoisting, while the latter
affect the speed with which the hoisting can be done. When the mine cars are run directly on and off a cage, it takes only from fifteen seconds to one minute to load and unload. When the ore is filled in sacks, kept in readiness, or in filled buckets which are
directly attached to the rope, one to three minutes are required; directly attache to the rope, one to three minutes are required,
and when the bucket must be filled and dumped during a stoppage and when the bucket must be filled and dumped during a stoppage
of the hoisting, from three to six minutes are necessary. The speed of hoisting depends chiefly upon the way in which the load is carried, and upon the manner in which the shaft is equipped,
When hoisting is done in buckets, and there is no bratticing in the shaft, the speed should not run higher than 2 ft . a second. In a bratticed shaft it may be increased to 4 ft .; and when there are
girders besides, 10 ft . The usual speed for cages is 10 ft . to 20 ft ., 35ft. per second being considered by many practically the maximum. The time for hoisting one load will therefore be found, in seconds, by the following formula, in which D, given in feet, is the
depth of the shaft; v, the velocity of hoisting given in feet per second ; and t is the time for loading and unloading :-

The number of times n in which the load is hoisted during a given period T is therefore :

$n=\frac{T}{\frac{D}{v}}+$

The load q may be found in the following way, M being the
quantity to be raised to the surface in the time T . quantity to be raised to the surface in the time T : $q=\frac{\mathrm{M}}{n}=\frac{\mathrm{M}}{\mathrm{T}}\left(\frac{\mathrm{D}}{v}+t\right)$
As an example, let it be assumed that 120 tons (M) are to be hoisted from a depth of 300 ft . (D) in ten hours (T) at a speed of 3ft. per second (v) and allowing six minutes (t) for loading and
dumping. Then the quantity which must be hoisted every time will be found as follows :

$$
q=\frac{120 \times 2000}{10 \times 60 \times 60}\left(\frac{300}{3}+6\right)=707 \mathrm{lb}
$$

By introducing different values for depth, speed, and time for loading, it will be readily seen how much the speed affects the out-
put of deep shafts, and how little comparatively the time used for put of deep shafts, and how intors the calculations for great depths and slow hoisting. It will be noted, on the other hand, that in shâllow shafts and with high speed, the time thus lost is very important.
As a rule, the weight of the load is given, and the question is to As a rule, the weight of the load is given, and the question is to
ascertain how much can be hoisted in a certain time. For that purpose the following formula will be used:

Assuming in the above example that the load is 1000 lb ., and
athe that otherwise the same conditions a
have for the capacity per ten hours:
$\mathrm{M}=\frac{100 \times 10 \times 60 \times 60}{300+6}=170$ tons
By doubling the speed, the output could be made 321 tons per is 19 tons.
For a steam hoist in which the drum is driven through the
agency of gearing, and the weight of the descending bucket or
cage counterbalances that of the one ascending, the calculation of the power requisite to do given work would be done as follows:The engine must do its maximum amount of work in starting, when it must lift the load and bucket or cage, which constitute
the dead weight, and the weight of a length of rope equal to the depth of the shaft, and must overcome some friction and resistance in the engine. The latter may be assumed to be propor-
tional to the total strain on the ropes, and with well-designed engines may be placed at about 4 per cent. If we call q the load of ore or mineral, R the weight of the rope, and B the weight of
bucket or cage and car, we shall have for the total be overcome in starting:

$$
\begin{gathered}
\mathrm{Q}=q+\mathrm{R}+\frac{4}{100}(q+\mathrm{R}+2 \mathrm{~B}) \\
\mathrm{Q}=\frac{104}{100}(q+\mathrm{R}+0.077 \mathrm{~B})
\end{gathered}
$$

This formula well illustrates how little importance the weight of the bucket or cage and car is, so far as moving it is concerned.
It has, however, of course considerable influence in determining the size of the rope, and this, in turn, is a very important matter, especially, of course, for greater depths; and we may briefly give
the data to show how its weight is arrived at. Let the number of wires in a rope be n, the diameter of the iron be d in inches, and the weight of iron per cubic inch 0.2812 lb . for iron and $0 \cdot 2838 \mathrm{lb}$. for steel, then the weight per running foot is :

$$
w 12=\times 0.2812 \times n \times d^{2} \times \frac{3.1416}{4} \times \frac{125}{100}
$$

The last fraction of the formula is introduced to allow for the a foot, and that tar and hemp generally make it heavier. The a foot, and that tar and hemp generally make
formula per running foot is therefore :

$$
w=3.31 \times n \times d^{2} \text { for iron. }
$$

Rziha gives the following formula for calculating the diameter a rope D from the diameter of the wire
Reuleaux calculates the diameter of the wire of the rope from
Reir number and the load by the following formula:
Introducing the value found by making P equal to load and weight of cage or bucket, the diameter of the wire is found, and from it that of the rope may be ascertained. Taking again our
former example of 1000 lb . load with a weight of cage and car of former example of
1500 lb ., we have :

$=\frac{1}{100} \sqrt{\frac{2500}{36}}$ $=0.0833$ inch $=1.5 \times 0.0833 \times \sqrt{36}$ $=0.75$ inch.

The weight of the rope per running foot would be:
The weight of 300 ft . of rope would therefore be 250 lb . Using the formula above given,
lifting the load would be:
$Q=\frac{104}{100}(1000+250+0.77 \times 1500)=1420 \mathrm{lb}$.
With these data we can calculate the horse-power H required to to the work, v being the speed of hoisting and Q the load:

$\mathrm{H}=\frac{\mathrm{Q} \times v}{33,000}$

Before entering into the details concerning the engine, we may mention, as the case frequently presents itself in our Western mines, that the value of Q is somewhat different when the rock is
taken to the surface only in one bucket. Then the load will taken to the surface only in one bucket. Then the load will
simply be the weight of rope, bucket, and rock, to which 4 per cent. of the whole is added, thus:

$$
\mathrm{Q}=\frac{104}{100}(q+\mathrm{R}+\mathrm{B})
$$

In designing a hoisting engine, the following points mnst be
taken into consideration. High steam pressure is desirable in increasing efficiency and lowering the expenditure of fuel; but on the other hand, enhanced cost of boilers and greater loss of steam but increases the first cost of the machinery, and requires considerable quantities of water. They are profitable when fuel is high and the cost of machinery is low. Cut-off engines are expensive, and the fact that the power required to carry the load to
the bank varies makes it desirable to use the automatic cut-off. The work of the pressure of steam behind the automic cut-off. The work of the pressure of steam behind the piston is returned
by the back pressure, by friction and minor resistance. All these borces may be assumed to be equal to an effective pressure p, in
fores pounds per square inch, acting upon the piston during the whole pounds per square inch, acting upon the piston during the whole
stroke. Let S, in square inches, be the piston surface; s, in feet,
be the average piston speed, and H will be conceded to be equal to be the average p
the following:

$$
\mathrm{H}=\frac{\mathrm{S} \times p \times s}{33,000}
$$

Or with D the diameter of the piston in inches, and s given in feet

$$
\begin{gathered}
\mathrm{H}=\frac{3 \cdot 1416}{4} \times \mathrm{D}^{2} \times \frac{60 \times s \times p}{33,000} \text { or } \\
\mathrm{H}=\frac{47 \cdot 124}{33,000} \times \mathrm{D}^{2} \times s \times p, \text { or } \\
\mathrm{D}=\sqrt{\frac{\mathrm{H} \times 33,000}{s \times p \times 47 \cdot 124}}
\end{gathered}
$$ Engines working without any cut-off may be assumed to be run-

ning during the entire stroke with 975 per cent. of full effective pressure, which would be equal to cutting off at nine-tenths of the
stroke, and that value must be introduced. Allowance must also stroke, and that value must be introduced. Allowance must also
be made for the fact that the piston-rod takes away some of the be made for the fact that the piston-rod takes away some of the
effective piston surface, being greater for small engines. It may effective piston surface, being greater $\begin{aligned} & \text { be placed at about } 5 \text { per cent. The effective pressure at the be- }\end{aligned}$ ginning of the stroke is not equal to the boiler pressure, being
only about 80 per cent. of it. With these modifications, the only about 80 per cent. of it. With these modifications, the
formula for the diameter of the cylinder will be, p now being the formula for the
boiler pressure,

$$
\mathrm{D}=30 \sqrt{\frac{\mathrm{H}}{\mathrm{H} p}}
$$

The boiler pressure is generally given, or at least approximatcly
and to 300 -horse power, the piston speed s ranges between 3 ft . and 8 to 300 -horse power, the piston speed 8 ranges between 3 ft . and
5 ft a second. it made large, the dimensions of the cylinder are naturally decreased, and the loss of steam by imperfect pack-
ing of the piston and by condensation is lessened. On the other ing of the piston and by condensation is lessened. On the other
hand, there is greater danger of breakage, and the back pressure and, there is greater danger of breakage, and the back pressure
of the exhaust steam is run up. The number of revolutions, too, is increased, whereby the proportion of the gearing may become is increased, whereby the proportion of the gearing may become The length of the stroke, of course, affects the number of revolutions, and it is g
of the cylinder.
Following out our example, which we may take this occasion to merely as an illustration represent a model case, but is given merely as an illustration in the use of the formula, we may
assume the piston speed to be 4 ft . a second, and the boiler pressure 50 lb . per square inch

$$
\begin{aligned}
& \text { Hquare inch. } 3 \times \frac{1420 \times 60}{30,000}=7 \cdot 7 \text {-horse power. } \\
& \quad \mathrm{D}=33 \sqrt{\frac{77}{4 \times 50}}=5.9 \mathrm{in} .
\end{aligned}
$$

It would take us beyond the limits of the present article to go
into a calculation of cut-off engines, nor can we enter into any
details concerning the dimensions of the various parts of an engine, or a discussion of various styles. The data given may serve as a guide in shaping an opinion as to the capacity required for given work or to calculate approximately, for instance, to what additional depth a shaft may be sunk without calling for additional
machinery to maintain a given output. We need hardly add that, in ordering a hoisting engine, ordinary prudence and foresight re quire that its capacity be chosen considerably in excess of immediate necessity. It is an error too often made to practice false economy in this respect. Engines that have grown weak in rough service are crowded beyond their capacity. In the natural course. the increasing depth of a mine causes its hoisting apparatus to be unfit by wear. Unreasonable managers then lay the blame of frequent breakdowns and constant costly repairs upon the builders, who are generally held responsible for evils which are the outgrowth of such short-sighted economy

SHAFT SINKING UNDER DIFFICULTIES AT DORCHESTER BAY TUNNEL, BOSTON, MASS.* By D. McN. Staufrer, Member A.S.C.E.
The body of this paper will be devoted to a detail of actual experience in shaft building under dificult circuinstances, but that the existing local conditions may be better understood, we will shafts are immediately connected. The system of improved sewerage, now being carried out by the city of Boston, is too extensive and complex in its ramifications to be treated of 'in this paper; we will therefore begin at the pumping station on the Old Harbour Point, the terminus of the low-grade intercepting sewers.
The sewage, in passing from the pumping station to the point of
from which sump the material may be removed by dredging
through the shaft. The middle shaft, shown on the profile, is simply for working purposes, and may be finally filled up. from 3 ft . to 15 ft . in depth, depending upon the state of the tide, bulkheads were necessary, from which to commence operations, and to protect the mouth of the shaft from damage by storm, ice,
passing vessels, \&c. As shown at Figs. 2 and 3, these bulkheads passing vessels, \&c. As shown at Figs, 2 and 3 , these bulkheads
consisted substantially of a box 20ft, square inside, formed of oak piles driven $2 \frac{1}{\mathrm{f} f t}$ apart from centres, and capped by 12 in . by 12 in . hard pine sticks, framed at the corners, and drift-bolted to the head of each pile. These caps were further secured at the corners
by 12 in. by 12 in . angle braces, dovetailed into them. The box by 12 in . by 12 in . angle braces, dovetailed into them. The box
was lined inside by 4 in , tongued and grooved sheet-piling, driven was lined inside by 4 in , tongued and grooved sheet-piling, driven
to hard bottom, and well spiked to four lines of 4 in , by 10in. inside wale pieces. Outside of the piles were two sets of 12 in . by 12 in . hard pine timbers, spaced 4 ft . apart vertically, and bolted to the piles by $1 \frac{1}{i n}$. bolts, and tied at the corners of each set by 2 in . low tide, the average rise and fall of tide being 10ft. After the iron cylinder had been started within this box, the space surrounding the cylinder was compactly filled with puddle clay.
The Iron Cylinders.-To quote from the specifications, "iron cylinders were to be sunk to a depth sufficient to give them a firm bearing, to ensure the exclusion of tide-water, and to pass through
ground otherwise difficult to excavate." These cylinders are 9 ft . 6 in . inside diameter, ${ }^{3} \mathrm{~T}$ in. thick, and cast in solid sections 5 ft . long. The flanges are 5 sin. wide over all, 2 in , thick, and faced true for a width of 43 in . in from the exterior edge. A groove, $\frac{1}{2} \mathrm{in}$. wide and 13 i in. deep, was left between any two abutting cylinders,
on the inside, to be caulked with lead if found necessary. The sections were connected by thirty turned bolts, 1 lin. diameter, in each joint, and the bottom section in each shaft was provided with a cutting edge 12in. deep. The weight of each section was five
between them by tightening up the nuts on two 21 in . iron rods
that passed througli the beams one each side of the cylinder that passed through the beams one each side of the cylinder
section. We should here remark that, owing to its resinous nature, hard pine is not well adapted for use in that part of the beam touching the cylinder, white pine is much better, but in our case could not be obtained in time of the required dimensions.
The method of operating these friction clamps was as follows :The method of operating these friction clamps was as follows:-
No. 1 section was first lowered down between the beams, and clamped fast. No. 2 section was next lowered down upon No. 1, the joint made, and the connecting bolts put in and screwed up; with the hoisting tackle still attached to the last section as a "preventer," the two sections were allowed to slip down between the
clamp beams in a series of short jumps, by carefully slackening and then tightening the nuts on the clamp rods with a long wrench. A little practice enabled the workmen to keep the mass under perfect control. When No. 2 section occupied the place in the clamps previously held by No. 1 , the nuts were sorewed up tight, the tacke canner. This manner. This process was repeated until the cutting edge on the
first section had reached hard bottom, when the clamps were loosened, and thereafter utilised as guides.
Handling the Material Excavated.-Before the permanent hoisting cages were put in place, the material excavated in sinking the was handled by an arrangement shown at Fig. 2. This was simply was handled by an arrangement shown at Fig. 2. This was simply
an out-haul, working through a single block lashed to the head of a mast planted in the bulkhead; this mast leaned outward at the top-over the side of the bulkhead. In using this arrangement, the bucket is hoisted a distance above the shaft, fixed by experi-ment-the out-haul being hooked on to the bucket just as it
reaches the mouth of the shaft-and the slack hauled in as the reaches the mouth of the shaft-and the slack hauled in as the
bucket ascends, when the bucket stops, the end of the out-haul is made fast to a cleat on the mast, and the bucket in descending will pass through a curve regulated by the length of the out-haul,

DORCHESTER BAY TUNNEL

final delivery on Moon Island, must cross under Dorchester Bay, a navigable arm of Boston Harbour, about two miles wide from
shore to shore, and to this end an inverted syphon or submarine shore to shore, and to this end an inverted syphon or submarine
tunnel becomes necessary. After an examination into the geological formation of this region, it was determined to locate the horizontal portion of the syphon at a sufficient depth below the surface of the water to be entirely contained within the rock which
was found to underlie the bay. This determination fixed the average invert grade of the finished tunnel about 142ft. below mean deep at low water, but the material overlying the rock was mud, clay, sand, and gravel, so irregular in its deposit, and so unreliable in its general character, that tunnelling through it was an impossibility with the Atlantic ocean practically overhead. The rock to quent strata of very hard to the clay-slates, with, so far, infreperiod this ancient sea floor, in taking its present trough-like shape, has been subjected to enormous pressures, much disturbing the original stratification, breaking the beds in many places and leaving them tilted at high angles to the horizon. The numerous faults consequent on this action have been generally well filled again by
injected material, but crevices, fortunately slight in extent, are frequent, which communicate more or less directly with a water bearing stratum of sand, gravel, and boulders, which seems to be continuous over the surface of the rock. Wherever cut by the tunnel section these seams allow a greater or less percolation July, 1881-to $1 \frac{1}{2}$ millions of gallons daily, which can of course, only be removed by constant pumping, the length of tunnel now excavated being 4600 ft . Fig. 1 is a general profile of the tunnel, and shows the rock dipping rapidly from east to west. To meet this rock at as high an elevation as possible,
the western, or inlet shaft, was pushed out about 1400 ft . the western, or inlet shaft, was pushed out about 1400 ft ,
from the Boston shore of the bay, and connection made between it and the pumping station by a high-grade tank sewer, founded upon on embankment, and protected by rip-rap and a sea wall. Four pumps, of a capacity of 25 million gallons each daily, will raise the sewage a height of about 43 ft ., and deliver it into thi This tank is double, each section being 8 ft . wide by 16 ft . high, and the interior is provided with a series of dams, which will intercept any heavy material that may pass through the screens provided at the entrance to the pump well. Either compartment of the tank can be shut off by gates, and cleaned, and by means of stop planks,
the velocity head can be greatly increased, and the tank sewer used to flush out the tunnel, sea water being pumped into the tank for this purpose. At the inlet shaft, the bottom of which is 142 ft . below datum, the tunnel commences, and runs in a southeasterly direction for a distance of 6090 ft . to the centre of the East Shaft, the bottom of which is 144 ft . below datum; at this vertical in 6 ft . horizontal, and continues at this grade for a furthe orizontal distance of 903 ft ., until the tunnel pierces the surfac of the ground on Squantum Head, which forms the eastern side o Dorchester Bay. At the eastern terminus of the tunnel the inver grade is $14 \cdot 4 \mathrm{ft}$. above datum, and from this point the sewer i
continued in an open cut across Squantum Head, and then on an embankment over the shoal water lying between the Head and Moon Island, to the collecting basin on the island, from which basin the sewage is emptied into the bay at each ebb tide by an appropriate system of gates and outfall chambers. The point of Dimension of Tunnel and Shafts.-The tunnel and the shafts e circular in section, with a finished inside diameter of 7 ft .6 in . The tunnel and shaft excavation, as at first taken out, is as near as may be 9 ft . 6 in . in diameter, provision being thus made for a nal lining of brickwork throughout, 12 in. thick, for the purpose nd at the inlet shaft gates and an outfall sower will be built leading from the tank sewer, so that the sewage can be discharged directly into the bay at this point, and the tunnel pumped out, examined, and cleansed when such a proceeding may be leemed necessary. To intercept any solid matter that may pass of the East Shaft, and consequently at the foot of the incline, * Read September 21st, 1881, lbefore the American Society of Civil
were made water-tight by first painting them with thick red lead, and then passing four turns of cotton wicking dipped in the paint wioking, dipped in paint, were polt holes ; grummets of the same the connecting bolts. These joints proved perfectly water-tight. Sinking the Cylinders.-After the bulkheads were completed, pile wharves had to be built adjoining them, upon which to place
the hoisting engines, boilers, coal-bins, fresh water tanks, \&c. To he hoisting engines, boilers, coal-bins, fresh water tanks, \&c. To andle the 5 -ton cylinder sections, four stout shear-poles were top over the centre of the proposed shaft, where the ends were

ELEVATION OF BULKHEAD
ecured by rope lashing-Fig. 2. A hoisting tackle of two triplesheaved "masting blocks," and 4in. Manilla rope, was suspended
rom the apex of these shears. Owing to delay in obtaining the proper kind of clay filling, and to avoid the increased friction as well, the first five cylinder sections in each shaft were put in
place by means of friction clamps, shown at Fig. 3. These place by means of friction clamps, shown at Fig. 3. These thrown across the bulkhead, one each side of the cylinder. Each beam was composed of three 12 in . by 20 in . sticks, the inner one of each beam being carefully fitted to the outside of the cylinder; to
increase the friction, four vertical timbers, 12 in . by 12 in , and 4 ft . norease the friction, four vertical the beams, as shown on the plan. long, were bolted to the inside of the beams, as shown on the plan.
The clamps were drawn together and made to hold any object
sides of the bulkhead, where it can be dumped. A reversal of thi
process will bring the bucket again to the top of the shaft, where
process will bring the bucket again to the top of the shaft, where FIG. 3 .

the out-haul is unhooked, and the bucket for refilling. (To be continued.)

HIGH PRODUCTION OF AMERICAN STEEL

 WORKS.According to the Bulletin, of the American Iron Trades Associatons of Bessemer steel ingots. Its best week's work was 3857 tons, and best twenty-four hours' work was 654 tons. The Bethlehem fron Company has four converters, but it has at present sufficient converters, however, is occasionally used. in place of one of the two old ones. The best work by the Bethlehem Iron Company's blooming mill and steel rail mills was as follows:- Best twenty-
four hours, 679 gross tons 220 lb , of blooms and 458 tons 2016 lb . of rails ; best week, 3589 tons of blooms and 2875 tons of rails; best month, 14,663 tons 1568 lb . of blooms and 11,336 tons of rails. In the same month for which the rail production is here given, the billet mill rolled 1214 tons of steel billets. In the week ending
October 29th, 1881, the two converters of the Albany and RensOctober 29th, 1881, the two converters of the Albany and Rens-
selaer Iron and Steel Company made 2906 tons 896 lb . of Bessemer steel ingots; the blooming mill rolled all of these ingots. In this week, the best eight hours' work was 210 tons 1120 lb . of ingots ; the best twenty-four hours' work was 544 tons 1568 lb . of ingots. The rail mill rolled 2230 tons 1120 lb . of steel rails in the same week. In the month of October, 1881, the Albany and Rensselaer tons 1792 lb . of Bessemer steel ingots; the blooming mill rolled all of these ingots, and the rail mill rolled 8748 tons 448 lb . of
steel rails. The merchant mill also rolled 3145 tons 880 lb . of steel rails. The merchant mill also rolled 3145 tons 880 lb . of otal finished product 11,893 tons 1328 , During the same produced 3401 tons of merchant iron, exclusive of railroad spikes, rridge and boiler rivets, bolts and nuts, crow bars, and car axles. The Bessemer steel works of the Vulcan Steel Company e expected of them. The record is as follows : Ingots, 620 lb . They have but two converters.

Patent Law.-A meeting of the Civil and Mechanical Engineer's
 p.m., when a paper "On Certain Proposals as to the Amendment invited to be present-without ticket-and ${ }^{\text {win }}$ in the discussion

CENTRIFUGAL P UMPING ENGINES, S.S. SERVIA. messrs. J. AND H. GWYNNE, HAMMERSMITH, ENGINEERS.

In our last impression we gave a front elevation and side view of centrifugal pumping machinery, made by Messrs. J. and H. Gwynne for the s.s. Servia. We now complete our illustrations of these engines by the plan of them above,

THE EDISON LIGHT.

According to our promise of last week, we give on another page a perspective view of the Edison machine as it stands at in the plans given at pp. 5 and 28, inasmuch as it is larger. The dynamo machines shown in the illustrations referred to have six field magnets, whilst the machine at Holborn has twelve. The smaller machines are more symmetrical, but less effective, and in future the number of field magnets will be still further increased, probably to sixteen, in order that the upper and lower parts of the machine may be made to match. The total weight of the machine at Holborn is 22 tons; this includes the weight the armature, the Porter-Allen high speed engine, the blower the armature, the Porter-Allen high speed engine, the blower casting of iron in one piece. We might mention that the lack of symmetry, and the smallness ot some of the parts, was the result of the machine being partly completed on the old lines before it was decided to add the additional field magnets.

DETAILS OF ARMATURE
The dynamo machine proper consists of the cast iron field magnets, the resistance of which varies from 1.95 to 2.13 ohms each. These magnets are connected in series of six, the series respectively having a resistance of $12 \cdot 23$ and $12 \cdot 22$ ohms. The two series are connected in multiple are, the aggregate resistance of the field magnets being thus reduced to $6 \cdot 11$ ohms. The magThe poles are massive pieces of cast iron. These enormous magnets have excited considerable attention from time to time, and a good deal of adverse criticism has been made upon them, but Mr. Edison strongly maintains the wisdom of a large investment in iron which is cheap, and which allows him a large dividend in the utilisation of energy. The armature consists in the first place of a steel shaft 6in. in diameter, over which is fitted a wooden cylinder 12.5 in . external diameter. of thin dises of sheet iron are slippound cylinder a large number of thin discs of sheet iron are slipped, the discs being separated There, are, however, eight intermittent iron discs of tin thickness to give the necessary strength, and the whole is bolted together by eight bolts, each lin. diameter and $44 \frac{9}{16} \mathrm{in}$. in length. These iron discs form the core of the armature. Copper dises of a somewhat larger diameter than the iron dises are placed at each end of the builtup core. There are fifty-three of these discs each $26{ }^{\frac{8}{8}} \mathrm{in}$. diameter $\cdot 102 \mathrm{~B}$ and S gauge, with alternate discs of prepared paper for insulation 015 in. thick. These copper discs have each connected. In the details shown in our drawings W indicates the copper disc, A the lug, I the armature rod, S the connection
to the commutator. We show the arrangement both when the connections are made and when disconnected. The copper rods I, used by Mr. Edison to take the place of the usual windings of wire, are 106 in number, 634 in . on the face, they are 1 in. thick and average in length 52 in . These rods are wrapped by machinery with prepared paper, the layers of paper being each coated with a special insulating material. The rods are separated from each other at every foot of their length by peices of vulcanite fibre encased in mica, and also by an air space of 38 in . Every alternate rod is connected through a radial copper rod with the commutator. The blocks of the commutator are fifty-three in number, and taper in a similar manner to the armature bars, are bevelled at the ends and separated by strips of mica. The diameter of the commutator K is $12 \frac{3}{4} \mathrm{in}$. At the back of the radial bars, and acting as a facing to the copper discs,
is a mahogany disc $\frac{1}{2}$ in. thick. The complete armature is wound with steel wire, with double mica insulation underneath ; this wire is intended to counteract any centrifugal action. The bar upon which the brush holders are fastened is shown at H, the brushes are connected with the main conductors C through levers as shown, and can be changed as regards position in the commutator

PORIION OE ARMATURE AND COMMUTATOR.
as required. The drawing shows clearly how this is done. So careful has the inventor been to consider everything connected with the machine, that to prevent oxidation the threads and other contacts are lightly plated with gold. This perfection of contacts, together with the large sectional area of perfection ture rods, ensures low resistance. In the machine at Holborn the resistance is as low as 0049 ohm , whilst we are told that in another machine, now en route for London, the resistance is but $\cdot 0032$ of an ohm. This second machine is to be erected at 57, Holborn, in order, as Mr. Johnson says, that if an accident happens to one machine the other may take over the work. Either machine will be capable of supplying the current at present required, and the intention seems to be to take ordinarily half the required current from each machine, the whole
current being taken from one machine in case of necessity only. The engine is of 40 -horse machine in case of necessity only. 125 -horse power indicated. The cylinders are 1lin. diameter, with 16 in . stroke, the cut-off taking place at about half stroke. The engine is connected direct to the shaft of the armature, which revolves at the rate of 350 revolutions per minute. This machine is intended to supply the current for 1000 Edison lamps of 16 -candle power each, and is the largest machine hitherto erected. The new machine has been tried with 1360 lamps, running for fifteen hours per day for several consecutive days. Taking the of 125 -horse power, gives 16,000 candles, or 128 candles per
horse-power. In the engraving, A A show the channels by which air is driven to circulate around and keep cool the commutator Besides the illustrations relating to the dynamo machine given sizes of conductors which Mr. Edison uses in his installations The conductors used of course vary with the current to be carried. We would particularly call atteniion again to the stree and house connections illustrated last week. It is easy to calcuate the diameter, \&c., of the wire of a given metal that will carry given current without fusing. As a safety appliance Mr Edison uses a piece of fusible conductor of such a size that it wil conveniently carry the current ordinarily required, but should at ny time a greater current attempt to pass per unit of time, the conductor fuses and is broken, offering an infinite resistance to the passage of the current, and obviating danger of fire by over-heat t Holborn were shown in action to a number of gentlemen, as was also a fusible conductor. A hundred lamps had been arranged in circuit with a fusible conductor calculated to carry current sufficient for fifty lamps only. The experiment was successful-the metal was fused-and the lamps, and we may suppose the woodwork, saved from the effects of a too larg current. We may also state here that on Tuesday evening the concert-room at the Crystal Palace was lighted up by the Edison light, in the presence of the honorary council and other gentle-
men specially invited. men specially invited.

A SMALL DRILLING APPARATUS.
The following description of a small machine for drilling the holes in the cheeks of the locomotive frames in the Altoona Works of the Pennsylvania Railway Company, we take from the American Mechanical Engineer:-The size-about 13 $\frac{3}{8}$ in. -and the position of these holes make them very awkward to get at The machine designed by Mr. S. M. Vanclair will, however, drill a hole in five minutes. Its feed mechanism is con structed to give a length of feed equal to twice the length the feed screw. Its construction is shown in Fig. 1, in which A A represents a cylindrical bearing, which has means
whereby it may be fixed between and to the pedestal jaws, and ffording a bearing to the sleeve C which is driven by the worm wheel B, having the feather d, which fits in a spline in C. The drilling and countersinking tool D has an ordinary taper stem

fitting into C. F is a feed screw threaded into a sleeve G, which is also threaded into the sleeve I at one end ; F F is a collar made in two halves, screwed to A, and affording journal bearings to E .
The piece I has a feather at i which projects into a spline in A, so that I cannot rotate. Suppose that B is rotated by the worm-not shown-then C and D will be rotated, while E F GI and J will remain stationary. But if E be operated by a wrench the two- will rotate with it-by reason of the frways within A and feed C, and therefore D to the cut. This action will continue until I has moved sufficient to cause the inside radial face of I to meet radial face $H H$ of G, whereupon it will hold G stationary by reason of the friction of these radial surfaces; and E , on being operated, will cause G to act as a nut, and the feeding of C within D will continue. Thus the length of the feed is that due to the length of E within G , added to the distance between the radial face H and the inside radial face of I. K K is a collar put on in two halves, and holding a dise of leather to C to
exclude dirt and chips from the bore of A .

[^0]
OONTRAOTS OPEN

100-GALLON STEEL OIL CISTERNS.
The work included in this specification is the finding of all materials and labour in the constr cisterns, as hereinafter described, and delivering the same at the
Trinity Buoy Wharf, Blackwall, or at any railway station in Trinity Buoy Wharf, Blackwall, or at any railway station in
London as may be directed. The work to be made in accordance with the terms and conditions, the details of this specification, and the drawing number 4456. The work to be executed complete, in the drawing number 4456. The work to be executed complete, in a proper workshop, on the contractor's premises, and the material
and workmanship are to be to the entire satisfaction of the Engineer-in-Chief to the Corporation of Trinity House. Samples gun-metal is to be in the proportion of 14 oz . of copper to 1 oz , of

tin and 1 oz . of zinc, the copper, tin, and zinc to be of the best pure and approved quality. The iron and gun-metal castings to be and to be neat, clean, smooth, and true. The steel to be "SiemensLandore Steel," or of equal and approved quality; the threads of worth's Standard," and the sorew-bolts provided with proper nuts and washers. The cisterns to be 4ft. 8 8in. long outside and
2ft. 2in. inside diameter. The side and end plates to be 2 ft . 2 in . inside diameter. The side and end plates to be No. 8
Birmingham wire gauge. One end and one side-plate will be selected by the engineer for test. The bottom to be attached to tivet-holes through the angle steel and plates are to be drilled, but
res the bottom is not to be rivetted to the sides until the inside has been properly tinned. After the inside has been tinned, the bottom is to be rivetted in and to be soldered in the angle on the
inside, as marked on the drawing. The laps in all cases not to be inside, as marked on the drawing. The laps in all cases not to be
less than $1 \frac{1}{4}$ in.; the whole of the rivets to be of steel, to be sin. diameter, spaced lin. apart centre and centre in the side seam, and ${ }_{10}^{7} \mathrm{in}$. diameter, spaced lin. apart in the ends. The top and

$1^{\frac{3}{4} \times 1} \times \frac{3}{4} \times \frac{3}{16}$ VERTICAL SECTION
bottom to be of the same thickness as the sides, and to be rivetted to a welded angle steel ring, 1 isin. by 1 isin. by 1 ind., the rivetting formed in the top, and to be stiffened round the edge by a welded ring $1 \frac{1}{2}$ in. by $\frac{5}{1}$ in. ${ }^{\text {in }}$; the ring to be rivetted to the top with $\frac{7}{7}$ in. rivets, countersunk on the outside to form a flush face for the joint
of the cover. A circular cover, $17 \frac{17}{2}$ in. diameter by sin. thick, is to o the cover. A circular cover, $17 \frac{17}{2} \mathrm{in}$. diameter by sin. thick, is to
be provided, and to be seoured to the cover by eight
gin.in. stud bolts, and nuts at shown. The cover is to be fitted with a malleable iron collar, with a malleable iron cover screwed into it. The covers are to be interchangeable. A specimen spout and cover will be lent to The whole of the interio
The whole of the interior surface of each cistern, i.e., the bottom, be thoroughty coated with the best pure refined tin. As the purity of this coating is of great importance, one cistern out of each delivery on the premises of the Trinity House will be selected by the Engineer-in-Chief, and the coating subjected to analysis; if
found to contain over one per cent. of inferior metals, the whole of the delivery will be rejected. Each cistern is to be provided the cock is to ke the patent cock fopanfactured by Messrs. Lambert
and Son, Short-street, Lambeth, fitted with gutta-percha diaphragm
and washers and a removable gun-metal spanner. The cock comand washers and a removable gun-metal spanner. The cock com-
plete to weigh not less than 3 lb .13 oz . Each cistern to be separately tested with water, and to be perfectly water-tight.
After being tested and found to be perfectly water-tight through-

out, each cistern is to be thoroughly cleansed and freed from rust externaly. In while warm, to be coated externally with a thin coat of boiled linseed oil, and, when dry, to be painted externally with two good coats of pure red lead paint.
Tenders to be delivered at the Trinity House, London, E.C., on
or before Monday, 23rd January, 1882, addressed to the "Secretary or before Monday, 23rd January, 1882, addressed to the "Secretary
of the Corporation of Trinity House," and marked on the outside
" "Tender for Oil Cisterns."

VOETAIC ACCUMULATION.*

We owe the term voltaic accumulation to M. Planté; we owe the idea of voltaic accumulation to him also. But more than this
-we owe to Planté the rich results of a life devoted almost entirely -we owe to Plante the rich results of a life devoted almost entirely
to researches in connection with this subject. M. Planté employs the phrase voltaic accumulation in a double sense-to signify
storage, and to signify cumulative effect It is that the term is generally used by M. Planté, and it is to voltaic accumulation in this sense that M. Plante has chiefly directed his attention. One of his principal aims has been to produce by means
of voltaic accumulation the high tension effects usually obtained from the frictional electrical machine.
When the platinum terminals of a voltaic battery composed of upwards from them. If the same platinum poles, dipping in the same acid solution, be disconnected from the quietly but power-
fully working battery, and put in connection with the prime frictional type, you may turn the large electrical machine of the an amount of electricity that would maintain a continuous stream of fire, and yet not a single bubble of gas will rise from the poles.
M. Planté makes a few cells-two are sufficient-do the work of M. Planté makes a few cells-two are sufficient-do the work of
charging secondary cells, which, after being charged, are joined in series and made to develope high tension effects. This is chiefly secondary cell, namely, the accumulation of tension or electromotive force. The Planté cell consists of two plates of lead rolled together, but separated by narrow strips of gutta-percha. These two lead plates being, to begin with, in the same condition,
generate no current when immersed in dilute acid and united generate no current when immersed in dilute acid and united
through the wire of a galvanometer. But if the couple be for a time connected, the one plate with the anode and the other with the cathode of a voltaii cell, or any other form of electrical generator capable of developing an electromotive force of not less
than three volts, the anode plate becomes coated with peroxide of lead. If, then, the secondary cell be detached from the primary of about one-fifth more electromotive force than Grove's cell. When it is desired to obtain cumulative effects from a series of Planté's cells a mechanical arrangement is made whereby the plates of the different cells are so connected together that they are in effect one
couple; that is to say, all the inner plates are connected together as one plate, and all the other plates are connected toted together plate. Arranged in this manner, if one of the poles of two Grove cells, coupled in series, be connected with the terminal which is common to all the inner plates, and the other pole be connected to the terminal common to all the outer plates, the same change
takes place in the 100 or it may be the 1000 cells as that which takes place in charging a single cell. That is to say, if all the outer plates were connected with the positive pole of the Grove
cell, all these plates would be oxidised, and in this condition all the cells may be said to be charged just as a Grove cell is charged when one puts the nitric acid into it; for the highly oxidised lead of a Plante cell plays exactly the same part as the nitric acid of a
Grove cell, and it is also necessary to alter the connection of one cell with another, so as to connect them in series, in order to obtain from them the cumulative electromotive effect due to their number.
Planté has devised a convenient method of making this change in
the connections. This apparatus illustrates the arrangement. The the connections. This apparatus illustrates the arrangement. The
cells are arranged in line with a spring projecting upwards from each plate on each side of the line; between these two lines of springs an axle of ebonite runs, with metal bands so inlaid uponit, that when it is in one position all the springs on one side are press-
ing against a long strip of copper on that side, and all the other springs on a corresponding long strip of copper on the other side. In this position the cells are arranged for charging, the two long
strips of copper being the two poles. When charging has been effected it suffioes to turn the ebonite bar on its axis through a quarter of a circle in order to disconnect the springs from the two
long strips of metal mentioned, and to bring them into contact long strips of metal mentioned, and to bring them into contact
with short strips of copper inlaid and insulated in the bar and crossing it obliquely so as to put the oxidised or positive plate of the next cell throughout the entire series. The ohange of connections is the work of a moment and the result is a multiplication of the electromotive force by the number of the cells.
M. Planté went a step beyond this. He charged a large series of
plates of mica, partly coated on each side with tin-foil, on the plates of mica, partly coated on each side with tin-foil, on the principle of the Leyden jar. These were connected in charging that is, all the coatings of tin-foil turned one way were connected together, and all the coatings turned the other way were connected
together. When, by the momentary joining of these two groups together. When, by the momentary joining of these two groups
of plate coatings to the two poles of 800 secondary cells, the plates became charged, the connections were then changed from quantity to tension. By this contrivance the electromotiv
force of the four volts, due to the two primary Grove cells, was accumulated first to 1800 volts and this again was increased fiftyfold by the mica plates. I can bear witness to the fact that it
was sufficient to produce flashing discharges some inches in length, was sufficient to produce flashing discharges some inches in length,
exactly resembling the discharges of a frictional electrical machine. exactly resembling the discharges of a frictional electrical machine.
That is electrical accumulation in one sense, but there is another sense in which the phrase has been much used of late in connection with Faure's accumulator, namely, in the sense of storage. Planté's
cell, with slight modifications, lends itself most perfectly to voltaic cell, with slight modifications, lends itself most perfectly to voltaic
accumulation in the sense of storage. The very essence of the idea accumulation in the sense of storage. The very essence of the idea
of storage is retentivity. The cell, to act as a reservoir or store, must be retentive of the charge communicated to it. This is a
quality possessed in an eminent degree by the Planté cell. There
is, comparatively with other voltaic cells which, but for the want of retentivity, might be employed for electrical storage, very little loss of charge by lapse of time within the limit of a few hours.
But for the defect of loss of charge by local action-that is, chemical action not utilisable in the production of electric currents, the zinc and copper cell of Daniell and several other well-known voltaic combinations not usually regarded as susceptible of being used as
secondary cells might have been employed for electrical storage. Perhaps the ideal of a cell for storage is Grove's gas cell. Here is a specimen of it; it consists of two gas tubes, and two plates of
platinised platinum immersed in dilute sulphuric acid. If, while platinised platinum immersed in dilute sulphuric acid. If, while
the tubes are filled with dilute acid, one plate is connected with the positive and the other with the negative pole of a voltaic battery, gen, and when so filled the cell is an electric store capable, even after the lapse of a long time, of yielding a current. But Grove's cell is quite out of the question for large operations, if only
because platinum is so scarce. Theoretically it would perhaps be because platinum is so scarce. Theoretically it would perhaps be
improved by making the hydrogen pole of palladium instead of platinum, so as to obtain the advantage of greater condensation of the hydrogen, and thus to reduce the resistance by increasing the extent of the contact between the gases, the pole plates, and the acidified water. Dr. C. W. Siemens communicated to the York meeting of the British Association some interesting experiments in
the employment of plates of carbon, both simple and platinised, as substitutes for platinum plates in the construction of a gas battery. The porosity of the carbon plates was utilised so as to bring the
poles close together and greatly reduce resistance. The poles close together and greatly reduce resistance. The they did not quite reach the point aimed at, namely, electrical storage on any large scale we look in vain to discover a better material than that fixed upon after infinite painstaking by M. Planté. Planté's cell, pure and simple, is a most admirable electrical accumulator in the storage sense of the word. It has one drawback, however, it requires a considerable time to give to the
lead plates a large storage capacity. M. Planté's method of preparing his cell is as follows :sulphuric acid- -1 quart acid to 10 quarts of water-and on the first day it is charged by the current from two Bunsen cells six or eight times, the direction of the primary current
being changed at each new charge. The secondary cell is being changed at each new charge. The secondary cell is
discharged between each reversal of the direction, and it is ascertained either by heating a piece of platinum wire to
incandescence, or by other suitable means, that the duration incandescence, or by other suitable means, that the duration
of the secondary current continually increases after each charge. The time during which the secondary couple is submitted to the little by little. Thus, on the first day the period is increased from a quarter of an hour to half an hour, and one hour ; and, finally, the battery is left over-night in the process of charging. The next day it is discharged, and then recharged for two hours in the opposite direction, then again in the previous one, and so on. But
soon a limit is reached, beyond which the duration of the secondary current is not found sensibly to increase, especially when the primary cells, not having been removed, have grown by these successive actions little by little weaker, and have no longer sufficient intensity to cause the electrolysis to penetrate deeper into the for eight days, and at the end of that time isrecharged in the opposite direction for several hours continuously, without making on that day a fresh alteration in the direction of the primary current. Then the interval of rest is extended little by little to a fortnight, one month, two months, \&c., and the duration of the discharge is
found to on continually increasing. It has, in fact, no other limit than the thickness of the lead plates. The positive plate, if it is thin, finishes by being almost entirely transformed by time into peroxide of lead of a crystalline texture; and the negative plate becomes formed by degrees, to a certain depth below its surface, of reduced lead of a granular and crystaline nature. It is secondary couples as far as this complete transformation of the physical and chemical nature of the plates, for the couples would ultimately acquire a much greater resistance and take more time duratione them. When the couples yield a current of sufficient duration for the purposes for whe wants them, it is no each time the cells are charged. The quantity of peroxide of lead accumulated upon the positive plate would take too long to reduce, and no result would be got from the couple before several hours. A definite direction is therefore adopted, in which the secondary cells, when once sufficiently "formed," are always charged.
It is evidently desirable-more especially in view of the want more and more urgently felt as time goes on, of an accumulator which will be available for the large and important uses to which electricity will in future time be put-if possible to avoid this tedious process of preparation so minutely described by M. Planté. No doubt it answers the purpose quite well when industrial appli-
cations are not in question, but for electrical accumulators such as must be used in connection with a central system of electric lighting, and which would probably involve the use of a set of large
cells in every house this slow process of preparation would be cells in every house, this slow process of preparation would be hardly applicable., It was with a desire to avoid this disadvantage and give to Plante's cells a greater capacity of storage that I made
the experiments last winter, the outcome of which was the modification of Plantés cell, which I showed you at our February meeting. Here are some of the cells I then exhibited in action. The idea of this modification was to increase the surface of the lead by means of lead foil, crimped and formed into frills, the interstices between The same idea has been applied in a somewhat different way by M. Faure in his accumulator. In M. Faure's accumulator red lead, mixed with dilute sulphuric acid, is plastered on lead plates, the coated plates are wrapped in felt, and either rolled up like the plates of a Planté cell or doubled together and placed in rectangular lead-lined wooden boxes. These cells have been made on a
large scale, and for this reason, and because the application of the red lead coating greatly favours the obtaining of storage capacity, effects have been obtained from them clearly pointing to practical
use in electric lighting, and perhaps also for other purposes. The use in electric lighting, and perhaps also for other purposes. The
cell has, of course, the same electromotive force as the Planté cell, of which it is a modification; being large, it has, when fully charged, a small resistance, and is, on that account, capable of producing astonishing effects in the way of heating thick wire. [Heats
some wire.] Thirty of these cells, weighing about 50 lb . each, when properly charged, will keep twenty of my lamps up to 20 -candle power for several hours. M. de Meritens has also made an accumulator on the Planté lines
Il have recently introduced into the construction of the Planté hen modifications which, I anticipate, will increase its utility when applied on a large scale for the practical work of storage tor
electric lighting. One of my innovations consists in making the lead plates corrugated or cellular, the cells or grooves being filled
with spongy lead, which from the form of the plate will remain attached to it without any external wrapping of felt or similar material being necessary. The felt in the Faure cell must, I imagine, be in a short space of time destroyed by the action of the acid, and occasion displacement of the material applied to the sur-
face of the plate and held in its position by it. I have heard that face of the plate and held in its position by it. Thave heard that
it is proposed to substitute asbestos cloth for the felt ; this no it is propill remedy the defect I have mentioned, but it must greatly increase the cost of constructing the cell. It is obviously of grooves or cellular plates ancomplishes this object. I have made other improvements for the means os obtaining electrical storage,
details of which I must for the present hold in reserve, but with the hope at some future time of bringing them under the notice of the society.

RAILWAY MATTERS.

THE St. Lawrence, Upper Mississippi, and Missouri rivers are
closed by the ice. Three hundred feet of the railway bridge at Sioux city, Iowa, have been destroyed by ice, generally interfering The Great Western
The Great Western Railway Company commenced yesterday to
run a train from Paddington to Mifford Haven in seven hours run a train from Paddington to Milford Haven in seven hours, Will go to New Yored voia Mir thiford Honvenience of passengers who
steamships, by which from the promised new
sighteen to twenty-four hours at the steamships, by which from eighteen to twenty-four hours at the
least are to be saved between here and America, if not a good deal more.
THERR seems to be every chance of the long pending question of
the junction with the Turkish railways being at last settled. "The objection made so long against the junction with the salonica
Railway in now, the Railway is now, the T imes correspondent says, believed to be
Really withdrawn, so that only the point of really withdrawn, so that only the point of junction has to be be
settled ; and in this respect every consideration will, no doubt, be given to the strategic scruples of Consideeration will, no doubt, be
point of junction. As reare or another
per point of junction. As
even been mentioned.,
AT a conference of railway managers held last week at Brussels, for the organisation of the Continental international service during
the present year, the opening of the St Gothard line throurhout its entire length was provisionally fixed for July 1st, and arrangements were made accordingly. The opening of the great tunnel
has already increased the traffic between the valleys of the Reuss and the Tessin more than fourfold. Although in former years the traftie at thisis season was little more than nominal, every train is
now filled with passengers. now filled with passengers.
WE learn from the Annales Industrielles that it appears that
the French Government has definitely abandoned the Achard brake, the French Government has definitely abandoned the Achard brake,
and has decided to adopt the comparatively new automatic vacuum
aral curious that the State should our contemporary thinks it very curious that the state shoula recommena the adot the vacuum. Inasmuch as seral thoosandss of engines
and ades.
and vehicles have been, and are being fitted, with the Westinghouse and vehicles have been, and are being fitted, with the Westinghouse
brake, it does seem curious, that is, if our contemporary has brake, it does seem curious, that is, if our contem.
learned his story aright, which does not seem probable.
A VERY bad accident occurred on the Hudson River Railway at
seven oclock on Saturday evening last. ing many members of the New York Legislature and other prominent persons, was stopped at a point about eight miles from the
city. Six minutes later another train crashed into it, "telescoping" the two rear Wagner palace cars, throwing both from the line. In including Senator Wagner, the inventor of the Wagner Palace Car, in which he was burned. Nineteen other persons were injured. A Correspondent writes that the much-talked-of Exeter Tram-
ways are being laid at last, to the gauge mentioned in this column some three years afo or so, when the matter was first brought
before us- viz., fitt. 6 in
suburb, Heavitree, and eventually will connect Exeter with its
suree railway stations will three railway stations wil by one-horse cars. TThe carss are being woilt by the Bristor Wagon
Works Company, and are to be fitted with "road-and-rail" wheels, to save stable sidings, and enable their use where prohibited by the Board of Trade as tram-cars.
Three important public works have been sanctioned by the
South Australian Parliament, viz, a railway from Nairne to Strathallyn (20 miles), and thence to Milan (8 miles); a railway from Farina Town to Goolong Springs (29 miless), and a large
bridge at Morffett-street, Adelaide, where the increased railway traffic has made ordinary traffic on the level exceedidingly dangerous
The Farina extension is to be a link in the chain of tronscontinotal railway communication, and, according to the Colonies and India, assumes innortance only in that light. A line from Orooroo to
Port Augusta, South Australi, is in course of construction. When completed, this line will bring that colony into connection with the projected great northern or transcontinental
from Terowie to Orooroo has been completed
JUDGMENT has been given by the Anglesea Court of Quarter
Sessions in a rating appeal which occupied four days in hearing. The Sessions in arating appeal which occupied
Londour and North.W.estern Ravilway Company, appeaned ang against
the assessment of its 11 miles of railway in the Holyhead Union, the assessment of its 11 miles of railway in the Holyhead Union,
and also of the new station and hotel at Holyhead, which were opened last year. Under the new assessment the rating of the line
per mile had been raised from $£ 400$ to $£ 900$. When the case had been partly heard, an agreement was come to under which the rating
of the line was fixed at $£ 525$ per mile. The railway hotel wa rated at $£ 800$, and the station, graving dock, and buildings
assessed at $£ 15,674$. The court assessed the ratale value of the
hsete hotel at $£ 800$, and the station premises at $£ 9666$, as against the
$£ 6728$ given by the company's valuers, and ordered each party to pay its own costs of the appeal. On behalf of the railway com-
pany it was pointed out that as it already paid two-thirds o
the rates in Holyhead parish, it would be condemned, in
Ho he rates in Holyhead parish, it would be condemned, in addition to its own costs, to pay two-thirds of those incurred by
the assessment committee. The court, however, declined to reconsider their decision. Holyhead practically belongs
Western Company, and it is not a cheap possession.
The Birmingham Town Council on Tuesday empowered the Public Works Committee to take such steps as they might deem anvisable respecting the London and North-Western, the Midland,
and Birmingham and Cannock Chase Railway Bills. The London the agreement entered into with the Town Council last year. The company would have, our Birmingham correspondent writes, to pro-
vide a new street, which was to take the place ofthe thoroughfare of Great Queen-street. Powers are also asked to make a small branch from the Liverpool and Birmingham line, to
to run into the Saltiey gasworks. That line was to be constructed ntirely at the requast of the Gas Committee, and they expect to
lerive considerable advantage if they could get through that means heir coals from North staffordshire and Lancashire, Hustead od being connined as at present entirely to the Derbsyhire district.
The Midand Railway Company in addition to seeking for powers roposed goods station on the Worcester wharf. The Cannock Chase Railway Company seeks for powers to come into Birmingham
in the Handsworth district. It is proposed to open two small lines in the Handsworth district. It is
and a coal depot and goods station
Traveluing on the New Zealand railways is not, according to a
writer in the Colonies and India, all pleasure. He says:-" The speed seldom exceeds fifteen miles an hour, and so many of the
lines are over steep hills and lines are over steep hills, and are laid out with such an evident
fondness for curves, that a high or even average speed is out of the question. Experience in this colony is hardly in favour of Govern ment lines of railroad. There is only too much truth in the
common remark that the lines are laid off with far more consideration for the convenience and property of influential landowners than regard for the levels of the land or the convenience of the
najority. The grinding of the wheels upon the rails as curve after curve is described by the train is continually suggestive, not only of
danger and rapid wear and tear, but of the question why with
plenty of level land steep hills. Only one answer is given, viz,, that a Government railroad means a political railroad. Only two classes of passengers
are carried -first and second-the former paying 3d. and the latter 2d. per mile. The New Zealand railroads are now beginning to
pay interest upon their cost, pay interest upon their cost, as well as working expenses. Not.
withstanding all the blundering and extravagance in their construction, I believe that it would pay an English company well to take over these railways at their cost, and work them upon commercial
principles, though II fear there is little likelihood of a colonial Government, giving up so convenient an instrument of influenc

NOTES AND MEMORANDA.

THE barometric pressure has been greater during this week than forty years ;
INSTrad of the emery commonly used with soft metal disos
apss points, \&co, for chasing, lining, and drilling glass, diamond dust is said to be used with greater rapidity of work.
THE value of the telegraph apparatus and wire exported from
this country reached $£ 1,974,266$ last year : which is over $£ 600,000$ his country reacheed $£ 1,974,266$ last year ; which is over $£ 600,00$
THE saline springs of Cheltenham, according to Professor Hull,
rise along planes or fissures in the Lower Lias, like the water in artesian borings, and are probably derived from water percolating through salt-bearing Keuper, which out-crops at higher elevations, as explained by Sir Roderick Murchison.
Rylue following statement of furnaces in blast we take from March 31st, 1880,597 ; June 30 th, 18 , 1880,559 ; September 30th, 1880, $555 ;$ December 31st, 1880, $590 ;$ March 31st, 1881, 575 ; June
30th, 1881,542 ; September 30th, 1881,548 ; December 31st, 1881,
The iron and steel exports from Great Britain amounted last year to $3,818,338$ tons. In 1880 it was $3,787,271$ tons, The exported iron, steel, machinery, hardware, \&o., was $£ 42,381,662$ 1880 , and $£ 43,353,021$ in 1881 ,
The deep-seated springs in the chalk formation of the river minimes basin maintain the dry-weather flow of the river, the
mhich amounts to $350,000,000$ gals. per diem, of which London water companies have parliamentary powers to
draw $110,000,000$ gals., or nearly one-third. The water companies, owever, do not take the maximum quantity to which they are entitled, but are rather increasing their supply by sinking wells to
the coalk- says Mr. De Rance, in his new work on the "Water Supply of Engla
organic impurity.
During the past year the number of applications for letters patent has been 575, beenn an increass of 234 upon those of the
year 1880. The records of the office show a steady and tolerably regular increase in the number of applications from the year 1852, when the Patent Law Amendment Act came into operation, down
to the present time. In that year the number was only 1211 , but that was for a portion of the year only, the following year showing an advance to over 3000 , which, however, subsequently fell off;
but by 1862 the number had risen to 3490 . During the following but by 1862 the number had risen to 3490 . During the following
decade the progress was not quite so marked, the number for 1872 being 3970 . In 1876 the number was 5069 , the highest then since which time the numbers have risen to the figures first given as being the return for 1881 .
Brewers are sometimes advised to render their brewing liquor
permanently hard by the addition of a small cuantity of sulphuric acid prior to mashing. The quantity of sulphuric acid thus to be
added must not-the Brevers required to neutralise the carbonates of calcium and magnesium by the aid of some very exact tests, we cannot recommend this system of hardening waters, unless, it it carried out under the
supervision of an experienced chemist. If by any chance a slight excesvo of aoid were to be added, the results must be very disastrous; action on metals, it must be borne in mind that very small guantities of free sulphuric acid interfere with the action of diastase,
and thus malt mashed with such an acidified water will vield conand thus malt mashed with such an acidified water will vield con-
siderably less extract. The objections to the use of sulphuric acid iderably less extract. The objections to the use of sulphuric acid
for artificially hardening water so greatly exceed its advantages eertainly advise our readers not to adopt this system.
The final returns of the census of the Colony of Victoria, taken on April
3764 over the ast, havproximate totals at first issued. The thatal population of the Colony is now stated to be 862,846 -viz, 452,583
males and 401,263 females, or a proportion of 9075 females to every males and 401, he3 females, or a proportion of the square mile is $9: 812$; quare mile, and 5.07 persons to each dwelling Compared with the returns of the previous census in 1871 , the general results are an increase of 130, ,818 in the population, or 17.88 per cent., and of
19,458 , or 12.92 per cent., in the number of inhabited buildings. Some of the counties show a falling off in population during the
ten years, the largest diminution being 16,799 in Talbot 16,758 in The falling off in Grant county is no doubt due to the influence which Melbourne has had in attracting the trade which used to go
to Geelong, while in the other counties mentioned the falling off
is due to the fluctuations in the populations on the gold-filds. Herr P. Voliknann has in the Annalen fur Physik und Chemie compiled the eresllts of experiments by Hagen. Matthiessen, Perre,
Kopp, and Jolly, on the expansion of water, and bas obtained the
for Kopp, and Jolly, on the expansion of water, and bas obtained the
following mean results for the volume and density of water at emp

The increase in the volume per degree of increase of temperature rom the point of greatest density, 4 deg., is thus very rapid. For
arise of 1 deg. from this, the volume increases by 0.000008 , while rise of 1 deg. from this, the voreme increases
from 99 deg. to 100 deg. the increase is about 0.000721 .
WHAT would be the relation between the velocities of clouds o
moke and gusty wind by which they were impelled? The value smoke and gusty wind wh which they were inpelled. The value of
the following, which was sent by a correspondent to Nature, some-
what depends on this question. He reports the following observations on the velocoity qo the wwind in the soorts the west gave on the 21st
nd 22 nd of Noverber last, at Edinburgh. © TThe were made about 9 o'clock on the morning of the 22 nd, when the wind had somewhat moderated: Mean velocity, $62 \cdot 3$ miles per hour
duringa squall, $71 \cdot 6$. These observations he calculated from the velo. uity of clouds of smoke isssing from a chimney of the Caledo iann Distillery, and traveling for a distance of 2100 ft, , and are
thus free from instrumental errors. The chimney is. 25 ft . high, and its base is about 20oft. above the sea-level."." During the gales
and
and the 14th the reocridin anemometer at the Greenvich Observa On the 14th the recording anemometer at the Greenwich Observa-
ory registered a wind pressure of 56 lb. per square foot, the lighest ever recorded there. Professor Robert Grant, F.R.S., who
ceupies the chair of Practical Astronomy in the Univessity of Glasgow, reported that during the violent storm which passed over that city on the night of November 21st and the following morning, hourly velocity of the wind ranged from 16 miles to 17 miles, but at 11 p.m. it had risen to 30 miles, and it went on increasing till
o'clock next mornng, when the register indicated a velocity of 54 miles an hour, and the reading at 6 'clock was 57 miles an hour. Just a few minutes before 11 o'clock there was a tremendous gust
of wind, which, measured by Osler's anemometer, was equivalent to a wind pressure, as already mentioned, of 48 lb, on thene square
foot. This was confirmed by the indications of Robinson's velocity travelling at the rate of nearly 80 miles an hour.

MISCELLANEA.
A building is in course of erection near the Leadenhall Market for the purpose of and to be styled the Metal Market and
Exchange. The entrances are from Leadenhall-street, Grace church-street, and the Leadenhall Market. Mr. E. Harradine is the secretary.
The death is announced of Mr. John Trevor Barkley, C.E., for many years a foremost representative of British enterprise in
developing the resources of Turkey and the Danubian Principalities. Mr. Barkley was fifty-six years of age, and was for many years a valued contributor to the Times.
Thrre is an old adage about going abroad to hear news of home, An American contemporary says, "A pair of compound engines have been made by Messrs, Ahrberker and Son, London, which
develop 30-horse power and weigh only 168 lb. all told. The boiler weighs 1
propulsion."
ON the 7 thi inst. a large steel sailing ship was launched from
Messrs. Harland and Wolff's building yard, Belfast. She is named the Garfield, and is said to be the largest sailing vessel ever co structed of steel. The Garfield, which is of 2220 tons register, is
292 ft . in length, 24 ft . 9 in . depth, and 41 ft . breadth. She has been buill for Messrs. Ismay, Imrie, and Co., of the White Star A Rich deposit of quicksilver has been discovered near Maltrata, it. A valuable silver lode has olso the Times says, been struck near Zacualtipam. A dockyard is to be established at Campeachy, drawing plans for the work An ancient cemetery has been discovered about twelve miles from Yurecuaro, in which thirty bodies Tarasca tribe long anterior to the Spanish conquest.
Authough the long voyages to Australia, China, and West Coast of America, continue co encourage stean tonnage, and the
trades which were thought by their distance would be reserved to the sailing ships are readily supplied with the speedier mode of transit ; nevertheless there has been, according to White's "Steam-
ship Cireular," a very active demand during the past year for very good prices, and man been laid down, one yard alone having eight vessels of from 700 to 1700 tons register building.
Mr. Drumarond Hay, British Consul at Stockholm, calls Swedish matches. Nearly 23 million skalpunds - about 19 million pounds, avoirdupois-were shipped durngg 1880 . One "tandcelebrity for the quality combined with the cheapness of its products, employs 972 hands, of which 339 are women. This factory
was originally started on a very small scale in 1845. The precauwas originally started on a very smail scale in 1845. The precau-
tions adopted against fire are said to be so efficient that the buildings are insured for comparatively low preniums. The little boxes in which the matches are packed-now so familiar through-
out the world -are made by prisoners in the gaols of Stockholm. Sivce the Ring Theatre disaster an American has proposed a
kind of big fire-escape to be kept in readiness at every theatre. His escape consists mainly of a movable floor, suspended by chains from near the ceiling of the entrances, halls, and vestibules, or by
hinges on the side walls, and lowered in case of fire to be ported on projecting rests of the side walls, at suitable height above the floor. Sliding extensions and swinging stairs and rear
sections connect with the ground outside of the door, and with the staircases of the gatery, so as to form separate exits above the swinging sections and stairs swung down, and thereby a second passage eformed, which is mainly designed for the people in the
galleries, so that they may pass out simultaneously, and without interfering with the people from the boxes and dress circle THE old scheme of shortening the time between New York and brought + cthe front. Mr. Jacob Lorillarll, who has a project for crosss ${ }^{\text {a }}$?mboat line "to be purely American," and which will Aussind, tlantic in six days, has secured the co-operation of Mr.
Ant who will extend the Long Island Railway to Fort
Dond Ray Pond Bay, near Montauk Point. Great docks will be built here, and the esteamships of the new line will enter here instead of at ever, robs it of its "purely American "character. According to Glasgow firm of John Elder and Coo., who has just reaturned from New York, has expressed his intention of joining the undertaking with capital secured on this side of the Atlantic, and promises to
build vessels faster than any litherto launched for the new service. The s.s. Jacob Christensen, which has been built by Messrs
Raylton, Dixon, and Co, Middlesbrough, to the order of Raylton, Dixon, and Co., Middesbrough, to the order of trins
Konow and Co., of Copenhagen, has proceeded on her trial She is a handsome iron serew steamer, 269 ftt . long,
34ft. 9 in. beam, 2 fft. 3in. depth of hold, which gives her a carrying capacity of 2500 tons on 22 ft . draught. She is built as a three
decked steamer, having main deck of iron and upper of wood. Her water ballast is contained in a large chamber in the main hold She is fitted with a short poop aft, in which are commodious cabing for captain, officers, and two or three passengers. Higginson's
steam quarter master steers her from the bridge, and she is fitted with steam winches and self-reefing topsails. Her engines, of
150 horse-power nominal, are by Messrs. T. Richardson and Son, of Hartlepool, and gave every satisfaction on her trial trip.
THE great activity in shipbuilding has caused similar activity in
the anchor and chain trades, all the leading makers throughout the country being full of orders for several months to come. A
good share has gone to the North of England, among them a number of orders for Mr. Wasteneys smith's "shockless" "anchors. up to 5 tons each: for H.M.S. Agamemnon, Amphion, Albacore, new ships Spartan, Moor, Athenian, Mexican, and Tartar; the Cunard steamship Company's Cephalonia, Aurania, Catalonia, \&c.,
and a large one of
6 tons for the same company's moorings in the Mersey, making the fifth-from $3 \frac{1}{4}$ tons and upwards-supplied anchors on order for various owners of vessels building on the
Clyde, \&e., so that work in this department will be full for some Petroievas has been found in large quantities in Sarnia, Ontario. About three and a-half miles south-east of the town of Sarnia, the of 600 ft . from the surface. Suddenly operations were suspended Ignited by a toroh held by one of the workmen standing at a
distance of 20 ft . or 30 ft . from the well. The gas seemed to be vivid silvery flame fully 30 ft . high. "But the mast vemarkable in describ fitteen minutes by the watch, there is a grand eruption of water, which mingles with the flames, and, so far from extinguishing
them, drives them in sheets far above the highest trees, and falls nhowers for a considerable distance around the well. This eruption of water, which lasts about two or three minutes, is preceded gasps like the strokes of some mighty engine. The mixture of the water, which is said to be strongly impregnated with sulphur, pro-
duces effects in colour which are azazling in their brilliancy and
beauty, various shades

THE EDISON ELECTRICLIGHT IN NEW YORK AND HOLBORN. (For description see page 42)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER. PARIS.- Madame Boyveav, Rue de la Banque.
BERLIN.-ABEER and CO.,, Unter Unten Linden.
VIENNA.-Messrs. GERoLD and Co., Booksellers. BERLIN.-AsHER and Co., 5, Unter
VIENNA.-Mesrs. GERoLD and Co
LEIPSII.-A. TwIEMEYER, Bookseld
NEW YORK. -The WIILIMER and
al, Beekman-street.

PUBLISHER'S NOTIOE.

* Next week a Double Number of The Engineer will be published
containing the Index to the Fiftl-second Volume. The Index will containing the Index to the Fifth-second Volume. The puder will
include a Complete Clasisitied List of Apppications for and Frants
of Patents during the past six months. Price of the Double
Number, 1s.
* Acceding to a reasonable request made by several of our friends, we have commenced the publication of an Index to the
Advertisements which appear weekly in THE ENGINER. The
Index will alvayys be found upon the last but Index will always be found upon the last but one of our advertise-
ment pages. ment pages.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope leribly directed by the cases, e accompanied oy arrge envelope tegivy directed oy the
writer to himself, and bearing a 1 po postage stamp, in order that
answers received by us may be forvurded to their destination answers reecived by us may be forvorded to the ir destination.
N No notice vill be taken of communications which do not comply No notice will be takeen of communications which do not comply
with these instructions.
$*$ We cannot undertake to return drawings or manuscripts; we must therefore request correspondents to keep copies.
*A All letters intended for inertion in THE Engrerr, on
contaning ouestions, *oontanning questions, must be accom ananied by the thamere ond
address of the writer, not necessarily for pubbication, but as a address of the writer, not necessacrily for pubbication, but as a
proof of good faith. No Notice whatever will be taken of R. P. -Try tannate of soda.
R. P.-Try tannate of soda. It often proves useful in preventing and
removing increstation the Steam. Engine," Rivg "On the Steam Engine."
They can be obtained through any tookseller. china grass
SiR, - Could any of your correspondents inform me who is the maker
of a machine for poeeing China grass
this fibre is the first operation which this fibre undergoes after reaping, and prior to its importation onto this
country
J. McM.
utilisation of slate refuse.
(To the E Eititor
nodern inventi

GUN-METAL CASTINGS. (To the Editor of The Bngineer
 what surprisis The Bhgineer.

 your last, at "Royal
the abooe subbect.
same position as he
sat
same

 remarks will abplye is ithe at
Burnley, Janpuary 7 tht h .

The Enainerr can be had, suby order, from ans.

Halfyearly (inctuding double numbers), Yearly (inctuluing tro double numbers)

 Cloth cases for binding The Exainerr Volume, price 28. 6 d .
Many Volumes of The Emainkrr can be had price 18s. each.
Foreign Suwscriptions for Thin Preper copies will, until further notice, be
recived at the rates given beloov: Foreign Subseribers paying in advance
 increased rates.

ADVERTISEMENTS.

except weekly advertisements are taken subject to this condition.
Advertisements cannot be Inserted unless Delivered before Six
o'clock on Thursday Evening in each Week.

MEETINGS NEXT WEEK

THE ENGINEER

JANUARY 20, 1882.

N-Condensing steam engines,
In The Engineer for December 30th, 1881, will be found a report by Mr. Tsherwood on the relative efficiency densing. Such of our readers as have perused this report densing. Such of our readers as have perused this report
know that it contains some very remarkable stateknow that it contains some very remarkable state-
ments, and for the benefit of those who have not particuarly noticed the report we propose to say something conerrning here. The engmes in question seem to have cylinders. The condensing engine had a cylinder 24in in cylinders. The condensing engine had a cylinder 24in, in
diameter, with a piston stroke of 4 ft ; the non-condensing engine had a cylinder 16in. diameter, and a piston stroke of 4 ft . The piston speed of the latter was greater than that of the former in the ratio of 60 to 49 . These in the usual way. At first sight it would appear that the condensing engine ought to have far excelled its rival in economy. It was a larger engine; it expanded
steam of a total pressure of 71 lb . nearly 7.9 times, while the smaller non-condensing engine expanded 79 lb . steam but $4: 36$ times. The large engine condensed its steam. the small engine exhausted into the atmosphere. Everything pointed to the large engine as being the best calculated to get a good duty out of the coal burned; yet as a
matter of fact the superiority of the large engine was so small as to be hardly worth much. In terms of the net non-condensing encine 31.78 lb . of feed-water per horse per hour. The difference is but 3.2 lb , and even this difference may be said to disappear when it is remembered that the non-condensing engine can supply a boiler with feed water at 200 deg., while 120 deg. is about the maximum in the case of the condensing engine. Mr. Isherwood goes on to state that the results obtained at a
certain flour mill in New York, after fitting engines with certain flour mill in New York, after fitting engines with
condensers, was that the consumption of fuel was increased, and as a consequence the condensers were discarded. A very similar experience was recently obtained at Birkenhead with one of Davy's differential engines of considerable
dimensions. The condensing water available at first was dimensions. The condensing water available at first was
full of mud and sand, and could not be used; after about six months a supply, a denser was started, but the engine, instead of working with less coal than before, actually required considerably more.
We have reason to believe that We have reason to believe that many similar cases
might be cited ; and it is by no means clear that the condenser is always productive of economy. In an article on the "Value of a Vacuum," we have already written to the same effect; but the whole subject is just now attracting
so much attention amongst continental engineers that we make no apology for referring to it.
Mr. Isherwood, in common with many other engineers, use three different power denominations, namely, "total horsepower, indicated horse-power," and "net horse-power." total horse-power represents the work done by the steam in overcoming alr resistances. Now in the non-condensing including that of all moving parts up to the end of the crank shaft, the pressure of the atmosphere, and lastly, the
useful work done, in which is included the friction of all shafting, gearing, \&c., beyond the end of the crank shaft. Shat course, in one sense, overcoming this friction is not useful work, but it is useful work as regards the engine, because it must be overcome by some agent. The useful work is the net work. As regards the total work, it is although it can be calculated with approximate accuracy from an indicator card by putting on a zero line and constructing a parallelogram on it, the lowest line of the indicator diagram being the top line of the parallelogram. A good deal of conne in overcoming the pressure of the atmosphere, and we have heard it argued that it was done already in some mysterious way in the boiler. The truth is that back pressure, whether due to resistance to be overcome. It has just the same effect a putting extra load on the engine. We may be pardoned if we try to make this point quite clear. Let us suppose pressure of 45 lb , and that he lets off a portion of his power to his next door neighbour, a shaft passing through the party wall between the two houses. The owner finds that when none of his own machinery is running he can per square inch in the cylinder; when he adds his own work he requires 45 lb . in the cylinder. The steam does not know what resistance it is overcoming ; it matters nothing to it whether it is working for the engine owner or his neighbour, or looth. Now, the atmosphere stands in
the position of the neighbour; and when a condenser is added to an engine we only save the work which would otherwise have gone, so to speak, to the other side of the party wall. If he choose to do so, the work done for himself, leaving that done for his neighbour out of consideration, and he can say that it costs
so much ; and this is what is usually done in dealing with steam engines-that is to say, the work done in overcoming
back pressure is passed over in silence, and all calculations are based on the indicator cards. But it is obvious that work done for our neighbour, or, to drop metaphor, in overcoming back pressure. If we do this, we shall have, not the indicated, but the total horse-power to deal with. Doing this with the two Corliss engines about which he
has written, Mr. Isherwood finds that the non-condensing engine required but 18.74 lb . of feed-water per horse per hour, while the condensing engine required but 23 lb . Putting this in another way, the condensing engine expended
25,569 units of heat per total horse-power per hour, while 25,569 units of heat per total horse-power per hour, while
the non-condensing engine needed but 18,922 for the same the non-condensing engine needed but 18,922 for the same
purpose. It may be urged that it is with the net power we really have to do, and that it makes little matter how economically an engine works, including in its
power that taken by a next-door neighbour, who power that taken by a next-door neighbour, who
will not pay sixpence for it, if the remaining or net horse-power is not had at a low price. The advantage gained by the condenser is, in other words, tantamount to the excision of the noy perhaps be admitted that the neichbour's claim for gratis perhaps, be admitue cht up at too high a price. We believe it to be not impossible that the cain derived from a condenser is very much more frequenty than is cenerally known altogether illusory: and it admits of being shown that it is possible to make a non-condensing engine which may be as economical as a condensing engine.
It will be seen that in the cases stated by Mr. Isherwood his figures show that for each net horse-power the noncondensing engine used $3 \cdot 2 \mathrm{lb}$. more feed-water than its Therefore it is clear that if the net horse-power could have been made a little higher than it was, the consumption of steam would have been identical in the two engines. The total power of the non-condensing engine was, in round numbers, 116 horses. The indicated power was $74: 3$ horses. Now $116-74 \cdot 3=41 \cdot 7$, say 42 -horse power. The Dividing this by 28.58 we get 80.8 . That is to say if the total power of the engine remaining the same, we got 82.8 indicated horse-power instead of 74 , other things being qual, the consumption of feed-water wow in which this end can be reached-we can attain it either by simply diminishing the back pressure by working steam through a hot condenser, giving only, say, 6 in . of vacuum, or what is better, we can get at the same result by aus which case, although the consumption of feed-water and work done in overcoming back pressure remains unchanged the total,
power will become $42+82.8=124 \cdot 8$-horse power instead power will become $42+828=1248$-horse power instead by simply augmenting the ratio of expansion, with an increase in boiler pressure. The steam was actually
expanded $4: 36$ times. The hyp. log. of this ratio is expanded 436 times. The hyp. log. of this ratio is
1.4725 . The average cylinder pressure ought to have been 42 lb . It was really, by indicator, nearly 40 lb ., the loss being due to cylindar condensation. A simple rule-of-three sum shows us that, if the pressure had been 46 lb ., the required power would have been more than obtained, with an initial cylinder pressure of 90 lb ., corresponding to a 75 lb . safety-valve load, the steam being expanded a little over five times. There is every reason, indeed, to believe that the steam would be used to more advantage thus than that the nonand, consequently, it is more than probable that the non-
condensing engine would beat the condensing engine in economy of fuel.
Mr. Isherwood has shown very clearly why the condensing engine was so wasteful. The want of economy is due to what was, many years ago, pointed out in The Engineer-and for the first time in any English journalIsherwood's remedy is jacketting; but we much doubt Isherwood's remedy is jacketting; but we much doubt
that the jacket would entirely cure the evil. There is even in the non-condensing engine a good deal ja clet would porvain going on, a no doubt the jacket would prove useful to it as well as to the condensing engine, so that the jacket would after all, periaps, not
materially affect the result ; both engines would become more economical, and that is about all. The plan of more economical, and condenser is worth trying, and can very easily be done by any one whose boilers will carry as much more pressure as is required to give the necessary out in this way at very small expense, the only thing necessary being a tank to measure the feed-water, the engine being run with various back pressures in this best result was obtained The engine ought in this case, however, to be credited with the saving
effected by the use of hot feed. Many seagoing engineers assert that their engines give a better economical duty when the temperature of the condenser is from 130 deg. to 140 deg., corresponding to 25.5 in, to 23.5 in , of mercury, 27 in . With a temperature of 195 dep the gauge at 26 in . or the back pressure would be $10: 38 \mathrm{lb}$., representing a gain of about 4.5 lb . per square inch, as compared with exhausting into the atmosphere. We have said enough to yet unworked, and that there is reason to conclude that as a result of working it, information may be obtained which will tend to promote steam engine economy. It may seem absurd to suppose that working with a hot condenser can tend to save fuel. It would be absurd if steam were a permanent gas while in a cylinder; being what it is, a
most unstable fluid, with nothing permanent about it, there is nothing absurd about the proposition.
the board of trade and automatic brakes.
Ov the 8th of August last year a collision took place in Blackburn station between two express passenger trains,
Two passengers were killed on the spot, and four more Two passengers were killed on the spot, and four more
have subsequently died of the injuries received, besides, sixty-four persons were more or less severely hurt. We have already commented on this collision, and the verdict
of the coroner's jury will be found in our impression for on foot, and Coil. Yolland acted for the Government. His report was not sent in until the 6th of October, and it was unusual delay ; but this is not the only remarkable circumstance about the report. On the outside it carries a memorandum from the President of the Board of Trade
himself, and the memorandum goes as far as ofticial courtesy permits to traverse Col. Yolland's conclusions. It
is possible that Mr. Chamberlain may have had some is possible that Mr. Chamberlain may have had some is at least certain that it has been shelved for many months $;$ and it is now given to the world with a commentary which practically nullifies its author's utterances. The
reason for all this is easily found. Col. Yolland virtually condemns automatic brakes, and as they have been specially-and properly-recommended for aduption by the
Board of Trade, some difficulty was, no doubt, set up by a report which pretty flatly contradicts the Government.
Mr. Chamberlain's minute terminates with the following words:-"Finally, the Board of Trade, as at present advised, after careful consideration of Col. Yolland's report, and after a reconsideration of the conditions which
they have repeatedly laid down as being desirable in all continuous brakes, after consultation with their inspecting officers, and after consideration of the experience gained during the last few years, have come to the conclusion that while it is essential that the defects in the automatic brake to which Col. Yolland alludes should be provided against,
and every precaution taken to insure the brake acting only when required, yet there is no reason to withdraw the opinions they have previously expressed as to the condi-
tions which should be observed in providing brake power tions which should b
for passenger trains."
In order to render the circumstances which we have to consider quite intelligible, it is necessary that we should
say something concerning the accident. The Liverpool and Todmorden express was standing in Blackburn station when an express train from Manchester ran into it. The driver stated that when he endeavoured to apply the
Westinghouse brakes, with which the train was fitted, they would not act ; and that this was the cause of the accident. It will be remembered that the coroner's jury
refused to accept this excuse, and it was not pressed by the railway company. The jury laid the blame on the defective system of signalling adopted, and said nothing about from Manchester to Blackburn, and it was found after the collision in good order on such vehicles as were not smashed up. "The officers of the railway company," says Col. disconnected between the first and second vehicles; but I was not furnished with any evidence to prove that it was
so disconnected." Now it is well known that one of the special features of the automatic brake is, that if any part of it gets out of order the brake will at once apply itself ;
and it might be supposed that if a hose parted the brake would go on ; and so it undoubtedly would if the parting took place anywhere but at the regular coupling, or even
if that were pulled asunder instead of twisted. The coupling is so made, however, that when it is taken apart in the regular way, valves close the ends of the pipes and
prevent the escape of air and the going on of the brakes. But the couplings are very secure, and are so fitted that the hose between the carriages must be lifted up before
they can be united. The coupling is then effected, and they can be united. The coupling is then effected, and coming apart. When, however, a pressure of 80 lb . or 100 lb . on the square inch comes on the hose, an action somewhat
like that which takes place in the spring of a Bourdon gauge tube is set up. The hose tends to straighten itself, and to rotate on its axis, and if this took place sufficiently the coupling would be turned upside down and might fail apart. It was, as we have said, suggested to Col.
Yolland that this twisting might have occurred, in which case the brake would have been practically cut off from the engine, although it might still have been applied by the guard. It is also proper to say that if a porter in
coupling up a train puts himself to some trouble, he can, when the hose are very flexible, put the couplings
together upside down, but they are certain to shake together upside down, but they are certain to shake
apart after a short time. As Col. Yolland, ignoring the driver's inexperience, was convinced that his explanation was conclusive, and that the brake really had failed to
act, and as moreover it was found to be in excellent order after the accident, the suggestion about the hose coming uncoupled was extremely useful, and inquiries were made as to whether such an accident had ever before taken
place, but only two cases could be found which bore on the point. The first occurred at Stanningley, when the coupThe fireman of the engine, however, explains that the hose was not properly put on
he says, "and went under ne says, then cast iron connection to the pipes until the couplings hung straight
down. They did not come uncoupled again." We have no intimation of the nature of the second case of uncoupling, save that contained in Col. Yolland's words: "I Stanningley as having happened on the London, Chatham, Stanningley as having happened on the London, Chatham,
and Dover Railway." We think under the circumstances we may assume that the uncoupling of the hose on the Manchester express, if it took place, was virtually the first instance of such uncoupling on record; for it is clear that in the Stanningley case the hose was put on with a twist
to begin with, and there was no suggestion that the hose to begin with, and there was no suggestion that the hose
was improperly fitted to the Manchester train. The other was improperly fitted to the Manchester train. The other
example (?) may be dismissed altogether. Furthermore, it
must not be forgotten that at the coroner's must not be forgotten that at the coroner's inquest three
witnesses prove that the brake was applied. Thus, for witnesses prove that the brake was applied. Thus, for
example, Mr. Evans said - "I was a passenger in the express ox the day in question. I was in about the fourth carriage. The whole journey was what I might call rather lumpy.
On reaching the West Cabin I felt the deep grinding bite of On reaching the West Cabin I felt the deep grinding bite of
the brake on our carriage. We came into the Blackburn station at as rapid or more rapid speed, I should say, than
at any period of our journey between Manchester and had attended to the injured, I spoke to the driver of the that train asked him, "Why in the world did you bring that he could not see the train standing in the station, nor could any other man, until he was coming into the station." It is true that the diver said ue them it was in
using such words, and that if he did use his excitement
Thus, then, it appears that the accident was caused either by the incompetence of an engine driver who had hardly any acquaintance with the Westinghouse brake - a fact which came out before the coroner's jury, though not inquest tol. Yolland, who was, however, present at the There is nothing whatever in Col. Yolland's report to substantiate the theory of uncoupling. A pair of hose
pipes were fitted on trestles in a shed, and Col. Yolland pipes were fitted on trestles in a shed, and Col. Yolland was shown that it was possible to put them together wrong way up; but the chances are that had this been done in the case of the train, they would have become uncnupled
before they had run a mile. If the hose ends were put togethey had run a mile. If the hose it must have been done in Mancheste a negligent pos from Blackburn The brake was used and acted very well at Bolton, Over Darwen, and Springvale. This is tolerably conclusive evidence that the brake was not coupled up wrong; but we
have still more. Thos. Brooke, a driver, was called, and stated that on Thos. Brooke, a driver, properly connected to the train at Leeds, but before starting the moment he turned on the air pressure it came apart. It is not disputed that the coupling can be made the wrong way, but it is, we contend, extremely improbable
that it should be so made, and if it was it would, according to the Stanningley apart almost at once. We may reject the improper coupling theory, we think, without further consideration. As to the other supposition that the hose itself twisted apart the couplings, it is simply a surmise, nor can we find a single fact which tends to support it, save that a collision took place which, in theory, should not have taken place if the brake had acted. "Col. Yolland concludes," writes Mr. Chamberlain, " from the evidence taken at the inquiry and from the experiments subsequently made, that some of the had become out of order, and that the brake consequently failed tome out of order, and that the brake consequension which was primarily aused qured to the permissive block system. This conclusion is not founded on such direct and positive evidence as to place it beyond doubt, but on inferences drawn from a variety of circumstances.
On the other hand there is evidence that the brake was in On the other hand there is evidence that the brake was in order, and had acted properly on this journey at the pre-
ceding stations at which the train had stopped." The explanation that the driver, new to the brake-he admitted that he had only run with it five times before -did not put it on soon enough, is consistent and sufficient, and is supported by the fact that during some experiments made by Col. Yolland he failed to put the brake on at the proper time ; according to Col. Yolland because he
misunderstood an order. The truth appears to be that the man over-estimated the pow of the brake, and underestimated the speed at which he was running. If he had put on the brake ten seconds or so sooner than he did, In so far as the been no collision.
In so far as the Blackburn accident is concerned Col. Yolland's report can do no harm, but he is certainly not justified in building up on the feeble foundation of surmise what is neither more nor less than a sweeping condemnation of automatic action. "No one," he writes, can question, I imagine, the desirability of the continuous brakes being made, 'in case of accident, self-
acting', if that can be accomplished without introducing acting,' if that can be accomplished without introducing
any other element of danger. The self-action can probably do ono harm in such cases, and in some may do good but it is quite a different thing when any of these continuous automatic brakes become self-acting when there is
no accident, and suddenly arrest the progress of a train no accident, and suddenly arrest the progress of a train
when it is not required by the driver to be stopped; or, on the other hand refuse to co on and act, from any cause hatever, when the driver desires to pull up his train in order to stop at a 'danger' signal, or at the proper spot at a station, or to avoid any obstruction whatever which
he may suddenly come upon, such as cattle straying on the ine. No great harm is done, so far as the public safety is concerned, by the brakes suddenly going on without any action on the part of the engine-driver, where the traffic is strictly worked on the absolute block system, and two rains are not permitted to be on the same section of the the delay thus occasioned, which however, is frequently a great nuisance to the passengers; but the case is altogether different where failures take place in the working of the absolute block system, or where it is replaced by the permissive system, as through Blackburn station, and two
trains are allowed by the system of working adopted, or by mistake on the part of one of the signalmen, to be on the the same time allisions take place like that in the Bleamoor Tunnel, on the Midland Railway, injured, and that at Bow-road station, on the Stepney and Stratford branch of the Great Eastern Railway, on the 3rd ultimo, when eleven passengers are returned as having been injured, and the driver and fireman of an engine of the following train sustained fatal injuries, and died on the pot, from the action of the brakes suddenly stopping the the engine-driver did all in his power to avoid the stoppage. It is quite true that, if the signalmen concerned in the block system, the collisions would in correctly working neither would they have happend had not the trains bee unnecessarily stopped by the action of the brakes."
Col. Yolland seems to be unable to see that the accidefective signalling ; and furthermore he has overlooked

If thact that the brakes in neither case were to blame. If they had been in perfect order they could not have attend to their datecause the Bleamoor accident took place. When the wire of a properly made signal gives way, the semaphore arm flies to danger- A train may thus be stopped, and may be run into by another; but Col. Yolland would not we imagine argue from this that signals should not be made to tly to danger when wires break. Col. Yolland forgets that many accidents have either occurred, or only been averted by good luck-if we may use the words-as a consequence of the failure of non-automatic brakes-like Webb and Clark's chain and tial that notice should be aiven when wanted. I occurs ; and Col. Yolland's brake is, if he could but see it, based on the assumption that the brake was not automatic enough ; in other words, if it had given notice when the coupling parted, no accident would have occurred. Mr. Chamberlain has done well to add his minute to the report. No one supposes that automatic brakes are absolutely perfect, or that they can instinctively stop a hrain to prevent a collision. It is be maintained in perfect order, and used with intelligence by competent men. It this is done they will not disappoint those who use them. But it is not a defect peculiar to brakes that they require to be looked after with
$\overline{\text { the explosion of a locomotive on the north-EaStern }}$
Mr. Lavington Fleftcher, chief engineer to the Manchester Steam Users' Association, has reported to Mr. Settle, the coroner place on the 26 th of December, 1881, near Stockton It appears that the boiler which exploded was of the ordinary multitubular locomotive type, and had formed a portion of a six-wheeled coupled goods engine, made at the North-Eastern Railway Company's works, Darlington, in March, 1880, since which time it ad run 4,843 miles. The pressure to which the safety valves sion occurred just ofter the ensin had been brought to explo with only three trucks and a van attached to it. The boiler did not give way in the barrel from grooving at the ongitudinal seams, as boilers of this class so trequently do, but it in the fire-box, which was of the ordinary square type. It was in width at the bottom, and 3 ft . 7 2in. in. at the top, while the height was 5 ft . 10 in . The thickness of the tube plate was $\frac{7}{7} \mathrm{in}$, of the ends and sides $\frac{1}{2} \mathrm{i}$., and of the flat crown plate $\frac{1}{2} \mathrm{in}$. The ends and sides were strengthened with stud stays $\frac{8}{8} \mathrm{in}$. in diamecentre. The crown was strengthened with seven roofing bars, assisted by four suspension stays tying them to the top of the 13 in . in thickness, and were spaced 5in centre, the bolts for tying the crown plate to the roofing bars being lin. full in diameter, tapped into the plate, nutted on the fire side, and pitched at $4_{2} \mathrm{~m}$., while the suspension stays measured 3 in . by $1 \frac{1}{2} \mathrm{in}$. The roofing bars rin well over the ends of the
fire-box, and were well bedded. The part of the fire-box which gave way was the flat crown plate. This had been driven down obliquely, hinging on the top of the tube plate at one end, and fire-door, at the other In consequence of thi the bviler wa lifted from the ground torn from the frang of the forwards, and turned over on its back. Immediately in front of the engine another goods train was standing, and the boiler was shot over the brake van at the rear of this train and thrown on to the sixth truck from the end. On examining the crown of the plates to ascertain the cause of the rents, it was found that there was clear evidence of their having been overheated. The nuts on the fire side of the plate at the ends of the stays uniting the plate to the roofing bars appeared to have been burnt. But
far more convincing proof of overheating was afforded by the general appearance of the crown plate. This was severely dis. left to side. The hill and valley condition of the crown plate cro no room to doubt that it had been overheated. The fire-box use. It wated with a fusible plug, but in diameter. This was screwed into a brass nut and rivetted at the top and bottom, the length of the lead plug being about $1 \frac{1}{2}$ in. from out to out The construction of the lever safety valves, as well as of its direct spring loaded valve, was such that neither could be by any means easil tampered with; and there is no reason to conclude that while explosion was in any way due to excessive pressure of steam, ends of the fire-box were perfectly flat and true, the bulging beating confined to the crown, which bore evident signs of overheating. Mr. Fletcher considers the explosion did not arise from excessive pressure of steam, nor from defective construction, or
defective condition of the boiler, but that it arose from the weakening of the crown of the fire-box through overheating of the plate in consequence of shortness of water, that misreading of the glass water-gauge by the engine-driver Two inquests have been held, one at North Stockton, and the the view given in the The jury for North Stockton accepted verdict:- "The deaths of the two deceased persons wer6 due to the effects of the explosion of the boiler of the engine No. 204, belonging to the North-Eastern Railway Company, and we attribute the explosion to the overheating of the fire-box top railway company should strive to find a more reliable fusible plug, and we also recommend the adoption of double water fortnight, and will probably call in further scientific evidence. A joint report was presented by Mr. Johnson, locomotive superA joint report was presented by Mr. Johnson, locomotive super-
intendent of the Midland Railway; Mr. Stirling, locomotive superintendent of the Great Northern Railway; and Mr. gentlemen gave evidence before both juries, and attributed the explosion to overheating of the fire-box crown, in consequence of shortness of water, and thus confirmed Mr. Fletcher's report. Notwithstanding this, however, the South Stockton jury were
not convinced. We may add that the North-Eastern Railway Company submitted a twin locomotive to the one that burst to hydraulic test of 300 lb . per square inch at York on Saturday,
the 7 th inst. The fire-box stood it well, showing that there
no structural weakness to account for the explosion at the ordinary working pressure of 140 lb . Mr. Johnson, Mr. Stirling,
and Mr. Jeffries witnessed the test and reported thereon to the jury.

London fires,

Caprats Shaw's annual report on London fires, presented at
he meeting of the Metropolitan Board last Friday, shows that there were as many as 1991 fires in the metropolis during the past year, of which number 167 were serious. The total exceeds that of any previous year, but, allowing for the increase
in population, the figure is not so unfavourable as in some of the years that are past. This will be seen if we take the number of
fires per 100,000 of the population. The ratio for 1881 will be $51 \cdot 9, a$ result which has been exceeded on three previous occa sions. Thus in 1868 the ratio was 53.6 ; in 1870 it was 60.7 and in 1871 it was $56 \cdot 6$. There are, however, two untoward facts. First, the ratio is higher than in any other year since
1871, and the ratio has been rising annually from 1877 inclusive, Thus the ratios for the last five years are respectively $42 \cdot 7,45 \cdot 8$, $47 \cdot 0,49 \cdot 8$, and $51 \cdot 9$. Accordingly the rise, year by year, has
been $3 \cdot 1,1 \cdot 2,2 \cdot 8$, and $2 \cdot 1$, while the ratio for 1881 is $9 \cdot 2$ in been $3 \cdot 1,1 \cdot 2,2 \cdot 8$, and $2 \cdot 1$, while the ratio for 1881 is $9 \cdot 2$ in
advance of that for 1877 , the increase in the ratio during the last five years being 21 per cent. This is not satisfac-
tory as concerns the amount of danger which besets the tory as concerns the amount of danger which besets the
metropolis, and our chief satisfaction must be sought in
the circumstance that the Fire Brimade has the circumstance that the Fire Brigade has done its work
so well as to keep down the number of serious fires," these constituting only 8 per cent. of last year's total, as
compared with 10 per cent. in 1877, 25 per cent. in 186, and compared with 10 per cent. in 1877, 25 per cent. in 1866, and
the tremendous figure of 34 per cent. in 1865. The operations of the Brigade commenced with the year 1866, in which year the serious fires were nearly double the number recorded last year.
That fires altogether should be now so numerous is the curious That fires altogether should be now so numerous is the curious
feature, the rate per 100,000 of the population having been 50.5 feature, the rate per 100,000 of the population having been 50.5
in 1865, a lower figure than that which prevailed last year. The early statistics may have been defective, but that can hardly as low as $26 \cdot 8$, while in no year did it reach 40 until after 1856 . The growth of London thus appears to increase its inflammability, and consequently to demand a corresponding developmainity, and consequently demand a corresponcing deverop"
ment in the strength of the Brigade. As to the "causes of fires
last year, we observe that candles are recorded in 149 last year, we observe that candles are recorded in 149
instances, gas in 210 , and lamps, whether fed with oil or spirit, together with spirit apart from lamps, in 149 -the same as candles. In these last-named instances there are twenty-seven
cases in which fire was caused by a spirit lamp "exploding," and cases in which fire was caused by a spirit lamp "exploding," and
seventy-nine in which the lamp was upset, besides thirteen instances in which the vapourr of spirit came in contact with fesides two instances in which the light was thrown down an lesides two instances in which the light was thrown down an
area, and twelve in which it was thrown from the street. "Spark
from fire" was the cuuse of disaster in 173 cases, and "smoling area, ani "welve the cause of disaster in 173 cases, and "smoking
from fire" was
tobacoo" is specified in forty, while lucifers account for twentytobacco" " is specified in forty, while lucifers account for twenty-
three, in addition to forty-ne instances where children were
" "playing with lucifers." In

the doterel, the triumph, and the driers.

The news of the explosion on board the Triumph, off Coquimbo, sad as it is in itself, has revived the doubts as to the general management of the Navy which the loss of the Doterel
and the subsequent official inquiry had given rise to. We do not remember whether the drier whe barbarous name of " "erotine siccative," which means "drier" twice over in Greek
and in Latin, and to which the recent explosion is due, was menand in Latin, and to which the recent explosion is due, was men-
tioned in connection with the accident at Puntas Arenas. But tioned in connection with the accident at Puntas Arenas. But
in any case, there appears to be little doubt that the authorities saw cause for suspicion, and the drier which had already been pronounced to be of so doubtful a character that its use dent, directions have been forwarded to every station to the effect that it is to be regarded as a dangerous explo-
sive, and should be got out of the way as quickly as possible. How many ships of the Royal Nave, it may
be asked, are there cruising at a distance from stations which may go to pieces any day, thanks to this dangerous form of cargo Again, it has been asked in one of the daily prints, what is the use of keeping laboratories at the public expense, if compounds,
which turn out to be explosive, are issued for use with such care less examination that their properties are not discovered? Moreto discontinue its use, why were not the orders which have now been telegraphed dispatched at once? As far as concerns the Doterel it is of course difficult to say that this "siccative" was
the cause of the accident. But it will be remembered that the the cause of the accident. But it will be remembered that the
evidence showed the existence of dangerous communications with the magazine from various parts of the unfortunate ship. If the on board the Triumph had communicated itself to the magazine the entire ship would have gone to the bottom. The class of compounds to which the name of "siccative" is given are, it appears, varnishes which are added to oil paints to make them
dry quickly. They are prepared by boiling linseed-oil with metallic oxides or salts. Formerly litharge, minium, umber, an gypsum were employed for the purpose, but more recently the oxides and salts of manganese have come into use; they pro-
duce rapidly drying sicatives, and when added to zinc-white do not introduce any substance that can be blackened by sulphuretted hydrogen. A mixture of equal parts of manganous
sulphate and acetate with an equal quantity of zinc sulphate and sulphate and acetate with an equal quantity of zrinc sulphate and
ninety-seven parts zinc-white added in the proportion of onehalf to one per cent. to the zinc oxide with which the oil colour is to be prepared, is said to effect the drying of the paint in Barruel, which, according to Bolley, is made by mixing from five to six parts of borous manganate with ninety-five parts of zinc-white,
and adding to zinc-white colours in the proportion of about $2 \frac{1}{2}$ per cent. Acetates and manganates closely associated with boiled oils do not form the most stable compounds imaginable. It now appears from a letter which has been forwarded to the Admiralty
by the commander-in-chief at Portsmouth, and written by three urvivors of the Doterel explosion, including the carpenter, tha hey attribute the disaster in the straits of expotine sicative, and not to the explosion of gases generated in the coal bunkers, as had been found by the court
martial upon the evidence of Professor Abel. The explosion on board the Triumph, they state, directed their attention for the first time to the fact that xerotine siccative had explosive pro-
perties, and reminded them that within a very short time of the explosion, perhaps fifteen minutes, a leakage of xerotine siccative had been discovered in the paint store room, which is immediately adjacent to the fore magaine in which all powder stores,
excepting small-arm ammunition, was placed. The presumption is that the escaped composition flowed under the wooden flat of
the magazine, and that the inflammable vapour it gave off was ignited by the light carried by the man told off to clean the store had been in the meantime thrown overboard by the seamen who are still aike. hell known to the Admiralty,

gas in middlesbrovgh.

We referred in The Engineer a few months ago to the question of the cost of the production of gas, and of the growth in now interesting in some of the northern towns; and it may be then noted. In the town of Middlesbrough, for instance, it seems that there is now being sold about 2,500,000 cubic feet more gas monthly than there was a year ago at a corresponding period. It is also worth notice that whilst a year ago the produc-
tion of gas at Middlesbrough was on the average $13,200,000$ cubie feet monthly, it has now been raised to for the past month over $21,100,000$ cublc feet. Turning to the question of cost, it appears that coals cost $10^{\circ} 62 \mathrm{da}$. per thousand cubic feet or gas sold, wages, thousand cubic feet, a rate slightly above that of the corresponding month of last year, owing mainly to a slight advance in the price dgainst this is to be set, chieny for waste products tar, coke, ammoniacal liquor, \&c.- rather over 10d. per thousane 13.28 d . nearly 2 s . $8 \frac{8}{\mathrm{~d}} \mathrm{~d}$, so that 1 s . 7 d d. per thousand feet remain to pay interest on the capital and redemption. It is thus evident that with
production and sale that must be now approaching $170,000,000$ a production and sale that must be now approaching $170,000,000$
cubic feet yearly, there is a very large profit returned by the cubic feet yearly, there is a very large profit returned by the
Middlesbrough Gas Works to their owner-the Corporation. Inddlesbrough Gas Works to their owner-- the Corporation.
In the last year the yield of gas has been about 10,308 cubic feet for every ton of coal carbonised, and the ten-者 month last reported on it was reduced to $10 \frac{2}{2}$ per cent., and there are other facts that point to the probability of a long and prosperous life for the gasworks in the great iron manufac-
auring town. In the northeeast of England very little attention has as yet been devoted to the fostering of the use of gas as a fuel or for power-raising purposes ; but were this done, and with steadily in, it may be supposed that there would be a more than counterbalance for any loss in the consumption by the growin ase as an illuminant of the electric light. What the gas comuality, and to prepare themselves to supply the alternative light, so that they may give to their consumers a cheap fuel, and
either the light that we have been accustomed to or that that either the light that we have
seems likely to take its place.

LITERATURE.

Tramways : their Construction and Working, with special reference to the Tramways of the United Kingdom. By D. Kinnear Clark, M.I.C.E.
Lockwood and Co.
Those interested in tramway construction and working, and who therefore, as we suppose we may say, possess Mr. Clark's first volume on this subject, published in 1878 need only to be informed that this supplementary volume haintained in the second. To those who are no cquainted with the first volume, we need only say that all that has been done towards the perfection of tramway permanent way and rolling stock since it was sent to the press is fully described in the volume before us, which also contains a mass of that statistical information that is so difficult to obtain, but which is so necessary to those who desire to construct and work tramways economically as well as to those who would examine for themselves, previous to investing money in them. Tramway account are not yet generally kept with the precision which mark railway accounts. The North Metropolitan Tramway Company has done this, and there are few if any more successful companies. The advantages of accounts which show plainly the cost of every detail of tramway working are such that it would have been thought that every com pany would have adopted the best method of doing this uch is not, however, the case, neither is there any general uniformity in the methods adopted. Upon this subjec Mr. Clark has a good deal to say, and he gives good reasons for his opinion that if the companies will not do this on heir own behalf, it should be mat
Amongst the systems of tramway permanent way described in this volume is that of Mr. Eage, of Birming November, 1878, and 30th January, 1880. This system was tried on a short experimental length in Birmingham and upon inspecting it we expressed a favourable opinio of its merits. Since then it has been in successfu opera on 1880 co whe win grooveless, and all the most salient objections to tramways as operating prejudicially to ordinary vehicles are thu removed. The rails are of inverted channel section, and are perforated with holes about 5 in. apart, and short spuds or studs in the rim of the car wheels take into these and run as smoothly as flanged wheels in grooves. It should be ines to be work by the necessity for great weight in the motor, whether compressed air, electric, or steam. During the four year which have passed since Mr. Clark's first volume was pub ished a great many systems of permanent way have fallen have been tried, heavy rails of girder or joist section being now most favourably received, made great strides, enters fully, and compares English with foreign practice and progress. The cost of horse haulage is very great and probably more in London than elsewhere. In Londo in other words, the tramway life of a horse is only four years Few businesses could afford to pay so much for horse-power, hitherto been sufficiently low to make tramway com
panies generally anxions to adopt it. Engines which do not cost fabulous sums in repairs are now, however will be even more rapid than in the past four dealt with in these pas. Mr. Clark states that the Merryweather steam pas. 0.69 lb , of coal while the Mékarki encine consumes 1.75 Ib , or more than two and a-half times the quantity used by steam. Coal however, is far from being the principal cost at present ; the design of engine which shall reduce the cost of repairs may soon be produced.
To give a full account of the contents and character of Mr. Clark's book would occupy more space than can be we need say no more.

BOOKS REOEIVED.

The Gas Engineers' Diary and Text Book. 1882 . Edited by G.
E. Wright and W. S. Mason. Birmingham : J. Wright and Uo. An Elementary Treatise on the Differential Calculus Founded ons
e Methods of Rates or Fluxions. By J. Ninot Rice and W, Woo'sey Johnson. Abridged edition. New York: John Wiley and Sons. London : Tr
Our Factories, Workshops, and Warehouses, their Sanitary and Fire-resisting Arrangements
E. and F. N. Spon. 1882.
The Figure of the Earth, an Introduction to Geodesy. By Mans-
feld Merriman. New York: Wiley and Son, London : Truibner nd Co. 1881.
A Practical Guide for Inspectors of Nuisances. By F. R. Wilson.
London: Knight
Elementary Lessons on Electricity and Magnetism. By Silvanus Sevacye Disposal for the Guidance of Sanitary. Authorities. By
Henry Robinson, C.E., F.G.S. London: E. and F. N. Spon. Steam Heating for Buildings ; or, Hints to Steam Fitters. By Trubner and Co. 1881. York; J. Wiley and Sons. London:

LETTERS TO THE EDITOR.

We do not hold ourselves responsible for the opinions of our

faure's accumulator

Sir,--As the writer of the lines criticised by M. Faure, I may,
perhaps, be allowed to say a few words in reply to his letter. In he first place I do not admit that the words quoted contradiot one another. I said from my own knowledge Faure's battery was
very good ; I then stated that compared with some other batteries shown, to me it was nowhere, but I carefully stated that the
Faure's battery used in these experiments was one made by the experimentalists, and although every attempt might be made to do raure justice, it is possible, nay probable, that M. Faure would
refuse to recognise such a battery. Lastly, from data obtained frose to recognise such a battery. Lastly, from data obtaine,
froments, and taking the data as published about Faure's battery, I said it was not the best. My arguments were based not on any private results he or others may have obtained. I may tate that I took these figures because they were slightly better that those obtained in my own experiments. With regard to the owners of the improvements with which I am acquainted, they are
not the owners of the Faure patents ; but whether the owners of he Faure patents possess improvements equally good is a matter As a matter
As a matter of fact, I had no thought of the commercial aspect of the case when writing the lines in question. M.
Faure's battery possesses certain defects better known to M. Faure than to myself; some of these defects other parties at any rate
have overcome, and whilst they may have been obviated in M. aure's private work, they at any rate exist in the cells that hav een sold here. The experiments described by M. Faure are very position among secondary batteries-whether it is the best the future will show. I still hold that in the public mind M. Faure's battery will never regain its pristine position, a result entirely due to the methods pursued by the co
which M. Faure must be exonerated.
In conclusion, may I express an opinion which I hold very in the first place considered in the technical and not should be press; in the latter case a false conception is generally gained by the reader because he is ignerant of the subject, and sees only jus what is put before him; in the former case some knowledge at any upon a fair footing before it is brought under the notice of the ordinary public.
London, January 19th.

Coopers hill engineers.
SIR,-I see a long letter in your paper from General Chesney, R.E., trying to persuade the profession and the public that at some happy date-some twenty or thirty years distant-the fndian Coopers Hill, be able to build a barrack that will norrack is not efore it is occupied by the troops. An Indian barrack is not a
very ornamental building; its style of architecture is not recognised by any work on architecture, nor is the internal finishing more
complicated than a coat of whitewash and the usual barrack bed. The outside appearance is something like a warehouse of Manhester goods with large w sted of all sorts of fancy gauges that carry nothing, canals that nobody
want and that do more harm than good by making India more wants and that do more ha
To read General Chesney's letter one would imagine that the Royal Engineers were totally ignorant of mathematics and
heoretical mechanics, and that the Stanley engineers were mere cram-fed youngsters. As a matter of fact the theoretical educa-
tion at Woolwich is good, and most of the Stanley engineers had been educated at some college and were good mathematicians-al
ever met were. But suppose Coopers Hill is all that General Chesney imagines it to be, what is the good of it? Is it not perfectly well known that all the higher appointmen
I will ask a few questions for General Chesney to answer. Who lundered all the accounts of capital and revenue in the Indian them put into something like order? The Royal Engineers, or system of canals, with all sorts of useless but very expensive
masonry works, all of which works show a gross ignorance of geometry and mathematics? As the Duke of Argyll has alread this question does not need to be put. General Chesney is quite correct in saying that an engineer in India ought to be a practical In India or elsewhere ; but it is in this practical sense that the
Royal Engineers have turned out such expensive failures.
None of the Indian public works, either canals or railways,
publish detailed accounts of their expenditure and revenue, showing
capital distinct from annual expenditure. According to the Bluecaptal distinct from annual expenditure. According to the Blue-
books, which show roughly the general result, most of these works
pay only 1 or 2 per cent. Some canals-as the Orissa Canal and pay only 1 or 2 per cent. Some canals-as the Orissa Canal and
the Madras Canal-Sir Arthur Cotton's great work-do not even pay working expenses.
pay working expenses.
A reform not mentioned by General Chesney is needed more than any other, viz, that the accounts of Indian canals and railways should be got up by a professional accountant, and put
into a shape that can be understood, and will show separately into a shape that can be understood, and will show separately
capital and revenue. It is perhaps not known here that the chief engineer of each province in India is also secretary to himself, and gets up his own finance to show how clever he is. This opinion is
not shared by the present or late Secretary of State for India, or anyone else.
141, George-street, Edinburgh, January 16th.

problem in electricity.

SRR, -In reference to the letter of " $\Phi \Pi$ " in your last issue, it is certain that a current will traverse the coil at F , forming a portion A a closed circuit, whenever tis coils. When F approceches eitither
A or, on either side of the verticals.
electro-magnet, the curtent induced in F is inverse, i.e., in the electro-magnet, the current induced in F is inverse, i.e, in the
contrary direction to that of the current in the electro-magnet. When F recedes from the electro-magnet the induced current is
direct, i.e. in the same direction as the current in the electrodirect, i.e., in the same direction as che current will be seen, is to dininish the effectiveness of A and B in maintaining the motion
of the pendulum. When, in fact, the electro-magnets should attract F, the attraction is diminished by the effect of the inverse current; and, when they should release F , the direct induced cur-
rent causes them to attract it. The energy which disappears from rent causes them to attract it. The ennerg which disappears
the pendulum system becomes developed in the circuit of F; but the proof of the proposition would be more than I could at present
DesMoND G. FITZ-GERALD.
undertake. undertake.
January 14th.

british. equivalent of a metre.

SIR,-In your issue of the 11th November there appears a letter
from Mersss. James Chesterman and Co. on "the length of the metre," about which I wish to make aresion, for in the abstract the metre is not a measurable substance, but length, or rather a unit of length, whose equivalent in terms of any other unit of length
must be constant, and cannot be dependent on expansion or conmust be constant, and cannot be dependent on expansion or con-
traction, or any other law of nature, i.e., so long as we are dealing with the metre and be considered as mere lines, "lencth without breadth." But immediately we go to measure anything with, say, a material metre standard at a higher temperature than 32 deg. Fah. we must make a correction due to the elongation of that standard, together with that due to the coefficient of expansion of the substance to be measured, independent of the equivalent. The importance of
such corrections, whether for scientific or commercial purposes, is only comparative.
as not likely to arise the error of which Messrs. Chesterman speak as not likely to arise out of the use of the conversion table you
have lately compiled and published, but from neglecting to make expansion when such units are applied to material bodies. expansion when such units are applied to material bocies. be in consequence rather late in the field, I trust it will be none
the less acceptable to you and some of your readers. the less acceptable to you and some of your readers.
Demerara, 24th December, 1881. HAIEs H. MAN.
J.

Photometer tests of electric Lamps.

SRR, -Notwithstanding the numerous comments in the varions sests on electric lamps in the report by Professors Ayrton the Perry, which recently appoared in your pages, and seing also that
Professor Jamieson, on the same subject in your issue of the fith inst., has fallen into similar errors, I venture, as no one else has done, so, to point out the cause, Some of Messrs. Ayrton and
Perry's observations are correct, but all of Mr. Jamieson's are wrong from the simple fact that the

As Mr. Jamieson has given his formule and a diagram of connections in his paper, I will deal more particularly with it. All
the tests might be taken and worked out correctly as Mr. Jamieson the tests might be taken and worked out correctly a are from Jatieson
proposes should an ordinary battery or a current from a fed machine is employed both the electro-motive force and the current are very materially altered by the varying resistances employed in
the testing circuit altering the strength of the magnetic field. the testing circuit altering the strength of the magnetic fiel.e.
There is no difficulty in getting at correct results whatever the source of the current is; but, as your space is valuable, I need hardly
explain how-as any electrician would easily see, I think - now explain how-as ant the cause of error. I may mention that the mean resistance hot of this company's lamps, as tested by Mr. Jamieson,
should have been about 82 to 83 ohms, with a current of 1 ampere, should have been about 82 to 83 ohms, with a current of 1 ampère,
as against 51 ohms, shown in his paper. Should my explanations not be suf
happy to answer any further inquiries.
FRED. ORMISTON, Manager,
Incandescent Department, British Electric Light Company. Incandessent Department, British Electric Light Con
Heddon-streett, Regent-street, London, W., January 18th.

the question of heavy guns in america.

 STR,-While thanking you for your able and discriminating be good enough to allow me to offer the following remarks uponthe bursting of a Spanish converted gun-the first gun of the kind out of several thousand that has ever burst, excepting under known excessive charges. In the first place, the gun was supposed
to have fired a 131 lb . charge of powder wwith a projectile of, I
helieve about solb believe, about 801 lb ., and the powder was of about the same
strength as English R.L. G. - rifte large grain powder. Judging
from the results of my oww experiments the Spanish gun must from the results of my own experiments, the Spanish gun must
have been double-loaded. Had it been double-loaded with 131 b .
 and had it been double-loaded with 61 hb . charges of R.L.G. powder,
the cast iron casing would have cracked loggitudinaly in three or
four places, and the coiled tube would have remained sound, although permanently bulled to the extent of about qin. measured
along the diameter of the bore. along the diameter of the bore
As I have already
and the charges were each of 131 lb . weight. The resulte was that the cast iron was so badly cracked longitudinally that the staves. into which the body of the gun had been divided, were forced
radially away from the breech of the gun. The coiled barrel has radially away from the ereech of the gun. The coiled barrel has
practically no longitudinal strength, and makes no pretence to any. The result was that the coils of the inner barrel drew out, and as
the outer tube remained intact it acted like the bore of a gun to blow the detached cast iron breech away to the rear
In introducing my guns into the service I was often tempted to
abandon-under the heat of fieree competition with regard to abandon-under the heat of fierce competition with regard to
cost-the outer tube round the breech end of the lining barrel. The object of thus dividing the breech end of the barrel into two event of rupture commencing from the inside of the gun. I The
been fully rewarded for my resistance to temptation by the result of this accident; for the outer tube held together to the last and prevented a lateral explosion from taking place. Had the barrel been
formed of a single tube a terrible explosion would have occurred, and many brave soldiers would have been killed, whereas, owing to the
existence of my " " B " tube, only 1 itin. thick, no life has been lost.
I may remark that if coiled wrought iron barrels would burst like steel instead of bulging, it would require about four
times the pressure neeessary to burst a converted gun laterally in times the pressure necessar
order to blow the breech of
21, Earl's-court-square, January 17th.

the efficiency of turbines

Sirs, - As this subject is at present one of great interest, I
venture to offer a feve remarks on the letters of Mr. T Turnbull and Messrs. Gilbert Gilkes and Co. Mr. Turnbull gives 74 per
cent. as the highest result obtained by Mr. Emerson when experimenting with a Leffel turbine. Yet Mr. Emerson's Turbine
Reporter, 1877 , gives a very much better result, viz, 79 per cent. Reporter, 1877 , gives a very much better result, viz, 7 ,
as the lighest duty which he obtained with this wheel Now with regard to the merits of the "Hercules" wheel, which Mr. Turnbull says he is introducing on this side of the Atlantic.
The result quoted by him is excelled by the Risdon wheel, which gave an efficiency of 91 per cent. The half-gate result obtained
with the "Hercules " with the "Hercules" 72 per cent. is very satisfactory, but it may
probably be due to a central division in the buckets, such as was probably be due to a central division in the buckets, such as was
adopted in the old Fourneyron and more recently in the Leffel
wheel. If this supposition is correct, the 3 and would probably be as unsatisfactory as the half-gate results are

say, not having seen the wheel, but shall be pleased to avail ourThe Canal Ironworks, Kendal, turbin
The the first oportunity of doinso zontal shaft. This is a very good plane is shown, with a horimachinery direct by a belt. It is not, however, peculiar to proessor Thompson's wheel. The same plan is extensively used by us
in our mining advantages are-the wheel with case can makers. Some of the dvantages are-the wheel with case can be placed at any con-
venient height, not, of course, exceeding the usual height above the tail water level, the shaft tassing out at each sidie of the case, having bearings on the outside which can be oiled, the whole being acces veyed away from the wheel by a draught tube. In Mr. Hett's
letter we see letter we see that we claim as hiigh a percentage for our wheel at one-tenth gate as for full gate. In our letter it says "nearly,"
We know that the act of running a wheel canable 1000 cubic feet of water per minute with only 100 cubic feet cannot give the same useful duty. We believe Mr. Hett has an English turbine, and in his advertisement cautions the public against his wheel being represented as an American invention. We presume that this wheel will be constructed on the hasis of 75 per cent. percentage than 75 per cent. claimed. With regard to the perLeffel wheel useful duty, a great difference of opinion exists. The tested by a brake some time since, , y a Mr.
Brown, who wrote a letter in THE KNGINERR
stating the result of the test. This letter stating the result of the test. This letter
appeared about two years since, when a
similar discussion took place in your columns. We do not remember the exact percentage the tested wheel gave, but believe it was much over 75 per cent. Perhaps Mr. Brown will give us his experience by taking part in this discussion. 16, Holborn Viaduct, London,

January 11th.

the forth bridge

Sir,-I have examined the paragraph in my
work on " The Britannia and Conway Tubular Bridges,", referred to in your remarks on the
Forth
Bridge, November 11th, and I fail to Forth Bridge, November 11th, and I fail to call your attention to the fact-see page 470 that we estimated the pressure of a hurricane in this country at 46 lb . per square foot, which though, as we believed, overrated, is a pressure
of very little importance as regards the lateral of very little importance as regards the lateral
strength of the combined tubes of the Britannia Bridge, which are not only continuous but are
laterally united. We found, moreover, that theselarge exceptional pressures, both as regard wind and probably waves, are purely local, and never occur simultaneously over so arge a sur-
face as that of the whole side of one of these tubes ; in fact, it is evident that if this were not the case a very large proportion of our do-
mestic architecture, as well as of our sea demestic architecture, as well as of our sea de fences, would have been long since swept away.
During the great gales of February, 81850 , the heaviest gale experienced in Wales during twenty years, one of the tubes, totally disconnected from
the rest, was at its full height of 10oft., and was resting only on a pile of packed planks. It was so slightly affected that its lateral motion
did not exceed 1 tin., while a gleam of sunshine caused a lateral deffection of Bin.
jin of sunstine The blows from the gale were in the nature of impacts over limited local areas, and were never synchronous with the vibrations, and never produced the same amount of osciliation that
we could obtain by the synchronous exertion of ten men-see p. 719 . These vibrations all beten men-see p. 1.19 . These vibrations all be-
came inappreciable after the tubes were united together. I may add that the local impacts of or river where the approach of each gust is well marked and its limited area defined. The recent er at the Dee Bridge ha naturally for the moment given rise to much unfounded apprehension on this subject, which difficulties to to subside; but there are many good. It is to be regretted that Mr. Turnbulls drawing gives an
outside view only of the "Hercules" wheel, as your readers can only $\begin{aligned} & \text { large structures of of } \\ & \text { resistance to wind. }\end{aligned}$ friculties to be overcome in the design of thes
utside view only of the "Hercules" wheel, as your readers can only
form a surmise as to the shape of the gates, and there is nothing Mr. Turnbull claims as ities of the wheel itself.
Mr. Turnbull claims as an advantage that his turbine will do as nuch work as a larger one of an ordinary type; but as the
decrease in diameter las to be compensated for by making the buckets unusually deep, this claim must be accepted with a good deal of qualification. A smaller wheel runs faster with a given head than a largor one, and this is frequently a great objection.
In some cases I have reduced the width of my turbine disc and In some cases I have reduced the width of my turbine disc and
increased the diameter to keep down the speed, but have never found increased the diameter to keep down
it desirable to reverse the process.
Turning to Messrs. Gilbert Gilkes and Co.'s letter. Thirty remained practically the same. At that time it was a complete novelty; now in its original form it may be considered to be out of date; modern makers advanciing with the times have introduced
many improvements suggested by practice. The only published many improvements suggested by practice. The only published
record of any experiments witl the vortex wheel with which I am
and experimented on were employed for raising water, and gave a
pumping efficiency varying from 22 per cent. to 33 per cent. pumping efficiency varying from 22 per cent. to 33 per cent.
Allowing excessively for the friction of the pumps and water therein at another 33 per cent. of the whole power, the efficiency of
the turbine would only reach 66 per cent, which it very poor. The advantage of a horizontal shaft is by no means peculiar to numbers of other modern examples. It is not, however, to b recommended except in special cases. I encloses sketch showing
the setting of the Blackwell Mill turbines, a method which I the setting of the Blackwell Mill turbines, a method which
have also adopted in other cases.
Ancholme Ironworks, Brigg, January 3rd.
SIR,-In your issue for December 30th we are pleased to see proper prime mover for driving the machinery for the electric light. rere cannot in our opinion be any doubt about this, and that the urbine will be very extensively used for that purpose where water
is available. It is, therefore, desirable that the subject should be as far as possible well ventilated in your columns. Mr. J. Turn-
bull, of the Hercules Turbine Office, Glasgow, says that his turnamed, the small advantages over Leffers, ine paricuar is have a small draught tube, and as this draught tube in the illustration appears rather long, the discharge of the water after having done its work must in some degree be retarded by having to pass a
long and narrow tube, as this wheel is only half the dimeter Leffel's to give the same power. We have not seen the internal construction of the wheel, , oorre une have to jodge how the footstep
is carried, but suppose there will be as in Leffels a cross in the draught tube; sthis will tend also to block the water in the narrow discharge tube. It is perhaps questionable whether any gain can be
derived by reducing the size of the wheel to the least possible dia derived by reducing the size of the wheel to the least possible dia-
meter, excepting first cost. About the working parts we cannot

Marlow, January 14th.

trains on crane posts

Sir, - I am much pleased to see the letter of Mr. W. H. Bidder in The Engineer this week. I could hardly have desired a bette friendly criticism to make. In the fourth paragraph, speaking, of the method I used to determine the position of the "neutral axis," Mr. Biader says:- How he arrives at these calculations I am at loss to understand, they really mean nothing as to the point in
question." The italics are mine. Now I take it that the point in question is the determination of the stresses, and the position way, is only the locus of what I have called the neutral "axis," the neutral axis being in fact an axis perpendicular to the plane of the paper, and defined by a point in the neutral line, as shown in Mr. Bidder's Fig. 2. As to the meaning of my calculations, I have
simply to say that what they "really mean " is, that equations (8) simply to say that what they "really mean " is, that equations (8) tresses the position of the neutral line, I have stated thi several times already, and it is sufficient for my purpose that an eminent professor of applied mechanics and engineering construc tion, in one of the leading colleges of civil engineering in Europe,
has assented to the method of calculation I have used. Equation 9) follows, as a matter of course, by simply mating (S) equal and equating with respect to x, and the remarks in which I refe to Fig. 3 in my letter of December 30th are a demonstration of this extension of the use of equation (8). If Mr. Bidder can
illustrate this part of the subject more clearly than I have done, I illustrate this part of the subject more clearly than I have done, I
shall be the first person to admit a deficiency in my arguments, and I might possibly be able to see why it is that my calculations really mean nothing," \&ce.
It appears to me that it would not be unreasonable if some of your readers were to ask how Mr. Bidder obtained the information shown in his Fig. 2. It is true he says the position of the dotted
line can be ascertained from a knowledge of the stresses, but he noes not say how those stresses are calculated. If Mr. Bidder' Fig. 2 should present itself in this light to any of your readers, let me tell them that the stresses represented by the shaded triangles in that figure are given by equation (8) in my letter of Dec. 16th, (9) in my letter of Dec. 30th, and that as a matter of fact there is absolutely nothing in Mr. Bidder's Fig. 2 which has not bee explained either by Mr. Tozer, Mr. Fyson, "J. H. H.," or myself. Mr. Bidder says I have "attempted to discover the neutral line. I have said that in the post of Mr. Fyson's crane it is 9 in . more accurately 88 in .-from the centre of gravity of the cros
section, when that crane carries a load of 20 tons, and the weight of the crane itself is neglected. If I am correct, why call it an attempt; and if I am wrong, why not say how much I am wrong Am I in round numbers 5 per cent. wrong? If not May I sk your readers, Sir, to compare the do May I ask your readers, Sir, to compare the dotted line CD D in
Fig. 3 of my letter of Dec. 30th with the dotted line of Mr.

Bidder's Fig. 2, especially in that portion of the post below "quay
level," and which is under a condition of stress similar to that of leve, and which is under a condition of stress similar to that of
the cantilever in my Fig. 3. If my diagram, with the undoubted the cantilever in ny Fig. . If my diagram, with the undoubted
advantage of equations (8) and (9) which accompany it, is unin-
telligible, then is not Mr. Bidder's, which, as far as the values of stress are concerned, is left to speak for itself, \dot{c} fortiori infinitely more so ?
I fully If ully concur, Sir, in your remarks on Mr. Ward's letter, and I
can assure Mr. Ward that I should be quite willing to comply with can assure Mr. Ward the fact that I have twice already practically done what he suggests, in making Mr. Fyson's orane a test on the
duestion of stresses ; but Mr. Maior in his letter this she with question of stresses; but Mr. Major. in his letter this week, with
reference to my reauest that he should say what values he assigns reference to my request that he should say what values he assigns
to the stresses, says: "If he wishes to know what I should make them, my diagrams and letters printed December 9th and 23rd are at his servie,", \&c. We know that Mre Mrembor think the streseses
given by Mr. Fyson "improbable if not impossible," it is theregiven by Mr. Fyson "improbable if not impossible;" it is there-
fore clear that Mr. Major would say the same of the stresses which fore clear that Mr. Majo would say the same of the stresses which
I should give in a design for Mr. Wards crane. I have only one
Ind emark to make with reference to Mr. Major's last letter, and that is that his method of ascertaining the modalus of elasticity
below the elastic limit, from results obtained far above that linitit, is a sufficient excuse for my not wishing to discuss the matter with
him any longer. him any longer.
that so far as the stresses in a crane post are concerned I see no reason why the expression $(b+z$) should not retain the definition
he gives of it. I am sorry to find that "Q. Q. D." should still think my "accurately right" "voluminous effusions" are a source of danger to the science of mathematics. My greatest fault seems,
to be that I "hold the views of the best trained men of the day", in preference to those of "Q. E. D." I regret that I am unable to depart from my usual course of action in this respect.

Que ceux qui vivent dans des maisons de verre
Se mefient du danger de jetter des pierres."
W. B. Coventry.
nough to publish last
Sir, - My diagrams which you were good enough to publish last week are rendered simply absurd and meaningless by the omissions
and commissions made by your engraver, and I Lhall be blad if yout
will kindly republish them with the corrections. In the first will kindly republish them with the corrections. In the first place, in Fig. 1 the centre vertical dark line alluded to in my
remarks is omitted entirely, and in Fig. 2 it is only partially remarks is omitted entirely, and in Fig. 2 it is only partially
shown, viz, down to the quay level and omitted below this; and
the shaded shown, viz, down to the quay level and omitted below this; and
the shaded rectangles in Fig. 1 are shown nearly all the same
width vertically, and do not diminish as we ascend as stated in width vertically, and do not diminish as we ascend as stated in
my letter, and in Fig. 2 the triangles showing the amount of my letter, and in fig. the triangles showing the amount of pression starting from the bottom in Fig. 2 are considerably too pression starting from the bottom in Fig. 2 are considerably too
large, and not at all in the proportion of those shown in my
drawing sent to you ; finally there is a heavy dark line shown on drawing sent to you; finally there is a heavy dark line shown on
the right-hand side of each figure which was not shown on mine. the right-hand side of each figure which was not show
How all this has occurred I am at a loss to understand.

Also in the letterpress in the tenth line you make me say "central" and not "neutral;" the word central makes the thing
absurd. I should like to make one correction, and that is that the
centre centre vertical dark iot
vertical top end of the curve it becomes simply the neutral axis of the horizontal part. Broadly stating, the shaded sections in Fig. 1 .
show the strains in a vertical column due to its own weight and an show the strains in a vertical column due to its own weight and an
additional load at the top. Fig. 2 shows the alterations of strain produced by the column being bent as shown, and the additional load suspended from the end.
15, Great George-street, Westminster, S.W. W. H. BIDDER.

SIr, - -Having neither the wish nor the time at my disposal to
nter into a discussion either with Mr. Coventry or Mr. Major, enter into a discussion either with Mr. Coventry or Mr. Major, I
will content myself with making a few remarks bearing on their will content myself' with letters of last week's issue.
the term have stated perhaps in my previous letter that I used the term " neutral axis theory" "in the sense in which Mr. Pendred
used it in connection with the " "eminent authority," and not in that made use of by Mr. Coventry, so that I had no intention of hurting his delicate susceptibilities on that score-in fact I quite agree with most of what he says on the subject
letter that he has been contending from the first that Mr Pendred's results were correct; to satisfy myself on the subject I . therefore referred to my back numbers, with the following result which I hope will excuse my having mistaken his line of argument, "view of the case is wrons," and gives the "rocking shaft" equal, which as I understand from his allowing my equation to stand as correct he is still prepared to maintain, and which certainly leads one to suppose that he agrees entirely with the
"eminent authority." On November 11th he strengthens this impression by his example for Mr. Seguin's benefit, in which he produces the required strains in his pogut by a hoorizontan force. In
pis third letter, December 9th, he writes a leeture on the position
his. of the neutral axis, but still no word as to conange of ground,
and it is only on December 23rd, his fourth letter, after Mr.

Coventry has kindly called his attention to the absurdity,
that he quietly, without calling that he quietly, without calling attention to the fact, which quite
escaped my notice, alters his statements, so that, to quote from his
petter escaped my notice, alters his statements, so that, to quote from his
letter this week, where he refers to Mr. Coventry, this "sliows either a great change in Mr. Major's. views or an unfortunate
vagueness of diction," if nothing worse. This Ihope he will accept Vag the reason why' I mistook his final dietum on the subject,
accurring as it does towards the end of about half a dozen colums of letter-press. does not make the slightest differe to see, and it is this: Why, in considering them only as the resisting powers, whether the neutral axis, if it were possible, is in the back, breast, or any intermediate point of the web-if, as I say, it does not vary the strains in the
least-and neither Mr. Coventry nor Mr. Major, as I now under stand them, contend that it does alter them-then why make all this storm in a butter-boat?
Mr. Major's own definitio
equilibriu equally well, and with equal truth and more logically to the vplien theory; and if we do wish to regard the web as effective in doing
work, it is Work, it is quite easy to calculate the amount, still carrying out the
valve theory ; and I cannot understand why Mr. Maior will asser that that theory necessitates the "elimination of the neutral axis," when, as a matter of fact, the neutral axis is the natural
consequence of the forces actign standpoint, which ought to be apparent to any reasonable perom The fact that Mr. Major has ideas in common with nine other o your correspondents is certainly encouraging, as the depressing
conviction had forced itself on my mind, that according to his own opinion no one besides himself had yet properly stated the case. weight was known, and the distance, on the assumption of a central neutral axis, an assumption which he has before now himself indulged in, was known; the strain alone being unknown.
In compliance with Mr. Coventry's request 1 give the following may not still furition of neutral axis in my model, hoping that
 from the breast, the neutral axis was 1 ITin., as nearly as possible from the centre of the breast flange. I leave Mr. Coventry Kensington, January 16th.

\square

SIr,-While I fully agree with you that caution should be used in weeding a library, I cannot agree with you that much mischief is now being done at the Patent-oftice. It the library there is to be regarded as a general library, then the harm done may be great, and as such it should be cleared of what is rubbish, in the sense that it is matter in the wrong place.
For example, one room contained until the other day a huge pile quite a cartload-of United States parliamentary reports. For worthless. In another place were to be found great piles of theological works, never taken out of the paper in which they were originally wrapped when purchased. Of the character of certain other old works the less said the better. They were not scientific,
and assuredly not theological. Even though the report on Dollond' and assuredly not theological. Even though the report on Dollond's
case is only to be found in the Gentleman's Magazine, I do not see any reason why hundreds of magazines should be retained. If there was ample room, it would be all very well to retain such books; but there is not. Hundreds of new and valuable books
have to be bought every year. Space must be found for them, and have to be bought every year. Space must be found for them, and
rubbish must be cleared away. The first consideration is the utility of the library. Luxury cannot be had under the existing
itliberal administration of Patent-office funds. PATENTEE. London, January 18th.

snow-hill station roor,

Sir,-Your correspondent, Mr. Timmins, has given some rathe startling and important facts regarding the above. By his
diagram of strains he gives a possible load of no less than 17 tons per square inch of section at the top or central tie, under certain conditions which, in my opinion, are unfair, considering the small
altitude of the roof and the way it is protected at the south end altitude of the roof and the way it is protected at the south end.
I think the chief danger is in the lifting pressure on the underside at the north end, which is quite open. At any rate, taking the roof under the worst conditions, I fail to see how more than 10 tons per square inch can come on any part in tension. The
arrangement of diagonals is undoubtedly bad, and it is not by any means a grand roof compared with others, but I think there are
many worse.
P. H. S. Soho, January 17th.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

The Ironmasters' Quarterly Meetings had not been over two days
before the customers of the Earl of Dudley and of Messrs. WV Barrows and Sons received circulars which, though they did not announce a rise, yet indicated that future orders might have to be
subjected to a rise. subjected to a rise.
Mr. Fisher-Smitl

- "In the present state of the iron market orders for the Earl of Dudley's finished iron can only be received upon special quotations,
or at the price at Round Oak at the date of execution, and for or at the price at Round Oak at the date of execution, and for
approved quantities and specifications." Messrs. Barrows, writing approved quantities and specifications." Messrs. Barrows, writing
from the Bloomfield Ironworks, state that they "are now only open to receive further orders subject to the price of our iron at
time of execution as regards quantitities, sizes, \&ce.
The eusiness
The business which was done upon 'Change at the weekly
meeting of the iron trade in Wolverhant meeting of the iron trade in Wolverhamton on Wednesday
induced the conclusion that the effect of this action, combined with the advance of 10 s. per ton by another firm announced last week, to buy. They especially objected to the giving out of orders with
to an uncertainty overbanging the transactions touching the terms
upon which they were to be supplied. Of this hesitancy the makers of a good quality of medium bars reaped the advantage. Yet bars were not generally so strong in price either in Wolvereither Exchange yast week. Indeed there were firms who last week asked £fi, who this week have been prevailed upon to accept
$\pm 617 \mathrm{~s} .6 \mathrm{~d}$. for common bars. Medium bars were to be bought at
Reports from the firms who are well known for their brand of hoops showed that the orders for that description of iron are very unequally distributed. There were houses who reported themselves
to be getting quiet in their hoop mills. They are busy upon tube and also lock-making strip, but upon baling strip and coopers'
and
 per ton. At the same time there were makers who were still
phen quoting $£ 7$ 10s. per ton. The markets were not bare of hoop orders, but they were at prices which could not be accepted.,
Liverpool merchants were ready to buy on account of the States requirements, but they would not give even for a better quality requirements, but mey wourd not give even for a better quaity
any more than they are giving to makers whose proximity to the
port enables them to quote within the Staffordshire rates.
port enabail rod business has dropped to a low level lately. There
the extent of business being done which there was before the late protracted strike of operative nailers in the Bromsgrove district.
That strife lasted over three months. While it was on custoner who never before used cut nails, tried them, and ultimately found that they could be employed to supplant the forged artiole, for
which a higher price would have to be paid. To-day slit rods were which a highere price would have to be paid. To-day slit rods were to be bought at $£ 6$ 15s. per ton.
There was a demand for sheets not of the best sort for the
making of braziery goods. The local demand was not, making of braziery goods. The local demand was not, however,
so brisk as it was three weeks ago. Buyers sought to purchase on socount of the requirements of Lancashiire and of the export trade. account of the requirements of Lancashire and of the export trade.
They were eeking to place their orders at $£ 8$ for sizes from 20 to 24 w.g. This price makers would not accept, though they were
not tindisposed to take ± 85 s., and here and there such a figure as e8 2s. 6d. seemed possible.
Gight anising sieets were scarcely so strong as a week and fortnight back, and large buyers reported that they have this week
done better than they had at the earlier time thought would be probable. Nevertheless, firms who have still plenty of work on
hand quoted $£ 815 \mathrm{~s}$. for singles, $£ 10$ for doubles, and $£ 1110 \mathrm{l}$. for latens. Firms who are seeking orders quotede $\& 8$ \& 10 s. for singles, Business was done to-day, but not upon an extensive scale.
Stamping sheet orders continue to arrive upon export account, both colonial and foreign; ; but upon home account only little new
business has been transacted at the advanced rates lately declared.
Last week's rise in tin-plates is not yet being generally secured. Boiler plates keep a few mills fairly on and a few others busy; but there is more being done in tank and girder plates, at prices
made firmer by the recent advances in plates upon the Middlesmade firmer by
brough market.
brough market
Puddled
Puided bars are in demand in advance of the supply, the
requirements of the sheet mills in particular being in excess of the capacities of the forges in more than a few instances.
Pis iron is dull of sale this week. Recent purchases by con-
sumers have mostly satisfied their present requirements. Prices sumers have mostly satisfied their present requirements. Prices
were to-day quoted without abatement, uniformity amongst the sellers of hematite qualities. Tredegar iron was realising the 7os. for which the makers have been holding
out. All-mine pigs were quoted from $£ 3$ 10s. to $£ 312 \mathrm{~s}$. 6 d . for hiot-blast, and $£ 4$ 10s. for cold-blast. Part-mine was $£ 3$, and
$£ 2$ 10s. was demanded for common iron. Derbshire iron was $£ 210 \mathrm{~s}$. was demanded for common iron. Derbyshire iron was
difficult to buy under from 57 s. 6 d. to 62 s . 6d.; and Northampton iron was almost as high. Wiltshire pigs are selling better in this
district furnace. Messrs. Groucutt, of Biston, have blown in a second
fistrind furnace for the supply of their own mills. By other firms prepara-
tions are nearly completed for the restarting of one blast furnace tions are nearly completed for the restarting of one blast furnace
each at Tipton, Wednesbury, and Willenhall, and of two at Bilston.
Ironstone and ore and pottery-mine keep in large demand, and
limestone was advanced from 4s. 11d. to $\overline{5}$ s. 1d. and $\overline{5}$ s. 2d. per ton limestone was advanced from 4s. 111. to os. s . di. and Ds . 2 dd per ton.
Coke is to be had at the local gasworks at $£ 10$ per boatload, or Coke is to be had at the local gasworks at £ 10 per boatload, or
about 15s. per ton.
Derbyshire and Wigan coke is selling at $16 \mathrm{~s}, 6 \mathrm{~d}$. to 17 s , ordinary South Wales coke at 10 and Wales at from 17 ss . to 18 s . per ton all delivered.
Coal keeps dull of sale
Ber ton. Best harnace is 10 s ., and best forge 9 s .
Beosehold is 10 s. per ton at the pits down to 6s. for
Inferior sorts.
The Brush
Farm Ironworks, which had been for some time The Brush Farm Ironworks, which had been for some time
standing idle, have been taken by Messrs. Bright and Langham, who have just started the sheet mill.
Maccine castings are in a littlle better request upon the week.
Amongst the miscellaneous requisites in demand as the result of Amongst the miscellaneous requisites in demand as the result of
the improved trade in metal goods in different parts of the kingthe improved trade in metal goods in different parts of the king-
dom, are drawing presses, lathes, and other machinery required by the wire-drawers and tin-plate workers
Following the course taken by the Leeds firms, the cut nail
makers of this district have advanced prices 6 d . per cwt. making mollowing the course taken by the Leeds firms, the cut nail
makers ofthis district have advanced prices 6d. per cwt., making
present prices 9 s . fd. per awt. for 3 . Bin. and upwards. A similar present prices 9s. 6 d . per cwt. for 3in. and upwards. A similar
rise has been declared in iron washers. Stamped, tinned, and
ise japanned iron odd work has been put up from 10 to 20 per cent. on
the net. Black and tinned and japanned forged odd work has the net. Black and tinned and japanned forged odd work has
been advanced from 5 to 10 per cent. on the net. Chest handles are dearer by $12 \frac{1}{\frac{1}{2}}$ per cent. on the net price.
The improvements that are being carried out at the London and North-Western Rail way station in Wolverhampton are progressing
with vigour. This week the contractors began the widening of the with vigour. This week the contractors began the widening of the
down platform. The work is expected to occupy a fortnight, and during that time all trains will be started from the opposite side of the station. A new booking-office and waiting and refreshmentAlthough the demand in the North Staft
the moment searcely as active so recently Staftordshire iron trade is at the moment scarcely as active as recently, either on home or foreign
account, yet prices keep firm at from $£ 7$ to $£ 75$ s. as the general quotation for Crown bars, and common bars are selling at $£ 615 \mathrm{~s}$. One firm is reported to have advanced their bar prices 10s. per ton.
Notwithstanding the lull in the arrival of new orders, the mills and Notwes are fairly well off for work, and the orders on the books are
fors generaly sulicient to keep the mills rumning steadily for some
weeks weekss Pigs are rather quiet at the omoment at $£ 3$ per
qualities, and $£ 27 \mathrm{~s}$. 6 d . to $£ 25 \mathrm{~s}$. for common sorts.

NOTES FROM LANCASHIRE.

Manchester:-In the iron trade of this district business has been rather quiet during the week, and for the present there seems to be covered for the next month or two ; consequently, but litle iron is really wanted for present actual requirements, and where inquiries are made they are mostly for deferred deliveries. The weaker tone
in the Scotch and Middlesbrough markets during the last few days has also had some influence upon buyers, who might otherwise have given out orders, but now preffr to wait. Makers, however, in the fluctuations of speculative markents, and not only are they very
firm in their prices, but they show little or no disposition to enter into forward enga, of trade itself is healthy, nearly all the iron-using branches of industry being busily engaged, and there is prospect of a con-
tinued steady market, with at least present prices well maintained. At Manchester on Tuesday there was only a limited amount of business doing, but prices were very firm, and in Lancashire pig
iron there was even an advance of 1 s . 6 d . per ton, local makers who have good inquiries in hand putting up their list rates to 52s. bd., less $2 L$ per cent. for forge and foundry qualities delivered
equal to Manchester. Second-hand lots of Lincolnslire forge iron
 delivered into this district, but makers want 1 s. per ton more than
this, and sales of Lincolnshire foundry have been made during the this, and sales of Lincolnshire foundry have been made derning
week at prices equal to 43 s . and 44 s , less 2 L per cent. Derbshire remains at late quotations, but Middlesbrough
51s. 4d. net cash delivered equal to Manchester
In. 4d. net cash delivered equal to Manchester. In thished iron trade, although there is not the pressure of orders asa a short time back, still there is a good steady demans
coming in, with enlarging home requirements, and there are also coming in, with enlarging home requirements, and there are als ments. In some cases, where local makers are as fully sold as they care for the present, 2 fs . is quoted for bars deliverea into in exceptional instances, and the average selling prices may be
 ployed, and boiler makers especially all through the district are
full of work. American inquiries are also still coming into this district for various descriptions of tools, such as cathes, drills, \&co., and notwithstanding the high tariffs,
United States seems to be increasing.

There is a good deal of work in prospeot for machinists, as in
several districts the erection of new mills or the extension of xisting ones is projected.
The safe
ightinj
 now win use, is a question which oontinues to attratt considerable
antention
Nond

 mining atters between thay thene ventias astastruggle going on in

 which had been made in ventilation. If they knewa a lamp would
only resist a velocity of sft. per seoond, and they had air traveling

 ducod into their rinines.
The coal trade contin
The coal trade continues depressed so far as the better classes of round coal are concerned, and the very limited requirements for
house fire purposes cause the commoner sorts for ironmaking and
steam purposes to be also abundant, notwithstanding a good steam purposes to be also abundant, notwithstanding a good
demand for trade requirements generally. Prices also continue low, and during the past few days a rather weak tone has been
noticeable here and there in round coals. Engine classes of fuel which move off without difficulty, so far as the better sorts are ooncerned, maintained late rates. The average pit prices are
about as under:-Best coal, 9 s . to 9 s .6 d ; ; seconds, 7 s . to 7 s . 6 d ; Barrow, -As mentioned in my last report, makers of hematite
Ber made for all classes of metal. The demand shows a very steady increase, and makers are sending the whole of their large output
into immediate consumption. The output at the furnaces in the district is very large, and makers are of course very busy ; but at one or two ironworks in this district arrangements are being and when this is done makers will be better able to meet
the large demands which are being made upon them. The
tonnage of metal which is already sold forward is, I know, very considerable, and any orders that are being booked now must necessarily be for forward delivery. The demand from America
and the Continent shows a very appreciable increase, and the deliveries to these places during the year will be very heavy. I the increased demand which is being experienced from this quarter is an evidence of the increased prosperity which has set in all
round. No. 1 Bessemer is quoted at 64 s . 6 d . per ton, and No. 3 forge at 62s. per ton at makers' works. These figures leave last notes, they must not be taken as being correct evidence of the
state of the hematite market, as several makers have secured orders at 67 s . 6 d . per ton.
Steel makers still
Steel makers still maintain the activity which has characterised that branch of industry for some time, and further orders are being obtained. Shipbuilders are giving evidence of an increased
activity, while engineers, ironfounders, and others are very fairly activity, while engineers, ironfounders, and others are very fairly
employed. Iron ore in good request. Shipping fairly employed.
Pig iron is being sent by rail to the ironmasters in the Cleveland Pig iron is being sent by rail to the ironmasters in the Cleveland
district who are doing business in the steel trade, from the Furness
mines in large quantities.

THE SHEFFIELD DISTRICT.
There is no change for the better in the South Yorkshire coal-
field. The officials of the Yorkshire Miners' Association have had their interview with the Coalowners' Committee, when they were
accompanied by delegates representing eleven large collieries in the South Yorkshire and West Yorkshire districts. The coalowners repeated their offer of the sliding scale for the regulation of wages.
The officials and delegates required first that there should be an advance of 10 per cent. in wages, which they claimed as justified
by the inoreased value of coal. If this demand were conceded, their constituents would be prepared to adopt the principle of the sliding scale. The coalowners distinctly denied that any increase
had taken place in the selling price of coal sufficient to justify them out any definite decision being arrived at, to report the result to their constituents. Though the miners, or
rather their representatives, talk freely of "striking," I do not anticipate any serious disturbance in the South Yorkshire coal-field this season. During the last month I have been over a very large
tract of country commonly known as "the coal district," and tract of country commonly known as the coal district, and
though the miners have got the idea that they ought to have an
advance, I have not yet met with one who is prepared to strike work to obtain it.
Our engineering houses keep remarkably busy, working night and
day on heavy orders for machinery and plant. There are orders on day on heavy orders for machinery and plant. There are orders on
hand for which early delivery is pressed, and cases have come to my knowledge where considerable premiums have been offered for towns must be exceptionally active. Over one hundred locomo tives are on order from America, on account of the inability of
American makers to complete them in time. It is questionable American makers to complete them in time. It is questionable
if they can be finished in this country within the time required.
In Sheffield, unfortunately, railway engines are not built, the parts which are manufactured here being sentto Glasgow and other places to be put together.
Rails are so heavily ord
Rails are so heavily ordered that several of our manufacturers
are booked forward six months. I hear of several good contracts -for exceptional sections-having been taken at $£ 710$ s.; but the be be the
average price is stated at $£ 6$ 5s. The American demand is still very important, and tends to prove that the reliability of the Shef-
field made rail has a distinct reputation with several of the leading railway companies of the United States. One firm in this district
sent last year to the States at least 30,000 tons of steel rails. In sent last year to the States at least 30,000 tons of steel rails. In
the rail trade the most curious feature comes from Germany. In that empire the price of rails for home use is £14 per ton, yet with English makers at about half that figure
I am glad to learn that there is every prospect of a new trade
being introduced into Sheffield within a month. Messrs. Howell being introduced into Sheffield within a month. Messrs. Howell
and Co., Brook Steel Works, Brook Hill, have long enjoyed an excellent reputation in the manufacture of blister, shear, spring, slotting tools, they claim that it enables the speed of the lathe to be increased from 25 ft , to 70 ft . per minute, They have also
been favourably known for their "homogeneous metal" for boiler and fire-box plates, as well as their patent homo-
geneous metal and cast steel tubes for locomotives or other
boilers. It is now the intention of the firm, I understand geneous metas now the intention of the firm, I understand, to enter
boilers. It in
vigorously upon what has long been an important Birmingham

 mingham, Messrs. Hovell and Co have obtained the blast
furnaees at TTintey formerly ocoupied by Messrs, William Cooke
und and Col, Limited, Tinsley Steel and Iron works, and are at
prewent laying down the necesesy machinery for carrying on the
 the trade eircles of the district.
advancentier in the manuluacture of ivory. are not al little interested in the rapid
 Iarge quantity of ivory is returned to Africa in the form of
"bangles," which are worn as wrist ornaments by the dusky belles. The fashion has rapidy entended of latee, and formed no incon-
siderable factor in the rise in the value of vivery

THE NORTH OF ENGLAND,
A suchr reactionary feeling in a downward direction took

 gow, depressing that market and affecting all others; still the cheock must be regarded as merelya temporary one. The confidence
in the future is unabated, botl merchhants and makers being willing to sell only for prompt or approximate delivery. No. 3 g .m.b. may

 44s. 6 d a a wek ago. There are now 176,114 tons in Coinal's
Middolesbrough store, being 23 tons less than the previous weekl The demand for manutactured iron keeps steady. No further advance in prices took place on Tuesday, but all the manufacturers have work to last them six or seven months, and the contracts
recently booked still exceed the quantities run off. In the meantime considerably increased competition is likely to ensue. The the Walker Rolling Mills Company has issued its prospectus, and is endeavouring to obtain the requisite capital for commencing operations. The Auckland Ironworks Company-late
Edward Hutchinson-has also issued a prospectus, the leading the end of the year, if not before, the production of shipbuilding iron will be very largely increased; still, as far as present appearances go, the demand will be sufficient to take up the increase.
The great trouble which is looming in the future for iron manu facturers is the unsettlement of the labour market. Puddlers are becoming extremely scarce, and notwithstanding the Board of
Arbitration and the sliding scale, employers are competing strongly with one another for the men. This competition has so far taken the form of allowing "prize money" and various extras, which practically raise the price paid for work done, but it is not reckoned
within the ken of the Board of Arbitration. It is stated that at within the ken of the Board of Arbitration. It is stated that at Durham, puddlers have been offered $£ 2$ each and free house and fuel for six months, if only they will migrate to that somewhat outlandish district. At Stockton the prize money hitherto usual in the district has been increased, and the conditions under which it is earned have been made more favourable to puddlers at all the works. At each pudding furnace the two men working it now get rate, whether they are working on the level-hand orthe under-hand system. In the case of level-hands, the men get in addition 1d. per man per heat, each shift being taken on its own merits. This
altered arrangement gives every facility for men coming to work when they like, staying as long as they like, and going when they
like, and it is certain they will not be slow to avail themselves of every opportunity to "play" as much as possible.
The notices which were put in by the puddle week, to give over Sunday fettling and to cease working on Mondays, have had a somewhat curious result. At two out of the five Stockton works the men refused to work on the first Monday
affected; at one of the other three they came and fettled their affected; at one of the other three they came and fettled their
furnaces out before six in the morning in consideration of a bonus of 2 s .6 d . each promised them by the manager. At another works
the firm fettled the furnaces themselves during the preceding the firm fettled the furnaces themselves during the preceding
Sunday at their own cost, and the men worked as usual on the Monday. At the remaining works it appears that the men went
to work on the previous system, which they had given notice to terminate. It is clear, therefore, that there is the greatest want of unanimity and uniformity of practice amongst the men them-
selves; and it must not be forgotten that the whole thing is selves; and it must not be forgotten that the whole thing is
unrecognised by their union, and in defiance of the wishes of their executive. At Middlesbrough the puddlers are very uneasy, and
are endeavouring to force their employers to grant them the same concessions as they have obtained at Stockton.
The annual dinner of the Cleveland Institution of Engineers
takes place on Friday evening at the Erimus Club, Middlesbrours takes place on Friday evening at the Erimus Club, Middlesbrough.
In the course of the evening the president, Mr. E. W. Richards, will give an account of what he saw from a technical point of
during his recent journey to the United States of America.

NOTES FROM SCOTLAND.

(From our o
THE pig iron market has been very flat this week, and prices, which were declining towards the close of last week,
still further. Holders of warrants have in some cases been selling pretty heavily, and this fact, together with the absence of any
immediate demand of consequence, has led to the present dulness immediate demand of consequence, has led to the present dulness
in the market. There is a steady trade being done with the Contient in pig iron, and the American demand appears also to some militates against any great expansion of this department of the
trade at present. The exports, as a whole, have been unsatisfactory, those despatched during the past week amounting to only 5767 tons,
against 6677 in the same week of 1881 , and to date the shipments against 6677 in the same week of 1881, and to date the shipments
show since Christmas a comparative decrease of 4322 tons, while the imports from Middlesbrough of Cleveland pig iron, on the
other hand, have increased 3208 tons. Only a small quantity of pig iron is being sent into store, not more than a fourth of the Co. before the close of the year. The stocks amount now to about Business was done in the warrant market on Friday forenoon at
 and 52s. 3d. to 52s. one month. The market was very dull on quotations being from 52 s . to to 51 s . $8 \frac{1}{2} \mathrm{~d}$. eash, and from 52 s .2 d , to cash, and 51 s . 11d. to 51 s . $8 \frac{1}{2} \mathrm{~d}$. one month. 4 he market was als
very flat on Tuesday, with business at 51 s . $4 \frac{1}{2} \mathrm{~d}$. to 51 s . 2 d . cash Wednesday, with business between 51 s .2 d . and 51 s . 6 d . cash, an
and
Whe $51 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}$. to 51 s .5 d . one month. To-day-Thursday-the marke
was easier from $51 \mathrm{~s}, 2 \mathrm{~d}$. to $50 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$. cash, and 51 s . 5 d , to $51 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. In month.
In consequ
iron has declined in second hands to the extent of fully 6d. per ton since last report, the quotations being now as follows:-Gart-
sherrie, f.o.b. at Glasgow per ton, No. 1, 62s., No. 3, 54s. 6d.;

 and 53 s .6 d .; Eglinton, 53 s . and 50 s . 6d.; Dalmellington, 53 s . and
51 s .6 d . The malleable iron trade continues very busy, all the works
being full of orders and the prices are very good; were it not that a great quantity of the work on hand is for contract, sales would be
higher. Malleable common bars are quoted at $£ 65 \mathrm{~s}$. to $£ 7$, according to quality; angle iron, £8; plates, £8; rods, $£ 7$ per ton.
The different branches of the manufactured hardware trade are very actively engaged just now. Nail-makers and bolt and screw
and rivet makers are especially active, some of them having orders on their books which they will not be able to undertake for some months to come. The nail-makers have this week intimated an
advance of 10 s . per ton on cut nails. Some of the finer qualities of the American steel machine-made horsenails are in good demand, but other kinds are not so much inquired after. Belgians are
There is a fair business doing in the coal trade, which is showing
more activity than it did a week ago. Notwithstanding the drawmore activity than it did a week ago. Notwithstanding the draw-
backs experienced by shippers of coals in consequence of the damage done to the harbours by the recent storms, the shipments during the past week have been nearly 10,000 tons larger than
they were in the corresponding week of last year. The inland they were in the corresponding week of last year. The inland supply as trade continues to expand. Prices are nominally a supply as trade continues to expand. Prices are nom
little firmer this week, although quotations are not altered.
The first
The first general meeting of the shareholders of the reconstructed
Monkland Iron Company, Limited, was held a few days ago in Monkland Iron Company, Limited, was held a few days ago in Glasgow, Mr. Reid occupying the chair. The chairman stated that
the capital of the company, 40,000 shares of $£ 5$ each, had been duly subscribed and allotted, and calls aggregating $£ 4$ per share had been made and well responded to, the unpaid arrears amounting to
$£ 1935$. This it was expected would be paid ere long. He also stated that the property of the old company had been purchased on the following terms :-For the works, stocks, debts, cash,
and property of every description, $£ 157,688$; for an annuity of $£ 1000$ payable to three lives aged respectively sixty-three, fifty-
seven, and fifty-three, $£ 14,000$; in all £171,688. Towards this sum the new company had paid the liquidators $£ 150,827$, leaving $£ 22086$ and interest still to pay. The chairman also intimated that Mr .
Ferrie would continue in office as managing director at the same Ferrie would continue in office as managing director at the same
remuneration as before, without any additional sum in name of lordship on the pig iron obtained, and the directors had to express
their thanks to Mr. Ferrie for that concession. He took a hopeful rew of the future of the company
At the monthly meeting of the Mining Institute of Scotland,
held in Hamilton, Mr. Ralph Moore, H. Inspector of Mines residin Hamilton, Mr. Ralph Moore, H.M. Inspector of Mines presiding, a paper was read by Mr. John Drinnan, Arden Colliery,
Airdrie, on the Employers' Liability Act. He pointed out that the Act was very defective, inasmuch as it was completely silent on what constituted negligence. He did not believe, however,
that the employing interests will be seriously affected by the that the employing interests will be seriously affected by the The Glasgow Tramway and Omnibus Company is about to oxtend its system from Shawlands to Pollokshaws, the total cost of the works being estimated at $£ 12,000$. This
advantage to the inhabitants of the ancient burgh.

WALES AND ADJOINING COUNTIES.

AN important arbitration case between Mr. Radford, the well come to an end in favour of the the Coedcae Company has jus come to an end in favour of the company. It would appear
that some time ago the company became possessed of a coal
property owned by Mr. Thos. Jones, who was under engagement that some time ago the company became possessed of a coal
property owned by Mr. Thos. Jones, who was under engagement
to supply coal to Mr. Radford for ten years at a certain price governed by market rates. What this rate should be was the the point at issue. ltogether a smooth run. Some little formality has again take place, but I do not apprehend that it will be fatal. Possibly send
hoped.
Newp
Newport Dock has been the scene of a disastrous accident Two vessels coming in together collided in the neck of the dock.
One or both will have to be destroyed, and as forty or fifty vessels Ore in dock the damage will be a serious item
I regret also to record an explosion at Risca, but fortunately it was on Sunday when only four men were in the pit, and the loss
of life was confined to these and the horses. The cause would appear to have been the firing of a shot by a repairing party. The damage is serious, and another cause is given for continued care in firing s
seam.
The
The iron and coal trades continue to show a prosperity of a very firm and substantial aspect, one that has been caused by no In steel the year is opening out very well-, orders are coming in freely, and advices from America in particular encourage very At Dowlais there is a good work being done. Mr. Menelaus has
Aters. left for Denby. Mry. Spence, Mr. Adley, and others visitod the not at all improbable that considerable extensions of the works will be carried out by the new company which is to take possession in a short time. This may assume the form of additional furnaces.
The works are so well placed for railway service that rates for Spanish ore to, and manufactured products from, the place are as
low as if the works were built on the moors at Cardiff-the site, I

The total coal shipments from the Welsh ports last week amounted to 156,315 tons, of which Cardiff sent 106,355 tons. Swansea retained its high place
a fair average with 26,170 tons.
Prices remain the same, but an advance in price is imminent
and I shall fully expect that the close of the month will show this At present, best steam coal ranks at 11s, 6d. foob. At the present day, when the depletion of the coal field is a matter of ordinary onversation, it may be interesting to know that arge and valuabl tracts will be opened by the projected new lines of railway to which
I have referred of late. One of these is a tract of 300 acres of A meeting of railway employés, consisting of representative from various districts, met at Quakers'-yard this week, to form
union for the advocacy of the short hours system. The Rhondda tramway is to be strongly opposed, first on tech-
nical grounds and for informalities, and secondly, by the Taff Vale Railway Company, which pleads that the formation of the line
would interfere with their railway, and is not required, seeing that five trains are run daily.
The Raven Anthracite Colliery, near Llanelly, is to be sold by

THE PATENT JOURNAL
 condenem

$\stackrel{*}{*}$. It has come to our rotice that some applicants of the

 refere to the paga, in place of turrinio to
Unding the Mumbers of the Specilication.
Applications for Letters Patent. $* *$ When patents have been "communicatod" the
name ond andross of the communicating party are
printed in namo and in italics.

10 th January, 1882.

122. Siear, W. Smith, Sheffield

123. Reproduciso Exoravisus, L. Philippi, Germany.
124. Botutse, H. H. Fanshawe, East Dulwich, and A.
Wild, Sunhead

 130. ELbectran Currents , W. T. Henle

 140 Preventico Heat of AxLe-boxes, A. M. Clark.(H. Bouchard, U.S.).
125. Brocclese, C. W. Francis, London.
126. Iroo Wire, G. and E. Woods, Warrington,
127. Locomorve, R. Brandon.-(A. Cottrau,

 146. Lithoaraphic Michives, G. Newsum, Leeds.
128. CRANEs, F. R.

 2. Dyeing Yarn, dc.., E. Boden, Manchester.

 $12 t h$ January, 888 .

 13 th January, 1882.

Smale London.
129. WARMIND APARTS, J. Parrot, Wallington.
130. RATOHET BRPACES, C. T. Colebrook, London.

 194. SAFES, D. R. Ratcliffe, London,
131. Wontive CABLEs, GG. Cradock and L. Gooder,
Wakefield. 196. Wreniel, E. G. Brewer.-(A. and L. Q. Brin, Paris.)
132. TRAMsMISsIov of SouND, W. C. Barney, London. 197. TrassMissiov of Sound, W. C. Barney, London. 14th Jamuary, 1882.
133. SToves, J. F. Hoyne, London, and G. B. Lovedee,
Birmingham.

134. Ratourt BRaces, C. T. Colebrook, Islington,
London. $-13 t h$ Jamuary, is82. Patents on which the Stamp Duty of 94. Distributina Types, J. Imray, London,-shh

 495. CaLonic Exanusery, II. P. W. Boulton, Tew Park.
135. 7 Heteruary/ 1879. 117. UNIINPLAMM, 18tie Compostrion, A. M. Clark,
Lonion

 ${ }^{205}$. Cansings. for Athiertio P Purposes, J. Holtum,

 168. PRINTING, G. Duncan and G. A. Wilson, Liver-
pool. $-15 t h$ January, 1879. Patents on which the Stamp
$\& 100$ has been paid. 118. Centrifugal Apparatus, F. J. Britton and W. S. Barron, London.- 12th Jonucry, 1875.

Notices of Intention to Proceed with Last day for flling opposition, 3rd February, 1882. 3877. STEan E Eqaines, C. Bedford, Birstall.-Tth Sep.
tember, 1881 .

 munication from U. Hillman. - Ioth Septenberer, 1881.

 Sentember, 1881.

 511. WAThember FITTINCI. $-23 r d$ Noverember, 1881. . 18 . Hargreaves, Haslingden. 5424, GAs. STovest, E. . . Rippingille, Aston-juxta-Bir-
mingham. $-12 t /$ December, 1881 . 54t. Thames, H. J. Hatadan, London.-A communica-
tion from D. S. Chapina -1 Sth December, 1881.

 Berlin.-17th December, 18s1.
Last day or flimg opposition Tth February, 1882. 3935. SrisyING, I. Buckley and E. Crossley, Dukin-
field. 12 2th September, 18s1. 3938. Washina Machine Frames, A. Shaw, Lockwood.
$-12 t h$ September, 1881.
 30SO. Mrohanioal Gase, J. Maxfield, London.- 15 th
September, 1881. Seppeember, 18sal. Beluts, H. Willington, London.- 1 5th
 dom. BEETLIXG MMCHINES, C. Ed. Eston, Salford, and

22nd September, 18s1 C. H. Murray, Southwark.-

 5-A com. from F. H. Chilton- $-14 t h$ December, 1881.

(List of Letters Patetent whichich paasead. the Great Seal on 3080. Loons, J. Clayton and T. Richmond, Burnley.

 July, 1881 .
3130. Evaporating Apparatus, W. R. Lake, London -18th July, 1881.
3134. MouvDING GLass, T. and J. Humphreys, Hulme
$-19 t h$ July, 1881 .

 4392. Moprtise Locks, E. de Pass, London.- 5 th octo

 4531. Coloving MAtrers, J. A. Dixon, Glasgow,-
4sth
October, 18si.
 4562. Siwing Rell Ratls, J.' H. Kitson, Leeds,-19th octo 457, Viski.
 4676. Wire Roprs, J. Hodson, St. Helena.-25th octo ber, 1881 .
4685 . KNrtrd FABrics, J. Imray, London. -26 th Octo
ber.

 (List of Patent Letters vihich passed the Great Seal on the
17th Junuary, 1881.$)$ 3116. RAssisg, \&c., Bursps, G. Furness and J. Robert
shaw, Manchester.- -1 sth July, 18s1.
 don. 118 Sth July, 1881.
3147. GRRMINATING GR

Ji6ly, 1881.
20 th July, 1881.
3167. PRrForativg Cheques, r. Donkin, London.
 July, 1881.
${ }_{3} 170$, Cooulva Arr, B. R. Gibbs, Liverpool.-21st July

 22 2nd July, 1881 .
3200 . Driving Mehanism, A. Burdess, Coventry.${ }^{3203 .} \mathbf{- 2 2 n d}$ Sprulvy, 1881. W. Buckley, Sheffield. - 22 nd July ${ }^{12041}$ 324. Lawn Texnis Bats, C. W. Simons, Saintbury

 Juhy. 18 SLl.
 227r CuAly, 1881. LiE Lasts, J. Fieldhouse, Keighley.235rd July, 1881. Waterproof Slkering Bed, B. Genn, Ely.-26t

 331.2. Treatuext of Waste Sand, H. J. Haddan, Lon

3377. Fire Exanses, H. J. Haddan, London. - 4th 3hb. Trut 1 TSILENT of Fractures, J. C. Mewburn, Lon-
don
 350. August, S8s VEssels J. F. C. Farquhar, London.
 3544. Disposit of SLac, E. F. Jones, Middlesbrough-

 4439. Ircasdersegnt Electrio Lamps, J. Jameson,

 45888. FLLEECE DIVVDREs, C. Pieper, Berlin.-20th octo-

List of Speoifications published during the

4121, 2d.; 2097, 2d.; 2143, 2d.; 2197, 2d.; 2265, 2d.;				
251s, 2d.; 2519, 6d.; 2521, 10d.; 2522, 4d.;				
${ }^{2596 \text {, }}$ 2d.;				
${ }_{\text {da.j.: }}^{462627}$				
2633, $2 d$				
2649, 2d.;				

*** Specifcations will be forwarded by post from
the Patent-ofice on receipt of the amount of price and postage. Sums exceeding 1s. must be remitted by
Post-ofice order, made payable at the Post-office, 5 ,
 Patent-offl
London.

ABSTRAOTS OF SPEOIFIOATIONS.

reparce by ourseives expresesty for THB ExaINERR at the
ofice of Her Majeetys Commissioners of Patents.
2097. SUnsTruvtr for Corfer, R. Hall, Lindley, York:
$-13 t h$ May, $1881 .-$ (Provisional protection not
allonted. May, 1881. - (Provisional protection not
ate
The materials employed are lintels, the kernel and The materinils employed are lintels, the kernel and
shell of English and foroign nuts, browned linged,
browned whoat, browned licorice, browned sugar, raw browned wheat,
sugar, and treacle.
2143 Pookkr Tme.rivicator, B. Nayler, Dulley.--
17thMay, 1881.-(Provisional protectionnot alloved.)
 by the oid of which, when illuminated by the sun's
rays, the correot time can be ascertained.

19th May, 1881.- (Provisional protetction notallowed.)
This. relates to the employment of a hollow pendu. lum in which is placed a heavy weight, and caused to
oscillate by means of a driving wheel driven by steam.
 This, convintry. of 2 thair of apparatus to be antached,
 pressurnure is against thawn. A modification is shown for
le hands.
 (Not proceeded livith.) $2 d$.
This tole the combind is bemploy. ment of the constant pressure eererted by a a octumn of
water of determined height, and the velocity of flow na pipe of the same liquid under a given pressure. 2335. SEats, J. Hamlyn, Exxter.-2 2 th May, 1881.-
-(Not procedel vith.)
2d. This consists sin fassioning the seat to fold and lie
fat a against a pillar or support pieco, which is also
 tat on the Hoor or angins.
2339. Ships' Wattrr-closests, IV. Fruaser, Liverpool.-
 tion a trough receptacle, common to two or more
seats, or a series of pans emptying into a pipe common to the series, and an automatic water tumbling
tusher
 This relates to the the arrangement of the orchestra in combinantion with or in rihtion to the stage, stalls,
auditorium, det, so that the orchestra may be screened unditorium, \&c., so that the ore
from the view of the audience.
 communication
Theo Yor.) od od co. improvements consist in the employment of a
 Which an annular armature wound longitudimaly
with wire is made to rotate. The nrmature thus

sections in the case, plaster of Paris is introduced
between them and the casse. The core of the armature Detween them and the case. The core of the armature
scomposed of a number of plates arranged side by side and having alternate inward and outward pro-
iections. Betweon the former are spaces for the circuation of air lengthwise throughout the armature, and between the latter the coils of insulated wire are
wound. Fach cirl is indepandently wound The
inner end of each coil is fostend to the outer

of an adjacent one, and the loops thus formed are
connected by leading wires, one to each of the plates ff the commutator. The invention also refers to the phoptation of of a circuar permanent magnet por thote thection of which, extending
radially in ward, are wound with insulated wire. The
The Tadialy inwara, are wound with insulated wire. The
outer ends of the wire are united and the eniner ends
fastened to bindidinq serews, which may be conneeted to a telephome. The invention also relates to the method of magnetising the above deseription of per-magneto-electric machine.

 sation which is deposited in the lower part of the
iscs, and in conducting the same to the
level of
 where it is is collected in helicidal channels, the
weight of the cilutid combined with the rotation of
the shaft ensurring the butomatic discharge of the

 relief on woor by the impression of designs or devices
on dies into the sido wood the after removing ofthe
then projecting suifface of the wood, and the applicathen projecting surfacee of the wood
tion of a relaxing agent or agents.
 This relatess to improvements in the construction of stop.

 or pistons traversing a cylinder or harrel, through

Which the water passes, such pistons being caused to close against seats to cut off the supply by means o
the water pressure acting behind. The drawing is a

 the quantity of material fed into the purifier is auto maticaly regulated by the hinged flap B in the
hopper A. The second improvent consist of
device for tightening the silk coverings on the sieves.

The third improvement consists in so oconstructing and
combining a middlings purifier that it shall be adapted
 2452. Machivery for Meghanically Oprrating
Fans, B. J. C. Tearr, Hellanu, Somerset. $-3 r d$ June, 18ssi, ed.
This
relates apparatus for mechanically operating fans or punkahs
by the addition to a clockwork or driving mechanism by the addition to a clockwork or driving mechanisn
of governing, regulating, and operatitg parts.
ond
 ${ }_{\text {ther. }}^{\text {This }}$

The apparatus is constructed for exercises of the
joints of the hand and fingers, and has to be used il joints of the hand and fingers, and has to be used in
suach maner that each fing
taneously may be exercised. 2463. Disintegrating or Pulverising Machines,
C. E. Hall, Sheffild. $-4 t h$
June, 18si. This consists, First, in the combination with known
beaters of a surrounding revolving cage, and the means of driving and cleaning connected therewith; Secondy, in the construction of a feeding chain band
in links a amimitting of sittachment of scrapers o buckets; Thirdly, in the combination with a disinte
grating machine, of an iron separator composed of grating machine, of an
rotating electro-magnets.
2469. Lock-strich SEwing MAchines, Co. Pieper,
Berlin.-Tth April, 1881 .-(A communnication from
E. Brinccerer, Cologne.) $6 d$. This relates to dounte lock-sititch sewing machines,
and the improments consist, Frrst, in placing the
lower spool into around shutl

 women and employes anerally at and from the place f their occupation.
2475. Fastexire for Driving Belts and Bands,
Reddanacay, Pendleton, Lancaster.-7th June, $1881 .-$

The fastener consists in its simplest form of metallic saddle shaped frame composed of three or oss
bans or members, retained in their respective positions
by by end bars or pieces.
2483. SELF-acting Febding Apparatus for Thrash
ing Machines, A. C. Henderson, London. -8 th June 1881.- (A communication from J. A. Demonce The apparatus attacks the sheaf previously losened, which it regulates sin its progressive movements, and therwards spreads it out and finally distributes it to hrown on a flap slighty inclined, is divided by

5483

eries of discs P, armed with long teeth mounted on the same shaft, and turning with an intermittent
 provided with fingers acting on the straw only on its back any excess on the flap.
2487. Mowing or Reaping Machines, J. A. Carlès Toulouse. - 8th June, 1881. 6 d.
This relates to the apparatus for moving the sickle disc Z from the travelling wheels, such apparatus
being composed of the internal toothed ring D, the

spur-wheel E , the horizontal shatt F , bevel-wheels, the ond the shaft O , which takes its bearings in the nave f the rake R and carries the sickle disc Z.
489. Fishing Nets, IV. Laughrin, Polperro, CornThis consists in the employment of a net of the capable of being clossed up at the bottom or foot after shoal of fish has been encompassed by the same.
2490. Removing Stiff or Coarse Hars From SEal (A communication from D. Mueller; New York.) This relates to the method of plucking furs, which
onsists in first separating the soft wool from the hairs by means of an air blast, and then pulling out the
hairs entirely from the skin. 2491. Manufacture of Tin-plate, \&e., W. Elmore,
London.- 8 th Jume, 1881. 6d. London.- 8 th June, 1881 . 6 d .
This relates to the process for the manufacture, metal articles, consisting of the employment of the tin solutions, the tin anodes, and the electric current, and
in combination with the cathode holder or dipping in combination with the
frame of the plating tank.
2492. Improvements in Electric Lamps, de., P,
Jensen, London. -8 th June, 1881 , 4 co 492. Tmprovements in Electric Lamps, de., P.
Jensen, London. - Sth June, 1181.- (A communica-
tionfrom T. A. Edison, Neeo Jersey, U.S.A.) 8d. This invention refers to a method of sealing the glass globes of incandescent electric lamps, so as to
maintain a good vacuum, and is an improvement on patent No. 578 , dated 10th February, 1880. The required awasa from the blowing rod at the tapered end suffi-
ciently to leave room for introducing the carbol iently to leave room for introducing the carbons.
Upon the semicircular end of the bulb a small opening
made and a tube formed thereon, by which to maust the lamp. A small piece of, tubing is then
oxhath about equal to the aperture above referred to in the taper end of the bulb. The leading-in wires are then
laid in this tube. One end is brought to welding heat and clamiped down on the wires, hermetically sealing
them in the tube. The wires are in three sections, central bit of platinum for sealing into the mass
of the glass, with copper extremities, one leading from lamp, the other into it for supporting the
carbon. The end of the latter portion is flattened and wrapped round the ends of the carbon, and this union
may then be electro-plated. The carbon is then introduced into the globe, and the edge of the opening of the
globe and the enlargement of the tube sealed at a weldlobe and the enlargement of the tube sealed at a weld
ing heat. The globe is then exhausted through the
upper tube, and when sufficiently exhausted, the latter is fused and welded near the body of the globe.
The specification also describes methods for utilising The specitication also describes method for utilising perfect side is the negative portion; also for automa-
tically transferring the eurrent from one circuit to
another in case of breakage, \&c.
$\left\lvert\, \begin{aligned} & \text { 2498. Motor Engines for Utiuising the Force or } \\ & \text { HEATED AIR or } \\ & \text { GAs, }\end{aligned}\right.$
 This consists essentially in in a closed apparatus, in Which comprossed atmospheric or other gas is alter to be under a greator or less degree of tension or pres--
sure, and to act with this difference of pressure upon sure, and to act witt
the piston of a motor.

 a.D.1ammande gas. The drawing is a front elevation partly in section, showing a pair of engines. The
Iower part A of ecch oylinder is cooled by water circu-
lot lating through its casing; the upper part B is lined
with refractory material. The trunk piston C is made
wit hollow, and formed with a shield covered by refractory
material, to protect the packing of the piston and the

surface of the lower part of the cylinder from heat. The pistons of Dto owoocite cranks on the shaft E. Thit shaft, by mearrs of bevel gear F, works a revolving
cylindrical valve G situated in a casing between the cyindrical valve G situated in a casing between the
two colindors., The Iowest part of this casing sis s.
plied with combustibe gas and air in proportions, regulated by cocks and valves.
 (A communication from L. Planeres, Paris.s) $)$ (No Throceeced ed with.
This releates to
substituting for screw propellers or other propelling or stering apparatus, a double-acting
compound apparatus fitted as the screw to the stern the vessel, but at each side of the said stern, insteand of in the midaue, as is the case with the screw, each appa-
ratus consisting of a wooden block covered with sheets of a suitable metal to give the block the density of the water, and having a semi-cubic shape, one face of which, provided fateraiy with blates running in
siloses ixeed in the face of the stern, is attached to an
iron an up-and-dorwn motion, and thice everine, of the vessel the said motion being therefore transmitted to the
semi-cubic block attached to the said iron rod or bar.
 mingham. - Oth June, 188l. $6 d$.
Combined with cortain shaped roses are loose lids, covers, or fronts which divide the rose
near itis sargest part or largest diameter:
2510. Machinery for Filunge Bortless R. Bardeley,
Manchester: -9 th June, 1881. 6 . This consists in the mode of charging bottles with syrup, each bottle being charged with the desired
quantity by ono stroke of a pump with adausustale
athe stroke, prehone.
filling machine. 2511. Horse-ra

The chief objejoctis is to obtain any desired "pitch" of
 desired purpose, and also for imparting
said teeth a vertical and lateral tension
2515. Taps and Valves, A. Pullan and J. J. Meihe

This relates partlty, to the construction of a liner or seating, with or without grooves, on which the valvee
or 1oose
pressure
 To an ordinary hosiery machine is fixed by suitable means achine is in action. The said points worl between comb bars. The pin is connected or forms
part with the bolt, to the front tof wher
 the perforated cards for producing the pattern are
worked by ordinary means either by hand or ste
 Paris.). from Ld La Societe les Fils de Cartier Bresson
This consists in the use for winding and holding tape of a slip of card or other suitable material, cut so
as to present
at each end widened parts and horns, between with a slididing ring or shenthe then, which may
bination bear marks of quantity or quality.
2518. Centripuant Punps, W. F. A. Bëyerinch and
M. G. C. Stuart, Amsterdam. -9th June, 18si.
 with inlet eyes or openings at both sides, and with
curved shells extending from the eyes to a comparatively narrow circumferential discharge opening. 2519. Packages for Carrying or Shipping Paint,
Lard, dec, R. R. Gray, Liverpool.-9th June, 1881: This consists partly in forming the lid of a plate projecting rim of the can, so as to hold tight without 2521. Manupacture of Boors And Shoss, J. Keats,
Bagnal, Staford. - oth June, 18s1. 10 d.
 soles and heels, and in apparatus for presenting boots and shoes to suc ot tois, which apparatus is applicable
in other stages of the manufacture of boots and shoes It also consists in novel means for securing the heels of boots and shoes in thace by nails, the same being
driviven from within the boot in urred or inclinod
line to m ont
 This consists in the manufacture of lengths of chain
 2528. Manufacture of Gas, J. Dixon, Richmond This consists partly in enenerating illuminating gas rom meats, earths, earthy bases, acids, carbon and
hydrocarbon substances or liquids, or other chemicals, by subjecting such materials or some of them to ${ }^{2}$
cherry-red heat in closed retorts, and intermittently injecting mixtures conveved in solutions of kerosine 2530 equivalent as a vehicle.
2530. Driuling, Borisa, or Cutriva Rock, \&c.,
G. F. Wynne, Minera, Denbigh.-10th June, 188i.

This consists in the construction and employment tributing valve octing rock drer dril without any separate die the piston itself in which tributing valve other than the piston tseif, in which
a cylinder is moved overa fixed piston by the pressuro

the motive fuid, and forms the hammer for striking of the motive fluid and the weight of the cylinder, by which means holes mand
being brought to a stand.
2532. Improvengents in Electrio Cabless, G. E.
fourand. - 10 th June, 1881. - (A communication
from P. B. Dellany and E. To avoid as much as possible the effects of induction
the inventors form their cable of a number of insulated wires wrapped in a leaden covering. The method construction is to take a adea pipe, flatten it out
loavin room between its sidides for insertion of the insulated wires. These are then insertod so as to ofill
the pipe, and the later is then passed between rolls which force the metal between the wirise and dill all cable The wires are so arranged that at stated
 3, 6,40
. Manufacture of Leather, J. Hall, Leeds.Thet rollere 1881. 18 raised. on the table, lowered so as to separate them a sufficient distance to enable the
roller to clear the edge of the butt at each end of the
strok
2534. Manufa cture of section Knives and Razons $-10 t h$ June, 1881. $6 d$. This consists in forming a perfect and true edge on glazier, or lap fitted and revolving horizontally on a
gertical shaft, the said stone, glazier, or lap being vertical shaft, the said stone, glaxiee
affixed to a disc by pitch as a cement.
2538. Drying Ceramio Products and Brioks,
Beck, Dutfel, Belgium. $-10 t h$ June, $1881 .-$ (Not prot
 placed in the kiln.
 This relates to the chimney top or cowl consisting perrorated box or casing, and is provided with diaphragm, which flange and plate are so arrangod that the direct upward or downward passage of air
from or into the said pipe is prevented, while free space

 This relates to such machines as effect the crushing
tamping, \&c., of stone or other material by means ell-known togrle plates or motions, and is designed prevent traakage or accidinent through undue strain
y tho intron ng or reducing jaws. 1. New Spade Rifle, J. F. Fuller, Dub This relles to forming the stock of a rifle so as to

 This invention consists in covering the wires with ing the same with insulating material, so that both jute and insulating material become combined,
nd form a practically
homogeneous substance. The outer covering may be waterproofed by gelatine, com-
bined with hichromate of potash or other means. The insulating material may be gutta-percha, Stockholm tar, and resin in equal weigh

 This machine is made in the form of a piano, an las been designed with the object of enabling anyone
tnowing how to manipulate the keyboard to simulta neously present several hetters continuously in manner as to reproduce them, properly united so as to
form wards ondinary prining and with the
speed at which a appecin can be made.
 1881. $6 d$.
This consists in the combination with a band and strap attachoded theroto, and passing over ronlers, of
another band provided with whocles, through which
tho said straps pass, and by which they are secured.

 roducing wood to pulp by means of frindstones, the
wood being pressed in an oblique direction against a
vertical grindstone. vertical grind pastone.

C.P. Marin, Barcelona, Spain.), $6 d$.

This relatese to means for hardening or felting the
hat body. The result is obtained by means of two endless aprons made of flannel, which, while travelling
over rollers or cylinders carrying them, have imparted
 doublemotion effecting the pe.
of the fibres to form the felt.
2554. Improvemextrs in Apparatus for Regiving
AND Transmitting Audible Sionals by Menss or

Elegrriorry, A. F. St. George.-13th June, 1881.This invention consists in reproduction of audible sigmals by means of a vibrating dise in connection
with an electro-magnet surrounded by insulated wires. Whith an enductro-mating currents are sent through these
wires corresponding vibrations of the disc produce wires
audible sirespon
angals.
2555. Watre Taps or Valves, A. Harvey, glasgour. This consist isi in the construction and arrangement of water taps and valves in which the supply or passage
of water is oontrolled by means of a vulcanised rubber or other sismini elastic bull, itting on a valve seat
formed by the inlet or outlet, and opened or closed by the action of a moring spindide.
2556. Conrbing Michises, J. Carroll, Bradjord. - 13 th

 (Not procedede with.) $2 d$. .
Thiss relt in the construction of
t mprovements double-acting rook boring machines or 1 atils, whereby
the compressed air or steam is alternately admitted into opposite ends of the cylinder through ports in
the piston of the machine instead of in the ordinary
2582. Extrsaushrise Firss, J. Braddock, Ashton,
Lancaste:- $-13 t h$ June, 1881.-(Not proceded voith.) This consists in the employment and use of a pended in any convenient part of a room or building
 Thed drawing shows a plan of one arrangement for im

A is a gas motor engine, the shaft B of which has
broad drum C that imparts
 motion to another "Blackurur" pulley on a counters-
shaft, whose pinion gears with the wheel on the road axte.
2567. Reguatixg the Sperd of Marine Exanes,
E. P. Alexander, London. $-13 t h$ June, 1881 . (A comb
 First, by the direct action of the regulator on th
apparatus for the amimission of steam by means of

the dimensions of the engine to be regulated
Secondly, by the employment for the working of the said apparatus of two comumns of water maintained in
sumponsion by the prossure of air, the ffrst vary
with the and the second being of a fixed height, acting in the reverse direction, and having for its chief object the
complete annulling of the influence of rolling and complete annulling of the influence of
pitching on the working of the apparatus.
2588. REaulativa Partsrys or Work in Brativa
Mchinse, T This consists partly in imparting a differential motion by meansn of of cam on a a rotary shaft to o slidide,
which carries the lifter bars of a iaccuard or pattern regulating apparatus, to be used in connection with a braiaing or other like machine, whereby the siond slidide
bhill be oused to desend suddenly to be ifted andin shall be caused to descend suddenly, to be lifted again
immediately after, and to make a pause or dwell in immediately atter, and to make a pause or dwell in
its. eleazted positon durine the restatively longer
period required for the completion of the revelution of period required for
the actuating cam.

 This consists in the use of a self-acting tippler ow
vessel capabile of holding a certain quantity of water,

 This. consists in dispensing with the ordinary pick picking arm mounted on a rocking-shaft fixed to the ower part of the framework of tho loom.
 This invention consesey

till all the carbons are exhausted. The lamp is also
provided with a rotary spool furnished with coils of provided with h rotary spool furrished with coils of
fine wire, and so oonmected with the lamp cirirutit that on rotation one or more, or all, the coils san be thrown
into the lamp circuit, thereby varying or extinguishinto the lamp circuit, thereby varying or extinguish-
ing the light at plansure. In the figure the acrobs

 This consistson an machine or the manufacture in a

 wall with apertures of adjustable area, and two forosaida aperturas of the wall are alternately opened s prossed through the sald apertures of the wall, is cut in pieces of any desired size or weight.
 ceeded with, $2 d$.
rrate beins readily arnangement that admits of the the side bars or that which or cont tracted by means and so arranged as to slide back wards and forwards
into the jamb of the fireplace or hollow tubing in such manner that the trate can readily be expanded or
contracted so as to be suited for a large or small froe. 2579. Moclds for Forming Articless of Plastic
MATERALALs, A. M. Clark, London. $-14 t h$ June, 1881 .
(A Acommunication from H. D. Attwood and II This consists in combining, the lining with a skele--
on frame mould and backing, which sustains the on frame mould and backing, which sustains the
lining against the pressure durint he opration of
 porous
ferred.
 This consists ith extracting the chief portion of the culphur and ferric sulphate, and recovernng the hydrobonaceous matter with alum whilie in a haneted state
by means of a jet or jets of steam and atmospheric bonaceous man
by means of
air combined.
 Thisiers.) (Not Proceeded gith.) $2 d .1$. ${ }^{2}$. arm, on which a sliding weight is applied, the sloped
part having marked theron the oivision from 0 to
50 kilos, the flat part the div ivion fro 50 kilos., the flat part the division from 49 to 150
kilos. or other weights. At the extremity of the immediateler atter the division 0 is the tean of the
imeelyard, which is furnished with two knife edge stenyard, which is iurnisbed with two knife edge
rests. The first rests on the steeled part of a fixed
 2584. Coverings for Rollers used in Spinging

June, 1881.- (A commumication from J. ${ }^{\text {B. P. Prevost, }}$,
Brionne, France.)-(Not proceedeld with.)
2d. This consists in using a covering of cotton, wool,
silk, hemp, or other tissue stuck to or rolled over the cloth cover in single, double, or triple layers, according to the pressure the roller has to undergo, the
being then impregnated with a gum varnish.
2588. Locks, \&e.. J. J. Glacrum, Christianssunnd, NorAs ap.-1ied to padlocks the foundation plate of the rim, and has an inner circular projecting rim; ; within
the latter there is a disc having a proecting rim at the later there is a disc having a projecting rim at
the circumference fitting in the rim on the backing and another inner projecting rim concentric there:
 Slots at different didetances above the backing, and
have thith heas pressed against the outer riinof the
movable disco dy means of springs. The movable dise
 has a fixed boit which can eng
circular padlock closing link.
2580 .

This consists in the use of native or artificial ron, or of protonide sesquiioxide of of irong, or ox oxidulated manganese, or their hydrates, al or any of them 2591. Verocrippoxs, \&c., W. Harrishn, Manchester.-
14th June, $1881 .-($ Not troceded woith This relateses to means of preventing the eross bindnlso to preventing , che extraningst or pratanation bearings, the constant cross binding caused by the twisting of he forks of velocipedes 1 also to emable the rider to
raise or orwer the hande bor ; also to enable the rider to ster more easily; also to ring or whistle an alarm
when making a a jouney ; also to when making a journey; also to secure the rubbers
more firmly upon velocipede wheels, also to make the spring more easy for the rider.
2594 . Burvers

 This consists aprtly in eutting away a portion of the

 This. relates to the employment of two excentric
tubes for the wick to pass betweon them, and to the mechanism for actuating the wick.
2598. Frre-LIGurtrs, S. Rigby, Blackpool.-15th
 matter in pieces of any convenient sizze and saturating them in any fatty, resinous, or other sunticiently com-
bustible fusible matter. They are then put into a Vessel containing gluten in solution or other substance

 material which gives them an outer coating in order
to make them more convenient to handle and still to make them
ensy of ignition.
 JoinTs, I. Rees, Lambeth-15th June, 1881.-(Not This reletes to the employment of pieces of textile
fabric which are fixed into . Frooves formed by turning of the edges of the metal sides and backs.

This consists of an apparatus in which the produce to be operated upon is intronduced at one ond of ${ }^{2}$
banrrel or ofyinder revolvini in atrough of water and
and carried or passed to the other by means of an archi-
2601. Legarnas and Gartrges, J. Frankenhurg, SalThis relates to a reversible legging and to the stud gg the same.
$15 i h^{\text {J June, }}$ Assi. This consists in the use of a series of reciprocating
bars having spikes secured thereto for carryincal

To the rim of the reflector A is secured a light metal
Trame G. It is preferred that two at least of the ribs frame G. It is preferred that two at least of the ribs
of this frame shall be tubes in connection with a gas

2605

supply pipe. The frame G carries a hollow block,
which is provided with a suitable cock, and int which a sutrabie burner is is itted. Betwen, the block
Hand the stem of the burner is placed a regulator J H and the stem of the burner is placed a regulator J.
The gas supply pipe is placed outside the ventilating
 2d. Granule.-15th June, 1881. - (Not proceeded with.) In place of the ordinary armature attached to
hammer, by the attraction of which the bell is rung the inventor so constructs the e electro-manget that one
of its poles is made capabalo of movement to and from
on of st poles is made capabe or movement to and rom
the one pole ; the movabe pole operating the hammer
2608.
 This oceetadedes to the the employment of suitable cast
iron jaws, which are worked by means of levers and
 The laces are held by means of clips.
2610. SEcurive the Tops and Botrons or Cylis
drical Meral Boxes or Cans, W. Downie, Wood Green, and W. F. Lotz, Lown This relates to machinery for securing the ends to
the body of boxes or cans in such a manner that the joints will be air-tight without the use of solder
 This relates to a system of pipes connected to a tank 2615 ar pump.

This rellates to an instrument for the purpose of saving time ond tabour in
bolts and also in drilling.
2616. Masuracture of Chaney Prgcos, Colunas,
dec, G. Hodson, Loughorough. $-16 t h$, June, 1881.

This consists in improvements in the manufacture of chimney-piees, \&ce, in imitation of marble,
granite, and other ornamental surfices produced by
the the processes of enamelling and popishing upon
tarticles produced in cement, and in the composition
af of materials employed therefor.

This consists esentialy of a plate, on one edge of
 are moved backwards and forwards, and a mould
which the plate, and which mound in capsed by appropriate
mechanism to press the eather on to the edge of the mechanism to press the leather on to the edge of the
plate, together with a suitable stand or other attach-

(Jot mroceeded weith.) $2 d$. This invention consists in the use of a solenoid, with Induced magnetis. This arrangementiss on ounnectod
with the machinery as to control the sped of the
dynamo machine and ocosenunently the current.

TTin relates to means wheroby the tune bands of 2625.

a substitute for the usual slide valves of two flat
circular discs, the one disc being bored through for the port holes and exhaust hole, the other disc bored
through with a quadrant-shaped slot on one half, and through with a quadrant-shapod slot on one half, and
sunk on the underside with a bell crank-shaped sinksunk on the underside with a bell orank
ink through part of the thickness only.
 tion from H. J. Davies.) $6 d$.
This consists mainly in so combining a musica
 tion toits function as a timo-indicator, the clook wil
impart motion to the said musical device, and that in impart motion to the eald musick , motion will at any
what is known as an alrm clock,
readetermined time be impurted to the pre-determined time be imparted to the musical
device to play a tune as an alarm instead of ringing a device to play a tune as an alarm
bell as in ordinary alarm clocks.
2627. Regrpracles For Lucirgr Matcres, M.
Whison, London. -16 th Thith relates to constructing a holder or receptacle for mateheses so so tonstructing the thiding orf of treeptacted
particles of the tigntiven thater particles of the igniting material when a match is
being tsucucu upon the roughened or serrated surface
2628. Dressixa AxD Cutriva STose, de., W. W. Wh
Beaunont, Cambervell, and J. Welman, Poote. Beaunhont, Cansberwect, and J. Wielman, Pool A cutting or dressing tool of suitable form, as shewn thata. rapid vibratory motion may be impantrad to to it
which motion will produce the required effect of

cutting or dressing the stone. To impart this motion
small tup or hammer B is used which imparts as smail tup or hammer B is used which imparts on
gives the thol series of hoows repeatod wthr great
rapidity. rapidity. The tup may consist of a solid p piston work-
ing in a small cylinder, through one lis or end of ing in a small cylinder, through one lid or end o
which projects the tool or a holder for same.

iibratory motion of small range to the cutting tool
or so that the inertia to be overcome by the tup hhis form is that of the to to ony and not that of the
cylinder also, as it twould be if the tool were rimily Cylinder also, as it would be if the tool were rigidily
xed to the cylinder. The piston or tup may be aused to reciprocater by compressed air, or by steam, or lectro city K is a pipe to which is attached a
lexible hose pipe for connection with an air pumper exible hose pipe for comne
as shown in
Figs. 2 and 3 .
 Junce, 18811.
The compor consists of washed sand 2 parts reeze ${ }^{3}$ 3 parts, Portland cement 1 part, lime \ddagger part,
loam \dagger part
 This relates to the employment of a dial divided epresenting miles and subbdivided into furlongs he dial is provided with a pointer. The dial is also
narked with a tens or other accumulating dial of much smaller diameter, also with a pointer. Suitable
mechanism for actuatiing the pointers is described. 2633. Wrisoow Burnss, 1 , Hodgkinson, Manchester:This relates to the method of printing and orna-
menting window blinds, or window blind material.

Thiss relates to the construction of reading table
provided with desks, which can bo easily turned in provided with desks, which can be easily turned in
ny direction and ffxed in any desired or convenien
noistion by he 2636. Gas Coorisg and Heating Stoves, G. J. cox,
 heating stoves, boilers, and other apparatus with
losed Dottoms, whereby air is prevented from enter ng direct into the stove or apparatus, and wherein
are provided channels, divisions, or heating spaces, through which all air neeessary for the perfec same, either in in veres oal dippratatus must at sides or in
horizontal directions under bottoms, in which appa
and orizzonta directions under bottoms, in which appal
ratus the burner or burners are also closed within and
aveloped in heated vir onveloped in heated air.
2637. Cigarettres and Cigarettr Papres, H. Black.
Lomion.- $16 t h$ June, 18si. $2 d$. This sonsists in the, appliciation and employment
for coating the ends or mouthpieces of cigarette for coating the ends or mouthpieces of of cigarento
paperos of anolution of yproxylin or gun-cotton, ordi
unaily known as collodion
2638. Laxps, F. Siemens, Dresden.-17th June, 1881 This. consists in the combination of a straight row of gas tubes with a reegenerator or passage for heating
the air bupply to the flame on one side of a straight
or curved divis or curved division wall, and a regenerator or passage
for taking up heat from the products of combustion
on the o oher side of the on the other side of the said wall, the upper part of gas tubes, being formed of porcelain or other refrac, tory material, and having an aperture for t.

 the main blade, or having its cutting surface placed
at an angle to the cutting surface of the main blade.

 between the two valves: two or more, escape tubes are
 This reelates to arrancing the switches or points of sor switch men.
2645. GAs Exvings, C. W. Purkey, Smethouck.-17th

This consists in the combination with the hollow
reciprocating igniting plunger of a gas engine of the regulating screw valves and parts connected with it,
for regulating the passage of the compressed explosive

gaseous mixture from the cylinder to the said hollow
plunger in conjunction with the series of layers of wirle gauze W near the acting end of the said screw
2648. Working Moving Object Targers for Rifle
Practice, dec., W. B. Blaikie, Eainourgh. -1 tri

Jiune 1881. $6 d$.
This relates to the arrangement and construction of
targets for rife and and other similar practice, made to targets or in rifitand other siminar pract
traverse in imitation of moving objects.
 Thisit. rilates. to the treatment of caustic dulomite, or
burnt dolomitic lime, or burnt calcareous magnesite, vith sulphate of magnesia.
 An open earth regenerative gas furnace is employed, but in order to prevent or 1essen the destructive
action of socria upon the sides of the bed of the
und action of scoria upon the
metiting hamber, pipes are
lating water around the bed.
 This consists in fitting to each side of a rowing boat for moving the boat thropegh the which ant be operated
tion facing the person who works it.
 Thetided reltest to appliances to be attached to the bed-
steads of invalids for enabling the attendant to lift a steadses
helpess patient.
2659. Bottle Stopprr, F. TV. Woodman, Brighton.Thith June, 1881 - (Not propeeded with.). 22 . by a mere pressure of the hand it may be instantly
caused to expand and fit tightly in the bottle nock and may be as quickly released and withdrawn there

2676

Once ond of a rail is constructed so as to leave
couple of projections thereon, and in the other end o couple of projections thereon, and in the other end of on the a autting edge of an adjoining rail, so that the
ends of the rails are interlocked. 2678. Craizs AND VeLociredes, A. Lafargue.
Kensington.-18th June, 1881.-(Not proceeded vith.) This. consists partly in providing an arrangement
of mechanism by which the trail wheel of a bicycle can bo divided into two wheels, revolving separate
 This relates to the emplogment of a catch and catch
 This consists partly in the combination of a case or which project elastic or rigid arms carrying hammers
or beaters with ind ependent sorting or classifying apparatus, the said case or chest being constructed
and anranged so that the reakage of the material is
effected eerlusively wihin of ctea exausurvely within, and that the broken piecos
of the matrial are itmediately after the action of
the the hammers evyacuated or orischarged ins.
2699. Machines for Pressing Wads of Wax
EETWEEN Two Pusches, W. Lorenz, Carlstruhe Baden.-20th June, 1881.' 6 d.
wax in a continuous and expedititious mannmer by first preparing the wax in the shape of a continuous rod
or thread, which is then fed forward under the action or thread, which is then fed forward under the action
of a cutter, by which definite lengths are cut off that ara then subjected to the action of punches in a di
form them into wads of the desired configuration.
 tion from 0 . Oexle, Ausbsurg, Germany.) $)$ (ComThis relates to improvements on patent No. 2186,
dated 29 隹 May, 1880 , and consists partly in the means of regulating gand holding the rollears appart and mode of working and applying the adjusting springs to the
bearings of the adjustable rollers, for adiusting the rollers together adjustable rollers, for adjusting the working position, and also for preventing the springs
from being unduly compressed by the regulating
 This consists in the method of stretching canvas frames by means of tapering grooves and keys, tenons, 2716. Apparatus for Fuitrrisg. Watzr, P. M.

 mpurites of an an analograus notarue are separated from the filtering materia, and being or inferior specinc
gravity have been per mitted to rise, are rempor by
means of a current tof water or otherwise, according to means of a current of wate
the conditions of the case
2796. Manufacture of Lozenges, de., T. Sharp, This relates to the printing mechanism by which the trip or sheet of suyar or other paste is printed with a serres of separated partor of the paste are subsequientily cut
which pinted
out by the cutters into lozenges or other like articles of confectionery.

 The object is to render the blades detachable, and
it consist in providing aech of the blades with an
extended shank, by which they are attached by a
peculiar joint to the arms or handles of the spring
per peculiar joint to the arms or handles of the spring
2817. Lanps AND Lavterns, W. R. Lake, London.--
2ith June, $1881 .-(A$ communication from B. P.
 said air chamber in the usual manner. A burner is
set in the ton of the air chamber beneath set in the top of the air chamber beneath a deffector,
and around the deflector is a rest or aupport for the
globe. and
globe.
4121.

 pany, I.
This relates to the manufacture of screws, de., and
to that class of machines for rolling screw-threads in which a spiral groove is impressed uprow the body of
the blank by the impingement upon it of parallel ribs,
 face of a stationary die and similar ribs oppositely
inclined formed upon the periphery of a rotating inclined formed upon the periphery of a rotating
cylindrical ide by the attion onthin the blank is
rolled dalong the curved face of the stationary die.

 This consists of a rotary steam press for printing

Vided with printing surfaces $a a$ and surfaces for the
distritu tion of colours $b>1$ and which can be pressed elastically arainst each other by the pressure of
springs, and can alternately be brougt to a stand-
sitl by forks c and $c l$ and excentricics d and $d 1$ whereby a careful insertion of the printing paper, and
a double rolling in of the printing plates A and A^{11} is made possible.

$=$

SELEOTED AMERIOAN PATENTS.
249,651. Jack For Merat Lasts, Samuel Mawohinny, Worcester, Mass.-Filed March 7ht, 1881.
Claim- - (1) In a jack mechanism for hollow metal lats, the combination of achanisport or surandard pro-
vided with a last supporting seat at its top end, a reciprocating draw-bar or tongue projecting through
said seat with its end adapted to enter the cavity of and form a lock-conneetion with the last, and mecha-
nism for depressing said tongue and jacking the last

against said seat, as hereinbefore set forth. (2) The
combination, substantially as hereinbefore described, of the supporting -columm having the top seat or lastas set forth, the tongue or bar dapasted to olock on to to
an ofset or lug within the cavity of the last, and an offset or lug within the cavity of the last, and
mechanism for depressing said tongue, for the purposes

249,746. Apparatus for Grindivg And Polishivg
Plough-coultres, dec., J. T. Duft, Pittsbury, Pa. Filed March 30th, 1881. Brief- -The grinding whers and the pintles for the
coolters are mounted on rotating and reciprocating carringes. Fricition ronlers are mounted on the
carriage with the pintles, and regulate the rotation
of the eoulters while being ground. One edge of the
grininding wheels
stones bevelled, so that on setting an angle to eeach other the e sidges of the

coulter may be bevelled. The periphery of the wheels 249,864. STream Enarine, Jerome Wherlock, Wor-
cester, Mass,-Filed July $19 t h, 1881$.
 passage or chanberber for exsage unt thesect beeing seamanated
and practically insulated from each other as and practically insulated from each other as to heat
substantiolly as described. (2) The air-cushione

with the base-plate and valve, substantially as described. (3) The combination, with the steam.
chest, of a seat for a throtle-valve outside of said chest, the valve-plate provided with wings and pre vented from rotation, and the rotative valve-stem
tapped into the hub of the valve-plate and provided with a collar for packing against
stem, substantially as described.
250,O78. Basd-saw Guide, Hircm A. Kimball, Claim.-(1) The adjustable side evidides M , in a sing strip of steel bent double, so as to have resilient end
to bear on the opposite sides of the savy-blade, in
com

250.078

slot to receive the middle and doubled part of the
strip and a confining-screw N, the sheath being held strip and a coniming-screw N, the sheathb eing held
in its position by means of the upright shatu J or
in io its position by means of the upright sha
other suitable device, sunstantially as described. 250,206. Core for Formina Screw-Threads on
Castings, G. Coving, Cleveland, Ohio.-Filed Januacry 16 16h, 1878 .
claim.-(1) The combination of two or more seam lecs sarew-erores having male threads and ventilating
core-arbors, which project and form dowels, with a

[50.206]

main ventilated core having dowel sookets, substantially a and for the purposes set forth. (2) The seam
less serew-core, in combination with less screve-core, in combination with a tubular
ventiliting oore-artor, the ond of which projocts and
serves as a dowel, substantially as and for the purpose 250 get frin thrashing and Separatid
 Claim. (1) The combination in ass. grain separato of the concave of to thrashing cylinder, the pivotted
arms C, transverse shaft D, the excentrics E on this shaft, the guides F on the frame, a ratchet Wheel G ,
on said shaft, and a pawl H , all substantially as

described. of 2 (2) The combination, with the grain
chute R1, of the jointed supporting links 1 , the eross

 (3) The combination of the bottom L1, , he comb A,
hinged to the main frame above the extension hinged to the main frame above the extension o
botom L^{1}, and the riddle T, having its tail end
arranged tho e the jointed arranged above the jointed end of the comb, sub.
stantiall as deseribed. (4) The combination,
suth
sth the shoe $A 1$, of the supporting braces ${ }^{\mathrm{Bi}}$, pivotted at
their convergent ends, and the suspension springs Cl having their flat blades in nhaness radiating from th
pivot of the said braces, substantially as described.

 or other simiar articies of or containing steel, which
consist in subjecting the same to rapid reversals of
polarity in 2 gradually weakened magnetic field, sub-
.
 steel, which consists in gradually withrawing them
from the influenco of a rapidly alternating mannemice
attraction, as set forth
 Combination, with an electro-magnet and means for
revolving the same, of a rotary holder for presenting

the articles under treatment to the influence of saia
 (4) In an apparatus for the demannetisation of
Wathes or orther articles and descirob, the oombina-
tion, with the revolving magnet, of a movable frame
 and means for rotating the holder simultaneously in
horizontal and vertical planes, as and for the purposes specified.

CONTENTS.
The Enginerr, January 20th, 1882.
A New Torpedo Boat, (Illustrated.)
The Foundations of Mechanics No,

 way. (Illustrated.) 43
ConTra
100-gall
OPRN-
Steel Oil Cisterns

Rallway Ma miters..
Notes and Memoral
Miscellanea ..
Leading Articiles-..-
Non-condensing
tienm
Engines
The Blackburn Collision ..
Explosion of a locomotive on the North-

Trteramure- their Construction and Working.
Tramways; their Construction and Working.
By D. K.Clark
Boors Recerved
Lemtre to the Ediroi-
Coorer's Hill Engine id
A Problem in Electricity
British Equivalent of a me
BRItish Equivalent of a Metre
Photometrio Tests of Eleotric Layps
The Question of Henvy Guvs in Anei
The Question of Heavy
Efficiency of Turbines.

The Patent-office Library
The Iron, Coat, AND General Trades of $\ddot{0}$ BIRMINGHAM, WoLVERHAMPTON, AND DISTRICT.. NOTES FROM LANCASHIRE
Notes from the North of Encland
Notes from Shefleld
 otes from Wales and Adjoining Counties
Notes
Notem
The Patertand
The abstracts of Patent Specifioutione (Illus
 (Illustrated.).

South Kensington Museum.-Visitors during the week ending Jan. 14th, 1882 :-On Monday,
Tuesday, and Saturday, free, from 10 a.m. to 10 p.m., Museum, 12,83 : mercantile marine, building materials, and other collections, 4496 . On Wednesday, Thursday, and Friday, admission
6d., from 10 a.m. till 4 p.m., Museum, 1666; mercantile marine, building materials, and other collections, 426. Total, 19,423 Average . Totrefrom the opening of the Museum, $20,662,162$. Epps's Cocoa.-Graterul and Comporting. which govern the operations of digestion and nutrition, and by a careful application of the fine properties of well-selected Cocoa, Mr. Epps has
provided our breakfast tables with a delicately flavoured beverage which may save us many heavy doctors' bills. It is by the judicious use of such articles of diet that a constitution may be gradually built up until strong enough to resist
every tendency to disease. Hundreds of subtle maladies are floating around us ready to attack wherever there is a weak point. We may escape
many a fatal shaft by keeping ourselves well fortified with pure blood and a properly nourished rame."- Civil Service Gazette.-Made simply
with boiling water or milk. Sold only in packets abelled-"James Epps AND Co., Homceopathic Chemists, London." - Also makers of Epps's
Chocolate Essence for afterneon use.-[ADVT.]

[^0]: period of ten years. We are not aware that such a guarantee has ever
 een given before, and it speaks highly for Mr. Wylies confidence in his een
 work. The importance of having hammers which will not break down is,
 is well known, not to be measured by the cost of repairs, but by the loss

 Asbestos Fireproof Paivt. -On the 15th inst. a series of experiments

 ith a fluid material, and is used in a similar manner to other paints. It
 uninflammable, and not only so, but substances to which it is applied,
 ind

 retain the tire in its place when it is broken into several pieces. The
 mode in which this fastening is applied to wheels is as follows:-The

