REMARKABLE ENDURANCE OF A COMPOUND ARMOUR PLATE.
The standard of excellence attained by our armour is a most important matter at the present time. We have been recently furnished with the particulars of the Government trial of a compound plate of Wilson's, made at Cammell's, which has manifested such remarkable powers of endurance as to deserve a full record.
The Admiralty conditions of test are the following :-
" A test piece not less than 8 ft . by 6 ft . nor less than 9 in . in "A test piece not less than 8 ft . by 6 ft . nor less than 9 in. in thickness, shall receive a 9 in . chilled cast iron projectile
fired from the service 12 -ton gun with 50 lb . of powder, at fired from the service 12 -ton gun with 50 lb . of powder, at a range of ten yards without cracking through, and, pro-
vided it be surrounded by a frame, no one of three such vided it be surrounded by a frame, no one of three such
projectiles shall be capable of getting through, there being a fair distance between each two shots, say 2 ft ., as in the trials of the Inflexible turret armour."

This test is a very severe one ; a projectile thus fired has a velocity of about 1420 ft . and a striking energy of about 3658 foot-tons, being about a match for $11 \frac{3}{4} \mathrm{in}$. of unbacked
iron. Now the Sub-committee on Plates and Projectiles iron. Now the Sub-committee on Plates and Projectiles
considered that a good compound plate between 9 in. and considered that a good compound plate between 9 in . and
10 in . was equivalent to a 12 in . wrought iron plate for a 10in. was equivalent to a 12 in . wrought iron plate for a
single blow, but not for repeated blows. The fact, then,
of plate-we understand that the plate was taken off and refixed end for end after two rounds, so that in the first
two rounds right and bottom become left and top. Penetwo rounds right and bottom become left and top. Pe tration, 4.45 in ., five slight cracks produced on surface.
No. 2 struck 2 ft . lin. from right edge, 2 ft . $6 \frac{1}{2} \mathrm{in}$. from No. 2 struck 2 ft . lin. from right edge, 2 ft . $6 \frac{1}{2} \mathrm{in}$. from
bottom of plate. Penetration, $5 \cdot 8 \mathrm{in}$.; four additional fine cracks produced on the surface.
No. 3 struck 2 ft . lin. from left edge, 3 ft . 2 in . from bottom of plate. Penetration, 4.9 in .; one additional fine crack produced.
On removing the plate, the back was found bulged slightly in rear of all impacts, but no cracks were found in the back of the plate. No. 1 bulge rose to a height of $\frac{1}{2} \mathrm{in}$. over a surface of $19 \frac{1}{2} \mathrm{in}$. diameter, No. 2 bulge $\frac{7}{8} \mathrm{in}$. over
24in., and No. 3 bulge $\frac{1}{2} \mathrm{in}$. over 20in. One crack-No. 5 -extended $5 \frac{1}{2} \mathrm{in}$. in from the surface of the plate. The projectiles were all broken up into small pieces.

The plate was considered to have stood excellently, and it was determined to try how it would bear the blows of 10in. projectiles. Consequently the 10 in . muzzle-loading Woolwich gun was brought against it, firing a Palliser chilled shot with gas check-weight about 400 lb ., velocity about 1364 ft ., probably giving about 5160 foot-tons energy or 165.6 foot-tons per inch circumference, equivalent to the
penetration of about 13.6 in . of unbacked iron. The fol-
description, it might become a necessity to increase the proportion of steel in the plate, which would give hardness at the expense of cohesion. At the present time the power to hold together, coupled with a considerable measure of surface hardness, seems to be the best, and these conditions have never been more strikingly exhibited than in this plate.

VISITS IN THE PROVINCES.

THE FARNLEY IRONWORKS,

Some of the members of the Institution of Mechanical Engineers will no doubt be inclined to visit these wellknown works, where iron of a very high character is made from Black Band ore, found chiefly in thin layers in carbonaceous shale, and smelted with coke from an unusually pure coal. This coal is found over a limited area, and the Bowling, Lowmoor, and Farnley Companies re the chief, if not the sole, owners of all the available beds. There is at all events only a small quantity of iron made in Yorkshire which has all the characteristics of that made at these works, and its purity is largely due to the freedom of the coal from iron pyrites and consequently from sulphur. It is known as the Black-bed and Better-bed
the latter being the lower. It is exclusively used in the

Fig. I.-FRONT OF COMPOUND ARMOUR PLATE.

Fig. 2.-BACK OF COMPOUND ARMOUR PLATE
that a compound plate, even considerably over 9 in . thick, should bear the above test, is really due to the circumstance that chilled projectiles are employed, which break up against the steel face. The plate could not be expected to stand at all in the same way against a steel shot. That the plate should not exhibit even a crack at the back shows what excellent material compound iron is. Some chilled 9in. projectiles in the competitive trials at Shoeburyness got their heads completely through 12 in . of iron.
The repeated blows constitute another severe test for a The repeated blows constitute another severe test for a
compound plate ; and we may feel great confidence in the armour which has endured it-as in the case of our Inflexible turret plates, from which samples were taken. Figs. 1 and 2, reproduced from photographs, show the front
and back of the plate to which we now call attention. It is a and back of the plate to which we now call attention. It is a test plate from the compound armour for the Collingwood. Its dimensions are 8 ft . by 6 ft ., with a thickness of 1lin., the steel
face plate being 33 in . thick. The first test was the firing face plate being $3 \frac{3}{4} \mathrm{in}$. thick. The first test was the firing of three rounds from the 9 in . 12 -ton gun, according to the conditions above detained. It must not be supposed that the rounds thus fired produced the effects, apparently due to them, shown on Fig. l, such as radial cracks. These are developed by the subsequent rounds. Very trifling
effects are apparent after one or two rounds, as would be effects if we gave a complete series of photographs taken. The steel is more affected than appears, undoubtedly; but, nevertheless, its powers of resistance are not greatly injured until the plate begins really to break up. A remarkable paper on the behaviour of steel in plates has recently been contributed by Major O'Callaghan, R.A., Experimental
Department, Shoeburyness, which we cannot here take up. Department, Shoeburyness, which we cannot here take up. Among other things the facts given in this paper go to show that a photograph taken after several rounds had
been fired gives a more true picture of the actual state of the plate than would be given of a plate after only one or two rounds had taken effect. The following is the detail of the results of each shot fired, we believe, on gang 6, as reported officially by the captain of H.M.S. Excellent:-
No. 1, 2 ft . 6 in . from right edge, 4 ft . 6 in . from bottom
lowing were the results obtained by firing on May 30th last:-
No. 4 struck 2 ft . from right edge, 2 ft . 3 in . from bottom of plate. Shot broken up; small head remained in ; two cracks in addition to those made by previous test ; pene-
tration, 4.4 in . tration, 4.4 in .
No. 5 struck 1 ft . $8 \frac{1}{2} \mathrm{in}$. from left edge, 2 ft . from bottom
f plate. Shot broken up; head remained in four of plate. Shot broken up; head remained in; four additional cracks produced.
No. 6 struck lft. $6 \frac{1}{2} \mathrm{in}$. from right edge, 3 ft . 8 in . from bottom of plate. Shot broken up small; head remained in; head of projectile in No. 1 shaken out ; two slight superficial cracks.
No. 7 struck
No. 7 struck $2 \mathrm{ft} .6 \frac{1}{2} \mathrm{in}$. from right edge, 1 ft . 4 in . from top of plate, and lft. 8 in . from each of the old impacts. Shot broken up; head remained in; two fine superficial cracks. On removing the plates the back was found slightly bulged in the rear of all four impacts, but no cracks. In
rear of No. 4 to a height of 4 in . over a bulge of 16 in rear of No. 4 to a height of 4 in . over a bulge of 16 in . diameter ; No. 5 to 65 in. over 24in.; No. 6 to 75 in . over Fig. 1 shows the 75 in , over 20in.
Fig. 1 shows the appearance of the plate at the conclusion of this severe trial. In no instance was the plate cracked deeper than the steel face. On the plate being taken down it appeared that the bulges made by the 9 in projectiles in rounds No. 1, 2, and 3 were about 5 in . high, while those produced by the 10 in . shot were $1 \frac{1}{10} \mathrm{in}$. The indents made by the 9 in . shot were about 4.7 in . deep, hile those of the 10 in . were rather less, being only 4.4 in .
Mr. Wilson is specially to be congratulated Mr. Wilson is specially to be congratulated on the results of this trial, because the plate has shown its Sub-committee continued fire, which is the test which the Sub-committee on Plates considered the most trying one
This
This may be taken as a sample of the best description of armour we know of to resist artillery fire at the present time. Should the power of projectiles to hold together bursting charges through steel-faced armour of this
manufacture of the coke employed in smelting. At Farnley it is smelted in blast furnaces 42 ft . in height, fed by trucks on a railway arranged by Mr. T. Gillot, the engineer of the works, so that the loaded trains being brought by locomotives to the crest of the incline and there stopped and held by brakes or sprags, need no
further locomotive assistance until the completely empty further locomotive assistance until the completely empty
trains are taken away to the mines. From the crest of trains are taken away to the mines. From the crest of the incline of the railway leading to the furnace tops there is a slight gradient to the furnaces, so that the furnace attendants have only to separate truck by truck as required for these to run by gravity to the furnaces. From the furnaces the empty trucks run down an incline on the line leading to the mines. The coal used at Farnley would not pay to work alone, but being found in association with a bed of fire-clay, both beds are worked to advantage. The same remark applies with reference to the iron ore, and thus the Farnley Company has a large quantity of fireclay at its disposal. This is used by the company in the manufacture of fire-clay retorts, and highclass plain and ornamental glazed bricks, for which purpose Mr. Gillot arranged a set of plant which is now turning out 30,000 bricks per week. As engineers are aware, the
Farnley Works have long been celebrated for boiler-plates Farnley Works have long been celebrated for boiler-plates of high quality and large sizes, and the flanging of very large plates with holes for furnace flues has been long a speciality. As this flanging is difficult work, especially when four holes are flanged very close together, and thus need good materials and presumably special machinery, circular hisles will be surprised to see this wille, after the circular holes are cut out by a simple drilling machine, performed by means of a common steam hammer and an apper and lower die and ring. With hydraulic presses and dies arranged to hold the plate with absolute firmess offect annular lower cie, this work cour probaly be effected cold with soft boiler steel if not with high-class ron. The material round one of these fanged of course, to elongate itself during the process of flanging;
a hole bored about 3 ft . diameter, say for a 3 ft . 6 in . flue,
having its circumference increased by about 15 per cent. to 20 per cent. This, if performed at a slow speed, would not put a strain on the material greater than its ductile strength, as proved by the numerous tests of boiler steel
which have given an extension before rupture of 30 per which have given an extension before rupture of 30 per
cent. These tests are made on small pieces it is true, but there is no reason why the same steel should not be called upon to give an extension as above mentioned. Large
furnace flues are made in the works with flanged and with plain ends, but the corrugated form of flue has not yet been made there, although at the wish of the proprietors
Mr. Gillot has given a little attention to the subject, and Mr. Gillot has given a little attention to corrugation. He does not, however, seem to attach much
importance to corrugation, and appeals to some experimental experience he had some years ago in support of his opinions. From a manufacturing point of view, one of the
chief difficulties in forming corrugated flues is that which attends the rapidity with which the plates cool during the process, only from three to three and a-half minutes being
available for the work. available for the work.
Siemens' gas furnaces are empioyed in these works, but
all were rebuilt a second time before they could be sot to all were rebuilt a second time before they could be got to
act satisfactorily. In the open-hearth steel furnace employed in these works for the production of steel boiler plates, \&c., experiments are being made by Mr. Gillot in
the employment of a basic lining, butat present we are not at liberty to publish anything more than the fact. Part of the railway running round the works, and up to the blast
furnaces, is laid with steel rails, and here those interested furnaces, is laid with steel rails, and here those interested
may see how rapidly some steel rails, at least, corrode out in the open air and under fairly constant traffic. Mr. Gillot has not yet accurately tested the loss of weight on one of
these rails during a given length of time, but it is apparently enormous, and the presence in the steel of but 3 per
cent. of manganese seems to be the only distinctive chacent. of manganese seems to be the only distinctive chaMr. Gillot has every facility for making an experiment on
this corrosion, and for this purpose might follow the lines this corrosion, and for this purpose might follow the lines
upon which Mallet conducted his experiments on the relaive corrosion of iron rails in use and out of use, as described in his report to the British Association in 1850.
The Farnley Works extend over a very large area, not including the coal and ironstone mines, and there is much to interest the visitor. We have only touched upon a few salient points, and now leave them to visit

THE LEEDS FORGE COMPANY'S WORKS.
When we visited these works only four years ago, to witness the experiments carried out to ascertain the strength
of Mr. Samson Fox's corrugated furnace flues, the premises of Mr. Samson Fox's corrugated furnace flues, the premises covered little more than one-fourth their present area.
The works, as shown in the map given in our impression for the 21st July last, are situated on a large piece of land off the Armley-road, which formerly constituted the Armley House estate. Like many other country ressithe rapidly-growing circle enclosing manufacturing Leeds. The leading feature in these works is the manufacture of boiler plates, especially of very large sizes, most of flues, flanged or plain at one or both ends, and into boiler fronts flanged ready for the receipt of furnace flues of marine and other boilers. The place has been specially
laid out for this work, and upon it it has grown with amazing rapidity. Hitherto the corrugation has been efected by means of a steam hammer and an upper and under Mr. Fox's patent, and referred to in our remarks on Messrs. Tannett, Walker, and Co.'s works, has been completed and fixed, together with a fine pair of compound cylinders which will be seen next week at Messrs. rugating roll and side support ing rolls, the upper roll being carried as a cantilever on the end of a strong shaft working in a hydraulic cylinder drawn, the heated flue placed between the side rolls, water pressure turned on, upper roll forced into place, and the mill started, arrangements being made for keeping the flues hot plate by ordinary rolls and then welded up. This welding has hitherto been effected by means of the ordinary forge fire, a moving steam hammer made under Mr. Fox's welding by means of a gas furnace, and with fixed for movable hammer, the flue being placed in a cradle on rails and provided with hand gear by which its position may be hammer. Besides the iron to the flame and under the large quantities of steel plates are used hitherto from Landore. For the purpose, however, of supplying the works plant is now being constructed, and the masonry work is in the arrangement of the heating furnaces recently erected in the works, with a special arrangement of flues and side furnaces, fires being used for this purpose instead of gas, as more easily and completely controllable, one of Besides the works in and near Leeds
now drawn attention as being open for the inspection of the members of the Instilution of Mechanical Engineers should have been glad to make some others of which we and time are now both limited, and we can here give only Works, Jack-lane, see map-speciality, tank and other small locomotives for all purposes and gauges; Messrs.
Manning, Wardle, and Co., Boyne Engine Works, Jack lane-speciality, small locomotives and tramway engines ; motives and wrought iron pulleys; Messrs. Maclea and March, machine tools, Dewsbury-road, very near Messrs. Hathorn Davey and Co., and M Messrs. Buckton and Co.;
Messrs, Lawson and Sons, Hope Foundry Mabgate ; Messrs.

John Fowler and Co., steam ploughs and traction engines Messrs. Taylor Brothers, Clarence Works, Hunslet; the
Kirkstall Forge Company, Kirkstall, where the process of Kirkstall Forge Company, Kirkstall, where the process of cold rolling of shafting will be seen, and Co., Leeds Ironington Foundry, textile machinery (Wednesday only)
 John Barran and Sons, Wholesale Clothing Manufactory W. Ingham and sons, 1 re-brick Wors, Wilo Wret . and J. Flitch and Co., Leather Works, Wison, Walker Works, Globe-road, Holbeck ; Pollock and Pollock, Longclose Works, Newtown; Scriven and Holdsworth, Leeds Old Foundry, Marsh-lane; Hargreaves and Nussey, Woollen Manufactory, Wortley; and Joshua Tetley and
Son, The Brewery, Hunslet-road. Almost all these works will be open on Tuesday and Wednesday only, and not will be open on Tuesday and Wednesday only,
throughout the meeting, as was at first supposed.
throughout the meeting, as was at first supposed.
Buckton's 11FT. SHEARING MAchive.- By a typogra-
phical error it was stated in our account last week of this fine machine that "there are two overhung wheels about the machine."

$\overline{\underline{ }}$

THE MANUFACTURE OF CEMENT AT FOLKESTONE.
In the new harbour works of the South-Eastern Railway Company, now in course of execution at Folkestone, artificial blocks,
made of pebbles from the sea beach, bound together with Portland cement, are largely used. The Portland cement is obtained from the Folkestone Cement Works, about half a mile from the harbour; and at the cement works the raw materials are obtained close at hand. The works stand upon an inclined plane ; chalk is brought to them from the cliffs above, and clay hundred or to them by a stationary engine from a clay-pit correspondent, who recently visited the works, sends us th ollowing
The Folkestone Cement Works were established and carried n for two or three years as a private speculation; in 1873 they were bought up by a company consisting chiefly of residents in
the neighbourhood; at the present time Mr. John Minter solicitor, is the chairman of the company ; Mr. J. B. Judge, secretary ; and Mr. Charles spackman, manager.
The materials for the manufacture of Portland cement vary in mud found in the marshes adjoining the Medway are used the Medway, grey chalk and the same mud; in the Lias districts the limestone shales and clays of the deposits furnish the most suitable materials. At Folkestone grey chalk and the gault clay
which underlies the grey chalk, as already stated, are the raw which und
At Folkestone the different beds of both substances vary considerably in composition. When free from water the chalk contains from 84 to 95 per cent. of carbonate of lime, the rest
being clay ; and the clay, in a dry condition, contains from 10 to being clay ; and the clay, in a dry condition, contains from 10 to
30 per cent. of carbonate of lime. The chalk upon an average contains 20 per cent. of water, the clay 25 per cent The first object to be attained is to reat these subintimately mix them together in such proportions that when deprived of water the mixture shall contain from 75 to 76 per cent. of carbonate of lime. This is done by what is known as the wet process, The raw materials are fed in measured proportions into a wash-mill, which is a circular trough in which a number of harrows revolve, driven by a steam engine of 14 -horse power. A stream of water is constantly flowing in, and the
action of the harrows, aided by the attrition of the particles against each other, reduces the whole to the state of slurry or
slip, which contains from 60 to 70 per cent. of water ; in this state it flows into the settling tanks or "backs," each of which it is allowed to subure th make 800 tons of cement. Here from time to to subside, the supernatant water being drawn of then left for six or seven weeks for the solid matter to sottle the surface water meanwhile being drawn off from time to time dy small sluice. The bottoms of the tanks are of the natural porous earth of the
water by absorption.
To return to the wash-mill. No coarse particles of chalk endanger the cenent pass into the backs, as their presence would to flow away from the wash-mill through strainers of fine copper wire gauze. Catch-pits are placed between the strainers and the backs to intercept any coarse particles that may have escaped. The process is a continuous one, a stream of water with succes-
sive charges of chalk and clay constantly going in, and a stream sive charges of chalk and clay constantly going in, and a stream
of slurry continually flowing out. The rate of flow has to be carefully regulated, so as to secure a proper mixture. Some of the beds of clay are easily washed down, while others are most and is easily washed ; other beds, notably that called the "burr chalk" -which is a kind of junction bed between the upper and The mechanical condition harsh and gritty in the breaking up during the process of washing, by washing a small known quantity through a fine sieve, and drying and weighing the
residue. The composition of the raw materials being known, their accurate mixture in the required proportion is simply a matter of calculation. To guard, however, against possible error, the percentage of carbonate of lime in the slurry is constantly
determined. If the percentage is not correct the proportions are altered, while occasional stirring of the backs ensures a uniform product. Many methods of analysis may be adopted. The lime time and tedious work, especially where as in a cement works many determinations have to be made. For all practical purposes a determination of carbonic acid in a dried and gently ignited sample of the slurry is sufficient. From this the percentage of carbonate of lime can be readily calculated. A form of apparatus which will give the required result in from fifteen
to twenty minutes, and involves only one weighing viz, that of to twenty minutes, and involves only one weighing, viza, that of The carbonic acid is collected over water, its volume read off, and the weight calculated with the usual corrections for temperature and atmospheric pressure. Another method, which in
very accurate, is to absorb the carbonic acid in a U tube filled with potash, pumice, or soda lime, the tube being weighed wefore and after the operation. There are several forms of
bing apparatus by which carbonic acid is determined as
loss, that known as Parnell's being one of the most useful.
When sufficiently stiff to be dug out, the slurry, still containing from 40 to 50 per cent. of water, is removed from the backs in wagons to the drying floor. This is heated by the waste gases to dry sufficient coke ovens, in which just sumfient coal is coked kilns are seven in number, from each of which 18 tons of cement clinker are drawn. The process of burning is an intermittent one. The kiln is charged with alternate layers of coke and dry
slurry, lit at the bottom by means of thirty baskets of coke laid slurry, lit at the bottom by means of thirty baskets of coke laid
upon brushwood faggots. These kilns are subject to great wearupon orushwood argots. These kilns are subject to great wearslurry before each charging. A charge is usually burnt off in thirty-six hours, after which it ine tributed in the kiln according to the judgment of the bunerAt these works one ton of cement is burnt with 20 bushels of At the
coke.
It m
what may be mentioned here that slurry prepared with a somementioned, say from 72 to 73 per cent, the than that previously to burn it, and the resulting clinker would be more easily ground, but the cement would have a low tensile strength. On the other hand, a higher percentage would largely increase the quantity of
fuel required, give a dense hard clinker very difficult to grind, and the cement would be liable to crack and fly when used. The product from the kilns is a hard blue-grey clinker, from clinker is crushed by pof Holl's multiple action stonebreate taken by an elevator to a chamber above the mill from whence it descends to the millstones. After being finely ground it is spread out in the warehouse for a few days, when it is packed in casks or sacks for delivery.
Portand cement is usually tested as to its tensile strength,
nd every English engineer who buys it applies his own tests, instead of adopting one general and fixed rule, as in German At Folkstor this mat tests what strain the cement will bear after being kept for seven days under water. The test demanded by Mr. Brady at the Foikestone new harbour works is
that it shall bear a strain of 810 lb . on a sectional area of 21 square that it shall bear a strain of 8101 lb ,

During the process of

During the process of grinding samples are continually taken for the purpose of being tested. Mr. Spackman informs us that
during the year 1881 the average of the tests during the year 1881 the average of the tests gave
strength of 497 lb . on the square inch of sectional area.
The total output of Portland cement at the Folkestone works is 120 tons per week.

Analysis of some Samples of Portland Cement.

No. 1. The Folkestone Cement Company's, March, 1880.1 September, 1881.
. From a works on the Thames, 1881 . 1 sample which 5001 b. on the square
 man from retuse from the channel t.
and possessed a high tensile strongth.

Insoluble residue ..	${ }^{1.260}$	6	$2 \cdot 894$		7
Silica $\begin{aligned} & \text { Sumina } \\ & \text { Alu }\end{aligned}$	8.869	${ }_{8}^{18 \cdot 977}$	-21-307	${ }_{7}^{18.5283}$	
Ferric oxide	${ }^{4 \cdot 998}$	${ }^{4} 4.412$	${ }^{5} .3868$	${ }_{5}^{5.108}$	
Lime	${ }_{61.669}^{61.351}$	${ }^{62} \cdot 8474$	${ }^{61 \cdot 459}$	${ }_{\text {c }}^{61.040}$	
	- 689	-891	1.449	1.565 ${ }_{\text {- }}^{\text {¢ }}$	${ }^{1 \cdot 200}$
Potash	978	1-100		${ }_{54}$	
			29	271	
	100.000	100.000	100 376	100	

Important Discovery or Iron Ore.-What promises to be a rich and extensive deposit of hematite ore has just been found by
the Askam and Mouzell Iron Company on their Mouzell royalty in Furness, the position of the find being close to the new tramway which transports the mineral to the Askam furnaces. Four years ago the Barrow Hematite Steel Company, under the impression
that the ore was exhausted, abandoned the Mouzell Mine, and Mr. Clegg, the owner of the royalty, booght up the mine, has
Techitioal Education.-In 1873 a scheme was formulated by Messrs. Mather and Platt, of the Salford Ironworks, assisted by Mr. T. Jones, the head draughtsman, for the purpose of enabling their apprentices to study sciences allied to their trade, Instruc tion was during the first session, which commenced in 1874, given
simply in elementary machine drawing In the second session simply in elementary machine drawing. In the second session practical geometry was addeed, and very soon one of the sludent
passed with honours. Applied mechanics was subsequently added to the list of subjects taught, and some of the apprentices who were examined by the Science and Art Department in that subject passed, during the first session, in the advanod thession of 1 . Whe the session of $1881-2$ commenced classes were formed for the study of steam and the steam engine, mechanical engineering, and
building construction; the mechanical engineering class being in connection with the City and Guilds of London Institute, the others being subject to the examinations instituted by the Science and Art Department, South Kensington. It is in contemplation to enlarge the list of subjects by adding mathematics, theoretical mechanics, art geometry and perspective, and the principle
involved in the manufacture of iron and steel. Instruction ha been given to the apprentices during two evenings in the week in the Queen-street Institute, a building erected by Mr. Mather some
years ago for a Kindergarten School. In this way Messrs. Mather and Platt have avietly conferred a great boon wo their apprentices and set a good, easily followed example. As showing that the students at this place do real work, we may mention that at the recent examination under the City and Guilds of London Institute,
in mechanical engineering they took a higher place than those D. Agnew; ordinary grade, first class, W. Wlours grade, second class, third prize, £. and bronze medal, H. J. A. Hermann, fifth prize, bronze medal, A. Hilton, E. H. Roylance, R. H. Unsworth, J. Sharp; second
class, C. Beckett, F. G. Dixon, A. Grimshaw, W. H. Mellor, J. C.
Sidebottom, L. Whyatt.

RATLWAY MATTERS

THE Scientific American says the fastest regular time known to
be made by the passenger trains from Jersey City to Philadelphia, be made by the passenger trains from Je
ninety miles, was one hour fifty minutes.
A tramway has been laid down from Athens to the Pireus, which serves the whole of the city, passing by the Parthenon and
the Acropolis. The constructors are M. M. V. Demerbes et Cie, of the Jemappes Rolling Mills, Belgium ; and the manager is M. B. In view of the meeting of the Institution of Mechanical
Engineers, at Leeds, next week, the Midland Railway has issued a Locial time-table showing the service of express trains between isle, and Leeds, with information respecting saloon carriages and engaged compartments
ON Monday evening a heavily-laden tram-car, drawn by a steam sharp curve over Ewood Bridge, Blackburn, and nearly thirty men were more or less seriously injured. Twenty were taken to the
Blackburn and East Lancashire Infirmary, where one died two hours later. The dri
The Department of Public Works of the Belgian Government national passenger traffic on the State Railways during 1880. The passengers carried are represented by bands, differently coloured according as the traffic was within the country or international, and whether the journey was effected by single or return ticket. A half a millimetre thick, the mean thousands of passengers from
tation to station being added in figures; while arrows show the direction
A RECENT Railway Review says:-"We have to report two Minneapolis and Manitoba-road, near Stewart, a constr ction train of an engine, twenty-two flats and a caboose left the rails on a
10 ft . embankment while running at the rate of eighteen miles an hour. The wreck was precipitated into a pond 8 ft . deep and thirteen men were killed or drowned, eight were seriously injured and three were fatally injured. Of the forty odd men on the train
not one escaped without some injury. The cause of the derailment unknown
The famous antique tunnel of Posilipo has now a rival. On
Saturday the perforation of the largest modern tunnel in Europe, saturday the perforation of the largest modern tunnel in Europe, under Posilipo, it being more than 30 ft . wide by 36 ft . high. Wepresentatives of the ancient cities weapolis and Putcoli. A broad causeway will accommodate pedestrians. The Naples corre-
spondent of the Standard says Syndics of Naples and Puzzoli waiting on opposite sides for the fall of the last partition met, their respective councillors and others invited.
The activity which has prevailed among locomotive builders for engines for Indian, colonial, and foreign railways as well as for ome lines, fill the factories, so that it is now difficult to make contracts for delivery earlier than next spring. The prosperity of America the demand for engines is so great that prices have nearly America the demand for engines is so great that prices have nearly
doubled within the last two years. Railway carriage and wagon
builders, thourh freed from the distressing competition which has doubled within the last two years. Railway carriage and wagon
builders, though freed from the distressing competition which has
prevailed up till a year ago, are not yet fully occupied, and can only prevailed up till a year ago,
According to "Poor's American Railway Manual" the year
1881 was one of extraordinary activity in railroad affairs. 1881 was one of extraordinary activity in railroad affairs
"Within the year 9358 miles of railroad have been built, the greatest number for any one year. The greatest mileage for any
previous year was 7379 miles, in 1871. The cost, at 25,000 dols. prer mile, of the lines constructed during the year was $233,750,000$
dols. In addition, at least $70,000,000$ dols, were expended on dols. In addition, at least $75,000,000$ dols. were expended on
lines in progress, and $100,000,000$ dols., which is at the rate of only 1000 dols. per mile, on old roads, in improving their tracks,
in building new stations, and in adding to their equipments. total amount expended in construction, during the past year, was, he mileage to be open in 1882 will equal that of 1881 . Tp to the 1st of June, 1882, 3677 miles of line were opened, against 1734 for of new mileage is not likely to be much short of 10,000 miles.
AT the North Staffordshire Railway Company's half yearly meeting held in Cannon-street a few days ago, Mr. C. M. before been able to present so good a report. The expenditure on been received from the sale of surplus lands, and there had been an addition of $£ 800$ to the working stock of the company, so that for the half year showed a considerable increase. The same railway. The receipts from mineral traffic were £2000 less than in the first half year of last year. The engineer had effected a affirmed that this had not been done by starving the line. The
company had run 50,000 miles more than in the previous six
months. Through improvements in their months. Through improvements in their engines they
working with a less consumption of coal than any other line
AT a recent meeting of the American Master Car Builders' Asso-
ciation the President suggested for discussion: "Is it safe to run a journal under passenger trains after it has been heated sufficiently to burn out the packing and cooled off with water?"' Mr. Bissell said: It is usually the case that new cars running out of the
hop will run warm if ever. Sometimes it will be so warm as to discolour the paint on the box and spoil it. I think it is very The President said : Car-builders, as a rule, pack their boxes very shabbily, and they almost always get hot; but they are very earn what was the cause of journals breaking off at the trying to showing no fracture, while the centre of the axle would show a
remarkably good quality of iron. A few days since I was testing ome axles, and during the test I put under a few old axles, and at hould say 10 ft . or 1 oftt., simply with the jar of weight dropping upon the axle. The axle was tested with a $1600-1 \mathrm{lb}$. drop, and, in break io and if my memory serves me, I would drop that $1600-1 \mathrm{~b}$.
weight 15 ft ., reversing the axle each time seven times before we weight 15 ft ., reversing the axle each time seven times before we
broke the axle. Now the journal showed no fracture of any description. It was completely crystallised, and I am very strongly of opinion. that that was caused by meeting, in the very strongly place, a
cooling off with water under load, and I am so thoroughly satisfied on that point that my instructions are to remove every axle that
has been heated sufficiently hot to be cooled off with water. has been heated sufficiently hot to be cooled off with water. I
have seen several instances where the journal dropped off and was
found in the box and the car came in safely. In fact one or tw f the Pullman cars have come in with the journat one or two oil-box. Whille I don't doubt that the axles were of good material, I firmly believe that an axle, after it has been heated sufficiently
hot to burn the packing out and cooled off under load, is an unsafe hot to burn the packing out and cooled off under load, is an unsafe in that way, you will observe that there is a yoke very often the under load the journal bent as it revolved.

NOTES AND MEMORANDA

 THE total production of zinc in Europe amounted to 203,330 tons1880 of which Germany produced 99,405 tons, or nearly half in 1880, of which Germany produced 99,40 tons, or nearly half,
two-thirds coming from the Upper Silesian districts. After Germony comes Belgium, with 65,010 tons ; thistricts. Angland, . with
22,000 tons: France, 13,715 tons; and Austria-Hungary, 3200 tous. THE South Australian Government Artesian Well-boring Company have erected apparatus at Government Gums, and will bore,
if necessary, 2000ft. for water. Twenty-four thousand pounds worth of machinery, the Coloniess and Indidia says, has recently been
purchased for the Government in England, the bulk of which intended for the construction of surfogland, of swamps in the south-east.
Althovgh beer is said to have been first produced at Pelusium, n the Nile, some 400 years B.c., Egypt is no longer a great beer-
producing country, but in the villages a crude kind of barley bee is still produced and consumed. In Alexandria, we believe, say ate await Cairo, one of the most perfect breweries in the world will be destroyed. This brewery is owned by the Societé Genevoise, and is constructed and worked entirely upon the German system
It contains a splendid ice machine by Raoul Pictet and Co., and is capable of producing about 400 barrels of excellent beer per week. We believe there is also a pneumatic malting on Galland's principle

A Correspondent, writing to the Times on a journey from the Missouri to the Yellowstone, says:-" Forty miles from the
Missouri is Blys Mine, a valuable lignite bed, 7 7ft. thick, with
200ft 200 oft. of soil and clay superimposed, but readily and inexpensively Worked by a heading run in almost on a level from the side of the forms a stout ceiling, which requires sittle propping. Over the
shale are 4 ft. of fire-clay, of which no use is yet made. The coal is got out and run down a convenient incline to the railroad cars its wide distribution. It burns brightly without much ash, and its wider distribution must prove an incalculable boon in a region
where wood is scaree and dear, and the thermometer for four months frequently falls below zero. One ton yields 7000 ft . of gas of 15-candle power. The seam is found to extend for eight miles probably it reaches much further; it is the same deposit whic
(nies nom?
Two inventors in Bohemia have patented a process for enamel castings that are made with core can be applied to other hollow says, in simply covering the sand core with the enamel and the pouring in the iron as usual. The heat of the melted iron fuse itself so completely from the sand that the enamel is said to be all that can be desired for water pipes and other industrial purposes.
In casting sinks, basins, urinals, \&ce, the enamel con In casting sinks, basins, urinals, st., the enamel can be eapplied to
the sand on that side of the mould which is to form the inside of the basin. The composition of the new enamel is kent a secret, but is said to differ from the old form in the simplicity of its prepara colour this new enamel is grey. It will be useful for gas pipes and
soil pipes as well as water pipes, because it will make the pipe soil pipes as well as water pipes, b
absolutely tight by a glassy lining.
A MoDification of the punkah is thus described :-Attached to at the top and bottom. The bottom roller is in a trough, which con tains a solution of a caustic alkali. At every swing of this punkah drawing the sheet or blind through the solution. The wet sheet swinging to-and-fro takes up from the air the sulphurous and car bonic acid gases, as well as some organic matter. Brought to the
test of experiment this plan appears to work successfully. In a test of experiment this plan appears to work successsumy.
small room, 18 ft by 1 ftt and only 8 ftt . high, fifty jets of a ga
stove were set burning for the room closed ; and to make it still further unfit for animal life, a quarter of an ounce of sulphur was burnt in it. The punkah, charged with caustic soda, was here set to work, and in ten minutes
the temperature was reduced from 85 deg. to 70 deg., and the aii was made sufficiently fresh and pleasant for twenty persons crowded .
tanks, with rice fields under them. They Ceylon is covered with the Singalese kings, but have been allowed to get breached, and the ment took the matter up it is only of late years that the Govern is very good, all the overflow water from one tank running int another; but the people are so lazy that when an Ella in ibreached
they do not take the trouble to repair it, Kala Balawewa-has a bund seven miles long, with the face all head of water of 24 ft . Stones most marvellously carved with images of the god Buddha, elephants, and other animals and rep-
tiles, are found near these tanks and in the jungle and edges and outlines of the figures are as sharp as if they had bee cot yesterday. The life of a public works officer in this part of the country is most unhealthy, and few stand it for more than six
months at atime, and the, worst of it is that when the fever has
once entered a man's system it can never be entirely eradicated
The following figures relating to Egypt are from the "Diction-
 figures give the area in Feddans-a Feddan is nearly an acre :-

system of melting iron, and at the same time incorporating in it scrap wrought iron, \&c. The cupola is supplied with blast through
two sets of tuyeres, one above the other there each sets. The tures, one above the other, there being eighteen in
earts, which have the form of a vertical
slot, are directly cornes orted with. circular tuyere belt. The parti arch which is pierced by two openings, through which both blastor rather imperfectly consumed gases of combustion -and the fluid
iron can flow. Below it is a small chamber in which the iron collects. It is heated by the gases forced down from the cupola a special tuyere leading from the main blast-pipe at the same time serves for preheating scrasp,-pipe., which need only
be pushed into the bath for dissolving it. Considerable nuantitie of scrap can be used by directly charging in any ordinary cupola greater facility in making sharp, strong castings, and a purer metal Middlesbrough, holding considerable silicon and little manganese To it from 40 to 50 per ent. of scrap, \&c., may be added. The
total consumption of fuel is stated to be 10 per cent. of the weight
of the product.
to the, at rates varying from 15 s . to 27 s .6 d . per ton gross, according not exceed 150,000 tons, yet it has imparted a firm tone to the market. Otherwise there has not been any material improvement
in freights. Owing to the hostilities with Egypt, and the danger home, have to a great extent been paralysed ; but for September shipment tonnage is in good demand, at fair rates.
THE Paris correspondent of the Liverpool Journal of Commerca
 and material for floors at 210 f ., the recent attempt by leading orchants to secure an advance having failed, in face, apparently, An improved tone characterises the market for finished goods in all and raw material is better supported than for some weeks past. with 75f. for Belgian foundry pig, grey pig being quoted at 62 f . 50 c . towards 135f., 130f. being accepted only in the case of large orders vell furnished with orders, have asked 140f 135f., and others, being are in good demand at 145 ff . and 150 f . Sheets are scarcer. Boiler

THE JABLOCHKOFF LIGHT AT THE CRYSTAL PALACE.

LONCITUDINAL SECTION OF OPERA THEATRE

Although man is proverbially of a very fickle character, he sometimes clings to his impressions and opinions. With regard to the electric light there are large numbers who gave their allegiance to the Jablochkoff light, and they still continue to advantages. On the Continent it probably holds its own against advantages. On the Continent it probably holds its own against lights. Whatever may be its future we are quite sure it is not a competitor to be despised. It is admitted that the most costl part of electric light apparatus is to be found in the carbon consumed. Great efforts have been made to cheapen the carbons, nd with success; for in the course of about five years the price of the carbons used by Mr. Jablochkoff has been reduced to one

tenth of what it was when his experiments on a large scale com menced. It is not, however, our intention to describe the Jablochkoff candle over again, but to describe the arrangeExhibition belioving that much is always to be recent rom a just as much is to be learnt from an inspection of a wellarranged factory. The leading idea of the exhibitors at the Crystal Palace was to show the adaptability of this light to various purposes-the lighting of stations, of large halls, theatres, rooms, \&c. Hence the Low Level Station, the opera theatre, the eastern gallery, passages, \&c., were lighted with a sufficient, but not a dazzling, amount of light. The current required for the lamps was obtained from Gramme machines, driven in the case of the station by a 10 -horse power engine, by Messrs. Marshall, Sons
and Co. This engine, with the two dynamos driven by it, was placed at the end of the long gallery entering the Palace lamps in the eastern gallery, twenty in all, were of two kindsone designed for street purposes, the other for shops, \&c. A 12horse power Otto gas engine, with a 20 -lamp Gramme dynamo,
was used. Another Gramme driven by a 10 -horse power engine, by Messrs. Hindley and Co., supplied the current for the lamps over the iron gates and in the passages adjoining the theatre. while another 12 -horse power Otto gas engine driving a Gramme machine was used for lights in the opera theatre. More than ment
 or in clusters. The small engraving shows the arrangement of wires to the gallery and theatre respectively.

THE LYTTELTON, NEW ZEALAND, GRAVING DOCK.
This dock was undertaken by the Lyttelton Harbour Board to meet the wants of a very rapidly growing trade, amounting at present to about 312,000 tons per annum, and continually increasing with the settlement and calivalon of che Canterbury Plais wher in an arm of the sea. This bay has been enclosed by breakwaters and the enclosure dredged out, making a secure break of about 113 acres, which will have a depth of 18 ft . to 22 ft . at low water when the dredging is completed. The entrance to the graving dock is within this port, and the site on which it is built was a high rocky bluff, which has been cut down to cope level, and about six acres of valuable land are reclaimed with the material. The entrance to the dock was fixed just where the rapidly shelving rock gave sufficient depth for the sill. The space beyond high water in front of the dock was enclosed by a cofferdam of main and sheet piles 4 ft . apart, and the interval between the piles was filled with mud dredged out of the harbour. were many springs, but none were of serious magnitude, althouch, taken altogether, great quantities of water had to be lifted by 6 in. centrifugal pumps. The dock is 450 ft . long, 82 ft , wide between the copes, 62 ft . width of entrance, and 23 ft . depth on the sill at high-water spring tide. The floor and lower altars are faced with stone ashlar on a backing of concrete ; the upper altars are entirely concrete ; the inner and outer sills and return walls at the entrance are also faced with ashlar ; the cope, steps, and timber slides are stone backed with concrete. While setting the concrete in the floors and lower altars numerous springs were conducted to a central drain through 3in. tile drains, and the cente was laid well is provided 13 ft . deep and 10ft long. into this all the drains under the foundations are conducted, but the glazed tile drains terminates in about 18 ft . of 4 in . cast iron pipe, to which a sluice is attached. This stands on a corbel in the corner of the rudder well, and with a key the valve can be closed and the water under the foundation is thus shut in, being about 22 ft . pressure of water on the floor. When this sluice is closed the concrete altars are found to sweat slightly, but without any definite leak, the stonework being perfectly watertight. The drainage of the wells, is provided by a culvert which branches out into two main wells, and a 12 in . iron pipe leads into a leakage well. The wells into them with considerable force. The risk of placing concrete in such a position was overcome by scoring the rock and placing tile drain pipes in the channels thus formed. The springs were
collected into a swamp or pit which was continually pumped a small iron pipe was placed in the swamp, and concrete being filled in, the water still found its way through the pipe, which was easily plugged when the work was completed. The wells were lined with 2ft. of concrete and a facing of hard bricks, through which, in spite of the great pressure, no water can find its way. The ledge against which the caisson rests, as well as all the rubbing faces of the sluices to the culverts, are made of hard stone polished, and the sluices are closed by greenheart doors with brass screws for lifting them. There is a sluice on the main pumping culvert, and one on each branch, and a manhole is provided for access to these culverts. The filling culvert is also provided with a sluice of the same kind. The discharge culverts from the pumps are provided with greenheart flaps and a sluice for closing a groove is provided in the entrance of the filling culvert for th same purpose. All this abundance of sluices, flaps, and checks for temporary dams are costly, but they are well worth the cost as they render every part accessible regardless of any emergency that may occur. One pump may be worked and the other removed, or both pumps may be repaired while the dock is ful of water; and thus every contingency is provided for. The discharge and filling culverts are placed on the same side of the dock and close together, so that one man can look after all the sluices, and at the entrance there is a strong wharf built, to which the caisson may be moored, and any ship entering th dock may be tan
The dock is emptied by two 5 ft . horizontal submerged centrifugal pumps of Messrs. Easton and Anderson's patent, driven
directly from the engines by cog wheels and pinions. The directly from the engines by cog wheels and pinions. The
leakage is drained by two plunger pumps placed in a well and worked by a small independent engine. The engine beds are blocks of concrete moulded in one piece with the floor, with long holding down bolts bedded in it, to which the bed-plates of the engines are bolted. The type of centrifugal pumps used in this dock combines many advantages over the common form vertical discs. The fans are easily accessible, and may be removed at any time without disturbing the machinery; they do not require to be charged, and they can lift any reasonable weight without a supplemental lift, and require no foot valve or water through pipes, as it merely riscs in the well when the fans are are set spinning and discharges through its outlet culvert. surfaces of greenheart. The caisson, when out of use, is moored alongside its wharf or inside the dock. The keel blocks are of best Australian iron, back bolted to the floors of the dock ; but the upper pieces are dog-spiked to each other. It is remarkable that shortly before the dock was finished a heavy earthquak occurred which shook down masses of the cliff of the hill above the dock; but neither the concrete, the masonry, nor chimney were disturbed in the slightest degree. The dock was built from the designs of Mr. Charles Napier Bell, M. Inst. C.E., enginee to the Harbour Board, Messrs. Bell and Millar, M.M. Inst. C.E pumps, which were engineers for the caisson, machinery, an carried out by Messrs. Ware and Jones who were previouly contractors for the Auckland Graving Do The total cost wa about $£ 79000$, exclusive of the cost of cutting down the bluff from which the reclaimed land was formed. The dock is illus trated on page 101.

UNIVERSAL MACHINE TOOL

The old adage, "Jack of all trades, master of none," is apt to suggest itself when a machine is put forward to perform all th drilling and cutting the threads of screws and teeth of wheels. It is not, however, claimed that the machine we illustrate an page 104 will perform all these various operations so economically as can be done by tools specially designed for their respective purposes, What is advanced is that in a small shop and on board a steamer, where it would be impossible to erect machines adapted to every requirement, this universal machine tool will perform any mechanical work that can reasonably be required of it. It also possesses this additional advantage, that when once the work is faced on one side and securely clamped down on the table, it may be turned, bored, planed, drilled, \&c., without its position being The machine is shown by Figs accuracy.
The machine is shown by Figs. 1, 2, 3, and 4, page 104. cone pulley at the back of the machine; it is then turned into cone pulley at the back of the machine; it is then turned int and to the table for holing the work. The motion is transmitted to the former by the pinion A-Fig. 2-fast on the cone pulley shaft, the spur-wheel keyed on to the second shaft B, the spu pinion C, capable of being thrown in and out of gear, the mitre wheels D and E, and the spur-wheels F and G, the cotter of the latter sliding in the groove of the drill spindle so as to permit the latter to rise and fall. The cone pulley shaft also carries the bevel wheel H, gearing with the pinion J, which through the bevel pinion K communicates motion to the crank disc L, placed between the two portions of the standard. This disc is provided with a radial groove for varying the throw, the connecting-rod M being made in two parts for the same purpose. The latter is jointed to the wor carriage, to which it gives a reciprocating motion for planing
The carriage is also made to traverse longitudinally, in either The carriage is also made to traverse which may be worked by hand, or self-acted by the gear to be described further on. The upper part of the carriage is also capable of traversing, like th slide-rest of a lathe, in a direction at right-angles to the former either automatically or by hand, by means of the screw O, Fig. 1 Furthermore, the table, provided with grooves for clamping th work, is capable of rotating in a horizontal plane by means of th worm-wheel and worm on the shaft P, Fig. 1.
When planing, the two parts of the nut of the longitudinal crew 1 are separated, so as to be clear of it, by the cam show at Figs. 6 and 7, worked by a box key; they are brought to-
gether by the same means when it is required to traverse the carriage in a longitudinal direction. Motion is given to the screw N by a belt from the horizontal shaft Q-Fig. 1-which, in turn, derives its motion from the cone pulley shaft, by the intervention of the intermediate shaft R-Fig. 1-carried by a bracket on the side of the standard. This shaft Q also serves to communicate the automatic transverse androtary movements to the table. It carrie a mitre pinion, which, by a train of wheels shown, causes the screw O, and the shaft P, carrying the worm, to revolve The screws N and O and the shaft P carry on their ends,
besides the handles, screw brakes for clamping the loose pulley besides the handles, screw brakes for clamping the loose pulley
and spur pinions fast against the collars. The other end of the and spur pinions fast against the collars. The other end of the
shaft P carries the dividing plate and index, enlarged views of which are given at Figs, 3 and 4 The plate is fast on the fixed bearing of the shaft, and the latter may be clamped fast,
GRAVING DOCK, LYTTELTON HARBOUR, NEW ZEALAND. mr. C. napier bell, m. inst. c.e., engineer. (For descruption sec pase 100.)

when occasion requires, by the set screw shown, so as to keep the table perfectly steady. The plate has a circular groove in
which a couple of stops, S and T, Fig. 4, may be clamped. The which a couple of stops, S and T, Fig. 4 , may be clamped. The
former is set at zero, while the latter is moved so as to stop the index at the figure corresponding to the number of division index is alternately clamped to the end of the shaft by the screw collar, and loosed, so as to give ene shaft part of a turn on
its axis always in the same direction, and thus by means of the worm and worm-wheel work the table
An excentric on the shaft L serves, by means of a system of
pods and levers, to self-act the vertical tool-box by actuating a rods and levers, to self-act the vertical tool-box by actuating a
lever, the pawl of which works the ratchet wheel, and thu For mlaning therm above it, Fig.
For planing, the work carriage receives a rapid longitudinal reciprocating motion by means of the crank disc and connecting
rod, the transverse feed being given after each stroke by the motions are thrown out of gear. For turning and boring, the table of the work carriage is made to revolve by the worm and worm wheel. The tool is gradually fed down by the rack, worm,
and lever. For drilling, the table holding the work is fixed, a rapid rotary motion is given by the gear to the drill spindle,
and the tool is fed down by the rack, worm, and lever. For slotting, the tool is held tightly in the tool-box A rapid reciprocating motion is imparted to it by the crank disc and connecting roa, and the drill spindle, and may be fed down or not, while the work clamped down on the table, is capable of being moved about as required in a horizontal plane. For dividing, the table is hand
worked by the index on the dividing plate, the tool employed being that mounted on the short horizontal shaft on the bracket The
of last machine was shown in action at the Frankfort Exhibition specimens of its performance, a plate with Among the various
spadually deepening specimens of its performance, a plate with gradually deepening
spiral and some wooden toothed wheels, beautifully cut, were especially worthy of attention.

SALE OF PLANT AT THE AVONSIDE ENGINE WORKS.
AT the sale of the large collection of plant employed in the locomotive and other engine construction by the late Avonside Engine Company, which took place last ucion, Messss. Fuller, machine tools and other articles fetched what may be considered very high prices. For instance, on the first day's sane, one of
Horsfall's bolt and nut forging machines, by Greenwood and Batley, fetched $£ 1945 \mathrm{~s}$., and a bolt forging machine by Craven Brothers $£ 76$. On the second day a De Bergue's excentric
punching and shearing machine to punch $\frac{5}{8}$ plates 26 in. in the punching and shearing machine to punch $\frac{5}{8}$ plates 26 in. in the
clear, and shear 10 in. wide 18 in. in the clear, sold for $£ 76$; a tubular steam boiler, 6 ft . diameter, 9 ft . 6 in. long, with 68 2 $2 \frac{1}{4}$ in. tubes, thirteen 3in. tubes, and eight 4in. tubes, and main tube 2ft. 6 in .
diameter with all fittings, including Giffard's brass injector, sold diameter with all fittings, including Giffard s brass injector, sold
for 95 ; and a 20 cwt. double standard steam hammer by the
Avonside Company with Avonside Company, with $15 \frac{1 \mathrm{in}}{}$ in. cylinder and 3 ft. stroke, 6 ft. bestandard steam hammer by Glen and Ross, with 14in. cylinder stand 2 tt . in. stroke, fetched $£ 110$, and a 20 cwt. hammer of the
and
same make, but with 183. cylinder, fetched $£ 130$. A 10.ton same make, but with 183 cylinder, fetched $£ 130$. A 10 -ton
double-purchase forge crane, with wrought jib $16 f t$. radius fetched $\notin 80$, and a similar one the same price. On the third day
a Whitworth radial drilling machine, 5ft. radius, and vertical
 bending rolls, by Garnett and Moore, with 13 in. top and 14 in .
bottom rolls 8 ft . 5in. wide, fetched 770 . Garforth's hydraulic rivetting machine, with 5 ft . gap, and with a pair of powerful hydraulic pumps by Fielding and Platt, with lator, with 4 inin. ram and 4 ft . lift, with all fittings, fetched
$£ 250$. A radial drilling with 2 in . spindle, 4 ft . 6 in. maximum radius, 2 ft . vertical range, $£ 70$; and a similar machine, with 5ft. maximum
radius, but to drill $12 \mathrm{in}$. deep instead of 10in., and with several drill clumps, £81. An overhead traveller to lo lift
12 tons, with trussed timber girders $38 f t$. span, fetched £125. A self-acting plate-planing machine, to plane 11ft. long,
and with all appliances, $£ 95$; and a 10in. self-acting slide and surfacing lathe, by 1 Ilingworth, with gap bed 12 att. long to admit
3ft. 2in. diameter, sold for boring lathe with 45 sin. headstock, 7 ft . face plate and cast iron table 6 by 3 by 2 ft , $£ 80$; and a 30 in. centre lathe with 5 ft .
face plate and 10 ft . 4in. bed, $£ 52$; a Smith and Coventry screwing machine for $\frac{3}{}$ in. to ${ }^{\text {sing., }}$, ftt. bed, and 38 dies,
£34; and a Whitworth screwing machine 136 dies, 26 taps, and 18 master taps, $£^{256 .} \mathrm{On}$ the fifth., day a 2ft. 5in. high, fetched $£ 142$ 10s.; and a Tweddell's wrought iron crane by Fielding and Platt, with jib 30ft. radius, $£ 29$. A powerfiul radial drilling machine by Sharp, Stewart, and Co.,
with 34 spindle maximum radius, 5ft. and 1ft. 8in. vertical range, fetched $£ 152$, and another $£ 160$. A slotting machine by
Craven Brothers, with 9 in. stroke, and to admit 3 ft. 6 in.
 Sharp,
and 15ttewart, and bed, fetched with 1523 in . stroke and 5 ft . 6 in. traverse
with 47 ft . wood trussed with 47ft. wood trussed girders, £156. A 1oft. standard rule by Whitworth and Co., in mahogany case, fetched $£ 1510$ s., and a
9 at. by Whitham fetched $£ 1310$. On the sixth day a radial drilling t machine, with 21 in. spindle, $5 \mathrm{ft}$. . 6 in. radius, $£ 48$;
another $£ 49$. A self-acting radial drilling machine by Whitworth and Co., 2 in . spindle, drill 12 in , deep, 5 ft . radius, $£ 100$ A four-
headed sloting machine by Smith, Beacock, and Tannett, for locomotive frames, fetched $£ 395$; and a powerful planing ma-
chine by the same makers, to plane 5 ft. by fft. 10in. long,
fetched fetched £255. A powerfuls, self-acting slide and surffacing lathe, 25 in . centres, 32 ft . 6 in . bed, 24 ft .9 in . wide, admitting 23 ft . 6 in . fast headstock, packed to 29 in. centre to go on bed of
above lathe, $£ 185$. A powerful 27 in. centre screw-cutting and slide surfacing lathe, with 22 wit. bed,
2 ft . 8 bin. wide, fetched $£ 35$. A large self-acting shaping machine, by Whitworth, with. 24 in. stroke, 7 ft. traverse on
9 ft. 8in. bed, fetched $£ 250$; and a doule-hende 9 ft. 8 in. bed, fetched $£ 250$; and a double-headed machine of
similar design fetched $£ 400$. A slotting machine by Whitworth, diameter on 3ft. 6in. table, $\neq 104$. diameter on 3tt. 6 in. table, E104; and a keyway slotting
machine by Sharp, Stewart, and Co., with two heads with 3in. spindles, and to admit 1ft.. 6 in. diameter, and heads traverse wheel-turning lathe, with 8 ft . 6 in. surface plates and to admit 11 ft . 6 in . long, and wheels 8 ft . diameter, on a a 22 ftt . bed, fetched to
plane 11 ftt . by 10 ft . by 18 ftt ., with table 19 ift . 4 in . by 9 ft . 5 in .
wide, in two parts, on bed 25 ft . 6 in . long, and $4 \mathrm{3in}$. leading screws, tables to be worked separately or together, fetched $£ 730$.
A similar smaller machine to p plane 7 ft . in. high, 9 ft . wide, and 12 ftt . 6 in. long, fetched $£ 305$; another to plane 5 ftt . by 5 ft ,
by $14 \mathrm{ft}$. ., $£ 155$. A . 5 ft . radial drilling machine, by Whitworth, same dimensions as before, fetched $£ 112$, and another $£ 122$. 12 -ton 47 ft. span overheed traveller, by Wren and Hopkinson,
fetched $\& 255$. A planing machine by Smith, Beacock, and
Tannett, to plane 3ft. by 2 ft . 6 in. by 6 ft , with two tool holders, Tannett, to plane 3 ft . by 2 ft . 6 in. by 6 ft , with two tool holders,
fetched, $\& 14710 \mathrm{~s}$. remainder of the sale, which lasted fourteen days. The last part
f the sale was in the pattern shop, where a 24in. band saw by of the sale was in the pattern shop, where a 24 in. band saw by
Barrett, Exall, and Andrewes, of Reading, and thus made at least eighteen years ago, fetched $£ 34$. A 42 in. band saw, with 5 ft . by stt. 5 in. canting table, by the Reading Ironworks Co., successor
to the above firm, fetched $£ 36$. There were altogether 2290 lots, and the prices we hav attended. They also show that trade must be good generally. MATTER AND MAGNETO-ELECTRIC ACTION.* By W. Spottiswoode, LL.D., Pres. R.S. M.R.I.
The late Professor Clerk Maxwell, in his work on "Electricity
nd Magnetism"-vol. ii. p. 146-lays down as a principle that "nd Magnetism "-vol. in. p. 146-lays down as a principle that across the lines of magnetic force, acts, not on the electric current the conductor which carries 1 t. It the conductor be rotating disc or a fluid it will move in obedience to this force, and
this motion may or may not be accompanied with a change of position of the electric current which it carries. But if the current tself be free to choose any path through a fixed solid conductor or
a network of wires, then, when a constant magnetic force is made to act on the system, the path of the current through the conductors is not permanently altered, but after certain transient
phenomena, called induction currents, have susided phenomena, called induction currents, have subsided, the dis-
tribution of the current will be found to be the same as if no magnetic force were in action. The only force which acts on eleotric currents is electromotive foree, which must be distin-
guished from the mechanical force which is the subject of thi chapter."
In the investigation on electric discharges, on which Mr.
Moulton and myself have been long engaged, we have met with tome phenomena of which the principle above enunciated afford she best, if not the ouly, explanation. But whether they be
regarded as facts arising out of that investigation, or as experiregaraed as facts arising out of that investigation, or as experi-
mental illustrations of a principal laid down by so great a master
of the subject as hope that they may possess sufficient interest to form the subjec of my present discourse. The experiments to which I refer, and special method of exciting an induction coil. This method was described in two papers, published in the "Philosophical Royal Society,"-vol, xxx. p. 173-respectively, but as its use
appears to be still mainly confined to my own laboratory, and to appears to be still mainly confined to my own laboratory, and to
that of the Royal Institution, I will, with your permission,
devote the withe devote a short time to a description of it, and to an exhibition o circuit directly with a dynamo or magneto-machine giving alternate
currents. In the present case currents. In the present case, I use ooe of M. de Meriten's
excellent machines driven by an Otto gas engine. The peed of the excellent machines driven by an Otto gas engine. The speed of the
de Meriten's machine, so driven, is about 1100 revolutions per minute. In this arrangement the currents in the secondary are of strength; so that the discharge appars to the eve, during th worling of the machine, to be the same at both terminals. The currents in the primary are also alternately in one direction and passes through zero. But they differ from those delivered in the important particular, namely, that while the latter, at breaking fall suddenly from their full strength to zero, and then recommence with equal suddenness, the former undergo a gradual although zero to a maximum in the opposite direction The ordinary currents with a contract breaker would be represented by a figure of this kind, while
those fred mately by a curve of the following form.
The rise and fall of the latter are, how$\left.\begin{array}{l}\text { ever, sufficiently rapid to induce currents } \\ \text { of high tension and of great quantity in } \\ \text { the secondary }\end{array}\right\} \Omega \Omega$ the secondary. From these considerations
it follows, First, that as the machine effects its own variations in the primary current, no contact breaker is necessary ; secondly, that as there is no sudden rupture of current, there is no tendency due to an abrupt to produce a spark or any of the inconveniences the condenser may be dispensed with ; thirdly, that the variations delivery of the secondary courrents, are perfectly regular ; fourthly With a 26 in. coil by Apps I have obtained a spark about 7 7in. in length, of the thickness of an ordinary cedar pencil. But for a length, an ordinary 4in. coil is sufficient. Owing to the double at each terminal, and a tongue of the yellow flame, such as is usually seen with thick sparks from a large coil, issuing, from each.
This torrent of flame-which, owing to the rapidity with which the currents are delivered by the machine, is apparently con resemble those given by my great coil exnth of thime. The sparks
Friday, April in this theatre on Magaine," 1877, vol. iii. p. $30-$ with large battery "Pher and with a mercury break; but with that instrument it is doubtful whether
such thick sparks could be produced at short intervals, or in the two methods, I will case. In order to contrast the effects of secondly with the alternating machine. You will notice that with the battery we can obtain either long, bright, and thin sparks, on short and comparatively thick discharges; but, unless the latter of time On the other hand, with the readily to the production of long and bright sparks, we can pro-
duce duce a perfect torrent of discharges more rapid and more
voluminous than by any other sparks can, however, be obtained by interrupting the flow of the to pass at comparatively long intervals. It may be interesting to
know that the number of currents consequently the number of discharges issuing from the coil, is no less than 35,200 , that is 17,600 in each direction per minute. The
number may be determined by the pitch of the note which always accompanies the action of an alternate machine.
Leyden jar is used as a secondary condenser. This appli when a the jar is well known as a valuable aid in spectroscopic research;
and the employment of the alternating machine so materially heightens the effects that, judging fine experiments made in character in the presence of Professor Dewar, I am led tifferent frder that you may form, at all events, some rough idea of the the
nature of such discharges, I venture, at the risk of causing some
temporary inconvenience from the noise, to project the spectrum of . comparison. The ordinary effect of an induction coil in illuminating vacuum tubes is well known. The result is usually rather inconvenience, e.g. the rapid breakers described in the "Preceedings" of the Royal Society - vol. xxiiii, p. ped 45, and vol. xxv.
p. 547 -or the break called the "Trembleur" of Marcel Comptes Rendus, 1881, I. Semestre, p. 1283. The use of the perinating machine, however, not only gives all the regularity in but also at the formity in current, aimed at in these instruments, result is a discharge of great brilliancy and steadiness and it is perhaps not too much to say that the effects are comparable to those The configuration of the discharge produced in this way can also be controlled by a suitable shunt applied to the secondary circuit; the one consisting of a film of plumbago spread upon a slab of slate, constructed by my assistant Mr. P. Ward, and here exhibited. One est of the strength of current passing through a tube is the
amount of surface of negative terminal which it will illuminate with a bright glow. I here have a tube with termimals in the form
of rings, each of which would be regarded of ample size for currents of rings, each of which would be regarded of ample size for currents
obtained in the ordinary way. These are now all connected obtained in tho ordinary way. These are now all connected
together so as to form one grand negative terminal ; and it will be ound that with the currents from the alce should perhans be whole remarked that, while the strength of the secondary currents passing through the tube is partly due directly to the strength of the primary currents from the machine, it is probably also in part due o the rapidity with which the secondary currents follow one maintains a warmer and more conductive condition than would prevail if the interval between the discharge was longer ; and in consequence of this a larger portion of the discharges can make its
way through than would otherwise be the case. Before leaving the instrumental part of my discourse, I desire to bring under your Hotice a modirication of the machine which we have thus far used high tension. This consists of a machine of the same general construction as the other, but having the armatures wound with a
much greater number of convolutions of much finer wire. The result is a machine giving off currents of sufficient tension to effect, by direct action, discharges through vacuum tubes, and even in air.
The currents are of course alternate of one of the terminals to a mere point, as well as by other methods described elsewhere, it is possible to shut off the currents in one hemselves through the tube. I hope on some future occasion to sive a fuller account of this remarkable machine, which has only Returning to the discharge in
rminals are set horizone in air, it will be noticed that when the assumes the appearance of a flame, which takes the form of an nverted V. This is the result of convection currents due to the heat given off by the discharges themselves. The discharges are by discharging distance free to move about and to extend themselves in space, especially in their central part. Further, it may be observed that the length of the spark which can be maintained is
greater than that over which it will leap in the first instance. The xplanation of this is to be sought in the fact that when the sparks ollow very rapidly in succession, the whole path of each discharge
remains so far in a heated state as to assist the passage of the next, and, further, that in the middle part of the discharge or apex of A, where the heat is greatest, the heat prevails to such an extent
as to render a portion of the path highly conductive. This may be illustrated by holding a gas jet near the path of the discharge.
The flames will then leap to the two ends of the jet, which The flames will then leap to the two ends of the jet, which
will perform the part of a conductor ; and the real length will be that traversed from terminal to manently heated part of the flame will act in the same manner in extending the effective length of the discharge.
hroughout, but consists of more than one lis not homogeneous which, from the fact of its forming the outer sheath of the but solid particles emanating from the terminals case may be inferred in a general way from the colours which the flame assumes when different substances are placed upon the
terminals; for example, lithium or sodium. The spectrum of the ame appears to be always continuous. A convenint substance to
ffix to the terminals is boron glass on which it gives rise in the discharge ; this will enable us to project the phenomenon. Within this sheath of flame, the discharge
consists of the pink light characteristic of air, and in the centre of consists ot the pinht spark. There is reason to think that, under
all the true bright bove division is sufficient for our present purpose. In this somewhat complicated structure, the pink light corresponds to the arc, and the flame to a similar accompaniment which is seen playing strength is used.

From this account of the methods here employed I now turn to the main question. In the investigation, to which allusion was
made at the beginning of this lecture, it occurred to us that an examination of the effects of a magnetic field on discharges of this comparison with those obtained at lower pressures, might throw some fresh light on the nature of electrical discharges in general. It is these phenomena to which Inow propose to ask your attention. When the discharge, originally in the form of a vertical spindle, is submitted to the action of a magnet whose poles are horizontal, discharges in one direction, and the other to those in the opposite direction. As the magnetism is strengthened, the flame retreats towards the edge of the dises, and ultimately disappears. The
dise then consists mainly of the pink discharge ; but with a still
tronger
semicircular sparks at various distances from the centre. In every Saper,
Opening of each. separate discharge.
Tn order further to disentarye
 recourse was had in the orisinalile experiments to a revoviving minror,
The light in the discs is in insuffieient to allow of a projection of the effects, but the accompanying diagrams represent the appearances
seen in the mirror.
Fig.
ishows the arrangement of the terminals and the magnetic poles; Fig. 2 the appearance of the discharges in a plane at right angles to that of Fig. 1 ; Fig. 3 they appearance of three successive discharges-in the same direction-with a weak
magnetic field and a slowly revolving mirror; Fig. 4 the same,
with a slightly more rapid rate of revolution. Fig with a slightly more rapid rate of revolution ; Fig. 5 a single
discharge, with a stronger field and greater speed of mirror ; Fig. 6
single discharge in a strong field, with a still greater speed of a single discharge in a strong field, with a still greater speed of
mirror. It should be mentioned that in all these figures the
images to the left are to be regarded as anterior to those on the images to the left are to be regarded as anterior to those on the right, and that th
discharge in Fig. 2.
If, however, we observe the right-hand discharges with a mirror curvature of the discharge will be befned in the opposite directionwith reference to the motion of the mirror-to that in the case of
the left-hand discharges. The consequence will be that the the left-hand discharges. The consequence will be that the appearance in the mirror, when the rate of revolution is not too
great, will be something like Fig. 7 , instead of Fig. 6. As the speed of the mirror is increased, the convexity will diminish, and altimately be replaced by a concavity of the same kind, alth
not so marked as that in the case of the left-hand discharges.

These diagrams show that each coil discharge commences with a bright spark passing directly between the terminals; that this
spark is in general followed by the pink light or are discharge, spark is in general followed by the pink light or are discharge,
which passes first in the immediate neighbourhood of the initial
spark, and gradually extends like an elastic string in semicircular loops outwards; and that the flame proper is a phenomenon
attendant on the close of the entire discharge. It should be added attendant on the close of the entire discharge. It should be added with a horizontal slit in front of the discharge, show that the disc is not simultaneously illuminated throughout, but that it is a locus dimensions from the centre.

T . FIC' ())

The mechanism of the discharge would therefore seem to be as follows: In the first place, as soon as the tension is sufficient, the
electricity from the terminals breaks through the intervening air, but with such rapidity that the fracture is like that of glass or remains sufficient electricity of sufficient tension, the discharge will continue to flow. During such continuance the gas becomes heated, and behaves like a conductor carrying a current; and upon
this the magnet can act according to known laws. As long as the electricity continues to flow, the heat will at each moment subsequent passage. In this way the gas, which acts at one
moment as the conductor of the discharge, and at the next as the moment as the conductor of the discharge, and at the next as one
path for it, will be carried further and further out until the supply path for it, will be carried further and further out until the supply
of the electricity from the coil fails, and the whole discharge ceases. We are, in fact, led by these experiments to the conclusion
that it is the gas in the act of carrying the current, and not the This explanation of the magnetic displacement of a discharge receives strong support from the phenomena represented in Figs.
5,6 , and 7 . The successive bright lines there shown must be due o successive falls and revivals of tension within a single coil
discharge. The existence of such alternations in coil discharges large quantity is otherwise known. When the fall in temperature is such that the conductivity of the gas is insufficient to maintain the are, the discharge can make its way through the air only by a
fresh rent of the same kind as the first fracture. But how can resh rent of the same kind as the first fracture. But how can original degree, and must, on the whole, be gradually falling, and that, in addition, the paths represented by these various sparks are successively longer and longer? The answer to this question is irregularity in one of these bright lines is always found to be accurately repeated in all of the same series. Now, it is scarcely portions of space, irregularities in the discharge itself, and in the or certain recur; and we are therefore driven to the conclusion that it is the same portion of gas which at first occupied the centre
of the field, with its same yet unhealed rent, which is moved of the field, with its same yet unhealed rent, which is moved
outward under the action of the magnet. If this be so, we have in
this reptition this repetition of minute details nothing more than what would the gas, which would be surely found out by the electricity in its struggle to pass.
The view here
discharge is further borne out by the fact that the spindle of light is capable of being diverted by a blast of air. When the blast is
is the spindle of light
gentle, the discharge becomes curvilinear circular, and the yellow flame may be seen playing about the outer edge, in the same way as in a weak magnetic field. When the
blast is stronger, the sheet of light becomes irregular in form, and is traversed by a series of bright lines, all of which follow, even
in their minute details, the configuration of the sheet. The analogy between this and the phenomena produced in a strong
magnetic field needs no further remark. If the strength of the blast be still further increased, the flame and the sheet of light both disappear, and nothing remains but bright sparks passing
longer offers a practicable conductive path for the remainder of the
electricity, coming from the coil, to follow. Of this a succession of disruptive sparks is a necessary consequence.
The effect thus produced by a very strong blast is in fact similar to that observed when a jar is used as a secondary condenser. In
this case the electricity, instead of flowing gradually from the coil,
passes in one or more instantaneous discharges with finite intervals of time between them. Each of these has to break its way through the air; and, that done, it ceases. Hence, neither a magnet nor a
blast of air will have any effect in diverting such a discharge. As a last stage of the phenomena it may be mentioned that, if the interval between the terminals be near the limit of striking distance,
either a blast of air or the setting up of a magnetic field will alike either a blast of air or the setting up of a magnetic field will alike
extinguish the discharge. Our experiments have been thus far carried on in air at atmospheric pressure; but there is nothing in
this pressure which is essential to them or to the conclusions to which we have been led. We may therefore repeat them in air, o any other gaseous medium, at any pressure we please. This con
sideration leads us into the region-so fertile in point of view-of discharges in vacuum tubes. Commencing with a tube of moderate diameter and of very slight exhaustion we at once recognise our former phenomena slightly changed.
Proceeding to another tube, of larger diameter and of moderate Proceeding to another tube, of larger diameter and of moderate
exhaustion, and placing it axially or equatorially in a magnetic carrying it--is disla the carrying it-is displaced, but also that the displaced part is spread
out into a sheet of ribbon, showing that the discharge is affected gradually, exactly in the same way as was found in the open air.
When the exhaustion is carried further, the phenomena become rather more complicated. "At an early stage there is a distinct separation between the " negative glow" and the rest of the
luminous column; and at a more advanced stage the column itself is broken into separate luminosities or strix. When this is the case, it is usually said that the negative glow follows the lines of
magnetic force, while the luminous column distributes itsel according to Ampère's law. It will, however, be found that when completely analysed the action of the magnet upon the strix,
taken individually, is the same as that upon the negative glow, due taken individually, is the same as that upon the negative glow, due subsisting between the one and the other. We have elsewher shown that the negative glow is in reality as truly a stria as any
other individual member of the luminous oolumn; but with this other individual member of the luminous oolumn; but with thi
difference, that it is anchored to, and dependent for its form on, rigid metallic terminal, whereas each of the others is dependent on the variable form and position of the stria immediately next in a magnet in throwing the negative glow into a sheet of light, which is the locus of the lines of force passing through the terminal, and
which consequently varies with the position of the tube in the field, is a phenomenon so well known that we need repeat only a single experiment by way of reminder. Although it is not altogether s netic field in the same way as is the anchored stria, we may
still still satisfy ourselves that it is the fact, from the consideration that when the striæ are well developed and the mag
netic field is strong, it is quite possible to form a magnetic
arch arch at any part of the column. In this experiment it will be
noticed that for the formation of the arch in mid-column it is necessary that both poles of the magnet should act upon one and the same stria. This, in fact, means that the pole nearest the
negative end anchors the stria, and thereby brings it into condinegative end anchors the stria, and thereby brings it into condi-
tions similar to those of the negative glow. When this is effected the two exhibit similar modifications in the magnetic field. In
support of this view we may adduce another and quite independent method of anchoring a stria, and of thereby producing a magnetic arch elsewhere than at the negative terminal. It was noticed by enveloped by an insulating surface of any form pierced with number of holes, or if a diaphragm similarly pierced be placed
anywhere in the tube, that the pierced surface will act as a anywhere in the tube, that the pierced surface will act as a negative
terminal. He also found that the finer and closer the holes the more complete the resemblance to the action of a negative terminal.
But even when the substance is metallic, and when the holes are neither very small nor very numerous, a perforated diaphragm wil so far act like a negative terminal as to serve as a point of depar-
ture of a stria. There is, however, this difference, that the blank is not generally so large as that at the true terminal ; and the
strix thus artificially formed always lie close up to the holes. The diaphragm, in fact, anchors the stria, and renders it susceptible of the same magnetic effect as was shown in the cases studied many other interesting and remarkable results, some of which In But these must be reserved for another occasion.
In the foregoing experiments, and in the remarks which have to gaseous media, the principle enunciated at the outset, that in ject of the magnetic action is the material substance or medium which conveys the discharge. I have shown also that, even when the discharge takes place in media so attenuated as to produce the phenomena of strix, the same principle applies not only to the and, lastly, that the apparent diversity of effect on the various
strix is due to local circumstances, and not to any fund difference between the "negative glow" and the members of the "positive column." Seeing now that the magnetic displacement of the luminous discharge means displacement of the matter in a
luminous condition, and that a crowding of such luminous matter involves an increase of luminosity, may we not infer with a high degree of probability that the strie are themselves aggregations of macuous?
It is true that such a view of the case would seem to imply that, in gaseous media, the better the vacuum the more easily can the electricity pass; and that this might at first sight appear to be at
variance with the known fact that the resistance of a tube decrease with the pressure until a minimum, determinate for each kind of gas, and then increases. But it has been suggested by Edlund that the resistance of a tube may really consist of two parts-first, that due to the passage of the electricity through the gas itself
and, secondly, that due to its passage from the terminals to the gas and also that the former decreases, while the latter increases, as the pressure is lowered. On this supposition the observed phenomena may be explained without assigning any limit to the
facility with which electricity may traverse the most vacuous space We may even carry the suggestion of a resistance of the second
kind a little further, and suppose that there is a resistane the passage of electricity from a medium of one density to that of another, or from layer to layer of different degrees of pressure of resistance due to the varying pressure in different parts of the tube. Into the question, whence this variation of pressure, I am experiments are not in disaccordance with other known phem ou experiments are not in dis
of the electrical discharge.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
THE SEVERN TUNNEL.
SIR, - Having been favoured with a permission to view the works
of the Severn tunnel, I send you a few particulars of my visit of
shire side of the river, and here, after a conversation with the resiprises pumps of great power, a ventilating engine, brick machines, air compressors, and an electric light generator. Numerous cottages have been built for the workmen, a school for their chil-
dren, and an infirmary in case of sickness or aceident. I next descended the shaft, which is about 200 ft . deep, and walked a quarter of a mile along an old heading before coming into the main vorks, A few minutes more and I was at the lowest point of the iver. This channel is half a mile wide, and about 60 ft . deeper
than the rest of the estuary. Although at this point there is only Ort. of rock above the crown of the arch, the amount of water springs on the Monmouthshire side have caused far more trouble ection under the Shoots was the only part of the work where any great difficulty was felt to exist. As this section is now complete,
all doubts as to the practicability of the tunnel have been set at rest. Continuing my exploration, I passed a drill at work, and went through a heading a mile long, at the end of which was a
descent of 20 ft . into the full-sized excavation. Beyond a splendid ight suddenly presented itself-half a mile of the tunnel finished and brilliantly illuminated with the electric light; the long perspec-
tive of the arch and line of lights, extending farther than the eye could reach, had a very fine appearance. This lighting coninued to the shaft on the Gloucestershire bank of the river, where Theached the surface, having passed completely under the estuary. Railway commences by a junction with the Bristol and New Paswith a gradient of 1 in 100 until under the Shoots, where the tunnel brings the line above ground, and extends almost to the junction ${ }^{2} 4 \frac{1}{2}$ miles long, 2_{4} miles being under the tidal river. Six shafts will be used in its construction, two on the Gloucester side, and
four on the Monmouth side. All the drainage of the tunnel and its approaches will be led by a return culvert from the lowest point to the Sudbrook shaft on the river bank, where permanent pumping machinery is already erected. The Severn tunnel will shorten the journey between London and South Wales by nearly an hour, nd no doubt will assist in the development of the magnificent
harbour of Milford Haven.
C. G. Ethesston. London, August 7th.

SEWAGE AND AIR.
Sir, -In "A. F.'s" interesting letter on the sewage question, in your impression of the 4th inst,, reference is made to the closets
"introduced by the late Rev. Mr. Mould" and a certain amount of credit given to him for his invention. My object in writing this is to show that whatever credit is due to the inventor of the dry sewage system should be given to my esteemed friend and
client, the late Dr. J. H. Lloyd, of Llangefin, North Wales. Dr. Lloyd's first public papers on the system of dry sewage were read by him before the British Association in Dublin in 1857, and pub-
lished in extenso by you, Sir, in The Engineer of February 26th and March 5th and 12th, 1858, accompanied on the latter date by a leading article favourably commenting on the plan, the said
article, by the way, being referred to by Dr. Lloyd in his pamphlets as "the first public recognition of my dry system of sewage." Now Mr. Moule's specification was not published until 1863, nearly six years after the date of Dr. Lloyd's patent and of his paper read before the British Association. Dr. Lloyd was
undoubtedly the first to advocate the system of separating the urine from the fæces, and the only difference between the Rev. Mr. loyd using the freshly burned ashes from the fire-grate, accompanied occasionally by the admixture of a little fresh lime, while
Mr. Moule employed earth for the same purpose. Dr. Lloyd Mr. Moule employed earth for the same purpose. Dr. Lloyd
always complained that Mr. Moule was a deliberate imitator and appropriator of the original principle of his plans for purifying had altered them for the worse by substituting earth for ashes and lime, alleging that the former simply buried the sewage, without
thoroughly deodorising it. The truth of this is borne out by your f earth. Had he tried the original plan of all, Dr. sand in lieu of earth. Had he tried the original plan of all, Dr. Lloyd's, and
used the screened ashes from his fire-grates, with the addition of a sed the screened ashes from his fire-grates, with the addition of a
little lime, he would not have had to complain of offensive tions, and would, moreover, have had the manure in a drier and ake of experiment, he turned out the contents of some pails, consisting of both fæces and urine treated with ashes and lime, oose on the boards of a garret, and left them there for two or
three years, and that there was no emanation from the mass what-ver-that, in fact, the persons in the house were not even sensible of its presence by any smell or odour, and most were not even
aware of its existence. I showed in 1877, at the Sanitary Exhibiaware of its existence. I showed in 1877, at the Sanitary Exhibi-
tion here, some closets on Dr. Lloyd's plan, with the pails full of tion here, some closets on Dr. Lloyd's plan, with the pails full of
excreta, just as they had been taken from use. In spite of the umbling and knocking about they would get on the journey from or two of the pans are here yet, still full as sent, and I will under or two of say that not one person out of every hundred that has
tassed them for the last five years even now knows what they
passer contain.
I have
pent much time this in justice to the memory of Dr. Lloyd, who ors fellow-creatures, for he certainly never made any profit rom them, or expected to do so. In fact, he himself relates
how Sir R. J. Griffith, C.E., then chairman of the Board of Works, Ireland, persuaded him to patent his plans, or other
parties would appropriate them, when he himself had only intended po publish them as a scientific paper. How this was attempted
after all by Mr. Moule and other followers of his is now matter of bistory. $\begin{aligned} & \text { I do not at all agree with "F. A." that the cost of collection }\end{aligned}$ and removal of deposits on the dry system will prove an insurseing extensively used in a town in Yorkshire, and is giving great
satisfaction. The sanitary inspector speaks highly of its advantages, and says there is a clear saving of 35 to 40 per cent. in the The matter to be removed being also dry and inodorous, may be taken away at any time of the day, and so save the men night
work. I feel convinced that this or some similar system of dry sewage arrangement will eventually be generally adopted, and
that the days of water flushing are doomed. 40, Lingard-street, Manchester, August 8th. Septimus Hughes.

brewing in england.

Sir,- The vague general statements contained in Messrs. Cor-
coran, Witt, and Co.'s letter published by you last week do not prove anything
If we
If we claim more than we are entitled to let it be disproved. We correspondence in the Brewers' Journal upon the subject of the correspondence in the Brewers of two-floored milns in Britain. They state now
frst users
that they made double kilns long previously to ourselves, thereby mplying that the said kilns were used for malt. This inference is in April last. Until we have undoubted evidence of malt having usly to that used by Mr. Tasker, manager for Messrs. Tamplin and Son, Brighton, we shall continue to assert that we were the first to
H. STopes London, August 9th.
UNIVERSAL MACHINE TOOL.
mr. edouard delamare-deboutteville, rouen, engineer.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intetded for insertion in this colum, must, in all casses, oe accompanied oy a large envelope legivo directed oy the
uriter to himself, and bearring a 1 p. postage stamp, in order that
ansvers received by us may be forvorded to their destination. answers received by us may be forvearded to their destination.
No notice will be taken of communications which do not comply with these instructions. *must therefore request correespondents to keep copies. contaring questions, must be accompanied by the name and
address of the writer, not necessarily for publication, but as a
proof of good faith. No notice whatever will be taken of anonymous communications.
W. M. P. - In most colonies the patent a can only be legally obtained by the
oriona invent
Johnson, and porbiotished bis by Lont. Lonmans.

PIN-MAKING MACHINER
(To the Editor of The Bngineer.)
SIR,-Can any of your readers kindly inform me who are the makers of
M. P. B.
manhinery for the manufacture of pins?
London, August srd. London, August 3rd.

RICE MACHINERY.

RICE MACHINERY.
(To the Editor of The Enginer.)

FOUNDRY CUPOLAS AND LADLES.
(To the of The Enginer.)
SIR, Can any of your readers sive us the names and addresses of
makers of oupolus to melt from 1 to t tons metan per hour on the most
economical principle also makers of foundry ladies?

MEETING NEXT WEEK.

$\left\lvert\, \begin{aligned} & \text { vating the Channel Tunnel." Thursday, August 17th: At } 10.30 \text { a.m., } \\ & \text { general meoting in the Civic Court, Town Hall, for the reading and dis-: }\end{aligned}\right.$

 Ind
Ino
and
and

south. The principal works in Leeds and the neighbourhood will be
thrown open to the members in the course of the week. Some of these
we have described, and of the others a list will be found on page 98.

THE ENGINEER.

the institution of mechanical engineers' visit to LEEDS.
The visit of the Institution of Mechanical Engineers to Leeds, though not very inviting as a summer excursion, will have many attractions from a technical point of view.
The town itself contains very little that will interest a visitor in fine hot weather, though its neighbour hood presents some attractive scenery within a few miles radius. From an engineering aspect, however, the
visit ought to prove attractive and instructive to engineers, visit ought to prove attractive and instructive to engineers,
for Leeds has grown by such rapid strides as an engineering town during the past twenty years, that it promises to rival Sheffield in the number of its tall chimneys and its smoky atmosphere. Not that engineers are to be interested
in chimneys and smoke, but where these abound in the iron districts they are usually significant of furnaces, engines, machinery, processes, and dodges worth knowing.
Leeds is one of the centres of the engineers' tool-makin Leeds is one of the centres of the engineers' tool-making industry, and, as machine tool makers are bound to use
tolerably good tools and gradually come to believe in tools, visitors may expect to gre ply of the best, not only in course of construction but in use. Leeds machinists have moreover, a high appreciation of the value of plenty of
tools, and so they use them in very large numbers and for every purpose. Visitors may thus gather some notions on the use of cutting tools in preference to of saving a great deal of time, and avoiding the need for the employment of semi-idle labourers for occasionally, moving heavy articles from place to place. The Employers Liability Act has made it necessary to be more careful in the work of this kind done by men, and hence the dangerous practice of moving fly wheels and large traction is almost in the south of England it is still done, and not infrequently at very great risk. There is no doubt that where work has to be performed, and especially lifting and moving
work, money invested in machine tools, and lifting and transporting apparatus, is well spent. Only two afternoons are set apart especially for visiting the Leeds as there are no papers which there is no doubt that long discussions, and none that are of vital importance some of the works will be visited at times other than these two afternoons. It is not to be suggested that everything is done in the best way or by the best means in the Leeds shops, and there is no doubt that some engineers will be suggest thy that in several instances they saw things that how improvements have been made. As an instance, we may refer to the way in which boiler front plates are spoken olseceiving the furnace flues, of which we hav have used Piedbœuf's flanging presses will think Leeds has something to learn, and no doubt this is so. Except in a few instances, cutting tools do not seem to in works less accustomed to experiment on the possibilities in machine tool working, but in a few cases cutters will be seen working at a high speed with a constant stream of seen running at a speed that could be easily counted by the eye, a thing not uncommon in works near London. The small drills, which we mentioned last week as running at twenty thousand revolutions per minute in brass, are, of
course, an exceptional case, but this gives an idea of what may be done with tools of this kind, the cutting speed of which does not, after all, reach 200 ft . per minute. In Leeds, as elsewhere, there is, as far as the eye can tell in walking through the works, considerable difference in the speeds at which cutters working on similar materials are employed, and there is no doubt that attention to this subject so as to secure the highest practicable speeds might be advanexperiment on this subject, is room for a good deal of and the tables of speeds compiled by Mr. P. Kierayeff, of the Obouchoff steel works, though more complete than any others published, leave a great Those who in several cases that higher class engines are being made for and employed in the manufacture of iron, but the engineer not accustomed to ironworks management and for a reduction in the there is yet much room in the re-heating of blooms and billets. In the last few years much less of the latter is done, but there is yet machinery is rapidly extending in iron and engineering works, and there is no doubt that it will continue to do so for it is economical and easy of application; while the small engine for supplying the accumulator requires hardly any
attention. In some places, moreover, the public water supply may be used Messrs. Hathorn, Davey, and Co.s works, where the cupola hoist is worked in this way the water afterwards passing to the boilers; and where the water is pumped on the spot, the waste is, of course, available for the same purposes. In visiting Hull-that is, if
the Institution goes there as at first proposed - will be seen a the Institution goes there as at first proposed - will be seena
length of about sixty miles of railway, with unusually length of about sixty miles of railway, with unusually
heavy cuttings and embankments, all in course of progress, and at a rate which far exceeds anything of the kind done in this country before. When the Bill for this ine was in committee one of our leading railway engineers said in
evidence that the cuttings alone would take six or eight evidence that the cuttings alone would take six or eight
years. Two years have elapsed, and more than half of the work is done, and two and a-half miles of line on an embankment, a great deal of which reaches 35 ft . in height, has been completed in six months. About 250,000 cubic
yards of material are being moved per month in tunnels yards of material are being moved per month in tunnels
and cuttings, some of which latter are 83ft. in depth, most and cuttings, some of which latter are 83ft. in depth, most
of the work being in chalk, though oolitic beds are reached in one part, and magnesian limestone in another. Beneath the limestone the coal measures have been cut into, and a
Beaumont diamond rock-boring machine is at work on Beaumont diamond rock-boring machine is at work on
Lord Beaumont's property near the line, with the object of Lord Beaumont's property near the line, with the object of
testing the measures for coal. Considerable progress is now being made with the Alexandra Dock at Hull. The dock is 2300 ft . in length and 1000 ft . in width, and though on a slight curve in plan, is roughly rectangular with three jetties, besides the two jetties formed by the sides of the entrance lock, which is within the dock area, and which is 550 ft . in length, in tivo parts, with three gates 85 ft in
width, one part being 325 ft and the other 225 ft in length. width, one part being 325 ff , and the other 225ft. in length.
There are two There are two eraving dooks in connection with the dock,
one being 500 ft , and the other 550 ft in length. About 100,000 cubic yards of this dock are being excavated per month. Along one wide of the dock next the railway are to be seven large coal lhois
titles in another column, prorad, of which we give the thing strikingly new, nor any new discovery or departure from known engineering theories or methods. Mr. Meysey.Thompson's paper
"On the History of Engineering in Leeds." which is properly first on the list, will be found of conside rable interest, and will afford several suggestions rempecting the places to be visited, and will help to show that the home
of Murray, Priestley, Smeaton, Fairbairn, and Greenwood all masters in the paths they took, has long beent
remains a leading centre of great indusurial activity of Large Size at High Temperatures," ought to excite a discussion, and Mr. Wicksteed's paper "On a SingleLever Testing Machine" will probably elicit some expression of opinion on the use of one heavy weight on one lever The lesser a smaller weight with a combination of levers compsser inertia of a heavy weight on a short is practically a long lever will probably weight oint in Mr. Wicksteed's paper upon which something may be said in the discussion.

the foreshore at hastings.

The fishermen of Hastings are in a state of great dissatisfaction and alarm with regard to the foreshore of that ancient borough. Visitors to Hastings in years gone by hingle which lay in front of that part of the town where he fishing interest was chiefly represented. There was a symmetry of line, and a singular gradation of colour, as if every pebble had been arranged with a view to effect. There was a long stripe of the big pebbles-large boulders a bluish tint, and then a stripe equally long of beachhe pes somewhat smaller and of a ruddy hue. Thus were he pebbles ranged in curvilinear rows from the verge of ack of beag road down to the very sands. thought there ever would be. Fishing boats and coasting vessels made heir ballast of the pebble stones, and the house builders foundations. Eresing quantities to make concrete for their finer sort of pebbles, and the country lanes for miles inland were repaired with shingle transported from the shore. This abstraction of the beach took place not only where the fishing boats were accustomed to land, but more or less along the entire sea front of the borough, for a listance of a mile or two westward of "the fishernable" and as the houses and parade walls extended along the shore, so it was found desirable now and then to erect a groyne to protect some particular point where the sea showed a tendency to make itself troublesome. But somehow or other it seemed that things grew worse instead of better. The more the town protected itself with groynes, me more the sea raged against it. Whether matters structed was a moot question with some parties, As a structed was a moot question with some parties. As a groynes were good, providing these structures were put in the right place. The difficulty consisted in deciding where the right place was to be found. Nobody cared to have a groyne just to windward of his property, and as everybody could not be on the right side of the groyne, so there was a great diversity of opinion as to the proper mode of proceeding.
The controversy to which we allude was greatly intensified by an alarming irruption of the sea which befell the and for the time being the mischief was most severe in what may be called the fashionable part of the sea front. Hence arose a loud demand for protection in those quarters which had suffered most, and this cry was met, as a matter of course, by the construction of some more groynes. But the authorities, that is to say the Town Council, were wise Coode, who examined the shore The called in sir John showing the Town Council what in his opinion they ought to do. It is complained that the Town Council failed to
carry out the plan of Sir John Coode in its entirety, and proceeded to protect the wealthier part of the town, while eaving the fishing interest to the mercy of the waves. As the groyning went on, so occasionally there were high tides,
in which the sea came dashing in at various points with mischievous results, and always with an indication that it was quite possible, with
There was an inexplicable disappearance of shingle, and a consequent increase in the depth of water. Rocks
unseen before were laid bare by the denudation of the beach, and the very sands were reduced in their area. It was argued by some intelligent observers that the Town ynes at the extreme west of the sea front, at the outer border of the contiguous township of St. Leonards. Thus, it was alleged, the beach was pre-
vented from having sufficient freedom of access to the entire front. It was contended that the new groynes
should have been erected in the first instance at the should have been erected in the first instance at the
eastern extremity of the borough, where there was nothing to leeward but a range of cliffs. The terms "windward" and "leeward" are used in our remarks as conveniently expressing the fact that the beach generally
travels in one direction along the shore. That is to say, it
obeys the impact given to the pebbles by the waves under obeys the impact given to the pebbles by the waves under the influence of the prevailing winds. On the south coast and very decidedly at Hastings-the shingle travels from west to east, except during brief periods when the
vinds happen to be easterly. The average direction of the wind is from the south-west, and the general tendency of the waves is to drive the shingle to the eastward. As
the Hastings Fish Market occupies the extreme east of the the Hastings Fish Market occupies the extreme east of the
sea front, the formidable array of groynes studding the sea front, the formidable array of groynes studding the
whole foreshore of the borough to the westward is evidently calculated to deprive the fishermen's quarter of its natural protection.
Be the exact explanation what it may, those who re-
member the eastern beach of Hastings in its former beauty cannot but be shocked at its present appearance. Its aspect now is hideous-we might almost say ghastly.
Instead of the beautiful slope which formerly charmed the eye, there is now a precipitous descent, bristling with stakes and faggots, like chevaux de frise intended to keep out some
besieging force. Were it not for this rude defence, the besieging force. Were it not for this rude defence, the
sea would attack the solid earth and cut its way into the sea would attack the solid earth and cut its way into the
foundation of the road which runs parallel with the shore. In such a case the adjacent property would
be in imminent danger, and could scarcely escape be in imminent danger, and could scarcely escape
destruction in the event of a high tide, such as occasionally visits this part of the coast. The faggots, we may
observe, are by no means secure. Every high tide, though only moderate in its degree of violence, carries away whole masses of the basket work, as it may be termed, and no
small expense must be incurred in keeping up this miserable fortification. The Hastings fishermen have lately held a meeting on the subject, and despairing
of effectual help from the local authorities, have drawn up a memorial to the Board of Trade, a copy o
which has been sent to the Home Secretary. It i also proposed to petition Parliament, and in other
ways to bring the subject before the notice of the public. The question is one of more than local importance, seeing that a large supply of fish has been furnished by the Hastings boats in years gone by. The value of this
supply is stated to be as much as $£ 50,000$ per annum. supply is stated to be as mach as $\pm 0,000$ per annum. the strand is in such a condition as to prevent them from pursuing their occupation in a proper manner. Their net
and rope houses are being washed away, and their boats have holes stove in them by the faggots and stakes. The secretary to the Fishermen's Society, in addressing the a lamentable one, and it is hoped that you will think fit to take steps necessary to protect the fishermen, or in the coming winter their dwelling-houses will
destroyed, and there will be some lives lost.,
There can be no doubt that, not only the fishermen's quarter at Hastings, but a part of the town adjacent to it,
are both alike in considerable danger from the sea. The shingle has disappeared to an extent which justifies the most lively apprehension. The crisis may pass without a very little credit. We do not like to impute blame, but it would certainly seem as if the Corporation had begun at
the wrong end, giving protection to what we term the windward part of the borough before attempting to guard the leeward part. Time may repair the mischief. The beach shows some signs of creeping along from the western groynes
to the eastern; but until the process is complete, the eastern part lies exposed to the fury of any storm that may come. which may baffle the best engineering skill. This, how ever, supposing it to be true, offers no excuse for blunder-
ing, or for neglect. If the sea, independently of groynes and building operations, is really threatening a portion of the southern coast, there is the more reason for the exer-
cise of sound judgment in meeting the difficulty. The Hastings Town Council may have erred and made things worse, and if so, it is a serious and grievous matter. But outside their western boundaries. As a matter of fact, the sea is running in between Hastings and Bexhill after a fashion which suggests some curious reflections. This is a purely natural action, and has resulted in the destruction
of Martello Towers and other landmarks, so as clearly to show that the sea is overleaping its former limits. The phenomenon has been lately referred to in a petition from Earl Delawarr in the Chancery Division of the High Court
of J ustice. His lordship is described as possessing a life interest in certain land at Bexhill, about three miles to the westward of St. Leonards, on which area he is desirous of
building. It is stated that at this place the sea has of late made encroachments, and it is proposed to erect a sea wall and groynes to stay the inroads which thus occur. These works will cost a considerable sum, but evidence
is adduced to show that unless the land is thus protected
there is danger of its being inundated by the incursions of the sea. Vice-Chancellor Bacon, before whom the peti-
tion came, approved of the building and other schemes contained therein, and the project is therefore to be carried accordance with the provisions of the Settled Estates
But supposing these works to be constructed, there arises the usual "windward" and "leeward" question.
Hastings is to leeward of Bexhill, and its supply of beach will be intercepted by the Bexhill groynes. St. Leonards, as being nearer than Hastings to the spot in question, will
suffer more. Immediately to the westward of St. Leonards suffer more. Immediately to the westward of St. Leonards
is a marshy flat protected by a "full" of beach, and here there is the greatest possible chance of an irruption of the sea, such as will seriously inconvenience
Railway and absorb a large area of land.
We might say very much more on this subject, and unfortunately, it is more easy to point out the peril than it
is to specify the remedy. One thing, it seems to us, the is to specify the remedy. One thing, it seems to us, the
Hastings Town Council should have done long Hastings Town Council should have done long ago. They
should have restricted, if not absolutely prevented, the removal of shingle from the foreshore. The quantities taken away by builders and others have been enormous. Even i removed solely from the eastward the effect is mischiev-
ous. So great is the greed for appropriating the shingle, that even under the restrictive regulations recently adopted as many as 2200 cartloads have been removed in six weeks. Some further restrictions are now being put in
force, and none too soon. force, and none too soon. Another question is that cf
erecting a large stone or concrete groyne at the extreme erecting a large stone or concrete groyne at the extreme
east of the town, as recommended by Sir John Coode Instead of this powerful bulwark, the fishermen complain that only "a paltry wooden" groyne has been erected which is of very little service. Of course when this is
put up, if ever it is, there will be mischief done to the put up, if ever it is, there will be mischief done to the
eastward of that point. As yet that part of the shore is uninhabited. But the beach is getting very bare, the cliff is falling, and the sea has run in so as to compel
the removal of the coastguard station. So the process goes on, and we only hope that Hastings-which in the last seven years has lost some thousands of pounds by the
attacks of the sea-will escape the peril which still besets

The fishermen, as a class, are popular, and it will be Haster for much regret if they should be driven from Hastings by the destruction of their landing plaze. They may reappear elsewhere, but their banishment, should it
occur, will be a source of suffering to themselves, and, we believe, of permanent injury to the town.

the theory of welding.

The operation of welding is one of so much importance in metallurgy, and one around which so much mystery may be said to have accumulated, that any attempt to be welcomed. To some such attempt we propose now to
bo to direct attention. An opinion has lately been gaining ground on the Continent that difficulty in welding i entirely due to the infiuence of foreign substances, and
not to any differences in the condition of the iron itself not to any differences in the condition of the iron itself.
Professor Ledebur is the latest exponent of this idea. H. tested a number of specimens of rolled iron, both easy and hard to weld, and found that the total percentage of silicon, sulphur, phosphorus, oxygen, manganese, copper, \&c., was on the average 70 per cent, higher in the latter than in the
former. He also found that the presence of oxygen in chemical combination up to $0^{4} 7$ per cent. was less injurious
than a larger quantity of manganese, silicon, or phosphorus; than a larger quantity of manganese, silicon, or phosphorus, impossible. On these experiments he based the theory that all foreign elements, equally with carbon, have an injurious effect upon the welding capacity of iron; and this in
two ways--first, by lessening its ductility; and secondly, two ways-first, by lessening its ductility; and secondly, the molecules at the surfaces to be welded, from flowing into intimate contact with each other under pressure, the second makes the iron so nearly liquid
heat that it flies to pieces under the hammer.
This interesting theory has been partially adopted-but partially only-by another worker in the same nela, Heri admitting that phosphor and manganese, as well as carbon, have a hardening effect upon iron, and thus lessen its
ductility, he points out that Ledebur's specimens were after all wrought iron, not steel ; that they were therefore far more ductile, for instance, than ingots from open-hearth steel is easily 0.08 to 0.1 per cent. of carbon; and yet such fore play more than a secondary part. With respect to the melting point, this is no doubt lowered by the presence of of carbon-of phosporis anecially with a high percentage small quantities, raises rather than lowers it, for stee which, on account of a high proportion of silicon, is redshort, may be cured by an admixture of manganese Chromium and tungsten have a similar effect, so that the direction enumerated by Ledebur do not all act in the same favourable it seems then that other causes for the unsought for, and these may be found, according to Reiser, in their capacity for oxidisation, their own capacity for weld Wind their tendency to crystallisation.
that steel, if to the first, or oxidisation, it is well known of air, becomes weak loo long or too highly in the presence is no doubt due to a partial oxidisation of the material Some kinds of steel are more easily damaged than others and it is feared that such steels contain higher proportions of elements, such as chromium and tungsten, which oxidis easily at high temperatures, and thereby lose their hardening properties. Now it is well known that oxidisation of the surfaces is fatal to good welding, and the only as borax, lies in throm the various welding nostrums, such to remove, any scale of oxide which may have accidentally If there be but supposing the surface thus to be cleaned, yet their tendency will be to couse the oxidisation to spread again to the surface, and hence we see why the presence of
easily oxidised elements is injurious to welding. With egard to the second point, the presence of a metal, even in small quantities, which cannot itself be welded, must course have pro tanto a bad effect on the welding of
the entire mass. This applies to copper-which can only the entire mass. This applies to copper-which can only
be welded by special methods-and no doubt also to such brittle and oxidisable metals as manganese, chromium, and tungsten, though direct experiments on these are wanting;
nickel and cobalt, on the other hand, are easily welded. nickel and cobalt, on the other hand, are easily welded.
With regard to the third point ; iron, to weld easily, must be in a plastic and coherencond and this is characteris harder to weld the higher its proportion of carbon ; but at the same time it becomes so much the more liable to crystallise, and at lower temperatures. This tendency reaches its maximum in the well-known crystals of spiegel-wo-fold. The effect of crystallisation, according to Reiser, is wo-fold. In the first place, the polar forces, whatever they are, which give the form to the crystals, seem to conentrate, as it were, the attraction of the molecules, and prevent them from exercising that attraction freely on other molecules which may come into their neighbourhood,
as they do when in the amorphous condition. In the as they do when in the amorphous condition. In the
second place, the effect of crystallisation is to bind up in second place, the effect of crystallisation is to bind up in
intimate connection with each minute crystal a portion of ome foreign substance which melts at a lower temperasome foreign substance which melts at a lower tempera-
ture than the iron itself; when a welding heat is reached ture than the iron itself; when a welding heat is reached
these foreign substances are apt to liquefy, and in so doing to destroy the cohesion throughout the whole mass.
It will be seen that the general conclusion reached by Reiser, equally with Ledebur, is that all foreign substances -except the special fluid silicates, which are known to assist equently that we may lay down the general principle that he purest iron is the easiest welded. The reasons, however, why these substances exercise a deleterious influence the practical ironworker, since it is only by knowing the easons and ronworker, since it is only by knowing the o devise mnowing them thoroughly, that he can hope ffects. Herr Reiser's conclusions are at once practical and cientific, and deserve the attention of all who are interested in the using or making of iron. They add another argument to the conclusion which most engineers will be prepared to endorse, namely, that wherever iron has to be worked, hot or cold, or to be used for any but the most ordinary purposes, it is worth while to spend very great pains tandulach the thould and of purity. We do not mean by this that it sut that it should at former days-iron that a blacksmith or an engineer can take up and use as it comes to hand, secure that it will ake only the present instance of welding, the cost of a bad weld that is discovered will many times outweigh a saving even of some potund per ton in the prime cost of the iron, while che cost of a bad weld that is undiscovered may be almost incalculable, not only in hard cash, but in human life. From this point of view even the carbon of steel must be considered an impurity, since it undoubtedly diminishes, to some extent, the welding ability of the metal. As a ing, at act hever, there sel" "or "ingot iron" of which we now hear so much. It is true that Dr. Siemens has been charged with committing himself to the opinion that "steel will not weld;" but if his speech on the subjectwhich was delivered many years ago-be examined, it will be found that he was merely referring to he question whether white-hot fragments of steel, such as mass of scrap, will close up into a solid and firm mass word, the hammer, as iron scrap is known to do. ay it he denied that steel would weld case the welding of mild steel is now a simple and every-day fact of the workshop ; and steel may even claim a pre-eminence over iron urer particular, inasmuch as, if richer in carbon, 1 ny but he costliest forms of wrought iron can be. Practically, a smith dealing with steel has nothing but carbon, and possibly manganese, to think of ; he need not trouble his head about sulphur, phosphorus, arsenic, and other materials, whose influence on welding Herr Reiser has done his best to set forth in detail. No difticulties as to welding will be likely seriously to hi
The facts we have been considering may be looked at amely, as throwing some light on the meaning and nature of the process of welding itself. What has happened when two masses of iron have been welded together ? Simply, we believe, that the forces of cohesion, which were previously in action on either side of the bounding surmasses into one coherent whole. With a perfect weld any signs of the former division should be completely obliterated, and the cohesion over the original surfaces as strong as anywhere else within the mass. Proexperiments are said to have shown that, even with thoroughly satisfactory metal, there was a dimient. This average diminution is doubtless due merely to the fact that at certain points of the welded surfaces the causes which prevent the cohesive forces from asserting their action have not been entirely removed. two heads- (1) the presence of any coating, whether consisting of a foreign element or an oxide upon the surface of the pure iron. (2) the presence of any crystalline strucure in the iron itself. The exact way in which these auses act we cannot hope to determine, until we come to ut that they do doubted. Conversely the two great requisites for a successful weld are (1) to ensure that the surfaces shall be
but not into a fluid condition. It only remains to use a moderate pressure, such as shall force the molecules at the surfaces into close and intimate junction with each other,
and thus introduce them within the sphere of each other's and thus introd
On the other hand, any attempt to cement the pieces together by means of a film of fluid metal interposed between the surfaces, is known to be useless, probably
because the molten mass oxidises more rapidly than because the molten mass oxidises more rapidly than it
sets, and thus takes the form of a scale, instead of uniting sets, and thus takes the form of a scale, instead of uniting
itself firmly to the surfaces on either hand. It may be itself firmly to the surfaces on either hand. It may be
suggested to physicists, in this connection, whether the interesting phenomenon known by the name of regelation -in which two pieces of ice, when pressed together, form themselves into a single mass-is, after all, anything more
than a case of welding. It has generally been supposed than a case of welding. It has generally been supposed
that the union is due to the freezing of a film of moisture enclosed between the surfaces of junction; and much ingenuity has been expended to explain why this freezing
takes place, even when the mass is at a temperature of takes place, even when the mass is at a temperature of
32 deg. Fah. It seems at least worthy of inquiry whether this film of moisture really freezes at all-whether it is not, as a fact, driven out by the pressure, either at the
edges or into the porosities within the mass ; and whether the regelation is not merely the junction, by true welding or cohesion, of the still solid material on either side of the surface of junction.
the port and trade of sunderland.
In the statement of the tonnage of vessels, \&c., of the receipts issued by the River Wear Commissioners, there are some facts
that indicate the movements in the trade of the northern ports that indicate the movements in the trade of the northern ports.
A rather curious table is given showing the fluctuations in the tonnage of the vessels using the port in the first half of the
present year, and in the corresponding half of last year. The small decreased very greatly in the year bridged by the compari-
son. There were 111 less vessels under 150 tons register in the son. There were 1111 less vessels under 150 tons register in the
six months $; 67$ less between 150 tons and 250 tons; whilst
above the latter tonna above the latter tonnage there was a not inconsiderable increase.
And a detailed comparison of the average tonnage of the vessels used in the port may be summarised in the statement that in the year compared the average tonnage of the vessels has increased
3.8 per cent. Another table is also curious-one showing the 3.8 per cent. Another table is also curious - one showing the
kind of trade done by the vessels frequenting the port in the first half of last year and of the present. Last year $69 \cdot 2$ per cent. of
the whole of the vessels were in the coasting trade ; this year the the whole of the vessels were in the coasting trade ; this year the
proportion has fallen to 66.5 per cent. On the other hand, the
vessels in the vessels in the European thrade rore from 26.8 per cent. of the total
to 30.1 per cent.; but the proportion of the vessels engaged in the trade beyond Europe fell from 4.0 per cent. . o 3.4 per cent.
the total trade of the port shows a declension in the half year of 103 vessels, but owing to the larger average tonnage, the total
is about 10,000 tons above that of the past year. The financial is about 10,000 tons above that of the past year. The financial
results are not so satisfactory. The inward tomnage rates show a results are not so satisfactory. The inward tomnage rates show a
slight increase, but the outward, and several other items of the receipts, show a declension. The coal shipped is 50,000 tons
less for the half year, and the receipts are thus effected, and the less for the half year, and the receipts are thus effected, and the
total shows a decrease in the receipts for the half year of $£ 276915 \mathrm{~s}$. 5 d . It is said that in part this is due to the mild
winter. There is a little to the south of Sunderland the small winter. There is a little to the south of Sunderland the small
port of Seaham Harbour, which is in rough weather not always
obtainable by vessels, but which has this year shipped considerobtainable by vessels, but which has this year shipped consider-
able quantities of coals that would otherwise have gone to
Sunderland How far this explanation may be the corvect one Sunderland. How far this explanation may be the correct one
cannot be said, but possibly that and the comparatively high
charges may have something to do with the declension of trade. charges may have something to do with the declension of trade.
The latter, however, may be temporary, and indeed ought to be, because there are few of the north-eastern ports that have the
advantages possessed by Sunderland in being on the very verge advantages possessed by Sunderland in being on the very verge
of the Durham coalfield, and in furnishing ample facilities for of the Durham coalfield, and in furnishing ample facilities for
the shipment of coals in certain classes of vessels. It has not magnificent works on its banks like those on the northern river,
the Tyne, nor has it the splendid lock accommodation that West Hartlepool can afford; but it ought to be able to attract a very Lartlepool can afford; but it ought to be able to attract a very
large and a growing tonnage of vessels and to enter into the
supply of London with seaborne coal. The fact that it is the supply of London with seaborne coal. The fact that it is the
second in the ports that enter into that supply is an indication of
the possibilities that are before it in thisrespect and these possibil the e possibilitietes that are ebefore it in thisrespect, and these possibili-
ties it ought to turn into facts by judicious continuation of its ties it ought to turn into facts by judicious continuation of its
river works, and by the adoption of newer modes of shipping coal wherever they can be brought into use advantageously.

LITERATURE

Worked Examination Questions in Plane Geometrical Drawing for the use of Candidates for the Royal Military Academy, dc. By
F. E. Holme, F.L.S., F.S.A. London : Longmans, Green, and Co. 1882.
A book of this kind always conjures up a host of thoughts, most of which, however, are but indirectly connected with the special work under notice. Is our education a failure? able to answer these questions, but we doubt if that ubiquitous author could satisfactorily solve the problem of examinations. Are examinations real tests ? Do they
discriminate the chaff from the wheat, or is there ever a natural tendency for the examined who best satisfy the examiners standing in the forefront in the battle of life ? tions, yet we all feel an inkling that they are a little overdone. One effect of examinations has been to increase scholastic books to a startling extent, many being written from the narrow-minded standpoint of the mere crammer ; others by men of wide culture as well as deep insight into because of the latter. The work before us necessitates the question, Is it desirable to put solved or worked questions o emphaticall or the student aid to the we are incined are selected with judgment. We have again and again heard a mathematical master explain a new rule, and the solution of a problem. The student may in his and yet fail to solve a question requiring but the books, cation of a few of these problems. Indeed, it was not attempt to apply, but only to learn the bare letters of Euclid.
in his "Differential Calculus," and failed to answer his first example? and so on. A worked-out and thoroughly the student's mind. Holding these views, we are inclined the student's mind. Holding these views, we are inclined
to look with considerable favour upon books such as the one now before us ; and we could have wished that Mr Hulme, in his preface, had dealt more with the educational than the tell a boy that hi purpose is to gain knowledge of natural laws, and apply purpose knowledge to the benefit of himself and his fellow beings. Mr. Hulme has given the solutions to two hundred questions, and, as an exercise to the student, has asked nother hundred questions. The questions solved are
fairly selected, and as a rule the solutions are well indicated. More details of the method of procedure should have been given in a few of the earliest examples in each branch, and less knowledge assumed. The space for this could easily have been obtained, and we might have been
spared such irrelevant remarks as, "The paper from which this question was taken was a particularly easy one," \&c Mr. Hulme's book is good and useful; but if he were
to cut out in a second edition all reference to examito cut out in a second edition all reference to
nations it would be even more useful than it is now.
Electric Lighting. By Le Comte Th. du Moncel. Translated by R. Routr
Sons. 1882.
This is a translation of the second edition of Comte du Moncel's "L'éclairage Electrique." The Comte du Moncel is well known to us as one of the most prolific, and at the same time one of the most painstaking, of French authors This work is intended for tle general reader, hence it is more
descriptive than analytical. While generally agreeing with descriptive than analytical. While generally agreeing with
the matter and method of the book, the nature of the con the matter and method of the book, the nature of the con-
tents of which we shall indicate directly, we may say that tents of which we shall indicate directly, we may say that to be met with on various pages. Thus, on page 4 we read "In the first place an electric current is, in fact, nothing in itself but a dynamical action or motion resulting from the destruction of electrical equilibrium in a conducting
system, its effect being a tendency to the re-establishment of the disturbed equilibrium through the medium of another conductor ;" while on page 7 we read, "The resistance of a conductor represents the magnitude of the obstacles offered by its material particles to the free
passage of the fluid." The italics in the latter sentence are ours.

The tirst part of this book discusses certain definitions also what the electric light is and how it differs from other lights, describing the electric arc and its peculiarities. The second part deals with generators-following the historic thermo-electric Farmer, Bunsen, Becquerel, Chamoin, and Noé. Magnetoelectric generators next claim attention. Under this head most of the electric light machines are briefly
described. A large amount of very interesting information ised. A large amount of very interesting informano other book , sur if wanted had previously to be sought scattered through volumes of technical papers, The same may also be said of that portion of the work devoted to lamps. The various lamps, arc, and early tioned, and frequently their value estimated. We hav reason to suspect that considerable alterations will be made in the next edition, inasmuch as Edison's work, for example, has gone far past the point described in the book; given up patents. In the body of the work, again, there is no mention of the lamps of Swan and Maxim, a void which the translator has endeavoured to fill by the addition of two or three pages as an appendix. The information given in this appendix is of the most meagre descripwould have been greatly enhanced had its information been brought down to date; as it is, the information is at least two years old, and the greatest strides in incandescent lighting have been made during these two years.
There is, no doubt, a great desire in the public mind to obtain information about the electric light, and to a certain extent they cannot do better than read this book. It is, of course, unfortunate that the English edition, issued in in much that is of interest. It is unfortunate, too, that the translator did not take more pains to ascertain a few facts about the present condition of incandescent lighting Lane's lamps, but rather have reversed the component of the name. We notice, too, that Higgs goes lamely as Higs. Just fancy, too, an author saying, "The resistance while the resistance of the Fox-Lane lamp is less than that of the Swan." This is popularising with a vengeance, We advise the reader to stop at page 313. The book is thanks are due to the publishers.

WIND WATER-LIFTS.

The facility with which steam power can now be applied in civilised countries has led to the gradual abandonment of the motive force of wind. The unvarying regularity with which the former can be applied, and the improvements which have been resulted in various forms of the portable steam engine, have mills can compete. There do occur constantly, however, within our colonies, and even in districts at home remote from railway employed if the required where wind power might be usefully and at a moderate cost. The drainage of submerged lands is a question constantly arising in newly-settled countries, and on all
farming lands at home, if the cultivator were in the possession of means whereby the water might be got rid of, thousands of In days gonntries at present uncultivatarliest antbe recovered. In days gone by, and, in fact, from the earliest ages, men gave
much attention to utilising the power of the wind for such
operations, and our ancient histories prove how the greatest minds, including that of Archimedes, devoted their energies Colonists, as well as many of our own smaller farmers, have a dread of employing machinery which renders necessary skilled attendance, and hence steam power, even in cases where it may venture to think that if it were generally known by what simple means wind power can be applied to drainage purposes, it would
be extensively used. For centuries the inhabitants of the Low Countries have employed windmills in their great draining operations, but these have gradually been superseded by the use reference to the prejudice existing among colonists and small farmers against the employment of steam machinery extends when skilled kind to keep them effective and in repair. To one class of water-raising machinery this objection cannot apply, any more than it can to windmills of simple construction. We allude to the water screw invented by Archimedes. The combination of a windmill affords the simplest form of water-lift with which we are acquainted, and its construction in a rough-andready form is within the limit of the powers of any village blacksmith and carpenter, or even of any emigrant possessed of
common sense and a fair elementary knowledge of the use of ordinary tools.
A mill may be constructed for draining purposes at a cost not exceeding $£ 5$. In one case the conditions worked under were very
similar to those which we have described above, and with the most crude materials and workmanship. The lift was to be 4 ft . and a screw 12 ft . in length set at an angle of 45 deg . was proposed. The
ais upon which it worked was a pole of wood of the required
and length and 5in. diameter. Circular plates of stout zinc were cut having a hole for the axis pole, which had the edges turned the line of the proposed the plate, when extelle or pitch, could be screwed to it, A similar turned edge on the circumference of the plate gave a he diameter of the screw was 3ft. After the zinc plates were screwed to the axis pole, their edges were united by soldering, so
forming a continuous thread. The barrel was made of wood forming a continuous thread. The barrel was made of wood staves very roughly united, as it is a condition of the working of imperfect cooperage work was therefore well suited. These staves as they were laid on were screwed to the zinc flanges of the screw, and the whole was roughly hooped together. The crossing one another at right angles blade being formed of lighter pieces of wood nailed together, on which light canvass was tacked. Two bearings of hard wood mounted on a frame of the required height, and set at a slight upward angle, carried the axis of the mill, which was joined to the pole axis of the archimedean screw by a clutch universal means all difficulty as to union of the differing angles of the mill and screw were overcome, the power of the former being transmitted to the latter without irregularity of motion. On
the extended base of the framework was placed a hard wood block, drilled to receive a pin fixed in the end of the axis pole of the screw, and having a small iron plate at the bottom to receive its framework could be rell in situ the whole could be readily shifted by handspikes to face any quarter from which the wind was blowing. Of course it would self-effected, were it desired, to add means by which this could colony where that whe case of more elaborate mills, blew steadily from one quarter for months together, and shifting was, therefore, but seldom necessary. The action of this machine, roughly constructed as it was, was to all intents and purposes
perfect. During the whole time that we saw it in operation it was never once stopped for repair, and the splashing of the water over all its parts, the coupling joint included, gave sufficient lubrication. It raised from 50 to 100 gallons per minute, according to the speed given to the mill by the varying force of the $\underset{\text { We }}{\text { wind. }}$
We admit that the archimedean screw in this form cannot be
 lifts demanded supposed, would be sufficient. Were greater but we hold that in such instances their employment would be and elsewhere, where it is difficult to obtain skilled mechanical id or more complete mechanical means, how readily they may in such cases help themselves, and to an intelligent man, aided struction of windmills, the construction of such a machine as we have briefly described should present no difficulties, and the mill might be made useful for many other purposes when not required for water lifting.

Launoh at Workington.-On Saturday the Aigburth, sister ship to the Grassendale, was lan yard, the christening of the boat being performed by Miss Williamson. The new boat has been built for Messrs. Leyland and Co., Liverpool, and is intended for colonial traffic. The Aigburth
drove a few of the ways before her, and landed on the beach, where she
morning.
German Submarine Mining Experiments. - The German and submarine mining experiments in the Baltic. Two hulks have been fitted up for the purpose at Brunhausen, near
Baudor, the German torpedo depot. 300 pioneers and five officers have been detailed to assist in carrying out the experiments, which consist in coast defence and ship attack drills. These
commenced on the 20th of July, and are to terminate on the 23 rd of August.
fectly secret.
The Winter Electric Exhibition, Royal Aquarium: Award List. - The list of subjects, supplementary to that we gave at pagh prize, will be shortly issued. Meanwhile two of the more
each morer
important, i.e., for storage batteries-No. 2 on list-and for incan-
descent lamps-No 21 -have been arranged at $£ 100$ each. In descent lamps-No. 21 -have been arranged at $£ 100$ each. In
conditions of latter, 100 lamps on a single chandelier will be requisite, with separate driving power. To replace broken lamps during presence of the authorities of the building, and such lamps replaced as may be requisite, and number recorded of broken ones,
\&c. The chandeliers must be lit and maintained alight for the full de. The chandeliers must be lit and maintained alight for the full ecords kept of breakages and the tests from time to time of power
absorbed by the machine and light given by any selected lamp on the chandelier, will go far to make a fair comparison of interest to he public amongst the many competitors for favour in incan-

CONTRACTS OPEN-TRINITY HOUSE BUOYS.

OONTRAOTS OPEN.

TENDERS are invited for the construction of ten iron buoys for the Corporation of Trinity House, addressed to the Secretary and narked "tender for iron buoys," on or before the 17 th inst. The ollowing extracts from the specifications give the principal 13 -ft. Iro all the works necessary in the construction and delivery at the Trinity Buoy Wharf, Blackwall, of three 13ft. iron buoys -water ballasting. The ironwork to be of the best and toughest quality of S.C. Stourbridge iron, or other of equal and approved quality; to bear a tensile strain of twenty-two Bradley's charcoal iron, or other of equal and approved quality. The gun-metal for the bosses of the ball to be in proportion of 14 oz . of copper to 1 oz . of tin and 1 oz . of zinc. The buoy to be formed as shown above; to be 13 ft . high, and 10 ft . diameter at the line of floatation; to be fitted with two bulkheads,
forming three water-tight compartments. The buoy to be surmounted by a wrought iron mast socket and mast, and four-foot ball as shown. The plating of the buoy to be lap-jointed, and lose rivetted with strong-headed rivets, snapped externally. The plating to be of the following thicknesses, viz., lower tier of plates $\frac{1}{4}$ in., upper bulkhead $\frac{3}{18}$ in., dome plate on top ${ }^{\frac{5}{5}}{ }^{\frac{1}{2}}$ in plates of bottom and lower bulkhead Bin., centre plates of upper bulkhead $\frac{5}{15} \mathrm{in}$. The internal centre plate attached to the bottom plate of shell to be 15 in . diameter by $\frac{1}{2} \mathrm{in}$. thick, to be securely ivetted to the centre plate of bottom with lin. rivets. The laps of wide, with rivets 5 in dir the buoy, and lower bulkhead to be $1 \frac{7}{7} \mathrm{in}$. the laps of the upper bulkhead to be $1_{\frac{1}{4}}^{1} \mathrm{in}$. wide with rivets $\frac{3}{3}$ in. diameter, and $1 \frac{1}{4} \mathrm{in}$. apart, centre to centre; the laps of the centre plates to be 2 in . wide, rivetted with $\frac{3}{3} \mathrm{in}$. rivets, $1 \frac{3}{4} \mathrm{in}$. apart, centre o centre. The centre plates of the bulkheads to be securely connected to the side of the buoy, and rivetted to it with bi rivets, $1 \frac{3}{4} \mathrm{in}$. apart, centre to centre. The upper bulkhead to be connected to the side of the buoy, and rivetted to it with $\overline{8} \mathrm{in}$. rivets, 15 in . apart, centre to centre. Forged wrought iron circular heads and dome-plate, and fitted with centre-plates of bulksecuring it to the mooring bars, as shown. The mooring bar for eye to be forged to the form and size shown, the eye to be steeled. The bar to be clenched, while hot, over the centre plates of the bulkheads and inner centre plate of the bottom of the buoy. A T-iron fender, $4 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$. by 2 in . by 1 in ., weighing about double-rivetted to the shell of the buoy, with $1 \frac{18}{3}$ in. rivets, 2 in apart, centre to centre, to bear fair and solid on the plating. The iron for this purpose is to obtained of Messrs. Moser and Sons, Borough, S.E. An oval manhole, 17 in . by 13 in . in the clear, is to in the upper and lower tier of plating of the shell of the buoy, and provided with a cover $\frac{1}{2}$ in. thick, secured by $\frac{5}{8}$ in screws, $2 \frac{1}{2}$ in. apart, centre to centre. The edge of each manhole to be thickened on the inside by a ring $2 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$ in., close rivetted with $\frac{5}{8} \mathrm{in}$. rivets, countersunk for the cover. The joint of each manhole to be made
water-tight, with a vulcanised india-rubber washer, $1 \frac{1}{2}$ in, by $\frac{1}{4}$ in,

The words "Trinity House, London," in 2in. letters, are to be deeply cut in cover of the man as shall be shell For the purpose of testing each compartment a plate 6 in . diameter and $1 \frac{1}{4} \mathrm{in}$. thick is to be rivetted on the inside of each manhole cover, into which and the cover is to be tapped a 2 in .
screwed plug. Eight holes, 1in. diameter, to be made in the screwed plug. Eight holes, lin. diameter, to be made in the
bottoms, as shown, for filling the lower compartment with water ballast. The sharp arrises of the holes to be taken off, and each hole to be fitted with an English oak plug. A ball and spindle to be furnished of the form and size shown. The ball to be formed of twenty 2 in . by $\frac{1}{4} \mathrm{in}$. vertical staves of ask, rivetted to three
horizontal hoops of iron, $1 \frac{1}{2} \mathrm{in}$. by $\frac{1}{8} \mathrm{in}$., to the gun-metal bosses sin . horizontal hoops of iron, $1 \frac{1}{2}$ in. by $\frac{1}{8}$ in., to the gun-metal bosses $\frac{8}{\mathrm{~s}} \mathrm{in}$.
thick, fitted to the spindle. The iron spindle to be 8 ft . long, $2 \frac{1}{2} \mathrm{in}$. diameter at the collar under the ball, and tapering to 2 in . diameter at the top : to be secured to the ball by a split pin, $\frac{1}{2} \mathrm{in}$. diameter and fitted through the top of spindle. The lower end of spindle to be squared, and tapered to fit the socket, to which it is to be secured with a $1 \frac{1}{2} \mathrm{in}$. by $\frac{1}{4} \mathrm{in}$. split cotter. The buoy, after being with water. The shell of the buoy to be tested to a pressure 20 lb . per square inch, and each bulkhead to a pressure of 10 lb . per square inch. The necessary holes for attaching the pressure gauge to be drilled, and tapped in the buoy, as shall be directed, and afterwards to be fitted to a screwed plug, and done in the presence of the superintendent. The buoy, after being tested and proved to be perfectly water-tight throughout, is, after approval, to be thoroughly cleansed and free from rust. In this state it is to be slightly and uniformly heated, and, while warm, to be coated externally and internally with boiled linseed oil ; and after the work has cooled, and the coat hardened, to be painted
three coats in pure red lead paint. The specifications for the 8 ft . iron drum buoy, and for the 8ft, iron conical buoy, are similar to the foregoing, except as to dimensions, which will be found on the drawings, which we give herewith.

Stack Cooling or Drying by artificial Means.-At a recent meeting of the Carse of Gowrie Analytical Association at Inchture, a paper by Mr. Watson, Inchcoonans, on "Stack Cooling the author described what he had faund by course of which practical and simple plan, and one which was tried by the late Lord innaird and Mr. M Laren about forty years ago, viz, by applying smiths' blowers or bellows in blowing cold air into a the actual results by which the hay was much improved, although years ago his Lordship and the writer, ang with Mout twenty tried to devise a method of safe harvesting the crops in late or damp seasons; and, at his Lordship's request, the writer erected on the home-farm of Castlehill what was termed a hot-air kiln, its dimensions being about 14ft. square, and something similar in construction to that of an ordinary corn mill drying kiln, with in the same way as these kilns, and containing a number of bent pipes 5 in . to 6 in . in diameter, placed internally all round under the second floor, for heating the air by the furnace, and so placed
as to admit of the fire playing fully upon them all round, on nearly
the same principle as that for heating water for vineries or similar erections. The air was admitted by ventilators from the outside into the furnace of the kiln, as well as into the pipes. While passing
through these pipes the air got heated from the furnace, the fuel used being coke. The flooring over and above the fire and pipes was made of perforated bricks, which also partook of the heated ir, the same as the pipes, and also permitted the heated air
to pass through them. A fan blast was then placed on the upper floor or second storey in an air-tight room, to draw the heated air from both pipes and furnace, and discharge the same hrough common clay drain pipes or wooden boxes into the tacks, which pipes or boxes were introduced into the bosses, or ther vacant spaces, purposely made and left in the stacks at
suitable parts for drying. After being tried several times, the experiment was found to be practicable, and generally served the end in view, although it was more particularly tried for the curing and drying of meadow hay in the stack or sow. The heated air entered into the centre or boss, and ultimately discharged itself near the top of the stack, still, however, leaving some "wet
parts where the hay was very green and damp, causing it to "sit" close together, which prevented the heated air getting properly in at the part most required, and these parts becoming overheated, moulded and rotted. This I consider could be remedied if faucit-jointed pipes were laid down from the fan similar to that previously suggested, having the joints carefuly cemented to be as out into the stackyard or where wanted-means being provided whereby a hose-pipe could be attached in the same way as is done in the case of a fire engine to a water-pipe conductor. This would in all likelihood get over the difficulty experienced at Castlehill, because the person in attendance could conduct the wind or air
produced by the fan through the agency of this flexible tube or pipe, and introduce it to any part of the stack requiring or pipe, and introduce it to any part of the stack requiring sider it would be better that a little air be introduced at the bottom of the stack to carry the damp or foul air out at the top, Where a pipe or tube full of holes placed in the centre while buildmight be taken out when the grain in the stack was found to be in proper order, and used in another while building. This would give the foul air a free current of escape. When the funnel or opening is not required, a "feal" or some straw might be placed on the op thereof, so as to prevent the rain getting in and doing injury to mentioned might be useful in an emergency in the event of fire breaking out in the premises, to be used in the same way as applying water from the hose of an engine, or at all events blowing back the flame or smoke, and preventing the fire from spreading or getting so quick a hold. This could be done by a person directing In many cases where the wind is blowing that before mentioned. In many cases where the wind is blowing contrary to the burning
material the further spread of the fire is hindered or prevented. If the wind was favourable to the spread of fire, this pipe could be applied as a powerful opposing agent, and perhaps be the means of least assisting in putting an end to destruction, more particuarly where water was scarce, or could not be got. The hot-air
kiln previously referred to-like many other similar improvements when followed with a few good seasons-was not required for some time, and it therefore got a little out of order, and was after. wards converted into an hospital, with Turkish bsth for beasts:

NEW WORKS AT CALAIS HARBOUR.

 No. II.The sluicing lock forms a dam capable of resisting the pressure of a head of water of about 7 metres. This dam is built upon a
foundation of sand naturally liable to be undermined and permeated by water, and the depth of the concrete foundations is such as to effectually prevent the bursting up of subterranean springs through the sand ; hence the necessity for very prolonged aprons before and behind the sluicing lock. To strengthen the floor of the lock, properly so called, there are two parajousiles The positions of the aprons and parafouilles are like those in the locks at Dunkirk, and are the result of experience gained through accidents at Calais, Gravelines, and Dunkirk. The thickness of the piles has been fixed at $3 \cdot 5$ metres, but it has been reduced to $2 \cdot 5$ metres to the right of the recesses for the caissons. The floor of the lock proper has a thickness of 3.5 metres at the sill and 3.25 below. It is formed of a layer of concrete 1.75 metre thick, covered with a bed of masonry 1.75 metre or which 685 piles are driven in rows, with a space between each row of 2 metres. These piles are 4 metres long and 3 metre in diameter ; their heads protrude 5 metre into the layer of concrete above. This piling is necessary also to sustain the
heavy portion of the lock in the event of springs tending to heavy portion of the lock in the ev
undermine even that part of the work
undermine even that part of the work.
The parafouilles between which the lock is included are formed a layer of concrete 2 metres thick and 5 metres below the sill, placed between two continuous ridges of piles driven to a depth of
8 metres, and sheet piling driven in 7.5 metres. The aprons at the wo ends form an essential part of the lock, and the inadequacy of works of this nature has caused all the accidents to sluicing locks which have hitherto been known. The currents of the sluice produce channels the depth of which might amount to 8 or tecting portions, the sand on which the constructions rest falls ittle by little into the water-worn channels, the slope extends under the foundations of the lock, the lock gives way as at
Calais before proper precautions were taken, as at Dunkirk, to Calais betore proper precautions. were taker
make it safe in times of danger. The water-made hollows most sluicing ; they cannot be prevented, but they should be made to sluicing ; they cannot be prevented, b
form as far as possible from the lock.
The lower apron is made in three parts : (1) The first part is absolutely fixed and solid to prevent all slipping which might be produced at the sides even of the construction, and to receive he first shock of the sluice. It consists of a platform
of concrete the whole width of the canal, and is connected with the stone pitching of the banks. The concrete is protected by a layer of stones. The total thickness of
the apron is 1.8 metre ; its length is 30 metres. It is bounded the apron is $1 \cdot 8$ metre; ;its length is 30 metres. It is bounded
at the upper end by the parafoouille of the end of the lock, and at the upper end by the parafouille of the end of the lock, and
at the lower end by a series of piles and sheeting piles driven to a at the lower end by a series of piles and sheeting piles driven to a
depth of 7 metres. The apron before and behind is of supertuous thickness, and forms a sort of parafonulle to a
depth of 4 or 5 metres. (2) The second part is flexible in its depth of 4 or 5 metres. (2) The second part is fiexible in its
vertical aspect, and in intended to protect the first apron of which mention has been made; it should be joined on to it to to press at all points like a carpet on the loose sand, to prevent the latter being washed away at once by the sluicing current or by the returning water. This apron should be composed of a first layer of clay 8 metre thick, covered with straw to $\cdot 3$ metre, on which is a layer of stone blocks - 6 metre thick, and on these vith another forming a kind of pavement. This apron is 30 metres long. (3) This should be followed with stone blocks, forming an inclined plane disposed with care over a certain area.
These blocks are intended to fill water-worn excavations, and to These blocks are intended to firg water-worn excavations, and to
watched, and fresh supplies have to be added from time to time. Above secheck is the same system of aprons, but on a less
extensive scale. The first apron above the lock, made like the ane established.
The total length of quays for the wet dock is 1640 metres ; for a length of 1035 on the east side the walls are solidly formed of rubbie stones from quarries in the neighbourhood, and rest upon a bed of concrete; along the remaining 605 metres on the
west side the quay wall is channelled to allow the passage of drainage waters from the graving dock, and the waters from the ock connected with the interior navigation, and the overflow water of the Canal de Calais. It contains an aqueduct with an
elliptical roof, 3 metres wide and 4.5 metres high. The arch is built of bricks and is one metre in thickness ; the walls supporting the arch and the floor are of ordinary rough hewn stone ; all the interior surface is coated with Portland cement in a layer 03 metre thick. The quay wall will be crowned with a granite coping, 110 metre wide and 04 metre thick. The face of the wall on the side of the basin follows a straight line inclined 1 in 10 , sweeping tangentially to the base in a curve of 8 metres
radius. The pavement of the quay grounds will be formed of radius, The pavement of the quay grounds will be formed of
rough stone blocks, which have the advantage of being very rough stone blocks, which have the advantage of being very
economical, and of forming with the rest of the masonry a homoeconomical, and of forming with the rest of the masonry a homo-
geneous whole of all the solidity desirable, thanks to the employment of Portland cement as mortar
The excavation of the dock was finished in 1879 , at which date the foundations of the quay walls were commenced. The con-
crete bed of the side of the dock has been cast in a mould formed by a line of piles and sheeting piles, and on the side of the quay grounds by a simple boundary formed of deal planks driven into the ground with great facility by the water injection process, and withdrawn again after the concrete has set. Iron ladders to
the number of seventeen are fixed and soldered in holes made in the number of seventeen are fixed and soldered stone stairs are built in the entrance angles of the dock
The plan of the works ordered to be executed by the law of August 3rd, 1881, includes the dredging of the entrance channel
of the port of Calais outside the jetties, to increase the depth of the port of Calais outside the jetties, to increase the depth authority to begin this work before the law was obsained authority to begin this work before the law was passed, by
offering the State, for this purpose 300,000 . The work was offering the State, for this purpose, 300,000 . The work was
begun on the 20th June, 1881, with the funds of the Calais Chamber of Commerce, and it has been continued to this day Between June 20th and December 15th the amount dredged was Beo, 000 cubic metres. U Up to November 115 th three dred was
worked at the entrance channel of the port ; they consisted of one dredger with entrance centrifungal pump, which dredger carried away its own clearings, and of two centrifugal pump dredgers which turned the sand raised into barges. After November 15th the
$\left\lvert\, \begin{aligned} & \text { last two dredgers ceased to work. The following is the total } \\ & \text { dredged during six months of work. }\end{aligned}\right.$ dredged during six months of work.

Date. 1881.	$\begin{aligned} & \text { No. of days } \\ & \text { of effective } \\ & \text { work. } \end{aligned}$	$\begin{gathered} \text { Cubic } \\ \text { duetres } \\ \text { dredged. } \end{gathered}$	Observatio
20th to 30th June		10,147	
1.	${ }_{12}^{14}$	${ }_{24,531}^{28,514}$	
1st to 30th September	14	${ }_{36,114}^{2,14}$	1881.
to 31st October			
3oth Nover	${ }^{16}$	${ }^{32,679}$	
17 th Dece	16	14,270	

When the work was begun the depth of water at the highest
part of the bar was only one metre below the low water level part of the bar was only one metre below the low water level
of spring tides ; at the end of last year it was 2.5 metres, so of spring tides; at the end of last year it was 2.5 metres, so
that a depth of 1.5 metre had been gained in six months by dredging and sluicing combined.
All the harbour works of the new port of Calais have been executed in an area of fine sand. This sand, which is so easily
excavated, offers to pile-driving a resistance which is very diffiexcavated, offers to pile-driving a resistance which is very diffiticularly felt during the driving of the line of piles and sheeting piles, which was to form the base of the pitching of the sluicing basin, alongside the practice ground of the Artillery Commissioners. The piles were driven on the sea beach when the tide was out, on an area exposed to the action of the successive tides the sand thus exposed to the tidal action was so compact that it opposed almost absolute resistance to pile driving. Sheeting piles only 2.5 metres long and 08 metre thick were broken under the repeated blows of the monkey, and their thickness was increased first to 12 metre and next to 15 metre.
The idea then occurred to
mand Mr. Vétillart, resisure to facilitate the pile driving. At first great water pressure sure to facilitate the pile driving. At first great water pressure
was applied, but it was discovered that the remarkably good results obtained from the first were due, not to the pressure of the water, but to the establishment of a continuous current along the piles. Great pressures were then abandoned; little garden hand pumps were used with great success, and subsequently a fire-engine. After several days' experimentation with the fire-engine it became possible in fourteen minutes to drive in panels of sheeting piles $2 \cdot 5$ metres long and $1 \cdot 7$ metres wide, instead of taking eight or ten hours to do so as at first.
The water from the fire-engine first passes into
The water from the fire-engine first passes into a forked tube t which two lengths of india-rubber hose are attachec. These of variable length The of variabie length. The pump is worked by hand on the sea the framework of the pile-driver; the injection tubes are disposed vertically, one before and one behind the pile or sheeting pile, on
which the While the blows are the pile-driver rests lateral movement given to the nozzles to keep up a continuous current of water all round the pile and to prevent the scattering of the sand below The piles are often driven in a little by their own weight, after which it is necessary to apply the monkey; the sheeting pile which have grooves and tongues, and which form the panel squeezed in between the piles, generally require several blows of the monkey to overcome the friction of the neighbouring sheeting
piles. This method has since been applied on a large sale piles. in piles for the has since been applad a large scale to drive in piles for the foundation stones of the more massive har
bour works. It has been employed with advantage for the lock boundaries of the sluicing basin and for the foundations of the quay walls.
For the locks of the dock, and for nearly all the works necessary to be executed at a little distance from the central the injections has been obtained by fixing in the drain pipe from the embankment a relay pump, which raises also some of the water from the excavations into a reservoir 15 metres above the level of the works in progress. This reservoir has a conduit formed of galvanised sheet iron $\cdot 2$ metres in diameter, in which water-plugs are fixed at various places. By the aid of this conduit the piles and sheeting piles of the outer part of the foundations of the locks reached a total of 600 metres driven up to the end metres long. To work the injection process properly the triv metres long. To work the injection process properly, the driv ing can never be atogether renounced, especially when placin
grooved and tight-fitting sheeting piles. The pile-drivers which have given the best results under these special conditions are

the automatic steam ones of Lacour. The hammer, weighing 1200 kilogrammes, is ing on the end of the pile and keeps it well down, so that the blows of the monkey-
20 a minute-utilise all their force. With ny other system elm piles, when driven in certain depth begin to spring up at each hlow, so that the efficacy of the blows In Lacour's system, illustrated by the accompanying cut, the piston AB rests on E F H, while running up and down the piston, never has its weight removed from tion of the quays, which are a kilometr and a-half long, a pipe of large section
could not be laid from the machines by the sea-side, so on each pile-driver a a little steam pump on Tangye's system was fixed which plan has answered well, and is at present in use in the pile-driving work of
the sluice. It is a small direct-action pump it occupies little space, and gives a rela-
tively large result with a pressure 2 kilogrammes per 9 centimetres. A spe
cially-contrived ball safety valve prevents accidents from any irregular action of the pump.
The advantages of this mode of working are:-(1) It facili-
 (2) Rapidity and regularity of driving. (3) Almost absolute exactitude and closeness in the position of the foundation piles.
4) Economy of material resulting from the (4) Economy of material resulting from the great rapidity of recution. (5) Economy of wood, because of the reduction (6) Facility of extraction in those cases in which from any cause it is necessary to withdraw the piles.
The following table in relation to the quay walls of the dock sives a comparison of the expenses actually incurred over the
coffer dams of the foundation, with the amount estimated which would have been without doubt insufficient at least in the pile-driving part of the work, if it had been necessary to do it by
ordinary methods. Over an estimated expense of 442,162 : $59 f$ i,
the saving effected has been $288,051 \cdot 49 \mathrm{f}$, the total expense not having been more than 154,111 10 f
Cost of the Coffer Dams of the Quay Walls of the Floating Dock. 1. Projected Works.

Elm for pile $\left(\frac{25}{25}\right), 303 \cdot 89$ cubic metres, at $88 \cdot 35$. per
 per cubic metre, deducting rebate Ditto for piles $\left(\frac{12}{1.12}\right)$ for coffer dams, $32 \cdot 442$ cubic metres,

 Cost of at Lacour pili--ariver
Cost of a Tangye pump, ind $1,102 \cdot 87$
$9,500 \cdot 00$
and accessories pump, inaia-rubber hose, iron tubing,
Ianual labour, including working the points, $\ddot{10}$ - $7 \ddot{\mathrm{~g} .} \mathrm{P}$ per

cubic metre driven Taintenance, $3.08 f$. per cubbic metre driven | $1,172 \cdot 73$ |
| :---: |
| $3,188.14$ |
| $693 \cdot 20$ |

This sum includes all the expenses of 1472 metres of quays and 36 metres of aqueduct.
Expenses which it would have been necessary to incur. over the
same work without the vater injection process.

	$\underset{\text { Cubic }}{\substack{\text { Cubres }}}$		Francs.
For 1472 metres of q	887,616	Elm for piles $\left(\frac{3}{3}\right)$ per cubic metre Elm for theet piling (15) $1 \cdot 0 \mathrm{~s}$ cubic me . tre courant, ati02:3f Elm for piles, cubic metre, cou rant, at $88 \cdot 35$ f. per Elm for sheeting pilea 1.0s per metre, cou- ratht, at 102 3f. per cubic metre	2087
Ditto	1,589,760		
For 36 metres of aqueduct.	21,708		162,632 45
DittoCubic total	38,880		
			3,977 42
	2,537,964		
Total for pile shoes for 1472 metres of quays +36 metres of aqueduct $=1508$ metres $\times 38 \cdot 18$ kilogs. $=57,575 \cdot 440$ of aqueduct $=1508$ metres $\times 38 \cdot 18$ kilogs. $=57,575 \cdot 440$ kilogs, at 285 . per kilog Grooving and tonguing 100,864 metres, $\ddot{ } \quad$ at $\because 21 \mathrm{f}$. per metre Deal for road ways for three pile pirivers and other pur- \ddot{O} poses 15 cubic metres, at 79.05 per metre Cost of three Lacour's pile drivers, at 9500 . each Iron pipes for water 2,537964 cubic metres completed in manual labour, maintenance, fuel, 50 f. per cubic metre-minimum.			
			16,121 12
			126,598•20
Total Actual cost			${ }_{\substack{4 \\ 442,162: 59 \\ 154,111.10}}$
Saving effected by the injection proce			

The works for the improvement of the port of Calais were begun in 1876. The expenses incurred to December 31st, 1881, amounted to 11,500,000f. in all. The plans have been revised
and the work executed under the direction of Mr. Stoecklin, chief ngineer of the seaports of the Pas-de-Calais, and by Mr. Véillart, engineer of the port of Calais, 1875 to 1879-Plocq,
1879 to 1881 -and Guillain, 1881. Messrs. Varinot and Caville have constructed, as contractors, the embankments and the quay walls of the floating basin. The locks of the floating basin, and the sluice, are constructed directly by the Government, without any contractor.
In the month of February last an accident occurred to the embankment of the sluicing basin, which was broken down for a length of 100 metres by an extraordinary high tide and wind.
The sea has been dammed out again, and everything is now in The sea has been dammed out again, and everything is now in
order, except that the sluice floor partially constructed has to be order, except that the sluice flo
cleared of the sand washed in.

ELECTRIC LIGHT METERS

A New industry requires new tools. The introduction of electrical appliances generally, whether for light or power, requires that the current used should be measured. In our description of Mr. Edison's work, we incidentally referred to the means he adopted for measurement. Since then a few modifications have been made in his apparatus, and since then the systems may well be compared. The principles underlying the apparatus of both these inventors are the same, viz, the laws of electrolysis. The art of electro-deposition "may," says Smee, "be said to have its origin in the discovery of the constant battery by Professor Daniell, for there the copper was constantly reduced upon the negative plate." De La Rue, in a paper in the Phil. Mag., 1836, relating to experiments on this battery, says, "the copper plate is also coated with a coating of metalic copper,
which is continually being deposited." Professor Jacobi, in St which is continually being deposited. Professor Jacobi, in St Petersburg in 1830, tion of copper, by galvanic agency, for the purposes of the arts.
It was, however, due to the work of Mr. Spencer, of Liverpool, that definiteness of direction was given to the utilisation of electro-deposition. He executed medals, \&e., in copper, and Polytechnic Institution of Liverpool," 1839. The subject was investigated by Faraday, and we know that experimentalists recent and valuable papers was last year read at the Birmingham Philosophical Institute, by Dr. Gore, F.R.S., which paper showed the directions in which error of measurement was
possible, and by showing this, suggested the how to avoid such It will not be necessary here to more than state that the same quantity of electricity, that is, the same electric current, whether passing the circuit in a shorter or longer time, performs
work of chemical decomposition. If, therefore, the work of the current is to deposit copper, from a sulphate of copper solution upon a copper plate, the same weight will be deposited by x units of current, whether those x units traverse the circuit in one hour or two hours, or two weeks, months, or years. Mr.
Sprague says the principles underlying all these apparatus are
"the production of motion in a set of wheels by the agency of
plates of metals alternately dissolved and deposited on.". This plates of metals alternately dissolved and deposited on?", This
alternate deposition and dissolution is obtained by reversing the
alterat direction of the current, so that what is a positive pole at one
time becomes a negative pole when the direction of the current

 the CuSO is decomposed, and the Cu deposited upon the
negative plate. As we mave said, a definite current always neegative piate. As we have said, a dinite current always
deposite one and the same quantity, all other conditios being
the same suct the same, sucu,h, e.g., as semperatare constant. On reversing the
direction of the current, the same definite current will deposit an equal weight of Cun upon the other plate, and at the same
time cause a chemical action whereby the Cu previously deposited time cause a chemical action whereby the Cu previously deposited
is dissolved off leaving the first plate in it its initial condition as regards weight. If now each reversal of the cerrent is shown
by any means, we have a system of measurement, the ouly
obiection to which is that some of the current generated is objection to which is that some of the current generated is
utilised for the purpose of measurement, and not directly for the utilised tor the eurpose of measur
purpose for which it sis generated.
TThe
purposes for which it is genererated. that the current used in mea-
This objection is eot yyaying
suring is small compared with the total current. 0 one of the suring is smal compared with the total current. One of the
best known laws of electricicty s that the current is inversely as the resistance, and by making the branch measuring circouit
high resistance compared with the main circuit-say as 1999 : high resistance compared with the main circuit- say as $1999: 1$
it then only $\begin{aligned} & \text { oro of the total current goes through it or is lost } \\ & \text { in the measurement. }\end{aligned}$ in the measurement.
The most recent form of Mr. Edison's meter is shown in the
accompanying figure. It is divided into two compartments. The

one on the left-hand is called the monthly cell, the other the quarterly, the latter being used to check the former. The plates being weighed quarterly, and the deposit in the latter case must bear a certain proportion to the sum of the deposits in the former.
A is the monthly, A^{1} the quarterly cell, B and B^{1} are compenA is the monthly, A^{1} the quarterly cell, B and B^{1} are compen-
sating resistances for temperature. C and C^{1} are shunts or branches, from which the cells receive their currents. The shunt C has a resistance of 0 ohm , has a resistance of 0025 ohm ; the current of the other. D is a heating arrangement, devised to prevent the freezing of the solution used, viz., a solution of sulphate of zinc consisting of 90 parts of pure sulphate of zinc (64 deg. Fah.) of $1 \cdot 33$. The plates used in this solution are amalgamated zinc. The thermo-arrangement consists of a strip contract differently with the rise or fall of temperature, and the strip is so adjusted as at a temperature of about 42 deg . Fah. to make contact at the point F , this puts the lamp E into the
circuit. The heat from the lamp raises the temperature and circuit. The heat from the lamp raises the temperature and ture falls. It will be seen at once that there is no great fluctuaa place where the temperature never rises greatly beyond about 42 deg . or 43 deg . Fah. The partition G divides the cells from visits and weighings of an overseer, but Mr. Edison has other
devices which we have before referred to, by means of which devices which we have before referred to, by means of which when one plate has received a certain weight from deposition a
contact is made, a train set in motion, the current reversed, and record made.
Mr. Sprague, working on the same principles, uses the alteration
in specific gravity of a moving electrode, in specific gravity of a moving electrode. This electrode is
simply made to float in the liquid, connection being made to it by a tube containing mercury in which a wire dips, so that the only resistance to motion is the viscosity of the mercury and of
the liquids in the cell. The weight of the electrode itself has no longer to be supported, and the metal, as it deposits, merely hydrometer, and when this addition has sunk it to the defined level, the circuit of the reverser is closed, the metal re-dissolves, the electrode rises to its upper limit, again actuates the reverser,
and so continues the process ad libtum. Mr. Sprague has also devised a heating arrangement. His heater is constructed of two glass tubes placed vertically in the liquid, and enclosing between
them a wire which, being heated by the current, warms the them ${ }^{\text {a }}$ liquid.
In a recent pamphlet describing the Edison meter Mr. F. Jehl
enters somewhat fully into the discussion enters somewhat fully into the discussion of the principles and practice of such measurements. Mr. Jehl has had ample opporwas Mr. Edison's laboratory assistant, and carried out the investigations made at Menlo Park. The method of calculation employed is simple, and we think effective, as will be seen from the following example taken from the pamphlet referred to. "Suppose one set of zincs, before sent out, weigh as follows:--
monthly zinc, 92,800 milligrams ; quarterly zinc, 92,600 milligrams. Now after being in a house for about one month, having about twenty lights, and using them about four hours a day, we find when the zincs are taken back to the station and weighed grams ; quarterly zinc, $93,229.2$ milligrams. Now taking their original weight and subtracting it from the latter, we find the
gain in the one case to be 2517 milligrams; in the other $629 \cdot 2$
milligrams." It will be seen that the gain on one side is about
four times that of the other, showing that the meter is all right. The constant $1: 336$ has been ascertained to be correct for the Thus, $\frac{\text { Gain in milligrams }}{1.936}=$ Amperes per hour. Hence in the above case $\frac{1.336}{2517}=$ 1883 Ampères, and the householder would be charged so much per Ampère current, just as he is now per thousand feet of gas.
It will be seen that
hands of the office, and we have no doubt it will be found the advantageous to all parties to use meters that register the curcurrent used, which means simply arranging for the reversal of the current under given conditions. Although the meters at present
described are based upon electrolytic principles, there is no
reason why meters altogether different should not be designed, reason why meters altogether different should not be designed,
meters in which none of the current is used for other than the purpose for which it is generated, and thus become as economical as gas meters.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our own Correspondent.)

THE hot weather and the local holidays have somewhat disturbed mill and forge work, but have not interfered with the promptitude makers' hands. The system, too, which has become more general of late, of having weekly "pays" at the works, is likely to favourably operate in minimising the restlessness of the men, which a
spell of unusual heat in summer nearly always occasions. At
works, however, where monthly "pays" and fortnightly "draws" Works, however, where monthly "pays" and fortnightly "draws
are still in vogue, managers will have to exercise their patience. On 'Change in Birmingham this afternoon, and in Wolverhamp
ton yesterday, trade fully maintained its former satisfactory ton yesterday, trade fully maintained its former satisfactory
aspect. Most of the finished ironmasters announced a fairly brisk demand, and prices all round were firm. The galvanisers in particular were vigorous in their declarations that a statement which has in some quarters obtained publicity, that prices of
galvanised sheets are down, is inaccurate. They assert that there galvanised sheets are down, is inaccurate. They assert that there
is no giving way, and the price of the majority is £14 10s. for $22 \mathrm{w} . \mathrm{g}$. to $24 \mathrm{w} . \mathrm{g}$. at the outports. A few makers quote $£ 15$.
Their order books are well filled on Australian, New Zealand, South American, South Africa, and Indian account.
Ordinary sheets in the black keep very active. This afternoo prices were, singles, £8 5s.; doubles, £8 15 s . to $£ 9$; and lattens,
£10 to $£ 105 \mathrm{~s}$. The two last gauges are the favourites with producers, and where a contract embraces plenty of these sizes, singles
will be accepted at a lower figure than where the contract is made up of singles chiefly
Best steel firms-such as manufactured tin-plates-also announce that they find no difficulty in running full time, but that they would like to see orders on their books further ahead. The
antipodes and the European Continent, together with India, are cus tomers. General market prices may be gathered from the are cus ing, which are those of Messsrs. E. P. and W. Baldwin, "Severn" ing, which are those of Messrs. E. P. and W. Baldw
brand, £12; B., £13; B.B., £14; and B.B.B., £15.
Tadly wemand for tin-plates is unimproved, and orders are rather best I. C. cokes are quoted as high as 20 s. per box, and best charcoals as high as 24 s . to 25 s . per box. At this lat
been a few recent sales for delivery in London.
Merchant sections
Merchant sections of manufactured iron, such as bars, hoops,
strips, and nail rods, are in brisk inquiry. A proof of this activity strips, and nail rods, are in brisk inquiry. A proof of this activity
is found in the very different picture which presents itself to the is found in the very different picture which presents itself to the As early in the week as Monday night he will as he months ago red glare in the numerous mills and forges, indicating an activity that at the former period was mainly conspicuous by its absence. Prices of these sections of iron are-Marked bars, $£ 82 \mathrm{~s} .6 \mathrm{~d}$. to
$£ 710 \mathrm{~s}$; ; medium bars, $£ 615 \mathrm{~s}$. to $£ 610 \mathrm{~s}$.; and common ditto, $£ 6$ Hoops are
$£ 67 \mathrm{~s} .6 \mathrm{~d}$.
The steel trade is without new features of note, but it was rumoured on 'Change this afternoon that we shall soon have before steel-iron from common native pigs by the Thomas-Gilchrist process The foreign pig iron trade keeps time as regards new business. Nevertheless, Leicestershire pigs are this week quoted up between 1s. 6 d . and 2 s . 6 d . per ton, making the quotation 50 s . delivered The figure was, however, too high to permit of business. Indeed, well sold forward, they prefer to stand at the advance.
Derbyshire pigs were generally 48 s . 6d. at consumers' works, and
Northampton sorts 47 s . 6 d . Thornclife South were quoted 60 s.-a figure at which they have remained for wense quoted
considerabe time past. Ashton Vale part hematite, made at Bed-
minster, near Bristol, were priced at 555 , minster, near Bristol, were priced at 55 s . Not much business was
done in any of these sorts, consumers having bought well previ done in any of these sorts, consumers having bought well previNative pig makers here and there reported a little better demand, but the alteration was not conspicuous. Hot blast allmine sorts were 65s. to 67 s .6 d. ; and cold blast 85 s . Part-mines
were 55s.; and cinder pigs 42 s . 6 d . to 38 s . 9 d . as the minimum Hematites were quoted : Blaina sorts, 62s. 6d.; Wigan, 6ค5.; and Barrow and Tredegar each 67s. 6 d .
Ironstone was quit, but vent
made some capital sales, did not complain. of which great quantities are consumed here-was 5s. 4d. to 5 s . 8 d . and 21s. to 23s. for foundry sorts, best. South Yorkshire qualitie Were Col is unimpored.
The Australian trade in demand and in price.
hardwares is becoming increasingly important to this district Certain of our local merchant houses, who do an Australian busi A big contract for wrought iron tubes hatishments in London. A big contract for wrought iron tubes has been placed at Wed-
nesbury with Messrs. James Russell and Sons, Limited. It is for
water conveyance some 500 tons of iron Kimberley, in South Africa, and will consum one weighs 5 cwt. This is the second contract of this nature that the firm have received. In the manufacture of engineers' tools,
engineers' brasswork, tubes for land and marine boilers, makers are engineers' brasswork, tubes for land and marine boilers, makers are
also very busy. The wrought iron tube trade in the district, as a
Our manufacturers continue to be benefitted by the needs of Government in carrying on the war in the East. One of the latest
of such orders is for spikes for urgent shipment to Alexandria to be used in making good some of the damage to the town caused by the bombardment.
Company have declared an interim dividend for the past half-yean at the rate of 5 per cent. per annum on the original and second issue shares, and at the rate of 6 per cent. per annum on the pre-
ference shares. ference shares.
The Great I

Western Railway Company and the South Staffordrecently made by the Assessment Committee of the Wolverhampton Board of Guardians of those portions of their respective pro-
perties which lie within the jurisdiction of the Board. The grievance is stated to be unfairness in these assessments compared
with those of other assessments of the union. The railway com
pany demands a re-valuation of all property outside its own.
The matter will be considered by the Board on the 11 th inst.; but
as a re-valuation would cost from $£ 3000$ to $£ 4000$, it is likely that as a re-valuation would cost fro

NOTES FROM LANCASHIRE.

(From our own Correspondent.)

Manchester:- There is very little change of importance to notice
in the iron trade of this district during the past week in the iron trade of this district during the past week. Inquiries but makers being mostly well sold-in some cases having large
deliveries before them, which will carry them well over the yeareliveries before them, which will carry them well over the year-
they are not at all anxious sellers. Prices for makers' iron consequently remain firm, with comparatively very little underselling,
Lancashire makers of pig iron are still making very fair deliveries against contracts, and their quotations remain at about 46s., less
$2 \frac{1}{2}$, for both forge and foundry pig iron, delivered equal to Manhester ; but District
high in price as compared with the ing into this market still rule iron in exceptional cases might be bought at 47 s . $6 \mathrm{~d} .$, less $2 \frac{1}{2}$, but
the average price asked is 47 s . 10 d . to 48 s . 10 d , less $2 \frac{1}{2}$; whilst for Derbyshire makers are asking 49 s. to 50 s ,, less $2 \frac{1}{2}$; and for g.m.b. Middesbrough quotations range from 1 s . 10 d . to 52 s . 10 d . net
cash, delivered equal to Manchester. These figures, however, are only being obtained as a rule for small parcels.
Finished iron makers are generally kept well employed on speci-
fications, and there are fair inquiries for shipments, but on home fications, and there are fair inquiries for shipments, but on home
accounts sales only to a limited extent are at present being effected. accounts sales only to a limited extent are at present being effected.
In exceptional cases bars can be bought at as low as $£ 6$ 5s. per ton delivered into the Manchester district, but the average quotations
are $£ 67 \mathrm{~s} .6 \mathrm{~d}$. to $£ 610 \mathrm{~s}$., and at these figures makers generally are firm. kept well employed on orders in hand, but I still hear complaints The business is not coming in at all satisfactory The members of the Manchester district of the Amalgamated with a total membership of about 4000 , held a festival at the Belle Vue fardens, Manchester, on Saturday. It is ten years since a similar festival was held, and the proceedings were very successful,
about 2000 members and friends being present. There was, of about 2000 members and friends being present. There was, of
course, the usual procession through the principal streets and at the gardens, and after tea had been disposed of a meeting was held under the presidency of Mr. R. Austin, the local representative of the executive committee, and an address was delivered by
Mr. J. Burnett, the general secretary of the society, who urged more energy and zeal amongst the younger members in carrying
out the objects of the society, and in securing for themselves the out the objects of the society, and in securing for themselves the
social and political influence which, as workmen, they ought to

A month or two back I referred to an exceptionally heavy pair of combined rolling mills for roughing out and finishing iron or steel
tires, which Messrs. Wm. Collier and Co., of Manchester, had in
hand for an ironworks in Belgium, and as the work has now been hand for an ironworks in Belgium, and as the work has now been
completed, I am able to give a few additional details, which will b9 of interest. The mills are constructed to roll tires from 1 ft .6 in . up to 9 ft . diameter. Two sets of rolls are provided, one set for
roughing out the blooms as they come from the hammer until they are within a few inches of the size required, and the other for inishing the tires to the size and section required. The operation is carried through all the same heat, and the scale being removed
from the blooms in the roughing process. The finishing rolls are kept clean for their work. The machine consists of a large frame, cast in two pieces, weighing thirty tons, with two upright
shafts in the centre for carrying the rolls constructed of Bessemer steel, and ranging from 10 in . to 12 in . in diameter. These shafts are driven by powerful gearing, consisting of bevel which by spur wheels also 12 in . wide on the teeth and 4 in . pitch
and flanged on both sides, drive the finishing rolls. The roughing out slide carries a vertical steel shaft Sin. diameter with rollers at
the top, and held in at the bottom by an adjustable foot-stop, whilst to take up the wear in the centre there is a friction clip
eyed on, and made in halves so to be readily removed Facingup rolls are carried on horizontal slides. At the finishing end there are in addition to the large and small rolls a pair of side rolls carried on swing brackets, which are brought out to their
work by worms and worm quadrants. The swing brackets also work by worms and worm quadrants. The swing brackets also
carry two small adjustable rolls to keep the tire in position as it is being rolled, whilst the side rolls keep the tire rigid and true five horizontal rolls, two at each side of the machine and one in the centre, on which the tire rests. These rolls are set at one level,
and are carried on brackets with brass steps and adjustable bearand are carried on brackets with brass steps and adjustable bear-
ings, the centre roll being carried in a bracket which is attached to ings, the centre roll being carried in a bracket which is attached to
the horizontal slide by set screws, and when this slide is moved the oll moves further, so that as main roll shafts diameter the powerful brackets, and at the bottom are supported on screws. The half-finished tires are moved from one set of rolls to the other by means of a small hydraulic crane, and the moving
rolls at each end of the machine are actuated by hydraulic pressure. An hydraulic steel-lined cylinder of 15 in . diameter and ram of 12 in . diameter is attached to each of the roll slides-the water passing through the centre of the rams-for keeping the
pressure on the rolls, and smaller hydraulic cylinders are also pressure on the rolls, and smaller hydraulic cylinders are also
attached to bring back the roll slides and take out the tires. The hydraulic power is obtained by a pair of pumps with large and
small plungers, the large ones being used only for the rapid motions of the slides, and throw themselves out of gear when the pressure
comes on. The slides are then moved forward to their work by the comes on. The slides are then moved forward to their work by the
small plunger. These pumps are worked by a pair of steam cylinders attached to the side of the pump cistern. Above ground and by which of the engine are placed the hydraulic valves, by means of wards and forwards. The steam valves for working the large and the small engines are also placed close to the hydraulic valves, so that the whole machine is under the control of one man. All the rolls are also put in operation by one man by means of a large carried on simultaneously by the machine. The engines for driving the mill consist of a pair of horizontal compound condensing engines, with variable expansion gear. The construction of the the engine beds, with the whole pair of engines carried on one foundation plate. One cylinder has a bore of 26 in ., and the other double-throw crank, and the other on a cast iron crank hinged on to the end of the engine shaft. The condenser is of the ordinary type with a 10 in . plunger, and worked by a pair of levers. The
rolling mill itself weighs nearly 70 tons, and with engines and con
The coal trade continues very quiet, without any alteration in prices, except so far as odd sales are made at very low figures to move away stocks. The demand shows no material change, house iron-making and steam classes of fuel, but with supplies all round
iron plentiful and pits not working more than about four days a week the last week or two, and in coastwise cargoes, chiefly to Ireland,
there has been a fair business doing. Vessels, however, continu
either at Liverpool or Garston being obtainable at from 6s. 6d. to
7 s . and seconds house coal at 8 s . 3 d . to 8 s . 6 d . per ton. s., and seconds house coal at 8 ss . 3 d . to sm . 6d. per ton.
The strike in the St. Helens district continues and ndication of any early termination. In the Oldham and Ashton districts, where the sliding scale for the settlement of wages has
now been adopted at all the collieries, the arrangement has been now been for another twelve months, the only alterations being that
renewture the sale will oscillate 2 , per cent. for every rise or fall
in future
of 3 d per ton in coal instead of 4 d .
Barrow. -Owing to bank holiday, business has been interfered with to a considerable extent, and prices have remained stationary how ticates pretty plainly, I think, a brisk winter's triade Price have a tendency to advance, and it is expected that quotations will
be 18. per ton higher all round at the beginning of next week. The eliveries of metal increase weekly, and as a consequence stocks are being reduced very considerably. The demand for mixed samples
of pig iron is well maintained, and although there is no new feature connection with business this week, 1 am able to say that makers
re asking 60 s. for No. 1 Bessemer ; and if the inquiries are kept up on the same scale as at present, they will, in a very short time,
ask higher values, as the demand outstrips the supply. Secondand parcels are scarce. Steel makers are busy, and their positio
unchanged. Prices are firm, and the demand fully maintaine ron ore in better request, at last week's prices. Iron shipbuilders, engineers, ironfounders, boiler-makers, and others, steadily engaged,
although shipbuilders might be better supplied with orders. The lemand for coal and coke is food.

THE SHEFFIELD DISTRICT

(Frou an aun Carespendent)

THE largest turret ever made at the Atlas Works - Messrs. John
rown and Co., Limited-has been completed this weer for H.M.S. Brown and Co., Limited-has been completed this weer for H.M.S.
Ebinburgh-formerly the Majestic. It is the first of two ordered for that vessel, and is entirely constructed of compound-steel-
 one 16 in. thick, equal to 20 in . of iron armour, with two portholes
3ft. 1lin. by 2ft. .7in.; the other six plates are 14in. thick. The diameter of the eurret-outside measurement-is 28 ft . oin, the the two turrets alone, exclusive of the ordnance to be mounted in the two turrets alone, exclusive of the ordnance to be mounted in
them, there will be a weight of 30 tons. The turret is a splendid
specimen of Sheffield manufacture, and is strong evidence of the perfection to which compound plates have been brought, not only
in securing a perfect weld between the two metals, but in the in securing a perfect weld between the two metals, but in the Brown and Co. are at present full of work in armour-plates, and have completed important extensions and additions to faciitate
their production. These inclue a new planing shop, 190ft. by
6oft., where Messrs. Shanks, of Johnstone, near Glasgow, have 6oft., where Messrs. Shanks, of Johnstone, near Glasgow, have
fitted up several fine machines. One of these weighs 170 tons, and fitted up everal fine machines. One of these weighs 170 tons, and
will take in plates. 14ft. by 10ft. A new press is also being con-
structed in which it is intended to flange marine boiler fronts of
18 ft . diameter in two plate.
The Sheffield Chamber of Commerce have had their attention seriously directed to the conditions of commercial relations between
this country and Spain. At present the Spanish tariff is even nore prohibitory than the French. Spain, nettled at what she considers the undue favour shown in the admission of French English goods. At present the Spanish duties on British manufactures are higher than on those of all other European countries by
from 15 to 300 per cent. Common cast iron is 22 per cent. higher, nere iron wares 48 per cent. higher, and steel, ordinary and better, it is scarcely surprising that the Chamber should have moved "t that memorial be presented to the Prime Minister pointing out the probable destruction of English trade with Spain by reason of the
dmission into that country of French goods at very much lower admission into that country of French goods at very much ower
ratest than Emglish manuractures, and praying the Government to
take steps immediately as they may deem expedient, to remedy this take steps imme,
state of things."
A statement has been published to the effect that Messrs. Charles new works at Workington, and that it amounts to something like new works at workington, and that it amounts to something like
\&ō,000. I have authority for stating that this statement is not
correct. Additions and extensions are contemplated at Workington, but no contract has as yet been given to any builder, nor Messrs. Samuel Fox and Co., Limited, present a most satisfactory report for the year ending 30th June last. They have made year, gives a total of £48,442. It is proposed to pay a die pridend of
15 per cent per annum, towards which an interimm divid rate of 10 per cent. per annum was paid on the 1stof March last. This
will leave $£ 12,442$, of which it it will leave $£ 12,442$, of which it is proposed to carry $£ 11,780$ to the reserve fund, increasing that fund to $£ 45,000$, and carrying for-
ward the balance, £662, to next year's account. This company has private line from Deepcar station to its works at Stockbridge.
The company took up all the ordinary shares and guaranteed payment of principal with interest, and dividends on the debentures and the preference shares which were issued to the public.
The debentures for the most part fall due on the 30th September in a position to hold $£ 12,000$ of the railway to the ordinary shares. Mr. Frederick Bardvell retires from the directorate by rotation, and is recommended for re-election. Very few years, and as the next meeting is to be held on the premises,
done. Sheffield Wagon Company, Limited, in its annual renort
The Shed issued on the 9 tha inst,., state t that the defalcations of its lits late
secretary, Mr. J. M. Wing, entirely preclude the possibility of a secretary, Mr. J. M. Wing, entirely preclude the possibility of a
dividend. A careful examination of the company's books shows the loss thus sustained to be $£ 30,302$ 15s. 6 d., and this is believed been carried to a suspense account.
A very great improvement has latterly taken place in the South American demand for sheep-shears, and from Alace intaliia the couth
for roth sheep-shears and edge tools has recently been remarkable. For edge tools several very heavy orders have also been received
from the Continent. In fact, the leading from the Continent. In fact, the leading makers of sheep-shears
and edge tools in in Sheffield assured me this week that they had not
been so busy for years ben so busy for years as they are now, and that the orders fro
the markets named are larger than at any period since 1872.3 The Midland Railway Company, in its half-yearly report, st that during that period the mileage of passenger trains has been
$6,159,417$, of goods and mineral trains, $9,267,142-\mathrm{a}$ total of
$15,426,599^{\text {miles }}$, showing sponding period of last year, of 127,386 miles. During the corre. 5 year the renewals have been, 39 engines, and there have been laid with cross-bed sleepers. The total revenue receipts are $£ 3,451,839$; the working expenses are $£ 1,790,882$ - including interest on debenother stock 1 s. on each $£ 100$ connoldated ordinary stock, and the
on other stocks as usual, leaving a
The Cuthers current half year.
The Cutlers' Company met on the 8th inst., when Mr. Albert A.
Jowitt, of the Sootia Steel Works, was chosen Master Cutler elect, as successor to Mr.. J. . . Bingham, sailver and electerro-plater manu- mat,
facturer-trading as Walker and Hall-who retires in September.

THE NORTH OF ENGLAND,
There was but a poor attendance at the Cleveland iron marke held at Middlesbrough on Tuesday last, attributable partly, per-
haps, to a prolongation on the part of some, of the Bank Holiday haps, to a prolongation on the part of some, of the Bank Holicay
of the previous day, and partly to the Redcar races which may have tempted others. The tone of the market was quiet, with a
tendency to weakness. The war with Egypt helps to produce a certain amount of hesitation and uncertainty as to the future, and discourages speculation. Again, the occurrence of Stockton races
next week will lay offí completely nine manufactured ironworks, consuming collectively from 8000 to 9000 tons of pig iron per week and accumulations to that extent must then take place either in
makers' or in public stores. makers or the tendency to weakness discernible on Tuesday. The

 quite a drug. The nominal price was 4s, but litlle business wa
done. The stocks of iron in Connal's store are still decreasing
little, but next week the position will prohably be reverse ments continue to be very brisk, owing no doubt to the fine weather, and the gradual approach, of the less favourable seasons.
The manufactured iron trade is in about the same condition pig iron, viz,, steady and quiet. The increase of ironworkers wages by $2 \frac{1}{t}$ per cent., which took place from the 31 st of July, has
handicapped employers to the extent of about 9d per ton , and they have to face the prospect of another 9d. per ton in six weeks, in accordance with Sir J. W. Pease's award. Inasmuch as their selling prices have gone down steadily since that award was given,
they find it rather hard to have to pay increased prices. They have, therefore, given, through their secretary, notice to the ironwages at the termination of the award in October, the exact
amount of reduction to be fixed later, or according to the then position and prospects ot the trade
Ship plates were on Tuesday still quoted at $£ 6$ 15s. for large and
avourable specifications, and $£ 7$ for small lots delivered Middles rough, less 21 per cent discount. Bars and angles were $£ 65$ ss The half-yearly meeting of the Board of Arbitration was held at Darlington on Thursday week, Mr. William Whitwell in the chair,
and Mr. Cullen in the vice-chair. The report which was reaid howed that twenty firms and 9861 ironworkers were now in mem bership. There is a cash balance in hand of £580 18s. The award, which was decided on before and delivered during the meeting, produced, as might have been expected, a considerable
commotion among the delegates. The vice-chairman said he should advise the men to claim a rise of 15 per cent., instead of submitting to any reduction whatever; and Mr. Trow, the operatives' secretary,
sarcastically alluded to the excellent balance-sheets which hat been issued recently, hinting especially at the anpul which had Consett Iron Company. It was urged on the other hand by the employers that the price of manufactured iron had
fallen considerably, and that at least three firms had recently fallen considerably, and that at least three firms had recently
failed, and that the strike of a fortnight in May against the Pease award had caused them a heavy loss, which they were entitled to recover by lower wages. They had thought it wise and right, how
ever, that the award should be absolutely respected during its con tinuance. A long and wearisome discussion took place on the ques tion of compensation to two firms whose men had carried on par taassed thes to carry particular points. Although resolutions wer passed that the men were entirely in the wrong, and that the the Board flatly refused to vote for any comenation whateve being paid to the aggrieved employers out of the funds of the Board
By a narrow majority, and in face of numerous abstentions, it was biltimately wajority, and in face of numerous abstentions, it was offending workmen a small amount each. This, however, was a good as non-suiting them, for the men will certainly refuse to pay achaim from the workmen fo 6d. extra for every half-pig of hematite worked in each puddling
furnace heat was declined by the employers, and finally referred to Mr. David Dale to decide.
heir shar, boldow, Vaughan, and Co. have issued a circular to of $£ 350,000$. Of this $£ 250,000$ is to be raised as ordinary share capital, and the remainder as preference stock. The need is occasioned by a scheme for developing the now nearly-unoccupied site
of their old works in Vulcan-street, Niddlesbrough. They say their present plant is equal to an output of 5000 tons of finished improving their blast furnaces, and intend to develope a trade in Apropos of the salt trade, Messrs. Bell Brothers have now actualy conmenced to make salt at Port Clarence ; and it is said tha Messrs. Alnusen, of Newcastle, are
same district for same district for a a similar purpose.
A meeting of the creditors of
of Middlesbrough, and late owner of the Muller, iron merchan South Stockton, has been held. The liabilities to unsecure
 2 s .6 d . It was decided to wind up the estate by arrangement, and not in bankruptcy. Mr. W. B. Peat was elected trustee, and Messs. Whitwelt, Gjers, Rogerson, Bell, and Thompson a comdebtor his immediate discharge, and he was even hishly com
plimented on his personal merits, and on his past services to the plimented
district.

NOTES FROM SCOTLAND.

AFTER the breakdown in the warrant market early last week actions have taken place chiefly among dealers. The unsettle state of affairs consequent upon the Egyptian war seems to pre-
clude speculation on the part of the public. But the legitimate clude speculation on the part of the public. Sut the legitimate
departments of the iron trade are busy. The past week's ship ments of pig iron aggregated 10,669 in the 1881. Large consignments are being made to Canada and the United states, whilst a fair business is being done with the ConConnal and Co.'s Glasgov stores has been reduced by 980 tons but two extra furnaces having been lighted up during th
or so, the output is increased by about 380 tons weekly
Business was done in the warrant market on Friday forenoon a
 Monday being a bank holiday no market was held. On Tuesday
forenoon business was done at 50 s. 6 d. to 50 s. 10 d. cash and 50 . with business at 50 s. 10. 1 , ter mave

The past week's arrivals of Middlesbrough pigs at Grangemouth
ere 3825 tons, against 4690 in the preceding week and 4790 in the corresponding week of last year, and there is a total decrease on
these imports from Christmas to date of no less than 46,254 tons. At Glasgow very large imports of minerals are taking place, the
arrivals of iron ore from Bibao alone, in the course of four weeks, mounting to about 23,000 tons. Notwithstanding this activity the being 56 s . 6 d . per ton f.o.b. Cumberland.
The export department of the coal trade, though not showing The export department of the coal trade, though not showing
qute so well asi dida week ago, is still active, and large despatches
are expected in succeeding weelks. At Glaseow 17,252 tons of coal
 nland demand continues satisfactory for the season, and prices are irm, although not materially improved.
A strike has occurred of about 150 miners at the Elgin and Wellwod Colilieries, Dunfermine, the reason assigned by the men being that Messrs. Spowart and Co., their employers, have introduced a
new method of weighing the coals which they consider dis-

Mr. David Richmond, of the City Tube Works, Glasgow, has purchased the large works of a similar nature in Broomloan-street, Govan, which he will carry on under the style of the North British
Tube Works. Operations at the City Tube Works will not be ffected by this purchase.
and
hipped from the Clyde, of which $44,800 \mathrm{lb}$. went to Mellourne,
nd $37,500 \mathrm{lb}$. to Val The appointment of Sir James Falshaw, Bart., as chairman of hhe North British Railway, in succession to the late Mr. Stirling,
of Kippendavia, has given much satisfaction in rail way and comof Kippendaavia, has gen mull
mercial circles. Messrs. Stevenson, M.P., Newall, Leslie, and Co., a deputation the River Tyne Commissioners, along with Mr. Urwin, the
secretary, Mr. Messent, engineer, and Mr. Leishman, harbour master, have been on a visit to the Clyde, inspecting the harbour
works, and particularly the Glasgow underwriters' apparatus for raising sunken vessels.

WALES AND ADJOINING COUNTIES

From our oun Correspondent.)

There is a notice in the Times of a considerable extent of bituminous coal-field in the neighbourhood of Swansea for sale. The of Plymouth will be brought to the hammer. The sale in London is taken as suggestive. More prospects, it is maintained, of a sale
being effected would be given if carried out on the spot, where urchasers could see what the property was worth for the selve The statement made of a dismissed. Onading rof the principals was questioned as to the truth of the statement, and his reply was, "Not at all Good progress is being made at Cyfarthfa, and the foundation of
 residence of the Kirkhouses, who have held it for 100 years the irst of the name being a manager with the first Crawshay. Connnounced that the Bute Dock Bill had passed the thind reading. As I stated last week it wock ine had passel the third reading. ad actually passed, public expression was withheld. Now even secures the prosperity of Cardiff for a long term of years again. success is, so far, the most important. o hear of his improving health. The efforts of the last twelve months h
condition.
The iron trade is in a brisk state, and every encouragement is Siven to makers to carry out their alterations and conversions.
it is now genererally admitted that iron and Welsh mine mongst the obsolete, but inquiries for good Welsh mine are still coming to hand, and old scrap iron, broken mouldings, \&c., are
readily bought. I note an important sale of cast and wrought iron t Nantyglo next week
An important case was heard at Swansea Assizes last week, in it Maesteg by working too near the foundation of a house. It was, oowever, shown that in the lease accepted by plaintiff, it was
tipulated that no damages would be allowed in the event of any has been freely discoussed in the coall district, and the general mportance
Arching with masonry is resorted to in the deep Navigation pit,
reharris, and is found to answer well. A large output is proTreharris, and is found to answer
mised when this has been effected.
There is a good inquiry for coals of all descriptions, house and ream, and prices are remarkably firm for the season. Small coals The total exports of coal from the Welsh ports to foreign and
coastwise destinations exceeded last week 200,000 tons. Our next otal will not be so large, the colliery population having taken a have been engaged, some as volunteers, others at one of thoose
Welsh Olympian contests known as an Eisteddfod, held at Aber. vavenny, whereat they figured remarkably well in vocal melody. Notwithstanding these relaxations, a good deal of satisfactory
business is being done, and coalowners are not slow in attributing he firmness of the market and its healthy state to the successful

Naval Enginerr Appointments.-The following appointments engineer, to the Invincible: William J. Cauter, ehief engineer, to He Humber ; James G. Bain, chief engineer, to the Asia, for Duncan, for service in the Hydra; Richard H. Tregenna, engineer, engineer, to the Indus, for service in the Industry; and Henry G . arr, engineer, to the Asia, for servico itho
TWIN FIRsT-class Carriages. - Some new twin first-class
arriages just completed at the Wolverton Carriage Works of the carriages just completed at the Wolverton Carriage Works of the
London and North-Western Railway Company were on Saturday Lonnon from London, attached to the mid-day train. The two
run carriages are each rather larger than the ordinary first-class
carriages. One is devoted to gentlemen, and has a small separate smoking-room for six persons; the other has its central saloon
devoted to family parties, with a separate compartment of like
dimensions as the exclusively to ladies. Each carriage has its lavatory, and the two carriages are coupled together, the interspace being covered by an
enclosed platform, forming, with the end compartments of the carriages, an ante-room, in which an attendant travels with the
carriages, and is summoned by the traveller by electric bell. There is a gangway completely through the whole length of the of 72 ft . Doors close one carriage from the other, by which suffi-
cient privacy is ensured, whilst there still remains, in case of need, cient privacy is ensured, whilst there still remains, in case of need,

THE PATENT JOURNAL. Condensed from the Joprual of of thie connmisisioners of

Applications for Letters Patent. * When patents have been "communicated" the
name and address of the communicating party are
printed in italics printed in italics. 1st August, 1882 .
3638. Collegting Dust, A. Stevenson, Chester.
3639. Purtrying Gas, J. Walker, Leeds.
3640. Distilung Tar, W. Maxwell Gertsher 3640. Distilling TAR, W. Maxwell, Gartsherrie.
3641. SHirts, G. W. von Nawrocki.-(Messrs. S. Ster
and Solin, Germany.) and Sohn, Germany.) T. J. Edwards, London.
3642. Sculing Boast,
3643. AMMONIA, A. Feldman, Germany.
 Solomon and B. Armant, Montreal.)
3646. OBTIANING Products from Solid Matrers, G. F.
Redfern.-(H. Wurtz, Nevo York.). Redern.- (H. Wurtz, New York.)
3647. PACKING, J. Brown, London.
3648.
3648. Fastening, G. F. Redfern.- (E. C. C. Hender
Picton, and T. A. McDonald, Durham.)
3649. Sorew Propellers, H. Hardy, Edinburgh.
3650. Trousers, R. Redman, Hard 3650. Trousers, , Redman, Hebden Bridge.
3651. Preventive Ivorustation in Boilers, w. Gedge.-(J. Boissie, Paris.)
3652. DRvING BLIT, W. H. Ch
8653. PERMANENT WAY, A. Vog
3653. Permanent Way, A. Vogt and A. Figge, London.
365. SAW-FILNG Apparavis, A. M. Clark.-(C. M.
Elkins, Matteawoan, and W. H. Weston, New
 Machine Company for Forreign - Countries, Nevo Yorke.)
3657. Embroddery Apparatus, W. R. Lake, Chilton, New York.)
3658. STEAM PUMPs, W. W. Beaumont, London.
3659. Impressing the August, 1882.
3659. Impressing the Postanre, \&c., on Letters, e.
Brydges.- (D. Grove, Berlin d. A. Plimecke, Germany.) Brydges.- (D. Grove, Berlin d. A. Plimmecke, Germany.
860. MUuIAL INSTR UMENTS, P. Erlich, Gohlis.
3661. TELEPHONE CIROUITs, J. W. Fletcher, Stockport. France.)
3663. STEAM Traps, H. Lancaster, Pendleton.
3664. FASTENING, T. Marlborough and J. Cunni Sunderland.
3665. PLATEs of Batteries, T. Cuttriss.-(C. Cuttriss, 3666. WIrEs, P. R. de Faucheux d'Humy, London.
3667. RALwAY Swirches, H. J. Haddan.-(G. otte, Apeldoorn, Holland.)
3668. Luricoating, B. A. Dobson, Bolton.
3669. Looms, J. Whittaker, Padiham, and
Richton.
3670. STopperivg Bottles, T. and J. Brooke, Sheffield.
3671. RAIWAY Sither 3671. RAILWAY SWITcHEs, \&c.., P. Prince, Derby.
3672. FIGRED CLTTH, J. Kirkman, R. Smith, P.
Entwistle, Bolton. Entwistle, Bolton.
3673. STEEL, \&c., Rods, E. Deeley, Walsall.
3674. PREvENTIN A AccIDNTs, S. Williams,
3674. Preventivg Acoidents, S. Williams, Newport.
3675. Cleanive Wool, W. P. Thompson.-(A. Frayssé,
Anvers, Belgium.)
376. SLDIDG GATEs, W. Thompson.-(I. Sherwin, U.S.)
8677. SLIDE VALVEs, A. M. Clark.- (J. De Lancey, U.S.).
3678. WATER, L. A. Groth.-(F. Piehler and C. Sedlicek, Vienna.)
369. PERM
3680. Ringes, B . A. Groth.-(F. Schanman
3681. Telephonic Communication, J. Cowan, Garston 3682. Grass EdGe Clipperrs, T. Green, Leeds. Garston
8883. Looring Mechanism, W. R. Lake.-(H. F. New-
bury, Brooklyn, Newo York.). bury, Brooklyn, Nero York.)
3684. Fre-ARM, W. R. Lake.-
3685. DYNAMO-
C. Dynamo-ELECTRIC Machines, W. W. R. Lake.-(H.
C. Sapleand F. Rabl, Camden, U.S.) 3686. Exhauss FANs, F. M. Eden, Kettering.
3687. Workiv Machiver, J. Hircook, Birmingham
3688. Door KNobs, W. Thomson, Shaw 368. Working Machinery, J. Hircock, Birmingham
3688. Door Knobs, W. TThomson, Shaw.
3689. Elecrical Energy, W. Lake. - (M. Levy, Paris.
3690. Horseshoes, JE 3699. Horseshoes, J. R. Thompson, Buckden.
3691. CHANELES, ©.., G. M. Edwards, London.
3692. Tension, 3691. CHANNELS, \&C., G. M. Edwards, London.
3692. TENSIIN, \&c. WINDING, Y. Duxbury, jun., Over
Darwen. Lancashire.
3693. Evaporating, \&c., Inst, 1882.
Nichols

Nichols and C. Thompson, Halifax.). Gardner.-(F. B.
3694. WAGON, E. Hollingworth Dobeross. 364. Wagon, E. Holingworth, Dobcross.
3695. PREs ERVVGG MILK, H. von Reden, Hamburg.
8966. PRENTING NoIE, W. Ney London.
3697. CLEANIN heimer, Nevo Yorkk.)
3698. MIICRes. E. de Pass.-(S. Oppeñ
A. D' Arsopnonio Aparatus, J. H. Johnson.-(Dr. A. D'Arsonval, Paris.)
3699. BELLL, J. Harrison, Birmingham.
3700. SECONDARY BATTERIES, E. G. Brewer.-(Sehulz, Germany.)
3701. Preventing Duwn Draught in Chimneys, C. E
Hanewald. Hanewald. - (F. Hasselmann, Germany.)
370. CEMENT, L. Roth, Wetzlar, Prussia.
3703. IcE, T. Watts, Newport and W, Gorm
4th August, 1882 . 4th August, 1882.
3704. Vacuum Brake J. Gresham, Salford.
370. Electric Lask, J. L. Somoff, London.
3706. Combining Harmoniums with Pi 3705. Electric Lasp, J. L. Somoff, London.
3700. Combinivg HARMONIUMs with PiANos, L.
Kistner, Hamburg.
3707. STEAM Esinges, C. J. Galloway and J. H. Beck-
with, Manshester.
 and P. B. Elwell, Woolverhampton, Coalbrookd
3711. Boile BrDGE, C. Hill, Blaydon-on-Tyne.
371. ELEETRO. MAGAETST, S. . C. C. Currie. London.
3713. ELEETRIC ARC LAMPS, E. G. Brewer. - S 3712. Eleotro Magnets, S. C. C. Currie, London.
3713. Electric ARc Lamps, E. G. Brewer.- (Sociét
Anonyme des Ateliers de Construction Méanique e
d'Appareils Electriques.

 Folding Seats, W. H. Ave. - Polegate.
2. Solitankes, \&c, A. B. Furlong, Londun
 3725. VAPORIsING, , ©.., E. J. C. Fear, Redland.
3726. FAC-sMILE CopiEs of WRITINGS, T. H. Taylor,
Manchester.

5th August, 1882.
3727. Type-writers, A. Boulton and C. Dickie.-(A.

 Stic. Dyerixa, dect of Hasks, G . Heywood and S

 Tu5s. Veswith Aupust, 1882.

Inventions Protected for Six Months
Deposit of Complete Specifications.

${ }^{11888}$.

Patents on $\begin{gathered}\text { Which } \\ \text { the } \\ \text { has } \\ \text { been } \\ \text { Stamp } \\ \text { paid. }\end{gathered}$ Duty of

Patents on which the Stamp Duty of 3521. Treartus Dryivi ons, G Hadfeld, Manchester.
 chester.-16th August, is75. 2752. Revolving Shutters, H. Woodburne, Ulverston. - 4 th August, 1875 .

- FIrince
©., Torpedoes, C. A. McEvoy, London. 2788. Corfins, J. Larkman and J. Diprose, London.-
7 th August, 1875. 2866. Mordavive, \&c., Yarns, M. Baerlein, Man-
chester. $-14 t h$ August, 1875 .

Notices of Intention to Proceed with Last day for fling opposition 25 th August, 1882. 1513. Taps and Valves, F. Robinson, Bradley.-29t
March, 1882 . 1514. ENGINES, G. Tidcombe, jun., Watford.-29th 1533. Extracting Gases from Molten Metals, \&e., R. Aitken, London.-29th March, 1882. S. Williams,
Londoneraming, \&ac, ELEcTRICITY, J. S. 1566. Looms, J. Waade, Wortley.- 31 st March, 1882. from L. Bourau.- $31 s t$ t March, 1882 .
1583. ELECTRIC BELL, ©c., H. Binke, South Hornsey.
CCom. from M. I. Siegel -Com. from M. I. Siegel.- 1 st April, 1882 . Fielding,
1598. GRINDING SpINDLEs, G. Ryder and M.
Bolton. -1 st April, 1882 . 603. Pan.-1st, April, 1882. . Fisher, Dresden.- 3 rd April, 1882. munication from L. D. B. Shaw.- 5 th A Aprili, A 1882
1670. Electric Lamps, J. Jameson, Akenside Hill. 6th April, 1882 .
1755. Ventiantig Apparatus, T. Rowan, London.-
14 th April, 1882 . 1847. Printing Apparatus, J. F. Haskins, London.-
18 th April, 1882 . 1928. Treativa Mineral Oils, E. de Pass, London.-
Com. from P. J. N. Labouret.- $22 n d$ April, 1882. 2203. Prom Pr. J. N. Labouret.-22nd April, 1882 .
Com. from J. T. Hawkes, W. R. Lake, London.-
204. PRINTING.-10th Mak, 1882,
 220s. Priving Machives, - W. R. Lake, London.-
Com. from J. T. Hawkins.-10th May, 1882 . 2639. Folding Chairs, dic., J. Hayes, Kingsland.
5 th. June, 1888 3025. Dysamo-electric Machines, E. A. Sperry, Cort-
land, U.S. -27 th June, 1882 . 3231. Fastening Leiters, de., F. A. R. Russell,
London. -7 th July, 1882 . 11. Electrical Conductors, F. Jacob, London.-
1119. July, 1882 . 3419. DyNamo-electric Machines, S. Z. de Ferranti,
Shepherd's-bush, and A. Thompson, London.-18th
July, 1882.

Last day for flling opposition, 29 th August, 1882. 1396. Purifying SEwage, \&c., G. J. Andrews and
F. H. Parker, London. 22 nd March, 1882.
1610. Febding Wool, W. Cliffe, Ley Moor1882.
1613. Taps and Cocks, F. G. Fleury, London.-3rd
April. 1882 . April, 1882. .Clectric Machines, w. R. Lake, Lon-don.-Com. from E. Weston. 3 Brd April, is82, Lon-
1616. ELECTRIC CuRRENT, W. B. Brain, Cinderford.-
3rd April, 1882.
1617. Curting Wood Blocks, F. Wirth, Frankfort-on-
the-Maine.-Com. from G. Sebold. - 3 rd April, 1882 .
 1632. Hydraultc Cranes, \&c., E. Priestman, Sheffield. 1639. ELectro-DEFositing Copper, \&c., W. H. Walenn, London.-4th April, 1882 . J. Spence, Shipley.-5th
1646. Bobbins and Spoots, April, 1882.
1652. ROAD CURBS, J. J. Wheeler, London.-5th April, 1653. Traveluing Bags, \&c., T. A. Mitchell, Chisle-hurst.-5th April, 1882 .
1655. WATER-CLOSETS, H. Conolly, London.-5th April,
1882 . 1569. UTilising Sea Waves, R. J. Scott, London.-
5th April, 1882 . 5th April, 1882 .
1662. Whek or Uner Frames, R. Hadfield, Sheffield.
$-5, h$ Amril, 1882 . 663. TexepHoNe Circuits, F. D'A. Goold, London.665. TanNIN, E. A. Brydges, Upton.-A communica-
tion from A. Mitscherlich.- th April, 1882 . 669. TrPpING Frame for WAGONs, R. Hadfield, London.
-6th A pril, 1882 . 18 . 674. Safety Apparatus, C. D. Abel, London.-A com-
munication from F. Pelzer.- 6 th A pril, 1882 . munication from F. Pelzer- -6 th A April, 1882 .
1680. BIcyoles, \&c., W. Scantlebury, Lower Clapton.
-6 th A pril, 1882 . 1691. Mounting Tobacco Pipes, \&c., W. Rest, London. 1697. ELEETRII LaMPs, Hon. R. Brougham and F. A Ormiston, London.- 8 th April, 1882 .
1700. GALVANISING SHEET IroN, T. Johns, London.
-8 th April, 1882 . 1703. Projectiles for Ordnance, E. Palliser, London. 1716. Washil, 1882 COAL, de. T. Bell, jun., York, and W. Ramsay, Durham.-11th April, 1882 . April, 1882 .
1742. CREAMS or Beverages, F. P. Beck, Brussels.
12th April, 1806. CAsing for Ships, \&c., A. L. S. Leighs, London. 1808. Pickinct, \&ce. Metal Plates, J. R. Turnock, Dafen.-15th, April, ME82.
1883. Printing. MACHINERY, W. Conquest, London.-
Com. from R. Hoe and Co- -19th April, 1882.
 April, 1882 . communication from W. Gotais.-26trh Apgril, 1882.
147. TToBACo Pouches, B. L. James, Wanstead Park. 2166. Utilising Heat, T. Charlton and J. Wright, London.-9th May, 1882.
2715. Treating Reculs or Matte, E. A. Parnell,
Swansea. 9 Rth June, 1882 . 771. DYNAMO-ELECTRICAL M

Fulham,-13th June, 1882 .
 London.-Com. from C. FAMWAYS, Findlay. ©c., -20th J June, 1882. 2980. Horseshoes, J. C. Mewburn, London.-A com-
munication from L. G. Claude. 23rd June, 1882.
3250. Furnaces, J. Burch, Stockport.-Sth July, 1882 . 348. Treating, Skim Mik, H. J. Haddan, Liondon. -A
communication from D. H. Burrell. 14 th July, 1882 communication from D. H. Burrell.- 14 th $\mathrm{July}, 1882$
3363. Hoo JoINTs, C. E. Gibson, Birmingham. $-15 t h$
July, 1882 .
3383. ICE, H. J. Haddan, London.-A communication
from T. S. Rankin. -17 th. July, 3445. Drying, \&c., Apparatys, H. J. Haddan, Lon-
don. -Com. from F. H. C. Mey.- 20 th July, 1882. don. - Com. from F. H. C. Mey. - 20 th July, 1882 .
3446. STEAM ENoINE GovERNors, H. Jaddan, Lon-
don.- Com. from F. H. Ball.-20th July, 1882. don.-Com. from F. H. Ball.- $20 t h$ July, 1882,
3644. FIRE-DAMP INDICATOR, I. Kitsee, Cincinnati, U. 3676. SLIDING, GATES, W. P. Thompson, London,-A
communication from I. Sherwin.-2nd August, 1882.

Patents Sealed.

(List of Letters Patent which passed the Great Seal on the
561. Dust Collectors, P. V. Gelder, Sowerby Bridge. - 6th Febuary, 1882.
577 . Cocks oR VALVES, T. Morgan, London. - 6 th February, 1882.
578. Electric Lamps, B. J. B. Mills, London.-7th February, 1882.
T83. Tricy,
February, 18s,
B. Roberts, February, 1882. J. G. Smith, Eccles.-8th February,
60. Trioycles, J. 606. Fluid Meter, C. D. Abel, London.-8th February, 15. Window-sash and Door Frames, J. H. Miles,

Southampton.- 8 th February, 1882 .
620. Triple AlLoys of MANGANESE, act, G. Scott,
London.-8th February, 1882 . Rogers, London.-8th
621. EleTric Currents, J. B. February, 1882.
622. Leather Soles, E. A. Brydges, Upton. -8 th February, 1882 .
640. Stamping Machines, J. G. A. Haller, Hamburg.
10.t. 10th February, 1882.
654. LinNings for VENT Flites, \&c., T. Fraser, Aber-
deen. -10 th February, deen.-10th February, 1882. Newcastle-upon-Tyne,
697. Horsseos, G. Collier, Nes.
and W. Armes, Norwich.-13th February, 1882 . and W. Armes, Norwich.- 13 th February, 1882 .
7 Go. GENERTINT, \&e., ElecrricITY, J. S. Williams,
London. -13 th Februany London.- 13 th February, 1882 .
716 PURFYING CoAL GAs, T. E. Jo
14th February
725. Febdivary, Mecranism, R. B. 15th February, 1882.
738. CAsEs or REEPT 738. Cases or Receptacles, J. Ferguson, Ashton Keynes.- 15 th February, 1882.
743. UTILIIING SEWAGE, G. H. Gerson, Berlin.- 15 th
February, 1882 . T50. Travsmitring Motion, w. Spence, London.-16th
February, 1882 February, 1882 .
753. Traveling Bulding for a Circus, C. H. Keith,
Bradford - 18 th bs. Telegraph Instrument, F. J. Cheesbrough Liverpool.- 16 th February, 1882 .
S10. VENTLATING VALE, A. S.-C. Buxton and F. o. Ross, Hammersmith.- 20th February, 1882.
824. DRIVING, \&E., MEETALIC STAPLES, W. R. Lake,
London. -20 .h February 1889 London.-20th February, 1882. . 21st February, 1882.
864. Furnaces, J. H.
ary, 1882.
S89. WATER-CL Febrruary, 1882.
89. Desiccating Sew
. s92. Desiccating Sewage, \&c., J. H. Johnson, Lon-
don.-23rd February, 1882 . 963. Preverting Rallway Accidents, C. N. Leroy,
Paris. $-28 t h$ February, Paris.- $28 t h$ February, 1882 . Clark, London. - 1 st
993. Pocket-HANGER, A. M. 1058. ALUMINIUM, J. Morris, Uddingston.-4th March,
1882 . 1080. Reels of Reaping Machines, A. M. Clark,
London.- 6 th March, 1882 . 1255. Reprating Small-ara, F. J. Cheesbrough, Liver-
pool. -15 th March, 1882 . pol. 15 th March, 1882 .
1262. KNITrED FABICS, R. Mackie, Stewarton, and
W. Start and H. Scattergood, Nottingham.-15th
March, 1882 . 1304. THRASHRN MACHINEs, T. and W. Nalder, Wantage.
17th March, 1882 .
1409. ARMOUR-PLATES, H. Reusch, Prussia. $-23 r d$
March, 1882.
1753. Sulphide of Sodium, \&c., W. Weldon, Burstow. 1912. SRRINGS, W. Buckley, Sheffield. - 21 st April, 1882.
2064. MEASURING INSTRUMENTS, H. H. Lake, London. 2263. SEMandary Batteries, A. Tribe, Notting-hill.2391. SECoNDARY Batteries, J. Pitkin, London.-20th May, 1882. . Marker, T. Green, Leeds.-22nd May, 2414. Insulating Materials, J. A. Fleming, Hamp-stead-22nd May, 1882. Shefield.-23rd May, 1882 .
2427. KNIIEs, C. H. Wod, She
2432. Electric Lamps, G. G. André, Dorking.-23rd May, 1882 .
245a. ELECTRIC Lamps, J. Wetter, New Wandsworth.-
24th May, 1882. 2471. Blue Colouring MAtters, R. Meldola, Hackney Wick-24th May, 1882 .
2577. WASHING, , ,ce., Bottles, E. Lofts, Cherryhinton. -31st May, 1882 .
262. KINs, J. Davis, Kearsley Moor.- 7 th June, 1882 ,
2719. Coupling and BuFfing Apparatus, W. R. Lake, 2719. Couplivg and BuFFisg
London.-9th June, 1882.

(List of Letters Patent which passed the the 8th August, 1882.)

Corsets, dc., A. Wardrop, London.-9th February, 1882 .
635. Steam Boilers, W. Arnold, Barnsley. - 9 th
February Fi5 Pruary, 1882 . Pudvive, Iron, R. Thompson, Wigan.-10th February, 1882.
65s. Sabs or Panels, A. M'Lean, Surrey. - 10 th
February, 1882 . 677. Interlocking Apparatus, w. E. Langdon, Derby. e78. Gas Engines, W. Watson, Leeds.-11th February, 690. Fastening Rails to Sleeepers, G. Schwartzkopff, Berlin.-13th February, 1882.
718. Hat NAss, E. K. Dutton, Manchester.-14th 23. Speed Governor, G. B. Goodfellow and R. Matthews, Hyde. -15 th February, 1882 .
766. Generating,
\&ce., Electricity, J. S. Williams,
 February, 1882. sea.-17th February, 1882. gow.-20th February, 1882. Rapieff, London. - 21 st February, 1882.
841. Knitiva Machines, J. W. Watts, Countesthorpe. - 21 Wt February, 1882 .
846. WEDLEss TUBES,
-21 . . February, 1882 . 850. RAIsivg, \&c., BLINDS, J. Everard, Birmingham.21st February, 1882.
888. WATER-CLSSETs, H. Suteliffe, Halifax. $-23 r$ d
February, 1882 . February, 1882 .
9asis
Mator
March 1882 . Engines, J. Fielding, Gloucester. $-1 s t$ March, 1882. Skene, London.- 3 rd March, 1882 .
1097. PUMPs, R. KkITING MACHINES, T. Priestley, Bradford, 7th March, $1882 . \quad 1$ 1590. GAs-motor Engines, R. Skene, London.-1st April, 1882.
1821. SILICous Copper, \&c., J. C. Mewburn, London. 1949. BEE SEMEER CONVERTERS, S. G. Thomas, London. -25th April, 1882 .
1952. NUT-LoCK, H. J. Haddan, London.- $25 t h ~ A p r i l, ~$
1882. 1971. Racks, C. J. Appleton and S. H. Ogden, Man-
chester.-26th A priil, 1882 . chester.-26th April, 1882. 2134. GAs, ©c., METERS, W. C. Parkinson, London.-
6th May, 1882. 6th May, 1882.
214. ELECTIC Lamps, J. H. Johnson, London.-6th
May May, 1882.
2328. Doubing Cotron, \&c., F. J. Smith, Heywood.-
18th May, 1882. 18th May, 1882 .
235. PERAMBUA, J. Preston, Stratford-le-Bow.-
18th May 2352. Perambulators, J. Preston, stratford-le-Bow.-
18th May, 1882.
2426. Botrling Apparatus, F. Foster, London.-23rd 2426. Botrling Apparatus, F. Foster, London.-23rd
May, 1882 .
2458. Stopers for Bottles, \&c., N. Thompson, London. - $24 t h$ May, 1882 .
2540. Frinaces or FIre-Grates, G. F. Janes, London. 2568. BARRELS and KeYs of Locks, \&c., G. Bolton, Wolverhampton.- 31 st May, 1882.
2612. SToves, C. Lister and T.' Wardle, Middlesbrough. 2613. ELEcTRIC Lamps, W. E. Ayrton and J. Perry,
Loudon. - 3rd June, 1882. Loudon.-3rd June, 1882 .
2630. DyNAMO-ELECTRIC MACHINES, A. J. Jarman,
London -5th June, London.- 5 th June, 1882 .
2885. DyNAMO-ELECTRIC, ©.., MAchines, J. A. Berly,
London. $-19 t h$ June, 1882.

[^0] postage. Sums exceeding 1s. must be remitted by Post-office order, made payable at the Post-office, 5,
High Holborn, to Mr. H. Reader Lack, her Majest's
Patent-office, Southampton-buildings, Chancery-lane,

ABSTRAOTS OF SPEOIFIOATIONS.

4880. Portable Forges, G. H. Pym, Notinnit

 The invonator, Disism. the cond truction and emplog. portable forge.5524 .

 joint of the phatinum wiros with the arron is imade
durabte by the deposition of carbon on it. In the durable by the deposition of carbon on it. In the
inventor's arc lamp the uper carbon is attached to
the core of a solenoid in the lamp current. The lower
over pulleys to counterweights proportioned to give
the lower carbon an upward feed. On the pulleys
are fixed ratchet wheels, and in connection with these are fixed ratchet wheels, and in connection with these
wheols are catches which are movale by the holder of the upper carbon. When the current through the
olenoid is too weak, the upper carbon descends, and sitenoid same time releases the pulleys, so that the
ot the same
lower carbon rises. 5552. Heel for Boots and Shors, A. M. Clark,
London. -19 A $_{\text {D }}$ December, 1881.- (A communication from P. Lemarchand, Paris.) $4 d$.
This relates to the construction of heels of boots and
hoes made of horn, moulded or otherwise shaped, of shoes made of horn, moulded or otherwise shaped, of
hollow form, either in a single piece or in sections
united together, with or without a suitable filling. 620. Lifting the Safety Valve of Bollers by

THe Action of A Float Actuated by The
WTtEr in the Boller, T. Rogers, Smethvick.-
23rd December, 1881. 6d. The drawing shows a longitudinal section of a Cor-
ish boiler. At a oonvenient distance from the ordinary safety valve is secured a cast or wrought iron
stem or pillar A having a slot or aperture at the top, in
which the weighed

5620

pin, which forms the fulcrum of the lever B. At one end
of this lever is secured a small chain, to which is suspended a rod C. To the end of the rod C is attached a
loat D. The rod C works through a stuffing-box E. adjusted by the weight of the float D in connection with the weighted ball F at it its other end. The safety
valve lever G is weighted and adjusted in the ordinary way, viz,, by means of the weighted ball H

 transverse motion to scoopps or shovels ased for shift-
ng grain and other substances by means of ropes led over and under guide pulleys.
5649. Gas Burners, IV. T. Sugg, Westminster:-24th The object is to so construct the burner as to pre-
vent the "roaring" of the burners when the supply is 5654. Machines for Rifling Gun And Pistol
BARRELS
P. Mauser, Germany, $-24 t h$ elates to peculiar arrangements and distoles on those parrels which prof mace the shape she rifling gun and of the rifle cuts, and its object is by means of these
rrangements and devices to produce tapered cut grooves, and to make the machine adjustable to such 5682. Shafts and Poles for Vericles, A. M. Clark,
London.-24th December, 1881.-(A communication This relates to the construction of the shafts and poles for vehicles of discs (of cardboard, paper, leather, or equivalent material) juxtaposed upon a metal rod
or core, and glued and compressed together to form a solid continuous body.
5683. Extinguishing Fire in Theatres, \&c., W. R.
Lake, London. $-24 t h$ December, 18s1.-(A communi Lake, London. $-24 t h$ December, 1881.-(A communi
cation from H. S. Maxim, Brooklyn, U.S.-(Not
proceded with.) proceeded with.) $6 d$.
This relates to a system of water supply pipes for
oxtinguishing the fire. 564. Mecha
 The chief objects are to give greater steadiness to the cutting operation, and thus enable a greater
amount of work to be done in a given time io in-
crease the extent and range of the width of the cut, crease the extent and range of the width of the cut,
which may be applied to enable of work to be operated upon; and to diminish the
wear and tear to which the mechanism of the cutting eed apparatus is generally subjected.
5669. Destroying Insects which Infest Vines and
other Plants, de. H. H. Lake, London.
December, I\$s1.- (A conmmunication from La Societé December, 1881. - (A communication from La Societte
La Reconstitution Viticole, Paris.). $6 d$.
This
and olateres to the method of destroning phylloxera and other subterranean insects which are injurious to
agricutture, which method comprises the injection
into the ground of sulphide of carbon finely divided or vaporised by a current of air or steam, or by other
suitable means, by causing the liquid to escape through a small' $\mathbf{y i n e}$, and by the employment of appapa-
ratus which distrinutes the sulphide of carbon in a
furrow formed by the said apparatus. 5674. Improvements in Transmitting and Receiving Apparatus for Type-printing Telegraphs, S.
Pitt, Sutton, Surrey.- 27 Dth December, $1881 .-$ A com-
menication from H. van Hoevenbergh, Elizabeth,
New Jersey, U.S.A.) 10d. This relates to printing telegraphs, the type wheels
of which are impelled by a weight and wheel work and the progressive movements of which are con
trolled by a series of electrical pulsations, alternately
of opposite polarity In the inventor's imple of opposite polarity. In the inventor's improved
apparatus the printing is effected by increasing the
strength of the current during some one of the pulsastrength of the current during some one of the pulse
tions, without reference to its polarity, the the instant
the required division of the type wheel is to plateq. The printing of the type wheneel is opposite the
double type wheel and an oscillating provided with a double type wheel and an oscillating printing platen
so that either one of the wheels can be printed from
For this apparatus two independent circuits ar For this apparatus two independent circuits are wheels, and the second to control the angular posi-
tion of the osillating platen. Other improvements
are also described. 5676. Machinery for Blacking, Colouring, or
Dressing Leater, Hides, sc., W. Morgan--rrown,
London. -27th December, 1s81. (A communication from F. B. Batchelder, East Boston, U.S.) $6 d$.
The invention consists chiefly in a small rotating
supporting surface for the leather, a receptace for supporting surface for the leather, a receptacle for
blacking or dressing, eceptacle roller therein, and a
blacking or dressing applying brush or roller located
 wiper or cleaner.
5682 . Velocipedes, J. White and J. Asbury, Coventry.
-2tth December, 1s81. 8d. The invention relates to improvements in the
driving gear of velocipedes in which one travelling
wheel is driven, and also in which both driving gear of velocipedes in which one travelling
wheelis driven, and also in which both travelling
wheels are driven. It has likewise reference to
${ }^{i}$ mproved arrangement
wheels simultaneously.
5691. Truetng the Surfaces of the Cylinders of
Calendering and Finishing Machines, Barloro, Manchester inishing Machines, C. A. munication from J. Tolra, Barcelona.). $6 . d$.
The inventor claims the method of trueing the surfaces of the paper or cotton cylinders of calendering
and finishing machines, by a prinding and finishing machines, by a grinding wheel or roller,
with or without removing the cylinders from the
calendering or finishis calendering or finishing machine.
5692. Machinery Employed in the Application of
Designs and other Deilinetions Designs AND ofter Delineations to Variof
Surfaces, do., T. Jones, Clerkenvell.-28th December, 1881.6 . 6 .
This relates to improvements in the general construction of machinery or apparatus employed in the
application of designs and other delineations in paint or other colouring material, in gold or other leaf, or
in bronze or other powders to various surfaces and 5699 .

Dressing Machines, de., J. Hurt and Ardis and Strathern, Glasgovo.- 28 th December, 1881. 6d.
The essential nature and novelty of the invention
consists in the use of aing The essential nature and novelty of the invention
consists in the use of a single simple feeding hopper
over the feeding roller or other equivalent of the mill, into which the grain or granular substance is supplied
in an approximately regular stream from the supply in an approximately regular st
bin, hopper, or elevators above.
5702. Improvements in Sockets or Holders for
Electric Lamps, J. W. Swan, Newcastle-on-Tyne.

This relates to holders for incandescent lamps, whereby a lamp without any external fittings canps,
readily attached to the conducting wires. The holder readily attached to the conducting wires. The holder
is provided with two hooks insulated from each other, and terminating in binding screens on opposite sides
of the holder. holder is made by engaging the two hooks of the
holder with the two exes which constitute the terminal conductors of the lamp, contact between
me two being effected by a spring, which must be the two being effected by a spring, which must be
compressed to join the lamp to the holder, and which
thereafter exerts an outward pressure on the lamp, keeping the hooks and outes in good contact
5714. Portable Ovens for Baking Bread, \&c., J.
H. Johnson, London.- 29th December, 1881.- (A com-

$$
\begin{aligned}
& \text { munication from Messieurs Geneste, Herscher, and } \\
& \text { Company Paris) } 6 d
\end{aligned}
$$

Company, Paris.) $6 d$.
This consists in constructing the ovens in sections,
This consists in constructing the ovens in sections,
whereby they are rendered capable of being transported to localities inaccessible to wheeled vehicles,
and the operations of erecting them and taking them and the operations of erecting them and taking them
to pieces are also greatly expedited and facilitated. 5716. Rosstina Coffee, \&c., M. Robinson, Man chester- -30 th December, 1881 . 6d.
This relates to the general construction of the 5717. Brushes, W. Willeringhaus, London.-30th

This relates to connecting the handles of brushes to their frames by means of a hinged joint and a bolt or 5718. Meghanically Played Wind Musicai
Instruments, W. P. Thompson, Liverpool. -30 th INsTRUMENTS, W . Po Thompson, Liverpool.--30th
December, 1881.- (A communication from M. Harris, This relates to improvements in wind instruments
mechanically played or controlled by perforated strips of paper.
5720. Fire-lighters, F. Holmes, Nexv-cross.- 30 th This relates to the construction of "wheel fire5723. Feeding Hurdles for Sheer, \&c., A. J. Scott,
Rotherjield Alton, Hants.-30th December, 1881 . This relates to making feeding hurdles,
may be folded up and rendered portable.
5725. MandFactore of Linoleva, de., M. B. Nairn, This relates to machinery for manufacturing linoleum, and consists of a cylindrical mixer mounted
horizontally, and traversed by a revolving shaft carry. ing arms, which pass between other arms fixed within the cylinder. Over the mixer at one end is a bin con-
taining ground cork, which is passed to the miver by taining ground cork, which is passed to the mixer by
means of a revolving measure, and when a sufficient quantity has been supplied a slab of coment made
from oil is thrown in and the whole well mixed. The mass as it is delivered from the outer end of the cylin-
der is cut into der is cut into slices, which are acted upon by crush-
ing rollers. The material adheres to one of the rollers,
and is taken off in small fragments by a spiked drum and is taken off in small fragments by a spiked drum
enclosed in a a case, which serves as a hopper to deliver
the material to spreading rolls, between which the enclosed in a case, which serves as a hopper to deliver
the material to spreading rolls, between which the
cloth to form the back of the fabric passes. 5728. Signalling bY Sound AT Sea, J. M. Gray,
Edinburgh. $-30 t h$ December, 1881.-(Not proceded ziith.) Sd.
The object is to enable vessels in a fog to communicate to other vessels the direction in which they are employed to memory, and consists in producing long
and short sounds on the signalling apparatus. and short sounds on the signalling apparatus. communication from H. Ressel, Vienna.)' 60.,
This relates to the towing of lighters on rivers and canals, and consists, First, in giving the bottom of the tug steamer and the lignters and in maintaining a layer
having its face downwar
of air in these trays by means of air pumps; Secondly, of air in these trays by means of air pumps; Secondly,
in giving the stern of the tug and of each lightey in giving the and to the bow of each lighter a corresponding convex shape, so that the tug and lighters can be closely jointed together and form a continuous
articulated body for the purpose of confining the sticulated body for the purpose of connining the
shock of water to the bow of the tug boat; and
Thirdly, in a special construction of steam steering Thirdly, in a special construction of steam steering
gear connecting the tug with the lighter immediately
behind it, for the purpose of causing the latter to ehind it, for
734. Binding Sheets of Paper with Metal
Fasteners, ©c., W. F. Lotz, Lordon, 31 st Decenn-
ber, 1881.- A communication from G. .

Neor York.). $6 d$.
This relates partly to improvements on apparatus described in patents No. 756, A.D. 1879, and No. 369,
A.D. 1881, and one improvement consists in providing special mechanism to automatically feed forward to
the plunger the staples which are held in a suitable seeptacle. A coiled spring is fixed to the upper front staple pusher, which consists of a metal bar lying on
the staple track and travelling in a groove in the ppe
-31st December, 1881. $4 d$. This relates to constructing shirts and fronts so as congued or tapered on each side of the centre the front and making it of su
tib of the body
5743. Improvements in Electrical Resistances, ${ }^{\text {PG }}$,
Pfannkuche and R. E. Dunston, Fiteroy-square, This relates to a device for rendering resistance
coils more handy and inexpensive, by embedding the wires in plaster of Paris or glass, so that the heat
engendered in them may be readily diffused. By this In use can be employed. 741. Steam Boilers, \&c., G. H. Lloyl, Birmingham The inventor claims, First, the construction of
steam multitubular boilers with a front and back wall
of tubes connected together so that the steam has liberty to ascend and the water to circulate through
the various members with the utmost freedom;

Secondly, the particular plan of setting with the block K; Thirdly, the use of the slotted packing piece or
diaphragm plate F in combination with and for con necting together the boiler tubes.
5745. Softening, Purifying, and Filitering Water,
F. H. and W. G. Atkins, London.-31st December 1881. 6d. W. G. Alvin, London.-ist December Tith lime reo other softening or purifying substance and it consists, First, in an improve valve for reg lating the flow of water and lime to the mixing vessel
Secondy, to a mixer for intimately mixing or com bining the lime and water, and consisting of a trough
having a series of opening and baffle plates; Thirdly,
to the to the filter which consists of a tank in two parts
bolted together, and between which is fixed a plate with a series of parallel slots to receive the filter bag
5746. Numbering Machines for Printivg 5746. Numbering Machines for Printing, W. .
Lake, London.-- 11 ist December, 1881.
(A communi cation from P. L. Hanscom, Chicago. 6 .
The object is to produce a numbering machine
which with two type wheels will print consecutivel which with two type wheels will print consecutivel
from 1 up to and including 100, and repeat indefinitely and consists in providing an ordinary unit wheel and which at the proper time a double motion is imparted, so as to bring the blank space on such wheel in line
with the one of the units wheels and print 1 again. 5747. Roofs and Roof Coverings for Protection

Paris.) 8d.
The invention relates to a system of roofing for the protection of buildingss in coursem of constructing for from
rain, and also to apparatus for raising the roofing as rain, and also to apparatus for raising the roofing as
the construction of the building progresses. IN. Consuming Smoke And Economising Fuel
IN Funvices, J. Machonald and A.J. M. Bolanachi, Dulvoich. - 31 st December, 1881 .
the drawing the air is taken
pipe B, and the gas is introduced into the air by the lower pipe B, placed in flues C, and back to front of
boiler by the return pipe D. It is then introduce
into the injector E, where the steam jet forces it
through a delivering pipe and deflector into furnace
H. The steam pipe Cl^{1} passes through a superheating
574.8

nected with the armature of an electro-magnet. The current passes through this magnet, and according to
its strength as compared with that of the opposin spring, so the armature is attracted and one or more ne covered by the contact piece, and consod 15. Transmitting Heat to Fluids, \&ec., t. W. Duffy,
Liverpool-2nd January, 1882. 6d. This relates to the use in the apparatus of corru-
gated concentric tubes or casings united at their ends in pairs by ring flanges.
21. Machines for Preparing Wire for Securing London. - 3rd January, 1882.- (A communicatio This relates to the construction of machinery fo cutting, looping, and twisting pieces of wire which are 22. Imitation Lace Printing, A. G. Tottem and J. B This relates to the treatment of the material for the purpose of pr
of zinc. 23. Machinery for Producing and Applying ded vith.) $2 d$. This relates to the employment of clockwork or other
suitable gearing for the purposo of setting in motion or project air a ainst the res arlo or project air against the vanes or pallets of one or
more windmills or paddle wheels causing the same to
rotate. The motion is then transmitted to the ma rotate. The motion is then transmitted to the ma-
chinery or other object to which it is intended to im-
26. Fittings for Ships' Anchors, \&c., S. Baxter

Hornsey Lane.- 3 rd January, 1882. $6 d$.
The inventor claims fitting hawse pipes with their
external entrance a distance within the outer skin of external entrance a distance within the outer skin o
the ship sufficient to permit of the arms and flukes of the anchor being seated in a recess specially formed
for the same, and entirely within the outer skin of the
29. Secondary Batteries, D. G. FitzGerald, C. .
IV. Biggs, and W. W. Beaumont.-3rd January 1882. - (oot proceeded with.) $2 d$.
2d.ectrodes are obtained by utilising local action. 30. Fire-grates, Sir W. W. Hughes, Baysuater.-3rd The object is more especially to construct an open
fire-grate, suitable for burning anthracite coal. 31. Vessels for Aerial Navigation, W. R. Lake, from C. W. Petersen, San Francisco.) 8d.
This relates to an air ship formed of a guiding and
refable lifting vessel or vessels, whereby the ship reefable lifting vessel or vessels, whereby the ship
may beat or tack regularly in the air in vertical inclinations.
32. GLove FASTENERE, \&c., F. Wirth, Frankfort.-
3rd January, 1882.- (A communication from F. Koch, Frankfort.) - (Not proceeded with.) 2 d .
This relates to a button or stud fastening for gloves, 33. Street Cleansing and Sweeping Apparatus, S. L. Hunt, Holborn- -3 rd January, 1882 . $4 d$.
34. Flying Engerne, J. K. Smythies, London.-Brd The flying engine is driven through the air without
a balloon, gas, or hot air to give it buoyancy, solely by a balloon, gas, or hot air to give it buoyancy, solely by
reciprocating action of wings flapped by a steam engine, gas engine, or other prime mover.
 This relates to the combination of metal and fibrous 40. Manufacture of Grape SUgar, W. R. Lake, from Dr. A. Behr, New Jersey, U.S.) 4d.
One of the objects is to produce crystalised anhy.
drous, grape sugar, or, in other words, crystallised anhydride of grape sugar from a watery solution.
41. Manuracture of Rings, dc., c. Touaillon Paris.-4th January, 11882,-(A communication
from J. G. Bertry, Paris.)-(Not proceded voith.) This relates to the manufacture of metal rings with
out soldering. 42 Stoves
42. Stoves And Furnaces, E. G. Lakeman, Modbury This relates to the method of effecting the com-
bustion in stoves and furnaces of the smoke and unconsumed gases which usually escape by the chimney,
by causing the same, with a supply of air, to be con
veed from over the fuel by a fue or flues into a per
forated combustion flue in the flue 43. Barges, \&c., E. Moxon, Turbridge Wells.-4th The object is trobttain increased buoyancy combined
with greater strength. 45. Roller Milss, $A . V$. Neveton, London.-4th Janu-
ary, 188. - (A communication from A. Mechzart, Buda Pesth.) $8 d$. that when thrown out of action the feed rollers of the
hoppers shall cease to act.

 travellers and others.
48. Maciines roor Folding and Hor Presivg or
Ironing Necktirs, M. Steinbock, Neto York. -4th January, $1882.6 d$.
The object is to receive the strip of material from
 edges inwardly, then to fold the strip lengthwise
either in its longitudinal axis or at one side of the same as desired, then to hot press or in
folded, and then to deliver it finished.

 seed as a motor. This dynamo is arranged with fine

wire as a shunt to the current to be measured; this derived courrent passes through magnets A, by one
brush to the armature, thence by bruhses Dand E to
the insulated ring the insulated ring $\mathrm{F}-$ see Fig. 2 - through wire G to an
insulated ring H. Her the ercoutt can be made or
broken, acording as core I be lowered or raised J is a coil of wire through which the current to to be
measured passes ; it is surrounded by iron tube K,

 weight of 1 , and aro so adjusted that when no current
passes through J, contact is broken with insulated

ring H, but that a small current through this coil will
make contact and cause the e electromotor to begin to
to

 proportional within limits to thene squareofrathe, and is is
in the coil. When the governor is revolvine the cen. force on the balls is proportional to the square sition the the magneticic force. These forces balancepone another, the result being that the system will revolve
with Ω velocity proportional to the current through 51. Manuracture or artificial Parchment, \&e., C. This relates to the treatment of various fibrous nimal glue, so as to cause the fibres to adheree closely o each other, and them reducing the glue insoluble
 tiberate the chromic acid, or by treatment with chrom
 This relates to to combination of means whereby the extent of play given to the balls mays be oontrolled
or regulated, and the net is maintained at the proper height.
4. Chy 18E8 Por, J. Wetton, Abergavenny.- 5 th JanuThe obiectar are to p ncreceased thith. draught, and entirely
or partialy prevent smoking. 55. APPARATUS Used
. Apparatus Uskd IN The Distribution of Elec-

5. Apparatus foi

The instruments.s ocnsist, First, of a grooved hider provided with a handle, and serving to clip the oyster
in the desired position; and Secondly, in a specially
shaped knife.

 The object is to set the teth of saw bl
nd rapidly, by means of a simple tool.
 The object is to comb the whole length of the
material by means of two combing rollers acting suc-

 material from which candles are composed, by
dropping down over the sides of the candle after its
doper upper end has become liquid.
60. Ratuway Sicanas, do., S. S. Allin, Bedjord Park. The object is to romove the difficulty now experienced in working the signals, in consequance of the
expansion and contraction of their metallic connec

31. Ese
31. ENeines Worked by Steam or orter Fluin
Pressure, J. James and W. Wardrop, Lambeth.The inventorss claim in.
The inventors clasim in multiple eylinder enginee
havin their pistons linked to a single central shaft
workit working from the piston or connecting rod of each
cylinder, the slide of the next cylinder in order. 62. Trating Timber with Antrseptio or Preskrva January, $1882.4 d$.
This consists partly in the use, for preserving This consists partly in the use, for preserving
timber, of compounds consisting of the tar acid and
othere constituents having antiseptic or preservative other constituents having antiseptic or preservative
properties oxtracted from the heavy oils of tar, and
nixed with diluent liquids. nixed with diluent iquuld

 having incombustibie properties.

This relates to improvenents in magneto and The inductor rotating between the magnetic poles
consists of a ring formed of separate insulated plates of soft iron to facilitate the change of the magnetic
poles during the rotation of the ring. This allows the wires wound round the inductor to be exposed to the the
nducing action of the magnetic poles from all sides
 Dassage of the current through those parts of the
wires sot expoed to this action. Arrangements are
also made for the flow of air through the ring. The poles of the inducing magnets are also of a u or
 The bject is the construction of bridges by means
of separate parts, all of which are similar to one ant
anther, and dy the emplowentent of which, in a a suit-
able number, any distance compatible with the resist. able number, any distance compatible with the resist-
ance of the materials whereof thoy are composed may
 The invention consists in the application or use of true surfaceos or edges, as may be revuired, to be used
as surface plates and straight ed ges.
 from E. Bum, Paris.) (Not. . proceeded woith.) 2 . 2. .
This consists in the novel application to hand printing, stamps, with or without a calendar, of a
composing frame, admitting of the partial or ontire change of the typ, or a modification theroof, without
recourse to skilled operatives to effect the requisite recoursto
alterations of text, and so avoid expense.
 This rolates to to the employment of one or more pairs
 Instead of platinum connections, the conducting wires pass through a long narrow tube and are connected
with well-boiled pitch or resinous cement, and the parts are made so as to be replaceable
Construcoting and Fitting the Seats of Ships,
 The object is to construct and fit the deck and other
seats of ships, and also boat seats for piers and other

71. An Improved Systrm

 Trom B. F. Valentine, Nee York.) 10 d.
This invention relates to a system of telegraphing signals for different purposes, such as to call thene police,
give alarm of fire, ©c., and has for its object impor ments on present systems. whereby a leilibe and last-
ing record of the signal shall be printed by the receiving apparatus, and whereby the nature of the
call and the source fr call and the source from which it came shall be
indicated at a single impression of the printing
mechanism 72. SEcomdary or Reversible Elegtric Batteries,

 This relates to the speede vecial construction of syphons 78. Dens

Paris.
This consists.

of the comsists essention chally in contracting the capacity the employment of a loose slab or cover arranged and operating to prevent the rapid escape of heat.

The inurany, 1882 . 10d
construction of thensists in the peculiar and novel
bination of the pand in the novel com- by which
 operate on a continuous and automatically supplied
sheet of paper or other suitable material, cut up into
the desired form the desired form by deviceso operaterad atoumatically
and, if desired, bronzed and eyeleted, so os to didelly the complete article, and allow of the ready adjust work and prevenent wastate.
 Tanuary, 1882. 6d.
The object is tiping gear used in the the
Bessemer process greater safety than hitherto.

being mixed together in such proportions that white-
wasi or distemper may be produced by the addition wash or distemper may be produced by the addition
of water to the said powder. A modification is
claimed claimed.
89. Lock-WAsher PoR Skcuriva Nuts on Bouts, \&co, In the drawing , A is the esating to which the bolt is
secured ; Bis the bolt ; C the nut ; D the lock washer secured; B is the bolt; ; the nut; D the lock washer
having one of its teeth or projections E turned up

89

against the side of the nut, and another of such toeth or projections F turned down into a holo formed in the
seating, thus effectually securing the bolt in position

The invinentor dispenses with the adjustable parts,
and forms the sight in one piece having the different ranges marked upon its face, with corresponding permanently fixed sighting points, thus avoiding the
neecessity of shifting the sight with each change of
dista necessity
distance.
 ${ }_{\text {ary. }}^{\text {any. }} 1882-(4$
Thany.) 4 . illustrates the combination of a pair of Working roulirs A and B with an adjusting roller C , in
whose circumference are fixed two projecting piceces
With

twice towards the rollor B during each revolution of same time, thereby causing the material passed through the pair of rollers to become thinner in two places than
on the rest of its length.

$$
94 . M^{1}
$$

94. Manvenature of Suar, J. W. Culmer, Mosoowo

 for. Look and Latch Spindies, dec., s. collett, wil-
95. This relates to means for facilitating the use of spindles of square section to different thickenesses of
doors, and different arrangements of locks or latches
 (Not proceeded with.) $2 d$.
This relates to the adaptation and application to the

SELEOTED AMERIOAN PATENTS.

 From the United States' Patent ofice ofticial Gasette Clainh, 1882 (1) The combination, with a plass vessel
containing mercury, of two electric conductors B containing mercury, of two electric conductors B
passing into such vessel, a
a turn button supporting passing into such vessel, a turn button supporting
such vessel and conductors, stationary contact sur-
fice faces, and contact surfacoss, upon the turn button, sur-
stantially as set forth. (2) The combination, in a

circuit-closing key, of an insulating vessel containing,
mercury, and into which vessel the metallic circuit wires pass, and separate cells in the vessel, containing moving the and the ends of such wires, and means into contact vessel and the bringing the mercury thereng in the cells for closing
with ally as set forth.
260,921. Pusp, Nestor R. Alpuche, Merida, Yucatan,
Hexico.-Filed May 17 tht, 18s1. Claim.-The combination, with a tube having an unobstructed bore, and pivotted at its lower end in a
water reservorr, of mechanism, substantiall as de

seribed, whereby a rapid vibratory motion is imparted
to the tube, and the water raised therein by centri-
 place.-Firied June assignor 142 . 1882 .
Claim.-(1) The base or lower section of the head,
consisting of a tubular shank for the attachment of the connecting rod, the socket, the transverse groove

250.940

or stirrup on the opposite side of the socket. (2) The
head cap constructed, as set forth, with a socket

 connects the two sections.
 Stiockly, Cleveland, oftio- Filed January 10th, 1882.
Brif.The weak portions of one of the layers are re-enforced by the strong portions of tha adjacent
layers. claim.-(1) An electric lamp incandescent layers. comim.-(1) An electric lamp incandescent
carbon composed of paper or paper.ilike subste carbon composed of paper or paper-ike substance,
having two sest of fong fibrea raranged in layers, and
the long fibres of one portion of the layers being at an 261.264

angle to those of the other layers. (2) The method of
manufacturing incandescent carbons
for ele etric lamps, substantially as deseribed, the same consisting positions from paper having its long fibres parallel
with each other, and combining a number of these
layers having the fibes in different positions to form layers having the fibres in different positions to form
a complete blank or filament, and then carbonising the whole
261,432. Governor for Shiftive Excentrics,
 pany, same place.-Filed May $9 t h, 1882$.
Claim.- (1) In a steam engine nation of the following elemgine governor, the combi-
the wheely
the whe thio wheol carrired by the shatt, tha sleeve and excen.
tric mounted loosely on the shaft, the weight arms
pivotally connected to the pivotally connected to the excentric, the pivots of the
Weight orms pasing tho
J, carried dy the the pivots on the the side ofo of the the wheol omp opo.
261.432]

sito to the weight arms, and the springs LL L , arrange to bear against the cams, substantiall as set forth
(2) In an tnine governor of the class described, the combination of the shaft, the wheel attached thereto,
the excentric and sleeve mounted loosely on the shat the exceenhi arms pieevemounted loosely on the shati
the weight arms pivoted to the wheel, the centri petally-acting springs to return the weight arms, the
sockets P, carried by the wheel and projecting later.
old ally therefrom, and the cushions 0 in the sookets, al
arranged and operating substantially as set forth.

CONTENTS

Remar The Eńginker, August 11th, 1882. Remarkable Endurance of a Compound drmour
Plate. (Illustrated.) $. . \quad . . \quad . \quad$.. The Farnley Trated.)
 STONE
RALLWAY MATtERS
NOTES
RatL WAY MATters
Notes and Memora

The Seway Shabege
Brewing in England
Sale or Plant at Avonside engine workis
The Visit of the Institution of Mrchanical
Enginers to Leeds
Hastinges Foreshore
The Theory of Weldin
$\begin{aligned} & \text { Port and trade of Sunderland } \\ & \text { Literature- }\end{aligned} \quad \cdots \quad \because \quad . . \quad 10$
Geometrical Drawing..
Electric Lighting,
WIND WATER LIFTS
Contracts Open--
Wrought Iron Buo

Electric Light Meters. (Ilustrated.) $\quad . . \quad$.. 109
The Iron, Coal, and General Trades of
Birmingham, Wolverhampton, and District..

Notes from Sheffiel
Notes from Walles and adjoining Counties ..
 ABTRACTS OF
(Illustrated.)
ARagraphs- Important Discovery of Iron Ore .
Technical Education
German Submarine Diving Experiments. $\because .$.
The Winter Electrical Exhibition, Royal Aqqua-
rium-Award List
Twin First-class Carriag
Twin First-class Carriag

[^0]: ** Specifications will be forwarded by post from
 the Patent-office on receipt of the amount of price and

